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Abstract 
The aim of this thesis is a design and implementation of a net flow probe for lOGbE traffic. 
This thesis provides an overview of G N U / L i n u x utilities used for capture packets at high 
speeds and its fundamental mechanism. Next chapters introduce design and implementation 
of zero-copy probe capable to capture lOGbE traffic. The application uses the Express 
data path and its A F X D P socket to capturing traffic on interface. The test platform is 
used FIT V U T N E T X platform. 

Abstrakt 
Cílem této magisterské práce je návrh a implementace síťové sondy pro sledování toků na 
lOGbE rozhraní. Text se zabývá přehledem G N U / L i n u x nástrojů využívaných ve vysoko­
rychlostních sítích a principů jejich fungování. Dále pak je uveden návrh a implementace 
sondy využívající mechanismu zero-copy pro sledování provozu na lOGbE rozhraní. Ap­
likace využívá Expresní datové cesty (XDP) a jeho A F X D P soketu pro zachycení provozu 
na rozhraní. Jako testovací platforma byla vybrána platforma N E T X používaná na FIT 
V U T . 
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Rozšířený abstrakt 
Sledování toků v počítačové síti je jednou ze základních úkonů pro zajištění její bezpečnosti 
a správného fungování. Nicméně objem provozu se neustále zvyšuje a úměrně tomu roste 
i množství přenesených dat přes rozhraní. V dnešní době již nejsou 10Gb, 40Gb dokonce 
ani 100Gb rozhraní výjimkou, což zvyšuje nároky na monitorovací systémy. 

Monitorovací aplikace, běžící na běžném systému Linux, však nemohou plně zachytit 
provoz na 10Gb rozhraní. Důvodem je neefektivní architektura síťového subsystému uvnitř 
Linuxového jádra. Během mnoha let vývoje jádra Linuxu se vývojáři zaměřovali především 
na flexibilitu systému. Důraz byl kladem na modularitu systému tak, aby obsáhl potřeby 
všech síťových aplikací. Nové moduly zpracovávající nové protokoly mohou být přidávány 
do jádra, avšak tento koncept není vhodný pro zpracování paketů ve vyšších rychlostech. 
Datová cesta paketu mezi síťovou kartou a aplikací je příliš komplikovaná a zdlouhavá. 
Paket musí projít skrze několik softwarových vrstev, jako je například firewall nebo kontrola 
zahlcení, než dorazí do aplikace. Tyto vrstvy zvyšují časovou náročnost zpracování pro 
jednotlivé pakety, což se projeví snížením celkové výkonnosti aplikace. 

Například propustost na 10Gb rozhraní může dosáhnout až 14.8 milionu paketů za 
vteřinu. To znamená, že procesor má pouze 67.2 ns na zpracování jediného paketu. 67.2 ns 
odpovídá zhruba 200 cyklům procesoru, a to není mnoho, bereme-li v potaz režii operačního 
systému [22]. 

Mimo to, architektura operačního systém Linux je založena na monolitickém jádru. To 
znamená, že celý systém je rozdělen na dvě oddělené části: oblast jádra a uživatelskou 
oblast. Jak název napovídá, v oblasti jádra je umístěno samotné jádro systému a ovladače 
hardwaru. V uživatelské části běží uživatelské aplikace. Obě oblasti jsou od sebe odd­
ěleny a komunikují mezi sebou pouze pomocí systémových volání. Tento koncept umožňuje 
uživateli oprostit se od komunikace s hardwarem. Nicméně, během zpracování paketů ve 
vyšších rychlostech, je přepínání kontextu mezi jádrem a aplikací velmi nežádoucí. 

Aplikace běžící uvnitř jádra je podstatně rychlejší, avšak její vývoj je náročnější, jelikož 
aplikace nesmí ovlivnit chování jádra. Pokud aplikace běží uvnitř uživatelské oblasti, její 
výkonnost bude značně ovlivněna množstvím přepínání kontextu a obsluhou systémových 
volání, a navíc nebude mít kontrolu nad datovou cestou paketu uvnitř jádra. Několik 
softwarových utilit nabízí řešení tohoto problému, jako například Data Plane Development 
Ki t (DPDK) , P F P J N G nebo eXpress Data Path (XDP) . 

Tato práce se zaměřuje na návrh a implementaci síťové sondy pro monitorování provozu 
na 10Gb rozhraní, která poběží na standardním Linuxovém operačním systému. Navržený 
systém odchytávání paketů pokryje limity standardního síťového subsystému tak, aby bylo 
možné plně zachytávat provoz na vysokorychlostním rozhraní. Navržený systém je založen 
na systému X D P , konkrétně na použití A F X D P soketu. Takto je systém schopen zachytit 
a zpracovat rychlosti 10Gb. 

Tato práce je rozdělena do několika kapitol. V první kapitole je představen koncept 
zachytávání toků v síti a jsou uvedeny základní části, ze kterých se skládá monitorovací 
systém. Zachytávání paketů je stěžejním úkonem takového systému a má velký dopad 
na celkovou výkonnost systému. Z tohoto důvodu jsou následující kapitoly zaměřeny na 
efektivní zpracování paketů. 

V kapitole 3 je uveden proces zpracování paketů ve standardním Linuxu a ukazuje 
datovou cestu paketu mezi síťovou kartou a aplikací. Jsou představeny hlavní limitující 
prvky, což je důležité pro pochopení mechanismů zlepšujících zpracování paketu. 

V kapitole 4 je uveden přehled mechanismů zlepšujících zpracování paketu a frame-
worků, které jsou na nich postaveny. Detailněji je popsán mechanismus zero-copy a jeho 



implmentace v systému Linux. Zero-copy dovoluje vytvořit sdílenou pamět mezi jádrem a 
aplikací, čímž umožňuje efektivnější předávání dat. 

Kapitola 5 se zaměřuje na popis systému X D P , který je použit při implementaci mon­
itorovací sondy. Tento systém je založen na Berkeley Packet Filter (BPF) , se kterým je 
úzce propojen. Systém X D P umožňuje uživateli nahrát jedoduchý kód přímo do ovladače 
síťové karty. Tento kód je spuštěn pokaždé, když síťová karta přijme nový paket. Uživatel 
tak může nadefinovat pravidla pro filtraci paketů v nejnižším bodě, což zefektivňuje celý 
proces zpracování. Novinkou tohoto systému je A F X D P soket, který umožňuje obejít celý 
síťový subsystém a předat data ze síťové karty přímo do aplikace nejkratší možnou cestou. 
Nespornou výhodou tohoto systému je fakt, že funkcionalita jádra zůstává zachována, což 
neplatí u jiných podobných řešení (například D P D K ) . 

Kapitola 6 představuje návrh síťové sondy postavené na systému X D P . Jedná se o 
vícevláknovou aplikaci, která využívá několika oddělených A F X D P soketů pro paralelní 
zpracování paketu při vyšších rychlostech. Aplikace uchovává agregované informace o 
zachycených tocích ve vnitřních strukturách. 

Kapitola 7 se zabývá implementací sondy. Jako programovací jazyk byl zvolen jazyk C. 
Implementace využívá knihovu Libbpf pro práci s A F X D P sokety a knihovnu pthread pro 
práci s více vlákny. 

V kapitole 8 je uvedeno laboratorní testování sondy na zařízení N E T X . Sonda úspěšně 
zachytila a zpracovala provoz 14.8 milionu paketů za vteřinu. 

Jako vylepšení síťové sondy se nabízí úprava X D P subsystému tak, aby bylo možné 
odchytávat i pakety jdoucí standardní cestou k jiným aplikacím. Současné řešení umožňuje 
pouze přeposlání paketu do monitorovací sondy. Další možnou prací je zdokonalení exportu 
sondy na plné pokrytí I P F I X standardu. Nevýhodou použitého systému je omezený počet 
ovladačů podporujících X D P . 
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Chapter 1 

Introduction 

Flow monitoring is an essential task to control and secure modern networks. However, the 
network traffic is increasing, and the traffic flowing through interfaces is proportionately 
growing . Due to this trend, the 10, 40, or even 100Gb interfaces are used more and more 
and put higher demands on monitoring systems. 

For regularly used applications running on the Linux operating systems, it is not possible 
to fully capture the traffic of lOGbps connection on common hardware. The reason is an 
architecture of Linux operation system and design of in-kernel network stack subsystem 
and its cooperation with device drivers. 

During the evolution of the Linux kernel, the open-source community emphasis on 
flexibility of the system to be used in many different applications. The network stack 
within the Linux kernel is designed as flexible as possible to accommodate all the various 
networking needs. The stack is generic and allows new protocols to be added utilizing 
kernel modules, but it is suboptimal for high-speed performance. So in effect, the datapath 
for a newly arrived packet from the network card to an application is relatively long and 
complicated. The packet has to pass through several software layers, including a firewall 
or traffic shaper that increase per-packet processing overhead, and the overall performance 
decreases considerably. 

For example, the raw throughput on a 10Gb link is up to 14.88 million Packets Per 
Second (pps) (64B packets), which means that every 67.2 ns a new packet can occur. Thus, 
the system has only 67 ns for single packet processing, which corresponds to 200 C P U cycles 
(depending on C P U frequency) between packets. This is not a lot of time considering the 
per-packet overheads generated by standard operating systems [22]. 

Moreover, a standard used Linux system is based on the monolithic-kernel architecture, 
where the system is divided into two parts: a kernel-space and user-space. In the kernel-
space resides a core system functions and drivers controlling hardware and the user-space 
occupies regular user's programs. Both spaces are separated to each other, and cooperation 
is enabled only through secure system-calls. This concept allows a user to ignore the 
underlying communication with hardware. However, the context switching between kernel-
space and user-space during packet propagation is a costly operation, and it is not suitable 
for packet processing in user-space at higher rates. 

When a network program is running inside kernel's realm, it will be faster but much more 
complex to design to be safe for the kernel. When the network program is running inside 
user-space, the numerous system-calls and context switching will decrease the performance 
and program will not have any control over the datapath through the network stack. Several 
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software solutions solve this schism such as the Data Plane Development K i t (DPDK) , 
P F R I N G or an eXpress Data Path (XDP) . 

This thesis aims to design and implement a packet capturing probe that meets today's 
packet processing requirements while running on a standard operating system. The captur­
ing mechanism will overcome certain restrictive factors and overheads in the Linux network 
stack so that we can fully exploit the potential of the high-speed interfaces. The designed 
system introduced in this thesis is based on the X D P system, especially with A F X D P 
socket usage, and it is able to capture and process flows at 10Gb speeds. 

The thesis is organized as follows. The first chapter describes the basis of flow moni­
toring, the architecture of flow monitoring system and necessary processes from which the 
system is composed. The packet capturing has a significant impact on the system's perfor­
mance so the following chapters are devoted to obtaining a data from network card more 
effectively. 

The second chapter describes the packet processing in a standard G N U / L i n u x network 
stack and shows a datapath from a network card (NIC) to the user application without 
any improvements. Some limits of network stack architecture are introduced and their 
understanding is important for further improvements. 

Chapter 4 dedicate to overview of commonly used mechanisms and frameworks for fast 
packet processing. These techniques are trying to eliminate disadvantage and bottlenecks 
of standard network stack. The Zero-copy mechanism and its implementation in Linux 
kernel are introduced. 

The chapter 5 focuses on the X D P system and its usage in the fast packet processing. 
The X D P system is based on Extended packet filter so its describes as well. 

Chapter 6 introduces a design of a network probe, which is able to capture traffic on 
10GE interface. It is multithread application based on X D P system. 

The following chapters 7 and 8 deal with implementation and testing the designed flow 
probe with usage of A F X D P sockets. 
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Chapter 2 

Flow Monitor ing 

Flow monitoring is an important part of a network administrator's tool-chain. It is useful 
in many activities e.g. billing, traffic analysis, network visibility, congestion control, and 
intrusion detection [25]. Flow monitoring embraces the complete chain of packet observa­
tion, flow export using protocols such as NetFlow and IPFIX, data collection, and data 
analysis. 

