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ABSTRACT
The Master´s Thesis is about the security testing of obfuscated Android applicati-
ons. The theoretical part of the thesis describes the basic theory behind obfuscation
and mentions several obfuscators. Impact of obfuscation on penetration testing is also
mentioned. Dynamic analysis is proposed as the main tool of this thesis to bypass the
obfuscation. The practical part of the thesis describes realtime application self-protection
controls and a way to bypass them using dynamic analysis. The second section of the
practical part is about advanced obfuscation techniques and their bypassing.

KEYWORDS
Android, security, obfuscation, Allatori, DashO, DexProtector, penetration testing,
owasp

ABSTRAKT
Diplomová práca je o bezpečnostnom testovaní obfuskovaných Android aplikácií. Teo-
retická časť práce opisuje základy obfuskácie a spomína niektoré vybrané obfuskátory.
Dopad obfuskácie na penetračné testovanie je taktiež zmienený. Práca navrhuje dy-
namickú analýzu ako hlavný nástroj pri obchádzaní obfuskácie. Praktická časť práce
popisuje ochrany aplikácie v reálnom čase a spôsoby, ako tieto ochrany obísť pomocou
dynamickej analýzy. Druhá polovica praktickej časti je venovaná pokročilým technikám
obfuskácie a spôsobom ich obídenia.
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ROZŠÍRENÝ ABSTRAKT
V dnešnej modernej dobe sú mobilné aplikácie každodennou súčasťou našich ži-
votov. Takmer každý z nás využíva aplikácie pre prístup k sociálnym sieťam alebo
internet bankingu. Tieto aplikácia pracujú s citlivými dáta a často vykonávajú
citlivé akcie ako prevod peňazí a podobne. Práve preto je nevyhnutné aby tieto
aplikácie neobsahovali bezpečnostné chyby, ktoré by mohli aplikáciu alebo užívateľa
kompromitovať. Jedinou cestou, ako zabrániť zraniteľnostiam, je neustále vykonávať
bezpečnostné testy.

Vývojári aplikácií často používajú obfuskáciu, aby zamedzili jednoduchej analýze
aplikácie. Avšak počas bezpečnostného testu je obfuskácia prekážkou, nakoľko ni-
ektoré testy je komplikované vykonať alebo sa nestihnú z časového hľadiska. Cieľom
tejto práce je poukázať na testovanie obfuskovaných aplikácií a navrhnúť riešenia,
ako k takýmto aplikáciám pristupovať efektívne.

Obfuskácia sa dá chápať ako transformácia vstupného kódu na výstupný, ktorý
je obfuskovaný. Cieľom je odstrániť akékoľvek identifikátory, ktoré by mohli pomôcť
pri analýze aplikácie. Napríklad sú odstránené názvy premenných a nahradené
bezvýznamnými názvami. Obfuskovaný kód je z hľadiska funkcionality zhodný s
pôvodným kódom, avšak je ťažšie pochopiteľný, ak ho číta človek.

Ako základný obfuskátor bol kedysi považovaný ProGuard. Ide o bezplatný
program určený pre Java aplikácie a funguje aj s platformou Android. V novš-
ích verziách vývojového prostredia Android Studio bol nahradený obfuskátorom od
spoločnosti Google s názvom R8.

V praxi sa obfuskácia využíva na ochranu aplikácií proti nežiadúcej analýze alebo
dekompilovaniu. Bezpečnostné štandardy požadujú, aby každá aplikácia mala aspoň
základnú obfuskáciu. Obfuskácia je však často používaná pri škodlivých aplikáciách.
Keďže obfuskácia mení vzhľad kódu, ale nie funkčnosť, je možné týmto spôsobom
obísť statické analýzy, ako napríklad detekcia malware pomocou známych signatúr
alebo odtlačku (fingerprint).

Pri bezpečnostnom testovaní obfuskácia spomaľuje celý proces, čím sa trvanie
testu predlžuje a je finančne náročnejší. Často nie je možné za daný čas otestovať
aplikáciu, ktorá ma viaceré ochrany. Práca s obfuskovanou aplikáciou je kompli-
kovanejšia a preto je nutné mať k dispozícií riešenia, ktoré umožnia a zjednoduchšia
prácu s takýmito aplikáciami.

Pri statickej analýze je aplikácia dekompilovaná na zdrojový kód a tester sa
snaží pochopiť jej princípu a fungovaniu. Statická analýza nie je efektívna pri
obfuskovaných aplikáciách, keďže obfuskácia sa zameriava na vzhľad kódu a značne
komplikuje jeho čítanie a pochopenie. Avšak stále je statická analýza nevyhnutná a
je súčasťou každého testovania. Touto metódou je možné odhaliť použité knižnice
alebo názvy funkcií, ktoré budú analyzované dynamicky.



Na rozdiel od statickej analýzy, dynamická analýza aplikáciu spúšťa. Keďže
funkcionalita kódu je nezmenená, obfuskácia nemá vplyv na dynamickú analýzu.
Hlavným nástrojom tejto práce je Frida Toolkit. Ide o nástroj, ktorý dokáže do
aplikácie vnášať vlastný kód a počas chodu aplikácie meniť význam jednotlivých
metód, prípadne jednotlivé metódy odchytiť a zmeniť alebo vypísať vstupné a vý-
stupné parametre. Práca s Frida Toolkit je priamočiara a rýchla, jednotlivé skripty,
ktoré sú vkladané do aplikácie sú písané v jazyku JavaScript, ktorý je jednoduchý
a rýchly na vývoj.

Mobilné aplikácie často obsahujú mechanizmy, ktoré v reálnom čase vyhodnocujú
prostredie, v ktorom aplikácia beží a kontrolujú ho na možné hrozby. Medzi takéto
kontroly často patrí detekcia superužívateľa (root oprávnenia), emulátora alebo
prítomnosť debuggera. Prítomnosť niektorého z týchto prvkov by mohla značiť
kompromitované zariadenie, čo môže pre aplikáciu predstavovať riziko. Najčastejšie
sa však aplikácia chráni pomocou ochrany Certificate Pinning, často označovaná
ako SSL Pinning. Ide o ochranu, kedy aplikácia odmietne komunikáciu so serverom,
ktorý neobsahuje SSL/TLS certifikát, ktorý má aplikácia v sebe zakomponovaný.
Tento mechanizmus však znemožňuje testovanie, nakoľko pri teste je aplikácia vždy
napojená na aplikačnú proxy, cez ktorú smeruje komunikácia, aby ju tester mohol
vidieť. Aby proxy vedela pracovať aj so šifrovanou komunikáciou, vytvárajú sa dva
šifrované kanály, jeden medzi aplikáciou a proxy, druhý medzi proxy a cieľovým
serverom. Komunikácia na proxy je teda dešifrovaná a je možné ju modifikovať.
Chránená aplikácia pomocou SSL Pinningu však neprijme certifikát od aplikačnej
proxy a komunikácia neprebehne, čím je testovanie znemožnené. Taktiež testovanie
prebieha výhradne na zariadeniach so superužívateľom, aby mal tester prístup ku
všetkým súborom aplikácie a všetkým funkciám. Pre tieto dôvody je nutné tieto
mechanizmy pri teste obísť.

Všetky spomenuté mechanizmy je možné obísť pomocou dynamickej analýzy.
Často sú tieto mechanizmy implementované pomocou štandardných postupov. Je
teda možné predpokladať ako bude vyzerať implementácia v konkrétnej aplikácií.
Proces obídenia týchto mechanizmov je jednoduchý. Pomocou Frida Toolkit sa
napíše skript, ktorý špecificky obchádza implementáciu daného mechanizmu a tým
mu zabraňuje vo funkčnosti, prípadne sa tento mechanizmus oklame, aby si myslel,
že všetko beží tak ako má, aj keď je reálne zariadenie upravené. Vďaka dynamickej
analýze a Frida Toolkit je možné testovať aj aplikácie, ktoré takéto mechanizmy
obsahujú a je ich možné obísť.

Niektoré obfuskátory často poskytujú aj pokročilú funkcionalitu, akou je ši-
frovanie textových reťazcov alebo napríklad obfuskácia kontrolného toku (control
flow) pomocou vnášania nadbytočného kódu alebo viacerých vetvení. Práve textové
reťazce často poskytujú testerovi vstupnú bránu do aplikácie, nakoľko je jednoduché



zistiť, aká funkcionalita je poskytovaná danou funkciou. Ak napríklad funkcia
obsahuje textový reťazec „Platba úspešná!“, je možné predpokladať, že táto funkcia
pracuje s nejakou časťou platobnej funkcionality. Týmto spôsobom sa dá rýchlo a
jednoducho lokalizovať hľadaná funkcionalita.

Aplikácie často obsahujú nejakú formu dodatočného zabezpečenia komunikácie
so serverom. Často je použitá nejaká forma digitálneho podpisovania požiadaviek.
Pre testovanie aplikácie je nevyhnutné otestovať jednotlivé parametre, zasielané v
požiadavkách na server, preto je nevyhnutné mať možnosť vytvoriť platný podpis
aj pre modifikované dáta.

Pre otestovanie obídenia týchto pokročilých obfuskačných techník bola vytvorená
vlastná aplikácia. Táto aplikácia je inšpirovaná mobilným bankovníctvom. Ide
teda o aplikáciu, ktorá znázorňuje prevod peňazí medzi užívateľmi. Táto aplikácia
bola obfuskovaná pomocou troch pokročilých obfuskátorov a to Allatori, DashO
a DexProtector. Cieľom bolo obísť šifrovanie reťazcov a získať možnosť podpisovať
ľubovoľné požiadavky. Ako navrhnutá metodológia bola dynamická analýza, konkré-
tne Frida Toolkit v spolupráci s doplnkom Brida pre známu proxy Burp Suite.

Aplikácia bola analyzovaná vo všetkých troch verziách. Jedna verzia pre každý
použitý obfuskátor. Statickou analýzou bol porovnaný vzhľad kódu a jeho zrozumi-
teľnosť. Taktiež bola identifikovaná metóda, ktorá obsluhuje dešifrovanie šifrovaných
textových reťazcov. Po tejto analýze bola identifikovaná metóda, ktorá generuje
podpis/odtlačok pre jednotlivé požiadavky. DahO aj DexProtector využívali na
obfuskáciu aj štandardný obfuskátor R8.

V prípade Allatori aj DashO bol priebeh podobný. Statickou analýzou boli
objavené metódy pre dešifrovanie textových reťazcov, ktoré boli pomocou Frida
Toolkit napichnuté (hooked) a pri každom volaní bol ich výstup (dešifrovaný text)
zobrazený pre testera. Podobne sa postupovalo pri generovaní platného podpisu.
Lokalizovanie tejto metódy je o niečo komplikovanejšie, keďže metódy majú zmenené
názvy, avšak nepredstavuje to veľký problém. Táto metóda využíva kryptografi-
cké volania pre prácu s algoritmom HMAC. Nájdením metódy, ktorá využíva tieto
volania bola objavená hľadaná metóda. Po lokalizovaní bol napísaný Frida skript,
ktorý umožnil testerovi ľubovoľne využívať túto funkciu podľa potreby.

DexProtector bol odlišný od zvyšku obfuskátorov, keďže podporoval šifrovanie
celých tried a teda neboli k dispozícií dekompilované zdrojové kódy. Šifrovanie
textových reťazcov nebolo podporované. Bez prístupu k statickej analýze bol zvolený
slepý postup. Pomocou predpokladov a stack-trace výpisov bolo možné detegovať
správnu metódu, ktorá bola následne napichnutá a bolo možné ju využívať.

Tieto postupy demonštrovali obídenie aj pokročilých obfuskačných techník a
dynamická analýza sa ukázala ako silný nástroj v rukách testera pri testovaní tohto
typu aplikácií.
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Introduction
Nowadays, Android applications are more and more common. This includes appli-
cations like social media or mobile banking applications. These can contain sensitive
information and also perform critical actions like money transfers. Developers of the
applications need to have these applications tested for security vulnerabilities as it
is the only method to lower the risk of security issues.

Security testing of mobile applications can be relatively straightforward thanks
to available testing standards. The issue arises, when the developers are unable to
provide an unobfuscated application to the security testers. Bypassing obfuscation
can be a tricky and time-consuming process.

The goal of this thesis is to provide the necessary information about obfuscation
so the testers can fully understand their enemy. Also, effective tools like dynamic
instrumentation are shown as they can sometimes completely bypass obfuscation in
some instances.

The first chapter is about the basics of obfuscation on the Android platform and
provides details about the reason that obfuscation can be problematic in security
testing.

The Second chapter discusses static and dynamic analysis methods to show the
advantages and disadvantages of both. Frida toolkit is presented as the primary
dynamic analysis/instrumentation framework.

The next chapter presents basic protections that the applications usually include,
like SSL pinning or root detection. These need to be bypassed during the test as
they would hinder the ability to test the application properly. Methods, how to
bypass these protections, using Frida toolkit, are described in detail in chapter 4.

The final two chapters describe advanced obfuscation techniques and methods,
how to work around them. These chapters required the use of custom test appli-
cation to be analysed and to demonstrate the power of the dynamic instrumentation.
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1 Obfuscation
Android uses Java as its primary programming language for applications. Java is
not directly compiled into assembly code. Instead, it compiles into byte-code. This
means that Java application is relatively easy to decompile compared to standard
assembly code like C/C++ [1]. Java byte-code contains information about fields,
method return values and parameters. Variable names and method/class names
(identifiers) are also preserved.

Obfuscation is a process of transforming input code I to target code T and can be
written as T = 𝑓(I) [2]. From the user’s perspective, both I and T must be identical
(obfuscated application must work the same as non-obfuscated). The only difference
is that the obfuscated application looks different (garbled) when decompiled by the
reverse engineer. Some obfuscators also add additional junk code, which does not
have any functionality and its only purpose is to confuse the reverse engineer.

Main techniques used for obfuscation are: [2]
• Identifier renaming – developers tend to use descriptive names for variables and

classes. This information can be helpful during the reverse engineering process.
Obfuscator strips away this data and replaces identifiers with meaningless
names.

• String encryption – certain obfuscators can encrypt hardcoded strings. These
strings are decrypted during runtime.

• Java reflection – reflection is a feature of Java and allows developers to create
classes and call methods dynamically using getMethod() or invoke() calls.

