
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

ZERO COPY PACKET PROCESSING
ZPRACOVÁNÍ PAKETŮ POMOCÍ ZERO COPY

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. ONDŘEJ PLOTĚNÝ
AUTOR PRÁCE

SUPERVISOR Ing. MATĚJ GRÉGR, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2019

Brno University of Technology
Faculty of Information Technology

Department of Information Systems (DIFS) Academic year 2018/2019

Master's Thesis Specification
22089

Student:
Programme:
Title:

Ploteny Ondrej, Be.
Information Technology Field of study: Computer Networks and Communication
Zero Copy Packet Processing

Category: Networking
Assignment:

1. Get familiar with packet processing techniques used in Linux kernel, e.g., af_packetv4, packet_zerocopy,
XDP etc.

2. Design and implement a high speed packet processing method between a basic application and a network
interface card.

3. Extend the application with a function for generation of flow records.
4. Test the application performance, discuss application limits and further optimisation.

Recommended literature:
• Bharadwaj, R. (2017). Mastering Linux Kernel development: A kernel developer's reference manual. ISBN:

978-1-78588-613-3.
• Robert Love. 2010. Linux Kernel Development (3rd ed.). Addison-Wesley Professional. ISBN:

978-0-672-32946-3
Requirements for the semestral defence:

• Items 1 and 2.
Detailed formal requirements can be found at http://www.fit.vutbr.cz/info/szz/
Supervisor: Grégr Matěj, Ing., Ph.D.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2018
Submission deadline: May 22, 2019
Approval date: October 31, 2018

Master's Thesis Specification/22089/2018/xplote01 Strana 1 z 1

http://www.fit.vutbr.cz/info/szz/

Abstract
The aim of this thesis is a design and implementation of a net flow probe for lOGbE traffic.
This thesis provides an overview of G N U / L i n u x utilities used for capture packets at high
speeds and its fundamental mechanism. Next chapters introduce design and implementation
of zero-copy probe capable to capture lOGbE traffic. The application uses the Express
data path and its A F X D P socket to capturing traffic on interface. The test platform is
used FIT V U T N E T X platform.

Abstrakt
Cílem této magisterské práce je návrh a implementace síťové sondy pro sledování toků na
lOGbE rozhraní. Text se zabývá přehledem G N U / L i n u x nástrojů využívaných ve vysoko­
rychlostních sítích a principů jejich fungování. Dále pak je uveden návrh a implementace
sondy využívající mechanismu zero-copy pro sledování provozu na lOGbE rozhraní. Ap­
likace využívá Expresní datové cesty (XDP) a jeho A F X D P soketu pro zachycení provozu
na rozhraní. Jako testovací platforma byla vybrána platforma N E T X používaná na FIT
V U T .

Keywords
zero-copy A F _ X D P , X D P , X S K , eBPF, probe, netflow, packet processing, lOGE, N E T X ,
xProbe

Klíčová slova
zero-copy, A F X D P , X D P , X S K , eBPF, síťová sonda, síťový tok, zpracování paketů,
lOGbE, N E T X , xProbe

Reference
PLOTENÝ, Ondřej. Zero Copy Packet Processing. Brno, 2019. Master's thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor Ing. Matěj
Grégr, Ph.D.

Rozšířený abstrakt
Sledování toků v počítačové síti je jednou ze základních úkonů pro zajištění její bezpečnosti
a správného fungování. Nicméně objem provozu se neustále zvyšuje a úměrně tomu roste
i množství přenesených dat přes rozhraní. V dnešní době již nejsou 10Gb, 40Gb dokonce
ani 100Gb rozhraní výjimkou, což zvyšuje nároky na monitorovací systémy.

Monitorovací aplikace, běžící na běžném systému Linux, však nemohou plně zachytit
provoz na 10Gb rozhraní. Důvodem je neefektivní architektura síťového subsystému uvnitř
Linuxového jádra. Během mnoha let vývoje jádra Linuxu se vývojáři zaměřovali především
na flexibilitu systému. Důraz byl kladem na modularitu systému tak, aby obsáhl potřeby
všech síťových aplikací. Nové moduly zpracovávající nové protokoly mohou být přidávány
do jádra, avšak tento koncept není vhodný pro zpracování paketů ve vyšších rychlostech.
Datová cesta paketu mezi síťovou kartou a aplikací je příliš komplikovaná a zdlouhavá.
Paket musí projít skrze několik softwarových vrstev, jako je například firewall nebo kontrola
zahlcení, než dorazí do aplikace. Tyto vrstvy zvyšují časovou náročnost zpracování pro
jednotlivé pakety, což se projeví snížením celkové výkonnosti aplikace.

Například propustost na 10Gb rozhraní může dosáhnout až 14.8 milionu paketů za
vteřinu. To znamená, že procesor má pouze 67.2 ns na zpracování jediného paketu. 67.2 ns
odpovídá zhruba 200 cyklům procesoru, a to není mnoho, bereme-li v potaz režii operačního
systému [22].

Mimo to, architektura operačního systém Linux je založena na monolitickém jádru. To
znamená, že celý systém je rozdělen na dvě oddělené části: oblast jádra a uživatelskou
oblast. Jak název napovídá, v oblasti jádra je umístěno samotné jádro systému a ovladače
hardwaru. V uživatelské části běží uživatelské aplikace. Obě oblasti jsou od sebe odd­
ěleny a komunikují mezi sebou pouze pomocí systémových volání. Tento koncept umožňuje
uživateli oprostit se od komunikace s hardwarem. Nicméně, během zpracování paketů ve
vyšších rychlostech, je přepínání kontextu mezi jádrem a aplikací velmi nežádoucí.

Aplikace běžící uvnitř jádra je podstatně rychlejší, avšak její vývoj je náročnější, jelikož
aplikace nesmí ovlivnit chování jádra. Pokud aplikace běží uvnitř uživatelské oblasti, její
výkonnost bude značně ovlivněna množstvím přepínání kontextu a obsluhou systémových
volání, a navíc nebude mít kontrolu nad datovou cestou paketu uvnitř jádra. Několik
softwarových utilit nabízí řešení tohoto problému, jako například Data Plane Development
Ki t (DPDK) , P F P J N G nebo eXpress Data Path (XDP) .

Tato práce se zaměřuje na návrh a implementaci síťové sondy pro monitorování provozu
na 10Gb rozhraní, která poběží na standardním Linuxovém operačním systému. Navržený
systém odchytávání paketů pokryje limity standardního síťového subsystému tak, aby bylo
možné plně zachytávat provoz na vysokorychlostním rozhraní. Navržený systém je založen
na systému X D P , konkrétně na použití A F X D P soketu. Takto je systém schopen zachytit
a zpracovat rychlosti 10Gb.

Tato práce je rozdělena do několika kapitol. V první kapitole je představen koncept
zachytávání toků v síti a jsou uvedeny základní části, ze kterých se skládá monitorovací
systém. Zachytávání paketů je stěžejním úkonem takového systému a má velký dopad
na celkovou výkonnost systému. Z tohoto důvodu jsou následující kapitoly zaměřeny na
efektivní zpracování paketů.

V kapitole 3 je uveden proces zpracování paketů ve standardním Linuxu a ukazuje
datovou cestu paketu mezi síťovou kartou a aplikací. Jsou představeny hlavní limitující
prvky, což je důležité pro pochopení mechanismů zlepšujících zpracování paketu.

V kapitole 4 je uveden přehled mechanismů zlepšujících zpracování paketu a frame-
worků, které jsou na nich postaveny. Detailněji je popsán mechanismus zero-copy a jeho

implmentace v systému Linux. Zero-copy dovoluje vytvořit sdílenou pamět mezi jádrem a
aplikací, čímž umožňuje efektivnější předávání dat.

Kapitola 5 se zaměřuje na popis systému X D P , který je použit při implementaci mon­
itorovací sondy. Tento systém je založen na Berkeley Packet Filter (BPF) , se kterým je
úzce propojen. Systém X D P umožňuje uživateli nahrát jedoduchý kód přímo do ovladače
síťové karty. Tento kód je spuštěn pokaždé, když síťová karta přijme nový paket. Uživatel
tak může nadefinovat pravidla pro filtraci paketů v nejnižším bodě, což zefektivňuje celý
proces zpracování. Novinkou tohoto systému je A F X D P soket, který umožňuje obejít celý
síťový subsystém a předat data ze síťové karty přímo do aplikace nejkratší možnou cestou.
Nespornou výhodou tohoto systému je fakt, že funkcionalita jádra zůstává zachována, což
neplatí u jiných podobných řešení (například D P D K) .

Kapitola 6 představuje návrh síťové sondy postavené na systému X D P . Jedná se o
vícevláknovou aplikaci, která využívá několika oddělených A F X D P soketů pro paralelní
zpracování paketu při vyšších rychlostech. Aplikace uchovává agregované informace o
zachycených tocích ve vnitřních strukturách.

Kapitola 7 se zabývá implementací sondy. Jako programovací jazyk byl zvolen jazyk C.
Implementace využívá knihovu Libbpf pro práci s A F X D P sokety a knihovnu pthread pro
práci s více vlákny.

V kapitole 8 je uvedeno laboratorní testování sondy na zařízení N E T X . Sonda úspěšně
zachytila a zpracovala provoz 14.8 milionu paketů za vteřinu.

Jako vylepšení síťové sondy se nabízí úprava X D P subsystému tak, aby bylo možné
odchytávat i pakety jdoucí standardní cestou k jiným aplikacím. Současné řešení umožňuje
pouze přeposlání paketu do monitorovací sondy. Další možnou prací je zdokonalení exportu
sondy na plné pokrytí I P F I X standardu. Nevýhodou použitého systému je omezený počet
ovladačů podporujících X D P .

Zero Copy Packet Processing

Declaration
Hereby I declare that this term project was prepared as an original author's work under
the supervision of Mr. Ing. Matěj Grégr, Ph.D. A l l the relevant information sources, which
were used during preparation of this thesis, are properly cited and included in the list of
references.

Ondřej Plotěný
May 22, 2019

Acknowledgements
I would like to express my thanks to my supervisor Ing.Matěj Grégr Ph.D. for his numerous
advice, the guidance, and pointing me in the right direction. Also, I wish to thank the Red
Hat developer Jesper D. Brouer for his advices on X D P during NetDev0xl3. Finally, I
must express my very profound gratitude to my parents and to my friends for providing me
with unfailing support and continuous encouragement throughout my years of study and
through the process of researching and writing this thesis. This accomplishment would not
have been possible without them. Thank you.

Contents

1 Introduction 3

2 Flow Monitoring 5
2.1 Flow definition 5
2.2 Flow Monitoring Architecture 5

2.2.1 Flow monitoring process 6
2.2.2 Flow data processing 8

2.3 I P F I X 9

3 Packet processing 10
3.1 Linux network stack 10

4 Fast packet processing 12
4.1 Zero-copy 12

4.1.1 Page remapping 13
4.1.2 Mmap function 13

4.2 Multithreading 15
4.2.1 Thread Affinity 15
4.2.2 RSS 15

4.3 Frameworks 15
4.3.1 Summary 17

5 The eXpress Data Path 18
5.1 X D P actions 19

5.1.1 X D P and eBPF 19
5.2 The design of X D P 20

5.2.1 The X D P driver hook 20
5.2.2 The eBPF virtual machine 22
5.2.3 B P F Maps 23
5.2.4 The B P F verifier 24

5.3 Creating eBPF program 24
5.4 A F _ X D P 25

5.4.1 Driver support and zero-copy mode 25
5.4.2 A socket redirect 27

5.5 Memory model 27
5.6 Socket creation 29

6 Design 31

1

6.1 Specification analysis 31
6.2 Architecture 31
6.3 Packet capturing 33
6.4 Flow creation 34
6.5 Flow record export 36

7 Implementation 37
7.1 Multithreading 37
7.2 eBPF 38
7.3 Memory model 38
7.4 Socket creation 39
7.5 Packet capturing 40
7.6 Packet processing 4 0

7.6.1 Flow cache 4 0

7.7 Record exporting 41
7.8 Application exection 41
7.9 Optimalization 42

8 Testing 4 3

8.1 Test topology 4 3

8.1.1 N E T X - F 4 3

8.2 Socket performance 4 4

8.3 Probe performance 4 5

8.4 Probe throughput 4 5

9 Conclusion 4 ^

Bibliography 4 ^

A Sequence diagram 51

B X D P installation 5 2

C Content of the attached D V D 53

2

Chapter 1

Introduction

Flow monitoring is an essential task to control and secure modern networks. However, the
network traffic is increasing, and the traffic flowing through interfaces is proportionately
growing . Due to this trend, the 10, 40, or even 100Gb interfaces are used more and more
and put higher demands on monitoring systems.

For regularly used applications running on the Linux operating systems, it is not possible
to fully capture the traffic of lOGbps connection on common hardware. The reason is an
architecture of Linux operation system and design of in-kernel network stack subsystem
and its cooperation with device drivers.

