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Abstract

The aim of this thesis is a design and implementation of a net flow probe for 10GbE traffic.
This thesis provides an overview of GNU/Linux utilities used for capture packets at high
speeds and its fundamental mechanism. Next chapters introduce design and implementation
of zero—copy probe capable to capture 10GbE traffic. The application uses the Express
data path and its AF__XDP socket to capturing traffic on interface. The test platform is
used FIT VUT NETX platform.

Abstrakt

Cilem této magisterské prace je navrh a implementace sitové sondy pro sledovani toku na
10GbE rozhrani. Text se zabyvéa pfehledem GNU/Linux nastroji vyuzivanych ve vysoko-
rychlostnich sitich a principtu jejich fungovani. Dale pak je uveden navrh a implementace
sondy vyuzivajici mechanismu zero—copy pro sledovani provozu na 10GbE rozhrani. Ap-
likace vyuziva Expresni datové cesty (XDP) a jeho AF__XDP soketu pro zachyceni provozu
na rozhrani. Jako testovaci platforma byla vybrana platforma NETX pouzivani na FIT
VUT.
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Rozsireny abstrakt

Sledovani tokti v pocitacové siti je jednou ze zakladnich tkont pro zajisténi jeji bezpecnosti
a spravného fungovani. Nicméné objem provozu se neustale zvysuje a imérné tomu roste
i mnozstvi prenesenych dat pres rozhrani. V dnesni dobé jiz nejsou 10Gb, 40Gb dokonce
ani 100Gb rozhrani{ vyjimkou, coz zvysuje naroky na monitorovaci systémy.

Monitorovaci aplikace, bézici na bézném systému Linux, vSak nemohou plné zachytit
provoz na 10Gb rozhrani. Duvodem je neefektivni architektura sitového subsystému uvnits
Linuxového jadra. Béhem mnoha let vyvoje jadra Linuxu se vyvojari zamérovali predevsim
na flexibilitu systému. Diraz byl kladem na modularitu systému tak, aby obsahl potieby
vsech sifovych aplikaci. Nové moduly zpracovavajici nové protokoly mohou byt pridavany
do jadra, avSak tento koncept neni vhodny pro zpracovani paketi ve vyssich rychlostech.
Datova cesta paketu meszi sifovou kartou a aplikaci je prilis komplikovana a zdlouhava.
Paket musi projit skrze nékolik softwarovych vrstev, jako je napriklad firewall nebo kontrola
zahlceni, nez dorazi do aplikace. Tyto vrstvy zvysSuji ¢asovou naroc¢nost zpracovani pro
jednotlivé pakety, coz se projevi snizenim celkové vykonnosti aplikace.

Napriklad propustost na 10Gb rozhrani muze dosdhnout az 14.8 milionu paketu za
vtefinu. To znamend, Ze procesor ma pouze 67.2 ns na zpracovani jediného paketu. 67.2 ns
odpovida zhruba 200 cykltim procesoru, a to neni mnoho, bereme-li v potaz rezii operac¢niho
systému [22].

Mimo to, architektura operac¢niho systém Linux je zalozena na monolitickém jadru. To
znamena, ze cely systém je rozdélen na dvé oddélené casti: oblast jadra a uzivatelskou
oblast. Jak nézev napovida, v oblasti jadra je umisténo samotné jadro systému a ovladace
hardwaru. V uzivatelské casti bézi uzivatelské aplikace. Obé oblasti jsou od sebe odd-
éleny a komunikuji mezi sebou pouze pomoci systémovych volani. Tento koncept umoznuje
uzivateli oprostit se od komunikace s hardwarem. Nicméné, béhem zpracovani paket ve
vyssich rychlostech, je prepinani kontextu mezi jadrem a aplikaci velmi nezadouci.

Aplikace bézici uvnitr jadra je podstatné rychlejsi, avsak jeji vyvoj je naro¢néjsi, jelikoz
aplikace nesmi ovlivnit chovani jadra. Pokud aplikace bézi uvnitt uzivatelské oblasti, jeji
vykonnost bude znac¢né ovlivnéna mnozstvim prepindni kontextu a obsluhou systémovych
volani, a navic nebude mit kontrolu nad datovou cestou paketu uvnitf jadra. Nékolik
softwarovych utilit nabiz{ feseni tohoto problému, jako napriklad Data Plane Development
Kit (DPDK), PF_RING nebo eXpress Data Path (XDP).

Tato prace se zaméruje na nadvrh a implementaci siftové sondy pro monitorovani provozu
na 10Gb rozhrani, kterd pobézi na standardnim Linuxovém opera¢nim systému. Navrzeny
systém odchytavani paket pokryje limity standardniho siftového subsystému tak, aby bylo
mozné plné zachytavat provoz na vysokorychlostnim rozhrani. Navrzeny systém je zalozen
na systému XDP, konkrétné na pouziti AF__XDP soketu. Takto je systém schopen zachytit
a zpracovat rychlosti 10Gb.

Tato prace je rozdélena do nékolika kapitol. V prvni kapitole je predstaven koncept
zachytavani toku v siti a jsou uvedeny zakladni Casti, ze kterych se skladd monitorovaci
systém. Zachytdavani paketl je stézejnim tkonem takového systému a mé velky dopad
na celkovou vykonnost systému. Z tohoto duvodu jsou nasledujici kapitoly zaméfeny na
efektivni zpracovani paketa.

V kapitole 3 je uveden proces zpracovani paketi ve standardnim Linuxu a ukazuje
datovou cestu paketu mezi sitovou kartou a aplikaci. Jsou predstaveny hlavni limitujici
prvky, coz je dilezité pro pochopeni mechanismu zlepsujicich zpracovani paketu.

V kapitole 4 je uveden prehled mechanismt zlepsujicich zpracovani paketu a frame-
worku, které jsou na nich postaveny. Detailnéji je popsan mechanismus zero-copy a jeho



implmentace v systému Linux. Zero-copy dovoluje vytvorit sdilenou pamét mezi jadrem a
aplikaci, ¢imz umoznuje efektivnéjsi predavani dat.

Kapitola 5 se zaméruje na popis systému XDP, ktery je pouzit pii implementaci mon-
itorovaci sondy. Tento systém je zalozen na Berkeley Packet Filter (BPF), se kterym je
uzce propojen. Systém XDP umoznuje uzivateli nahrat jedoduchy kod piimo do ovladace
sitové karty. Tento kod je spustén pokazdé, kdyz sitova karta prijme novy paket. Uzivatel
proces zpracovani. Novinkou tohoto systému je AF_XDP soket, ktery umoznuje obejit cely
sitovy subsystém a predat data ze sitové karty primo do aplikace nejkratsi moznou cestou.
Nespornou vyhodou tohoto systému je fakt, ze funkcionalita jadra ztustava zachovana, coz
neplati u jinych podobnych feseni (napiiklad DPDK).

Kapitola 6 predstavuje navrh sitové sondy postavené na systému XDP. Jednd se o
vicevlaknovou aplikaci, ktera vyuziva nékolika oddélenych AF XDP soketu pro paralelni
zpracovani paketu pri vyssich rychlostech. Aplikace uchovivd agregované informace o
zachycenych tocich ve vnitinich strukturach.

Kapitola 7 se zabyva implementaci sondy. Jako programovaci jazyk byl zvolen jazyk C.
Implementace vyuziva knihovu Libbpf pro praci s AF__XDP sokety a knihovnu pthread pro
praci s vice vlakny.

V kapitole 8 je uvedeno laboratorni testovani sondy na zarizeni NETX. Sonda tspésné
zachytila a zpracovala provoz 14.8 milionu paketi za vtefinu.

Jako vylepseni sifové sondy se nabizi tprava XDP subsystému tak, aby bylo mozné
odchytavat i pakety jdouci standardni cestou k jinym aplikacim. Soucasné reseni umoznuje
pouze preposlani paketu do monitorovaci sondy. Dalsi moznou praci je zdokonaleni exportu
sondy na plné pokryti IPFIX standardu. Nevyhodou pouzitého systému je omezeny pocet
ovladactu podporujicich XDP.
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Chapter 1

Introduction

Flow monitoring is an essential task to control and secure modern networks. However, the
network traffic is increasing, and the traffic flowing through interfaces is proportionately
growing . Due to this trend, the 10, 40, or even 100Gb interfaces are used more and more
and put higher demands on monitoring systems.

For regularly used applications running on the Linux operating systems, it is not possible
to fully capture the traffic of 10Gbps connection on common hardware. The reason is an
architecture of Linux operation system and design of in-kernel network stack subsystem
and its cooperation with device drivers.

During the evolution of the Linux kernel, the open-source community emphasis on
flexibility of the system to be used in many different applications. The network stack
within the Linux kernel is designed as flexible as possible to accommodate all the various
networking needs. The stack is generic and allows new protocols to be added utilizing
kernel modules, but it is suboptimal for high-speed performance. So in effect, the datapath
for a newly arrived packet from the network card to an application is relatively long and
complicated. The packet has to pass through several software layers, including a firewall
or traffic shaper that increase per-packet processing overhead, and the overall performance
decreases considerably.

For example, the raw throughput on a 10Gb link is up to 14.88 million Packets Per
Second (pps) (64B packets), which means that every 67.2 ns a new packet can occur. Thus,
the system has only 67 ns for single packet processing, which corresponds to 200 CPU cycles
(depending on CPU frequency) between packets. This is not a lot of time considering the
per-packet overheads generated by standard operating systems [22].

Moreover, a standard used Linux system is based on the monolithic-kernel architecture,
where the system is divided into two parts: a kernel-space and user-space. In the kernel-
space resides a core system functions and drivers controlling hardware and the user-space
occupies regular user’s programs. Both spaces are separated to each other, and cooperation
is enabled only through secure system-calls. This concept allows a user to ignore the
underlying communication with hardware. However, the context switching between kernel-
space and user-space during packet propagation is a costly operation, and it is not suitable
for packet processing in user-space at higher rates.

When a network program is running inside kernel’s realm, it will be faster but much more
complex to design to be safe for the kernel. When the network program is running inside
user-space, the numerous system-calls and context switching will decrease the performance
and program will not have any control over the datapath through the network stack. Several



software solutions solve this schism such as the Data Plane Development Kit (DPDK),
PF_RING or an eXpress Data Path (XDP).

This thesis aims to design and implement a packet capturing probe that meets today’s
packet processing requirements while running on a standard operating system. The captur-
ing mechanism will overcome certain restrictive factors and overheads in the Linux network
stack so that we can fully exploit the potential of the high-speed interfaces. The designed
system introduced in this thesis is based on the XDP system, especially with AF__XDP
socket usage, and it is able to capture and process flows at 10Gb speeds.

The thesis is organized as follows. The first chapter describes the basis of flow moni-
toring, the architecture of flow monitoring system and necessary processes from which the
system is composed. The packet capturing has a significant impact on the system’s perfor-
mance so the following chapters are devoted to obtaining a data from network card more
effectively.

The second chapter describes the packet processing in a standard GNU /Linux network
stack and shows a datapath from a network card (NIC) to the user application without
any improvements. Some limits of network stack architecture are introduced and their
understanding is important for further improvements.

Chapter 4 dedicate to overview of commonly used mechanisms and frameworks for fast
packet processing. These techniques are trying to eliminate disadvantage and bottlenecks
of standard network stack. The Zero-copy mechanism and its implementation in Linux
kernel are introduced.

The chapter 5 focuses on the XDP system and its usage in the fast packet processing.
The XDP system is based on Extended packet filter so its describes as well.