The essence of flow monitoring lies in the creation of aggregated information about traffic 
passing through given point in the network infrastructure. Nowdays, a modern monitoring 
system focusing on flow monitoring, rather than individual packets analysis. Deep packet 
inspection over all packet data is too computationally expensive to be performed on high­
speed networks, while flow monitoring provides only packet header processing, without 
traffic payload inspection, which is faster and more scalable [26, 9]. 

2.1 Flow definition 

A flow is defined as „a sequence of packets passing an observation point in the network 
during a certain time interval. All packets that belong to a particular flow have a set 
of common properties derived from the data contained in the packet, previous packets of 
the same flow, and from the packet treatment at the observation point" [26]. The set of 
common properties is not strictly defined. Generally, as set is being used a 5-tuple: Source 
IP address, destination IP address, source port number, destination port number and IP 
protocol number, but addition information can be included, depending on vendor such as 
V L A N ID, IP ToS or interface number [9]. This set of common properties is also called 
a Flow key and expresses abstract indentification of a communication between two points, 
which passes through the observation point. The observation point can be line cards or 
interfaces of packet forwarding devices. 

2.2 Flow Monitoring Architecture 

A flow monitoring system is designed to record and make an aggregated information about 
flows available to the user. The observed information (such as number of packets, IP or 
T C P flags, payload size, etc) are stored in generic data structures called flows records and 
each record is uniquely identified by a particular flow key[26]. Thus, a flow monitoring 
system must be able to convert raw packets to corresponding flow records, collect them and 

5 



proccess them to user-readable form (charts, graphs) or as input to another system [25]. 
The flow monitoring system requires several steps: 

1. Capturing packets at one or more observation points 

2. Assigning packets to flows 

3. Creating and exporting flow records for the flows 

4. Collecting, storing, and processing of the exported flow records 

These steps can be divided into two separate subprocesses: a Flow monitoring process 
and Flow data processing. These processes can run on separated dedicated devices, then 
a device where the flow monitoring process running is called a flow probe or flow exporter 
and a device on which the flow data processing is working, is called a flow collector. The 
communication between probe and collector is ensured via Flow Export protocol. There 
are several standards for the export protocol. In this thesis, I will focus on I P F I X standard 
by I E T F . Figure 2.1 shows a high-level overview of the generic monitoring system [26]. 

Flow Monitoring Process 

Packet Capture 

Packets 

Flow Creation 

Flow 
' Records 

Flow Export 

o 
fr H 

Flow Data Processing 

Flow Collection 

Flow Storage 

Flow Processing 

Figure 2.1: Flow monitoring system overview [26] 

2.2.1 Flow monitoring process 

Flow monitoring process has the task of transforming the raw packet data to a flow record 
and exports them to a collector. The process contains a packet capturing, flow creation, 
and export of flow records subprocesses. 

Packet capture 

First step in the monitoring system is a packet capturing from the line and it is typically 
carried out by a standard Network Interface Card (NIC). The device checks checksum and 
store packet in memory. Then a NIC driver passes data to operating system for further 
processing. The packet is marked with a timestamp, pointing to time at which packet was 
received. The timestamp can be registred by the NIC, NIC's driver or later by user-space 
application. Additionally, some extra metadata can by attached to the packet such as next 
hop, AS number and so on. 

This phase can be very crutial to the overall system performance so some specialised 
hardware - accelerated cards can be used, which provides better performance of system at 
higher rates [26]. 
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Flow creation 

After packet capturing, it is necessary to extract values to determine a flow key. The flow 
key coresponds to communication which the packet belongs to. The packet headers has to 
be parsed and set of used flow keys has to be extracted. As mentioned previously, the key 
attributes are not strictly defined, so the attributes are picked up depending on the flow 
selection function. Commonly used key attributes are IP addresses, transport protocol, and 
ports. Some extra information can be extracted from the packet such as number of bytes 
or T C P flags. These metadata are used to update flow record for further analysis. 

In this phase, the packet sampling and packet filtering can by done. The paket sampling 
reduces the amount of processed packets in order to maintain performance. It can use two 
different patterns to pick up packet samples, the random sampling or deterministic sampling 
(every N-th packet). The packet filtering separate the packets based on packet's certain 
property, such as IP address, port number or packet hash. 

The extracted packet metadata are used to create a flow record or update existing one. 
A l l records are stored in a flow cache and the flow key identifies particular entries in the 
cache. A flow creating process calls for each captured packet a flow selection function which 
compares the current key with keys in flow cache. If no match is found a new record is 
pushed to the flow cache, if the key has been matched, the process update attributes in 
coresponding record. Algorithm 1 illustrates the flow creation process [26]. 

Algorithm 1 Construction of Flow Records (taken from [26]) 

1 

2 

3 

4 

5 

6 

7 
8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

Loop 
Get new packet V 
Extract packet metadata M 
Set found = false 
for all flow record T in flow cache do 

Apply flow selection function (f> to T and M 
if 4>(JT,M) = true then 

Aggregate M to T 
Set found = true: 
break 

end if 
end for 
if not found then 

Create new flow record T from Ai 
Insert J- into flow cache 

end if 
End Loop 

The flow records are stored in flow cache until a flow is considered to have terminated 
and the record is expired. This occurs for several reasons: timeout expired, connection is 
closed normally (FIN flag), lack of resources or exporter shutdown. 
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Flow Export 

The flow export maintains the process of delivering flow records to flow collectors, when the 
record has been expired. This task is consist of data serialization and message transmission. 
There is also possibility to sample or filter flow record which will be export in the same 
purpose as sampling and filtering after packet capturing. A crucial part of flow export is 
ensuring the security of the exported flow records. The information must be delivered only 
to the authorised destination. Therefore, an authorisation, confidentiality, preferably, also 
integrity should be provided. 

The communication between probes and collector is described by protocols such as 
NetFlow or IPFIX. They define how to serialize and encode flow record and how to use 
diferrent transport protocol to deliver data to collector. In the following section 2.3, I will 
focus on I P F I X protocol, because it is a I E T F standardized protocol, which is supported 
by broad range of vendors and suppports variable length of exported elements. 

Version number (2) Length (2) 

Export time (4) 

Sequence number (4) 

Observation domain ID (4) 

Set ID (2) Length (2) 

Record 1 

Record 2 

Record n 

Figure 2.2: I P F I X message example [26] 

2.2.2 Flow data processing 

The aim of a flow data processing is to store a flow data, after they are delivered to a flow 
collector from multiple probes in the network, and allows their further analysis. 

Flow Collection and processing 

The flow collection subproccess providies recieving messages, which contains a flow records 
captured on probes. The probes and collector has to negotiate the same transport protocol, 
its security and flow export protocol, and collector validates each received message from 
probes, if it is in expected format. After validation, the messages are parsed to particular 
records and aggregation, data anonymization, filtering and summary generation can be 
done. 

The information about flows can be stored for later processing or can be process in 
real-time, depending on an use-case. A flat files, a row-oriented databases (mySQL) or 
column-oriented (FastBit) databases can be used for permanent storage. Flow information 
can consume a big amount of space, so some kind of compression can be used as well [26]. 

The flow processing can be used to achive several goals: long-term statistics can be com­
puted to capacity planning, live statistics can be used for tracking down network problems, 
anomaly detection techniques can be applied to flow data to detect suspicious behaviour 
which indicates a problem or attack on the network or modern machine learning techniques 
are utilised in flow processing, such as user identification, an IDS or traffic classification. 
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The flow analysis is performed usually in time batches. It might generate delays to data 
analysis so in time-critical application, a stram processing can be used. 

2.3 I P F I X 

As mentioned above, IP Flow Information Export protocol (IPFIX) is an I E T F standard for 
exporting network flow based on NetFlow version 9, and is defined in several RFCs (5102, 
5103). The I P F I X is designed less restrictive and allows dynamically reconfigure observed 
information and unlike Netflow, I P F I X contains specific fields which can be used by vendors 
to store proprietary information. It is possible due to defining a metadata called Templates. 
The Template is exported with flow information in I P F I X message and describes a layout 
of flow information which includes attribute id and its lenght. The I P F I X message is shown 
in Fig. 2.2. Each message is consist of message header, and one or more Sets. The message 
header holding information version, overall length of message, export time sequence number 
and domain ID. The Set has ID and variable length of set and its records can be filled with 
templates or a flow information data [26]. 
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Chapter 3 

Packet processing 

This chapter describes a packet processing in a G N U / L i n u x kernel network stack. In 
general, the network stacks in operating systems are typically designed for flexibility. The 
high throughput of networking traffic can be problematic and commonly used Linux kernel 
stack does not offer effective operations. Within Linux network stack, packets need to 
be copied twice after being received to delivery to an application: first, from a network 
interface to the kernel buffer and then from kernel to the user-space (shown in Fig. 3.1). 
The data transmitting between these buffers is managed by N A P I (New API) interrupts. 
The understanding of packet processing in the standard stack is essential for its further 
increasing the performance and for describing mechanisms that do that. 

User Space 

OS 

Kernel 
packet 

Kernel Space 

Driver 

DMA-able 
memory 
regions 

Figure 3.1: Linux network stack [18] 

3.1 Linux network stack 

When a new packet arrives, the NIC attaches the packet to a descriptor in the NIC's circular 
receiving queues (RX ring). Direct Memory Access (DMA) transfers the packet data to the 
D M A - a b l e memory region of R A M without a C P U intervention. The packet descriptor in 
R X contains a D M A memory region address. At this point, the NIC needs to inform the 
system that the packet has been received, so the NIC raises an interrupt signal. Each time a 
packet R X interrupt is raised, the corresponding interrupt software handler is executed and 
copies the packet from the D M A memory region, in which the D M A transfer left the packet, 
into a local packet buffer in the kernel. Implementation of this kernel buffer is a sk_buf f 
structure, which is the primary data structure for packet handling in Linux. However, an 
interrupt handling for each packet is a C P U intensive, so the N A P I mechanism is used 
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instead. The N A P I starts a poll loop and interrupts are only enabled for the first packet 
of a batch. The poll loop gets periodically enabled and inspect the devices for received 
packets needed to be forwarded to the network stack. 

At this moment the driver harvests and unmap the network ring buffer data so additional 
packets may be received. If the NIC supports multiple queues, the packets are distributed 
among CPUs, and the data in kernel buffer are passed up to the networking layer for 
further processing. The kernel has to check the socket's allocated memory. If the memory 
has exceeded, the kernel drops the packet. If the socket grants an unoccupied memory, the 
data are attached to the socket memory. The kernel checks any B P F filters as well. 

Physical link Intel 82599 NIC DMA-able 
memorv reaion 

Kernel aacket 
buffer 

User application 

Figure 3.2: Linux network stack, R X scheme [18] 

Packet capturing is the first step of the flow monitoring process and has a significant 
impact on the overall performance. As follows [18], the main causes of performance degra­
dation during this phase are: 

1. Per-packet allocation and deallocation of resources - memory management of the 
sk_buff in high-speed rates increases C P U overhead. Moreover, the sk_buff may 
contain unnecessary information, depending on use-case 

2. Serialized access to traffic - it is advisable to parallelize the packet processing to 
multiple C P U and distribute traffic to multiple queues 

3. Multiple data copies from driver to user-space - the packet data path includes several 
buffer copies. One of this copy can consume hundreds of cycles. Above that, the per-
packet copy is inefficient. 

4. Kernel-to-userspace context switching - the packet data path includes some system 
calls too. Each system call requires to switch context to kernel mode and vice versa. 

5. No exploitation of memory locality - the significant number of cache misses are 
causing a performance degradation 
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Chapter 4 

Fast packet processing 

This chapter presents some mechanisms and frameworks, which are commonly used to 
speed-up packet processing. To achieve high packet processing performance on commodity 
hardware, it is necessary to remove any software bottlenecks between NIC and the program 
providing the packet processing. 