During the evolution of the Linux kernel, the open-source community emphasis on
flexibility of the system to be used in many different applications. The network stack
within the Linux kernel is designed as flexible as possible to accommodate all the various
networking needs. The stack is generic and allows new protocols to be added utilizing
kernel modules, but it is suboptimal for high-speed performance. So in effect, the datapath
for a newly arrived packet from the network card to an application is relatively long and
complicated. The packet has to pass through several software layers, including a firewall
or traffic shaper that increase per-packet processing overhead, and the overall performance
decreases considerably.

For example, the raw throughput on a 10Gb link is up to 14.88 million Packets Per
Second (pps) (64B packets), which means that every 67.2 ns a new packet can occur. Thus,
the system has only 67 ns for single packet processing, which corresponds to 200 C P U cycles
(depending on C P U frequency) between packets. This is not a lot of time considering the
per-packet overheads generated by standard operating systems [22].

Moreover, a standard used Linux system is based on the monolithic-kernel architecture,
where the system is divided into two parts: a kernel-space and user-space. In the kernel-
space resides a core system functions and drivers controlling hardware and the user-space
occupies regular user's programs. Both spaces are separated to each other, and cooperation
is enabled only through secure system-calls. This concept allows a user to ignore the
underlying communication with hardware. However, the context switching between kernel-
space and user-space during packet propagation is a costly operation, and it is not suitable
for packet processing in user-space at higher rates.

When a network program is running inside kernel's realm, it will be faster but much more
complex to design to be safe for the kernel. When the network program is running inside
user-space, the numerous system-calls and context switching will decrease the performance
and program will not have any control over the datapath through the network stack. Several

3

software solutions solve this schism such as the Data Plane Development K i t (DPDK) ,
P F R I N G or an eXpress Data Path (XDP) .

This thesis aims to design and implement a packet capturing probe that meets today's
packet processing requirements while running on a standard operating system. The captur­
ing mechanism will overcome certain restrictive factors and overheads in the Linux network
stack so that we can fully exploit the potential of the high-speed interfaces. The designed
system introduced in this thesis is based on the X D P system, especially with A F X D P
socket usage, and it is able to capture and process flows at 10Gb speeds.

The thesis is organized as follows. The first chapter describes the basis of flow moni­
toring, the architecture of flow monitoring system and necessary processes from which the
system is composed. The packet capturing has a significant impact on the system's perfor­
mance so the following chapters are devoted to obtaining a data from network card more
effectively.

The second chapter describes the packet processing in a standard G N U / L i n u x network
stack and shows a datapath from a network card (NIC) to the user application without
any improvements. Some limits of network stack architecture are introduced and their
understanding is important for further improvements.

Chapter 4 dedicate to overview of commonly used mechanisms and frameworks for fast
packet processing. These techniques are trying to eliminate disadvantage and bottlenecks
of standard network stack. The Zero-copy mechanism and its implementation in Linux
kernel are introduced.

The chapter 5 focuses on the X D P system and its usage in the fast packet processing.
The X D P system is based on Extended packet filter so its describes as well.

Chapter 6 introduces a design of a network probe, which is able to capture traffic on
10GE interface. It is multithread application based on X D P system.

The following chapters 7 and 8 deal with implementation and testing the designed flow
probe with usage of A F X D P sockets.

4

Chapter 2

Flow Monitor ing

Flow monitoring is an important part of a network administrator's tool-chain. It is useful
in many activities e.g. billing, traffic analysis, network visibility, congestion control, and
intrusion detection [25]. Flow monitoring embraces the complete chain of packet observa­
tion, flow export using protocols such as NetFlow and IPFIX, data collection, and data
analysis.

The essence of flow monitoring lies in the creation of aggregated information about traffic
passing through given point in the network infrastructure. Nowdays, a modern monitoring
system focusing on flow monitoring, rather than individual packets analysis. Deep packet
inspection over all packet data is too computationally expensive to be performed on high­
speed networks, while flow monitoring provides only packet header processing, without
traffic payload inspection, which is faster and more scalable [26, 9].

2.1 Flow definition

A flow is defined as „a sequence of packets passing an observation point in the network
during a certain time interval. All packets that belong to a particular flow have a set
of common properties derived from the data contained in the packet, previous packets of
the same flow, and from the packet treatment at the observation point" [26]. The set of
common properties is not strictly defined. Generally, as set is being used a 5-tuple: Source
IP address, destination IP address, source port number, destination port number and IP
protocol number, but addition information can be included, depending on vendor such as
V L A N ID, IP ToS or interface number [9]. This set of common properties is also called
a Flow key and expresses abstract indentification of a communication between two points,
which passes through the observation point. The observation point can be line cards or
interfaces of packet forwarding devices.

2.2 Flow Monitoring Architecture

A flow monitoring system is designed to record and make an aggregated information about
flows available to the user. The observed information (such as number of packets, IP or
T C P flags, payload size, etc) are stored in generic data structures called flows records and
each record is uniquely identified by a particular flow key[26]. Thus, a flow monitoring
system must be able to convert raw packets to corresponding flow records, collect them and

5

proccess them to user-readable form (charts, graphs) or as input to another system [25].
The flow monitoring system requires several steps:

1. Capturing packets at one or more observation points

2. Assigning packets to flows

3. Creating and exporting flow records for the flows

4. Collecting, storing, and processing of the exported flow records

These steps can be divided into two separate subprocesses: a Flow monitoring process
and Flow data processing. These processes can run on separated dedicated devices, then
a device where the flow monitoring process running is called a flow probe or flow exporter
and a device on which the flow data processing is working, is called a flow collector. The
communication between probe and collector is ensured via Flow Export protocol. There
are several standards for the export protocol. In this thesis, I will focus on I P F I X standard
by I E T F . Figure 2.1 shows a high-level overview of the generic monitoring system [26].

Flow Monitoring Process

Packet Capture

Packets

Flow Creation

Flow
' Records

Flow Export

o
fr H

Flow Data Processing

Flow Collection

Flow Storage

Flow Processing

Figure 2.1: Flow monitoring system overview [26]

2.2.1 Flow monitoring process

Flow monitoring process has the task of transforming the raw packet data to a flow record
and exports them to a collector. The process contains a packet capturing, flow creation,
and export of flow records subprocesses.

Packet capture

First step in the monitoring system is a packet capturing from the line and it is typically
carried out by a standard Network Interface Card (NIC). The device checks checksum and
store packet in memory. Then a NIC driver passes data to operating system for further
processing. The packet is marked with a timestamp, pointing to time at which packet was
received. The timestamp can be registred by the NIC, NIC's driver or later by user-space
application. Additionally, some extra metadata can by attached to the packet such as next
hop, AS number and so on.

This phase can be very crutial to the overall system performance so some specialised
hardware - accelerated cards can be used, which provides better performance of system at
higher rates [26].

6

Flow creation

After packet capturing, it is necessary to extract values to determine a flow key. The flow
key coresponds to communication which the packet belongs to. The packet headers has to
be parsed and set of used flow keys has to be extracted. As mentioned previously, the key
attributes are not strictly defined, so the attributes are picked up depending on the flow
selection function. Commonly used key attributes are IP addresses, transport protocol, and
ports. Some extra information can be extracted from the packet such as number of bytes
or T C P flags. These metadata are used to update flow record for further analysis.

In this phase, the packet sampling and packet filtering can by done. The paket sampling
reduces the amount of processed packets in order to maintain performance. It can use two
different patterns to pick up packet samples, the random sampling or deterministic sampling
(every N-th packet). The packet filtering separate the packets based on packet's certain
property, such as IP address, port number or packet hash.

The extracted packet metadata are used to create a flow record or update existing one.
A l l records are stored in a flow cache and the flow key identifies particular entries in the
cache. A flow creating process calls for each captured packet a flow selection function which
compares the current key with keys in flow cache. If no match is found a new record is
pushed to the flow cache, if the key has been matched, the process update attributes in
coresponding record. Algorithm 1 illustrates the flow creation process [26].

Algorithm 1 Construction of Flow Records (taken from [26])

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

Loop
Get new packet V
Extract packet metadata M
Set found = false
for all flow record T in flow cache do

Apply flow selection function (f> to T and M
if 4>(JT,M) = true then

Aggregate M to T
Set found = true:
break

end if
end for
if not found then

Create new flow record T from Ai
Insert J- into flow cache

end if
End Loop

The flow records are stored in flow cache until a flow is considered to have terminated
and the record is expired. This occurs for several reasons: timeout expired, connection is
closed normally (FIN flag), lack of resources or exporter shutdown.

7

Flow Export

The flow export maintains the process of delivering flow records to flow collectors, when the
record has been expired. This task is consist of data serialization and message transmission.
There is also possibility to sample or filter flow record which will be export in the same
purpose as sampling and filtering after packet capturing. A crucial part of flow export is
ensuring the security of the exported flow records. The information must be delivered only
to the authorised destination. Therefore, an authorisation, confidentiality, preferably, also
integrity should be provided.

The communication between probes and collector is described by protocols such as
NetFlow or IPFIX. They define how to serialize and encode flow record and how to use
diferrent transport protocol to deliver data to collector. In the following section 2.3, I will
focus on I P F I X protocol, because it is a I E T F standardized protocol, which is supported
by broad range of vendors and suppports variable length of exported elements.

Version number (2) Length (2)

Export time (4)

Sequence number (4)

Observation domain ID (4)

Set ID (2) Length (2)

Record 1

Record 2

Record n

Figure 2.2: I P F I X message example [26]

2.2.2 Flow data processing

The aim of a flow data processing is to store a flow data, after they are delivered to a flow
collector from multiple probes in the network, and allows their further analysis.

Flow Collection and processing

The flow collection subproccess providies recieving messages, which contains a flow records
captured on probes. The probes and collector has to negotiate the same transport protocol,
its security and flow export protocol, and collector validates each received message from
probes, if it is in expected format. After validation, the messages are parsed to particular
records and aggregation, data anonymization, filtering and summary generation can be
done.

The information about flows can be stored for later processing or can be process in
real-time, depending on an use-case. A flat files, a row-oriented databases (mySQL) or
column-oriented (FastBit) databases can be used for permanent storage. Flow information
can consume a big amount of space, so some kind of compression can be used as well [26].

The flow processing can be used to achive several goals: long-term statistics can be com­
puted to capacity planning, live statistics can be used for tracking down network problems,
anomaly detection techniques can be applied to flow data to detect suspicious behaviour
which indicates a problem or attack on the network or modern machine learning techniques
are utilised in flow processing, such as user identification, an IDS or traffic classification.

8

The flow analysis is performed usually in time batches. It might generate delays to data
analysis so in time-critical application, a stram processing can be used.

2.3 I P F I X

As mentioned above, IP Flow Information Export protocol (IPFIX) is an I E T F standard for
exporting network flow based on NetFlow version 9, and is defined in several RFCs (5102,
5103). The I P F I X is designed less restrictive and allows dynamically reconfigure observed
information and unlike Netflow, I P F I X contains specific fields which can be used by vendors
to store proprietary information. It is possible due to defining a metadata called Templates.
The Template is exported with flow information in I P F I X message and describes a layout
of flow information which includes attribute id and its lenght. The I P F I X message is shown
in Fig. 2.2. Each message is consist of message header, and one or more Sets. The message
header holding information version, overall length of message, export time sequence number
and domain ID. The Set has ID and variable length of set and its records can be filled with
templates or a flow information data [26].

9

Chapter 3

Packet processing

This chapter describes a packet processing in a G N U / L i n u x kernel network stack. In
general, the network stacks in operating systems are typically designed for flexibility. The
high throughput of networking traffic can be problematic and commonly used Linux kernel
stack does not offer effective operations. Within Linux network stack, packets need to
be copied twice after being received to delivery to an application: first, from a network
interface to the kernel buffer and then from kernel to the user-space (shown in Fig. 3.1).
The data transmitting between these buffers is managed by N A P I (New API) interrupts.
The understanding of packet processing in the standard stack is essential for its further
increasing the performance and for describing mechanisms that do that.

User Space

OS

Kernel
packet

Kernel Space

Driver

DMA-able
memory
regions

Figure 3.1: Linux network stack [18]

3.1 Linux network stack

When a new packet arrives, the NIC attaches the packet to a descriptor in the NIC's circular
receiving queues (RX ring). Direct Memory Access (DMA) transfers the packet data to the
D M A - a b l e memory region of R A M without a C P U intervention. The packet descriptor in
R X contains a D M A memory region address. At this point, the NIC needs to inform the
system that the packet has been received, so the NIC raises an interrupt signal. Each time a
packet R X interrupt is raised, the corresponding interrupt software handler is executed and
copies the packet from the D M A memory region, in which the D M A transfer left the packet,
into a local packet buffer in the kernel. Implementation of this kernel buffer is a sk_buf f
structure, which is the primary data structure for packet handling in Linux. However, an
interrupt handling for each packet is a C P U intensive, so the N A P I mechanism is used

10

instead. The N A P I starts a poll loop and interrupts are only enabled for the first packet
of a batch. The poll loop gets periodically enabled and inspect the devices for received
packets needed to be forwarded to the network stack.