For better understanding, consider code in listing 1. The code contains function

1 public KeyPair generateKeyPairForSigning(String alias, String algorithm) throws
NoSuchProviderException, NoSuchAlgorithmException,
InvalidAlgorithmParameterException {

→˓

→˓

2 KeyPairGenerator kpg = KeyPairGenerator.getInstance(algorithm,
"AndroidKeyStore");→˓

3 kpg.initialize(new KeyGenParameterSpec.Builder(alias,
4 KeyProperties.PURPOSE_SIGN | KeyProperties.PURPOSE_VERIFY)
5 .setDigests(KeyProperties.DIGEST_SHA256,
6 KeyProperties.DIGEST_SHA512)
7 .build());
8 return kpg.generateKeyPair();
9 }

Listing 1: Original code without obfuscation.

named generateKeyPairForSigning, which takes two string parameters called alias
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and algorithm. The purpose of this method is to create a key pair for digital signature
and verification with the specified alias and using the specified algorithm. For the
illustration purposes, code is being compiled without optimizations (-donotoptimize
flag), and ProGuard with default settings is used for obfuscation.

Without the use of obfuscation, all identifier names are retained (listing 2) and

1 public KeyPair generateKeyPairForSigning(String alias, String algorithm) throws
NoSuchProviderException, NoSuchAlgorithmException,
InvalidAlgorithmParameterException {

→˓

→˓

2 KeyPairGenerator kpg = KeyPairGenerator.getInstance(algorithm,
"AndroidKeyStore");→˓

3 kpg.initialize(new Builder(alias, 12).setDigests(new String[]{"SHA-256",
"SHA-512"}).build());→˓

4 return kpg.generateKeyPair();
5 }

Listing 2: Decompiled code without obfuscation.

the decompiled code is almost the same as original. With ProGuard obfuscation,
decompiled code has renamed identifiers with meaningless names like a or str1 (li-
sting 3). A simple function like this can still be reverse engineered easily, but more
complicated code can have a function calls like c.a.a.a.b(), which can be frustrating
to work with as the reverse engineer.

1 public KeyPair a(String str, String str2) {
2 KeyPairGenerator instance = KeyPairGenerator.getInstance(str2,

"AndroidKeyStore");→˓

3 instance.initialize(new Builder(str, 12).setDigests(new String[]{"SHA-256",
"SHA-512"}).build());→˓

4 return instance.generateKeyPair();
5 }

Listing 3: Decompiled code with Proguard obfuscation.

1.1 Android Build Process
Understanding of build process for an Android application is not necessary for the
obfuscation purpose itself but is required for reverse-engineering. Android used to
use three different tools to produce its final format (.dex files – Dalvik Executable)
[2]:
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• javac – standard Java compilator, creates Java byte-code from the source code.
• ProGuard – shrinks, optimizes, obfuscates and preverifies Java byte-code that

was generated by javac (more on this in section 1.2).
• DX – compiles Java byte-code into Android-specific byte-code (Dalvik format1).

This build process can be seen in figure 1.1[4].

Source code
Java 

byte-code
(.class)

Optimized
Java 

byte-code
(.class)

Optimized
Dalvik

byte-code
(.dex)

javac ProGuard dx

Java specific Android specific

Fig. 1.1: Old build process for Android applications.

Nowadays, the build process is a bit different. Google recognized the downsides of
using three separate tools in the build pipeline and decided to streamline the process
[4]. After multiple attempts with Jack and Jill and D8 compilers/optimizers, Google
finally produced a replacement for dx and also for ProGuard – R8. It acts as an
optimizer/shrinker/obfuscator and also as a compilator/transformer of Java byte-
code into Dalvik executable format (.dex). R8 is an extension of D8 (D8 only
transforms Java byte-code into dex format, R8 does the same, but can also optimize
the byte-code). This new build process can be seen in figure 1.2. R8 is backwards
compatible with ProGuard rules.

1.2 ProGuard
ProGuard2 used to be the default class file shrinker, optimizer, obfuscator and
preverifier shipped with Android SDK and Android Studio. It is a general tool
for Java, not specifically for Android applications. ProGuard uses these steps to
create output jars out of input jars [5]:

• Shrinking – removes unused classes, fields, methods and attributes effectively
resulting in smaller output jar.

1Dalvik virtual machine that Android used was superseded by Android Runtime (ART).
However, applications are still being built into Dalvik format and are compiled into ART format
on-device [3].

2https://www.guardsquare.com/en/products/proguard
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Source code
Java 

byte-code
(.class)

Optimized
Dalvik

byte-code
(.dex)

javac R8

Java specific Android specific

Fig. 1.2: Build process for Android applications using the new R8.

• Optimizing – optimizes byte-code of methods.
• Obfuscation – renames identifiers to meaningless names.
• Preverification – a requirement for Java 6 and higher (also for Java Micro

Edition).
This whole process can be seen in figure 1.3.

Input	jar Shrunk	code Optimized
code

Obfuscated
code Output	jar

shrink optimize obfuscate preverify

Fig. 1.3: ProGuard workflow.

ProGuard as obfuscator provides only identifier renaming, advanced protecti-
ons like string encryption or RASP (Runtime Application Self-Protection) are not
included. On the other hand, ProGuard is open-source and free to use for both
personal and commercial use.

1.3 DexGuard
Both ProGuard and DexGuard3 are made by the same company (Guardsquare).
While ProGuard is an optimizer for Java byte-code, DexGuard is specific for Android
[6]. This allows DexGuard to implement advanced features, some of which include:

• Better optimization.
3https://www.guardsquare.com/en/products/dexguard
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• RASP – includes protections like SSL pinning, debugger detection or rooted
Android device.

• Provides advanced obfuscation – unlike ProGuard, DexGuard also obfuscates
arithmetic and logical expressions as well as control flow.

• Encryption – DexGuard can encrypt hardcoded strings (these are decrypted
during runtime) and also encrypt names of sensitive classes or include reflection
to sensitive method calls.

• Protection of all components – ProGuard only obfuscates byte-code, DexGuard
can obfuscate/encrypt/optimize other components like manifest file, native
libraries, resources and assets.

DexGuard is a commercial tool and requires a paid license to use.

1.4 Usage of Obfuscation in the Real World
This work differentiates two main categories of applications, which use obfuscation
– benign applications and malware.

1.4.1 Benign Applications

Benign applications use obfuscation mostly for the following reasons [7]:
• protection of proprietary or sensitive algorithms inside the application,
• multimedia resources protection for piracy reduction (DRM – Digital Rights

Management),
• shrinking the application makes them smaller and can run faster.

Statistically, approximately 25% [8] of Android applications are obfuscated (sample
of 1,762,868 free applications from Google Play store). ProGuard was the most
popular obfuscator, which is understandable as it is the default one. Different
research shows that almost 43% [9] of applications in the Google Play store are
obfuscated (however, this research had a smaller sample size, only 26,614 appli-
cations). For third-party stores (mostly from China), this number rises to 73% [9]
(sample of 65,666). This is mostly due to piracy and application cloning threats in
China, so protection of source code is more relevant for developers.

Research [8] also proved that applications with higher download count are more
obfuscated. For example, applications with 10,000+ downloads are obfuscated in
approx. 24% of cases. However, in approx. 50% of applications with 100,000,000+
downloads are obfuscated. A similar trend can be seen with the number of applicati-
ons per account. Developers with 1-10 released applications mostly do not obfuscate
their apps (on average, only ≈21-22%). On the other hand, developers with 500+
released applications have, on average ≈68,41% of obfuscated applications.
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It can be concluded that the more applications the developer have, the more
likely it is that his/her applications will be obfuscated. The same thing applies
for application popularity, more successful application results in higher obfuscation
chance.

1.4.2 Malware

The other big group of applications is malware. These applications use obfuscation
to [7]:

• hide malicious payloads from anti-malware scanners,
• prevent or delay human analysis of the malware.

Android devices (and mobile devices in general) are performance-limited devices
mostly powered by a battery. This means that advanced malware detection techni-
ques are limited by both power and performance. A lot of anti-malware software
use signature-based detection (static analysis). In general, this technique works by
"fingerprinting" the application and comparing it with the list of known malware.
Obfuscation can usually bypass this detection as one malware can be transformed
into many applications (each with its signature) using obfuscation. For example,
obfuscation can rename classes based on rules, and these rules can be changed for
each application. Junk code insertion is also an option (many times using goto
statements, which alters the control flow and the call graph of the application).

Obfuscation also delays the analysis of malware because it takes longer for the
human reverse-engineer to understand the workflow of the malware and create si-
gnatures or other forms of the detection technique. The only way around these issues
and obfuscation, in general, is dynamic analysis (as obfuscation has no impact on
the execution of the application).

Research on obfuscation usage in malware applications [9] showed that ≈64% of
malware is obfuscated (authors of the research believe that the rest are entry-level
malware authors without proper knowledge or false positives in malware detection).
This result makes sense because obfuscation is essential for malware authors to
prevent early detection, which allows the malware to spread and infect more devices.

1.5 Impact of Obfuscation on Security Testing
As for the protection of proprietary or sensitive algorithms, consider this real-
world example. Mobile banking application, which allows clients to execute money
transfers. These transfers require client-server communication, which can easily be
tampered with by the attacker using standard application proxy like Burp Suite4

4https://portswigger.net/burp
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(and bypassing SSL pinning, more on this topic later). To prevent modification of
data sent by the attacker, digital signatures together with encryption are used in
(usually) custom way. Mobile banking applications are sensitive because they handle
sensitive data (money). Usually, this means that banks want to have their applicati-
ons tested for security vulnerabilities before release. Some banks will provide both
obfuscated and unobfuscated (debug) versions to security testers (as they should).
However, this is not always the case. Some banks refuse to provide unobfuscated
versions for penetration tests, and it is up to penetration testers to still test the appli-
cation properly. The only way to properly verify that the signing/encryption algori-
thm used for money transactions is not susceptible to tampering is by understanding
how it works (security by obscurity does not work). This is a significant problem if
the application is obfuscated and understanding to decompiled code is more compli-
cated (especially with encryption algorithms, which usually use a lot of mathemati-
cal operations). Penetration tests of mobile applications (or any application) are
expensive, and clients do not want to spend much money. As such, these tests
usually take only several days. This is not much time, especially when it is needed to
test the communication of the application with backend server as well as the security
of the application itself. In this case, obfuscation prevents testers to accurately and
in-depth test the entire application.
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2 Analysis of Effective Security Testing and
Reverse Engineering

In order to test the application, testers have multiple ways to test the application.
These primarily include static and dynamic analysis. Both have their pros and cons.
Usually, these are used together to create one complex analysis. This text presumes
obfuscated application and as such only black-box testing will be considered (without
access to original/unobfuscated source code). To obtain the source code of the
application, the decompilation of the apk file is required.

2.1 Disassembling and Decompilation
Android applications can be disassembled and decompiled back into Java. Appli-
cation in apk format can be obtained from the application developer, from the
device (requires root) or can be downloaded from websites like apkpure.com (requi-
res caution, potentially can contain malware). There are many tools to decompile
the apk file. The easiest way is to use jadx-gui1, which disassembles and decompiles
the application and shows the source code in one click.

Jadx-gui does not allow editing the source code, only reading. To fully decompile
the application on the file system, apktool2 or apkx3 can be used. Apkx disassembles
and decompiles the application straight into Java (apktool requires an additional
step to convert dex files into Java). The decompiled application can be imported
into Android Studio (or other IDE – Integrated Development Environment), which
provides quality of life features like refactoring. After making required changes to
the source code (like enabling debugging flag or SSL pinning bypass), the application
needs to be repackaged back into apk format. Apktool can be used once again. It
creates apk file, but modifications to the source code mean that the digital signature
inside the apk file will not be correct. Apk file needs to be re-signed with our
signing key (self-signed RSA key is sufficient). After re-signing, the application can
be installed onto an Android device.

2.2 Static Analysis
Also known as code review, static analysis revolves around reading the decompiled
source code and trying to understand its purpose. With obfuscation, this is harder

1https://github.com/skylot/jadx
2https://ibotpeaches.github.io/Apktool/
3https://github.com/b-mueller/apkx
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because identifiers like class or variable names are changed to meaningless names.
It is best to use IDE like Android Studio or JetBrains IntelliJ as these tools provide
testers with the ability to rename identifiers and tracking down method calls.

Manual static analysis of the obfuscated application is based on going through
the source code of the application [10] (ideally from the beginning – MainActivity)
and trying to understand the code and rename every method call and variable on the
way to a more meaningful name. With small and simple applications, this process is
doable in a reasonable amount of time, but more complex applications (with a lot of
functionality) would take too much time to analyze and understand. This is because
obfuscation primarily targets source code and as such hinders static analysis a lot.

Several tools exist for automatic analysis of android applications like MobSF4

or QARK5. These tools are similar to automatic vulnerability scanners, and their
output should not be considered reliable. At the same time, these tools can direct
the tester in a specific way or find easy-to-find vulnerabilities like the debuggable
flag or similar. Automatic tools are also useful to list strings or libraries inside the
application. The tester should always do a manual review of the generated report.

2.2.1 Native Libraries

Android applications can contain native libraries written in C/C++. Compared to
Java libraries, native libraries are faster as they are directly compiled to assembly
language. Android/Java part of the application communicates with the native li-
brary over the Java Native Interface (JNI) [10]. The benefit of using native libraries
is re-usability of already written applications (only small changes to the library are
required for JNI to function correctly).

Native libraries can be loaded into disassemblers like IDA Pro, radare2 or Ghi-
dra. Assembly language is harder to understand than decompiled Java language.
Some disassemblers can attempt to recreate the original C/C++ source code (or its
representation), but this code can many times be far from the original. Malware
authors tend to use native libraries to slow down the manual analysis of the sample.

2.3 Dynamic Analysis
The dynamic analysis does not rely on the reading of the source code. Instead,
the application is running and its behaviour is observed [10]. Compared to static
analysis, dynamic analysis allows the easier discovery of specific vulnerabilities, for
example, data storage vulnerabilities (it is easy to look inside shared preferences or

4https://github.com/MobSF/Mobile-Security-Framework-MobSF
5https://github.com/linkedin/qark
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on the file system what information is being stored by the application and if this
information is protected). Some vulnerabilities can only be found during dynamic
analysis like vulnerable communication with the server.

