

BRNO FACULTY

UNIVERSITY OF INFORMATION OF TECHNOLOGY TECHNOLOGY

T

VYSOKÉ UČENÍ FAKULTA TECHNICKÉ INFORMAČNÍCH VBRNĚ TECHNOLOGIÍ

Camera Pose Estimation from Lines using Direct Linear Transformation

Odhad pózy kamery z přímek pomocí přímé lineární transformace

[^0]
Abstract

This thesis is concerned with camera pose estimation from correspondences of 3D/2D lines, i.e. with the Perspective-n-Line (PnL) problem. Attention is focused on large line sets which can be efficiently solved by methods using linear formulation of PnL. Up to date, methods working only with point-line correspondences were known. Motivated by this, two novel methods based on the Direct Linear Transformation (DLT) algorithm are proposed: DLT-Plücker-Lines working with line-line correspondences and DLT-Combined-Lines working with both point-line and line-line correspondences. In the latter case, the redundant information reduces the minimum of required line correspondences to 5 and improves accuracy of the method. The methods were extensively evaluated and compared to several state-of-the-art PnL methods in various conditions including simulated and real-world data. DLT-Combined-Lines achieves results similar to or better than state-of-the-art, while it is still highly efficient. In addition, the thesis introduces a unifying framework for DLT-based pose estimation methods, within which the proposed methods are presented.

Abstract

Abstrakt

Tato disertační práce se zabývá odhadem pózy kamery z korespondencí 3D a 2D přímek, tedy tzv. perspektivním problémem n přímek (angl. Perspective- n-Line, PnL). Pozornost je soustředěna na případy s velkým počtem čar, které mohou být efektivně řešeny metodami využívajícími lineární formulaci PnL. Dosud byly známy pouze metody pracující s korespondencemi 3D bodů a 2 D přímek. Na základě tohoto pozorování byly navrženy dvě nové metody založené na algoritmu přímé lineární transformace (angl. Direct Linear Transformation, DLT): Metoda DLT-Plücker-Lines pracující s korespondencemi 3D a 2D přímek a metoda DLT-Combined-Lines pracující jak s korespondencemi 3D bodủ a 2D přímek, tak s korespondencemi 3 D přímek a 2 D přímek. Ve druhém případě je redundantní 3 D informace využita k redukci minimálního počtu požadovaných korespondencí přímek na 5 a ke zlepšení přesnosti metody. Navržené metody byly důkladně testovány za různých podmínek včetně simulovaných a reálných dat a porovnány s nejlepšími existujícími PnL metodami. Metoda DLT-Combined-Lines dosahuje výsledků lepších nebo srovnatelných s nejlepšími existujícími metodami a zároveň je značně rychlá. Tato disertační práce také zavádí jednotný rámec pro popis metod pro odhad pózy kamery založených na algoritmu DLT. Obě navržené metody jsou definovány v tomto rámci.

Keywords

camera pose estimation, absolute orientation, exterior orientation, Perspective- n-Line problem, PnL, line correspondences, Direct Linear Transformation, DLT

Klíčová slova

odhad pózy kamery, absolutní orientace kamery, externí orientace kamery, perspektivní problém n přímek, PnL, korespondence přímek, přímá lineární transformace, DLT

Citation

Bronislav Přibyl. Camera Pose Estimation from Lines using Direct Linear Transformation. Ph. D. thesis, Brno University of Technology, Faculty of Information Technology, Brno 2017.

Declaration

I declare that this Ph. D. thesis is my original work and that I have written it under the guidance of my supervisor prof. Dr. Ing. Pavel Zemčík. All sources and literature that I have used during my work on the thesis are correctly cited with complete reference to the respective sources.

Prohlášení

Prohlašuji, že jsem tuto disertační práci vypracoval samostatně pod vedením mého školitele prof. Dr. Ing. Pavla Zemčíka. Taktéž prohlašuji, že jsem řádně uvedl a citoval všechny použité prameny, ze kterých jsem čerpal.

Acknowledgement

I would like to thank my supervisor Pavel Zemčík for many consultations and for guiding me throughout my studies in the first place. I would also like to thank Martin Čadik for numerous consultations and for encouraging me to aim for top scientific forums. I also thank Tomáš Werner for a consultation and for proofreading of my core paper. My thanks also go to my colleagues for many inspiring discussions in the kitchen and in the corridor of the Department of Computer Graphics and Multimedia. I also thank the Department for a kind and supportive atmosphere. It is not common. Finally, I thank Brno University of Technology, Faculty of Information Technology for material and financial support which allowed me to work on this dissertation.