At this moment the driver harvests and unmap the network ring buffer data so additional
packets may be received. If the NIC supports multiple queues, the packets are distributed
among CPUs, and the data in kernel buffer are passed up to the networking layer for
further processing. The kernel has to check the socket's allocated memory. If the memory
has exceeded, the kernel drops the packet. If the socket grants an unoccupied memory, the
data are attached to the socket memory. The kernel checks any B P F filters as well.

Physical link Intel 82599 NIC DMA-able
memorv reaion

Kernel aacket
buffer

User application

Figure 3.2: Linux network stack, R X scheme [18]

Packet capturing is the first step of the flow monitoring process and has a significant
impact on the overall performance. As follows [18], the main causes of performance degra­
dation during this phase are:

1. Per-packet allocation and deallocation of resources - memory management of the
sk_buff in high-speed rates increases C P U overhead. Moreover, the sk_buff may
contain unnecessary information, depending on use-case

2. Serialized access to traffic - it is advisable to parallelize the packet processing to
multiple C P U and distribute traffic to multiple queues

3. Multiple data copies from driver to user-space - the packet data path includes several
buffer copies. One of this copy can consume hundreds of cycles. Above that, the per-
packet copy is inefficient.

4. Kernel-to-userspace context switching - the packet data path includes some system
calls too. Each system call requires to switch context to kernel mode and vice versa.

5. No exploitation of memory locality - the significant number of cache misses are
causing a performance degradation

11

Chapter 4

Fast packet processing

This chapter presents some mechanisms and frameworks, which are commonly used to
speed-up packet processing. To achieve high packet processing performance on commodity
hardware, it is necessary to remove any software bottlenecks between NIC and the program
providing the packet processing.

4.1 Zero-copy

As mentioned in chapter 3, the standard NIC's receiving scheme is to store a packet data
in the kernel-space buffer after Direct Memory Access (DMA) transfer. The application
has to issue a read/write system calls to copy data from kernel-space to user-space buffers
to packet processing and vice versa. The zero-copy aims to avoid this memory-to-memory
copy and reduce unnecessary memory access. The Zero-copy is a common name for various
techniques and design improvements. In this section, I will focus on the technique that is
directly supported in the G N U / L i n u x kernel, and that is a page remapping.

T7\
\7 i

Virtual memory
operation

Figure 4.1: Original Data path vs. Zero-copy data path [16]

The basic idea behind the page remapping is to create a cache-like image of some file (or
memory) in the virtual address area within the user process. In other words, a file on disk
became a chunk of R A M area that the process can access and from a user's point of view,
it looks like the OS allocates a block of memory, in which the file has been copied. The
Linux supports the mmap() (or do_mmap()) system call, which provides the page remapping
and allows part of a file or the memory stored on a block device to be mapped into a user's
address space.

Thus, the page remapping creates a shared buffer between the kernel and a user-space.
Moreover, the buffer can be shared between a device's driver and user-space. Then there is

12

no need to copy the data between both of buffers and a received packet from NIC can be
directly accessible in the user-space. Data from the user-space application can be directly
sent to the NIC. It highly reduces the number of system calls, C P U processing time, memory
usage as well as power consumption for data transmission.

4.1.1 Page remapping

Linux separates the address spaces of the kernel and other processes from each other.
These address spaces consist of virtual memory addresses, which are only abstracted from
physical addresses. To translate between virtual addresses and physical addresses, Linux
uses special hardware - a memory management unit (M M U) . The M M U translates addresses
in larger batches called pages, which are the smallest units of memory that can have different
permissions and behavior. The translation of virtual memory to physical memory inside
the M M U is done through page tables, which holds information about page ownership. The
hardware itself provides the mapping, but the kernel can manage these tables and their
configuration.

If page remapping is used, the kernel modifies page tables to create a new virtual memory
area, in which a mapped file resides. The backed file is divided into page-sized pieces and
attached to new virtual memory area. Actually, the file pages are not directly loaded to
physical memory; it provides lazy loading - a memory within a particular page is loaded,
only when the first reference to this page will occur.

There is only one copy of pages in physical and virtual memory. If another process calls
the same memory mapping no other virtual pages are copied, only file's reference count has
to be increment, so the usage of this function increase time and space efficiency. Therefore,
closing the file descriptor after mapping the file, will not cause loss of access to data [17].

Virtual address in process
Virt addr 1

R A M
Physical
memory

Hard Disk

Id = open {"file"

{offset

Figure 4.2: M M A P with MAP_SHARED flag, Fig. based on [6]

4.1.2 M m a p function

The mmap function maps some files or devices into the calling process virtual memory. The
call is defined in sys/mman.h as:

void *mmap(void »Start, size_t len, int prot, int flags, int fd, off_t offset)

The call will map an len bytes of an object represented by the file descriptor fd. The
mapping begin can be moved within the object by offset. If start pointer is included, new
mapped memory will start at this address. The access permissions are restricted by prot

13

Process Address Space

Stack

Mapped file

Heap

bss
Text

Figure 4.3: M M A P geometry [6]

and flags can add some special behavior. The function returns the address at which the
new mapping will be placed [15].

Due to page-sized granularity described in 4.1.1, all mapping operations have to be done
in multiple of page size, so mapped length must be rounded up and addresses for mapping
must be page-aligned. To determine the default size of a page on a current machine, Linux
user should use:

size_t page_size = (size_t) sysconf(_SC_PAGESIZE) or
int page_size = getpagesize().

Mmap can be performed in two ways:

• Private mapping - defined by MAP_PRIVATE, this map is private to the process. The
file is mapped as copy-on-wri te , and any changes are not reflected in the actual file,
or the other processes mapping. The page is copied, and modifications are performed
on the new page.

• Shared mapping - defined by MAP_SHARED, this map shares the mapping with all
other processes that map this same file. Any modification performed in the file is
written back to the disk and is available for other processes to read. There is no
guarantee, that data writes to disk are immediately processed, due to Copy-in-write
technique.

There is a desired memory protection of the mapping, which must agree with the open
mode of the file:

• PR0T_EXEC - pages may be executed

• PR0T_READ - pages may be read

• PROT_WRITE - pages may be written

• PR0T_N0NE - pages may not be accessed

If a file descriptor and offset are given, the mapping is called a file - backed mapping.
There is also an Anonymous mapping (flag MAP_AN0NYM0US), which is not file-backed and
the file descriptor is N U L L . Anonymous mapping contents are initialized to zero.

The complement function of mmap() is a munmapO - unmapping virtual memory. User
has to call munmapO for each mmaped file descriptor to free memory. Both functions are
thread safe.

File Mapped region
of file

Off en

14

4.2 Multi threading

A n excellent way to improve performance of monitoring system is to capture packet using
multiple threads. Nowadays, the multi-core CPUs are commonly used and parallel comput­
ing is widely support in Linux OS [22]. However, passing data between thread consumes
systems's resources and the performance can be limited. When the application using mul­
tiple threads, the thread affinity should be used to reduce communication between cores.

4.2.1 Thread Affinity

The process, which provides a packet processing, should allocate a memory assigned to
the executing C P U . The reading from a local cache of C P U is more effective because it
decreases a cache miss probability.

The affinity is a technique fixes the thread execution and its resources localization to
a particular processor or core. There are several affinity domains, that is thread affinity,
process affinity, interrupt affinity or memory affinity It aims to avoid expensive message
passing between processes, thread scheduling, and polling [5].

Thread and process affinity being able to assign specific thread or process to a particular
processor/core. In Linux can be used a pthread_ setaf f inity_np from the POSIX pthread
library.

The Interrupt affinity handles software and hardware interrupts by specific cores or
processors. In Linux, the Interrupt affinity may be accomplished by writing a binary mask
of C P U to /proc/irq/IRQ#/smp_aff inity to assigned an interrupt handler IRQ# to C P U .

The memory affinity is used mainly in N U M A systems. There is a tendency to avoid
cache-misses and hold particular data closer to executing C P U in a memory hierarchy.

4.2.2 RSS

The Receive-Side Scaling (RSS) is a NIC's feature, which allows distributing network traffic
across several queues within NIC. Due to this approach, the traffic can be processed by
multiple CPUs in multiprocessor systems. RSS is enabled by default but can be configured
by a user and a spread rules can be modified by use-case. For example, traffic can be
scattered by IP addresses or port number in packet headers. Many NIC drivers use an
ethtool command to defined spread rules [22].

4.3 Frameworks

There are several frameworks which alternate standard network stack packet processing in
Linux to overcome some limitations.

X D P

EXpress Data Path is specialized in-kernel facility allowing to kernel network data
path without modifying the kernel. Appropriate use - cases are a load balancing, the DDoS
protection or fast forwarding. The X D P using eBPF subsystem and it does not provide a
kernel bypass mechanism [10].

15

PacketShader

PacketShader is a GPU-accelerated software router. PacketShader provides a huge packet
buffer with batching processing and minimizes packet movement between local and remote
memory in a N U M A system. The used strategy enables a kernel stack bypassing for easier
and faster G P U operations.

Netmap

Netmap is a kernel module supporting m u l t i - queue fast packet processing and pipes be­
tween applications. It uses zero-copy, kernel bypass and batched processing techniques.
However, the circular ring buffer is fixed size, which may not be appropriate for the appli­
cation with lots of packets in buffer [5].

P F _ R I N G ZC

P F R I N G ZC is a kernel module using a DNA/LibZero drivers allowing direct access
to packets on the network interface by simultaneously bypassing both the Linux kernel
and the P F R I N G module in a zero-copy method. The framework adds support for
virtualization and inter - process communication and it is possible to use zero-copy with
non - P F R I N G - aware drivers. The main disadvantage of this framework is the non-free
licence.

D P D K

The Intel Data Plane Development K i t (DPDK) is a framework optimized for Intel hardware
(NICs, C P U , chipset) with enhanced NUMA-awareness, and libraries for packet manip­
ulation across cores. D P D K is most widely used framework. However, D P D K requires
maintaining full separate drivers and its integration into solutions is hard, due to taking
over entire NIC and the need to reimplement a T C P / I P stack.

OpenOnload

OpenOnload is a proprietary SolarFlare solution for fast packet processing. OpenLoad
provides a user-level network stack, allowing to accelerate existing applications quickly.

Framework XDP PacketShader I/O Netmap P F _ R I N G ZC DPDK OpenOnload
Zero-copy Y N Y Y Y Y
Kernel bypass N Y Y Y Y Y
I/O Batching Y Y Y Y Y Y
Hardware multi-queue support N Y Y Y Y Y
Devices family supported ALL 1 8 ZC / A L L (non-ZC) 4 ZC / A L L (non-ZC) 11 Al l SolarFlare
Pcap library Y N Y Y Y Y
License GPLv2 GPLv2 BSD Proprietary BSD Proprietary
IXGBE version Last 2.6.28 Last Last Last N / A

Table 4.1: Summarize the features of the I /O frameworks [4]

16

4.3.1 Summary

Table 4.1 summarizes framework overview. A most popular technique used in high-performance
packet processing is the kernel bypassing, which overcome the limitation of the Linux kernel
networking layers by skipping them. Packet processing is done from user-space including
the NIC driver handling. By giving full control of the NIC to user-space program, the
kernel overhead (context switching, networking layer processing, interruptions, etc.) can
be significantly reduced, especially when 10Gb or higher speeds are used. However, using
the kernel bypass has several disadvantages 5:

• Does not used OS's abstraction for hardware resources. Custom user-space driver
might be less tested, verified and reusable than an OS's one

• The program works as sand-box, with integration and interaction limits

• Kernel functionality is skipped, User need to reimplement them

• Security layer of OS is skipped

The better way is not to move packet-processing out of the kernel's realm into user-
space, but to move user-space networking programs (filters, mappers, routing, etc.) into
the lowest point of the kernel's domain. Such opportunity offers an X D P framework [10].

17

Chapter 5

The eXpress Data Path

This chapter presents in detail one of the fast packet processing framework - the eXpress
Data Path (XDP) . The X D P is a system that allows user programmability directly in the
operating system network stack in a cooperative way while ensuring the safety and integrity
of the rest of the system. The approach of X D P is to keep hardware control inside the kernel,
but move packet processing operations into driver level. It is an alternative methodology to
the kernel bypassing design and represents a good tradeoff between performance, integration
into the system and general flexibility [1, 10].

In addition, X D P can completely bypass the network stack and provides the zero- copy
socket (A F _ X D P) , which offers higher performance than common kernel modules hooking
the stack. This feature is an ideal candidate for use in fast traffic monitoring. Moreover,
the X D P is build-in mainline Linux kernel since its version 4.8 (A F X D P since 4.18) and
no specific H W requirements are needed 5.

VMs and containers

Drop

Applications

Network stack

TCP/UDP

IP layer

Queueing
and forwarding

Build sk_buff
s Device driver

Network hardware

Packet data flo Control data flow

User space-accessible sockets

Network stack processing steps

User applications, VMsf containers

Parts of the XDP system

Figure 5.1: X D P integration with Linux network stack [10]

18

The X D P is a layer inside NIC driver that allows validated code execution for every
single packet. The code can be loaded, controlled and inspected from user-space and some
action on each packet can be taken before the operating system networking stack allocates
the S K B structure and process the packet [10]. Figure 5.1 shows X D P integration into the
Linux kernel. The data-plane is split between the kernel and in-kernel injected program
while the control-plane is completely ensured by user-space. Thus, the user's validated code
can be control from user-space, but it will run in the kernel space.