It is also possible to debug an Android application during runtime. Android
provides two different types of debugging:

• Java Debug Wire Protocol (JDWP) – protocol for communication between
Java Virtual Machine and the debugger

• Linux/Unix-style ptrace-based debugging – mostly used to debug native li-
braries

Unless the tested application contains many native libraries, JDWP is usually used.
JDWP allows to set breakpoints, step through the Java code and inspect/modify
variables. Standard Java debugger jdb is often used. Adding decompiled sources
into IDE like Android Studio allows using standard debugging techniques, which
are used during development. For example, setting the breakpoint directly in the
GUI and on the specific line rather than using a command-line interface with jdb.
The only downside is that this technique may not work as the decompiled sources
are not the same as the original sources [10]. Both techniques work well and can be
utilized.

To allow debugging, the Android application needs to have android:debuggable =
"true" in its manifest file. However, the manifest file can be modified by the tester,
and the debuggable flag can be manually inserted.

As obfuscation targets the source code, dynamic analysis is not hindered by
obfuscation. This work mostly revolves around dynamic analysis rather than static.
The following chapters will contain more details into specific methods used as well
as examples.

2.4 Frida Toolkit
Frida6 is a free, open-source dynamic instrumentation toolkit written in C language.
It works by injecting JavaScript engine (Duktape and V8) into the instrumented
process [10], which allows the execution of JavaScript code inside application. The
injected code is written directly into process memory. The architecture of Frida can
be seen in figure 2.1.

Frida works in three different modes of operation:
• Injected – frida-server needs to be running as a daemon on the device (requires

rooted device). This is the most common mode. No modification to the
application itself is necessary.

6https://www.frida.re/
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Our tool

Script object

frida-node

JavaScript & C++

frida-core
platform-specific
communication

channel
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frida-agent

script.js

gumjs

frida-gum

Fig. 2.1: Frida architecture.

• Embedded – frida-gadget library needs to be injected into the application itself
by embedding it into it manually. Works on non-rooted devices but requires
modification to the application.

• Preloaded – frida-gadget library can be configured to run autonomously by
loading scripts from the filesystem.

When Frida is attached to a running application, it uses ptrace to hijack a thread
of the process and uses it to allocate memory and populate it with mini-bootstrapper
[10]. Bootstrapper starts a new thread and connects to frida-server running on the
device. The shared library is loaded that contains the Frida agent (frida-agent.so).
The agent creates a bi-directional communication channel (platform-specific) back
to our tool (either Frida REPL or custom script). Hijacked thread resumes normally.

Frida supports JavaScript for injected code and Python to write Frida tools. A
combination of Python and JavaScript was chosen for quick development and risk-
free API. Frida tools can also be written directly in C or in one of the language
binding on top of C (Node.js, Swift, .NET, Qml, etc.).

On the Android platform, Frida provides several features [10]:
• Create Java Objects, call static/non-static class methods.
• Change Java function implementation.
• Enumerate instances of the specified class.
• Search for a string inside process memory.
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• Intercept calls to native functions at entry and exit.
• Supports modification of native code.
Several tools are built on top of Frida such as Fridump7 (memory dumping tool)

or Objection8 (runtime mobile exploration toolkit).

2.4.1 Example Usage

To demonstrate the power of Frida, "crackme" developed by OWASP is used. The
application name is UnCrackable-Level1 and can be downloaded from github9. It is
a straightforward application with one text area for user input and a button to verify
this input. String inputted by the user is checked against the predefined string and
if the correct string was inputted, the application prints success message. A failed
attempt is visible in figure 2.2.

Fig. 2.2: UnCrackable-Level1 GUI.

To keep it simple and short, only relevant parts will be shown. Input from the
user is sent to the method (listing 4) sg.vantagepoint.uncrackable1.a.a (notice that

7https://github.com/Nightbringer21/fridump
8https://github.com/sensepost/objection
9https://github.com/OWASP/owasp-mstg/blob/master/Crackmes/Android/Level_01
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the names are obfuscated). In the return statement (line 14), string str is checked
against sting created from byte array bArr. String str is the input from the user and
bArr is the byte representation of the secret. On line 6, byte array bArr is populated
with data by calling method sg.vantagepoint.a.a.a with two parameters. The first
parameter is the secret key used to decrypt the second parameter. Inside the method,
AES decryption is performed. It would be possible to manually follow these methods
and decrypt the given strings manually, but it would be time-consuming.

1 public static boolean a(String str) {
2 byte[] bArr;
3 String str2 = "8d127684cbc37c17616d806cf50473cc";
4 byte[] bArr2 = new byte[0];
5 try {
6 bArr = sg.vantagepoint.a.a.a(b(str2),

Base64.decode("5UJiFctbmgbDoLXmpL12mkno8HT4Lv8dlat8FxR2GOc=", 0));→˓

7 } catch (Exception e) {
8 StringBuilder sb = new StringBuilder();
9 sb.append("AES error:");

10 sb.append(e.getMessage());
11 Log.d("CodeCheck", sb.toString());
12 bArr = bArr2;
13 }
14 return str.equals(new String(bArr));
15 }

Listing 4: Input verification function.

Frida can be utilized and method sg.vantagepoint.a.a.a can be hooked to print
the return value (which is the secret value). To hook the method, a script written
in javascript (listing 5) is created and injected into the process. This script executes
immediately after the application is started (because of setImmediate() function). It
first finds class sg.vantagepoint.a.a and then finds the implementation of its method
a and replaces it (line 5) with our own method. The first line of the modified method
(line 6) is a call to the original method (to obtain the decrypted secret – byte array).
The following lines convert each byte value inside byte array into string characters
and then prints the entire string (in this case the secret value). Noticed that the
method was changed, however, we also call the original method and return its value,
so the workflow of the application is not modified (calling this modified method will
still return the indented value, so the application works as normal).

Listing 6 shows the execution of the Frida hook and also its output (application
needs to run and button inside the application must be clicked with random input).
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1 setImmediate(function() {
2 console.log("[*] Script started");
3 Java.perform(function() {
4 class = Java.use("sg.vantagepoint.a.a");
5 class.a.implementation = function(key, encryptedSecret) { //change the

implementation of the method→˓

6 returnValue = this.a(key, encryptedSecret); //call to original
method→˓

7 secret = ''
8 for(i = 0; i < returnValue.length; i++) {
9 secret += String.fromCharCode(retval[i]); //use return value of

the original method and convert from byte array to String→˓

10 }
11 console.log("[*] Secret: " + secret); //print the secret
12 return returnValue;
13 }
14 });
15 });

Listing 5: Frida script to print the secret value.

The decrypted secret is I want to believe. To ensure this is the correct secret, we
input it into the application and success message appears (figure 2.3).

1 frida -U -l uncrackable1.js owasp.mstg.uncrackable1
2

3 [*] Script started
4 [*] Secret: I want to believe

Listing 6: Output of the Frida script.

2.5 OWASP Mobile Security Testing Guide
Companies use certain standards for security testing of mobile applications. One
of such standards is OWASP Mobile Security Testing Guide [10] (MSTG). It is a
comprehensive manual for mobile application security testing (both for iOS and
Android). As is common with OWASP, anyone can contribute to this project.
MSTG is created by many contributors, reviewers and editors around the world
and can be used for free.
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Fig. 2.3: Verification of the obtained secret.

The first part of the MSTG is about the general (platform-independent) security
testing. This chapter applies to both iOS and Android applications and consists
of sections regarding authentication architectures, network communication, crypto-
graphy or reverse engineering.

The main part is the platform-dependent chapter (either iOS or Android). This
thesis will not discuss the iOS part. Android part of the testing guide starts with the
basics of Android and its architecture. MSTG is written very in-depth and provides
both theoretical knowledge with practical examples (often also snippets of code).
MSTG describes these major points in Android section:

• Platform overview – provides basic knowledge of Android platform.
• Testing environment setup – describes how to setup the testing environment

with both physical or virtual device. Also specifies tools used throughout the
testing guide and how to install them.

• Data storage – talks about the principles of secure data storage, which data
to store where and how and what data not to store anywhere.

• Cryptographic APIs – best practices regarding cryptographic APIs and also
specifies common flaws and incorrect usage.
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• Local authentication – describes how the applications should locally authenti-
cate the user.

• Network and platform APIs – provides details on how the application should
use network and platform APIs, including endpoint verification (certificates)
or Android permissions.

• Code quality and build settings – details about application signatures, debug
flags and more.

• Tampering and reverse engineering – provides information about the reverse
engineering of Android applications and modifications. This section is the
primary source of information for this thesis.

• Anti-reversing defenses – describes how the application can and should defend
itself against reverse-engineering.

Related to MSTG is the Mobile Application Security Verification Standard10

(OWASP MASVS). Compared to testing guide, MASVS is more of a checklist-style
and is based on the testing guide. It also specifies three security levels for mobile
applications:

• Level 1 (MASVS-L1) – security controls that every application should have.
• Level 2 (MASVS-L2) – additional defense-in-depth controls for applications

that handle highly sensitive data (like mobile banking applications).
• Resiliency against reverse engineering and tampering (MASVS-R) – can be

used with L1 or L2 as an addition.

10https://github.com/OWASP/owasp-masvs
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3 Realtime Application Self-Protection
Realtime application self-protection (RASP) aims to ensure the security of the appli-
cation during runtime, even on compromised devices or during attacks on the appli-
cation itself. The device can be compromised (or insecure) due to numerous reasons.
For example, the device can be old and the manufacturer no longer publishes security
or operating system (OS) updates. The user can also root his Android device, which
increases the attack surface. Even fully updated mobile devices can still be targeted
by newly discovered vulnerabilities or attacks [11]. RASP also protects the appli-
cation against the attacker that may attempt to gain unauthorized access into the
application or to data used by the application.

RASP involves many protections, and this thesis will go into detail with these
(the most commonly seen in the wild):

• Certificate pinning.
• Root detection.
• Emulator detection.
• Debugger detection.

3.1 Certificate Pinning
One of the most used RASP protection is certificate pinning (usually called SSL
pinning). Many applications nowadays use this technique (from the experience
of ESET security specialists, almost every application undergoing security tests is
protected by SSL pinning).

SSL pinning is an association of the backend server (that the application needs
to communicate with) with its SSL/TLS certificate of the public key. This prevents
man-in-the-middle attacks that could spoof the certificate to the user and read the
entire communication unencrypted [10]. The application will only communicate
with the server that has the "pinned" certificate.

This thesis will describe two general (available on Android without external
library) configurations for SSL pinning. Other possibilities include custom libraries
or library-specific configuration.

3.1.1 Network Security Configuration

Starting with Android 7.0, developers can use Network Security Configuration (NSC)
to declare public key pins. The configuration file for network security configuration
is usually located in res/xml/network_security_config.xml (this can be changed, the
path needs to be specified in the manifest file. An example of such configuration can
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be seen in listing 7. Network communication will work after the expiration date but
SSL pinning will be disabled [12]. Using this configuration, developers can choose to
trust a certain self-signed certificate (for example their internal certificate authority
– CA or certificates used for debugging purposes). By default, Android 7.0 does not
trust user-installed certificate authorities (manually installed by the user into the
device), only preinstalled ones. Below Android 7.0 user-installed CAs are trusted.

1 <?xml version="1.0" encoding="utf-8"?>
2 <network-security-config>
3 <domain-config>
4 <!-- Use certificate pinning for vutbr.cz website including subdomains-->
5 <domain includeSubdomains="true">vutbr.cz</domain>
6 <pin-set expiration="2020/8/28">
7 <!-- Hash of the public key (SubjectPublicKeyInfo of the X.509 certificate) of
8 the vutbr.cz website server certificate -->
9 <pin digest="SHA-256">GA5osZ/jMecigUue4O62Fg3/uClcsstU8VxXIiYUaMk=</pin>

10

11 <!-- Hash of the public key (SubjectPublicKeyInfo of the X.509 certificate) of
12 the Intermediate CA of the vutbr.cz website server certificate -->
13 <pin digest="SHA-256">XaQOs7GKv4Gx4JRA8ZmihabSl9wxIPx+hQBmJ54WmCs=</pin>
14

15 <!-- Hash of the public key (SubjectPublicKeyInfo of the X.509 certificate) of
16 the Root CA of the vutbr.cz website server certificate -->
17 <pin digest="SHA-256">WoiWRyIOVNa9ihaBciRSC7XHjliYS9VwUGOIud4PB18=</pin>
18 </pin-set>
19 </domain-config>
20 </network-security-config>

Listing 7: Sample public key pin configuration.

NSC can also minimize attack surface regarding CA compromises. The appli-
cation can be set not to trust any CA except the specified (trusted) ones. For
example, developers can only trust their own custom CA and not trust any other
public CA. In case of a compromise of specific CA, the application is not affected.
It is also possible to forbid unencrypted communication (HTTP) with the specified
server.

3.1.2 TrustManager

Android uses a TrustManager component to validate certificates. It is possible to
load the CA certificate (that should be trusted) from the file packaged with the
application and create KeyStore entry. The application can then create its own
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TrustManager with specified KeyStore entry and the supplied certificate will be
valid and trusted. Sample process of creating custom TrustManager with specified
CA that needs to be trusted by the application can be seen in listing 8.

1 // Load CAs from an InputStream (e.g. from resources)
2 CertificateFactory cf = CertificateFactory.getInstance("X.509");
3 InputStream caInput = new BufferedInputStream(new FileInputStream("ca.crt"));
4 Certificate ca;
5 try {
6 //Create Certificate object
7 ca = cf.generateCertificate(caInput);
8 } finally {
9 caInput.close();

10 }
11

12 // Create a KeyStore containing our trusted CAs
13 String keyStoreType = KeyStore.getDefaultType();
14 KeyStore keyStore = KeyStore.getInstance(keyStoreType);
15 keyStore.load(null, null);
16 // Insert our custom CA into KeyStore
17 keyStore.setCertificateEntry("ca", ca);
18

19 // Create a TrustManager that trusts the CAs in our KeyStore
20 String tmfAlgorithm = TrustManagerFactory.getDefaultAlgorithm();
21 TrustManagerFactory tmf = TrustManagerFactory.getInstance(tmfAlgorithm);
22 tmf.init(keyStore);
23

24 // Create an SSLContext that uses our TrustManager
25 SSLContext context = SSLContext.getInstance("TLS");
26 context.init(null, tmf.getTrustManagers(), null);

Listing 8: TrustManager implementation with custom trusted CAs.