Chapter 6 introduces a design of a network probe, which is able to capture traffic on
10GE interface. It is multithread application based on XDP system.

The following chapters 7 and 8 deal with implementation and testing the designed flow
probe with usage of AF__XDP sockets.



Chapter 2

Flow Monitoring

Flow monitoring is an important part of a network administrator’s tool-chain. It is useful
in many activities e.g. billing, traffic analysis, network visibility, congestion control, and
intrusion detection [25]. Flow monitoring embraces the complete chain of packet observa-
tion, flow export using protocols such as NetFlow and IPFIX, data collection, and data
analysis.

The essence of flow monitoring lies in the creation of aggregated information about traffic
passing through given point in the network infrastructure. Nowdays, a modern monitoring
system focusing on flow monitoring, rather than individual packets analysis. Deep packet
inspection over all packet data is too computationally expensive to be performed on high-
speed networks, while flow monitoring provides only packet header processing, without
traffic payload inspection, which is faster and more scalable [26, 9].

2.1 Flow definition

A flow is defined as ,a sequence of packets passing an observation point in the network
during a certain time interval. All packets that belong to a particular flow have a set
of common properties derived from the data contained in the packet, previous packets of
the same flow, and from the packet treatment at the observation point“ [26]. The set of
common properties is not strictly defined. Generally, as set is being used a 5-tuple: Source
IP address, destination IP address, source port number, destination port number and IP
protocol number, but addition information can be included, depending on vendor such as
VLAN ID, IP ToS or interface number [9]. This set of common properties is also called
a Flow key and expresses abstract indentification of a communication between two points,
which passes through the observation point. The observation point can be line cards or
interfaces of packet forwarding devices.

2.2 Flow Monitoring Architecture

A flow monitoring system is designed to record and make an aggregated information about
flows available to the user. The observed information (such as number of packets, IP or
TCP flags, payload size, etc) are stored in generic data structures called flows records and
each record is uniquely identified by a particular flow key[26]. Thus, a flow monitoring
system must be able to convert raw packets to corresponding flow records, collect them and



proccess them to user-readable form (charts, graphs) or as input to another system [25].
The flow monitoring system requires several steps:

1. Capturing packets at one or more observation points
2. Assigning packets to flows
3. Creating and exporting flow records for the flows

4. Collecting, storing, and processing of the exported flow records

These steps can be divided into two separate subprocesses: a Flow monitoring process
and Flow data processing. These processes can run on separated dedicated devices, then
a device where the flow monitoring process running is called a flow probe or flow exporter
and a device on which the flow data processing is working, is called a flow collector. The
communication between probe and collector is ensured via Flow Export protocol. There
are several standards for the export protocol. In this thesis, I will focus on IPFIX standard
by IETF. Figure 2.1 shows a high-level overview of the generic monitoring system [26].

Flow Monitoring Process Flow Data Processing
Packet Capture ; —._) Flow Collection

¢ Packets

Flow Creation Flow Storage

Flow
Records

Flow Export _._ Flow Processing

Flow Export Protocol
I I

Figure 2.1: Flow monitoring system overview [20]

2.2.1 Flow monitoring process

Flow monitoring process has the task of transforming the raw packet data to a flow record
and exports them to a collector. The process contains a packet capturing, flow creation,
and export of flow records subprocesses.

Packet capture

First step in the monitoring system is a packet capturing from the line and it is typically
carried out by a standard Network Interface Card (NIC). The device checks checksum and
store packet in memory. Then a NIC driver passes data to operating system for further
processing. The packet is marked with a timestamp, pointing to time at which packet was
received. The timestamp can be registred by the NIC, NIC’s driver or later by user-space
application. Additionally, some extra metadata can by attached to the packet such as next
hop, AS number and so on.

This phase can be very crutial to the overall system performance so some specialised
hardware —accelerated cards can be used, which provides better performance of system at
higher rates [26].



Flow creation

After packet capturing, it is necessary to extract values to determine a flow key. The flow
key coresponds to communication which the packet belongs to. The packet headers has to
be parsed and set of used flow keys has to be extracted. As mentioned previously, the key
attributes are not strictly defined, so the attributes are picked up depending on the flow
selection function. Commonly used key attributes are IP addresses, transport protocol, and
ports. Some extra information can be extracted from the packet such as number of bytes
or TCP flags. These metadata are used to update flow record for further analysis.

In this phase, the packet sampling and packet filtering can by done. The paket sampling
reduces the amount of processed packets in order to maintain performance. It can use two
different patterns to pick up packet samples, the random sampling or deterministic sampling
(every N-th packet). The packet filtering separate the packets based on packet’s certain
property, such as IP address, port number or packet hash.

The extracted packet metadata are used to create a flow record or update existing one.
All records are stored in a flow cache and the flow key identifies particular entries in the
cache. A flow creating process calls for each captured packet a flow selection function which
compares the current key with keys in flow cache. If no match is found a new record is
pushed to the flow cache, if the key has been matched, the process update attributes in
coresponding record. Algorithm 1 illustrates the flow creation process [26].

Algorithm 1 Construction of Flow Records (taken from [26])

1: Loop

2 Get new packet P

3 Extract packet metadata M

4 Set found = false

5: for all flow record F in flow cache do

6 Apply flow selection function ¢ to F and M
7 if ¢(F, M) = true then

8 Aggregate M to F

9: Set found = true;

10: break

11: end if

12: end for

13: if not found then

14: Create new flow record F from M
15: Insert F into flow cache

16: end if

17: End Loop

The flow records are stored in flow cache until a flow is considered to have terminated
and the record is expired. This occurs for several reasons: timeout expired, connection is
closed normally (FIN flag), lack of resources or exporter shutdown.



Flow Export

The flow export maintains the process of delivering flow records to flow collectors, when the
record has been expired. This task is consist of data serialization and message transmission.
There is also possibility to sample or filter flow record which will be export in the same
purpose as sampling and filtering after packet capturing. A crucial part of flow export is
ensuring the security of the exported flow records. The information must be delivered only
to the authorised destination. Therefore, an authorisation, confidentiality, preferably, also
integrity should be provided.

The communication between probes and collector is described by protocols such as
NetFlow or IPFIX. They define how to serialize and encode flow record and how to use
diferrent transport protocol to deliver data to collector. In the following section 2.3, I will
focus on IPFIX protocol, because it is a IETF standardized protocol, which is supported
by broad range of vendors and suppports variable length of exported elements.

Version number (2) Length (2)

Export time (4)

Sequence number (4)

Observation domain ID (4)

Set ID (2) Length (2)
Record 1 %
Record 2 -
Record n

Figure 2.2: IPFIX message example [26]

2.2.2 Flow data processing

The aim of a flow data processing is to store a flow data, after they are delivered to a flow
collector from multiple probes in the network, and allows their further analysis.

Flow Collection and processing

The flow collection subproccess providies recieving messages, which contains a flow records
captured on probes. The probes and collector has to negotiate the same transport protocol,
its security and flow export protocol, and collector validates each received message from
probes, if it is in expected format. After validation, the messages are parsed to particular
records and aggregation, data anonymization, filtering and summary generation can be
done.

The information about flows can be stored for later processing or can be process in
real-time, depending on an use—case. A flat files, a row-oriented databases (mySQL) or
column-oriented (FastBit) databases can be used for permanent storage. Flow information
can consume a big amount of space, so some kind of compression can be used as well [26].

The flow processing can be used to achive several goals: long-term statistics can be com-
puted to capacity planning, live statistics can be used for tracking down network problems,
anomaly detection techniques can be applied to flow data to detect suspicious behaviour
which indicates a problem or attack on the network or modern machine learning techniques
are utilised in flow processing, such as user identification, an IDS or traffic classification.



The flow analysis is performed usually in time batches. It might generate delays to data
analysis so in time-critical application, a stram processing can be used.

2.3 IPFIX

As mentioned above, IP Flow Information Export protocol (IPFIX) is an IETF standard for
exporting network flow based on NetFlow version 9, and is defined in several RFCs (5102,
5103). The IPFIX is designed less restrictive and allows dynamically reconfigure observed
information and unlike Netflow, IPFIX contains specific fields which can be used by vendors
to store proprietary information. It is possible due to defining a metadata called Templates.
The Template is exported with flow information in IPFIX message and describes a layout
of flow information which includes attribute id and its lenght. The IPFIX message is shown
in Fig. 2.2. Each message is consist of message header, and one or more Sets. The message
header holding information version, overall length of message, export time sequence number
and domain ID. The Set has ID and variable length of set and its records can be filled with
templates or a flow information data [26].



Chapter 3

Packet processing

This chapter describes a packet processing in a GNU/Linux kernel network stack. In
general, the network stacks in operating systems are typically designed for flexibility. The
high throughput of networking traffic can be problematic and commonly used Linux kernel
stack does not offer effective operations. Within Linux network stack, packets need to
be copied twice after being received to delivery to an application: first, from a network
interface to the kernel buffer and then from kernel to the user —space (shown in Fig. 3.1).
The data transmitting between these buffers is managed by NAPI (New API) interrupts.
The understanding of packet processing in the standard stack is essential for its further
increasing the performance and for describing mechanisms that do that.

User Space Q

1 packet

Kernel
packet
os r buffers

1 packet / 1 packet
Kernel Space

DMA-able
. P memory
Driver regions
N Packet Ring

e g o g
N RSS queues

Figure 3.1: Linux network stack [18]

3.1 Linux network stack

When a new packet arrives, the NIC attaches the packet to a descriptor in the NIC’s circular
receiving queues (RX ring). Direct Memory Access (DMA) transfers the packet data to the
DMA —able memory region of RAM without a CPU intervention. The packet descriptor in
RX contains a DMA memory region address. At this point, the NIC needs to inform the
system that the packet has been received, so the NIC raises an interrupt signal. Each time a
packet RX interrupt is raised, the corresponding interrupt software handler is executed and
copies the packet from the DMA memory region, in which the DMA transfer left the packet,
into a local packet buffer in the kernel. Implementation of this kernel buffer is a sk_buff
structure, which is the primary data structure for packet handling in Linux. However, an
interrupt handling for each packet is a CPU intensive, so the NAPI mechanism is used
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instead. The NAPI starts a poll loop and interrupts are only enabled for the first packet
of a batch. The poll loop gets periodically enabled and inspect the devices for received
packets needed to be forwarded to the network stack.

At this moment the driver harvests and unmap the network ring buffer data so additional
packets may be received. If the NIC supports multiple queues, the packets are distributed
among CPUs, and the data in kernel buffer are passed up to the networking layer for
further processing. The kernel has to check the socket’s allocated memory. If the memory
has exceeded, the kernel drops the packet. If the socket grants an unoccupied memory, the
data are attached to the socket memory. The kernel checks any BPF filters as well.

DMA-able Kernel packet User application

Physical link Intel 82599 NIC .
memory_region buffer

Packet arrivg)
1 Ir

napi_schedule()

memcpy() q:jﬂﬁm n
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]
'
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i : IRQ i |
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Figure 3.2: Linux network stack, RX scheme [18]

Packet capturing is the first step of the flow monitoring process and has a significant
impact on the overall performance. As follows [18], the main causes of performance degra-
dation during this phase are:

1.