Poděkování

Rád bych poděkoval především mému školiteli Pavlu Zemčíkovi za mnohé konzultace a odborné vedení po celou dobu studia. Rád bych také poděkoval Martinu Čadíkovi za konzultace a za to, že mě přesvědčil, že dobrý výzkum je třeba publikovat na předních vědeckých fórech. Dále děkuji Tomáši Wernerovi za konzultaci a korekturu mého stěžejního článku. Poděkování patří i mým kolegům za mnohé podnětné diskuse v kuchyňce a na chodbĕ Ústavu počítačové grafiky multimédií a za vlídnou a nápomocnou atmosféru na celém ústavu. Není to samozřejmé. Nakonec děkuji i Fakultě informačních technologií Vysokého učení technického v Brně za materiální i finanční podporu, díky které jsem mohl na tématu disertace pracovat.

Contents

1 Introduction 1
2 Basic Concepts 3
2.1 Notation 3
2.2 Camera Model 4
2.3 Parameterizations of 3D Lines 6
2.4 Projection of Points and Lines 8
2.5 Detection and Matching of Lines 10
2.6 Solving a Homogeneous System of Linear Equations 11
3 Pose Estimation from Lines 15
3.1 Iterative Methods 17
3.2 Algebraic Methods 19
3.3 Methods based on Linear Formulation of PnL 22
3.4 Handling Mismatched Correspondences 25
4 Pose Estimation from Lines using Direct Linear Transformation 27
4.1 Analysis of the State-of-the-Art 27
4.2 Common Structure of DLT Methods 29
4.3 DLT-Lines 31
4.4 DLT-Plücker-Lines 33
4.5 DLT-Combined-Lines 36
4.6 Algebraic Outlier Rejection 43
4.7 Summary 45
5 Experimental Evaluation and Applications 49
5.1 Synthetic Lines 51
5.2 Quasi-Singular Line Configurations 55
5.3 Line Correspondences with Mismatches 59
5.4 Real-World Buildings and Man-Made Objects 62
5.5 Summary 68
6 Conclusions 71
References 73
List of Publications 83
A Derivation of M from 3D/2D Correspondences 85
A. 1 Line-Line Correspondence 85
A. 2 Point-Point Correspondence 86
A. 3 Point-Line Correspondence 86
B Error Distributions of the Methods 87
B. 1 Robustness to Image Noise 87
B. 2 Robustness to Quasi-Singular Cases 88
B. 3 Robustness to Outliers 88

List of Abbreviations

AOR	Algebraic Outlier Rejection
ASPnL	Accurate Subset based PnL (algorithm)
BA	Bundle Adjustment
CGR	Cayley-Gibbs-Rodriguez (parameterization)
DLT	Direct Linear Transformation
DoF	Degree of Freedom
LBD	Line Band Descriptor
LEHF	Line-based Eight-directional Histogram Feature
LICF	Line Intersection Context Feature
LOI	Line-based Orthogonal Iteration (sometimes also LBOI)
LPnL	Linear PnL
LSD	Line Segment Detector
MLESAC	Maximum Likelihood Estimation SAmple Consensus
MSLD	Mean-Standard deviation Line Descriptor
OI	Orthogonal Iteration
P3L	Perspective-3-Line (problem)
PnL	Perspective-n-Line (problem)
PnP	Perspective-n-Point (problem)
POSIT	Pose from Orthography and Scaling with ITeration
RANSAC	RANdom SAmple Consensus
RPnL	Robust PnL (algorithm)
RPnP	Robust PnP (algorithm)
SIFT	Scale Invariant Feature Transform
SVD	Singular Value Decomposition

Chapter 1

Introduction

Computers take part in our lives, and that part is increasing as computers get faster, smaller, easier to use and more powerful. If a camera is connected to a computer, it is given a chance to "see", enhancing its capabilities. The computer does not see in fact; it just gets a meaningless mosaic of pixels. In order to give a meaning to the pixels (i.e. to $\mathrm{se} e$), the computer must be given instructions for interpreting the pixel values or it must be able to learn them. People who prepare such instructions or teach computers to learn them deal with computer vision.