3.1.3 Problem with SSL Pinning

Testers use application proxy to intercept network communication between the appli-
cation and the backend server. Burp Suite or OWASP Zap is usually used. By
default, Burp Suite establishes two SSL/TLS connections. One between the client
and the proxy, second between the proxy and the requested server. Applications
protected with SSL pinning will not accept certificate supplied by the application
proxy (TLS handshakes are visible in figure 3.1). In order to intercept network
communication using application proxy, SSL pinning must be bypassed.
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TLS Handshake TLS Handshake

Fig. 3.1: TLS handshake with application proxy

3.2 Root Detection
The goal of root detection is to prevent (or restrict) the application from running
on a rooted device. This protects the application itself because the attacker is not
able to use specific tools and does not have access to the entire file system. Root
detection (just like any other detections on Android) is not very reliable and effective
[10]. Multiple root checks should be used.

3.2.1 SafetyNet

SafetyNet (more specifically its Attestation API) provides a set of services to detect
security threats to the application like root detection or custom ROM detection.
SafetyNet Attestation API assesses the device’s integrity by examining the software
and hardware environment [13].

SafetyNet downloads binary package (JAR file) from the Google server, vali-
dates its integrity and loads it dynamically using reflection. This package attempts
to detect if the device is rooted (specific method of how this is achieved is currently
unknown [10]). Among root detection, several other checks are conducted like
unlocked bootloader, custom system image, device without Google certification,
emulator detection and signs of tampering (API hooks).

The result of the attestation is a JSON response from Google server. Sample
response is in listing 9. The main parts of the result is "ctsProfileMatch" and "basi-
cIntegrity". Both values describe the integrity status of the device with the ctsProfi-
leMatch being the more stricter. For example devices with unlocked bootloader
could pass basicIntegrity check but not ctsProfileMatch. Rooted devices typically
fail basicIntegrity.

3.2.2 Programmatic Detection

Android provides several ways for root detection. One of the ways is looking if
specific binaries or packages are present on the device. The following is a sample of
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1 {
2 "timestampMs": 9860437986543,
3 "nonce": "R2Rra24fVm5xa2Mg",
4 "apkPackageName": "com.package.name.of.requesting.app",
5 "apkCertificateDigestSha256": ["base64 encoded, SHA-256 hash of the
6 certificate used to sign requesting app"],
7 "ctsProfileMatch": true,
8 "basicIntegrity": true,
9 }

Listing 9: Sample attestation result.

files/directories, which are commonly checked:
• /system/app/Superuser.apk,
• /system/etc/init.d/99SuperSUDaemon,
• /dev/com.koushikdutta.superuser.daemon/,
• /system/xbin/daemonsu.

Also, su binary presence is usually checked in different locations (or on the PATH
variable by executing it with Runtime.getRuntime.exec() method):

• /sbin/su,
• /system/bin/su,
• /system/bin/failsafe/su,
• /system/xbin/su,
• /system/xbin/busybox,
• /system/sd/xbin/su,
• /data/local/su,
• /data/local/xbin/su,
• /data/local/bin/su.
Supersu (rooting tool) runs daemon with the name of daemonsu [10]. Checking

for this process using ActivityManager.getRunningAppProcesses or getRunningServi-
ces calls. Android package manager allows obtaining a list of installed packaged.
This list can be checked for the presence of popular rooting tools (for example
com.topjohnwu.magisk).

The different method relies on unusual permissions on system directories. These
directories are usually read-only [10] but can be mounted as read-write on a rooted
device.
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3.3 Emulator Detection
Emulator detection forces the tester to use a physical device instead of an emulator.
The physical device is more expensive and harder to root, which barres the access
for large-scale device analysis [10].

3.3.1 build.prop

Android provides several APIs to detect the emulated device. Some of the values are
located in build.prop file (table 3.1 [10], sample only). This file can be modified on a
rooted device or during a custom compilation of the Android Open Source Project
from the source.

Tab. 3.1: Emulator detection using build.prop.

API Method Value Meaning
Build.ABI armeabi possibly emulator
Build.ABI2 unknown possibly emulator
Build.BOARD unknown emulator
Build.Brand generic emulator
Build.DEVICE generic emulator

Build.FINGERPRINT generic
unknown

emulator

Build.Hardware goldish
ranchu

emulator

Build.Host android-test possibly emulator
Build.ID FRF91 emulator

Build.MANUFACTURER unknown
Genymotion

emulator

Build.MODEL

sdk
google_sdk
Emulator

Android SDK built for x86

emulator

Build.PRODUCT
sdk

vbox86p
emulator

emulator

Build.RADIO unknown possibly emulator
Build.SERIAL null emulator
Build.USER android-build emulator
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3.3.2 TelephonyManager

Android emulators have fixed values in TelephonyManager APIs (table 3.2).

Tab. 3.2: Emulator detection using TelephonyManager.

TelephonyManager
API

Value Meaning

getDeviceId() 0’s emulator
getLine1Number() 155552155 emulator
getNetworkCountryIso() us possibly emulator
getNetworkType() 3 possibly emulator
getNetworkOperator()
.substring(0,3)

310 possibly emulator

getNetworkOperator()
.substring(3)

260 possibly emulator

getPhoneType() 1 possibly emulator
getSimCountryIso() us possibly emulator
getSimSerial Number() 89014103211118510720 emulator
getSubscriberId() 310260000000000 emulator
getVoiceMailNumber() 15552175049 emulator

3.4 Debugger Detection
Debugging allows the attacker/tester to analyze the application during runtime and
step through the code, inspect variable values, etc. Android applications support
two debuggers, JDWP for java code and ptrace-based debugger for native code
debugging.

3.4.1 JDWP Debugger Detection

Attaching JDWP debugger to application requires android:debuggable attribute set
in the manifest file. One of the ways to detect the debugger is to check if this
attribute is set using code (ApplicationInfo.FLAG_DEBUGGABLE). Another way
would be to check if the debugger is already connected using isDebuggerConnected()
method from the Debug class.

Debugging slows down the process execution time. It is possible to check the
amount of time the current thread has been executing code. Long execution times
indicate attached debugger.
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A more complicated way to prevent debugging is to modify JDWP related data
structures. It is easier to do in Dalvik than in ART. In Dalvik, setting function
pointer gDvm.methDalvikDdmcServer_dispatch to NULL is sufficient to crash the
JDWP thread. ART is a bit more difficult, and one of the ways to prevent debugging
is to overwrite the address of the function JdwpAdbState::ProcessIncoming with
the address of function JdwpAdbState::Shutdown. The debugger will disconnect
immediately.

3.4.2 Native Debugger Detection

When the debugger is attached to the application, its TracerPid field inside the
status file (/proc/self/status) will have a value other than zero. The default value
is zero, which means no process attached, so when the ptrace-based debugger is
attached to the application, the application will have non-zero TracerPid, which can
be considered as a sign of debugging (or something related to the ptrace).

Only one debugger can be attached to the application at any point. This can be
exploited by the application. The application can fork child process and attach it to
the parent as a debugger to prevent any other debugger from attaching to the main
process. It is possible to bypass this functionality just by killing the child process.
A more complex way would be to fork multiple processes that attach to one another
as debuggers and keeping track of child processes to make sure they are still alive.
Values in status file can also be monitored for any unexpected changes.
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4 Bypassing RASP
This chapter demonstrates how real-time security controls can be bypassed by
dynamic instrumentation. All scripts were tested with Android 10 emulator and
Frida version 12.7.26 (Python 3.7). Solutions presented in this chapter are general
and will work in most cases, where RASP is implemented using native Android
API. Defense mechanisms implemented in custom libraries can not be bypassed by
general script, only by bypass specific to the implementation. Custom bypasses will
not be presented.

4.1 Certificate Pinning
Section 3.1 described two ways, how to implement SSL/Certificate pinning. Frida
is used to bypass both types.

4.1.1 Network Security Configuration

Bypassing network security configuration (NSC) is inspired by related research [14].
The proposed solution (Frida script) has several limitations. First, the user certifi-
cate would only be trusted if the application did not use custom NSC file. Second,
Android source code has changed and the methods have different parameters now.
The excerpt of the relevant Android source code (ManifestConfigSource class) is
visible in listing 10. Android is checking if custom NSC file is present in the appli-
cation (lines 2 and 4). If it is, XmlConfigSource is returned, if it is not present,
DefaultConfigSource is returned.

1 private ConfigSource getConfigSource() {
2 int configResource = mApplicationInfo.networkSecurityConfigRes;
3 ConfigSource source;
4 if (configResource != 0)
5 source = new XmlConfigSource(mContext, configResource,

mApplicationInfo);→˓

6 else
7 source = new DefaultConfigSource(usesCleartextTraffic,

mApplicationInfo);→˓

8 return source;
9 }

Listing 10: Excerpt of the ManifestConfigSource class.
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The first objective is to make sure that the real NSC file is never returned as the
source, DefaultConfigSource must always be returned to bypass all the pins specified
in the NSC file. DefaultConfigSource does not trust user certificates on Android 7+.
The second objective is to ensure that even on Android 7+, user certificates will be
trusted.

The first objective can be achieved by modifying the getConfigSource() method
to always return DefaultConfigSource. Two parameters are necessary to instantiate
a new object of the DefaultConfigSource class. The first parameter is a boolean
value if cleartext traffic is allowed, the second is the ApplicationInfo object, which
contains information about the application like target the SDK version. Frida script
to replace the method functionality is visible in listing 11.

1 ManifestConfigSource.getConfigSource.implementation = function () {
2 var context = Java.use('android.app.ActivityThread')
3 .currentApplication()
4 .getApplicationContext();
5 var source = DefaultConfigSource.$new(true,

ApplicationInfo.$new(context.getApplicationInfo()));→˓

6 return source;
7 };

Listing 11: Frida script to modify getConfigSource method.

The constructor of the DefaultConfigSource class calls getDefaultBuilder method
inside the NetworkSecurityConfig class. This builder is responsible for setting up
the trusted certificates. Relevant code is visible in listing 12. The code shows that
user certificates are only trusted if the application is targeting Android 6 or lower.

1 public static Builder getDefaultBuilder(ApplicationInfo info) {
2 if (info.targetSdkVersion <= Build.VERSION_CODES.M &&

!info.isPrivilegedApp()) {→˓

3 builder.addCertificatesEntryRef(
4 new CertificatesEntryRef(UserCertificateSource.getInstance(),

false));→˓

5 }
6 return builder;
7 }

Listing 12: Relevant part of the getDefaultBuilder method.
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To bypass this, UserCertificateSource is always manually appended to the bui-
lder. First, the original unmodified method is called to instantiate the builder and
all the necessary parts. Then, the script appends the UserCertificateSource to the
builder. Modified builder is returned and the application will trust user certificates
even on Android 7+. This part of the script is visible in listing 13.

1 var NetworkSecurityConfig = Java
2 .use("android.security.net.config.NetworkSecurityConfig");
3 var UserCertificateSource = Java
4 .use("android.security.net.config.UserCertificateSource");
5 var CertificatesEntryRef = Java
6 .use("android.security.net.config.CertificatesEntryRef");
7

8 NetworkSecurityConfig.getDefaultBuilder
9 .overload("android.content.pm.ApplicationInfo")

10 .implementation = function (info) {
11 var builder = this.getDefaultBuilder.call(this, info);
12 builder.addCertificatesEntryRef(CertificatesEntryRef
13 .$new(UserCertificateSource.getInstance(), false));
14 return builder;
15 };

Listing 13: Frida script to bypass targetSdkVersion check.

Together, these two parts will bypass the custom network security configuration.
NSC file will not be checked and user certificates will be trusted.

4.1.2 TrustManager

Bypassing TrustManager SSL pinning is straightforward. The goal is to create
custom TrustManager with user certificate and anytime SSLContext is invoked, the
supplied TrustManager is replaced by the custom TrustManager. The Frida script
is visible in listing 34 (appendix A). The process is the same as trying to implement
the TrustManager in Java on Android. The same steps need to be done. The only
difference is hooking the SSLContext.init method and swapping the TrustManager
parameter with the (previously created) custom TrustManager (that trusts the user
certificate). This way, the SSL pinning is bypassed as the application will trust the
user-supplied certificate. The script assumes a user certificate that should be trusted
with .crt extension in /data/local/tmp directory.
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4.2 Root Detection
This chapter focuses on bypassing application-level RASP. SafetyNet assesses the
entire device and is validated server-side. Due to these reasons, SafetyNet will not
be in the scope of this section. In theory, SafetyNet can be bypassed by hooking the
specific function inside the application that processes the output of the attestation.
This process can not be generalized as the name of the function is custom and
unknown beforehand.

4.2.1 Programmatic Detection

Root detection can be implemented in many possible ways. This thesis focuses on
the most common cases. The first case is using the PackageManager.getPackageInfo
method to check for the existence of a specific package. Root applications have
known package names and the presence of such package on the device is a sign of
a rooted device. To bypass this, getPackageInfo method can be hooked, and if the
supplied parameter (name of the package that the application wants to check) is
in the list of known root applications, the parameter gets changed to non-existent
value. The hook is visible in listing 14.

1 PackageManager.getPackageInfo.implementation = function (pname, flags) {
2 if (RootPackages.indexOf(pname) > -1) {
3 pname = "random.bypass.package";
4 }
5 return this.getPackageInfo.call(this, pname, flags);
6 };

Listing 14: Bypassing getPackageInfo root check.

Applications that try to execute commands like "su" or other root package can be
misled into thinking that the command is not available by hooking the Runtime.exec
method. It takes one parameter (but has multiple overloads) that is the command
to be executed. This parameter is checked if it contains any of the defined root
packaged like "su" and if so, gets changed into random non-existent command. This
way, the application will receive command not found error and will believe that the
root package is not available. The script is visible in listing 15. Note that most of
the methods mentioned here have multiple overloads. The hooking process is the
same for all of those. The only change is the processing of the input parameters and
checking if any of them needs to be changed. The array "RootBinaries" contains
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the list of known root binaries. Using an array allows the script to be modular and
quickly changed to reflect new packages or some specific package.

1 Runtime.exec.overload('java.lang.String').implementation = function (cmd) {
2 if (RootBinaries.indexOf(cmd) != -1) {
3 var bypass = "randomcommand";
4 send("Bypass " + cmd + " command");
5 return exec1.call(this, bypass);
6 }
7 return exec1.call(this, cmd);
8 };

Listing 15: Bypassing Runtime.exec root check.