Per-packet allocation and deallocation of resources — memory management of the
sk_buff in high-speed rates increases CPU overhead. Moreover, the sk_buff may
contain unnecessary information, depending on use-case

. Serialized access to traffic — it is advisable to parallelize the packet processing to

multiple CPU and distribute traffic to multiple queues

. Multiple data copies from driver to user-space — the packet data path includes several

buffer copies. One of this copy can consume hundreds of cycles. Above that, the per-
packet copy is inefficient.

. Kernel-to-userspace context switching — the packet data path includes some system

calls too. Each system call requires to switch context to kernel mode and vice versa.

. No exploitation of memory locality — the significant number of cache misses are

causing a performance degradation
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Chapter 4

Fast packet processing

This chapter presents some mechanisms and frameworks, which are commonly used to
speed-up packet processing. To achieve high packet processing performance on commodity
hardware, it is necessary to remove any software bottlenecks between NIC and the program
providing the packet processing.

4.1 Zero-copy

As mentioned in chapter 3, the standard NIC’s receiving scheme is to store a packet data
in the kernel-space buffer after Direct Memory Access (DMA) transfer. The application
has to issue a read/write system calls to copy data from kernel-space to user-space buffers
to packet processing and vice versa. The zero-copy aims to avoid this memory-to-memory
copy and reduce unnecessary memory access. The Zero-copy is a common name for various
techniques and design improvements. In this section, I will focus on the technique that is
directly supported in the GNU/Linux kernel, and that is a page remapping.

_________
o . | | . KemeliUser
User domain ; | DATA domain
Copy data S

Virtual memory
‘operation

Kernel domain

Network adapter Q::> Network Network adapter <2:> Network

Figure 4.1: Original Data path vs. Zero-copy data path [16]

The basic idea behind the page remapping is to create a cache-like image of some file (or
memory) in the virtual address area within the user process. In other words, a file on disk
became a chunk of RAM area that the process can access and from a user’s point of view,
it looks like the OS allocates a block of memory, in which the file has been copied. The
Linux supports the mmap () (or do_mmap () ) system call, which provides the page remapping
and allows part of a file or the memory stored on a block device to be mapped into a user’s
address space.

Thus, the page remapping creates a shared buffer between the kernel and a user-space.
Moreover, the buffer can be shared between a device’s driver and user-space. Then there is
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no need to copy the data between both of buffers and a received packet from NIC can be
directly accessible in the user-space. Data from the user-space application can be directly
sent to the NIC. It highly reduces the number of system calls, CPU processing time, memory
usage as well as power consumption for data transmission.

4.1.1 Page remapping

Linux separates the address spaces of the kernel and other processes from each other.
These address spaces consist of virtual memory addresses, which are only abstracted from
physical addresses. To translate between virtual addresses and physical addresses, Linux
uses special hardware —a memory management unit (MMU). The MMU translates addresses
in larger batches called pages, which are the smallest units of memory that can have different
permissions and behavior. The translation of virtual memory to physical memory inside
the MMU is done through page tables, which holds information about page ownership. The
hardware itself provides the mapping, but the kernel can manage these tables and their
configuration.

If page remapping is used, the kernel modifies page tables to create a new virtual memory
area, in which a mapped file resides. The backed file is divided into page-sized pieces and
attached to new virtual memory area. Actually, the file pages are not directly loaded to
physical memory; it provides lazy loading - a memory within a particular page is loaded,
only when the first reference to this page will occur.

There is only one copy of pages in physical and virtual memory. If another process calls
the same memory mapping no other virtual pages are copied, only file’s reference count has
to be increment, so the usage of this function increase time and space efficiency. Therefore,
closing the file descriptor after mapping the file, will not cause loss of access to data [17].

Virtual address in process

Virt addr 1
— | Y, RAM
/MMU Physical
4 memory

Process 1 Hard Disk

Virt addr 2 | \ | ‘ S ‘

fd = open ("file")

| \ ‘ ‘

Process 2

Figure 4.2: MMAP with MAP_SHARED flag, Fig. based on [6]

4.1.2 Mmap function

The mmap function maps some files or devices into the calling process virtual memory. The
call is defined in sys/mman.h as:

void *mmap(void *start, size_t len, int prot, int flags, int fd, off_t offset)

The call will map an len bytes of an object represented by the file descriptor fd. The
mapping begin can be moved within the object by offset. If start pointer is included, new
mapped memory will start at this address. The access permissions are restricted by prot
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Figure 4.3: MMAP geometry [6]

and flags can add some special behavior. The function returns the address at which the
new mapping will be placed [15].

Due to page-sized granularity described in 4.1.1, all mapping operations have to be done
in multiple of page size, so mapped length must be rounded up and addresses for mapping
must be page-aligned. To determine the default size of a page on a current machine, Linux
user should use:

size_t page_size = (size_t) sysconf(_SC_PAGESIZE) or
int page_size = getpagesize().

Mmap can be performed in two ways:

e Private mapping - defined by MAP_PRIVATE, this map is private to the process. The
file is mapped as copy —on—write, and any changes are not reflected in the actual file,
or the other processes mapping. The page is copied, and modifications are performed
on the new page.

e Shared mapping - defined by MAP_SHARED, this map shares the mapping with all
other processes that map this same file. Any modification performed in the file is
written back to the disk and is available for other processes to read. There is no
guarantee, that data writes to disk are immediately processed, due to Copy-in-write
technique.

There is a desired memory protection of the mapping, which must agree with the open
mode of the file:

e PROT_EXEC - pages may be executed
e PROT_READ - pages may be read
e PROT_WRITE - pages may be written

e PROT_NONE - pages may not be accessed

If a file descriptor and offset are given, the mapping is called a file —backed mapping.
There is also an Anonymous mapping (flag MAP_ANONYMQOUS), which is not file—backed and
the file descriptor is NULL. Anonymous mapping contents are initialized to zero.

The complement function of mmap() is a munmap() - unmapping virtual memory. User
has to call munmap() for each mmaped file descriptor to free memory. Both functions are
thread safe.
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4.2 Multithreading

An excellent way to improve performance of monitoring system is to capture packet using
multiple threads. Nowadays, the multi-core CPUs are commonly used and parallel comput-
ing is widely support in Linux OS [22]. However, passing data between thread consumes
systems’s resources and the performance can be limited. When the application using mul-
tiple threads, the thread affinity should be used to reduce communication between cores.

4.2.1 Thread Affinity

The process, which provides a packet processing, should allocate a memory assigned to
the executing CPU. The reading from a local cache of CPU is more effective because it
decreases a cache miss probability.

The affinity is a technique fixes the thread execution and its resources localization to
a particular processor or core. There are several affinity domains, that is thread affinity,
process affinity, interrupt affinity or memory affinity. It aims to avoid expensive message
passing between processes, thread scheduling, and polling [5].

Thread and process affinity being able to assign specific thread or process to a particular
processor/core. In Linux can be used a pthread_ setaffinity_np from the POSIX pthread
library.

The Interrupt affinity handles software and hardware interrupts by specific cores or
processors. In Linux, the Interrupt affinity may be accomplished by writing a binary mask
of CPU to /proc/irq/IRQ#/smp_affinity to assigned an interrupt handler IRQ# to CPU.

The memory affinity is used mainly in NUMA systems. There is a tendency to avoid
cache-misses and hold particular data closer to executing CPU in a memory hierarchy.

4.2.2 RSS

The Receive-Side Scaling (RSS) is a NIC’s feature, which allows distributing network traffic
across several queues within NIC. Due to this approach, the traffic can be processed by
multiple CPUs in multiprocessor systems. RSS is enabled by default but can be configured
by a user and a spread rules can be modified by use-case. For example, traffic can be
scattered by IP addresses or port number in packet headers. Many NIC drivers use an
ethtool command to defined spread rules [22].

4.3 Frameworks

There are several frameworks which alternate standard network stack packet processing in
Linux to overcome some limitations.

XDP

EXpress Data Path is specialized in-kernel facility allowing a access to kernel network data
path without modifying the kernel. Appropriate use—cases are a load balancing, the DDoS
protection or fast forwarding. The XDP using eBPF subsystem and it does not provide a
kernel bypass mechanism [10].
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PacketShader

PacketShader is a GPU —accelerated software router. PacketShader provides a huge packet
buffer with batching processing and minimizes packet movement between local and remote
memory in a NUMA system. The used strategy enables a kernel stack bypassing for easier
and faster GPU operations.

Netmap

Netmap is a kernel module supporting multi—queue fast packet processing and pipes be-
tween applications. It uses zero—copy, kernel bypass and batched processing techniques.
However, the circular ring buffer is fixed size, which may not be appropriate for the appli-
cation with lots of packets in buffer [5].

PF_RING ZC

PF_RING ZC is a kernel module using a DNA /LibZero drivers allowing direct access
to packets on the network interface by simultaneously bypassing both the Linux kernel
and the PF__RING module in a zero—copy method. The framework adds support for
virtualization and inter —process communication and it is possible to use zero—copy with
non—PF_RING —aware drivers. The main disadvantage of this framework is the non—free
licence.

DPDK

The Intel Data Plane Development Kit (DPDK) is a framework optimized for Intel hardware
(NICs, CPU, chipset) with enhanced NUMA —awareness, and libraries for packet manip-
ulation across cores. DPDK is most widely used framework. However, DPDK requires
maintaining full separate drivers and its integration into solutions is hard, due to taking
over entire NIC and the need to reimplement a TCP/IP stack.

OpenOnload

OpenOnload is a proprietary SolarFlare solution for fast packet processing. OpenLoad
provides a user-level network stack, allowing to accelerate existing applications quickly.

Framework XDP  PacketShader I/0 Netmap PF_RING ZC DPDK  OpenOnload
Zero-copy Y N Y Y Y Y
Kernel bypass N Y Y Y Y Y

1/0 Batching Y Y Y Y Y Y
Hardware multi-queue support N Y Y Y Y Y
Devices family supported ALL 1 8 ZC / ALL (non-ZC) 4 ZC / ALL (non-ZC) 11 All SolarFlare
Pcap library Y N Y Y Y Y
License GPLv2 GPLv2 BSD Proprietary BSD Proprietary
IXGBE version Last 2.6.28 Last Last Last N/A

Table 4.1: Summarize the features of the I/O frameworks [4]
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4.3.1 Summary

Table 4.1 summarizes framework overview. A most popular technique used in high-performance
packet processing is the kernel bypassing, which overcome the limitation of the Linux kernel
networking layers by skipping them. Packet processing is done from user-space including
the NIC driver handling. By giving full control of the NIC to user-space program, the
kernel overhead (context switching, networking layer processing, interruptions, etc.) can
be significantly reduced, especially when 10Gb or higher speeds are used. However, using
the kernel bypass has several disadvantages 5:

e Does not used OS’s abstraction for hardware resources. Custom user-space driver
might be less tested, verified and reusable than an OS’s one

e The program works as sand-box, with integration and interaction limits
e Kernel functionality is skipped, User need to reimplement them

e Security layer of OS is skipped
The better way is not to move packet-processing out of the kernel’s realm into user-

space, but to move user-space networking programs (filters, mappers, routing, etc.) into
the lowest point of the kernel’s domain. Such opportunity offers an XDP framework [10].
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Chapter 5

The eXpress Data Path

This chapter presents in detail one of the fast packet processing framework —the eXpress
Data Path (XDP). The XDP is a system that allows user programmability directly in the
operating system network stack in a cooperative way while ensuring the safety and integrity
of the rest of the system. The approach of XDP is to keep hardware control inside the kernel,
but move packet processing operations into driver level. It is an alternative methodology to
the kernel bypassing design and represents a good tradeoff between performance, integration
into the system and general flexibility [1, 10].