The goal of computer vision is to allow computers to see. To see like humans perhaps, or even better. This is a very ambitious goal and it is still too far from being true due to its complexity. However, some tasks have already been solved. Computers are able, for example, to find specific objects in images, to recognize human faces, to localize a robot using on-board cameras, or to reconstruct 3D objects, or even whole cities, from multiple images.

Accomplishing of many tasks in computer vision is achieved through the exploitation of features. Features are interesting parts of an image or a scene in this context. Depending on an application, the features can be points, lines, curves, regions, more complicated structures, or combinations of them. If features in a scene are captured by a camera, they can be used to infer various geometric relations: Either between objects of the scene, or between the scene and the camera. By exploiting the geometric relations, it is possible to reconstruct a 3D scene, to localize and navigate a mobile robot, to operate a robotic arm (solely on the basis of visual information) or to augment user's view with additional information, to give an example. A fundamental underlying task of each of these applications is pose estimation - the task of determining the relative position and orientation of a camera and an object to each other in 3D space ${ }^{1}$.

[^1]While pose estimation methods utilizing point features have been in focus of researchers for some time and they are thus relatively mature, pose estimation methods utilizing line features lag behind. However, points and lines carry a complementary information about a scene and it is thus desirable to make use of both. Points have an exact location, whereas the "location" of a line along its direction is inherently unknown. On the other hand, lines are more robust primitives because they can be broken or partially occluded, but they are still visible and they can be exploited. Recent state-of-the-art methods are efficient and accurate, but they utilize lines only in the image space. In the 3D space, just point features are used (exploiting the fact that if 3D points lie on a 3D line, their projections must coincide with projection of that line in the image). That means only point-line correspondences are used and the potential of line-line correspondences is wasted, although line-line correspondences may carry stronger geometric information about a scene than point-line correspondences.

The goal of this thesis is to improve accuracy and robustness of current state-of-theart on pose estimation from lines by incorporating 3D lines and thus also the line-line correspondences directly into the pose estimation process, which will be experimentally proved. The thesis studies the linear formulation of pose estimation from lines, which is especially suitable for scenarios with large sets of lines. The Direct Linear Transformation (DLT)-based formulation, which was used to exploit only point-line correspondences so far, is of special interest. The thesis contributes to the state-of-the-art by formulating two new methods for pose estimation, which are built upon the DLT and make use of line-line correspondences. A secondary contribution of this thesis is a unifying view on the DLT-based methods for pose estimation from lines.

Although the work presented in this thesis is my own, it has been influenced by many discussions with Pavel Zemčík and Martin Čadík. They also both collaborated with me on writing our joint papers.

The text of this thesis is organized into six chapters. In Chapter 2, basic concepts are introduced upon which this thesis is build. In Chapter 3, a review of related work and state-of-the-art of pose estimation from line correspondences is presented. In Chapter 4, the state-of-the-art is critically analyzed and two new methods - DLT-Plücker-Lines and DLT-Combined-Lines - are proposed and presented in a unifying framework, which relates the proposed methods with the existing method for pose estimation, DLT-Lines. In Chapter 5, performance of the proposed methods is benchmarked and compared to the state-of-the-art using simulations and real-world experiments. Finally, the thesis is concluded in Chapter 6 by summarizing its key points and by suggesting future research. The core of this thesis is constituted by Chapters 4 and 5.

Chapter 2

Basic Concepts

Since mathematical notation and related concepts vary in literature, they way how they are used in this thesis is defined in this chapter. The mathematical notation is introduced first. Then, coordinate systems are defined and camera model is introduced. A brief review of 3D lines parameterizations follows. After that, projection of points and lines onto the image plane is derived in the context of the used camera model and line parameterization. Next, detection and matching of image lines is outlined. Finally, a method of solving a homogeneous system of linear equations is introduced, and the role of Singular Value Decomposition in this task is established.