5.1 X D P actions

As was mentioned previously, X D P executes a simple code for every single packet to packet
classification. The validated code decides datapath through the system based on the current
packet context. Program can manipulate packet in arbitrary ways (encapsulate header or
change some bytes), but finally, the program must return a verdict to the driver, describing
how to handle the packet. There are several verdict actions that can be used:

1. X D P PASS - allows the packet to pass into the standard network stack

2. X D P _ D R O P - drops the packet

3. X D P T X - bounce the packet back on the same interface

4. X D P R E D I R E C T - redirects the packets to another interface

(a) B P F _ M A P _ T Y P E _ D E V M A P - redirecting raw frames to the user-defined
device

(b) B P F _ M A P _ T Y P E _ C P U M A P - redirecting raw frames to remote C P U

(c) B P F M A P T Y P E X S K M A P - redirecting raw frames into userspace

5. X D P A B O R T E D - drops the packet with an error

5.1.1 X D P and e B P F

The X D P system is closely linked to eBPF (extended Berkeley Packet Filtering) ecosystem.
X D P does not have its own programming language, so it uses eBPF programming language
(it uses C-like syntax) code. The eBPF code is compiled into custom bytecode, analyzed
and translated into native instructions by the kernel and injected directly into the driver
level as a sandbox. Due to this, the action decision can be done very quickly after the
packet has been received. Nevertheless, the eBPF program has some restrictions and does
not support completely arbitrary code. The restrictions ctre cts follows [21]:

• contains no loop, Not Turing complete

• accesses only valid memory

• uses a limited number of eBPF instructions (no more than 4000 instructions)

• bounded program size

19

5.2 The design of X D P

The X D P system consists of four major components that cooperate with each other. The
components are illustrated in Figure 5.2, which explains, how they fit together:

1. The X D P driver hook - entry point of X D P , attached to a driver event

2. The eBPF virtual machine - j u s t - i n - t i m e compilation and execution of eBPF
program

3. B P F Maps - communication channel with the rest of the system

4. The B P F verifier - static analysis to protect running kernel memory

Due to the using of the eBPF programming language for injected code, the eBPF
compiler toolchain occupies a more substantial part of X D P system. X D P itself is just
one driver level hook using and invoking eBPF's features, full toolchain is illustrated in
Fig. 5.5. Nevertheless, the use of eBPF has a significant advantage over tradition loadable
kernel modules, namely eBPF does not lead to a kernel-space memory corruption or kernel
instability. It means that eBPF subsystem will only run code that has been deemed entirely
safe to run.

Network card driver -*

H User program

1 B P F _ P R O G \ L O A D

socketfilter kprobes eBPF bytecode
BPF uprobes

Hardware interfaces

Results
(bpf_lookup_elem)

Kernel space

Figure 5.2: Four components of X D P design highlighted in green

User space

5.2.1 The X D P driver hook

In general, any generic kernel event can be potentially intercepted, and eBPF can react to
it: message (socket-layer) received, data written to disk, page fault in memory and much
more. So nowadays, the eBPF system is being used not only for networking purposes but
also it is a tracepoint tool for kernel developers and production engineers to run user-space
code inside the kernel [10].

Several hook points (event callbacks) for networking purposes exist in the network stack,
where a user-defined eBPF program can be attached to, for example, kprobes and uprobes,
socket (original tcpdump use case) and tc filters. The metadata associated with a packet
(and dispatched to the eBPF program) and allowed kernel helpers are changed according
to the hook point that has been used.

20

However, all hook points take place in higher levels of the network stack, so the X D P
defined a new hook point at the lowest level of network stack datapath - in driver space,
and the program execution can be triggered by the arrival of a packet to NIC. But not all
network device drivers implement the X D P hook. In such a case, it is used the generic
X D P hook (also called S K B m o d e) , which take place after S K B allocation [1, 10].

The hook execution

The X D P hook simply attaches the eBPF file-descriptor handle to netdev and the eBPF
program is executed directly in the device driver whenever a packet is received from a hard­
ware. Typically, the execution flow is divided into three steps, shown in Fig.5.3: reading,
metadata processing, and writing packet data. In addition, some communication with the
rest of the system can be made. These steps can be alternate or repeated in arbitrary ways,
and whole packet processing can be split into multiple eBPF programs through tail call,
which passes control between them [10].

Read/write metadata

Context object

- RX metadata (queue no,...)
- Pointer to packet data
- Space for custom metadata

Communication w/rest of system

Kernel
networking stack

Userspace
programs

Other BPF
programs
in kernel

Kernel helpers

Use kernel functions, e.g
- Checksumming
- Routing table lookups

Maps

- Key/value stores
- Hash, array, trie, etc.
- Defined by program

Parse packet

- Direct memory access to packet data
- Tail calls to split processing

Rewrite packet

- Write any packet header / payload
- Grow/shrink packet headroom 0

Program execution phase transitions

Communication with rest of system

Packet flow

Packet verdict

Return code

Figure 5.3: Execution flow of typical X D P program [10]

A context of the received packet in the X D P hook includes a pointer to raw data, its
length, and metadata describing which interface and queue was the packet received on, and
the program typically begin by parsing these data. The context structure also gives access
to a contiguous buffer resides in memory next to the packet data, where the program can
attach its own metadata to the packet.

Maps in eBPF programs allow to communicate with the rest of the system (see more in
section 5.2.3) and a persistent data can be changed depending on the current packet data.
The packet and its metadata can be modified. The program can remove or rewrite any
part of the packet, such as shrinking headers or rewrite address fields for forwarding and
recalculate the checksum. To ease packet modification, the helper functions add existing
kernel functionality without the need to go through the full kernel stack.

Finally, the packet verdict has to be made, and the program has to return one of the four
codes that say how to deal with the packet [10]. No other parameters are returned, except

21

the redirect verdict which requires an additional parameter that specifies a redirection
target. For example, it is possible to specify a userspace socket (A F X D P) as the target.
The implementation of redirect function is very flexible (as map lookup), which means that
a redirect target can be changed dynamically without program modification.

5.2.2 The e B P F virtual machine

The eBPF program is executed inside a specialized virtual machine resides in the kernel.
The virtual machine performs just - in - time compilation of the eBPF instruction into native
machine code and its execution. The V M exposes to the user a virtual processor, a set of
eleven virtual C P U registers, a program counter, accumulator and a 512-byte memory stack
and its RISC instruction set includes arithmetic and logic instructions and call instruction
as well.

The virtual machine completely separates inside running bytecode from kernel space.
The isolated environment of the virtual machine causes that bytecode cannot arbitrarily
call other kernel functions or access into memory outside its own environment. To interact
with rest of the system some helper functions can be called, depending on the type of the
B P F program (see more in 5.2.4).

The main benefit of V M is that a user can dynamically load and inject eBPF programs
without kernel reboot. A l l communication between user-space and V M is through a bpf ()
system call, which provides all control operations like loading programs, attaching them to
specific events, creating eBPF maps and access the map contents from tools.

Another benefit is that the V M provides a stable A B I towards user space and guarantees
that existing eBPF programs can be portable across different architectures and keeps them
running with newer kernel versions. Moreover, the V M is build-in part of mainline Linux
kernel distribution and there is no need for any third party kernel modules.

Registers

The set of V M ' s registers is listed in the table 5.1. The registers are always 64-bit wide
(even if running inside a 32-bit A R M processor kernel), but they support 32-bit subregister
addressing if the most significant 32 bits are reset [10]. Because registers RO-5 are reserved
for function calls, the maximum number of function arguments is 5, and the first register
always holds a return value.

Register Function x86_64 equiv
R0 return value from in-kernel function and exit value for eBPF prog rax
R l first arg to in-kernel function/scratch variable rdi
R2 second arg to in-kernel function/scratch variable rsi
R3 third arg to in-kernel function/scratch variable rdx
R4 fourth arg to in-kernel function/scratch variable rex
R5 fifth arg to in-kernel function/scratch variable r8
R6 callee saved registers that in-kernel function preserves rbx
R7 callee saved registers that in-kernel function preserves r l3
R8 callee saved registers that in-kernel function preserves r l4
R9 callee saved registers that in-kernel function preserves r l5

RIO read-only frame pointer to access stack rbp

Table 5.1: V M ' s registers and usage within eBPF program [21]

22

The operation set

The operation set of eBPF is around 100 instructions, and this number is continually
increasing with the expansion of eBPF functionality in kernel releases. The operation
of B P F is 64-bit wide to correspond to the 64-bit host architecture to perform pointer
arithmetics and pass return values. There are three types of instruction: A L U instructions,
memory instruction and branch instruction.

The instruction format is designed as two operand instructions, which helps to map
B P F instructions to native instructions during the compilation phase. Due to this, the
eBPF program can support helper functions that cooperate effectively with the kernel.

5.2.3 B P F Maps

The eBPF programs do not have access to persistent memory and every invocation starts
in the initial state, so maps are the only way to communicate with the other parts of the
system. In terms of X D P , the map is a data structure shared between the user-space and
the eBPF program. Basically, the map is key/value store which exists in several different
types: hashmap, array, queue, radix tree and so on and exists in two different variants also:
global and per-CPU private.

A single B P F program can currently access up to 64 different maps directly, and they
serve several purposes: coordination tools for change behavior; persistent data storage or
communication mechanism, because data can be accessed on the user, kernel or eBPF sides.

Map implementations are provided by the core kernel and from the kernel point of view,
B P F maps and programs are behaving as regular resources so that they can be only handled
through file descriptors, backed by anonymous inodes in the kernel. To overcome limitation
associated with descriptor sharing between processes, a lightway B P F filesystem in kernel
space has to be used, and then multiple eBPF programs can be pinned to one map object
as shown Fig.5.4.

Creating a B P F map is done by defining a global struct bpf _map_def, which includes
type (hash, radix tree and so on), size of the key, size of the values and maximum allowed
entries. Creating and loading maps into the program is the responsibility of user-space, but
the kernel natively defined set of functions (helpers) which are available from bytecode and
perform some complex interaction with maps as key lookup, update or delete items. The
helpers also arbitrate access to maps and provide mutual exclusion, if it is needed.

Userspace
Application 1

R/W

User space

Kernel space
MAPS

R/W

Userspace
Application 2

R/W

MAPs

R/W

% 1
eBPF program 1 eBPF program 2

Figure 5.4: B P F maps and their interaction [21]

23

5.2.4 The B P F verifier

The eBPF program runs in kernel address space and arbitrary kernel memory might be
corrupted, if malicious or buggy program will be loaded. There are many possible risks,
which are unsafe: infinite loops could crash the kernel, buffer overflows, uninitialized vari­
ables, out of bounds jumps and so on. To avoid these, kernel build-in verifier performs a
static analysis of the program byte code, when program is loading via bpf () syscall.

The verifier builds a directed acyclic graph of the control flow and ensures that the
graph is truly acyclic, no unsafe memory access has been occurring and the code contains
only supported and reachable instructions. This is checked by doing a depth-first search of
the graph. Any program that contains unreachable instructions will fail to load. Then the
verifier simulates the execution of the eBPF program one instruction by one. The V M ' s
registers and stack have to be valid before and after execution. For example, a uninitialized
register that has never been written to causes the program load to fail.

Finally, the verifier uses the eBPF program type to restrict which kernel functions can
be called from eBPF programs and which data structures can be accessed. There are many
types of eBPF programs that differ by where the program can be attached, which in-kernel
helper functions will allow to being called, whether network packet data can be accessed
directly, and the type of object passed as the first argument to the program. In the case
of X D P , when the program is loaded via syscall, the type of program has to be set to
B P F _ P R O G _ T Y P E _ X D P .

If verifier doesn't prove that byte code is safe, then it will terminate the program loading.
Also, the total program size is limited, and verifier has to ensure that it is not exceeded.

1. Restricted C
eBPFCode
5tatic void init_array()

i nt key;
for (key = 0; key < 1000; key++) {

bpf_update_elem[map_fd[0], Skey,
Svaluel, BPFANY);

)

Restricted C

Kernel Hooks

eBPF Bytecode

Source , Byte
..'TWr Code

Runtime Injection

Userspace
eBPF Virtual Machine

Just In Time Compiler

Kernel

2.eBPF bytecode
10: Idh |12]
II: jeq #0x800, 13, 12
12: jeq #0x805, 13, 18
13: Id [26]
l4:jeq#SRC, 14, 18
15: Id len
16: jit 0x400,17, 18
17: ret#0xffff
18:ret #0

3. x86 Native Code
mov eax, [ebp+8]
mov esi, [ebp+12]
mov edi, [ebp+16]

mov [ebp-4], edi
add [ebp-41, esi
add eax, [ebp-41

Figure 5.5: eBPF: overview of the runtime architecture [21]

5.3 Creating e B P F program

There are many ways to create a B P F program. One method is that the user writes his
eBPF program directly using the eBPF assembler in Intel-like assembly syntax [19, 7]. The
instruction set is available also as macros defined in bpf/libbpf.h in the kernel source tree,
and C syntax can be used.