4.1 Zero-copy 

As mentioned in chapter 3, the standard NIC's receiving scheme is to store a packet data 
in the kernel-space buffer after Direct Memory Access (DMA) transfer. The application 
has to issue a read/write system calls to copy data from kernel-space to user-space buffers 
to packet processing and vice versa. The zero-copy aims to avoid this memory-to-memory 
copy and reduce unnecessary memory access. The Zero-copy is a common name for various 
techniques and design improvements. In this section, I will focus on the technique that is 
directly supported in the G N U / L i n u x kernel, and that is a page remapping. 

T7\ 
\7 i 

Virtual memory 
operation 

Figure 4.1: Original Data path vs. Zero-copy data path [16] 

The basic idea behind the page remapping is to create a cache-like image of some file (or 
memory) in the virtual address area within the user process. In other words, a file on disk 
became a chunk of R A M area that the process can access and from a user's point of view, 
it looks like the OS allocates a block of memory, in which the file has been copied. The 
Linux supports the mmap() (or do_mmap()) system call, which provides the page remapping 
and allows part of a file or the memory stored on a block device to be mapped into a user's 
address space. 

Thus, the page remapping creates a shared buffer between the kernel and a user-space. 
Moreover, the buffer can be shared between a device's driver and user-space. Then there is 
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no need to copy the data between both of buffers and a received packet from NIC can be 
directly accessible in the user-space. Data from the user-space application can be directly 
sent to the NIC. It highly reduces the number of system calls, C P U processing time, memory 
usage as well as power consumption for data transmission. 

4.1.1 Page remapping 

Linux separates the address spaces of the kernel and other processes from each other. 
These address spaces consist of virtual memory addresses, which are only abstracted from 
physical addresses. To translate between virtual addresses and physical addresses, Linux 
uses special hardware - a memory management unit ( M M U ) . The M M U translates addresses 
in larger batches called pages, which are the smallest units of memory that can have different 
permissions and behavior. The translation of virtual memory to physical memory inside 
the M M U is done through page tables, which holds information about page ownership. The 
hardware itself provides the mapping, but the kernel can manage these tables and their 
configuration. 

If page remapping is used, the kernel modifies page tables to create a new virtual memory 
area, in which a mapped file resides. The backed file is divided into page-sized pieces and 
attached to new virtual memory area. Actually, the file pages are not directly loaded to 
physical memory; it provides lazy loading - a memory within a particular page is loaded, 
only when the first reference to this page will occur. 

There is only one copy of pages in physical and virtual memory. If another process calls 
the same memory mapping no other virtual pages are copied, only file's reference count has 
to be increment, so the usage of this function increase time and space efficiency. Therefore, 
closing the file descriptor after mapping the file, will not cause loss of access to data [17]. 

Virtual address in process 
Virt addr 1 

R A M 
Physical 
memory 

Hard Disk 

Id = open {"file" 

{offset 

Figure 4.2: M M A P with MAP_SHARED flag, Fig. based on [6] 

4.1.2 M m a p function 

The mmap function maps some files or devices into the calling process virtual memory. The 
call is defined in sys/mman.h as: 

void *mmap(void »Start, size_t len, int prot, int flags, int fd, off_t offset) 

The call will map an len bytes of an object represented by the file descriptor fd. The 
mapping begin can be moved within the object by offset. If start pointer is included, new 
mapped memory will start at this address. The access permissions are restricted by prot 
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Figure 4.3: M M A P geometry [6] 

and flags can add some special behavior. The function returns the address at which the 
new mapping will be placed [15]. 

Due to page-sized granularity described in 4.1.1, all mapping operations have to be done 
in multiple of page size, so mapped length must be rounded up and addresses for mapping 
must be page-aligned. To determine the default size of a page on a current machine, Linux 
user should use: 

size_t page_size = (size_t) sysconf(_SC_PAGESIZE) or 
int page_size = getpagesize(). 

Mmap can be performed in two ways: 

• Private mapping - defined by MAP_PRIVATE, this map is private to the process. The 
file is mapped as copy-on-wri te , and any changes are not reflected in the actual file, 
or the other processes mapping. The page is copied, and modifications are performed 
on the new page. 

• Shared mapping - defined by MAP_SHARED, this map shares the mapping with all 
other processes that map this same file. Any modification performed in the file is 
written back to the disk and is available for other processes to read. There is no 
guarantee, that data writes to disk are immediately processed, due to Copy-in-write 
technique. 

There is a desired memory protection of the mapping, which must agree with the open 
mode of the file: 

• PR0T_EXEC - pages may be executed 

• PR0T_READ - pages may be read 

• PROT_WRITE - pages may be written 

• PR0T_N0NE - pages may not be accessed 

If a file descriptor and offset are given, the mapping is called a file - backed mapping. 
There is also an Anonymous mapping (flag MAP_AN0NYM0US), which is not file-backed and 
the file descriptor is N U L L . Anonymous mapping contents are initialized to zero. 

The complement function of mmap() is a munmapO - unmapping virtual memory. User 
has to call munmapO for each mmaped file descriptor to free memory. Both functions are 
thread safe. 

File Mapped region 
of file 

Off en 
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4.2 Multi threading 

A n excellent way to improve performance of monitoring system is to capture packet using 
multiple threads. Nowadays, the multi-core CPUs are commonly used and parallel comput­
ing is widely support in Linux OS [22]. However, passing data between thread consumes 
systems's resources and the performance can be limited. When the application using mul­
tiple threads, the thread affinity should be used to reduce communication between cores. 

4.2.1 Thread Affinity 

The process, which provides a packet processing, should allocate a memory assigned to 
the executing C P U . The reading from a local cache of C P U is more effective because it 
decreases a cache miss probability. 

The affinity is a technique fixes the thread execution and its resources localization to 
a particular processor or core. There are several affinity domains, that is thread affinity, 
process affinity, interrupt affinity or memory affinity It aims to avoid expensive message 
passing between processes, thread scheduling, and polling [5]. 

Thread and process affinity being able to assign specific thread or process to a particular 
processor/core. In Linux can be used a pthread_ setaf f inity_np from the POSIX pthread 
library. 

The Interrupt affinity handles software and hardware interrupts by specific cores or 
processors. In Linux, the Interrupt affinity may be accomplished by writing a binary mask 
of C P U to /proc/irq/IRQ#/smp_aff inity to assigned an interrupt handler IRQ# to C P U . 

The memory affinity is used mainly in N U M A systems. There is a tendency to avoid 
cache-misses and hold particular data closer to executing C P U in a memory hierarchy. 

4.2.2 RSS 

The Receive-Side Scaling (RSS) is a NIC's feature, which allows distributing network traffic 
across several queues within NIC. Due to this approach, the traffic can be processed by 
multiple CPUs in multiprocessor systems. RSS is enabled by default but can be configured 
by a user and a spread rules can be modified by use-case. For example, traffic can be 
scattered by IP addresses or port number in packet headers. Many NIC drivers use an 
ethtool command to defined spread rules [22]. 

4.3 Frameworks 

There are several frameworks which alternate standard network stack packet processing in 
Linux to overcome some limitations. 

X D P 

EXpress Data Path is specialized in-kernel facility allowing to kernel network data 
path without modifying the kernel. Appropriate use - cases are a load balancing, the DDoS 
protection or fast forwarding. The X D P using eBPF subsystem and it does not provide a 
kernel bypass mechanism [10]. 
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PacketShader 

PacketShader is a GPU-accelerated software router. PacketShader provides a huge packet 
buffer with batching processing and minimizes packet movement between local and remote 
memory in a N U M A system. The used strategy enables a kernel stack bypassing for easier 
and faster G P U operations. 

Netmap 

Netmap is a kernel module supporting m u l t i - queue fast packet processing and pipes be­
tween applications. It uses zero-copy, kernel bypass and batched processing techniques. 
However, the circular ring buffer is fixed size, which may not be appropriate for the appli­
cation with lots of packets in buffer [5]. 

P F _ R I N G ZC 

P F R I N G ZC is a kernel module using a DNA/LibZero drivers allowing direct access 
to packets on the network interface by simultaneously bypassing both the Linux kernel 
and the P F R I N G module in a zero-copy method. The framework adds support for 
virtualization and inter - process communication and it is possible to use zero-copy with 
non - P F R I N G - aware drivers. The main disadvantage of this framework is the non-free 
licence. 

D P D K 

The Intel Data Plane Development K i t (DPDK) is a framework optimized for Intel hardware 
(NICs, C P U , chipset) with enhanced NUMA-awareness, and libraries for packet manip­
ulation across cores. D P D K is most widely used framework. However, D P D K requires 
maintaining full separate drivers and its integration into solutions is hard, due to taking 
over entire NIC and the need to reimplement a T C P / I P stack. 

OpenOnload 

OpenOnload is a proprietary SolarFlare solution for fast packet processing. OpenLoad 
provides a user-level network stack, allowing to accelerate existing applications quickly. 

Framework XDP PacketShader I/O Netmap P F _ R I N G ZC DPDK OpenOnload 
Zero-copy Y N Y Y Y Y 
Kernel bypass N Y Y Y Y Y 
I/O Batching Y Y Y Y Y Y 
Hardware multi-queue support N Y Y Y Y Y 
Devices family supported ALL 1 8 ZC / A L L (non-ZC) 4 ZC / A L L (non-ZC) 11 Al l SolarFlare 
Pcap library Y N Y Y Y Y 
License GPLv2 GPLv2 BSD Proprietary BSD Proprietary 
IXGBE version Last 2.6.28 Last Last Last N / A 

Table 4.1: Summarize the features of the I /O frameworks [4] 
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4.3.1 Summary 

Table 4.1 summarizes framework overview. A most popular technique used in high-performance 
packet processing is the kernel bypassing, which overcome the limitation of the Linux kernel 
networking layers by skipping them. Packet processing is done from user-space including 
the NIC driver handling. By giving full control of the NIC to user-space program, the 
kernel overhead (context switching, networking layer processing, interruptions, etc.) can 
be significantly reduced, especially when 10Gb or higher speeds are used. However, using 
the kernel bypass has several disadvantages 5: 

• Does not used OS's abstraction for hardware resources. Custom user-space driver 
might be less tested, verified and reusable than an OS's one 

• The program works as sand-box, with integration and interaction limits 

• Kernel functionality is skipped, User need to reimplement them 

• Security layer of OS is skipped 

The better way is not to move packet-processing out of the kernel's realm into user-
space, but to move user-space networking programs (filters, mappers, routing, etc.) into 
the lowest point of the kernel's domain. Such opportunity offers an X D P framework [10]. 
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Chapter 5 

The eXpress Data Path 

This chapter presents in detail one of the fast packet processing framework - the eXpress 
Data Path (XDP) . The X D P is a system that allows user programmability directly in the 
operating system network stack in a cooperative way while ensuring the safety and integrity 
of the rest of the system. The approach of X D P is to keep hardware control inside the kernel, 
but move packet processing operations into driver level. It is an alternative methodology to 
the kernel bypassing design and represents a good tradeoff between performance, integration 
into the system and general flexibility [1, 10]. 

In addition, X D P can completely bypass the network stack and provides the zero- copy 
socket ( A F _ X D P ) , which offers higher performance than common kernel modules hooking 
the stack. This feature is an ideal candidate for use in fast traffic monitoring. Moreover, 
the X D P is build-in mainline Linux kernel since its version 4.8 ( A F X D P since 4.18) and 
no specific H W requirements are needed 5. 