2.1 Notation

Scalars are typeset in italics (x, X), vectors are typeset in bold (\mathbf{l}, \mathbf{L}). All vectors are thought of as being column vectors unless explicitly transposed. Matrices are typeset in sans-serif fonts (t, D), the identity matrix is denoted by I and the zero matrix by 0 . 2D entities are denoted by lower case letters ($x, \mathbf{l}, \mathrm{t}$), 3D entities by upper case letters (X, L, D). Some of the symbols used in this thesis are organized in the following table.

	scalar	vector	matrix
2D	$a-h, j-n, q, s$,	$\mathbf{l}, \mathbf{p}, \mathrm{t}, \mathbf{u}, \mathbf{x}, \boldsymbol{\epsilon}$	t
	$x, y, \delta, \epsilon, \varepsilon, \pi, \sigma$		
3D	E, L, S, T, X, Y, Z,	$\mathbf{0}, \mathbf{E}, \mathbf{L}, \mathbf{N}, \mathbf{T}$,	$0, \mathrm{I}, \mathrm{D}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{P}$,
	$A, B, \Gamma, \Delta, \Sigma, \Theta$	$\mathbf{U}, \mathbf{V}, \mathbf{X}, \mathbf{Y}$	$\mathrm{R}, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{Z}, \Sigma$

No formal distinction between coordinate vectors and physical entities is made. Transformation and projection matrices acting on points and lines are distinguished by a dot and a bar, respectively ($\dot{\mathrm{D}}, \dot{\mathrm{P}}, \overline{\mathrm{D}}, \overline{\mathrm{P}}$).

Operators and functions are denoted as follows.

- Equality of up to a nonzero scale factor is denoted by \approx,
- transposition by ${ }^{\top}$,
- ℓ_{2} norm (Euclidean norm) of a vector by $\|$.$\| ,$
- ℓ_{1} norm of a vector by $\|.\|_{1}$,
- Kronecker product by \otimes,
- vectorization of a matrix in column-major order by vec(.),
- the skew symmetric matrix associated with the cross product by $[.]_{\times}$,
i. e. $[\mathbf{a}]_{\times} \mathbf{b}=\mathbf{a} \times \mathbf{b}$.

Finally, the following two functions are defined. The first one is mean ${ }_{0}($.$) - the mean$ of all atomic elements of its argument. In the case of a vector, the result is straightforward:

$$
\begin{equation*}
\operatorname{mean}_{\circ}(\mathbf{a})=\frac{\sum_{i=1}^{n} a_{i}}{n} \tag{2.1}
\end{equation*}
$$

In the case of a matrix, the result is the mean of all matrix entries (not just of column/row vectors):

$$
\begin{equation*}
\operatorname{mean}_{\circ}(M)=\operatorname{mean}_{\circ}(\operatorname{vec}(M)) . \tag{2.2}
\end{equation*}
$$

In the case of a set, the elements of the set are concatenated into a single vector or matrix first, the function is evaluated after the concatenation

$$
\begin{equation*}
\operatorname{mean}_{\circ}\left(\left\{\mathbf{X}_{i}\right\}\right)=\operatorname{mean}_{\circ}\left(\left(\mathbf{X}_{1}^{\top} \mathbf{X}_{2}^{\top} \ldots \mathbf{X}_{n}^{\top}\right)^{\top}\right) \tag{2.3}
\end{equation*}
$$

where $i=1 \ldots n$.
The second function is mean $n_{|\rho|}($.$) - the mean of absolute values of all atomic elements$ of its argument. It acts on vectors, matrices and sets in the same way as the function mean (.) does.

2.2 Camera Model

A camera with central perspective projection is assumed, where 3D points and lines project onto an image plane which does not coincide with the center of projection. This is called a pinhole camera model [30]. The model is parameterized using two sets of parameters: extrinsic and intrinsic parameters.

Extrinsic parameters encode the position and orientation - i.e. the pose - of a camera in space. Let us have a world coordinate system and a camera coordinate system, both of which are right-handed. The camera X-axis goes right, the Y-axis goes up and the Z-axis goes behind the camera, so that the points placed in front of the camera have negative Z coordinates in the camera coordinate system. A transition from the world to the camera coordinate system is realized through a translation followed by a rotation, see Figure 2.1. The translation is parameterized using a 3×1 translation vector $\mathbf{T}=\left(T_{1} T_{2} T_{3}\right)^{\top}$, which represents the position of the camera in the world coordinate system. The rotation is parameterized using a 3×3 rotation matrix R describing the orientation of the camera in the world coordinate system by means of three consecutive rotations along the three axes Z, Y, X by respective Euler angles Γ, B, A. The pose of a camera thus has 6 Degrees of Freedom (DoF): $T_{1}, T_{2}, T_{3}, A, B, \Gamma$.