24

Another method is to implement a program in high-level languages such as C and let
the compiler translate the code to eBPF and hide assembly instruction for user. The eBPF
community selected the L L V M Clang compiler for such a task. The compiler generates the
E L F object file which can be loaded using bpf () syscall to an eBPF virtual machine. Due
to eBPF program restriction mentioned above, only the restricted C can be used.

To make compilation easier, there is a B P F Compiler Collection. It is a toolkit for
writing, compiling and loading eBPF programs in C, Python and Lua. Even more, bcc
provides nice object-oriented bindings when working with maps and includes many tools
useful for tracing [7]. The eBPF program is possible to load via iproute2 or perf [7, 8].

Libbpf

Another helper for writing eBPF program is the Libbpf library. It is a generic library inside
kernel source tree which performs wrapping function for loading (bpf _load_program()),
reading and manipulation with eBPF objects from user-space to ease writing eBPF pro­
grams in C [7].

Very useful functions inside libbpf are wrappers for working with A F X D P socket
(libbpf/xsk.c and libbpf/xsk.h). They offer APIs for low-level access to the packets rings
and its data and high-level control plane for creating and setting up U M E M s and A F X D P
sockets themselves. A simple eBPF program for socket utilization is included, so the adop­
tion of A F X D P to new or existing programs is very comfortable.

The kernel tree also provides some neat examples (located in samples/bpf/) which show
how to use the libbpf. User can link the library statically or as a DSO. The library is used
by other kernel projects such as perf or bpftool, and it is dual-licensed under the L G P L 2.1
and BSD 2-Clause [7].

For debugging and introspecting B P F programs and B P F maps, a user can use a bpftool.
It is a tool developed by the Linux kernel community like libbpf. The bpftool allows dumping
all active eBPF object in the system or disassembling JITed B P F instructions [7].

5.4 A F _ X D P

A F X D P (previously known as P A C K E T V4) is a new address family based on X D P
layer benefits, designed to pass network traffic from the driver up to user-space as fast
and efficiently as possible. Fig. 5.6 illustrates a comparison between A F X D P socket and
standard A F _ I . N E T socket: the tradition network stack is bypassed before S K B allocation.
The core idea behind is to use the XDP_REDIRECT action and bpf _redirect_map function
when packets arrive on NIC to redirect them to the user-space socket (A F X D P socket,
also called X S K) . Redirect can be done without any copy, so this socket is able to deliver
a raw packet from NIC to the user-space very fast [14, 23].

5.4.1 Driver support and zero-copy mode

A F X D P socket (also called X S K) can operate in three different modes depending on NIC
capabilities:

1. Generic S K B mode

2. Native X D P _ D R V mode

3. X D P _ D R V + Z C mode

25

http://AF_I.NET

Stack
Kernel

Linux NIC Driver

Cores + NICs

Modif ied C o d e

Unmodified Code

\J

Figure 5.6: A F X D P socket vs. standard socket cite

The Generic mode works on any NIC, and for this mode, the hook point is not at the
lowest level of datapath, but only after an skb allocation. The Native mode works on all
devices with X D P hook support; the X D P D R V + Z C is a native zero-copy mode requiring
special driver support.

The zero-copy mode has a higher performance because the D M A stores data in a user
allocated frames. Otherwise, the kernel has to allocate the memory and copy the frames
to the application. The ZC driver needs to implement and expose the A P I for using the
memory area directly in the NIC RX-ring structure for D M A delivery and nowadays, only
ixgbe and i40e drivers 1 by Intel do that (Mellanox coming soon). Table 5.2 shows the
current driver's X D P support; zero-copy support is highlighted with an asterisk.

Vendor Driver
Broadcom bnxt
Cavium thunderx
Intel ixgbe* ixgbevf i40e*
Mellanox mlx4 mlx5
Netronome nfp
Qlogic qede
Solarflare sfc
Marvell qede
Others veth virtio_net net tun dpaa2

Table 5.2: X D P support, zero-copy support with asterisk [7, 13]

1 Using a ZC requires a NIC driver from vanilla kernel tree, the out of tree drivers do not contain the
XDP-ZC support

26

5.4.2 A socket redirect

A new type of map makes it possible to perform redirect packets to user-space. It is called
X S K M A P (or B P F M A P T Y P E X S K M A P in full), and it is a simple array containing a
file descriptor corresponding to one A F X D P socket. As mentioned earlier in section 5.2.3,
the map is key/value store, and in case of an array, the key is array index of increasing
integers and the value is an array item.

A process can create a socket with an attached memory buffer and push socket's file
descriptor in the X S K M A P via bpf () call. Actually, an internal kernel descriptor is stored
in the map, but from an application point of view, it is not visible.

A B P F program loaded into the driver can redirect a packet to an arbitrary descriptor
in this map, and X D P has to validate if the descriptor is indeed bounded to the device and
some queue. If the chosen index has not passed the validation, then the packet is dropped.
The packet is also dropped when an item on the chosen index is empty. In the opposite
case, the packet will be directed to receive queue corresponding to the A F X D P socket in
the selected map entry. Thus, it is mandatory to have an eBPF program loaded and have
at least one entry pushed in the map, while an A F X D P socket is used. Otherwise, the
application will not be able to get any traffic through A F X D P socket.

User S p a c e

DPDK qO DPDK q l DPDK qO DPDK qO DPDK q l

XSK A XSK B X S K C XSKD XSKE

NETDEV queue 0 NETDEV queue 1

NETDEV ethO

ID=56

Kernel

4-

KEY XSK

0 XSK A

1 XSKB

2 XSK C

3 XSKD

4 XSKE

Figure 5.7: Example of B P F M A P T Y P E X S K M A P redirecting in D P D K [20]

5.5 Memory model

The memory model used in A F X D P has a great credit for the performance boost because
there is no memory allocation per packet. A l l packets within X S K are held in pre-allocated
memory called U M E M . Moreover, R X and T X queues can share the same U M E M and
packet descriptors are separated from packet buffer.

The U M E M buffer is contiguous memory area divided into several equally sized chunks
called packet buffers in which a single packet and its metadata can be stored. Every chunk
is identified by an integer index (also called descriptor), which is a relative offset from the
U M E M begin, masked to the power of two. E.g., for a chunk size of 2k, the log2(2048)
L S B of the address will be masked off; it means that 2048, 2050 and 3000 refer to the
same chunk. Indexes are used in communication between kernel and application to tell

27

each other where a particular packet resides. For example, when a new packet is stored in
packet buffer and kernel wants to give this data to the application, there is no need to data
copy or any manipulation, the only thing the kernel has to do is pass the proper chunk
index to the application.

For this reason, four buffer rings are used together with A F X D P socket and into which
indexes can be written. One pair of rings is associated with the socket and it is responsible
for sent and received packets, one pair of rings is associated with U M E M buffer, and its
purpose is handling chunk ownership. A l l rings behave as single-producer/single-consumer,
who is the producer depending on particular ring vocation.

umem memory region: multiple 2KB chunk elements E M ^ K I ™

I 2KB

Users receives packets

Rx Ring desc

Users sends packets

Tx Ring

Descriptors
point ing to umem ~
elements For kernel to receive packets

i Fill Ring

Complet ion Ring

For kernel to signal send complete

One Rx/Tx pair per AF_XDP socket One F i l l /Comp. pair per umem region

Figure 5.8: U M E M with four rings: R X and F i l l rings are used for recieving, T X and Comp.
rings are used for sending packets [24]

The signalization about a chunks ownership between the kernel and the user-space
application is provided by buffers called F i l l and Completion rings. Within F i l l ring, the
application is the producer who wants to report the kernel-consumer which chunks are
available for new incoming packets. On the other side, within Completion ring, the kernel
is the producer who tells the application which chunks can be used for outgoing packets.

Another pair (associated with socket) handles incoming and outcoming packets. The
indexes of received packets are stored in a ring called RX ring. By checking this buffer, an
application can indicate if it has received a new packet. The indexes of outgoing packets
are stored in a ring called TX ring and an application fill in indexes of packets ready to be
sent.

Each socket is bound to one umem which can have single F i l l and single Completion
ring, but one socket may include multiple R x / T x rings. Even if zero-copy mode has been
used, the R X and T X descriptor queues are not shared to user-space. Only the kernel
can manipulate them, and it is the kernel driver's responsibility to translate hardware
specific descriptors to descriptor rings that user-space sees. This way, a malicious user-
space program cannot mess with the NIC.

28

The use of rings

When a packet is received by NIC and kernel driver pick it up, then the X D P program is
executed and decided if the packet should be pass to a socket. If zero-copy mode has been
used, the D M A has already put the packet in the U M E M area in user-space, so kernel only
fill in the packet descriptor to R X ring. The application checks the Rx ring for new items,
and if a new index appears in R X ring, it processes the data behind the pointer. When
the application has finished processing, it has to return a packet buffer ownership to the
kernel to reuse the memory. It will be done by adding the particular index to the fill ring
so that the kernel can see which chunks are available for a newly arrived packets and where
a new packet data can reside. Thus, the R X ring and the F i l l ring must be involved in the
receiving side.

The T X path works similar, but T X and Completion rings have to be used. When
the application has a packet ready to send, it fills out the next available descriptor in the
T X ring to notify a kernel, which packet buffer wants to send. Then the kernel sends the
packet to hardware, and after the packet has been successfully sent, the kernel writes a
used memory index back to the Completion ring.

In summary, the R X and F i l l rings are used for the R X path and the T X and Completion
rings are used for the T X path. A schema of using is illustrated in Fig. 5.9.

5.6 Socket creation

The X S K can be created via standard syscalls as socket(), setsockopt() and bind(),
but all memory management is directed by the user, so some memory allocation has to be
done before binding. The followings list is a sequence of necessary operations and their
function equivalents in C, if a fully functional X S K should be created:

1. Socket creation - socket ()

2. U M E M allocation - mallocO

3. Registration U M E M socket - setsockopt (XDP_UMEM_REG)

4. Creation of rings - setsockopt (XDP_UMEM_FILL_RING)

5. memory map to user-space - mmap()

6. binding socket to interface and particular queue - bindQ

29

The socket is created by usual socket () syscall with AF_XDP as domain parameter.
After that, the memory area, where packets will be stored has to be allocated. It depends
on the user what function this will be done (malloc, mmap, huge pages, etc.), but it is
mandatory to register allocated memory to the kernel through the setsockopt function
with XDP_UMEM_REG.

As mentioned above, the R X and F i l l rings are used for the R X path and the T X and
Completion rings are used for the T X path so at least one couple (or both) has to be
created with U M E M . The creation of these rings is possible via setsockopt calling with one
of the XDP_UMEM_FILL_RING, XDP_UMEM_COMPLETION_RING, XDP_RX_RING or XDP_TX_RING
parameters for a particular ring and its size (the level parameter is set to S0L_XDP). The
size of the rings needs to be of size power of two. The setsockopt than allocates and set up
the particular ring.

Next step is map memory buffers to user-space. This mapping is done by using the
mmapO function described in 4.1.2. Before that, the application has to request kernel
about socket structure to figure out the actual addresses where all used rings begin be­
cause the ring's structure is highly optimized to reduce cache coherency and looks dif­
ferent depending on architecture. However, the structure is returned to setsockopt ()
call with a XDP_MAP_OFFSET parameter and then the mmapO can be called. The map to
user-space is required as shared read and write for all of the used queues and specified by
XDP_PGOFF_TX_RING, XDP_PGOFF_RX_RING, XDP_PGOFF_FILL_RING or XDP_PGOFF_COM_RING
parameters.

Finally, the socket has to be attached to a particular interface and queue number, from
which the packets will be received or transmitted, by the bind() function call.

30

Chapter 6

Design

The first section of this chapter analyses a specification of the packet capturing probe that
will be implemented and in the following section is suggested a possible solution and the
main logical steps that need to be done by the application.

6.1 Specification analysis

The flow probe should be able to capture traffic the highest possible speed, at best 14.8 Mpps.
The probe has to support IPv4 traffic as well as IPv6 on the Ethernet layer. The appli­
cation should be able to maintain a flow cache of unidirectional flowd; it means to store
aggregated information about connections, which captured packets belong to. It requires
a network and transport layer information, so raw packet data has to be captured and
socket settings have to be adapted to that. The flow subprocesses must be able to make
a fast data lookup within the flow cache. The exporter may not have adopted a full flow
exporter protocol support and full template support is not required. The probe should
be portable, non - blocking, and compatible with other applications running on the Linux
operating system.

6.2 Architecture

The packet capturing at higher rates would not be possible using a standard network stack.
It is appropriate to use one of the fast packet processing frameworks described in section 4.3.
X D P framework meets requirements from previous section 6.1. X D P is supported in the new
kernel source tree and does not need to install another library or kernel module. Therefore,
it can be used in arbitrary Linux-based system with kernel version 4.19 or higher. The
X D P supports A F X D P socket which bypassing network stack to avoid its limitations,
such as per-packet allocation or long datapath through the stack. A F X D P offers a direct
path from the network card to the application. Moreover, the kernel itself is not bypassed
so kernel functions are still available as well as in-kernel NIC driver and interface are still
accessible to other applications.