In addition, XDP can completely bypass the network stack and provides the zero- copy
socket (AF_XDP), which offers higher performance than common kernel modules hooking
the stack. This feature is an ideal candidate for use in fast traffic monitoring. Moreover,
the XDP is build-in mainline Linux kernel since its version 4.8 (AF _XDP since 4.18) and
no specific HW requirements are needed 5.
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Figure 5.1: XDP integration with Linux network stack [10]
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The XDP is a layer inside NIC driver that allows validated code execution for every
single packet. The code can be loaded, controlled and inspected from user-space and some
action on each packet can be taken before the operating system networking stack allocates
the SKB structure and process the packet [10]. Figure 5.1 shows XDP integration into the
Linux kernel. The data-plane is split between the kernel and in-kernel injected program
while the control-plane is completely ensured by user-space. Thus, the user’s validated code
can be control from user-space, but it will run in the kernel space.

5.1 XDP actions

As was mentioned previously, XDP executes a simple code for every single packet to packet
classification. The validated code decides datapath through the system based on the current
packet context. Program can manipulate packet in arbitrary ways (encapsulate header or
change some bytes), but finally, the program must return a verdict to the driver, describing
how to handle the packet. There are several verdict actions that can be used:

1. XDP__PASS - allows the packet to pass into the standard network stack
2. XDP__DROP - drops the packet

3. XDP_ TX - bounce the packet back on the same interface

4. XDP__REDIRECT - redirects the packets to another interface

(a) BPF_MAP_TYPE__DEVMAP - redirecting raw frames to the user-defined
device

(b) BPF_MAP_TYPE__CPUMAP - redirecting raw frames to remote CPU
(c) BPF_MAP_TYPE_XSKMAP - redirecting raw frames into userspace

5. XDP__ABORTED - drops the packet with an error

5.1.1 XDP and eBPF

The XDP system is closely linked to eBPF (extended Berkeley Packet Filtering) ecosystem.
XDP does not have its own programming language, so it uses eBPF programming language
(it uses C-like syntax) code. The eBPF code is compiled into custom bytecode, analyzed
and translated into native instructions by the kernel and injected directly into the driver
level as a sandbox. Due to this, the action decision can be done very quickly after the
packet has been received. Nevertheless, the eBPF program has some restrictions and does
not support completely arbitrary code. The restrictions are as follows [21]:

e contains no loop, Not Turing complete
e accesses only valid memory
e uses a limited number of eBPF instructions (no more than 4000 instructions)

e bounded program size
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5.2 The design of XDP

The XDP system consists of four major components that cooperate with each other. The
components are illustrated in Figure 5.2, which explains, how they fit together:

1. The XDP driver hook - entry point of XDP, attached to a driver event

2. The eBPF virtual machine - just—in—time compilation and execution of eBPF
program

3. BPF Maps - communication channel with the rest of the system
4. The BPF verifier - static analysis to protect running kernel memory

Due to the using of the eBPF programming language for injected code, the eBPF
compiler toolchain occupies a more substantial part of XDP system. XDP itself is just
one driver level hook using and invoking eBPF’s features, full toolchain is illustrated in
Fig. 5.5. Nevertheless, the use of eBPF has a significant advantage over tradition loadable
kernel modules, namely eBPF does not lead to a kernel-space memory corruption or kernel
instability. It means that eBPF subsystem will only run code that has been deemed entirely
safe to run.

‘ User program ‘

BPF_PROG_LOAD l
\-| eBPF bytecode ‘

Results
(bpf_lookup_elem)

Hardware interfaces Kernel space User space

Figure 5.2: Four components of XDP design highlighted in green [§]

5.2.1 The XDP driver hook

In general, any generic kernel event can be potentially intercepted, and eBPF can react to
it: message (socket-layer) received, data written to disk, page fault in memory and much
more. So nowadays, the eBPF system is being used not only for networking purposes but
also it is a tracepoint tool for kernel developers and production engineers to run user-space
code inside the kernel [10].

Several hook points (event callbacks) for networking purposes exist in the network stack,
where a user-defined eBPF program can be attached to, for example, kprobes and uprobes,
socket (original tcpdump use case) and tc filters. The metadata associated with a packet
(and dispatched to the eBPF program) and allowed kernel helpers are changed according
to the hook point that has been used.
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However, all hook points take place in higher levels of the network stack, so the XDP
defined a new hook point at the lowest level of network stack datapath — in driver space,
and the program execution can be triggered by the arrival of a packet to NIC. But not all
network device drivers implement the XDP hook. In such a case, it is used the generic
XDP hook (also called SKB_mode), which take place after SKB allocation [1, 10].

The hook execution

The XDP hook simply attaches the eBPF file-descriptor handle to netdev and the eBPF
program is executed directly in the device driver whenever a packet is received from a hard-
ware. Typically, the execution flow is divided into three steps, shown in Fig.5.3: reading,
metadata processing, and writing packet data. In addition, some communication with the
rest of the system can be made. These steps can be alternate or repeated in arbitrary ways,
and whole packet processing can be split into multiple eBPF programs through tail call,
which passes control between them [10].

Communication w/rest of system == =P Program execution phase transitions
=) Communication with rest of system
Kernel Userspace Other BPF N et
networking stack programs pIoSTams y/  Packetflow
in kernel
Read/write metadata v v Packet verdict
Context object Kernel helpers Maps
- RX metadata (queue no, ...) Use kernel functions, e.g.: - Key/value stores
- Pointer to packet data - Checksumming - Hash, array, trie, etc.
- Space for custom metadata - Routing table lookups - Defined by program ™
50183
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2|5 )
‘ 1 =] ° o
H <||&||3
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1 —J p
' \4 /: :\
Parse packet Rewrite packet o °
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= =
- Direct memory access to packet data == - Write any packet header / payload 5] 5] 5
- Tail calls to split processing - Grow/shrink packet headroom S 3
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Figure 5.3: Execution flow of typical XDP program [10]

A context of the received packet in the XDP hook includes a pointer to raw data, its
length, and metadata describing which interface and queue was the packet received on, and
the program typically begin by parsing these data. The context structure also gives access
to a contiguous buffer resides in memory next to the packet data, where the program can
attach its own metadata to the packet.

Maps in eBPF programs allow to communicate with the rest of the system (see more in
section 5.2.3) and a persistent data can be changed depending on the current packet data.
The packet and its metadata can be modified. The program can remove or rewrite any
part of the packet, such as shrinking headers or rewrite address fields for forwarding and
recalculate the checksum. To ease packet modification, the helper functions add existing
kernel functionality without the need to go through the full kernel stack.

Finally, the packet verdict has to be made, and the program has to return one of the four
codes that say how to deal with the packet [10]. No other parameters are returned, except
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the redirect verdict which requires an additional parameter that specifies a redirection
target. For example, it is possible to specify a userspace socket (AF_XDP) as the target.
The implementation of redirect function is very flexible (as map lookup), which means that
a redirect target can be changed dynamically without program modification.

5.2.2 The eBPF virtual machine

The eBPF program is executed inside a specialized virtual machine resides in the kernel.
The virtual machine performs just —in —time compilation of the eBPF instruction into native
machine code and its execution. The VM exposes to the user a virtual processor, a set of
eleven virtual CPU registers, a program counter, accumulator and a 512-byte memory stack
and its RISC instruction set includes arithmetic and logic instructions and call instruction
as well.

The virtual machine completely separates inside running bytecode from kernel space.
The isolated environment of the virtual machine causes that bytecode cannot arbitrarily
call other kernel functions or access into memory outside its own environment. To interact
with rest of the system some helper functions can be called, depending on the type of the
BPF program (see more in 5.2.4).

The main benefit of VM is that a user can dynamically load and inject eBPF programs
without kernel reboot. All communication between user-space and VM is through a bpf ()
system call, which provides all control operations like loading programs, attaching them to
specific events, creating eBPF maps and access the map contents from tools.

Another benefit is that the VM provides a stable ABI towards user space and guarantees
that existing eBPF programs can be portable across different architectures and keeps them
running with newer kernel versions. Moreover, the VM is build-in part of mainline Linux
kernel distribution and there is no need for any third party kernel modules.

Registers

The set of VM'’s registers is listed in the table 5.1. The registers are always 64-bit wide
(even if running inside a 32-bit ARM processor kernel), but they support 32-bit subregister
addressing if the most significant 32 bits are reset [10]. Because registers R0-5 are reserved
for function calls, the maximum number of function arguments is 5, and the first register
always holds a return value.

Register Function x86_ 64 equiv
RO return value from in-kernel function and exit value for eBPF prog rax
R1 first arg to in-kernel function/scratch variable rdi
R2 second arg to in-kernel function/scratch variable rsi
R3 third arg to in-kernel function/scratch variable rdx
R4 fourth arg to in-kernel function/scratch variable rex
R5 fifth arg to in-kernel function/scratch variable r8
R6 callee saved registers that in-kernel function preserves rbx
R7 callee saved registers that in-kernel function preserves rl3
RS callee saved registers that in-kernel function preserves rl4
R9 callee saved registers that in-kernel function preserves rl5
R10 read-only frame pointer to access stack rbp

Table 5.1: VM’s registers and usage within eBPF program [21]
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The operation set

The operation set of eBPF is around 100 instructions, and this number is continually
increasing with the expansion of eBPF functionality in kernel releases. The operation
of BPF is 64-bit wide to correspond to the 64-bit host architecture to perform pointer
arithmetics and pass return values. There are three types of instruction: ALU instructions,
memory instruction and branch instruction.

The instruction format is designed as two operand instructions, which helps to map
BPF instructions to native instructions during the compilation phase. Due to this, the
eBPF program can support helper functions that cooperate effectively with the kernel.

5.2.3 BPF Maps

The eBPF programs do not have access to persistent memory and every invocation starts
in the initial state, so maps are the only way to communicate with the other parts of the
system. In terms of XDP, the map is a data structure shared between the user —space and
the eBPF program. Basically, the map is key/value store which exists in several different
types: hashmap, array, queue, radix tree and so on and exists in two different variants also:
global and per-CPU private.

A single BPF program can currently access up to 64 different maps directly, and they
serve several purposes: coordination tools for change behavior; persistent data storage or
communication mechanism, because data can be accessed on the user, kernel or eBPF sides.

Map implementations are provided by the core kernel and from the kernel point of view,
BPF maps and programs are behaving as regular resources so that they can be only handled
through file descriptors, backed by anonymous inodes in the kernel. To overcome limitation
associated with descriptor sharing between processes, a lightway BPF filesystem in kernel
space has to be used, and then multiple eBPF programs can be pinned to one map object
as shown Fig.5.4.

Creating a BPF map is done by defining a global struct bpf_map_def, which includes
type (hash, radix tree and so on), size of the key, size of the values and maximum allowed
entries. Creating and loading maps into the program is the responsibility of user-space, but
the kernel natively defined set of functions (helpers) which are available from bytecode and
perform some complex interaction with maps as key lookup, update or delete items. The
helpers also arbitrate access to maps and provide mutual exclusion, if it is needed.

Userspace Userspace
Application 1 ‘ Application 2
R/W R/W
User space !
---------------- MAPs ----- "
Kernel space MAPs
R/W R/W

9,

eBPF program 1 eBPF program 2

Figure 5.4: BPF maps and their interaction [21]

23



5.2.4 The BPF verifier

The eBPF program runs in kernel address space and arbitrary kernel memory might be
corrupted, if malicious or buggy program will be loaded. There are many possible risks,
which are unsafe: infinite loops could crash the kernel, buffer overflows, uninitialized vari-
ables, out of bounds jumps and so on. To avoid these, kernel build-in verifier performs a
static analysis of the program byte code, when program is loading via bpf () syscall.