Figure 2.1: The world coordinate systems (right), the camera coordinate system (left) and the transition between them through a translation \mathbf{T} followed by a rotation R .

The task of pose estimation can be alternatively formulated as object pose estimation (w.r.t. the camera coordinate system). In this thesis, however, the earlier formulation is adopted, i.e. estimation of the pose of a camera (w.r.t. the object or world coordinate system). The two formulations are equivalent.

Intrinsic parameters describe how the (physical) coordinates of 2 D points in the image plane map to its image coordinates (in pixels). Such mapping can be expressed
by an upper-triangular 3×3 camera calibration matrix

$$
\mathrm{K}=\left[\begin{array}{ccc}
s_{x} & k & x_{0} \tag{2.4}\\
0 & s_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right]
$$

where

- s_{x} is the scale factor in the x direction of an image,
- s_{y} is the scale factor in the y direction of an image,
- $k=s_{y} \tan \theta$ is the skew factor, where θ is the angle between the x and y image axis,
- $\left(x_{0} y_{0}\right)^{\top}$ are the coordinates of the principal point - a point in the image plane where the plane meets the camera Z-axis.

Putting together both the extrinsic parameters (R, \mathbf{T}) and the intrinsic parameters (K), a 3 D point \mathbf{X} can be related to its projection \mathbf{u} in the image by the equation

$$
\begin{equation*}
\mathbf{u} \approx K[R-R T] \mathbf{X} \tag{2.5}
\end{equation*}
$$

Both \mathbf{X} and \mathbf{u} are expressed in homogeneous coordinates.
When the camera is intrinsically calibrated, i.e. when K is known, the image coordinates \mathbf{u} can be converted into the normalized image coordinates $\mathbf{x}=K^{-1} \mathbf{u}$. The projection \mathbf{x} of a 3 D point \mathbf{X} in the normalized image plane can then be computed directly

$$
\begin{equation*}
\mathrm{x} \approx[\mathrm{R}-\mathrm{RT}] \mathbf{X} \tag{2.6}
\end{equation*}
$$

In the rest of this thesis, a pinhole camera with known intrinsic parameters is assumed, i. e. coordinates of 2 D points and lines are the normalized image coordinates.

2.3 Parameterizations of 3D Lines

Using the words of Hartley and Zisserman [30], "lines are very awkward to represent in 3-space". A 3D line has 4 DoF , which could be naturally represented as a homogeneous 5 -vector. However, such representation cannot be used easily together with homogeneous 4 -vectors representing points and planes in projective 3-space. Several parameterizations have thus been developed to parameterize 3D lines [8]. They can be categorized based
on the ability to represent all lines - such parameterizations are complete, the other are partial. They can also be divided based on how many parameters are used [71]: nonlinear minimal representations using 4 parameters, and linear over-parameterizations using 5 or more parameters.

Minimal Parameterizations use 4 parameters to describe a 3D line, which equals to its number of DoF. The Denavit-Hartenberg parameterization [19] was developed to model motion of robots. The idea is to relate each joint of a robot to the adjacent joint by two distances and two angles. The Cayley representation was developed by Zhang and Koch [71] to allow unconstrained optimization during sparse Bundle Adjustment (BA) [62]. Three of the four Cayley parameters encode rotation of a 3D line w.r. t. the reference coordinate system, and the fourth parameter is the distance of the line to the reference origin. Other minimal parameterizations can be found e. g. in [26, 28, 52, 53, 57].

Unfortunately, projection functions of the minimal representations are difficult to express explicitly [71]. From the point of view of camera pose estimation, this is a disadvantage because projection functions of 3D lines are the foundation of pose estimation methods. The projection function should be as simple as possible in terms of the pose parameters or, at least, in the entries of a projection matrix.

Linear Over-Parameterizations often have simpler projection functions. The parameterization by Closest Point and Direction and the parameterization by Two Points (in Euclidean coordinates) both have bilinear projection functions [8]. They also both have 6 DoF , and they are both partial representations because lines at infinity cannot be handled. If the points in the Two Points representations are parameterized using homogeneous coordinates, the number of DoF increases to 8 , but the parameterizations becomes complete because lines at infinity are no longer a special case. The dual representation to Two Points is the representation by Two Planes. It has the same properties: it has 8 DoF , it is complete, and the projection function is bilinear.