Multithreading

As discussed in chapter 4, the most efficient performance improving idea is to distribute
traffic among multiple CPUs. Modern network cards support RSS so that the traffic can
be split into multiple queues and every queue can be processed by a separated C P U . This

31

flow cacherj

CPU 0
' \

Thread 0
I update rec |

I gelFlowKey]

l t capture ,

IRQO

flow cachej

CPU 1
r \
Thread 1
update rec

I getFlowKey]

capture

A F _ X D P 0 I R Q] , A F _ X D P :

Rx queue O r i R x queue 1t
UMEMq \ j_ UMEMll

flow cache n

CPU N

Thread N
update rec

[getFlowKey]

capture

IRQ n

Thread N+l
[export rec]

collect rec]

xProbe
A F _ X D P R User-space

Rx queue N \
uMEMn \ Kernel-space

XDP

R S S

10 Gb NIC

Figure 6.1: xProbe architecture

concept is scalable, and the traffic load can be suitably spread across processors, depending
on the number of CPUs and N U M A cores.

The suggested probe invokes as many threads capturing traffic as RSS queues and each
thread resides on one C P U using thread affinity. Each thread opens its A F X D P socket,
which binds to one of the queues, so that each thread can handle one of the queues, and
traffic processing can be spread out between C P U cores.

Shared buffer

For direct access to the ring memory (RX and F i l l buffers), the thread uses the mmap
function to memory. Then, the probe, which is running in user-space, can share the buffer
with the kernel. This approach highly reduces system calls generated by application and
context switching between address spaces.

Flow maintaining

Each capturing process maintains its flow cache to store information about communication.
Because of splitting traffic to separated queues, each process will have only one part of
traffic belonging to the particular queue. The RSS distribution among queue is based on
IP addresses and port numbers, thus packets belonging to the same communication will
always be in the same queue. It is more auspicious than to maintain one big cache for all
processes. It can reduce a flow cache size and access time to cache item.

32

The I P F I X was chosen as a flow exporting protocol. It offers variable length of elements
and native support to IPv6 addresses. Moreover, it is standardized by I E T F , and it is
compatible with proprietary NetFlow9.

Architecture scheme

Figure 6.1 shows the architecture scheme of the suggested probe. At the bottom (and the
first in a packet datapath) is a network card and its built-in RSS, which spreads traffic
between multiple queues. Inside the NIC driver is added an X D P layer, which allows
execution of validated eBPF code. The eBPF is executed for every packet that has been
received and has to make a decision to which socket will be the packet redirect to, depending
on receiving queue. If the A F X D P socket in user-space is opened, the packet is redirected
to U M E M of the particular socket (illustrated as a trapezoid) and certain buffer descriptor
is added to the R X ring, and POLLIN event is raised (the IRQx arrow). The thread that
owns the U M E M buffer can read and parse the packet data (A F X D P x arrow), and the
flow key and metadata from packet header can be extracted (the „capture", „getFlowKey"
rectangles). After packet processing, the metadata are used to update a flow record within
the flow cache and each thread has its flow cache (blue tabular). There is an control thread,
which ensures aggregating of flow cache and export to the collector via IPFIX.

6.3 Packet capturing

Each thread reading data from one of the queues, so the thread needs to create and set up
an A F X D P socket and binds it to a particular queue. As was mentioned in chapter 5.6,
the setting up A F X D P socket includes the creation of a socket, allocation U M E M buffer,
creation the proper rings and bind. The sequence diagram is enclosed in Appendix A.

f User-space

Thread 0

X S K O

Kerne

xProbe ^

Thread 1 Thread 2 Thread 3

X S K 1 X S K 2

queue 0 queue 1 queue 2

NETDEV ethO

XSK3

queue 3

0 XSK 0

redirect l XSK 1

2 XSK 2

3 XSK 3

Figure 6.2: X S K M A P redirection on xProbe sockets

The socket creation is similar to A F _ I N E T socket creation and can be done via a
syscall. The process has to create a U M E M buffer, where the packet data will be stored.
The U M E M buffer allocation must be ensured by the process in user-space and must be
mapped to be shared between user-space and kernel-space. Within the monitoring probe,

33

the packets are only received so there is no need to create Completion and T X rings. The
application has to set up only R X and F i l l rings to be able to receive incoming packets.
After that, the socket has to be bound to the interface and the particular queue. The
application will use a poll function to detect an event on a socket. The poll function blocks
the process until the kernel will raise the POLLIN (data ready to read) event or timeout
expired, and then the data can be processed.

It is necessary to load the eBPF program before the socket creation has begun so that
the socket can properly receive data. The eBPF code has to maintain an X S K M A P with
open socket indexes and redirect packets to a certain socket in user-space, depending on
which queue the packet belongs to, as is shown in Fig. 6.2. The socket indexes are pushed
into the X S K M A P , at the moment of socket creation, so the map has to be done earlier.

The A F X D P socket can be used in zero-copy mode, if the probe runs on supported
NIC. Then the D M A stores packet data directly in the U M E M area.

6.4 Flow creation

The probe regards the following 5-tuple as a flow key, which uniquely identifies a commu­
nication between two points:

1. destination IP address

2. source IP address

3. destination protocol number

4. source protocol number

5. protocol in IP header

The flow key and metadata is stored in the flow record. The observed metadata is as
follows:

1. number of packets 6. IP layer flags

2. number of bytes (heads and payload) 7. IP layer options

3. number of payload bytes 8. transport layer flags

4. byte histogram 9. communication start timestamp

5. the lowest T T L 10. communication end timestamp

The packet headers have to be parsed after the packet data has been captured and
stored in U M E M . The subprocess providing parsing has to select flow key from IP header
and transport header, but data link headers need to be parsed as well because V L A N tags
may occur.

Parsing

The first header in raw packet data is Ethernet header (without preamble). The only
element that needs to be checked is the ethernet type field. The ethernet type specifies
the type of the following header. There are two main values of the field: 0x0800 value

34

indicates an IPv4 header, and the 0x86DD value indicates an IPv6. But, there is also a
V L A N tagging which is indicated by 0x8100 or 0x9100 value. Ethernet header has a fixed
length of 14 bytes, but in the case of V L A N tagging it can be 4 bytes longer or even 8 bytes
longer, in the case of the Double tagging (IEEE 802.lad) and the first byte of the IP header
is given by this size.

The IPv4 header is not fixed in size; it consists of 14 fields, of which 13 are required,
and the last one is optional and flexible. The length of IPv4 header (this also coincides with
the offset to the data) is encoded to 4 bits in IHL field. To get the exact size of the header,
the parser has to multiply the IHL value by 5. The IP header contains three of the five
flow key attributes: destination IP address, source IP address and protocol number, which
has to be exctract. As metadata attributes are stored T T L , Flags, total length fields.

In the case of 0x86DD value in the Ethernet type field, the IPv6 header has to be parsed.
The IPv6 header is fixed in size but can be concatenated with extension headers. The main
header includes source and destination IP addresses which has to be selected as flow key
attributes, but protocol number attribute has to be taken from last extension header so the
parser must iterate to the last header by checking Next header field. Flow record attributes
can be taken from the main header also {Hop Limit like TTL).

The next header in the order is the transport header. The parsing subprocess can
recognize U D P , T C P , I C M P , ICMPv6, I G M P headers. A destination port number and
a source port number has to be extracted from the transport header. Some transport
headers such as ICMP, I C M P v or I G M P do not contain a port number so a header type
and message code can be used instead. In the case of T C P , the flags have to be extracted
to detect connection termination, once the F I N flag has occurred.

Flow cache

Demanding part of monitoring probe is the way how to store flow records. The data
structure holding flow records has to be able to access elements efficiently and quickly. For
this purpose, I choose a hash table, which search complexity may be at worst case O(n),
depending on a hash function. Very fast hash functions suitable for hash-based lookup
offers Murmur Hash family [11, 2]. I suggest using the current version MurmurHash3 in
32-bit variant, which is faster than previous versions. The function uses a multiply (MU),
rotate (R), X O R and several magic constants on 128-bit blocks of data in its inner loop.
The input of hash function will be a flow key data structure, and the hash function produces
a 32-bit hash value that will index the flow cache table. The table will contain pointers to
flow records in memory (as shown in Fig. 6.3).

Flow keys Hash function

Flow key

Source IP

Destination IP
r

Source Port

Destination Port
i

Protocol

Flow cache

Index Ptr

32-bit hash
va lue

000

001 X

002

003 X

Flow record X

number of packets

number of bytes

F low record Y

number of packets

number of bytes

Figure 6.3: Flow cache and hash function scheme

35

6.5 Flow record export

The probe creates an extra thread to provide a record exporting. The thread periodically
serializes records stored in the flow caches and exports data to output. The user can
specify a time interval between exporting. Additionally the thread periodically prints
socket statistics to determine sockets utilization and performance.

36

Chapter 7

Implementation

This chapter is devoted to the actual implementation of the traffic capturing probe designed
in the previous chapter 6. The implementation language was chosen as G N U C / C + + . The
program periodically captures the traffic from multiple NIC queues of a given interface and
maintains the flow cache up-to-date. For implementation was used a Libbpf and pthread
library. As a starting point for implementation was used a /samples/xdpsock_user. c
example from vanilla kernel tree, which demonstrates X S K socket handling.

7.1 Multi threading

A pthread C / C + + library is used for creating multiple processes which provide a packet
processing. The application holds identifiers of all created threads in an array inside
xProbe_info structure. The thread array is allocated to MAX_S0CKS size so it can hold
only MAX_S0CKS threads. The number of threads is given by -p argument, (see below on
section 7.8), but the argument is limited by the MAX_S0CKS constant, and the application
does not create more than MAX_S0CKS threads and sockets.

The main thread is creating subprocesses in xProbe_conf igure_and_run function in a
loop and then waiting to their terminations via pthread_join, which is placed in xProbe_wa-
it_to_end function. The thread executes an XDProbe_thread function, whichin the thread
performs a socket creation, packets capturing and processing and resource release. When
the application creates a new thread, the thread_input_t data structure is put to the new
thread as a parameter. The structure containing basic information about the new thread:
identification within the probe (tid), the descriptor of a queue (if_queue), from which
the thread will be capturing packets and pointer to socket descriptor array (xsk), where all
socket descriptors are stored.

There is created one extra thread, which periodically prints statistics and its code is
defined in poller function. This thread opens a file, where periodically prints content of
flow caches, and at the same time it prints socket statistics on standard output. The flow
cache is reset after exporting by this thread.

The packet capturing processes has to be explicitly assigned to one C P U . It is done
via pthread_setaff inity_np call after the thread has been created. For distribution
packets among C P U is used RSS on NIC. The RSS rule sets by an ethtool command in
src/optiNIC. sh script.

The socket creation inside threads has to be synchronized. The eBPF program has
to be hooked to the interface before the first socket creation and only one eBPF pro-

37

gram can be hooked on interface. Otherwise, the creation will fail. Due to this, I used
a xsk_creation_mtx mutex that serializes a socket creation, and the first locked thread
attaches an eBPF program to interface while the other threads are waiting. When eBPF
is successfully attached by the first thread, the other threads do not try to hook it again.
Without this mutex, it often happened that two thread tried to attach an eBPF at the
same time, and it caused a hook error.

The application also using two barriers to synchronize socket initialization. The xdp_ready
barrier is used to wait for each other after successful socket creation. Second barrier
xsks_ready synchronized threads with the main process and indicates the moment when
all threads are ready to packet processing.

7.2 e B P F

The cornerstone of the X D P system is an eBPF program, which is executed inside the
driver. When an application wants to use an A F X D P socket in user-space, the eBPF
program that performing an XDP_REDIRECT action must be running inside the driver. Such
eBPF program maintaining an open sockets map and redirecting packet to socket based on
queue, on which the packet has been received.

The assembler instructions can be used to write the redirecting eBPF program, and the
application can attach the program to interface via bpf _load_program and bpf _set_link-
_xdp_f d calls. But the Libbpf library offers a wrapper which does that. The xsk_load-
_xdp_prog function from Libbpf defines a simple eBPF program ensuring proper redirecting
action and attached the program to the interface. It is a simple way to use an A F X D P
socket without prior knowledge of eBPF programming. The implemented probe uses this
wrapper because the application does not need any other eBPF features and basic redirect­
ing, which offers this build-in program, is sufficient.

The redirecting eBPF program has to be detached when a signal interrupt is sent to the
application. A n identification of hooked program can be recognize with bpf _get_link-
_xdp_id function. The unattached is done by calling a bpf _set_link_xdp_fd with a -1
value as the second parameter. The maps has to be destroyed as well. Due to this, the
xsk_clear_bpf _maps and xsk_delete_bpf _maps functions are called.

The eBPF maps use lock memory, which is very low by default and application needs
to increase resource limit RLIMIT_MEMCLOCK with setrlimitO call. The limit is set on
application start to RLIM_INFINITY, it means no limit for lock memory.