It is possible to modify specific system properties on a rooted device like disabling
SELinux. These changes can be represented in the build.prop file and applications
can check for these properties using SystemProperties.get method. The bypass works
by checking the parameter of the method and if it is a parameter that was modified
by rooted device, the method returns the value as if the device is not rooted (listing
16).

1 SystemProperties.get.overload('java.lang.String').implementation = function
(name) {→˓

2 if (name in RootProperties) {
3 send("Bypass " + name);
4 return RootProperties[name];
5 }
6 return this.get.call(this, name);
7 };

Listing 16: Bypassing SystemProperties.get root check.

4.3 Emulator Detection
Emulator detection relies on the values inside build.prop file and TelephonyManager
API. Both can easily be hooked to change their return values. For example, the value
of Build.BRAND can be set to "google" to pretend to be Google Pixel device. It
is possible to find valid build.prop values for devices like Google Pixel 3. These
values were used in the script to make it look like the emulator is a Google Pixel
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3 device. TelephonyManager APIs were also hooked to return random values that
are not known to be an emulator. The sample script is in listing 17. Note that only
one of both Build and TelephonyManager calls are shown, others are implemented
similarly.

1 var Build = Java.use('android.os.Build');
2 var TelephonyManager = Java.use('android.telephony.TelephonyManager');
3

4 Build.BRAND.value = "google";
5

6 Build.getRadioVersion.implementation = function () {
7 return "123456";
8 };
9

10 TelephonyManager.getDeviceId.implementation = function () {
11 return "123456789";
12 };

Listing 17: Emulator detection bypass.

4.4 Debugger Detection
Native debugger detection is out of the scope of this thesis as it is application-specific
and depends on the exact implementation. Frida also uses ptrace to hook into the
application. If the debugger detection is done correctly, it can also block Frida (or
detect it as a debugger). This situation would require to hook the specific methods
and disable them (Frida can be used to bypass Frida detection). A similar case is the
timer check method (checks if the runtime of the application is not slowed down due
to debugger attached). This situation would be implemented using a custom library
or function and can not be bypassed by a general script (but the principle remains
the same, find the method, hook it, disable/modify it to prevent the functionality).

The two mentioned examples are both related to JDWP debugger detection in
standard Java. The first method uses getApplicationInfo().flags call to obtain a list
of flags specified in the application. One of the flags is android:debuggable, which
allows the debugging of the application via JDWP. To hide the presence of this flag,
the hook intercepts the call, retrieves the value of the flags and subtracts the value
of the FLAG_DEBUGGABLE (specified as "1«1" – 2 in decimal). Modified object
with changed "flags" value is returned.
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The second method uses Debug.isDebuggerConnected to check for the presence
of the debugger. This call can easily be intercepted, hooked and modified to always
return false.

Both methods are visible in listing 18. Note that the getApplicationInfo is called
on "ContextWrapper". The call requires "Context", which is an abstract class and
the "ContextWrapper" is the actual implementation.

1 var ContextWrapper = Java.use("android.content.ContextWrapper");
2 var Debug = Java.use("android.os.Debug");
3 var FLAG_DEBUGGABLE = 1 << 1;
4

5 ContextWrapper.getApplicationInfo.implementation = function () {
6 var appInfo = this.getApplicationInfo.call(this);
7 appInfo.flags.value &= ~FLAG_DEBUGGABLE;
8 return appInfo;
9 };

10

11 Debug.isDebuggerConnected.implementation = function () {
12 return false;
13 }

Listing 18: Debugger detection bypass.
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5 Advanced Obfuscation Techniques
For the purpose of this thesis, advanced obfuscation techniques will include primarily
string encryption. As dynamic analysis is partially dependant on static analysis
(you need to analyse decompiled source code to know, which methods to analyse
dynamically), several other obfuscation techniques will need to be considered. These
techniques include flow control obfuscation, Java reflection, and DEX encryption.

To test these methods, three new obfuscators will be introduced. Allatori1,
DexProtector2 and DashO3. These three companies agreed to provide their respective
products for free for this research. DexGuard could not be used due to licensing
issues.

Allatori is a paid Java obfuscator. In comparison with ProGuard, Allatori provi-
des additional security features like flow obfuscation or string encryption [15]. These
features add additional complexity to the decompiled application, which makes it
harder to analyse.

DexProtector is a specific obfuscator for mobile applications (not general for Java
applications) supporting both Android and iOS platforms. Unlike other obfuscators,
DexProtector supports encryption of classes [16]. In this case, the original source
code is encrypted and replaced by custom decryption code. Static analysis of the
apk file is not possible as the only visible element is the custom decryption code
and not the actual source code of the application. Other features include string
encryption, method call hiding, integrity control, tamper notification or native code
obfuscation/encryption.

DashO is an obfuscator for Java and Android (similar solutions are available
from the same company for iOS, .NET or JavaScript). Features include control flow
obfuscation, string encryption, tamper detection, watermarking and others [17].

Versions used can be seen in table 5.1. Additionally, Burp Suite v2020.2 was
used together with Brida extension v0.3.

Tab. 5.1: Versions of obfuscators.

Allatori DexProtector DashO

Version 7.2 10.1.19 10.3.0
(Trial)

1http://www.allatori.com/
2https://dexprotector.com/
3https://www.preemptive.com/products/dasho/overview
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5.1 Test Application
To thoroughly test advanced obfuscation techniques, a special application had to be
programmed. This is because access to both obfuscated and original source code is
ideal for research.

5.1.1 Design and Intentions

Design of the application took into consideration two main points:
• Hardcoded strings are usually very good entry-points for a penetration test

because searching for text strings like "Payment successful" or "Activation
successful" can quickly identify sensitive methods that need proper testing.
If the strings are encrypted, it will be harder to find sensitive methods by
static analysis.

• Sensitive applications tend to have custom methods, which are necessary
during the penetration test. For example, digital signing of requests sent to
the webserver. If the tester can not tamper with requests, the application will
not be adequately tested. These custom methods that are obfuscated with
control flow obfuscation, string encryption or method call hiding are tough to
recreate and understand using static analysis.

The resulting application is mimicking mobile banking application with reduced
functionality. User can log into the application and execute the money transfer. The
application is communicating with a backend server, and all requests are digitally
signed. Hardcoded strings are also included, some of which are necessary from the
programming perspective and some are specifically implemented to demonstrate the
effect of embedding sensitive information directly into the source code.

The backend server is also simplified and built with Python 3. Every request is
first verified if the signature is valid. If the signature is not valid, the server will not
execute the request.

The application was designed and implemented prior to any work with any
obfuscator and is not specially suited to work with any obfuscator. In other words,
the application is not specifically designed to be easy to decompile or to provide an
easy workflow for dynamic analysis.

5.1.2 Implementation

The application is built using Android Studio and Android 10. The main activity
is the login activity, which allows the user to log into the application. The login
function is simplified and the user only specifies the name, no password is used
(it is not needed for demonstrative purpose). All data is stored server-side; the
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application does not store any data. Data is kept in the SQLite database that the
backend server has access to. The database contains only one table ("accounts") with
name, account number and the amount of money for each individual user (currently
only two users are created). HTTP login request can be seen in listing 19.

1 POST /accounts HTTP/1.1
2 Content-Type: application/x-www-form-urlencoded
3 Content-Length: 191
4 Host: 10.0.2.2:8090
5 Connection: close
6 Accept-Encoding: gzip, deflate
7 User-Agent: okhttp/4.4.0
8

9 test=Pavol&name=Pavol&timestamp=1590865095110&
10 signature=d0040a5d093c69cc5d9f4392f90ba7f64b687c07f2d20d096e277d57e75fbd89&
11 nonce=89db728b6d8007617f97fd07bb8f9fa47fc91ffecf125d78701aba84cf87e190&

Listing 19: HTTP login request.

After the user logs into the application, he/she can execute the money transfer.
Only the name of the recipient and the amount of money is required.

All requests are digitally signed. The signing algorithm is simple. HTTP Post
parameters are in the form of "key=value" separated with "&" symbol. The data
is specific to each request. For example, for login, only the name is required
(name="Pavol"). The data is in the form of a HashMap, which is making it si-
mple as it also requires key and value (just like HTTP Post). The input into the
signature generation function is a HashMap object, which contains all the required
parameters for the given request. First, HashMap is appended with a nonce (SHA-
256 hash of random bytes) and the current timestamp. An "initialization vector"
is used. It is a hardcoded string with a value of "Lorem ipsum dolor sit amet".
Signing data is generated by appending key and value of each parameter inside the
HashMap together. The first set of key-value is prefixed with the specified initiali-
zation vector (IV). An example of the signing data could be: "Lorem ipsum dolor
sit ametnamePavolnoncea0b643a491479e22a01b995d38cc4a08db11f0ad52dbdff41a3-
6ad6686e955d6timestamp1585854384645". The signature of this data is created
using "HMAC-SHA256" algorithm, which is symmetric and does not require pri-
vate and public key. The key is generated by appending the IV, timestamp and
nonce (this way, the key is always different). The signature is appended into the
HashMap and this new HashMap is returned and later on parsed into HTTP Post
request. The IV is used for a simple reason. It is a string that is not known to
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the user, only to the application and the server (if the string is encrypted during
obfuscation). Developers may incorrectly believe that since the string is encrypted
and obfuscated, user can not obtain this secret and thus produce a valid signature.
Also, it acts as a form of "shared secret" between the application and the server.
This application is not meant to be secure. The entire signature generation method
can be seen in Appendix B.

The backend server is a basic Python 3 server built with Flask framework4. Each
received request is first verified by checking the signature validity. The signature
is calculated exactly the same as in the application. The server calculates its own
signature and checks it against the received one. If they are equal, the request is
valid and will be executed by the server.

5.2 Testing Methodology
The idea behind this methodology is to save as much time as possible (which also
means lower cost of the test itself) and also to allow seamless integration with exi-
sting tools, so the penetration tester does not have to work with many different tools.
The main goal is that the application already contains all the code and methods that
are required for the test. These methods include encryption/decryption methods for
strings or signing algorithm for requests. Dynamic analysis (and Frida) allows the
usage of these methods on-demand in the context of the application.

All tests were executed on Android 10 emulator based on Pixel 3 device.

5.2.1 Brida

Brida is an extension (plugin) to Burp Suite proxy. It provides the user with a
graphical interface for Frida as well as JavaScript editor for injected code. The
main benefit is that the user does not have to create a separate tool to run Frida
scripts. Brida allows integration with Burp Suite interface and calling Frida functi-
ons from the context menu in intercept or repeater tabs. For example, assume
that the application is communicating with the webserver and is sending encrypted
data. With static analysis, code responsible for encryption can be found and rei-
mplemented in some custom tool. In this case, requests and responses inside the
Burp Suite would have to be copied back and forth between the custom tool and
Burp Suite. However, there is no need to reimplement the encryption algorithm,
which may be difficult or complicated. The application itself contains the code for
encryption, Frida allows the usage of this method directly without reimplementing

4https://palletsprojects.com/p/flask/

52



anything. With Brida, the encryption method can be exported and made avai-
lable to use in Burp Suite. All that is required is to select the encrypted request
and execute the hooked decryption function from the context menu (right-click).
Brida will output the decrypted request and can also directly replace the encrypted
request with decrypted (which is helpful the other way around – plain-text request
is provided/tampered with and Brida outputs encrypted version).

The proposed methodology architecture can be seen in figure 5.1. Burp Suite
has two primary purposes. To intercept HTTP(S) traffic for potential tampering
and also acts as a graphical interface for Frida (note that Brida requires external
Pyro4 server for communication between Brida and Frida).

Application

Frida Server

Burp Suite Proxy

Brida

Pyro4 Server

Frida Scripts

Standard HTTP(S) Traffic

Fig. 5.1: Testing Methodology Architecture.

This architecture is better than using custom Python tool to work with Frida.
Penetration testers will use Burp Suite either way and Brida allows much faster
and smoother workflow than any other custom tool. There are some negatives to
this workflow. Some Frida crashes (due to incorrect injected code or similar) will
not be communicated to the tester (no error is displayed). Custom Python tool
would many times communicate this error to the tester and he/she can fix it. If the
application crashes multiple times, using the same Frida code with the custom tool
is recommended to check for potential Frida error.

Brida features six different tabs:
• Configuration – basic configuration includes path to Python binary, path to

injected JavaScript file or name of the application to be analysed.
• JS Editor – built-in editor for JavaScript.
• Analyze binary – a list of all methods and their signatures.
• Generate stubs – generates stubs for extensions calling Brida functions.
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• Execute method – executes custom methods (inside the JavaScript file).
• Trap methods – shows the hooked methods.
The JavaScript file used with Brida contains specific methods for Brida to work

properly and also custom hooks. There are four custom context methods available
(contextcustom1, contextcustom2, . . . ). These methods are accessible by selecting
text inside the Burp Suite and right-clicking. The first two methods (numbers 1
and 2) are available in any read/write editor, for example, the Intercept tab and
the Repeater tab. The last two methods (numbers 3 and 4) are available in any
read-only editor (like proxy history tab).

5.2.2 Test Objectives

Test objectives can be separated into two categories, primary and secondary. Pri-
mary objectives are to bypass string encryption and be able to visually see the
decrypted versions of strings, and to be able to produce a valid request signature
with the tampered data.

Secondary objectives will focus on different parts of obfuscation. At the begi-
nning of each test, the static analysis will be conducted to determine how the
obfuscator changed the decompiled source code. Variable renaming, flow control
obfuscation, dex file encryption and others will be part of the secondary objectives.
It is neither the goal nor intent of this thesis to provide a ranking or rank each
individual obfuscator (no ranking will be provided). The goal is to provide testers
with examples of different obfuscators and how they obfuscate the code, so they
know what to expect and how to work with them.

5.3 Disclaimer
DashO and DexProtector contain functionality that is designed to prevent dynamic
analysis from working. This functionality is out-of-scope of this work and was not
used. These features are extremely complicated to bypass and would require full
thesis only for this functionality. However, only high-end products (and the hi-
ghest/most expensive versions) contain this functionality and as such, there are
many cases, when this feature is not used. Also, many developers are unaware of
the security risks and do not use advanced functions.
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6 Bypassing Advanced Obfuscation
The results are presented for each individual obfuscator. Each obfuscator has multi-
ple categories. Configuration for each obfuscator is presented as well as results
of static analysis, string encryption and signature generation method hooks. All
obfuscators were tested with the release build of the application.