The verifier builds a directed acyclic graph of the control flow and ensures that the
graph is truly acyclic, no unsafe memory access has been occurring and the code contains
only supported and reachable instructions. This is checked by doing a depth-first search of
the graph. Any program that contains unreachable instructions will fail to load. Then the
verifier simulates the execution of the eBPF program one instruction by one. The VM’s
registers and stack have to be valid before and after execution. For example, a uninitialized
register that has never been written to causes the program load to fail.

Finally, the verifier uses the eBPF program type to restrict which kernel functions can
be called from eBPF programs and which data structures can be accessed. There are many
types of eBPF programs that differ by where the program can be attached, which in-kernel
helper functions will allow to being called, whether network packet data can be accessed
directly, and the type of object passed as the first argument to the program. In the case
of XDP, when the program is loaded via syscall, the type of program has to be set to
BPF_PROG_TYPE_XDP.

If verifier doesn’t prove that byte code is safe, then it will terminate the program loading.
Also, the total program size is limited, and verifier has to ensure that it is not exceeded.

2.eBPF bytecode

Restricted C 10: Idh [12]
1. Restricted C eBPF Bytecode 11: jeq #0x800, 13, 12

eBPF Code 12: jeq #0x805, 13, 18

static void init_array() 13: I1d [26]
{ 14: jeq #SRC, 14, 18

Source s Byte Runtime Injection

i ( } o LLVM/clang e 15: Id len
for (key = 0; key < 1000; key++) { ‘\ Userspace I6: it 0x400, 17, I8
bpf_update_el fd[0], &key, - -

e - eBPF Virtual Machine 7 et O

} 8: ret #0
}

& Just In Time Compiler
Verltier 3. x86 Native Code

+HIT mov eax, [ebp+8]

mov esi, [ebp+12]
Kernel Hooks Kernel mov edi, [ebp+16]

add eax, edx
mov [ebp-4], edi
add [ebp-4], esi

Network
| TC | ™ TC
. Ingress Stack Egress PP

add eax, [ebp-4]

Figure 5.5: eBPF: overview of the runtime architecture [21]

5.3 Creating eBPF program

There are many ways to create a BPF program. One method is that the user writes his
eBPF program directly using the eBPF assembler in Intel-like assembly syntax [19, 7]. The
instruction set is available also as macros defined in bpf/libbpf.h in the kernel source tree,
and C syntax can be used.
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Another method is to implement a program in high-level languages such as C and let
the compiler translate the code to eBPF and hide assembly instruction for user. The eBPF
community selected the LLVM Clang compiler for such a task. The compiler generates the
ELF object file which can be loaded using bpf () syscall to an eBPF virtual machine. Due
to eBPF program restriction mentioned above, only the restricted C can be used.

To make compilation easier, there is a BPF Compiler Collection. It is a toolkit for
writing, compiling and loading eBPF programs in C, Python and Lua. Even more, bcc
provides nice object-oriented bindings when working with maps and includes many tools
useful for tracing [7]. The eBPF program is possible to load via iproute2 or perf [7, 8].

Libbpf

Another helper for writing eBPF program is the Libbpf library. It is a generic library inside
kernel source tree which performs wrapping function for loading (bpf_load_program()),
reading and manipulation with eBPF objects from user-space to ease writing eBPF pro-
grams in C [7].

Very useful functions inside libbpf are wrappers for working with AF_XDP socket
(libbpf/xsk.c and libbpf/xsk.h). They offer APIs for low-level access to the packets rings
and its data and high-level control plane for creating and setting up UMEMs and AF_ XDP
sockets themselves. A simple eBPF program for socket utilization is included, so the adop-
tion of AF__XDP to new or existing programs is very comfortable.

The kernel tree also provides some neat examples (located in samples/bpf/) which show
how to use the libbpf. User can link the library statically or as a DSO. The library is used
by other kernel projects such as perf or bpftool, and it is dual-licensed under the LGPL 2.1
and BSD 2-Clause [7].

For debugging and introspecting BPF programs and BPF maps, a user can use a bpftool.
It is a tool developed by the Linux kernel community like libbpf. The bpftool allows dumping
all active eBPF object in the system or disassembling JITed BPF instructions [7].

54 AF_XDP

AF _XDP (previously known as PACKET V4) is a new address family based on XDP
layer benefits, designed to pass network traffic from the driver up to user-space as fast
and efficiently as possible. Fig. 5.6 illustrates a comparison between AF__XDP socket and
standard AF_INET socket: the tradition network stack is bypassed before SKB allocation.
The core idea behind is to use the XDP_REDIRECT action and bpf_redirect_map function
when packets arrive on NIC to redirect them to the user-space socket (AF_XDP socket,
also called XSK). Redirect can be done without any copy, so this socket is able to deliver
a raw packet from NIC to the user-space very fast [14, 23].

5.4.1 Driver support and zero-copy mode

AF_XDP socket (also called XSK) can operate in three different modes depending on NIC
capabilities:

1. Generic SKB mode
2. Native XDP__ DRV mode
3. XDP__DRV+ZC mode
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The Generic mode works on any NIC, and for this mode, the hook point is not at the

lowest level of datapath, but

only after an skb allocation. The Native mode works on all

devices with XDP hook support; the XDP__DRV+ZC is a native zero — copy mode requiring

special driver support.

The zero-copy mode has a higher performance because the DMA stores data in a user

allocated frames. Otherwise,

the kernel has to allocate the memory and copy the frames

to the application. The ZC driver needs to implement and expose the API for using the
memory area directly in the NIC RX-ring structure for DMA delivery and nowadays, only
ixgbe and i40e drivers' by Intel do that (Mellanox coming soon). Table 5.2 shows the
current driver’s XDP support; zero-copy support is highlighted with an asterisk.

Vendor Driver

Broadcom | bnxt

Cavium thunderx

Intel ixghe* ixgbevf i40e*

Mellanox mlx4 mlx5

Netronome | nfp

Qlogic gede

Solarflare sfc

Marvell gede

Others veth virtio_net net tun dpaa2

Table 5.2: XDP

support, zero-copy support with asterisk [7, 13]

1Using a ZC requires a NIC driver from vanilla kernel tree, the out of tree drivers do not contain the

XDP-ZC support



5.4.2 A socket redirect

A new type of map makes it possible to perform redirect packets to user-space. It is called
XSKMAP (or BPF_MAP_TYPE_XSKMAP in full), and it is a simple array containing a
file descriptor corresponding to one AF_ XDP socket. As mentioned earlier in section 5.2.3,
the map is key/value store, and in case of an array, the key is array index of increasing
integers and the value is an array item.

A process can create a socket with an attached memory buffer and push socket’s file
descriptor in the XSKMAP via bpf () call. Actually, an internal kernel descriptor is stored
in the map, but from an application point of view, it is not visible.

A BPF program loaded into the driver can redirect a packet to an arbitrary descriptor
in this map, and XDP has to validate if the descriptor is indeed bounded to the device and
some queue. If the chosen index has not passed the validation, then the packet is dropped.
The packet is also dropped when an item on the chosen index is empty. In the opposite
case, the packet will be directed to receive queue corresponding to the AF__XDP socket in
the selected map entry. Thus, it is mandatory to have an eBPF program loaded and have
at least one entry pushed in the map, while an AF _XDP socket is used. Otherwise, the
application will not be able to get any traffic through AF_XDP socket.

/UserSpoce \
-

|
g - -1 - B

f NETDEV queue 0 NETDEV queue 1 \'\

|
NETDEV eth0

ID=56 KEY

oBPF | redioct 2
KKernel

Figure 5.7: Example of BPF_ MAP_TYPE_XSKMAP redirecting in DPDK [20]
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5.5 Memory model

The memory model used in AF__XDP has a great credit for the performance boost because
there is no memory allocation per packet. All packets within XSK are held in pre-allocated
memory called UMEM. Moreover, RX and TX queues can share the same UMEM and
packet descriptors are separated from packet buffer.

The UMEM bulffer is contiguous memory area divided into several equally sized chunks
called packet buffers in which a single packet and its metadata can be stored. Every chunk
is identified by an integer index (also called descriptor), which is a relative offset from the
UMEM begin, masked to the power of two. E.g., for a chunk size of 2k, the log2(2048)
LSB of the address will be masked off; it means that 2048, 2050 and 3000 refer to the
same chunk. Indexes are used in communication between kernel and application to tell
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each other where a particular packet resides. For example, when a new packet is stored in
packet buffer and kernel wants to give this data to the application, there is no need to data
copy or any manipulation, the only thing the kernel has to do is pass the proper chunk
index to the application.

For this reason, four buffer rings are used together with AF_ XDP socket and into which
indexes can be written. One pair of rings is associated with the socket and it is responsible
for sent and received packets, one pair of rings is associated with UMEM buffer, and its
purpose is handling chunk ownership. All rings behave as single-producer/single-consumer,
who is the producer depending on particular ring vocation.

umem memory region: multiple 2KB chunk elements  e.ch ok nas:

umem buffer

Descriptors

y T TTTTTTTEE TR E T TR | pointing toumem T T T T T T T T s e m e m T
1 Users receives packets : elements : For kernel to receive packets |
I . I |
1 RxRing | | | | ‘ dest | | Fill Ring | | | | | | | |
1 I 1 |
1 I I 1
: Users sends packets : : For kernel to signal send complete 1

|
g [ 1 1 [ [ ] compieonng [ | | | | [ | !
1 1 1 |
| o o o o o o o o o o e o 1 | e e e e e e e e e e e = |

One Rx/Tx pair per AF_XDP socket One Fill/Comp. pair per umem region

Figure 5.8: UMEM with four rings: RX and Fill rings are used for recieving, TX and Comp.
rings are used for sending packets [24]

The signalization about a chunks ownership between the kernel and the user-space
application is provided by buffers called Fill and Completion rings. Within Fill ring, the
application is the producer who wants to report the kernel-consumer which chunks are
available for new incoming packets. On the other side, within Completion ring, the kernel
is the producer who tells the application which chunks can be used for outgoing packets.

Another pair (associated with socket) handles incoming and outcoming packets. The
indexes of received packets are stored in a ring called RX ring. By checking this buffer, an
application can indicate if it has received a new packet. The indexes of outgoing packets
are stored in a ring called TX ring and an application fill in indexes of packets ready to be
sent.

Fach socket is bound to one umem which can have single Fill and single Completion
ring, but one socket may include multiple Rx/Tx rings. Even if zero—copy mode has been
used, the RX and TX descriptor queues are not shared to user-space. Only the kernel
can manipulate them, and it is the kernel driver’s responsibility to translate hardware
specific descriptors to descriptor rings that user-space sees. This way, a malicious user-
space program cannot mess with the NIC.
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The use of rings

When a packet is received by NIC and kernel driver pick it up, then the XDP program is
executed and decided if the packet should be pass to a socket. If zero—copy mode has been
used, the DMA has already put the packet in the UMEM area in user-space, so kernel only
fill in the packet descriptor to RX ring. The application checks the Rx ring for new items,
and if a new index appears in RX ring, it processes the data behind the pointer. When
the application has finished processing, it has to return a packet buffer ownership to the
kernel to reuse the memory. It will be done by adding the particular index to the fill ring
so that the kernel can see which chunks are available for a newly arrived packets and where
a new packet data can reside. Thus, the RX ring and the Fill ring must be involved in the
receiving side.