7.3 Memory model

The A F X D P uses a different way of storing packets than a standard socket. It uses shared
UMEM area, which is managed by user-space (described in section 5.5). Within the probe
application, the xsk_umem_inf o data structure represents an UMEM memory model. It
contains a pointer to a memory area, its size, and pointers to receiving rings which manage
the incoming packets.

The application allocates UMEM memory via posix_memalign because allocated mem­
ory needs to be aligned to page size. The size of allocated memory is set to XSK_UMEM_-
_DEFAULT_FRAME_SIZE * NUM_FRAMES, the first constant represent packet buffer size and
the second constant gives a total number of packets that can be stored in one UMEM. The
packet buffer size is set to 2048B, because one packet buffer contains a headroom along

38

with frame data buffer. The maximal frame size can be 1500B and the headroom length is
320B so theirs summary is rounded up to power of two to 2048.

The U M E M buffer is created in user-space, and the application has to register memory
buffer with the socket. For this purpose, the application using the XDP_UMEM_REG command
of the setsockopt () system call and then the U M E M serving as socket buffer. The creation
and register memory are done in the xsk_conf igure_umem function.

The application using an R X and F i l l rings to manage receiving packets. The rings are
created in conjunction with socket creation, which is described in the next section. The
rings reside in kernel-space and the kernel has to share them with the probe. For this
purpose, the page remapping is used, and mmap function with ring pointers as parameters
are used to remap a memory.

The munmap function is called to all mmaped regions when the probe is interrupted, as
well as the U M E M memory is freed.

7.4 Socket creation

Each packet capturing thread creates a separate socket with an independent packet buffer.
As was mentioned in section 5.6, the socket creation includes several parts and the whole
procedure is implemented in the xsk_conf igure_socket and xsk_conf igure_umem func­
tions, where Libbpf wrappers are called to socket creation.

First, the socket structure has to be created with socket syscall. The socket type is
defined as RAW_S0CK with default protocol number 0, and the AF_XDP value (44 in real)
is given as a domain parameter. Then the U M E M is registered with the socket as was
described in section 7.3.

After that, the F i l l and R X ring are created with setsockopt syscall. The S0L_XDP level
(value 283) has to be set when the syscall manipulating with any X D P options. The setsock­
opt option name creating a F i l l ring is an XDP_UMEM_FILL_RING and an XDP_UMEM_RX_RING
for creating the R X ring. The size of rings are defined in FILL_RING_SIZE and RX_RING_SIZE
constants, and both are sets to 8192 descriptors. This number corresponds to the maximum
number of network card descriptors (ethtool -g command).

As mentioned earlier, the application using the page remapping to share rings between
address spaces. After the rings creating, the mmap function with queues descriptors is
called to propagate memory to user-space. But the application does not know the actual
pointer to rings data, so the setsocktopt with XDP_MMAP_OFFSETS command has been
called before. It returns a data structure with memory offsets, on which the rings actually
reside. These offsets are used as parameters to mmap function.

Finally, the bind syscall is issued, which assigns the socket to interface and particular
queue. The interface name is given by the user as an - i argument, and the interface is the
same for all packet capturing threads. On the other hand, the queue id is unique to all
threads and it is specified by thread's tid variable. It means, that the first packet capturing
thread with a tid = 0, will be bound to the queue with a id = 0, the thread with tid = 1
will bind the second queue (id = 1) and so on.

When the socket is ready to receive packets, the packet buffer indexes must be written
into the fill ring to mark available chunks. It is done via Libbpf wrapper xsk_ring_prod_-
_f ill_addr, which is called in a loop to fill up F i l l ring.

39

7.5 Packet capturing

The thread is using a poll function to detect when a new batch of packets is ready to
process. The thread registers the poll to socket's POLLIN event and waits until the event
occurs or a timeout expires. When the new packet is ready to process, the thread reads
its location and its length from RX ring by an xsk_ring_cons rx_desc call. The chunk
descriptor is used to index a U M E M buffer, but it is not real address in memory. To get
real data pointer is used a xsk_umem get_data function, which returns a pointer. Then
the data pointer is given as parameter to a f rame_parser function, which provides packet
processing. After the packet processing, the chunk ownership has to be returned back to
the kernel, so the chunk index is written to the F i l l ring via xsk_ring_prod f ill_addr.

7.6 Packet processing

The packet processing includes a flow key and metadata extraction from a raw data; flow
cache lookup and updating flow record. The extraction provides a f rame_parser function,
which gets a pointer to a raw packet and its length as the parameter. Firstly, the Ethernet
header is decapsulated by checking 12th and 13th bytes of data, where the frame type field
resides. These two bytes are used to switch condition to determine the type and length of
the data link header. The Ethernet header length coincides with the data offset, where the
next header begins.

The next header to decapsulate is an IP layer header, which contains a source and
destination IP addresses that are used as the flow key attributes. The application can
recognize only two types of IP headers: IPv4 header or IPv6 header. A data pointer is type
casting to a header data structure, which represents IP headers, and particular fields are
copied. The data structures are taken from linux/ip.h and Unux/ipv6.h header files.

If the IPv4 header contains any options, the option type is recorded to bit field. In
the case of IPv6 header, the header extensions can be placed after the main header, and
parser needs to proccess them as well. The parser iterates through extensions until the
NEXTHDR_NONE (59) constant occurs in the header type field.

The port numbers are extracted from transport layer headers similarly as IP addresses.
The pointer to data is type casted to a header data structure. The data structures are
taken from linux/*.h header files as well. The T C P option flags are stored in flow record as
bit field and extracted flags are aggregated by OR function to the bit filed. After parsing
L3 header are metadata stored in flow cache.Figure 7.1 shows a data structure used for the
flow key and flow record.

7.6.1 Flow cache

The flow cache is implemented as hash table. The hash_table_t data structure represents
a flow cache and holds information about cache within thread.

The index of hash table is given by f low_key_hash function, which implemented a
Murmur3 hash function. The hash seed is random generated when the application starts
and it is shared in every flow cache. The input of hash function is f low_key_t data
structure, which represents a flow key (Fig. 7.1). A value returned from hash function is
divided modulo size of flow cache.

40

flow_key_t

- union sa: in_addr v4
in6_addr v6

- union da: in_addr v4
in6_addr v6

uintl6_t: dport

- uintl6_t: sport
- uintS_t: protocol

flow_record_t

+ flow_key_t: key +• uintSJ: TCPflags
-i- uint32_t: key_hash + uint32_t: TCPoptions
-1- uint32_t: ip_type +• timeval: start
+• uintß4_t: niim_pkts + timeval: end
-i- uint64_t: num_bytes +• ip_info_t: ip
+• uint64_t: num_payload_byte; + flow_record_t *: next
-i- payload_stat_t: payload +• flow_record_t *: prev
t- histogram_t: bytecount + flow_record_t *: time_prev
-i- uint32_t: IP_options + flow_record_t *: time_next

hash_table_t

+ uint: id

+ timeval: laststatsoutput

+ pthread_spinlock_t: rwlock

+ flocap stats t: stats

+ flocap_stats_t: last_stats

+ flow_record_t*: first_flow_record

+ flow_record_t*: lastf lowrecord

+ flow_record_t*: flow_cache_array[]

Figure 7.1: Flow key, flow record and flow cache data structures

The hash table contains lists of flow records in order to store records with same hash
value. The cache lookup returns a pointer to the first flow record of record list and linear
iteration through the list has to be done to find out specific record.

The flow cache maintains a chronological order of stored records. Each record has a next
and prev pointers to the chronological predecessor and successor. The head of chronological
list is stored in hash_table_t. f irs t _ f low_record.

The flow cache is protected by spinlock rwlock. When the packet capturing process
updating a flow cache, the process locks this spinlock for case of cache exporting by the
control thread.

7.7 Record exporting

The Probe does not provides a full support of I P F I X protocol. The control thread serializes
the data in the export_all_tables function and print statistics to the file. The control
thread interates throught the flow caches and takes its flow records by chronological order
to print metadata. The record is destroyed after printing.

The control thread prints sockets statistics to stadard output. The packet counter of
the particular socket is holded in xsk_socket_info data structure and it is incremented
when a packet batch is ready to process.

7.8 Applicat ion exection

It is mandatory to execute application on Linux system which supports a X D P , eBPF and
A F X D P . The probe was tested on vanilla kernel version 5.0.6. The manual for installation
can be found in Attachement B.

The probe is consists of several source files, which are included on attached D V D . The
standard Makefile file is enclosed. The make command should be called in /src folder
to source code compilation. The command creates an xProbe binary file, which can be
executed with following parameters:

./xProbe - i [INTERFACE] [OPTION]

- i , —interface=n Run on interface n

-q, —queue=n Use queue n (default 0)
-p, — p o l l Use poll syscall

-S, —xdp-skb=n Use XDP skb-mod

41

-N, —xdp-nat ive=n Enfore XDP native mode

-n, —interval=n Specify statistics update interval (default 1 sec)

-z, —zero-copy Force zero-copy mode

-c, —copy Force copy mode

-t , —thread Number of open queues, default 1

—output=n Output f i l e name n

The application is terminated ater sending one of SIGINT, SIGTERM or SIGABRT signals.
Before running the xProbe application, the src/optiNic. sh and src/disableHt. sh should
be executed to get better performance and to set RSS queues.

7.9 Optimalization

A l l describes optimalization used on N E T X - F router are based on the manuals [3, 12].
The optimalization included resizing NIC's descriptor buffer to the maximum value with
ethtool -G ens2f 1 rx 4096 (to show current settings and maximum value can be used
ethtool -g ens2f 1). A number of queues should be equal to the number of used cores:
ethotool -L ens2fl combined 8.

Next usefull optimalization is turn off the adaptive interrupt moderation with ethtool
-C ens2fl adaptive-rx off adaptive-tx off and sets a fixed interrupt rate to 8/xs
with ethtool -C ens2fl rx-usecs 8 tx-usecs 8. A l l optimalizations are applied in
src/scripts/optimalization. sh script.

The better results are achieved if the CPUs hyperthreading is turned off. It is possible
via /sys/devices/system/cpu/cpu#/online variable in kernel. The source code contains
a scripts/disableHT.sh script that diable hyperthreading and scripts/enableHT.sh
script that turn hyperthreading on. Additionally, it is recommended to boot the kernel
with iommu=pt parameter.

42

Chapter 8

Testing

8.1 Test topology

A test topology was deployed to verify basic functionality of implemented probe with zero -
copy mechanism. The topology is depicted in Fig. 8.1 and consists of 3 machines: the
test P C generates a lOGbps traffic via P F R I N G . The N E T X - F router, where the tested
application running and switch in the middle. The N E T X - F router was connected through
a 10 Gb/s I N T E L X552 NIC with an ixgbe driver.

Test P C

enplsCfO

3c:fd:fe:9e:50:b0

NETX-F

y / \ lOGb/s
ens2fl

ac:lf.6b:2c:9d:db

Figure 8.1: Test topology

8.1.1 N E T X - F

The N E T X - F device was used for testing. The latest version of vanilla kernel(5.0.6) with
B P F and X D P support was installed and boot on them.

Platform:

NetX OS version:

Netc version:

Kernel version:

Serial number:

Motherboard:

Memory:

CPU:

NIC:

Driver:

Version:

Firmware-version:

NetX-X1120

NetXOS release 7.5.1804 (Core)

1.13

5.0.6

VM175S024749

Supermicro X10SDV-16C-TLN4F+

1GB DIMM DDR4 2133 MHz

Intel(R) Xeon(R) CPU D-1587 @ 1.70GHz 16 core

INTEL X552 SPF+

ixgbe

5.1.0-k

0x800005b9

43

8.2 Socket performance

This test compares the performance of different socket modes. Figure 8.2 confirms the
zero-copy socket as the most effective mode. The Test P C transmitted a 100 M set of 64 B
packets using P F R I N G and pfsend utility on enplsOfO. The application was running on
4 N E T X cores and each core capturing one of the queue with an independent A F X D P
socket. The value is average performance per second on single socket. The packet processing
is turn off and packets are dropped after capturing.

Figure 8.2: A F X D P socket performance

AF_XDP socket performance
™ HyperThreading on — HyperThreading off

2.5

2

1.5
cn
a.

0.5

0
DRV zero-copy + DRV zero-copy DRV mode copy + DRV mode copy SKBmode+Poll

Poll Poll
SKB mode

Socket mode

44

8.3 Probe performance

This test shows a core utilization. The value is summary of captured packets by all 8 or 6
threads. The performance of one socket without flow creation is about 2.4 Mpps as shows
Fig. 8.2. So 6 cores can capture traffic of lOGbE interface. Wi th flow maintaining turned
on, the 8 cores are needed as show 8.3.

Figure 8.3: xProbe performance

xProbe performance
xprobe -N -z

15 • 6 capturing threads

10 -

I
s

5

0 -

1 2 3 4 5 6 7 8 9 10 11 12

time [s]

• 3 capturing threads

8.4 Probe throughput

In this test, the Test P C generates a packet sets of different sizes. The packets are 250 B ,
500 B or 1000 B long. The xProbe running on 8 cores.