6.1 Allatori

6.1.1 Configuration

The configuration used is a slight modification to the default Android configuration,
which is shipped with the Allatori. String encryption is explicitly enabled and set
to "fast" mode. This is the default variant. An attempt was made to use stronger
encryption with multiple options such as "strong" or encryption with "maximum-
with-warnings" mode. These modes did not work as the strings were decrypted
incorrectly and the application was not functional. The default values were used
during testing for this reason. Also, additional control flow obfuscation was used
(option "maximum" instead of the default "normal"). The entire configuration is
visible in Appendix C (highlighted lines refer to modifications mentioned in this
section).

6.1.2 Static Analysis

The original test application contains 5 classes (2 activities and 3 supporting classes).
Allatori (and specifically control flow obfuscation) split many functions into multiple
parts and into separate classes. The total amount of classes after obfuscation was
10, which is exactly twice as the source code. The source code contains multiple
anonymous inner classes (for example as button onClick listener or callback for
HTTP request). These inner classes are split into separate classes.

To demonstrate the obfuscation quality of Allatori, consider an excerpt of si-
gnature generation function in listing 20 (the entire original method is in Appendix
B). Only the first part of the function is shown (the function is too long). The
displayed part in the listing is almost the same as the original code, only variable
names are obfuscated and strings are encrypted.

Allatori (for the most part) is comparable to the standard ProGuard (R8) with
the addition of some advanced techniques like string encryption or control flow
obfuscation.
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1 public static Map<String, String> m(Map<String, String> map) {
2 String m = m();
3 String valueOf = String.valueOf(System.currentTimeMillis());
4 map.put(f.m("\u0019\u0018\u0019\u0014\u0012"), m);
5 map.put(m("s/j#t2f+w"), valueOf);
6 String m2 = f.m(";\u0018\/*...*/");
7 boolean z = true;
8 String str = "";
9 . . .

Listing 20: Allatori – signature generation method.

6.1.3 String Encryption

Encrypted strings can be seen in listing 20 (lines 4 to 6). The principle of string
encryption is simple. Every hardcoded string gets replaced with a call to the
decryption method, which takes the encrypted string as the parameter and returns
the decrypted value. The decryption function is visible in listing 21. There is no
variation in the decryption methods, and all are the same. The only change is in
certain values (for example the exponent – lines 8 and 13 in listing 21).

1 public static String m(String str) {
2 String str2 = str;
3 int length = str2.length();
4 char[] cArr = new char[length];
5 int i = length - 1;
6 while (i >= 0) {
7 int i2 = i - 1;
8 cArr[i] = (char) (str2.charAt(i) ^ 'w');
9 if (i2 < 0) {

10 break;
11 }
12 i = i2 - 1;
13 cArr[i2] = (char) (str2.charAt(i2) ^ 'w');
14 }
15 return new String(cArr);
16 }

Listing 21: Allatori string decryption function.
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6.1.4 Signature Generation

The first step is to find a method that is generating the signature. Due to obfuscation,
this may be hard as the methods are split into multiple parts and variables have
meaningless names. A good way to begin is to decrypt all encrypted hardcoded stri-
ngs. Using Brida, the hooking process does not have to be manual. Brida features
"Inspect" function (inside "Analyze Binary" tab – right-click on the method name
and select "Inspect!"). This function hooks the specified method and prints out the
input parameters, runs the original method and prints out the output. Using the
decrypted strings, a function that was appending values into HashMap object with
keys "nonce", "timestamp" and "signature" was found. In a large application, this
could have been more difficult. However, Brida brings much automation into the
process as you do not have to write each individual hook manually but just right-
click the function in the Brida. For example, you can also hook all functions inside a
single class just by right-clicking the class. The name of the decryption function was
o.c and the output after inspecting this function is visible in listing 22 (note that
the input parameters are Unicode symbols and as such are shown in either escaped
variant or as a blank character).

1 *** entered cz.vutbr.pavol.obfuscation.experimental.main.o.c
2 Parameters:
3 arg[0]: $\u0014=\u0018#\t1\u0010
4 *** exiting cz.vutbr.pavol.obfuscation.experimental.main.o.c
5 Return value:
6 retval: timestamp
7

8 *** entered cz.vutbr.pavol.obfuscation.experimental.main.o.c
9 Parameters:

10 arg[0]: #\u00147\u00131\t%\u000f5
11 *** exiting cz.vutbr.pavol.obfuscation.experimental.main.o.c
12 Return value:
13 retval: signature

Listing 22: Allatori string decryption method inspection output.

After the signing function was discovered, it can be hooked and utilized for
request modification. One of the Brida context methods can be used (for example
number 1 as it can be used in the writable editor). The signature generation function
(listing 20) expects HashMap as input and generates nonce, timestamp and si-
gnature for the provided values. So the first step is to create HashMap with all
the parameters necessary. The output of the signing function is also a HashMap

57



(the same HashMap that was the input for the function, just appended with addi-
tional values). This HashMap is than processed by OkHttp library and parsed into
the POST request body. The custom function created this way has three steps:
take the current request parameters, parse it and create HashMap for the signing
function; call the signing function with the custom HashMap; parse the output
into the POST request and replace the selected request parameters with the signed
parameters. The knowledge of the custom signing algorithm is not necessary. By
hooking the signature generating function, a valid signature can be produced for
any request and any parameter can now be tampered with, allowing full testing of
the application.

The entire method is visible in listing 23. The first line specifies the name of
the method (contextcustom1 – name is required to be in this format by Brida)
and an input parameter message (in this case the message will be the request with a
tampered parameter that the signature is needed for). The input parameter is always
passed as a hexadecimal string. This is automatically done by Brida so that the
Brida can work with binary data. On line number 5, the message is transformed from
hexadecimal format to ASCII string called request. The request variable contains
typical POST request body string (for example "name=Pavol&account_num=123").
So the request contains multiple "key=value" pairs separated by "&" symbol. The
next step is to split this long string into individual entries of the new HashMap (line
6). Lines 7 and 8 create a new HaspMap object.

The next step is to populate the new HashMap with the correct values. The
HashMap is basically a set of key-value pairs. In this case, the key is the name of
the HTTP parameter and value is the value of the parameter. For example, given
the HTTP request body above ("name=Pavol&account_num=1234") the HashMap
that is required can be written as follows: "name":"pavol"; "account_num":"1234"
(notation is "key:value" and individual pairs are separated by semicolon). This is
exactly the purpose of the for loop (lines 10-17). The request is parsed into the
HashMap, note that certain keys are skipped (line 12). These keys include "nonce",
"timestamp", and "signature". These values are present in the request but after
tampering the request, they will get generated by calling the signature function.
That is the reason these values are not appended to the HashMap.

After the HashMap is prepared and populated with the correct values, the si-
gnature generation method can be called (lines 18-21). The output of the function
is a HashMap appended with additional values such as "nonce", "timestamp" and
"signature". The last part of this process is to parse this new HashMap into valid
HTTP POST body (lines 22-30). This process is the same as the process to create
the HashMap from the request; only it is inverted. The last step is to return the
HTTP POST body string. The string must be in hexadecimal format (line 32).
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1 contextcustom1: function (message) {
2 return new Promise(function (resolve, reject) {
3 if (Java.available) {
4 Java.perform(function () {
5 var request = hexToString(message);
6 var fields = request.split("&");
7 const HashMap = Java.use("java.util.HashMap");
8 const map = HashMap.$new();
9 var index;

10 for (index = 0; index < fields.length; ++index) {
11 var parameter = fields[index].split("=");
12 if (["nonce", "timestamp",

"signature"].indexOf(parameter[0]) >= 0) {→˓

13 continue;
14 }
15 map.put(parameter[0], parameter[1]);
16 console.log("adding to map key: " + parameter[0] + " value:

" + parameter[1]);→˓

17 }
18 const SignClass =

Java.use("cz.vutbr.pavol.obfuscation.experimental.main.o");→˓

19 console.log("* after class");
20 var method = SignClass.c.overload("java.util.Map");
21 var signedMap = method.call(SignClass, map);
22 var HashMapNode = Java.use("java.util.HashMap$Node");
23 var iterator = signedMap.entrySet().iterator();
24 var body = "";
25 while (iterator.hasNext()) {
26 var entry = Java.cast(iterator.next(), HashMapNode);
27 console.log(entry.getKey() + "=" + entry.getValue());
28 body += entry.getKey() + "=" + entry.getValue() + "&";
29 }
30 body = body.substring(0, body.length - 1);
31 try {
32 resolve(stringToHex(body));
33 } catch (e) {
34 reject(e);
35 }
36 });
37 }
38 });
39 },

Listing 23: Allatori – Brida signature generation function.
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Note that the entire functionality (lines 5-35) is wrapped inside Java.available()
and Java.perform() calls. Both are needed for the proper functioning of Frida. Also,
note that the function does not return the value using the standard keyword return.
Instead, the function returns Promise object (line 2) by using the keyword resolve
(line 32). Java.perform is potentially asynchronous and during testing, the standard
return did not work. The function was functioning properly, but the return value
was always null. To bypass this issue, the Promise with resolve workflow was used
(as recommended by the author of Frida1).

To use this contextcustom1 method, a valid request can be intercepted inside the
Intercept tab or the Repeater tab. Any parameter can be modified and by selecting
the entire POST body, right-clicking and selecting "Brida Custom 1" the custom
method is called and the output of the custom function replaces the selected text.
So in this case, the request with modified values (for which the signature is invalid)
gets replaced with a new string with the modified values and nonce, timestamp and
signature generated for these modified values. This request (even with modified
values) is treated as valid by the server as the signature is correct.

6.2 DashO

6.2.1 Configuration

The default configuration was used. The only exception is the string encryption level
setting (default was 2). This setting got increased to the maximum available value
(10). The number of decryption functions was also increased to 10. Control flow
obfuscation was turned on. Due to short license time (7 days), it was not possible to
evaluate all the options provided by the DashO. The entire configuration is visible
in listing 24.

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <dasho mode="android" version="10.2.0">
3 <controlflow option="on"/>
4 <stringencrypt level="10" implementations="10" option="on"/>
5 </dasho>

Listing 24: DashO configuration.

1https://github.com/frida/frida/issues/380
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6.2.2 Static Analysis

The APK contains several dozens, up to hundreds of classes. Variables, class and
method names have meaningless names. Methods are much larger than their original
counterparts and contain additional code (junk code) to confuse the reverse engineer.
For example, the signature generation methods, which contains ≈30 lines of code
is obfuscated into ≈560 lines of code. Several methods even failed to decompile
correctly (using Jadx). DashO is delegating the variable/class renaming to the
default R8 obfuscator.

The control flow is obfuscated really well. Several methods return different return
values. For example, the signature generation function normally returns HashMap
object. However, after obfuscation, the method returns a custom object, which
includes two List objects and multiple methods (one List for the keys of the HashMap
and the second for the values). This adds another layer of security and confusion.
DashO also adds many if-else statements into methods. A lot of the junk code is
actually if-else statements. An example of these if-else statements is visible in listing
25 (the code is just an excerpt, the full code contains multiple if-else statements in a
row). During the manual reading of the decompiled code, it is very hard (or nearly
impossible) to keep track of all the values used and approximate, which code execute
and which does not.

1 if (Integer.parseInt(str4) != 0) {
2 i = 8;
3 str = str4;
4 i3 = 1;
5 i2 = 1;
6 } else {
7 i3 = 24;
8 i2 = 24;
9 i = 14;

10 str = str5;
11 }
12 if (i != 0) {
13 i2 = i2 + i3 + i3;
14 str = str4;
15 i4 = 0;
16 } else {
17 i4 = i + 7;
18 }

Listing 25: DashO control flow obfuscation using if-else statements.

61



6.2.3 String Encryption

As specified in the configuration section, the maximum number of decryptors was
used (10) as well as the highest level of encryption (10). All the decryption methods
are similar. They always return a String object (the decrypted string) and takes
a different amount of parameters. All of the methods take a String as their input.
This is the encrypted string that is supposed to be decrypted. The other parameters
are one to two integers. Some of the decryption method signatures can be seen in
listing 26. The decryption methods are also obfuscated and hard to read. One of
the decryption methods can be seen in Appendix D.

The hooking process is very similar to Allatori (section 6.1.3). It is easy to
identify the string decryption methods (find all the encrypted strings and they will
always be used as the input for these methods). These decryption methods can be
used using Brida Inspect feature and all strings are decrypted.

1 public static String a(int i, int i2, String str);
2 public static String a(int i, String str);
3 public static String a(String str, int i);
4 public static String a(String str, int i, int i2);

Listing 26: DashO string encryption methods signatures.

6.2.4 Signature Generation

The signature generation method can be located the same way as specified in Allatori
(section 6.1.4). Hooking of all string decryptors can be easily hooked using Brida and
the keyword "signature" will identify the correct method. The method is too long
to be displayed (over 500 lines). Manual reading of the method is almost impossible
as many if-else statements are included and multiple calls to different methods are
made. The benefit of using dynamic analysis is that it is not necessary to actually
understand the method fully and still, it is possible to leverage it to create a valid
signature for any data.

The excerpt of the method can be seen in listing 27. The first interesting part is
the method signature. The return value is not a HashMap object but an object of
class "b0" (the fully qualified name is "e.b0"), which is an abstract class. This class is
extended by the "r" class. The object of the class "r" is returned on line 5. The two
input parameters are both List objects. So the control flow obfuscation changed not
only the look of the method but also the return type is different. In practice, this
means that for a reverse engineer, it is going to be very hard to follow the "flow" of
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the program. HashMap is a standard Java type and the reverse engineer knows how
it works and what to expect from it (like what functions it uses or what purpose it
serves). However, if the code is working with custom classes that are also inheriting
or extending other classes, the reverse engineer has only one option, to manually
check all of these classes and figure out what they do. In a large project (or even
in small one such as the test application), this is very time-consuming. Dynamic
analysis is not hindered by this obfuscation.

1 public static b0 a(Map<String, String> map) {
2 ...
3

4 if (aVar != null) {
5 return new r(aVar.a, aVar.b);
6 }
7 throw null;
8 }

Listing 27: DashO signature generation method excerpt.