The TX path works similar, but TX and Completion rings have to be used. When
the application has a packet ready to send, it fills out the next available descriptor in the
TX ring to notify a kernel, which packet buffer wants to send. Then the kernel sends the
packet to hardware, and after the packet has been successfully sent, the kernel writes a
used memory index back to the Completion ring.

In summary, the RX and Fill rings are used for the RX path and the TX and Completion
rings are used for the TX path. A schema of using is illustrated in Fig. 5.9.
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|dwo)

|

o] EIITEE

Kernel Space

m
. I I I I UMEM

Figure 5.9: The ring cooperation, green arrow for recieve side, red for send side
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5.6 Socket creation

The XSK can be created via standard syscalls as socket (), setsockopt() and bind(),
but all memory management is directed by the user, so some memory allocation has to be
done before binding. The followings list is a sequence of necessary operations and their
function equivalents in C, if a fully functional XSK should be created:

1. Socket creation - socket ()
2. UMEM allocation - malloc()

Registration UMEM socket - setsockopt (XDP_UMEM_REG)

- w

Creation of rings - setsockopt (XDP_UMEM_FILL_RING)
5. memory map to user-space - mmap ()

6. binding socket to interface and particular queue - bind ()
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The socket is created by usual socket() syscall with AF_XDP as domain parameter.
After that, the memory area, where packets will be stored has to be allocated. It depends
on the user what function this will be done (malloc, mmap, huge pages, etc.), but it is
mandatory to register allocated memory to the kernel through the setsockopt function
with XDP_UMEM_REG.

As mentioned above, the RX and Fill rings are used for the RX path and the TX and
Completion rings are used for the TX path so at least one couple (or both) has to be
created with UMEM. The creation of these rings is possible via setsockopt calling with one
of the XDP_UMEM_FILL_RING, XDP_UMEM_COMPLETION RING, XDP_RX_RING or XDP_TX_RING
parameters for a particular ring and its size (the level parameter is set to SOL_XDP). The
size of the rings needs to be of size power of two. The setsockopt than allocates and set up
the particular ring.

Next step is map memory buffers to user-space. This mapping is done by using the
mmap () function described in 4.1.2. Before that, the application has to request kernel
about socket structure to figure out the actual addresses where all used rings begin be-
cause the ring’s structure is highly optimized to reduce cache coherency and looks dif-
ferent depending on architecture. However, the structure is returned to setsockopt ()
call with a XDP_MAP_OFFSET parameter and then the mmap() can be called. The map to
user-space is required as shared read and write for all of the used queues and specified by
XDP_PGOFF_TX_RING, XDP_PGOFF_RX_RING, XDP_PGOFF_FILL_RING or XDP_PGOFF_COM_RING
parameters.

Finally, the socket has to be attached to a particular interface and queue number, from
which the packets will be received or transmitted, by the bind () function call.
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Chapter 6
Design

The first section of this chapter analyses a specification of the packet capturing probe that
will be implemented and in the following section is suggested a possible solution and the
main logical steps that need to be done by the application.

6.1 Specification analysis

The flow probe should be able to capture traffic the highest possible speed, at best 14.8 Mpps.
The probe has to support IPv4 traffic as well as IPv6 on the Ethernet layer. The appli-
cation should be able to maintain a flow cache of unidirectional flowd; it means to store
aggregated information about connections, which captured packets belong to. It requires
a network and transport layer information, so raw packet data has to be captured and
socket settings have to be adapted to that. The flow subprocesses must be able to make
a fast data lookup within the flow cache. The exporter may not have adopted a full flow
exporter protocol support and full template support is not required. The probe should
be portable, non—blocking, and compatible with other applications running on the Linux
operating system.

6.2 Architecture

The packet capturing at higher rates would not be possible using a standard network stack.
It is appropriate to use one of the fast packet processing frameworks described in section 4.3.
XDP framework meets requirements from previous section 6.1. XDP is supported in the new
kernel source tree and does not need to install another library or kernel module. Therefore,
it can be used in arbitrary Linux—based system with kernel version 4.19 or higher. The
XDP supports AF__XDP socket which bypassing network stack to avoid its limitations,
such as per-packet allocation or long datapath through the stack. AF_XDP offers a direct
path from the network card to the application. Moreover, the kernel itself is not bypassed
so kernel functions are still available as well as in-kernel NIC driver and interface are still
accessible to other applications.

Multithreading

As discussed in chapter 4, the most efficient performance improving idea is to distribute
traffic among multiple CPUs. Modern network cards support RSS so that the traffic can
be split into multiple queues and every queue can be processed by a separated CPU. This
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Figure 6.1: xProbe architecture

concept is scalable, and the traffic load can be suitably spread across processors, depending
on the number of CPUs and NUMA cores.

The suggested probe invokes as many threads capturing traffic as RSS queues and each
thread resides on one CPU using thread affinity. Each thread opens its AF__XDP socket,
which binds to one of the queues, so that each thread can handle one of the queues, and
traffic processing can be spread out between CPU cores.

Shared buffer

For direct access to the ring memory (RX and Fill buffers), the thread uses the mmap
function to memory. Then, the probe, which is running in user-space, can share the buffer
with the kernel. This approach highly reduces system calls generated by application and
context switching between address spaces.

Flow maintaining

Each capturing process maintains its flow cache to store information about communication.
Because of splitting traffic to separated queues, each process will have only one part of
traffic belonging to the particular queue. The RSS distribution among queue is based on
IP addresses and port numbers, thus packets belonging to the same communication will
always be in the same queue. It is more auspicious than to maintain one big cache for all
processes. It can reduce a flow cache size and access time to cache item.
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The IPFIX was chosen as a flow exporting protocol. It offers variable length of elements
and native support to IPv6 addresses. Moreover, it is standardized by IETF, and it is
compatible with proprietary NetFlow9.

Architecture scheme

Figure 6.1 shows the architecture scheme of the suggested probe. At the bottom (and the
first in a packet datapath) is a network card and its built-in RSS, which spreads traffic
between multiple queues. Inside the NIC driver is added an XDP layer, which allows
execution of validated eBPF code. The eBPF is executed for every packet that has been
received and has to make a decision to which socket will be the packet redirect to, depending
on receiving queue. If the AF_XDP socket in user-space is opened, the packet is redirected
to UMEM of the particular socket (illustrated as a trapezoid) and certain buffer descriptor
is added to the RX ring, and POLLIN event is raised (the IRQx arrow). The thread that
owns the UMEM buffer can read and parse the packet data (AF_XDPx arrow), and the
flow key and metadata from packet header can be extracted (the ,capture®, ,getFlowKey*
rectangles). After packet processing, the metadata are used to update a flow record within
the flow cache and each thread has its flow cache (blue tabular). There is an control thread,
which ensures aggregating of flow cache and export to the collector via IPFIX.

6.3 Packet capturing

Each thread reading data from one of the queues, so the thread needs to create and set up
an AF_XDP socket and binds it to a particular queue. As was mentioned in chapter 5.6,
the setting up AF_XDP socket includes the creation of a socket, allocation UMEM buffer,
creation the proper rings and bind. The sequence diagram is enclosed in Appendix A.

User-space XProbe
Thread 0 Thread 1 Thread 2 Thread 3
XSK0 XSK1 XSK 2 XSK 3
/ queue 0 queue 1 queue 2 queue 3
NETDEV eth0

0 XSK 0
redirect a4 L
2 XSK 2

3 XSK 3

Qemel /

Figure 6.2: XSKMAP redirection on xProbe sockets

The socket creation is similar to AF INET socket creation and can be done via a
syscall. The process has to create a UMEM buffer, where the packet data will be stored.
The UMEM buffer allocation must be ensured by the process in user-space and must be
mapped to be shared between user-space and kernel-space. Within the monitoring probe,
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the packets are only received so there is no need to create Completion and TX rings. The
application has to set up only RX and Fill rings to be able to receive incoming packets.
After that, the socket has to be bound to the interface and the particular queue. The
application will use a poll function to detect an event on a socket. The poll function blocks
the process until the kernel will raise the POLLIN (data ready to read) event or timeout
expired, and then the data can be processed.

It is necessary to load the eBPF program before the socket creation has begun so that
the socket can properly receive data. The eBPF code has to maintain an XSKMAP with
open socket indexes and redirect packets to a certain socket in user-space, depending on
which queue the packet belongs to, as is shown in Fig. 6.2. The socket indexes are pushed
into the XSKMAP, at the moment of socket creation, so the map has to be done earlier.

The AF__XDP socket can be used in zero-copy mode, if the probe runs on supported
NIC. Then the DMA stores packet data directly in the UMEM area.

6.4 Flow creation

The probe regards the following 5-tuple as a flow key, which uniquely identifies a commu-
nication between two points:

1. destination IP address

2. source IP address

3. destination protocol number
4. source protocol number

5. protocol in IP header

The flow key and metadata is stored in the flow record. The observed metadata is as
follows:

1. number of packets 6. IP layer flags

2. number of bytes (heads and payload) 7. IP layer options

3. number of payload bytes 8. transport layer flags

4. byte histogram 9. communication start timestamp
5. the lowest TTL 10. communication end timestamp

The packet headers have to be parsed after the packet data has been captured and
stored in UMEM. The subprocess providing parsing has to select flow key from IP header
and transport header, but data link headers need to be parsed as well because VLAN tags
may occur.

Parsing

The first header in raw packet data is Ethernet header (without preamble). The only
element that needs to be checked is the ethernet type field. The ethernet type specifies
the type of the following header. There are two main values of the field: 0x0800 value
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indicates an IPv4 header, and the 0x86DD value indicates an IPv6. But, there is also a
VLAN tagging which is indicated by 0x8100 or 0x9100 value. Ethernet header has a fixed
length of 14 bytes, but in the case of VLAN tagging it can be 4 bytes longer or even 8 bytes
longer, in the case of the Double tagging (IEEE 802.1ad) and the first byte of the IP header
is given by this size.

The IPv4 header is not fixed in size; it consists of 14 fields, of which 13 are required,
and the last one is optional and flexible. The length of IPv4 header (this also coincides with
the offset to the data) is encoded to 4 bits in IHL field. To get the exact size of the header,
the parser has to multiply the IHL value by 5. The IP header contains three of the five
flow key attributes: destination IP address, source IP address and protocol number, which
has to be exctract. As metadata attributes are stored TTL, Flags, total length fields.

In the case of 0x86DD value in the Ethernet type field, the IPv6 header has to be parsed.
The IPv6 header is fixed in size but can be concatenated with extension headers. The main
header includes source and destination IP addresses which has to be selected as flow key
attributes, but protocol number attribute has to be taken from last extension header so the
parser must iterate to the last header by checking Next header field. Flow record attributes
can be taken from the main header also (Hop Limit like TTL).

The next header in the order is the transport header. The parsing subprocess can
recognize UDP, TCP, ICMP, ICMPv6, IGMP headers. A destination port number and
a source port number has to be extracted from the transport header. Some transport
headers such as ICMP, ICMPv or IGMP do not contain a port number so a header type
and message code can be used instead. In the case of TCP, the flags have to be extracted
to detect connection termination, once the FIN flag has occurred.