Figure 8.4: xProbe throughput

xProbe throughput
xProbe -N -z

2MB • 500B • 1000B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

time [s]

45

Chapter 9

Conclusion

The aim of this thesis was to design and implement a flow monitoring application, ca­
pable of capturing traffic on 10Gb interface. To observe packets at high speeds, for the
application was necessary to adopt some methods of fast packet processing. One of used
methods was the zero-copy mechanism, which makes data transfer between network card
and application more efficient with using shared memory. Another applied method was a
network stack bypassing with using a new A F X D P socket. These methods aims to elimi­
nate disadvantages of standard packet procesing within network stack in Linux kernel and
offer significant performance improvements during packet capturing.

In the first chapter of this thesis, the issue of the traffic monitoring on the high-speed
interfaces was shown.

In the second chaper was defined a concept of flows and the flow monitoring system was
introduced. The monitoring system is consist of an exporting part and a collecting part.
Both parts have been described in more detail, but this thesis aimed to implement only the
export segment.

The standard packet processing in Linux network stack and its limitation were described
in the chapter 3. It is used to understand the mechanisms, which have been developed to
make packet processing more efficient.

The fast pacekt processing mechanism was introduced in the chapter 4. Special emphasis
was placed on the use of zero-copy technique in the Linux kernel. The Page remaping was
introduced as one of the possible ways to apply zero-copy within the Linux. The next section
provides an overview of the commonly used frameworks improving packet processing.

The chapter 5 was dedicated to X D P toolkit. It is one of the fast packet processing
frameworks, which does not make the kernel bypassing, but adds programmability directly
in the kernel network stack. It allows an execution of validated code on kernel's driver
and makes possible to create a socket (also called AFXDP socket or XSK) from driver
directly to the application. This system has a huge impact to performance improvement.
In following sections are described, how to create the A F X D P socket and its memory
model.

In the chapter 6 was given a design of suggested monitoring probe. It is a multithread
application, which is using a NIC's capabilities to distributing traffic among multiple C P U
to process packets in higher rates. Packet data are transmitted from network card to
application through A F X D P sockets and theirs buffers are shared between network card
and application threads. Each probes's thread processing packets, captured in buffer, and
maintaing table of useful information about communications.

46

The chapter 7 explained the implementation on suggested application and its optimal-
ization. The application was implemented in C / C + + and is portable across Linux realm.
The last chapter was showed application testing on model situations.

The goals of this work have been achieved. The probe is capable of capturing lOGbE
traffic with using 8 CPUs. A l l X D P driver modes was tested and zero-copy mode showed the
best result. A single A F X D P socket can capture about 2.3 Mpps without flow creating.
Wi th flow creating it is about 1.8 Mpps. The concept has some limitations resulting from
the using of X D P system:

• There is only a limited number of network interfaces that support X D P (ixgbe, i40e,
mlx5, veth, tap, tun, virtio_net and others) and only ixgbe and i40e drivers has
implemented a true zero-copy mode support, which offer the best performance result.
In other drivers, the X D P hook is attached at a higher point in the network stack

• the eBPF program does not offer a multiple packet actions, it means that packet can
not be redirect to user-space and at the same time pushed to network stack. It limits
the use of the probe to not running on forwarding interfaces, but it is suitable to
mirrored port

• the eBPF drops undelivered packets. When an open socket for particular queue is
missing in X S K M A P , then the packet is dropped, so the sockets have to be bounded
one-to-one with queues

• The maintaing one flow cache per core is addicted to RSS capability. It does not
allow maintaing a bidirectional flows

However, this application successfully demonstrates the use of new A F X D P socket
in practice. The A F X D P is suitable technology for use-cases, where the fast packet
processing are required.

47

Bibliography

[1] Ahern, D.: Leveraging Kernel Tables with XDP. 2018. cumulus Networks, In Linux
Plumbers Conference 2018.

[2] Appleby, A . : aappleby/smhasher SMHasher on Github. 2012. [Online; Accessed
17.4.2019].
Retrieved from: https://github.com/aappleby/smhasher/wiki

[3] Bainbridge, J.; Maxwell, J. : Red Hat Enterprise Linux Network Performance Tuning
Guide. Red Hat. first edition. 3 2015.

[4] Barbette, T.; Soldani, O ; Mathy, L . : Fast userspace packet processing. 2015
ACM/LEEE Symposium on Architectures for Networking and Communications
Systems (ANCS). 2015: pp. 5-16.

[5] Betreuer, K . T.; Wohlfart, F.; Raumer, D.: A Survey of Trends in Fast Packet
Processing. 2014.

[6] Chang, T.: Loremap and mmap in Linux. [Online; Accessed 3.1.2019].
Retrieved from:
https: //www.slideshare.net/gene7299/linux-mmap-ioremap-introduction

[7] Cilium Authors: BPF and XDP Reference Guide. Revision 88016938, [Online;
Accessed 21.4.2019].
Retrieved from: https://docs.cilium.io/en/vl.4/bpf/

[8] Fontana, L . : Load XDP programs using the ip (iproute2) command. [Online; Accessed
19.4.2019].
Retrieved from: https: //medium.com/@fntlnz/load-xdp-programs-using-the-
ip-iproute2-command-502043898263

[9] Hofstede, R.; Celeda, P.; Trammell, B. ; et al.: Flow Monitoring Explained: From
Packet Capture to Data Analysis With NetFlow and LPFLX. IEEE Communications
Surveys Tutorials, vol. 16, no. 4. Fourthquarter 2014: pp. 2037-2064. ISSN
1553-877X. doi:10.1109/COMST.2014.2321898.

[10] H0iland-J0rgensen, T.; Brouer, J . D.; Borkmann, D.; et al.: The eXpress Data Path:
Fast Programmable Packet Processing in the Operating System Kernel. In Proceedings
of the 14th International Conference on Emerging Networking Experiments and
Technologies. C o N E X T '18. New York, N Y , USA: A C M . 2018. ISBN
978-1-4503-6080-7. pp. 54-66. doi:10.1145/3281411.3281443.
Retrieved from: http://doi.acm.org/10.1145/3281411.3281443

18

https://github.com/aappleby/smhasher/wiki
http://www.slideshare.net/gene7299/linux-mmap-ioremap-introduction
https://docs.cilium.io/en/vl.4/bpf/
http://doi.acm.org/10.1145/3281411.3281443

[11] Horvath, A . : MurMurHashS, an ultra fast hash algorithm for C# .NET. 2012.
[Online; Accessed 17.4.2019].
Retrieved from: h t tp : //blog.teamleadnet.com/2012/08/murmurhash.3-ultra-
fast-hash-algori thm.html

[12] Intel Corporation: Inte0 Ethernet Controller X710/XL710 and IntelP Ethernet
Converged Network Adapter X710/XL710 Family, Linux Performance Tuning Guide.
Intel Corporation, first edition. 3 2016.

[13] 10 Visor Project contributors: BPF Features by Linux Kernel Version. [Online:
Accessed 19.5.2019].
Retrieved from:
h t tps : / / github.com/iovisor/bcc/blob/master/ docs/kernel-versions.md#xdp

[14] Karlsson, M . ; Topel, B. : The Path to DPDK Speeds for AF_XDP. In Linux
Plumbers Conference. Nov 2018.

[15] Kerrisk, M . ; other: MMAP(2) Linux Programmer's Manual. [Online; Accessed
12.12.2018].
Retrieved from: http://man7.Org/linux/man-pages/man2/mmap.2.html

[16] L i , Y . - C ; Chiang, M . - L . : LyraNET: a zero-copy TCP/LP protocol stack for embedded
operating systems. In 11th LEEE Lnternational Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA'05). Aug 2005. ISSN
2325-1271. pp. 123-128. doi:10.1109/RTCSA.2005.57.

[17] Love, R.: Linux Kernel Development. Addison-Wesley Professional, third edition.
2010. ISBN 0672329468, 9780672329463.

[18] Luis Garcia-Dorado, J.; Mata, F. ; Ramos, J.; et al.: High-Performance Network
Traffic Processing Systems Using Commodity Hardware. 01 2013. ISBN
9783642367830. pp. 3-27. doi:10.1007/978-3-642-36784-7_l.

[19] Miano, S.; Bertrone, M . ; Risso, F.; et al.: Creating Complex Network Services with
eBPF: Experience and Lessons Learned. 06 2018.

[20] Qi , Z.; Xiaoyun, L . : DPDK PMD for AF_XDP. 2018. intel, D P D K UserSpace;
[Online; Accessed 15.4.2019].
Retrieved from: h t tps : //www.dpdk.org/wp-content/uploads/sites/35/2018/10/
pm-06-DPDK-PMD-for-AF_XDP.pdf

[21] Risso, F.: Toward Flexible and Efficient Ln-Kernel Network Function Chaining with
LOVisor. [Online; Accessed 9.3.2019].
Retrieved from:
ht tp: / /hpsr2018. ieee-hpsr.org / f i les /2018/06/18-06-18-I0Visor-HPSR.pdf

[22] Rizzo, L . ; Deri, L . ; Cardigliano, A . : 10 Gbit / s Line Rate Packet Processing Using
Commodity Hardware : Survey and new Proposals. 2011.

[23] Tu, W.; Stringer, J.; Sun, Y . ; et al.: Bringing the Power of eBPF to Open vSwitch.
2018. vMware Inc. and Cilium.io; [Online; Accessed 12.4.2019].
Retrieved from:
h t tp : / /vger .kernel .org/ lpc_net2018_talks/ovs-ebpf-afxdp.pdf

49

http://teamleadnet.com/2012/08/murmurhash.3-ultra-
http://github.com/
http://man7.Org/linux/man-pages/man2/mmap.2.html
http://www.dpdk.org/wp-content/uploads/sites/35/2018/10/
http://hpsr2018.ieee-hpsr.org/files/2018/06/18-06-18-I0Visor-HPSR.pdf
http://kernel.org/lpc_net2018_talks/ovs-ebpf-afxdp.pdf

[24] Tu, W.; Stringer, J.; Sun, Y . ; et al.: Bringing the Power of eBPF to Open vSwitch.
2018. vMware Inc. and Cilium.io; In Linux Plumbers Conference [Online; Accessed
12.5.2019].
Retrieved from:
h t t p : / / vge r . kernel .org/ lpc_net2018_talks/ovs-ebpf-afxdp-presentat ion.pdf

[25] Umer, M . F.; Sher, M . ; B i , Y . : Flow-based intrusion detection: Techniques and
challenges. Computers and Security, vol. 70. 2017: pp. 238 - 254. ISSN 0167-4048.

[26] Velan, P.: Application-Aware Flow Monitoring. Doctoral theses, dissertations.
Masaryk University, Faculty of Informatics, Brno. 2018.

50

http://vger
http://kernel.org/lpc_net2018_talks/ovs-ebpf-af

Appendix A

Sequence diagram

Capture
process

0 to N

Timer
process

parse 12 header

parse L3 header

parse L4 header

get Flow hey

hash F(flow key)

lookup in flow cache
by hash

get flow record R

Parse arguments

Set
RLIMIT MEMLOCK

create flow record R

update flow record R

Create pthread Create pthread

Set C P U affinity

Create socket and
fov. cacne

Allocate UMEM and
register to socket

Create RK and Fill
R - i |

mmap buffers

fill out Fill ring

pop chunk from RX
ring

get chunk data from
UMEM

packet processing

push chunk to FILL
ring

Pthread join
Ptlve?.i:l jo i

sleep (Prim ng
interval)

collect statistics

Print statistics

reset now cache

resnurces
nun map

Figure A . l : Sequence diagram of packet capturing probe

51

Appendix B

X D P installation

A F X D P required a kernel 4.19 or higher and it is mandatory to allow eBPF and X D P
support when kernel is compiling. To do that is needed to rewrite some flags to .config
file after kernel source tree has been unpack:

CONFIG_CGROUP_BPF=y

CONFIG_BPF=y

CONFIG_BPF_SYSCALL=y

CONFIG_NET_SCH_INGRESS=m

CONFIG_NET_CLS_BPF=m

CONFIG_NET_CLS_ACT=y

CONFIG_BPF_JIT=y

CONFIG_LWTUNNEL_BPF=y

CONFIG_HAVE_EBPF_JIT=y

CONFIG_BPF_EVENTS=y

CONFIG_TEST_BPF=m

CONFIG_XDP_SOCKETS=y

CONFIG_XDP_SOCKETS_DIAG=y

After new kernel is running, it is recommended to turn a B P F JIT on to code optimalization
with command:

sysctl net/core/bpf_jit_enable=l

Then the libbpf library has to be installed:

git clone https://github.com/libbpf/libbpf.git

cd libbpf/src

mkdir build root

OBJDIR=build DESTDIR=/ make install

For compiling eBPF is useful to install a L L V M version 3.8 or higher.

52

https://github.com/libbpf/libbpf.git

Appendix C

Content of the attached D V D

• Source code of the implemented application in directory /src.

• Readme file in /src/README.md

• This technical report including DTpXsource code in /tz

53