As the "new" keyword is used to instantiate the new object, the class constructor
is called. This constructor can be seen in listing 28. Notice that the class contains
two global variables (List objects) "b" and "c" (lines 2 and 3). The class constructor
(line 5) takes two List objects as input, processes them by calling "d.b" method and
this value is set to the corresponding global List variable "b" or "c".

After seeing this workflow (and with the knowledge of how the original function
is supposed to work), it was assumed that the first List would contain the "key"
values of the original HashMap and the second List would contain the "value" part
of the HashMap.

To hook this method and to produce a valid signature, a similar workflow is
used as with Allatori (section 6.1.4). The first part of the hook method is the same;
HTTP POST parameters are parsed into the HashMap object. The middle part is
different as it is needed to call a different method and also process the return value
differently. This section can be seen in listing 29 (only this part is shown, the first
and the last part of the hook is the same as in listing 23).

The first two lines set the variables to the classes that are both necessary. The
"c.a.a.a.a.a.c" class is the one that contains the signature generation method (called
"a") and the "e.r" class is the return type. Next, the original method is called
(notice that it is called with the specified overload as multiple methods can have
the same name). The "map" input parameter is the HashMap generated in the first
step (not shown in this excerpt). The output of the signature generation method
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1 public final class r extends b0 {
2 public final List<String> b;
3 public final List<String> c;
4 public r(List<String> list, List<String> list2) {
5 h.b(list, a.a.k.a.a(3, "ntjw#3!\u001ab\u007fdc"));
6 String a2 = a.a.k.a.a(2, "owkx\"0 \u0005c}ujm");
7 if (list2 != null) {
8 this.b = d.b(list);
9 this.c = d.b(list2);

10 return;
11 }
12 h.a(a2);
13 throw null;
14 }
15 }

Listing 28: DashO "r" class constructor.

is stored in the "tmp" variable. To work with this object, it is needed to cast it
into its proper class (which is "e.r"). After the cast, all the variables and methods
of the object are accessible (without the cast, these would not be accessible). The
for loop (lines 6-8) parses the key and values from the two lists into the required
format ("key=value&key=value&. . . "). As both lists are global variables, they can
be accessed as in standard Java (in this case, output.c or output._b). Notice that
the List "b" is accesses with an underscore (output._b). This is because the "e.r"
class contains a variable named "b" (the global List) and also a method called "b". To
differentiate the two, Frida uses underscore to access the variable. If the underscore
would not be used, Frida would instead call the method "b". Another thing to note is
that to access the value of the List a ".value" is required before List-specific methods
like get() or add() can be used (line 7).

An interesting finding is that even such a significant change to the workflow of the
method (such as changing the return type) has only small impact on the changes
required for the dynamic instrumentation hook/function to work even given the
changes to the code.
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1 var SignClass = Java.use("c.a.a.a.a.a.c");
2 var er = Java.use("e.r");
3 var tmp = SignClass.a.overload("java.util.Map").call(SignClass, map);
4 var output = Java.cast(tmp, er);
5 var str = "";
6 for (var index = 0; index < output._b.value.size(); ++index) {
7 str += output._b.value.get(index) + "=" + output.c.value.get(index) + "&";
8 }

Listing 29: DashO signature generation method hook excerpt.

6.3 DexProtector

6.3.1 Configuration

Default configuration was used with the addition of resource encryption (should
have no effect on the output). Class encryption and string encryption was enabled
by default. The entire configuration can be seen in listing 24 (Appendix E).

6.3.2 Static Analysis

Static analysis is a bit different with DexProtector compared to Allatori or DashO.
DexProtector has class encryption feature. This means that the original source
code (dex files) are encrypted and replaced by custom code. During runtime,
DexProtector first decrypts native library, loads this library into memory (and
instantly deletes the library from the filesystem), (likely) decrypts the encrypted
dex files. This is a general workflow. The output apk file is basically a packer[18].
When the apk file is statically analysed, only the custom code is visible, not the ori-
ginal. The tester will not learn any relevant information. The custom code is fully
obfuscated. Decryption is (likely) done by the native library. During the testing, it
was discovered that only relevant parts of the source code are loaded into memory
(this may mean that only parts of the code are decrypted, or the entire code is
decrypted and dynamically loaded using Java class loader).

Numerous techniques can be used to obtain the original dex files[18, 19, 20]. Some
of these techniques rely on custom Android kernel, and others use memory dumps.
During the testing, the memory dumping technique was used with no results. This
protection is out-of-scope of this thesis. For the purpose of this thesis, it is beneficial
that there is no access to the decompiled source code. This situation will allow for
usage of a different approach to the signature generation.
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6.3.3 Signature Generation

To hook the signature generation method, first, its name is required. However,
without access to the decompiled code, this can be a challenge. This "blind" approach
requires two things. Knowledge of the application and stack traces. The knowledge
(or assumptions) is used to limit the number of methods (that may contain the
sought functionality) from all to a smaller set. For example, the test application
visibly uses nonces and timestamps (both are visible in the HTTP requests). It
can be assumed that during signature generation (either in the same method or
as a method call), these values are generated. Timestamps can be generated with
known standard Android API, same for nonces (by visual observation, it can be
assumed that some form of 256 bit hash function is used). This knowledge allows
the hooking of these standard APIs and observe methods, where they are called.
The stack traces come into play here. The Stack trace is basically a log of methods
called in succession (it shows the current method name and the execution flow prior
to calling this method). Combination of both the knowledge/assumptions and the
stack traces can pinpoint the specific method that is generating the signature in this
case.

To better work with Brida "Inspect with Backtrace" feature (prints out the stack
trace), it is a good idea to modify the Brida function used to log the stack trace. In
some instances (like multiple methods inspected at once), the output can be mixed
and confusing (console.log is not synchronous). Also, multiple methods can have
the same name, but different signature (return value or parameters). The proposed
change is to always print the method signature in both the method name and also
the return value (so the return value can be linked to specific function if the console
log is mixed). The proposed change can be seen in listing 30.

As stated above, the first step to locate the signature generation method is
to hook any known method that is assumed to be used in conjunction with it or
directly inside of it. One of such methods can be System.currentTimeMillis(), which
produces timestamp. Using Brida, this function can be inspected with backtrace
(in Brida, the stack trace is called "backtrace", for the purpose of this thesis, both
terms are equivalent). Any time the function is called a stack trace is printed to the
console. Also, the return value is logged.

It can be assumed that the signature generation method is called right before
the HTTP request is generated (the signature is not generated beforehand as the
values are inputted by the user). In this case, the signature is likely generated after
executing an action that results in an HTTP request. This action is also clicking a
button (for example, to login or execute money transfer). During the login action
(after clicking the button), Brida log is observed for the traced currentTimeMillis()
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1 @@ -446,7 +446,7 @@ function traceJavaMethod(pattern,backtrace) {
2 // print args
3 if (arguments.length) console.log("Parameters:");
4 for (var j = 0; j < arguments.length; j++) {
5 - console.log("\targ[" + j + "]: " + arguments[j]);
6 + console.log("\targ[" + j + "]: " + arguments[j] + " Signature:

" + pattern);→˓

7 }
8 // print backtrace
9 if(backtrace === "true") {

10 @@ -464,7 +464,7 @@ function traceJavaMethod(pattern,backtrace) {
11 var retval = this[targetMethod].apply(this, arguments);
12 console.log("*** exiting " + targetClassMethod);
13 console.log("Return value:");
14 - console.log("\tretval: " + retval);
15 + console.log("\tretval(" + pattern + "): " + retval);
16 return retval;
17 }
18 }

Listing 30: Proposed change to Brida logging.

method. Multiple calls to this method are observed. To pinpoint the one that is
being used during signature generation will be the one, where the return value is the
same as the value in the HTTP request that is sent. The stack trace can be seen in
listing 31.

On line 5, the call to System.currentTimeMillis() is made. The stack trace is
written in a way that at the top are the most recent methods and at the bottom
the methods that called the methods above them (so the stack trace should be read
from bottom to top). This stack trace is generated as expected. The button click
generated an onClick event (line 9). Inside the onClick method the function a.a.k.p.a
is called (line 7) and later on, this method calls the currentTimeMillis() method (line
5). The return value (line 14) matches the timestamp value in the HTTP request.
This stack traces indicate that the a.a.k.p.a function is generating the signature.
One of the ways to confirm this is to use knowledge of some other method that is
likely used during the signature generation and check if both are being called by this
function. The other way is to directly inspect with backtrace the method a.a.k.p.a
(class "a.a.k.p" and method name "a"). The downside of stack traces is that only
method names are printed; however, in Java, multiple methods can have the same
name (the only difference is either return value or input parameters). This is also
the case in this application. Class "a.a.k.p" contains dozens of methods with the
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1 *** entered java.lang.System.currentTimeMillis
2 Backtrace:
3 dalvik.system.VMStack.getThreadStackTrace(Native Method)
4 java.lang.Thread.getStackTrace(Thread.java:1720)
5 java.lang.System.currentTimeMillis(Native Method)
6 cz.vutbr.pavol.obfuscation.experimental.main.LibApplication.i(Native

Method)→˓

7 a.a.k.p.a(:95)
8 cz.vutbr.pavol.obfuscation.experimental.main.LibApplication.i(Native

Method)→˓

9 cz.vutbr.pavol.obfuscation.experimental.main.MainActivity$a.onClick(
Unknown Source:66)→˓

10 android.view.View.performClick(View.java:7125)
11 ...
12 *** exiting java.lang.System.currentTimeMillis
13 Return value:
14 retval(long java.lang.System.currentTimeMillis()): 1586954102067

Listing 31: DexProtector – currentTimeMillis() stack trace.

name "a" and there is no way to tell, which one is the one in the stack trace (note
that all classes and methods need to be loaded with the Java class loader and as
such can be printed during runtime, this is a valid way to get a list of all classes and
methods inside them, Brida "Analyze binary" feature can be used to list the classes
and methods in a tree view).

To solve this problem, all of the methods in the class a.a.k.p can be inspected
with backtrace at the same time (the output stack traces can be mixed up if multiple
methods are called simultaneously, in that case, the inspected methods can be split
into multiple smaller parts). The output of the stack trace should look very similar
to the output in listing 31 (lines 7-9 should be the same). This is because it can be
assumed that only one method "a.a.k.p.a" is called in the onClick event (note the
semicolon and the number in the parentheses on line 7, this is line number of the
method in the code, without the code, this is not very helpful, but can be used to
differentiate different methods in the same class).

So the next step is to inspect (with backtrace) all of the methods with the name
"a" inside the "a.a.k.p" class. Note that the "Inspect with backtrace" is not just
a stack trace print. It is a hook that prints out the method name (and with the
proposed changes specified in listing 30 also method signature) and also return value.
The stack trace is just a bonus. This allows the linking of the stack trace to the
unique function (as the signature of the function is unique). After hooking all of the
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functions and clicking the login button again, multiple stack traces are observed.
Only one is "valid" in terms of the assumptions made (that it will be similar with
the one in listing 31). This output can be seen in listing 32. In the stack trace, it
can be seen that the call to the method a.a.k.p.a originated from the onClick event
(as expected) but now the trace is linked to specific method signature (line 3 or 14).
The signature is e.e0 a.a.k.p.a(java.util.Map), so the return value is of type "e.e0"
and there is one input parameter of type java.util.Map. At this point, it is very
likely that the correct method was found.

1 *** entered a.a.k.p.a
2 Parameters:
3 arg[0]: [object Object] Signature: e.e0 a.a.k.p.a(java.util.Map)
4 Backtrace:
5 dalvik.system.VMStack.getThreadStackTrace(Native Method)
6 java.lang.Thread.getStackTrace(Thread.java:1720)
7 a.a.k.p.a(Native Method)
8 cz.vutbr.pavol.obfuscation.experimental.main.LibApplication.i(Native

Method)→˓

9 cz.vutbr.pavol.obfuscation.experimental.main.MainActivity$a.onClick(
Unknown Source:66)→˓

10 android.view.View.performClick(View.java:7125)
11 ...
12 *** exiting a.a.k.p.a
13 Return value:
14 retval(e.e0 a.a.k.p.a(java.util.Map)): e.u@a16a887

Listing 32: DexProtector – a.a.k.p.a method trace.

Both the DexProtector and the DashO use R8 for optimizations and name
obfuscation. This explains why the return type of the signature generation function
is "e.e0" (in case of DashO it was "e.b0"). Both classes are the same, which means
that R8 is responsible for this obfuscation in both cases. DexProtector also returns
object of type "e.u", because "e.e0" is an abstract class and the "e.u" is the actual
implementation. Once the correct method was found, it can be hooked. The hook
itself is very similar to the hook used in DashO (listing 29); the only changes are
the class/function names. The excerpt of the hook can be seen in listing 33.

6.4 Summary
This chapter provided research on a practical approach to certain obfuscation techni-
ques. The results show that no protection is absolute. A quote from Ralph Waldo
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1 var SignClass = Java.use("a.a.k.p");
2 var eu = Java.use("e.u");
3 var tmp = SignClass.a.overload("java.util.Map").call(SignClass, map);
4 var output = Java.cast(tmp, eu);
5 var str = "";
6 for (var index = 0; index < output._b.value.size(); ++index) {
7 str += output._b.value.get(index) + "=" + output.c.value.get(index) + "&";
8 }

Listing 33: DexProtector signature generation method hook excerpt.

Emerson can be used here: "It is not the destination, it is the journey." No security
defences will protect any application completely. The job of the obfuscation is to
make it as hard and as time-consuming as possible.

The string encryption by itself is not very effective and can easily be located and
bypassed using dynamic analysis. On the other hand, flow obfuscation is an effective
measure. The decompiled code is very hard to follow and comprehend. However,
flow obfuscation does not affect dynamic analysis. Class encryption proved to be
very effective but still, it is possible to utilise dynamic analysis. In practice, the more
obfuscation techniques are employed, the harder it is to analyse the application.
The individual techniques are not very effective, but when multiple techniques are
combined, the resulting application is hard to analyse and the process is also time-
consuming, which is exactly the goal of the obfuscation.

There are other obfuscation techniques, for example, hook detection, which
should prevent tools like Frida from working. Both the DexProtector and DashO
support this feature. This could, in theory, prevent dynamic analysis completely.
Hook detection was not in the scope of this thesis because attempting to bypass this
feature would require the entire thesis to specialize for this purpose only (similar to
class encryption, both topics are complicated and extremely time-consuming).