Flow cache

Demanding part of monitoring probe is the way how to store flow records. The data
structure holding flow records has to be able to access elements efficiently and quickly. For
this purpose, I choose a hash table, which search complexity may be at worst case O(n),
depending on a hash function. Very fast hash functions suitable for hash-based lookup
offers MurmurHash family [11, 2]. T suggest using the current version MurmurHash3 in
32-bit variant, which is faster than previous versions. The function uses a multiply (MU),
rotate (R), XOR and several magic constants on 128-bit blocks of data in its inner loop.
The input of hash function will be a flow key data structure, and the hash function produces
a 32-bit hash value that will index the flow cache table. The table will contain pointers to
flow records in memory (as shown in Fig. 6.3).

Flow keys Hash function Flow cache Flow record X
Flow key number of packets
number of bytes
Source IP 000
Destination IP
001 X
Source Port | Murmur3 32-bit hash
] 002 Flow record Y
Destination Port value
number of packets
Pratocol 003 x
—_———— number of bytes

Figure 6.3: Flow cache and hash function scheme
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6.5 Flow record export

The probe creates an extra thread to provide a record exporting. The thread periodically
serializes records stored in the flow caches and exports data to output. The user can
specify a time interval between exporting. Additionally, the thread periodically prints
socket statistics to determine sockets utilization and performance.
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Chapter 7

Implementation

This chapter is devoted to the actual implementation of the traffic capturing probe designed
in the previous chapter 6. The implementation language was chosen as GNU C/C++. The
program periodically captures the traffic from multiple NIC queues of a given interface and
maintains the flow cache up-to-date. For implementation was used a Libbpf and pthread
library. As a starting point for implementation was used a /samples/xdpsock_user.c
example from vanilla kernel tree, which demonstrates XSK socket handling.

7.1 Multithreading

A pthread C/C++ library is used for creating multiple processes which provide a packet
processing. The application holds identifiers of all created threads in an array inside
xProbe_info structure. The thread array is allocated to MAX_SOCKS size so it can hold
only MAX_SOCKS threads. The number of threads is given by -p argument, (see below on
section 7.8), but the argument is limited by the MAX_SOCKS constant, and the application
does not create more than MAX_SOCKS threads and sockets.

The main thread is creating subprocesses in xProbe_configure_and_run function in a
loop and then waiting to their terminations via pthread_join, which is placed in xProbe_wa-
it_to_end function. The thread executes an XDProbe_thread function, whichin the thread
performs a socket creation, packets capturing and processing and resource release. When
the application creates a new thread, the thread_input_t data structure is put to the new
thread as a parameter. The structure containing basic information about the new thread:
identification within the probe (tid), the descriptor of a queue (if_queue), from which
the thread will be capturing packets and pointer to socket descriptor array (xsk), where all
socket descriptors are stored.

There is created one extra thread, which periodically prints statistics and its code is
defined in poller function. This thread opens a file, where periodically prints content of
flow caches, and at the same time it prints socket statistics on standard output. The flow
cache is reset after exporting by this thread.

The packet capturing processes has to be explicitly assigned to one CPU. It is done
via pthread_setaffinity_np call after the thread has been created. For distribution
packets among CPU is used RSS on NIC. The RSS rule sets by an ethtool command in
src/optiNIC. sh script.

The socket creation inside threads has to be synchronized. The eBPF program has
to be hooked to the interface before the first socket creation and only one eBPF pro-
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gram can be hooked on interface. Otherwise, the creation will fail. Due to this, I used
a xsk_creation_mtx mutex that serializes a socket creation, and the first locked thread
attaches an eBPF program to interface while the other threads are waiting. When eBPF
is successfully attached by the first thread, the other threads do not try to hook it again.
Without this mutex, it often happened that two thread tried to attach an eBPF at the
same time, and it caused a hook error.

The application also using two barriers to synchronize socket initialization. The xdp_ready
barrier is used to wait for each other after successful socket creation. Second barrier
xsks_ready synchronized threads with the main process and indicates the moment when
all threads are ready to packet processing.

7.2 eBPF

The cornerstone of the XDP system is an eBPF program, which is executed inside the
driver. When an application wants to use an AF_XDP socket in user-space, the eBPF
program that performing an XDP_REDIRECT action must be running inside the driver. Such
eBPF program maintaining an open sockets map and redirecting packet to socket based on
queue, on which the packet has been received.

The assembler instructions can be used to write the redirecting eBPF program, and the
application can attach the program to interface via bpf _load_program and bpf_set_link-
_xdp_£d calls. But the Libbpf library offers a wrapper which does that. The xsk_load-
_xdp_prog function from Libbpf defines a simple eBPF program ensuring proper redirecting
action and attached the program to the interface. It is a simple way to use an AF__XDP
socket without prior knowledge of eBPF programming. The implemented probe uses this
wrapper because the application does not need any other eBPF features and basic redirect-
ing, which offers this build-in program, is sufficient.

The redirecting eBPF program has to be detached when a signal interrupt is sent to the
application. An identification of hooked program can be recognize with bpf_get_link-
_xdp_id function. The unattached is done by calling a bpf_set_link_xdp_fd with a -1
value as the second parameter. The maps has to be destroyed as well. Due to this, the
xsk_clear_bpf_maps and xsk_delete_bpf_maps functions are called.

The eBPF maps use lock memory, which is very low by default and application needs
to increase resource limit RLIMIT_MEMCLOCK with setrlimit() call. The limit is set on
application start to RLIM_INFINITY, it means no limit for lock memory.

7.3 Memory model

The AF__XDP uses a different way of storing packets than a standard socket. It uses shared
UMEM area, which is managed by user-space (described in section 5.5). Within the probe
application, the xsk_umem_info data structure represents an UMEM memory model. It
contains a pointer to a memory area, its size, and pointers to receiving rings which manage
the incoming packets.

The application allocates UMEM memory via posix_memalign because allocated mem-
ory needs to be aligned to page size. The size of allocated memory is set to XSK_UMEM_-
_DEFAULT_FRAME_SIZE * NUM_FRAMES, the first constant represent packet buffer size and
the second constant gives a total number of packets that can be stored in one UMEM. The
packet buffer size is set to 2048B, because one packet buffer contains a headroom along
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with frame data buffer. The maximal frame size can be 1500B and the headroom length is
320B so theirs summary is rounded up to power of two to 2048.

The UMEM buffer is created in user-space, and the application has to register memory
buffer with the socket. For this purpose, the application using the XDP_UMEM_REG command
of the setsockopt () system call and then the UMEM serving as socket buffer. The creation
and register memory are done in the xsk_configure_umem function.

The application using an RX and Fill rings to manage receiving packets. The rings are
created in conjunction with socket creation, which is described in the next section. The
rings reside in kernel-space and the kernel has to share them with the probe. For this
purpose, the page remapping is used, and mmap function with ring pointers as parameters
are used to remap a memory.

The munmap function is called to all mmaped regions when the probe is interrupted, as
well as the UMEM memory is freed.

7.4 Socket creation

Each packet capturing thread creates a separate socket with an independent packet buffer.
As was mentioned in section 5.6, the socket creation includes several parts and the whole
procedure is implemented in the xsk_configure_socket and xsk_configure_umem func-
tions, where Libbpf wrappers are called to socket creation.

First, the socket structure has to be created with socket syscall. The socket type is
defined as RAW_SOCK with default protocol number 0, and the AF_XDP value (44 in real)
is given as a domain parameter. Then the UMEM is registered with the socket as was
described in section 7.3.

After that, the Fill and RX ring are created with setsockopt syscall. The SOL_XDP level
(value 283) has to be set when the syscall manipulating with any XDP options. The setsock-
opt option name creating a Fill ring is an XDP_UMEM_FILL_RING and an XDP_UMEM_RX_RING
for creating the RX ring. The size of rings are defined in FILL_RING_SIZE and RX_RING_SIZE
constants, and both are sets to 8192 descriptors. This number corresponds to the maximum
number of network card descriptors (ethtool -g command).

As mentioned earlier, the application using the page remapping to share rings between
address spaces. After the rings creating, the mmap function with queues descriptors is
called to propagate memory to user-space. But the application does not know the actual
pointer to rings data, so the setsocktopt with XDP_MMAP_OFFSETS command has been
called before. It returns a data structure with memory offsets, on which the rings actually
reside. These offsets are used as parameters to mmap function.

Finally, the bind syscall is issued, which assigns the socket to interface and particular
queue. The interface name is given by the user as an -i argument, and the interface is the
same for all packet capturing threads. On the other hand, the queue id is unique to all
threads and it is specified by thread’s tid variable. It means, that the first packet capturing
thread with a tid = 0, will be bound to the queue with a ¢d = 0, the thread with tid = 1
will bind the second queue (id = 1) and so on.

When the socket is ready to receive packets, the packet buffer indexes must be written
into the fill ring to mark available chunks. It is done via Libbpf wrapper xsk_ring_prod_-
_fill_addr, which is called in a loop to fill up Fill ring.
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7.5 Packet capturing

The thread is using a poll function to detect when a new batch of packets is ready to
process. The thread registers the poll to socket’s POLLIN event and waits until the event
occurs or a timeout expires. When the new packet is ready to process, the thread reads
its location and its length from RX ring by an xsk_ring_cons__rx_desc call. The chunk
descriptor is used to index a UMEM buffer, but it is not real address in memory. To get
real data pointer is used a xsk_umem__get_data function, which returns a pointer. Then
the data pointer is given as parameter to a frame_parser function, which provides packet
processing. After the packet processing, the chunk ownership has to be returned back to
the kernel, so the chunk index is written to the Fill ring via xsk_ring prod__fill_addr.

7.6 Packet processing

The packet processing includes a flow key and metadata extraction from a raw data; flow
cache lookup and updating flow record. The extraction provides a frame_parser function,
which gets a pointer to a raw packet and its length as the parameter. Firstly, the Ethernet
header is decapsulated by checking 12th and 13th bytes of data, where the frame type field
resides. These two bytes are used to switch condition to determine the type and length of
the data link header. The Ethernet header length coincides with the data offset, where the
next header begins.

The next header to decapsulate is an IP layer header, which contains a source and
destination IP addresses that are used as the flow key attributes. The application can
recognize only two types of IP headers: IPv4 header or IPv6 header. A data pointer is type
casting to a header data structure, which represents IP headers, and particular fields are
copied. The data structures are taken from linuz/ip.h and linuz/ipv6.h header files.

If the IPv4 header contains any options, the option type is recorded to bit field. In
the case of IPv6 header, the header extensions can be placed after the main header, and
parser needs to proccess them as well. The parser iterates through extensions until the
NEXTHDR_NONE (59) constant occurs in the header type field.

The port numbers are extracted from transport layer headers similarly as IP addresses.
The pointer to data is type casted to a header data structure. The data structures are
taken from linuz/*.h header files as well. The TCP option flags are stored in flow record as
bit field and extracted flags are aggregated by OR function to the bit filed. After parsing
L3 header are metadata stored in flow cache.Figure 7.1 shows a data structure used for the
flow key and flow record.

7.6.1 Flow cache

The flow cache is implemented as hash table. The hash_table_t data structure represents
a flow cache and holds information about cache within thread.