Another complete parameterizations is the Plücker Matrix, which is a 4×4 skewsymmetric homogeneous matrix L constructed from the homogeneous coordinates of two distinct 3D points \mathbf{X} and \mathbf{Y} lying on a line

$$
\begin{equation*}
\mathbf{L}=\mathbf{X} \mathbf{Y}^{\top}-\mathbf{Y} \mathbf{X}^{\top} . \tag{2.7}
\end{equation*}
$$

The Plücker matrix has two major disadvantages: First, it has as much as 16 DoF,
although it encodes only 6 parameters because it is skew-symmetric. Second, projection of a 3D line parameterized using Plücker matrix onto an image plane is a quadratic function of a projection matrix [30, Eq. (8.2)].

Plücker Coordinates

Plücker Coordinates are the only linear over-parameterization with linear projection function. Moreover, it is a complete parameterization using "only" 6 DoF. Plücker coordinates are any permutation of the 6 parameters of the Plücker matrix in Eq. (2.7). Usually, the parameters are chosen so that they have a geometric meaning:

Given two distinct 3D points $\mathbf{X}=\left(\begin{array}{llll}X_{1} & X_{2} & X_{3} & X_{4}\end{array}\right)^{\top}$ and $\mathbf{Y}=\left(\begin{array}{llll}Y_{1} & Y_{2} & Y_{3} & Y_{4}\end{array}\right)^{\top}$ in homogeneous coordinates, a line joining them in projective 3 -space is a homogeneous 6 -vector $\mathbf{L} \approx\left(\mathbf{U}^{\top} \mathbf{V}^{\top}\right)^{\top}=\left(\begin{array}{llll}L_{1} & L_{2} & L_{3} & L_{4}\end{array} L_{5} L_{6}\right)^{\top}$, where

$$
\begin{align*}
\mathbf{U}^{\top} & =\left(L_{1} L_{2} L_{3}\right)=\left(X_{1} X_{2} X_{3}\right) \times\left(Y_{1} Y_{2} Y_{3}\right), \tag{2.8}\\
\mathbf{V}^{\top} & =\left(L_{4} L_{5} L_{6}\right)=X_{4}\left(Y_{1} Y_{2} Y_{3}\right)-Y_{4}\left(X_{1} X_{2} X_{3}\right) .
\end{align*}
$$

The \mathbf{V} part encodes direction of the line while the \mathbf{U} part encodes position of the line in space. In fact, \mathbf{U} is a normal of an interpretation plane - a plane passing through the line and the origin. As a consequence, \mathbf{L} must satisfy a bilinear constraint $\mathbf{U}^{\top} \mathbf{V}=0$. Existence of this constraint explains the discrepancy between 4 DoF of a 3D line and its parameterization by a homogeneous 6 -vector. More on Plücker coordinates can be found e. g. in [30].

2.4 Projection of Points and Lines

The way, how transformations of points and lines are made, depends on the chosen parameterization. In the following, 3D lines are assumed to be parameterized using Plücker coordinates and 3D points are assumed to be parameterized using homogeneous coordinates.

Transformation of a Point. A homogeneous 3D point $\mathbf{X}=\left(\begin{array}{lll}X_{1} & X_{2} & X_{3}\end{array} X_{4}\right)^{\top}$ in the world coordinate system is transformed to a point $\dot{\mathbf{D}} \mathbf{X}$ in the camera coordinate system
using a 4×4 point displacement matrix

$$
\dot{\mathrm{D}} \approx\left[\begin{array}{cc}
\mathrm{R} & -\mathrm{RT} \tag{2.9}\\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]
$$

Projection of a Point. After 3D points are transformed into the camera coordinate system, they can be projected onto the normalized image plane using the 3×4 canonical camera matrix ($\mathbf{1} \mathbf{0}$). Compositing the two transformations yields the 3×4 point projection matrix

$$
\dot{\mathrm{P}} \approx\left[\begin{array}{ll}
\mathrm{R} & -\mathrm{RT} \tag{2.10}
\end{array}\right]
$$

A 3 D point \mathbf{X} is then projected using the point projection matrix $\dot{\mathbf{P}}$ as

$$
\begin{equation*}
\mathbf{x} \approx \dot{\mathrm{P}} \mathbf{X} \tag{2.11}
\end{equation*}
$$

where $\mathbf{x}=\left(x_{1} x_{2} x_{3}\right)^{\top}$ is a homogeneous 2D point in the normalized image plane.