VMs and containers 
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s Device driver 

Network hardware 
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User space-accessible sockets 

Network stack processing steps 

User applications, VMsf containers 

Parts of the XDP system 

Figure 5.1: X D P integration with Linux network stack [10] 

18 



The X D P is a layer inside NIC driver that allows validated code execution for every 
single packet. The code can be loaded, controlled and inspected from user-space and some 
action on each packet can be taken before the operating system networking stack allocates 
the S K B structure and process the packet [10]. Figure 5.1 shows X D P integration into the 
Linux kernel. The data-plane is split between the kernel and in-kernel injected program 
while the control-plane is completely ensured by user-space. Thus, the user's validated code 
can be control from user-space, but it will run in the kernel space. 

5.1 X D P actions 

As was mentioned previously, X D P executes a simple code for every single packet to packet 
classification. The validated code decides datapath through the system based on the current 
packet context. Program can manipulate packet in arbitrary ways (encapsulate header or 
change some bytes), but finally, the program must return a verdict to the driver, describing 
how to handle the packet. There are several verdict actions that can be used: 

1. X D P PASS - allows the packet to pass into the standard network stack 

2. X D P _ D R O P - drops the packet 

3. X D P T X - bounce the packet back on the same interface 

4. X D P R E D I R E C T - redirects the packets to another interface 

(a) B P F _ M A P _ T Y P E _ D E V M A P - redirecting raw frames to the user-defined 
device 

(b) B P F _ M A P _ T Y P E _ C P U M A P - redirecting raw frames to remote C P U 

(c) B P F M A P T Y P E X S K M A P - redirecting raw frames into userspace 

5. X D P A B O R T E D - drops the packet with an error 

5.1.1 X D P and e B P F 

The X D P system is closely linked to eBPF (extended Berkeley Packet Filtering) ecosystem. 
X D P does not have its own programming language, so it uses eBPF programming language 
(it uses C-like syntax) code. The eBPF code is compiled into custom bytecode, analyzed 
and translated into native instructions by the kernel and injected directly into the driver 
level as a sandbox. Due to this, the action decision can be done very quickly after the 
packet has been received. Nevertheless, the eBPF program has some restrictions and does 
not support completely arbitrary code. The restrictions ctre cts follows [21]: 

• contains no loop, Not Turing complete 

• accesses only valid memory 

• uses a limited number of eBPF instructions (no more than 4000 instructions) 

• bounded program size 
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5.2 The design of X D P 

The X D P system consists of four major components that cooperate with each other. The 
components are illustrated in Figure 5.2, which explains, how they fit together: 

1. The X D P driver hook - entry point of X D P , attached to a driver event 

2. The eBPF virtual machine - j u s t - i n - t i m e compilation and execution of eBPF 
program 

3. B P F Maps - communication channel with the rest of the system 

4. The B P F verifier - static analysis to protect running kernel memory 

Due to the using of the eBPF programming language for injected code, the eBPF 
compiler toolchain occupies a more substantial part of X D P system. X D P itself is just 
one driver level hook using and invoking eBPF's features, full toolchain is illustrated in 
Fig. 5.5. Nevertheless, the use of eBPF has a significant advantage over tradition loadable 
kernel modules, namely eBPF does not lead to a kernel-space memory corruption or kernel 
instability. It means that eBPF subsystem will only run code that has been deemed entirely 
safe to run. 

Network card driver -* 

H User program 

1 B P F _ P R O G \ L O A D 

socketfilter kprobes eBPF bytecode 
BPF uprobes 

Hardware interfaces 

Results 
(bpf_lookup_elem) 

Kernel space 

Figure 5.2: Four components of X D P design highlighted in green 

User space 

5.2.1 The X D P driver hook 

In general, any generic kernel event can be potentially intercepted, and eBPF can react to 
it: message (socket-layer) received, data written to disk, page fault in memory and much 
more. So nowadays, the eBPF system is being used not only for networking purposes but 
also it is a tracepoint tool for kernel developers and production engineers to run user-space 
code inside the kernel [10]. 

Several hook points (event callbacks) for networking purposes exist in the network stack, 
where a user-defined eBPF program can be attached to, for example, kprobes and uprobes, 
socket (original tcpdump use case) and tc filters. The metadata associated with a packet 
(and dispatched to the eBPF program) and allowed kernel helpers are changed according 
to the hook point that has been used. 
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However, all hook points take place in higher levels of the network stack, so the X D P 
defined a new hook point at the lowest level of network stack datapath - in driver space, 
and the program execution can be triggered by the arrival of a packet to NIC. But not all 
network device drivers implement the X D P hook. In such a case, it is used the generic 
X D P hook (also called S K B m o d e ) , which take place after S K B allocation [1, 10]. 

The hook execution 

The X D P hook simply attaches the eBPF file-descriptor handle to netdev and the eBPF 
program is executed directly in the device driver whenever a packet is received from a hard­
ware. Typically, the execution flow is divided into three steps, shown in Fig.5.3: reading, 
metadata processing, and writing packet data. In addition, some communication with the 
rest of the system can be made. These steps can be alternate or repeated in arbitrary ways, 
and whole packet processing can be split into multiple eBPF programs through tail call, 
which passes control between them [10]. 

Read/write metadata 
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- RX metadata (queue no,...) 
- Pointer to packet data 
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- Write any packet header / payload 
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Communication with rest of system 

Packet flow 
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Return code 

Figure 5.3: Execution flow of typical X D P program [10] 

A context of the received packet in the X D P hook includes a pointer to raw data, its 
length, and metadata describing which interface and queue was the packet received on, and 
the program typically begin by parsing these data. The context structure also gives access 
to a contiguous buffer resides in memory next to the packet data, where the program can 
attach its own metadata to the packet. 

Maps in eBPF programs allow to communicate with the rest of the system (see more in 
section 5.2.3) and a persistent data can be changed depending on the current packet data. 
The packet and its metadata can be modified. The program can remove or rewrite any 
part of the packet, such as shrinking headers or rewrite address fields for forwarding and 
recalculate the checksum. To ease packet modification, the helper functions add existing 
kernel functionality without the need to go through the full kernel stack. 

Finally, the packet verdict has to be made, and the program has to return one of the four 
codes that say how to deal with the packet [10]. No other parameters are returned, except 
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the redirect verdict which requires an additional parameter that specifies a redirection 
target. For example, it is possible to specify a userspace socket ( A F X D P ) as the target. 
The implementation of redirect function is very flexible (as map lookup), which means that 
a redirect target can be changed dynamically without program modification. 

5.2.2 The e B P F virtual machine 

The eBPF program is executed inside a specialized virtual machine resides in the kernel. 
The virtual machine performs just - in - time compilation of the eBPF instruction into native 
machine code and its execution. The V M exposes to the user a virtual processor, a set of 
eleven virtual C P U registers, a program counter, accumulator and a 512-byte memory stack 
and its RISC instruction set includes arithmetic and logic instructions and call instruction 
as well. 

The virtual machine completely separates inside running bytecode from kernel space. 
The isolated environment of the virtual machine causes that bytecode cannot arbitrarily 
call other kernel functions or access into memory outside its own environment. To interact 
with rest of the system some helper functions can be called, depending on the type of the 
B P F program (see more in 5.2.4). 

The main benefit of V M is that a user can dynamically load and inject eBPF programs 
without kernel reboot. A l l communication between user-space and V M is through a bpf () 
system call, which provides all control operations like loading programs, attaching them to 
specific events, creating eBPF maps and access the map contents from tools. 

Another benefit is that the V M provides a stable A B I towards user space and guarantees 
that existing eBPF programs can be portable across different architectures and keeps them 
running with newer kernel versions. Moreover, the V M is build-in part of mainline Linux 
kernel distribution and there is no need for any third party kernel modules. 

Registers 

The set of V M ' s registers is listed in the table 5.1. The registers are always 64-bit wide 
(even if running inside a 32-bit A R M processor kernel), but they support 32-bit subregister 
addressing if the most significant 32 bits are reset [10]. Because registers RO-5 are reserved 
for function calls, the maximum number of function arguments is 5, and the first register 
always holds a return value. 

Register Function x86_64 equiv 
R0 return value from in-kernel function and exit value for eBPF prog rax 
R l first arg to in-kernel function/scratch variable rdi 
R2 second arg to in-kernel function/scratch variable rsi 
R3 third arg to in-kernel function/scratch variable rdx 
R4 fourth arg to in-kernel function/scratch variable rex 
R5 fifth arg to in-kernel function/scratch variable r8 
R6 callee saved registers that in-kernel function preserves rbx 
R7 callee saved registers that in-kernel function preserves r l3 
R8 callee saved registers that in-kernel function preserves r l4 
R9 callee saved registers that in-kernel function preserves r l5 

RIO read-only frame pointer to access stack rbp 

Table 5.1: V M ' s registers and usage within eBPF program [21] 
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The operation set 

The operation set of eBPF is around 100 instructions, and this number is continually 
increasing with the expansion of eBPF functionality in kernel releases. The operation 
of B P F is 64-bit wide to correspond to the 64-bit host architecture to perform pointer 
arithmetics and pass return values. There are three types of instruction: A L U instructions, 
memory instruction and branch instruction. 

The instruction format is designed as two operand instructions, which helps to map 
B P F instructions to native instructions during the compilation phase. Due to this, the 
eBPF program can support helper functions that cooperate effectively with the kernel. 

5.2.3 B P F Maps 

The eBPF programs do not have access to persistent memory and every invocation starts 
in the initial state, so maps are the only way to communicate with the other parts of the 
system. In terms of X D P , the map is a data structure shared between the user-space and 
the eBPF program. Basically, the map is key/value store which exists in several different 
types: hashmap, array, queue, radix tree and so on and exists in two different variants also: 
global and per-CPU private. 

A single B P F program can currently access up to 64 different maps directly, and they 
serve several purposes: coordination tools for change behavior; persistent data storage or 
communication mechanism, because data can be accessed on the user, kernel or eBPF sides. 

Map implementations are provided by the core kernel and from the kernel point of view, 
B P F maps and programs are behaving as regular resources so that they can be only handled 
through file descriptors, backed by anonymous inodes in the kernel. To overcome limitation 
associated with descriptor sharing between processes, a lightway B P F filesystem in kernel 
space has to be used, and then multiple eBPF programs can be pinned to one map object 
as shown Fig.5.4. 

Creating a B P F map is done by defining a global struct bpf _map_def, which includes 
type (hash, radix tree and so on), size of the key, size of the values and maximum allowed 
entries. Creating and loading maps into the program is the responsibility of user-space, but 
the kernel natively defined set of functions (helpers) which are available from bytecode and 
perform some complex interaction with maps as key lookup, update or delete items. The 
helpers also arbitrate access to maps and provide mutual exclusion, if it is needed. 

Userspace 
Application 1 

R/W 

User space 

Kernel space 
MAPS 

R/W 

Userspace 
Application 2 

R/W 

MAPs 

R/W 

% 1 
eBPF program 1 eBPF program 2 

Figure 5.4: B P F maps and their interaction [21] 
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5.2.4 The B P F verifier 

The eBPF program runs in kernel address space and arbitrary kernel memory might be 
corrupted, if malicious or buggy program will be loaded. There are many possible risks, 
which are unsafe: infinite loops could crash the kernel, buffer overflows, uninitialized vari­
ables, out of bounds jumps and so on. To avoid these, kernel build-in verifier performs a 
static analysis of the program byte code, when program is loading via bpf () syscall. 

The verifier builds a directed acyclic graph of the control flow and ensures that the 
graph is truly acyclic, no unsafe memory access has been occurring and the code contains 
only supported and reachable instructions. This is checked by doing a depth-first search of 
the graph. Any program that contains unreachable instructions will fail to load. Then the 
verifier simulates the execution of the eBPF program one instruction by one. The V M ' s 
registers and stack have to be valid before and after execution. For example, a uninitialized 
register that has never been written to causes the program load to fail. 