The index of hash table is given by flow_key_hash function, which implemented a
Murmur3 hash function. The hash seed is random generated when the application starts
and it is shared in every flow cache. The input of hash function is flow_key_t data
structure, which represents a flow key (Fig. 7.1). A value returned from hash function is
divided modulo size of flow cache.
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flow key t flow _record t hash_table_t

+ union sa: in_addr v4 + flow_key_t: key + uint8_t: TCPflags + uint; id
_ in6_addrvé | | int32_t: key_hash + uint32_t: TCPoptions + timeval: last_stats_output

+ union da: I\:Eigg:j:iﬁ +Uuint32_t: ip_type + timeval: start + pthread_spinlock_t: rwlock

+ uint16_t: dport + uint64_t: num_pkts + timeval: end + flocap_stats_t: stats

+Uint16._t: sport +Uint64_t: num_bytes +ip_info_t: ip + flocap_stats_t: last_stats

+ uint8_t: protocol + Uinté4_t: num_payload_bytes| + flow_record_t *: next + flow_record_t* first_flow_record
+ payload_stat_t: payload + flow_record_t*: prev + flow_record_t*: last_flow_record
+ histogram_t: byte_count + flow_record_t *: time_prev + flow_record_t*: flow_cache_array[ |
+uint32_t: IP_options + flow_record_t*: time_next

Figure 7.1: Flow key, flow record and flow cache data structures

The hash table contains lists of flow records in order to store records with same hash
value. The cache lookup returns a pointer to the first flow record of record list and linear
iteration through the list has to be done to find out specific record.

The flow cache maintains a chronological order of stored records. Each record has a next
and prev pointers to the chronological predecessor and successor. The head of chronological
list is stored in hash_table_t.first_flow_record.

The flow cache is protected by spinlock rwlock. When the packet capturing process
updating a flow cache, the process locks this spinlock for case of cache exporting by the
control thread.

7.7 Record exporting

The Probe does not provides a full support of IPFIX protocol. The control thread serializes
the data in the export_all_tables function and print statistics to the file. The control
thread interates throught the flow caches and takes its flow records by chronological order
to print metadata. The record is destroyed after printing.

The control thread prints sockets statistics to stadard output. The packet counter of
the particular socket is holded in xsk_socket_info data structure and it is incremented
when a packet batch is ready to process.

7.8 Application exection

It is mandatory to execute application on Linux system which supports a XDP, eBPF and
AF_XDP. The probe was tested on vanilla kernel version 5.0.6. The manual for installation
can be found in Attachement B.

The probe is consists of several source files, which are included on attached DVD. The
standard Makefile file is enclosed. The make command should be called in /src folder
to source code compilation. The command creates an xProbe binary file, which can be
executed with following parameters:

./xProbe -i [INTERFACE] [OPTION]
-i, —--interface=n Run on interface n

-q, —-queue=n Use queue n (default 0)
-p, —-poll Use poll syscall
-S, —-—-xdp-skb=n Use XDP skb-mod
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-N, --xdp-native=n Enfore XDP native mode

-n, --interval=n Specify statistics update interval (default 1 sec)
-z, ——Zero-copy Force zero-copy mode

-Cc, ——copy Force copy mode

-t, ——thread Number of open queues. default 1

-0, —-output=n Output file name n

The application is terminated ater sending one of SIGINT, SIGTERM or SIGABRT signals.
Before running the xProbe application, the src/optiNic.sh and src/disableHt . sh should
be executed to get better performance and to set RSS queues.

7.9 Optimalization

All describes optimalization used on NETX —F router are based on the manuals [3, 12].
The optimalization included resizing NIC’s descriptor buffer to the maximum value with
ethtool -G ens2fl rx 4096 (to show current settings and maximum value can be used
ethtool -g ens2fl). A number of queues should be equal to the number of used cores:
ethotool -L ens2fl combined 8.

Next usefull optimalization is turn off the adaptive interrupt moderation with ethtool
-C ens2fl adaptive-rx off adaptive-tx off and sets a fixed interrupt rate to 8us
with ethtool -C ens2fl rx-usecs 8 tx-usecs 8. All optimalizations are applied in
src/scripts/optimalization.sh script.

The better results are achieved if the CPUs hyperthreading is turned off. It is possible
via /sys/devices/system/cpu/cpu#/online variable in kernel. The source code contains
a scripts/disableHT.sh script that diable hyperthreading and scripts/enableHT.sh
script that turn hyperthreading on. Additionally, it is recommended to boot the kernel
with iommu=pt parameter.
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Chapter 8

Testing

8.1 Test topology

A test topology was deployed to verify basic functionality of implemented probe with zero—
copy mechanism. The topology is depicted in Fig. 8.1 and consists of 3 machines: the
test PC generates a 10Gbps traffic via PF__RING. The NETX-F router, where the tested
application running and switch in the middle. The NETX-F router was connected through
a 10 Gb/s INTEL X552 NIC with an ixgbe driver.

Test PC NETX-F

[ | |enpasoro / 7] 10cbis ens2fL 9

3c:fd:fe:9e:50:b0

ac:1f:6b:2c:9d:db

Figure 8.1: Test topology

8.1.1 NETX-F

The NETX-F device was used for testing. The latest version of vanilla kernel(5.0.6) with
BPF and XDP support was installed and boot on them.

Platform: NetX-X1120

NetX 0S version: NetX0S release 7.5.1804 (Core)
Netc version: 1.13

Kernel version: 5.0.6

Serial number: VM1755024749

Motherboard: Supermicro X10SDV-16C-TLN4F+
Memory: 1GB DIMM DDR4 2133 MHz

CPU: Intel(R) Xeon(R) CPU D-1587 @ 1.70GHz 16 core
NIC: INTEL X552 SPF+

Driver: ixgbe

Version: 5.1.0-k

Firmware-version: 0x800005b9
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8.2 Socket performance

This test compares the performance of different socket modes. Figure 8.2 confirms the
zero-copy socket as the most effective mode. The Test PC transmitted a 100 M set of 64 B
packets using PF__RING and pfsend utility on enp1s0f0. The application was running on
4 NETX cores and each core capturing one of the queue with an independent AF_XDP
socket. The value is average performance per second on single socket. The packet processing
is turn off and packets are dropped after capturing.

Figure 8.2: AF_XDP socket performance
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8.3 Probe performance

This test shows a core utilization. The value is summary of captured packets by all 8 or 6
threads. The performance of one socket without flow creation is about 2.4 Mpps as shows
Fig. 8.2. So 6 cores can capture traffic of 10GbE interface. With flow maintaining turned
on, the 8 cores are needed as show 8.3.

Figure 8.3: xProbe performance
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B @ capturing threads

Mpps

8.4 Probe throughput

In this test, the Test PC generates a packet sets of different sizes. The packets are 250 B,
500 B or 1000 B long. The xProbe running on 8 cores.

Figure 8.4: xProbe throughput
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Chapter 9

Conclusion

The aim of this thesis was to design and implement a flow monitoring application, ca-
pable of capturing traffic on 10Gb interface. To observe packets at high speeds, for the
application was necessary to adopt some methods of fast packet processing. One of used
methods was the zero-copy mechanism, which makes data transfer between network card
and application more efficient with using shared memory. Another applied method was a
network stack bypassing with using a new AF__XDP socket. These methods aims to elimi-
nate disadvantages of standard packet procesing within network stack in Linux kernel and
offer significant performance improvements during packet capturing.

In the first chapter of this thesis, the issue of the traffic monitoring on the high-speed
interfaces was shown.

In the second chaper was defined a concept of flows and the flow monitoring system was
introduced. The monitoring system is consist of an exporting part and a collecting part.
Both parts have been described in more detail, but this thesis aimed to implement only the
export segment.

The standard packet processing in Linux network stack and its limitation were described
in the chapter 3. It is used to understand the mechanisms, which have been developed to
make packet processing more efficient.

The fast pacekt processing mechanism was introduced in the chapter 4. Special emphasis
was placed on the use of zero-copy technique in the Linux kernel. The Page remaping was
introduced as one of the possible ways to apply zero-copy within the Linux. The next section
provides an overview of the commonly used frameworks improving packet processing.

The chapter 5 was dedicated to XDP toolkit. It is one of the fast packet processing
frameworks, which does not make the kernel bypassing, but adds programmability directly
in the kernel network stack. It allows an execution of validated code on kernel’s driver
and makes possible to create a socket (also called AF_XDP socket or XSK) from driver
directly to the application. This system has a huge impact to performance improvement.
In following sections are described, how to create the AF__XDP socket and its memory
model.

In the chapter 6 was given a design of suggested monitoring probe. It is a multithread
application, which is using a NIC’s capabilities to distributing traffic among multiple CPU
to process packets in higher rates. Packet data are transmitted from network card to
application through AF__XDP sockets and theirs buffers are shared between network card
and application threads. Each probes’s thread processing packets, captured in buffer, and
maintaing table of useful information about communications.
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The chapter 7 explained the implementation on suggested application and its optimal-
ization. The application was implemented in C/C++ and is portable across Linux realm.
The last chapter was showed application testing on model situations.

The goals of this work have been achieved. The probe is capable of capturing 10GbE
traffic with using 8 CPUs. All XDP driver modes was tested and zero-copy mode showed the
best result. A single AF_XDP socket can capture about 2.3 Mpps without flow creating.
With flow creating it is about 1.8 Mpps. The concept has some limitations resulting from
the using of XDP system:

e There is only a limited number of network interfaces that support XDP (ixgbe, i40e,
mlx5, veth, tap, tun, virtio_net and others) and only ixgbe and i40e drivers has
implemented a true zero-copy mode support, which offer the best performance result.
In other drivers, the XDP hook is attached at a higher point in the network stack

e the eBPF program does not offer a multiple packet actions, it means that packet can
not be redirect to user-space and at the same time pushed to network stack. It limits
the use of the probe to not running on forwarding interfaces, but it is suitable to
mirrored port

e the eBPF drops undelivered packets. When an open socket for particular queue is
missing in XSKMAP, then the packet is dropped, so the sockets have to be bounded
one-to-one with queues

e The maintaing one flow cache per core is addicted to RSS capability. It does not
allow maintaing a bidirectional flows

However, this application successfully demonstrates the use of new AF_XDP socket

in practice. The AF_XDP is suitable technology for use-cases, where the fast packet
processing are required.
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Appendix A

Sequence diagram
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Figure A.1: Sequence diagram of packet capturing probe
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Appendix B

XDP installation

AF__XDP required a kernel 4.19 or higher and it is mandatory to allow eBPF and XDP
support when kernel is compiling. To do that is needed to rewrite some flags to .config
file after kernel source tree has been unpack:

CONFIG_CGROUP_BPF=y
CONFIG_BPF=y
CONFIG_BPF_SYSCALL=y
CONFIG_NET_SCH_INGRESS=m
CONFIG_NET_CLS_BPF=nm
CONFIG_NET_CLS_ACT=y
CONFIG_BPF_JIT=y
CONFIG_LWTUNNEL_BPF=y
CONFIG_HAVE_EBPF_JIT=y
CONFIG_BPF_EVENTS=y
CONFIG_TEST_BPF=m
CONFIG_XDP_SOCKETS=y
CONFIG_XDP_SOCKETS_DIAG=y

After new kernel is running, it is recommended to turn a BPF JIT on to code optimalization
with command:

sysctl net/core/bpf_jit_enable=1
Then the libbpf library has to be installed:

git clone https://github.com/libbpf/libbpf.git
cd libbpf/src

mkdir build root

0BJDIR=build DESTDIR=/ make install

For compiling eBPF is useful to install a LLVM version 3.8 or higher.
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Appendix C

Content of the attached DVD

e Source code of the implemented application in directory /src.
e Readme file in /src/README.md

e This technical report including IATEXsource code in /tz
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