Both the DexProtector and DashO use the default R8 for name obfuscation
and optimization. This may be a potential negative as the R8 is the default
obfuscator/optimizer. This means that penetration testers will be familiar with
it and static analysis can be faster than using some custom tool. With the usage of
additional controls like flow obfuscation, the downside of R8 usage is minimal (but
still present).
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Conclusion
The theoretical part of this thesis is about obfuscation, techniques used by the
obfuscators and provides the necessary information to understand the obfuscation.
Two popular obfuscation tools are presented: ProGuard and DexGuard. Also, the
impact of the obfuscation on security testing is presented.

The thesis continues with the chapter about effective strategies to analyse the
application. These include static and dynamic analysis. As the obfuscation targets
the source code, the dynamic analysis proves to be more effective as it is not impacted
by the obfuscation as much as the static analysis is. The main standard in mobile
application security, the OWASP Mobile Security Testing Guide is mentioned to
provide basic information about security testing of Android applications.

The following chapter presents the self-protection mechanisms of the applicati-
ons. Android developers use these protections in order to better protect their appli-
cations against threats like running on a rooted device or inside an emulator. These
mechanisms act as an obstacle during security testing and must be bypassed.

The next chapter describes methods to bypass the self-protection mechanisms
of the application using dynamic instrumentation. As this thesis showed, dynamic
instrumentation (and especially Frida toolkit) can be very effective at removing
these protections. Almost any protection mechanism can be removed or rendered
useless using this technique.

The last two chapters are about advanced obfuscation techniques. A specially
designed application was used to analyse three obfuscators: Allatori, DashO and
DexProtector. The main focus was on string encryption as it can be the entry gate
during penetration test but multiple obfuscation techniques were analysed. Results
proved that dynamic analysis could bypass all techniques, which were in the scope
of this thesis. This also applies, when class encryption is used and "blind" dynamic
analysis is performed. However, with a more complex application, "blind" analysis
could be impossible or time-consuming (but is still an option). On the other hand,
if multiple obfuscation techniques would be used together, the resulting application
would still be very time-consuming to analyse. This thesis showed that dynamic
analysis is very effective against obfuscated applications.

The unobfuscated application should always be provided for the penetration
test. Bypassing all RASP defences and obfuscation techniques is a time-consuming
process and will make the penetration test more expensive or less reliable. Some
parts of the application could be untested as the obfuscation would be impossible to
bypass in the given timeframe or certain functionality could be missed altogether.
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A TrustManager Bypass

1 var CertificateFactory = Java.use("java.security.cert.CertificateFactory");
2 var FileInputStream = Java.use("java.io.FileInputStream");
3 var BufferedInputStream = Java.use("java.io.BufferedInputStream");
4 var KeyStore = Java.use("java.security.KeyStore");
5 var TrustManagerFactory = Java.use("javax.net.ssl.TrustManagerFactory");
6 var SSLContext = Java.use("javax.net.ssl.SSLContext");
7 var certificateFactory = CertificateFactory.getInstance("X.509");
8 try {
9 var fileInputStream = FileInputStream.$new("/data/local/tmp/cert-der.crt");

10 } catch (error) {
11 console.log("[ERROR] " + error);
12 }
13 var bufferedInputStream = BufferedInputStream.$new(fileInputStream);
14 var ca = certificateFactory.generateCertificate(bufferedInputStream);
15 bufferedInputStream.close();
16 var keyStore = KeyStore.getInstance(KeyStore.getDefaultType());
17 keyStore.load(null, null);
18 keyStore.setCertificateEntry("ca", ca);
19 var trustManagerFactory =

TrustManagerFactory.getInstance(TrustManagerFactory.getDefaultAlgorithm());→˓

20 trustManagerFactory.init(keyStore);
21 //script will wait untill the application calls the SSLContext init method
22 SSLContext.init.overload("[Ljavax.net.ssl.KeyManager;",

"[Ljavax.net.ssl.TrustManager;",
"java.security.SecureRandom").implementation = function (keyManager,
trustManager, secureRandom) {

→˓

→˓

→˓

23 //TrustManager is swapped for the previously created
24 SSLContext.init.overload("[Ljavax.net.ssl.KeyManager;",

"[Ljavax.net.ssl.TrustManager;",
"java.security.SecureRandom").call(this, keyManager,
trustManagerFactory.getTrustManagers(), secureRandom);

→˓

→˓

→˓

25 }

Listing 34: Frida script to bypass TrustManager SSL pinning.
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B Signature Generation

1 public static Map<String, String> generateSignature(Map<String, String> inputs)
{→˓

2 String nonce = Util.getNonce();
3 String timestamp = String.valueOf(System.currentTimeMillis());
4 inputs.put("nonce", nonce);
5 inputs.put("timestamp", timestamp);
6 String iv = "Lorem ipsum dolor sit amet";
7 boolean first = true;
8 String encoded = "";
9 for (final Map.Entry<String, String> entrySet : inputs.entrySet()) {

10 if (first) {
11 encoded = iv + entrySet.getKey() + entrySet.getValue();
12 first = false;
13 continue;
14 }
15 encoded += entrySet.getKey() + entrySet.getValue();
16 }
17 try {
18 final String hashingAlgorithm = "HmacSHA256"; //or "HmacSHA1",

"HmacSHA512"→˓

19 byte[] bytes = hmac(hashingAlgorithm, (iv + timestamp +
nonce).getBytes(), encoded.getBytes());→˓

20 final String messageDigest = bytesToHex(bytes);
21 inputs.put("signature", messageDigest);
22 return inputs;
23 } catch (Exception e) {
24 e.printStackTrace();
25 return null;
26 }
27 }

Listing 35: Signature generation method.
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C Allatori Configuration

1 <config>
2 <input>
3 <dir in="${classesRoot}" out="${classesRoot}-obfuscated"/>
4 </input>
5 <classpath>
6 <jar name="${androidJar}"/>
7 <jar name="${classpathJars}"/>
8 </classpath>
9 <keep-names>

10 <class template="public class * instanceof android.app.Activity">
11 <method template="public void *(android.view.View)"/>
12 </class>
13 <class template="public class * instanceof android.view.View">
14 <method template="void set*(**)"/>
15 <method template="get*()"/>
16 </class>
17 <class template="class * extends java.lang.Enum">
18 <method template="values()"/>
19 <method template="valueOf(java.lang.String)"/>
20 </class>
21 <class template="class * implements android.os.Parcelable">
22 <field template="public static final android.os.Parcelable*Creator

*"/>→˓

23 </class>
24 <class template="class *.R*">
25 <field template="public static *"/>
26 </class>
27 <class template="public class * instanceof android.app.Application"/>
28 <class template="public class * instanceof android.app.Service"/>
29 <class template="public class * instanceof

android.content.BroadcastReceiver"/>→˓

30 <class template="public class * instanceof
android.content.ContentProvider"/>→˓

31 <class template="public class * instanceof
android.app.backup.BackupAgentHelper"/>→˓

32 <class template="public class * instanceof
android.preference.Preference"/>→˓

33 <class template="public class
com.android.vending.licensing.ILicensingService"/>→˓

34 <class template="public class
com.google.android.vending.licensing.ILicensingService"/>→˓

35 </keep-names>
36 <property name="string-encryption" value="enable"/>
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37 <property name="string-encryption-type" value="fast"/>
38 <property name="extensive-flow-obfuscation" value="maximum"/>
39 <property name="log-file" value="${logFile}"/>
40 </config>

Listing 36: Allatori Configuration.
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D DashO String Decryption

1 public static String a(int i, int i2, String str) {
2 int i3;
3 String str2;
4 char[] cArr;
5 int i4;
6 int i5;
7 int i6;
8 int i7;
9 String str3 = "0";

10 int i8 = 5;
11 int i9 = 4;
12 if (Integer.parseInt(str3) != 0) {
13 str2 = str3;
14 i3 = 4;
15 } else {
16 str2 = "32";
17 i3 = 5;
18 i8 = 8;
19 }
20 char[] cArr2 = null;
21 int i10 = 1;
22 if (i8 != 0) {
23 i -= 3;
24 cArr = str.toCharArray();
25 i5 = 0;
26 i4 = 0;
27 } else {
28 i4 = i8 + 8;
29 str3 = str2;
30 cArr = null;
31 i5 = 1;
32 }
33 if (Integer.parseInt(str3) != 0) {
34 i6 = i4 + 12;
35 i7 = 1;
36 } else {
37 i7 = cArr.length;
38 i6 = i4 + 10;
39 }
40 if (i6 != 0) {
41 i9 = 4 << i3;
42 cArr2 = cArr;
43 i10 = i5;
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44 }
45 char c2 = (i9 - 1) ^ ' ';
46 while (i10 != i7) {
47 char c3 = cArr2[i10] ^ (i & c2);
48 i += i2;
49 cArr2[i10] = (char) c3;
50 i10++;
51 }
52 return String.valueOf(cArr2, 0, i7).intern();
53 }

Listing 37: DashO string decryption method.
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E DexProtector Configuration

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <dexprotector>
3 <verbose>true</verbose>
4 <optimize>false</optimize>
5 <signMode>release</signMode>
6 <v1SigningEnabled>true</v1SigningEnabled>
7 <v2SigningEnabled>false</v2SigningEnabled>
8 <stringEncryption mode="all">
9 <filters>

10 <filter>
11 <![CDATA[glob:!android/**]]>
12 </filter>
13 <filter>
14 <![CDATA[glob:!com/crashlytics/**]]>
15 </filter>
16 <filter>
17 <![CDATA[glob:!com/facebook/**]]>
18 </filter>
19 <filter>
20 <![CDATA[glob:!com/google/commons/**]]>
21 </filter>
22 <filter>
23 <![CDATA[glob:!com/activeandroid/**]]>
24 </filter>
25 <filter>
26 <![CDATA[glob:!com/twitter/**]]>
27 </filter>
28 <filter>
29 <![CDATA[glob:!com/flurry/**]]>
30 </filter>
31 <filter>
32 <![CDATA[glob:!org/**]]>
33 </filter>
34 <filter>
35 <![CDATA[glob:!java/**]]>
36 </filter>
37 <filter>
38 <![CDATA[glob:!javax/**]]>
39 </filter>
40 <filter>
41 <![CDATA[glob:!rx/**]]>
42 </filter>
43 <filter>
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44 <![CDATA[glob:!retrofit/**]]>
45 </filter>
46 <filter>
47 <![CDATA[glob:!io/fabric/**]]>
48 </filter>
49 <filter>
50 <![CDATA[glob:!twitter4j/**]]>
51 </filter>
52 <filter>
53 <![CDATA[glob:!com/newrelic/**]]>
54 </filter>
55 <filter>
56 <![CDATA[glob:!com/squareup/**]]>
57 </filter>
58 </filters>
59 </stringEncryption>
60 <classEncryption mode="all">
61 <filters>
62 <filter>
63 <![CDATA[glob:!android/**]]>
64 </filter>
65 <filter>
66 <![CDATA[glob:!com/crashlytics/**]]>
67 </filter>
68 <filter>
69 <![CDATA[glob:!com/facebook/**]]>
70 </filter>
71 <filter>
72 <![CDATA[glob:!com/google/commons/**]]>
73 </filter>
74 <filter>
75 <![CDATA[glob:!com/activeandroid/**]]>
76 </filter>
77 <filter>
78 <![CDATA[glob:!com/twitter/**]]>
79 </filter>
80 <filter>
81 <![CDATA[glob:!com/flurry/**]]>
82 </filter>
83 <filter>
84 <![CDATA[glob:!org/**]]>
85 </filter>
86 <filter>
87 <![CDATA[glob:!java/**]]>
88 </filter>
89 <filter>
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90 <![CDATA[glob:!javax/**]]>
91 </filter>
92 <filter>
93 <![CDATA[glob:!rx/**]]>
94 </filter>
95 <filter>
96 <![CDATA[glob:!retrofit/**]]>
97 </filter>
98 <filter>
99 <![CDATA[glob:!io/fabric/**]]>

100 </filter>
101 <filter>
102 <![CDATA[glob:!twitter4j/**]]>
103 </filter>
104 <filter>
105 <![CDATA[glob:!com/newrelic/**]]>
106 </filter>
107 <filter>
108 <![CDATA[glob:!com/squareup/**]]>
109 </filter>
110 </filters>
111 </classEncryption>
112 <hideAccess mode="all">
113 <filters>
114 <filter>
115 <![CDATA[glob:!android/**]]>
116 </filter>
117 <filter>
118 <![CDATA[glob:!com/crashlytics/**]]>
119 </filter>
120 <filter>
121 <![CDATA[glob:!com/facebook/**]]>
122 </filter>
123 <filter>
124 <![CDATA[glob:!com/google/commons/**]]>
125 </filter>
126 <filter>
127 <![CDATA[glob:!com/activeandroid/**]]>
128 </filter>
129 <filter>
130 <![CDATA[glob:!com/twitter/**]]>
131 </filter>
132 <filter>
133 <![CDATA[glob:!com/flurry/**]]>
134 </filter>
135 <filter>
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136 <![CDATA[glob:!org/**]]>
137 </filter>
138 <filter>
139 <![CDATA[glob:!java/**]]>
140 </filter>
141 <filter>
142 <![CDATA[glob:!javax/**]]>
143 </filter>
144 <filter>
145 <![CDATA[glob:!rx/**]]>
146 </filter>
147 <filter>
148 <![CDATA[glob:!retrofit/**]]>
149 </filter>
150 <filter>
151 <![CDATA[glob:!io/fabric/**]]>
152 </filter>
153 <filter>
154 <![CDATA[glob:!twitter4j/**]]>
155 </filter>
156 <filter>
157 <![CDATA[glob:!com/newrelic/**]]>
158 </filter>
159 <filter>
160 <![CDATA[glob:!com/squareup/**]]>
161 </filter>
162 </filters>
163 </hideAccess>
164 <resourceEncryption mode="all">
165 <assets mode="all"/>
166 </resourceEncryption>
167 <integrityControl mode="all">
168 <checkCertificate>on</checkCertificate>
169 </integrityControl>
170 <antiDebug>true</antiDebug>
171 </dexprotector>

Listing 38: DexProtector configuration.
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