Transformation of a Line. A 3D line parameterized using Plücker coordinates can be transformed from the world into the camera coordinate system using the 6×6 line displacement matrix ${ }^{1}$

$$
\overline{\mathrm{D}} \approx\left[\begin{array}{cc}
\mathrm{R} & \mathrm{R}[-\mathbf{T}]_{\times} \tag{2.12}\\
0_{3 \times 3} & \mathrm{R}
\end{array}\right] .
$$

Projection of a Line. After 3D lines are transformed into the camera coordinate system, their projections onto the image plane can be determined as intersections of their interpretation planes with the image plane; see Figure 2.2 for illustration. The normal \mathbf{U} of an interpretation plane is identical to the image line \mathbf{l} in the coordinate system of the camera, hence only \mathbf{U} needs to be computed when projecting \mathbf{L}, and only the upper half of $\overline{\mathrm{D}}$ is needed, yielding the 3×6 line projection matrix [21]

$$
\overline{\mathrm{P}} \approx\left[\begin{array}{ll}
\mathrm{R} & \mathrm{R}[-\mathbf{T}]_{\times} \tag{2.13}
\end{array}\right]
$$

The line projection matrix in Eq. (2.13) can also be achieved by compositing the two

[^2]transformations defined by the line displacement matrix $\overline{\mathrm{D}}(2.12)$ and by the 3×6 canonical camera matrix (10).

Figure 2.2: 3 D line projection. The 3 D line \mathbf{L} is parameterized by its direction vector \mathbf{V} and a normal \mathbf{U} of its interpretation plane, which passes through the origin of the camera coordinate system $\{C\}$. Since the projected 2D line \mathbf{l} lies at the intersection of the interpretation plane and the image plane, it is fully defined by the normal \mathbf{U}.

A 3D line \mathbf{L} is then projected using the line projection matrix $\overline{\mathrm{P}}$ as

$$
\begin{equation*}
\mathbf{l} \approx \overline{\mathrm{P}} \mathbf{L} \tag{2.14}
\end{equation*}
$$

where $\mathbf{l}=\left(l_{1} l_{2} l_{3}\right)^{\top}$ is a homogeneous 2 D line in the normalized image plane.

2.5 Detection and Matching of Lines

Methods for pose estimation from lines rely on correspondences between 3D lines and image lines. The method how lines are detected in an image and how they are matched to their corresponding 3 D counterparts is outlined in this section.

Line detection. Lines in an image are typically detected in the form of line segments using a three-staged algorithm. First, a gradient image is computed or edges are detected. Second, candidate "line support regions" are build by grouping of adjacent pixels having similar gradient orientation. Third, line segments are fitted to the candidate regions and perceptually meaningless segments are discarded. Such an approach is used e.g. by the Line Segment Detector (LSD) [25], its modified version LSDF-Loc [9] or EDlines [4].

Line matching. Matching of lines is based either on their appearance, on geometric constraints or on the combination of both. In the case of appearance-based matching, a
descriptor is used to encode the line's appearance (i.e. its neighborhood) into a feature vector. Similarly to SIFT [42] for points, several descriptors for lines have been proposed. The Mean-Standard deviation Line Descriptor (MSLD) [66] was among the first, and indeed, it is inspired by SIFT in how appearance of regions is encoded along a line. Alternative contemporary line descriptors are e. g. Line Signatures [65], Line-based Eightdirectional Histogram Feature (LEHF) [32] or Line Band Descriptor (LBD) [70].

A hybrid approach for line matching combining both appearance-based and geometrybased features was introduced by Zhang and Koch [69]. The LBD descriptor and simple geometric constraints are used to reject false candidate line matches. Kim and Lee [36] deal with matching of pairs of intersecting lines, arguing that line pairs are less ambiguous for matching than single lines. For that purpose, they proposed the Line Intersection Context Feature (LICF).

In the case of large distances between camera positions or in the case of wiry objects, the appearance-based attributes of lines change dramatically, and they are thus useless. This motivated line matching techniques relying exclusively on geometric constraints. Schindler et al. [54] proposed a technique suitable for Manhattan environments, where each line is assigned one of three mutually orthogonal directions at the time of detection. This information simplifies the following matching process. Hofer et al. [33] deal with 3D reconstruction from multiple views. When adding a new camera view, a potentially large set of hypothetical matches is computed using weak epipolar constraints. The hypotheses can be later merged based on their spatial proximity and they are finally verified or rejected based on their reprojection error and observation angle. Mičušík and Wildenauer [48] approach the joint problem of line matching and camera pose estimation as searching through the parameter space of camera poses. They generate tens of thousands of virtual camera views, and compare line segments in the real and virtual view by Chamfer matching [6,58], which can be implemented very efficiently. The number of candidate views can also be reduced by estimating vanishing points in the input image.