Finally, the verifier uses the eBPF program type to restrict which kernel functions can 
be called from eBPF programs and which data structures can be accessed. There are many 
types of eBPF programs that differ by where the program can be attached, which in-kernel 
helper functions will allow to being called, whether network packet data can be accessed 
directly, and the type of object passed as the first argument to the program. In the case 
of X D P , when the program is loaded via syscall, the type of program has to be set to 
B P F _ P R O G _ T Y P E _ X D P . 

If verifier doesn't prove that byte code is safe, then it will terminate the program loading. 
Also, the total program size is limited, and verifier has to ensure that it is not exceeded. 

1. Restricted C 
eBPFCode 
5tatic void init_array() 

i nt key; 
for (key = 0; key < 1000; key++) { 

bpf_update_elem[map_fd[0], Skey, 
Svaluel, BPFANY); 

) 

Restricted C 

Kernel Hooks 

eBPF Bytecode 

Source , Byte 
..'TWr Code 

Runtime Injection 

Userspace 
eBPF Virtual Machine 

Just In Time Compiler 

Kernel 

2.eBPF bytecode 
10: Idh |12] 
II: jeq #0x800, 13, 12 
12: jeq #0x805, 13, 18 
13: Id [26] 
l4:jeq#SRC, 14, 18 
15: Id len 
16: jit 0x400,17, 18 
17: ret#0xffff 
18:ret #0 

3. x86 Native Code 
mov eax, [ebp+8] 
mov esi, [ebp+12] 
mov edi, [ebp+16] 

mov [ebp-4], edi 
add [ebp-41, esi 
add eax, [ebp-41 

Figure 5.5: eBPF: overview of the runtime architecture [21] 

5.3 Creating e B P F program 

There are many ways to create a B P F program. One method is that the user writes his 
eBPF program directly using the eBPF assembler in Intel-like assembly syntax [19, 7]. The 
instruction set is available also as macros defined in bpf/libbpf.h in the kernel source tree, 
and C syntax can be used. 
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Another method is to implement a program in high-level languages such as C and let 
the compiler translate the code to eBPF and hide assembly instruction for user. The eBPF 
community selected the L L V M Clang compiler for such a task. The compiler generates the 
E L F object file which can be loaded using bpf () syscall to an eBPF virtual machine. Due 
to eBPF program restriction mentioned above, only the restricted C can be used. 

To make compilation easier, there is a B P F Compiler Collection. It is a toolkit for 
writing, compiling and loading eBPF programs in C, Python and Lua. Even more, bcc 
provides nice object-oriented bindings when working with maps and includes many tools 
useful for tracing [7]. The eBPF program is possible to load via iproute2 or perf [7, 8]. 

Libbpf 

Another helper for writing eBPF program is the Libbpf library. It is a generic library inside 
kernel source tree which performs wrapping function for loading (bpf _load_program()), 
reading and manipulation with eBPF objects from user-space to ease writing eBPF pro­
grams in C [7]. 

Very useful functions inside libbpf are wrappers for working with A F X D P socket 
(libbpf/xsk.c and libbpf/xsk.h). They offer APIs for low-level access to the packets rings 
and its data and high-level control plane for creating and setting up U M E M s and A F X D P 
sockets themselves. A simple eBPF program for socket utilization is included, so the adop­
tion of A F X D P to new or existing programs is very comfortable. 

The kernel tree also provides some neat examples (located in samples/bpf/) which show 
how to use the libbpf. User can link the library statically or as a DSO. The library is used 
by other kernel projects such as perf or bpftool, and it is dual-licensed under the L G P L 2.1 
and BSD 2-Clause [7]. 

For debugging and introspecting B P F programs and B P F maps, a user can use a bpftool. 
It is a tool developed by the Linux kernel community like libbpf. The bpftool allows dumping 
all active eBPF object in the system or disassembling JITed B P F instructions [7]. 

5.4 A F _ X D P 

A F X D P (previously known as P A C K E T V4) is a new address family based on X D P 
layer benefits, designed to pass network traffic from the driver up to user-space as fast 
and efficiently as possible. Fig. 5.6 illustrates a comparison between A F X D P socket and 
standard A F _ I . N E T socket: the tradition network stack is bypassed before S K B allocation. 
The core idea behind is to use the XDP_REDIRECT action and bpf _redirect_map function 
when packets arrive on NIC to redirect them to the user-space socket ( A F X D P socket, 
also called X S K ) . Redirect can be done without any copy, so this socket is able to deliver 
a raw packet from NIC to the user-space very fast [14, 23]. 

5.4.1 Driver support and zero-copy mode 

A F X D P socket (also called X S K ) can operate in three different modes depending on NIC 
capabilities: 

1. Generic S K B mode 

2. Native X D P _ D R V mode 

3. X D P _ D R V + Z C mode 
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Figure 5.6: A F X D P socket vs. standard socket cite 

The Generic mode works on any NIC, and for this mode, the hook point is not at the 
lowest level of datapath, but only after an skb allocation. The Native mode works on all 
devices with X D P hook support; the X D P D R V + Z C is a native zero-copy mode requiring 
special driver support. 

The zero-copy mode has a higher performance because the D M A stores data in a user 
allocated frames. Otherwise, the kernel has to allocate the memory and copy the frames 
to the application. The ZC driver needs to implement and expose the A P I for using the 
memory area directly in the NIC RX-ring structure for D M A delivery and nowadays, only 
ixgbe and i40e drivers 1 by Intel do that (Mellanox coming soon). Table 5.2 shows the 
current driver's X D P support; zero-copy support is highlighted with an asterisk. 

Vendor Driver 
Broadcom bnxt 
Cavium thunderx 
Intel ixgbe* ixgbevf i40e* 
Mellanox mlx4 mlx5 
Netronome nfp 
Qlogic qede 
Solarflare sfc 
Marvell qede 
Others veth virtio_net net tun dpaa2 

Table 5.2: X D P support, zero-copy support with asterisk [7, 13] 

1 Using a ZC requires a NIC driver from vanilla kernel tree, the out of tree drivers do not contain the 
XDP-ZC support 
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5.4.2 A socket redirect 

A new type of map makes it possible to perform redirect packets to user-space. It is called 
X S K M A P (or B P F M A P T Y P E X S K M A P in full), and it is a simple array containing a 
file descriptor corresponding to one A F X D P socket. As mentioned earlier in section 5.2.3, 
the map is key/value store, and in case of an array, the key is array index of increasing 
integers and the value is an array item. 

A process can create a socket with an attached memory buffer and push socket's file 
descriptor in the X S K M A P via bpf () call. Actually, an internal kernel descriptor is stored 
in the map, but from an application point of view, it is not visible. 

A B P F program loaded into the driver can redirect a packet to an arbitrary descriptor 
in this map, and X D P has to validate if the descriptor is indeed bounded to the device and 
some queue. If the chosen index has not passed the validation, then the packet is dropped. 
The packet is also dropped when an item on the chosen index is empty. In the opposite 
case, the packet will be directed to receive queue corresponding to the A F X D P socket in 
the selected map entry. Thus, it is mandatory to have an eBPF program loaded and have 
at least one entry pushed in the map, while an A F X D P socket is used. Otherwise, the 
application will not be able to get any traffic through A F X D P socket. 

User S p a c e 

DPDK qO DPDK q l DPDK qO DPDK qO DPDK q l 

XSK A XSK B X S K C XSKD XSKE 

NETDEV queue 0 NETDEV queue 1 

NETDEV ethO 

ID=56 

Kernel 

4-

KEY XSK 

0 XSK A 

1 XSKB 

2 XSK C 

3 XSKD 

4 XSKE 

Figure 5.7: Example of B P F M A P T Y P E X S K M A P redirecting in D P D K [20] 

5.5 Memory model 

The memory model used in A F X D P has a great credit for the performance boost because 
there is no memory allocation per packet. A l l packets within X S K are held in pre-allocated 
memory called U M E M . Moreover, R X and T X queues can share the same U M E M and 
packet descriptors are separated from packet buffer. 

The U M E M buffer is contiguous memory area divided into several equally sized chunks 
called packet buffers in which a single packet and its metadata can be stored. Every chunk 
is identified by an integer index (also called descriptor), which is a relative offset from the 
U M E M begin, masked to the power of two. E.g., for a chunk size of 2k, the log2(2048) 
L S B of the address will be masked off; it means that 2048, 2050 and 3000 refer to the 
same chunk. Indexes are used in communication between kernel and application to tell 
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each other where a particular packet resides. For example, when a new packet is stored in 
packet buffer and kernel wants to give this data to the application, there is no need to data 
copy or any manipulation, the only thing the kernel has to do is pass the proper chunk 
index to the application. 

For this reason, four buffer rings are used together with A F X D P socket and into which 
indexes can be written. One pair of rings is associated with the socket and it is responsible 
for sent and received packets, one pair of rings is associated with U M E M buffer, and its 
purpose is handling chunk ownership. A l l rings behave as single-producer/single-consumer, 
who is the producer depending on particular ring vocation. 

umem memory region: multiple 2KB chunk elements E M ^ K I ™ 

I 2KB 

Users receives packets 

Rx Ring desc 

Users sends packets 

Tx Ring 

Descriptors 
point ing to umem ~ 
elements For kernel to receive packets 

i Fill Ring 

Complet ion Ring 

For kernel to signal send complete 

One Rx/Tx pair per AF_XDP socket One F i l l /Comp. pair per umem region 

Figure 5.8: U M E M with four rings: R X and F i l l rings are used for recieving, T X and Comp. 
rings are used for sending packets [24] 

The signalization about a chunks ownership between the kernel and the user-space 
application is provided by buffers called F i l l and Completion rings. Within F i l l ring, the 
application is the producer who wants to report the kernel-consumer which chunks are 
available for new incoming packets. On the other side, within Completion ring, the kernel 
is the producer who tells the application which chunks can be used for outgoing packets. 

Another pair (associated with socket) handles incoming and outcoming packets. The 
indexes of received packets are stored in a ring called RX ring. By checking this buffer, an 
application can indicate if it has received a new packet. The indexes of outgoing packets 
are stored in a ring called TX ring and an application fill in indexes of packets ready to be 
sent. 

Each socket is bound to one umem which can have single F i l l and single Completion 
ring, but one socket may include multiple R x / T x rings. Even if zero-copy mode has been 
used, the R X and T X descriptor queues are not shared to user-space. Only the kernel 
can manipulate them, and it is the kernel driver's responsibility to translate hardware 
specific descriptors to descriptor rings that user-space sees. This way, a malicious user-
space program cannot mess with the NIC. 
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The use of rings 

When a packet is received by NIC and kernel driver pick it up, then the X D P program is 
executed and decided if the packet should be pass to a socket. If zero-copy mode has been 
used, the D M A has already put the packet in the U M E M area in user-space, so kernel only 
fill in the packet descriptor to R X ring. The application checks the Rx ring for new items, 
and if a new index appears in R X ring, it processes the data behind the pointer. When 
the application has finished processing, it has to return a packet buffer ownership to the 
kernel to reuse the memory. It will be done by adding the particular index to the fill ring 
so that the kernel can see which chunks are available for a newly arrived packets and where 
a new packet data can reside. Thus, the R X ring and the F i l l ring must be involved in the 
receiving side. 

The T X path works similar, but T X and Completion rings have to be used. When 
the application has a packet ready to send, it fills out the next available descriptor in the 
T X ring to notify a kernel, which packet buffer wants to send. Then the kernel sends the 
packet to hardware, and after the packet has been successfully sent, the kernel writes a 
used memory index back to the Completion ring. 

In summary, the R X and F i l l rings are used for the R X path and the T X and Completion 
rings are used for the T X path. A schema of using is illustrated in Fig. 5.9. 

5.6 Socket creation 

The X S K can be created via standard syscalls as socket(), setsockopt() and bind(), 
but all memory management is directed by the user, so some memory allocation has to be 
done before binding. The followings list is a sequence of necessary operations and their 
function equivalents in C, if a fully functional X S K should be created: 

1. Socket creation - socket () 

2. U M E M allocation - mallocO 

3. Registration U M E M socket - setsockopt (XDP_UMEM_REG) 

4. Creation of rings - setsockopt (XDP_UMEM_FILL_RING) 

5. memory map to user-space - mmap() 

6. binding socket to interface and particular queue - bindQ 
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The socket is created by usual socket () syscall with AF_XDP as domain parameter. 
After that, the memory area, where packets will be stored has to be allocated. It depends 
on the user what function this will be done (malloc, mmap, huge pages, etc.), but it is 
mandatory to register allocated memory to the kernel through the setsockopt function 
with XDP_UMEM_REG. 

As mentioned above, the R X and F i l l rings are used for the R X path and the T X and 
Completion rings are used for the T X path so at least one couple (or both) has to be 
created with U M E M . The creation of these rings is possible via setsockopt calling with one 
of the XDP_UMEM_FILL_RING, XDP_UMEM_COMPLETION_RING, XDP_RX_RING or XDP_TX_RING 
parameters for a particular ring and its size (the level parameter is set to S0L_XDP). The 
size of the rings needs to be of size power of two. The setsockopt than allocates and set up 
the particular ring. 

Next step is map memory buffers to user-space. This mapping is done by using the 
mmapO function described in 4.1.2. Before that, the application has to request kernel 
about socket structure to figure out the actual addresses where all used rings begin be­
cause the ring's structure is highly optimized to reduce cache coherency and looks dif­
ferent depending on architecture. However, the structure is returned to setsockopt () 
call with a XDP_MAP_OFFSET parameter and then the mmapO can be called. The map to 
user-space is required as shared read and write for all of the used queues and specified by 
XDP_PGOFF_TX_RING, XDP_PGOFF_RX_RING, XDP_PGOFF_FILL_RING or XDP_PGOFF_COM_RING 
parameters. 

Finally, the socket has to be attached to a particular interface and queue number, from 
which the packets will be received or transmitted, by the bind() function call. 
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Chapter 6 

Design 

The first section of this chapter analyses a specification of the packet capturing probe that 
will be implemented and in the following section is suggested a possible solution and the 
main logical steps that need to be done by the application. 

6.1 Specification analysis 

The flow probe should be able to capture traffic the highest possible speed, at best 14.8 Mpps. 
The probe has to support IPv4 traffic as well as IPv6 on the Ethernet layer. The appli­
cation should be able to maintain a flow cache of unidirectional flowd; it means to store 
aggregated information about connections, which captured packets belong to. It requires 
a network and transport layer information, so raw packet data has to be captured and 
socket settings have to be adapted to that. The flow subprocesses must be able to make 
a fast data lookup within the flow cache. The exporter may not have adopted a full flow 
exporter protocol support and full template support is not required. The probe should 
be portable, non - blocking, and compatible with other applications running on the Linux 
operating system. 

6.2 Architecture 

The packet capturing at higher rates would not be possible using a standard network stack. 
It is appropriate to use one of the fast packet processing frameworks described in section 4.3. 
X D P framework meets requirements from previous section 6.1. X D P is supported in the new 
kernel source tree and does not need to install another library or kernel module. Therefore, 
it can be used in arbitrary Linux-based system with kernel version 4.19 or higher. The 
X D P supports A F X D P socket which bypassing network stack to avoid its limitations, 
such as per-packet allocation or long datapath through the stack. A F X D P offers a direct 
path from the network card to the application. Moreover, the kernel itself is not bypassed 
so kernel functions are still available as well as in-kernel NIC driver and interface are still 
accessible to other applications. 

Multithreading 

As discussed in chapter 4, the most efficient performance improving idea is to distribute 
traffic among multiple CPUs. Modern network cards support RSS so that the traffic can 
be split into multiple queues and every queue can be processed by a separated C P U . This 
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Figure 6.1: xProbe architecture 

concept is scalable, and the traffic load can be suitably spread across processors, depending 
on the number of CPUs and N U M A cores. 

The suggested probe invokes as many threads capturing traffic as RSS queues and each 
thread resides on one C P U using thread affinity. Each thread opens its A F X D P socket, 
which binds to one of the queues, so that each thread can handle one of the queues, and 
traffic processing can be spread out between C P U cores. 

Shared buffer 

For direct access to the ring memory (RX and F i l l buffers), the thread uses the mmap 
function to memory. Then, the probe, which is running in user-space, can share the buffer 
with the kernel. This approach highly reduces system calls generated by application and 
context switching between address spaces. 

Flow maintaining 

Each capturing process maintains its flow cache to store information about communication. 
Because of splitting traffic to separated queues, each process will have only one part of 
traffic belonging to the particular queue. The RSS distribution among queue is based on 
IP addresses and port numbers, thus packets belonging to the same communication will 
always be in the same queue. It is more auspicious than to maintain one big cache for all 
processes. It can reduce a flow cache size and access time to cache item. 
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The I P F I X was chosen as a flow exporting protocol. It offers variable length of elements 
and native support to IPv6 addresses. Moreover, it is standardized by I E T F , and it is 
compatible with proprietary NetFlow9. 

Architecture scheme 

Figure 6.1 shows the architecture scheme of the suggested probe. At the bottom (and the 
first in a packet datapath) is a network card and its built-in RSS, which spreads traffic 
between multiple queues. Inside the NIC driver is added an X D P layer, which allows 
execution of validated eBPF code. The eBPF is executed for every packet that has been 
received and has to make a decision to which socket will be the packet redirect to, depending 
on receiving queue. If the A F X D P socket in user-space is opened, the packet is redirected 
to U M E M of the particular socket (illustrated as a trapezoid) and certain buffer descriptor 
is added to the R X ring, and POLLIN event is raised (the IRQx arrow). The thread that 
owns the U M E M buffer can read and parse the packet data ( A F X D P x arrow), and the 
flow key and metadata from packet header can be extracted (the „capture", „getFlowKey" 
rectangles). After packet processing, the metadata are used to update a flow record within 
the flow cache and each thread has its flow cache (blue tabular). There is an control thread, 
which ensures aggregating of flow cache and export to the collector via IPFIX. 

6.3 Packet capturing 

Each thread reading data from one of the queues, so the thread needs to create and set up 
an A F X D P socket and binds it to a particular queue. As was mentioned in chapter 5.6, 
the setting up A F X D P socket includes the creation of a socket, allocation U M E M buffer, 
creation the proper rings and bind. The sequence diagram is enclosed in Appendix A. 
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Figure 6.2: X S K M A P redirection on xProbe sockets 

The socket creation is similar to A F _ I N E T socket creation and can be done via a 
syscall. The process has to create a U M E M buffer, where the packet data will be stored. 
The U M E M buffer allocation must be ensured by the process in user-space and must be 
mapped to be shared between user-space and kernel-space. Within the monitoring probe, 
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the packets are only received so there is no need to create Completion and T X rings. The 
application has to set up only R X and F i l l rings to be able to receive incoming packets. 
After that, the socket has to be bound to the interface and the particular queue. The 
application will use a poll function to detect an event on a socket. The poll function blocks 
the process until the kernel will raise the POLLIN (data ready to read) event or timeout 
expired, and then the data can be processed. 

It is necessary to load the eBPF program before the socket creation has begun so that 
the socket can properly receive data. The eBPF code has to maintain an X S K M A P with 
open socket indexes and redirect packets to a certain socket in user-space, depending on 
which queue the packet belongs to, as is shown in Fig. 6.2. The socket indexes are pushed 
into the X S K M A P , at the moment of socket creation, so the map has to be done earlier. 

The A F X D P socket can be used in zero-copy mode, if the probe runs on supported 
NIC. Then the D M A stores packet data directly in the U M E M area. 

6.4 Flow creation 

The probe regards the following 5-tuple as a flow key, which uniquely identifies a commu­
nication between two points: 

1. destination IP address 

2. source IP address 

3. destination protocol number 

4. source protocol number 

5. protocol in IP header 

The flow key and metadata is stored in the flow record. The observed metadata is as 
follows: 

1. number of packets 6. IP layer flags 

2. number of bytes (heads and payload) 7. IP layer options 

3. number of payload bytes 8. transport layer flags 

4. byte histogram 9. communication start timestamp 

5. the lowest T T L 10. communication end timestamp 

The packet headers have to be parsed after the packet data has been captured and 
stored in U M E M . The subprocess providing parsing has to select flow key from IP header 
and transport header, but data link headers need to be parsed as well because V L A N tags 
may occur. 

Parsing 

The first header in raw packet data is Ethernet header (without preamble). The only 
element that needs to be checked is the ethernet type field. The ethernet type specifies 
the type of the following header. There are two main values of the field: 0x0800 value 
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indicates an IPv4 header, and the 0x86DD value indicates an IPv6. But, there is also a 
V L A N tagging which is indicated by 0x8100 or 0x9100 value. Ethernet header has a fixed 
length of 14 bytes, but in the case of V L A N tagging it can be 4 bytes longer or even 8 bytes 
longer, in the case of the Double tagging (IEEE 802.lad) and the first byte of the IP header 
is given by this size. 

The IPv4 header is not fixed in size; it consists of 14 fields, of which 13 are required, 
and the last one is optional and flexible. The length of IPv4 header (this also coincides with 
the offset to the data) is encoded to 4 bits in IHL field. To get the exact size of the header, 
the parser has to multiply the IHL value by 5. The IP header contains three of the five 
flow key attributes: destination IP address, source IP address and protocol number, which 
has to be exctract. As metadata attributes are stored T T L , Flags, total length fields. 

In the case of 0x86DD value in the Ethernet type field, the IPv6 header has to be parsed. 
The IPv6 header is fixed in size but can be concatenated with extension headers. The main 
header includes source and destination IP addresses which has to be selected as flow key 
attributes, but protocol number attribute has to be taken from last extension header so the 
parser must iterate to the last header by checking Next header field. Flow record attributes 
can be taken from the main header also {Hop Limit like TTL). 

The next header in the order is the transport header. The parsing subprocess can 
recognize U D P , T C P , I C M P , ICMPv6, I G M P headers. A destination port number and 
a source port number has to be extracted from the transport header. Some transport 
headers such as ICMP, I C M P v or I G M P do not contain a port number so a header type 
and message code can be used instead. In the case of T C P , the flags have to be extracted 
to detect connection termination, once the F I N flag has occurred. 

Flow cache 

Demanding part of monitoring probe is the way how to store flow records. The data 
structure holding flow records has to be able to access elements efficiently and quickly. For 
this purpose, I choose a hash table, which search complexity may be at worst case O(n), 
depending on a hash function. Very fast hash functions suitable for hash-based lookup 
offers Murmur Hash family [11, 2]. I suggest using the current version MurmurHash3 in 
32-bit variant, which is faster than previous versions. The function uses a multiply (MU), 
rotate (R), X O R and several magic constants on 128-bit blocks of data in its inner loop. 
The input of hash function will be a flow key data structure, and the hash function produces 
a 32-bit hash value that will index the flow cache table. The table will contain pointers to 
flow records in memory (as shown in Fig. 6.3). 
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Figure 6.3: Flow cache and hash function scheme 
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6.5 Flow record export 

The probe creates an extra thread to provide a record exporting. The thread periodically 
serializes records stored in the flow caches and exports data to output. The user can 
specify a time interval between exporting. Additionally the thread periodically prints 
socket statistics to determine sockets utilization and performance. 
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Chapter 7 

Implementation 

This chapter is devoted to the actual implementation of the traffic capturing probe designed 
in the previous chapter 6. The implementation language was chosen as G N U C / C + + . The 
program periodically captures the traffic from multiple NIC queues of a given interface and 
maintains the flow cache up-to-date. For implementation was used a Libbpf and pthread 
library. As a starting point for implementation was used a /samples/xdpsock_user. c 
example from vanilla kernel tree, which demonstrates X S K socket handling. 

7.1 Multi threading 

A pthread C / C + + library is used for creating multiple processes which provide a packet 
processing. The application holds identifiers of all created threads in an array inside 
xProbe_info structure. The thread array is allocated to MAX_S0CKS size so it can hold 
only MAX_S0CKS threads. The number of threads is given by -p argument, (see below on 
section 7.8), but the argument is limited by the MAX_S0CKS constant, and the application 
does not create more than MAX_S0CKS threads and sockets. 

The main thread is creating subprocesses in xProbe_conf igure_and_run function in a 
loop and then waiting to their terminations via pthread_join, which is placed in xProbe_wa-
it_to_end function. The thread executes an XDProbe_thread function, whichin the thread 
performs a socket creation, packets capturing and processing and resource release. When 
the application creates a new thread, the thread_input_t data structure is put to the new 
thread as a parameter. The structure containing basic information about the new thread: 
identification within the probe (tid), the descriptor of a queue (if_queue), from which 
the thread will be capturing packets and pointer to socket descriptor array (xsk), where all 
socket descriptors are stored. 

There is created one extra thread, which periodically prints statistics and its code is 
defined in poller function. This thread opens a file, where periodically prints content of 
flow caches, and at the same time it prints socket statistics on standard output. The flow 
cache is reset after exporting by this thread. 

The packet capturing processes has to be explicitly assigned to one C P U . It is done 
via pthread_setaff inity_np call after the thread has been created. For distribution 
packets among C P U is used RSS on NIC. The RSS rule sets by an ethtool command in 
src/optiNIC. sh script. 

The socket creation inside threads has to be synchronized. The eBPF program has 
to be hooked to the interface before the first socket creation and only one eBPF pro-
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gram can be hooked on interface. Otherwise, the creation will fail. Due to this, I used 
a xsk_creation_mtx mutex that serializes a socket creation, and the first locked thread 
attaches an eBPF program to interface while the other threads are waiting. When eBPF 
is successfully attached by the first thread, the other threads do not try to hook it again. 
Without this mutex, it often happened that two thread tried to attach an eBPF at the 
same time, and it caused a hook error. 

The application also using two barriers to synchronize socket initialization. The xdp_ready 
barrier is used to wait for each other after successful socket creation. Second barrier 
xsks_ready synchronized threads with the main process and indicates the moment when 
all threads are ready to packet processing. 

7.2 e B P F 

The cornerstone of the X D P system is an eBPF program, which is executed inside the 
driver. When an application wants to use an A F X D P socket in user-space, the eBPF 
program that performing an XDP_REDIRECT action must be running inside the driver. Such 
eBPF program maintaining an open sockets map and redirecting packet to socket based on 
queue, on which the packet has been received. 

The assembler instructions can be used to write the redirecting eBPF program, and the 
application can attach the program to interface via bpf _load_program and bpf _set_link-
_xdp_f d calls. But the Libbpf library offers a wrapper which does that. The xsk_load-
_xdp_prog function from Libbpf defines a simple eBPF program ensuring proper redirecting 
action and attached the program to the interface. It is a simple way to use an A F X D P 
socket without prior knowledge of eBPF programming. The implemented probe uses this 
wrapper because the application does not need any other eBPF features and basic redirect­
ing, which offers this build-in program, is sufficient. 

The redirecting eBPF program has to be detached when a signal interrupt is sent to the 
application. A n identification of hooked program can be recognize with bpf _get_link-
_xdp_id function. The unattached is done by calling a bpf _set_link_xdp_fd with a -1 
value as the second parameter. The maps has to be destroyed as well. Due to this, the 
xsk_clear_bpf _maps and xsk_delete_bpf _maps functions are called. 

The eBPF maps use lock memory, which is very low by default and application needs 
to increase resource limit RLIMIT_MEMCLOCK with setrlimitO call. The limit is set on 
application start to RLIM_INFINITY, it means no limit for lock memory. 

7.3 Memory model 

The A F X D P uses a different way of storing packets than a standard socket. It uses shared 
UMEM area, which is managed by user-space (described in section 5.5). Within the probe 
application, the xsk_umem_inf o data structure represents an UMEM memory model. It 
contains a pointer to a memory area, its size, and pointers to receiving rings which manage 
the incoming packets. 

The application allocates UMEM memory via posix_memalign because allocated mem­
ory needs to be aligned to page size. The size of allocated memory is set to XSK_UMEM_-
_DEFAULT_FRAME_SIZE * NUM_FRAMES, the first constant represent packet buffer size and 
the second constant gives a total number of packets that can be stored in one UMEM. The 
packet buffer size is set to 2048B, because one packet buffer contains a headroom along 
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with frame data buffer. The maximal frame size can be 1500B and the headroom length is 
320B so theirs summary is rounded up to power of two to 2048. 

The U M E M buffer is created in user-space, and the application has to register memory 
buffer with the socket. For this purpose, the application using the XDP_UMEM_REG command 
of the setsockopt () system call and then the U M E M serving as socket buffer. The creation 
and register memory are done in the xsk_conf igure_umem function. 

The application using an R X and F i l l rings to manage receiving packets. The rings are 
created in conjunction with socket creation, which is described in the next section. The 
rings reside in kernel-space and the kernel has to share them with the probe. For this 
purpose, the page remapping is used, and mmap function with ring pointers as parameters 
are used to remap a memory. 

The munmap function is called to all mmaped regions when the probe is interrupted, as 
well as the U M E M memory is freed. 

7.4 Socket creation 

Each packet capturing thread creates a separate socket with an independent packet buffer. 
As was mentioned in section 5.6, the socket creation includes several parts and the whole 
procedure is implemented in the xsk_conf igure_socket and xsk_conf igure_umem func­
tions, where Libbpf wrappers are called to socket creation. 

First, the socket structure has to be created with socket syscall. The socket type is 
defined as RAW_S0CK with default protocol number 0, and the AF_XDP value (44 in real) 
is given as a domain parameter. Then the U M E M is registered with the socket as was 
described in section 7.3. 

After that, the F i l l and R X ring are created with setsockopt syscall. The S0L_XDP level 
(value 283) has to be set when the syscall manipulating with any X D P options. The setsock­
opt option name creating a F i l l ring is an XDP_UMEM_FILL_RING and an XDP_UMEM_RX_RING 
for creating the R X ring. The size of rings are defined in FILL_RING_SIZE and RX_RING_SIZE 
constants, and both are sets to 8192 descriptors. This number corresponds to the maximum 
number of network card descriptors (ethtool -g command). 

As mentioned earlier, the application using the page remapping to share rings between 
address spaces. After the rings creating, the mmap function with queues descriptors is 
called to propagate memory to user-space. But the application does not know the actual 
pointer to rings data, so the setsocktopt with XDP_MMAP_OFFSETS command has been 
called before. It returns a data structure with memory offsets, on which the rings actually 
reside. These offsets are used as parameters to mmap function. 

Finally, the bind syscall is issued, which assigns the socket to interface and particular 
queue. The interface name is given by the user as an - i argument, and the interface is the 
same for all packet capturing threads. On the other hand, the queue id is unique to all 
threads and it is specified by thread's tid variable. It means, that the first packet capturing 
thread with a tid = 0, will be bound to the queue with a id = 0, the thread with tid = 1 
will bind the second queue (id = 1) and so on. 

When the socket is ready to receive packets, the packet buffer indexes must be written 
into the fill ring to mark available chunks. It is done via Libbpf wrapper xsk_ring_prod_-
_f ill_addr, which is called in a loop to fill up F i l l ring. 
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7.5 Packet capturing 

The thread is using a poll function to detect when a new batch of packets is ready to 
process. The thread registers the poll to socket's POLLIN event and waits until the event 
occurs or a timeout expires. When the new packet is ready to process, the thread reads 
its location and its length from RX ring by an xsk_ring_cons rx_desc call. The chunk 
descriptor is used to index a U M E M buffer, but it is not real address in memory. To get 
real data pointer is used a xsk_umem get_data function, which returns a pointer. Then 
the data pointer is given as parameter to a f rame_parser function, which provides packet 
processing. After the packet processing, the chunk ownership has to be returned back to 
the kernel, so the chunk index is written to the F i l l ring via xsk_ring_prod f ill_addr. 

7.6 Packet processing 

The packet processing includes a flow key and metadata extraction from a raw data; flow 
cache lookup and updating flow record. The extraction provides a f rame_parser function, 
which gets a pointer to a raw packet and its length as the parameter. Firstly, the Ethernet 
header is decapsulated by checking 12th and 13th bytes of data, where the frame type field 
resides. These two bytes are used to switch condition to determine the type and length of 
the data link header. The Ethernet header length coincides with the data offset, where the 
next header begins. 

The next header to decapsulate is an IP layer header, which contains a source and 
destination IP addresses that are used as the flow key attributes. The application can 
recognize only two types of IP headers: IPv4 header or IPv6 header. A data pointer is type 
casting to a header data structure, which represents IP headers, and particular fields are 
copied. The data structures are taken from linux/ip.h and Unux/ipv6.h header files. 

If the IPv4 header contains any options, the option type is recorded to bit field. In 
the case of IPv6 header, the header extensions can be placed after the main header, and 
parser needs to proccess them as well. The parser iterates through extensions until the 
NEXTHDR_NONE (59) constant occurs in the header type field. 

The port numbers are extracted from transport layer headers similarly as IP addresses. 
The pointer to data is type casted to a header data structure. The data structures are 
taken from linux/*.h header files as well. The T C P option flags are stored in flow record as 
bit field and extracted flags are aggregated by OR function to the bit filed. After parsing 
L3 header are metadata stored in flow cache.Figure 7.1 shows a data structure used for the 
flow key and flow record. 

7.6.1 Flow cache 

The flow cache is implemented as hash table. The hash_table_t data structure represents 
a flow cache and holds information about cache within thread. 

The index of hash table is given by f low_key_hash function, which implemented a 
Murmur3 hash function. The hash seed is random generated when the application starts 
and it is shared in every flow cache. The input of hash function is f low_key_t data 
structure, which represents a flow key (Fig. 7.1). A value returned from hash function is 
divided modulo size of flow cache. 
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flow_key_t 

- union sa: in_addr v4 
in6_addr v6 

- union da: in_addr v4 
in6_addr v6 

uintl6_t: dport 

- uintl6_t: sport 
- uintS_t: protocol 

flow_record_t 

+ flow_key_t: key +• uintSJ: TCPflags 
-i- uint32_t: key_hash + uint32_t: TCPoptions 
-1- uint32_t: ip_type +• timeval: start 
+• uintß4_t: niim_pkts + timeval: end 
-i- uint64_t: num_bytes +• ip_info_t: ip 
+• uint64_t: num_payload_byte; + flow_record_t *: next 
-i- payload_stat_t: payload +• flow_record_t *: prev 
t- histogram_t: bytecount + flow_record_t *: time_prev 
-i- uint32_t: IP_options + flow_record_t *: time_next 

hash_table_t 

+ uint: id 

+ timeval: laststatsoutput 

+ pthread_spinlock_t: rwlock 

+ flocap stats t: stats 

+ flocap_stats_t: last_stats 

+ flow_record_t*: first_flow_record 

+ flow_record_t*: lastf lowrecord 

+ flow_record_t*: flow_cache_array[ ] 

Figure 7.1: Flow key, flow record and flow cache data structures 

The hash table contains lists of flow records in order to store records with same hash 
value. The cache lookup returns a pointer to the first flow record of record list and linear 
iteration through the list has to be done to find out specific record. 

The flow cache maintains a chronological order of stored records. Each record has a next 
and prev pointers to the chronological predecessor and successor. The head of chronological 
list is stored in hash_table_t. f irs t _ f low_record. 

The flow cache is protected by spinlock rwlock. When the packet capturing process 
updating a flow cache, the process locks this spinlock for case of cache exporting by the 
control thread. 

7.7 Record exporting 

The Probe does not provides a full support of I P F I X protocol. The control thread serializes 
the data in the export_all_tables function and print statistics to the file. The control 
thread interates throught the flow caches and takes its flow records by chronological order 
to print metadata. The record is destroyed after printing. 

The control thread prints sockets statistics to stadard output. The packet counter of 
the particular socket is holded in xsk_socket_info data structure and it is incremented 
when a packet batch is ready to process. 

7.8 Applicat ion exection 

It is mandatory to execute application on Linux system which supports a X D P , eBPF and 
A F X D P . The probe was tested on vanilla kernel version 5.0.6. The manual for installation 
can be found in Attachement B. 

The probe is consists of several source files, which are included on attached D V D . The 
standard Makefile file is enclosed. The make command should be called in /src folder 
to source code compilation. The command creates an xProbe binary file, which can be 
executed with following parameters: 

./xProbe - i [INTERFACE] [OPTION] 

- i , —interface=n Run on interface n 

-q, —queue=n Use queue n (default 0) 
-p, — p o l l Use poll syscall 

-S, —xdp-skb=n Use XDP skb-mod 
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-N, —xdp-nat ive=n Enfore XDP native mode 

-n, —interval=n Specify statistics update interval (default 1 sec) 

-z, —zero-copy Force zero-copy mode 

-c, —copy Force copy mode 

-t , —thread Number of open queues, default 1 

—output=n Output f i l e name n 

The application is terminated ater sending one of SIGINT, SIGTERM or SIGABRT signals. 
Before running the xProbe application, the src/optiNic. sh and src/disableHt. sh should 
be executed to get better performance and to set RSS queues. 

7.9 Optimalization 

A l l describes optimalization used on N E T X - F router are based on the manuals [3, 12]. 
The optimalization included resizing NIC's descriptor buffer to the maximum value with 
ethtool -G ens2f 1 rx 4096 (to show current settings and maximum value can be used 
ethtool -g ens2f 1). A number of queues should be equal to the number of used cores: 
ethotool -L ens2fl combined 8. 

Next usefull optimalization is turn off the adaptive interrupt moderation with ethtool 
-C ens2fl adaptive-rx off adaptive-tx off and sets a fixed interrupt rate to 8/xs 
with ethtool -C ens2fl rx-usecs 8 tx-usecs 8. A l l optimalizations are applied in 
src/scripts/optimalization. sh script. 

The better results are achieved if the CPUs hyperthreading is turned off. It is possible 
via /sys/devices/system/cpu/cpu#/online variable in kernel. The source code contains 
a scripts/disableHT.sh script that diable hyperthreading and scripts/enableHT.sh 
script that turn hyperthreading on. Additionally, it is recommended to boot the kernel 
with iommu=pt parameter. 
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Chapter 8 

Testing 

8.1 Test topology 

A test topology was deployed to verify basic functionality of implemented probe with zero -
copy mechanism. The topology is depicted in Fig. 8.1 and consists of 3 machines: the 
test P C generates a lOGbps traffic via P F R I N G . The N E T X - F router, where the tested 
application running and switch in the middle. The N E T X - F router was connected through 
a 10 Gb/s I N T E L X552 NIC with an ixgbe driver. 

Test P C 

enplsCfO 

3c:fd:fe:9e:50:b0 

NETX-F 

y / \ lOGb/s
ens2fl 

ac:lf.6b:2c:9d:db 

Figure 8.1: Test topology 

8.1.1 N E T X - F 

The N E T X - F device was used for testing. The latest version of vanilla kernel(5.0.6) with 
B P F and X D P support was installed and boot on them. 

Platform: 

NetX OS version: 

Netc version: 

Kernel version: 

Serial number: 

Motherboard: 

Memory: 

CPU: 

NIC: 

Driver: 

Version: 

Firmware-version: 

NetX-X1120 

NetXOS release 7.5.1804 (Core) 

1.13 

5.0.6 

VM175S024749 

Supermicro X10SDV-16C-TLN4F+ 

1GB DIMM DDR4 2133 MHz 

Intel(R) Xeon(R) CPU D-1587 @ 1.70GHz 16 core 

INTEL X552 SPF+ 

ixgbe 

5.1.0-k 

0x800005b9 
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8.2 Socket performance 

This test compares the performance of different socket modes. Figure 8.2 confirms the 
zero-copy socket as the most effective mode. The Test P C transmitted a 100 M set of 64 B 
packets using P F R I N G and pfsend utility on enplsOfO. The application was running on 
4 N E T X cores and each core capturing one of the queue with an independent A F X D P 
socket. The value is average performance per second on single socket. The packet processing 
is turn off and packets are dropped after capturing. 

Figure 8.2: A F X D P socket performance 

AF_XDP socket performance 
™ HyperThreading on — HyperThreading off 

2.5 

2 

1.5 
cn 
a. 

0.5 

0 
DRV zero-copy + DRV zero-copy DRV mode copy + DRV mode copy SKBmode+Poll 

Poll Poll 
SKB mode 

Socket mode 
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8.3 Probe performance 

This test shows a core utilization. The value is summary of captured packets by all 8 or 6 
threads. The performance of one socket without flow creation is about 2.4 Mpps as shows 
Fig. 8.2. So 6 cores can capture traffic of lOGbE interface. Wi th flow maintaining turned 
on, the 8 cores are needed as show 8.3. 

Figure 8.3: xProbe performance 

xProbe performance 
xprobe -N -z 

15 • 6 capturing threads 

10 -

I 
s 

5 

0 -

1 2 3 4 5 6 7 8 9 10 11 12 

time [s] 

• 3 capturing threads 

8.4 Probe throughput 

In this test, the Test P C generates a packet sets of different sizes. The packets are 250 B , 
500 B or 1000 B long. The xProbe running on 8 cores. 

Figure 8.4: xProbe throughput 

xProbe throughput 
xProbe -N -z 

2MB • 500B • 1000B 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

time [s] 

45 



Chapter 9 

Conclusion 

The aim of this thesis was to design and implement a flow monitoring application, ca­
pable of capturing traffic on 10Gb interface. To observe packets at high speeds, for the 
application was necessary to adopt some methods of fast packet processing. One of used 
methods was the zero-copy mechanism, which makes data transfer between network card 
and application more efficient with using shared memory. Another applied method was a 
network stack bypassing with using a new A F X D P socket. These methods aims to elimi­
nate disadvantages of standard packet procesing within network stack in Linux kernel and 
offer significant performance improvements during packet capturing. 

In the first chapter of this thesis, the issue of the traffic monitoring on the high-speed 
interfaces was shown. 

In the second chaper was defined a concept of flows and the flow monitoring system was 
introduced. The monitoring system is consist of an exporting part and a collecting part. 
Both parts have been described in more detail, but this thesis aimed to implement only the 
export segment. 

The standard packet processing in Linux network stack and its limitation were described 
in the chapter 3. It is used to understand the mechanisms, which have been developed to 
make packet processing more efficient. 

The fast pacekt processing mechanism was introduced in the chapter 4. Special emphasis 
was placed on the use of zero-copy technique in the Linux kernel. The Page remaping was 
introduced as one of the possible ways to apply zero-copy within the Linux. The next section 
provides an overview of the commonly used frameworks improving packet processing. 

The chapter 5 was dedicated to X D P toolkit. It is one of the fast packet processing 
frameworks, which does not make the kernel bypassing, but adds programmability directly 
in the kernel network stack. It allows an execution of validated code on kernel's driver 
and makes possible to create a socket (also called AFXDP socket or XSK) from driver 
directly to the application. This system has a huge impact to performance improvement. 
In following sections are described, how to create the A F X D P socket and its memory 
model. 

In the chapter 6 was given a design of suggested monitoring probe. It is a multithread 
application, which is using a NIC's capabilities to distributing traffic among multiple C P U 
to process packets in higher rates. Packet data are transmitted from network card to 
application through A F X D P sockets and theirs buffers are shared between network card 
and application threads. Each probes's thread processing packets, captured in buffer, and 
maintaing table of useful information about communications. 
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The chapter 7 explained the implementation on suggested application and its optimal-
ization. The application was implemented in C / C + + and is portable across Linux realm. 
The last chapter was showed application testing on model situations. 

The goals of this work have been achieved. The probe is capable of capturing lOGbE 
traffic with using 8 CPUs. A l l X D P driver modes was tested and zero-copy mode showed the 
best result. A single A F X D P socket can capture about 2.3 Mpps without flow creating. 
Wi th flow creating it is about 1.8 Mpps. The concept has some limitations resulting from 
the using of X D P system: 

• There is only a limited number of network interfaces that support X D P (ixgbe, i40e, 
mlx5, veth, tap, tun, virtio_net and others) and only ixgbe and i40e drivers has 
implemented a true zero-copy mode support, which offer the best performance result. 
In other drivers, the X D P hook is attached at a higher point in the network stack 

• the eBPF program does not offer a multiple packet actions, it means that packet can 
not be redirect to user-space and at the same time pushed to network stack. It limits 
the use of the probe to not running on forwarding interfaces, but it is suitable to 
mirrored port 

• the eBPF drops undelivered packets. When an open socket for particular queue is 
missing in X S K M A P , then the packet is dropped, so the sockets have to be bounded 
one-to-one with queues 

• The maintaing one flow cache per core is addicted to RSS capability. It does not 
allow maintaing a bidirectional flows 

However, this application successfully demonstrates the use of new A F X D P socket 
in practice. The A F X D P is suitable technology for use-cases, where the fast packet 
processing are required. 
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Appendix A 

Sequence diagram 

Capture 
process 

0 to N 

Timer 
process 

parse 12 header 

parse L3 header 

parse L4 header 

get Flow hey 

hash F(flow key) 

lookup in flow cache 
by hash 

get flow record R 

Parse arguments 

Set 
RLIMIT MEMLOCK 

create flow record R 

update flow record R 

Create pthread Create pthread 

Set C P U affinity 

Create socket and 
fov. cacne 

Allocate UMEM and 
register to socket 

Create RK and Fill 
R - i | 

mmap buffers 

fill out Fill ring 

pop chunk from RX 
ring 

get chunk data from 
UMEM 

packet processing 

push chunk to FILL 
ring 

Pthread join 
Ptlve?.i:l jo i 

sleep (Prim ng 
interval) 

collect statistics 

Print statistics 

reset now cache 

resnurces 
nun map 

Figure A . l : Sequence diagram of packet capturing probe 
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Appendix B 

X D P installation 

A F X D P required a kernel 4.19 or higher and it is mandatory to allow eBPF and X D P 
support when kernel is compiling. To do that is needed to rewrite some flags to .config 
file after kernel source tree has been unpack: 

CONFIG_CGROUP_BPF=y 

CONFIG_BPF=y 

CONFIG_BPF_SYSCALL=y 

CONFIG_NET_SCH_INGRESS=m 

CONFIG_NET_CLS_BPF=m 

CONFIG_NET_CLS_ACT=y 

CONFIG_BPF_JIT=y 

CONFIG_LWTUNNEL_BPF=y 

CONFIG_HAVE_EBPF_JIT=y 

CONFIG_BPF_EVENTS=y 

CONFIG_TEST_BPF=m 

CONFIG_XDP_SOCKETS=y 

CONFIG_XDP_SOCKETS_DIAG=y 

After new kernel is running, it is recommended to turn a B P F JIT on to code optimalization 
with command: 

sysctl net/core/bpf_jit_enable=l 

Then the libbpf library has to be installed: 

git clone https://github.com/libbpf/libbpf.git 

cd libbpf/src 

mkdir build root 

OBJDIR=build DESTDIR=/ make install 

For compiling eBPF is useful to install a L L V M version 3.8 or higher. 
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Appendix C 

Content of the attached D V D 

• Source code of the implemented application in directory /src. 

• Readme file in /src/README.md 

• This technical report including DTpXsource code in /tz 
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