2.6 Solving a Homogeneous System of Linear Equations

Methods presented in this thesis often solve a homogeneous system of linear equations, which can be described by the matrix equation

$$
\begin{equation*}
M x=0 . \tag{2.15}
\end{equation*}
$$

If the system has m equations and n unknowns, then the measurement matrix M containing coefficients of the equations is $m \times n$, and the vector of unknowns \mathbf{x} has n entries. The trivial solution $\mathbf{x}=\mathbf{0}$ is not of interest, hence the desired solution must be constrained, typically

$$
\begin{array}{cl}
\underset{\mathbf{x}}{\arg \min } & \|\mathbf{M x}\|^{2} \tag{2.16}\\
\text { s.t. } & \|\mathbf{x}\|=1 .
\end{array}
$$

Eq. (2.15) holds only in an ideal (noise-free) case. If equation coefficients in M are perturbed by noise, an inconsistent system is obtained

$$
\begin{equation*}
M x^{\prime}=\epsilon, \tag{2.17}
\end{equation*}
$$

where \mathbf{x}^{\prime} is only an approximate solution and $\boldsymbol{\epsilon}$ is an m-vector of measurement residuals.
In an ideal case (2.15) and assuming $m \geq n, \mathrm{M}$ has rank $n-1$ and \mathbf{x} is the right nullspace of M of rank 1 . However, in a noisy case (2.17), M has full rank n, thus its nullspace must have rank 0 . This implies nonexistence of an exact solution. Still, an approximate solution may be found in a least-squares sense. If a rank deficient matrix M^{\prime} is found

$$
\begin{array}{cl}
\underset{M^{\prime}}{\arg \min } & \left\|M^{\prime}-M\right\|^{2} \tag{2.18}\\
\text { s.t. } & \operatorname{rank}\left(M^{\prime}\right)=\operatorname{rank}(M)-1,
\end{array}
$$

then, the approximate solution x^{\prime} of the system (2.17) is the right nullspace of M^{\prime} of rank 1, i.e.

$$
\begin{equation*}
\mathrm{M}^{\prime} \mathrm{x}^{\prime}=0 . \tag{2.19}
\end{equation*}
$$

Remark 2.1: In the rest of the thesis, the above-described way of solving a homogeneous linear system $\mathrm{Mx}=\mathbf{0}$ will be referred to as "homogeneous linear least squares". Although a mathematically correct term would be "low-rank approximation" (of M), the former designation was chosen due to its analogy to the term "linear least squares", which designates solving of a linear system $\mathbf{M x}=\mathbf{b}$.

Singular Value Decomposition

The Singular Value Decomposition (SVD) is a matrix factorization. Let us have an $m \times n$ matrix M of real numbers. It is factorized by SVD into three matrices

$$
\begin{equation*}
M=U \Sigma V^{\top}, \tag{2.20}
\end{equation*}
$$

where

- U is an $m \times m$ orthonormal matrix whose columns are the left singular vectors of M,
- Σ is an $m \times n$ diagonal matrix of non-negative numbers - singular values of M , and
- V is an $n \times n$ orthonormal matrix whose columns are the right singular vectors of M.

It is common to order the singular values on the diagonal of Σ in descending order.
In the context of linear systems, SVD can be advantageously used to obtain an approximate solution of an over-determined and inconsistent homogeneous system of linear equations, as defined by Eq. (2.17). The approximate solution \mathbf{x}^{\prime} is exactly the right singular vector of M associated with the smallest singular value, i. e. the last column of V obtained by SVD in Eq. (2.20).

Concepts established in this chapter constitute a foundation for the rest of this thesis. Let us now proceed to the description of state-of-the-art of pose estimation from lines.

Chapter 3

Pose Estimation from Lines

Points are the most commonly used features, not only for pose estimation. It is so because points are the simplest geometric primitives, easy to represent mathematically and easy to handle in a space of any dimension [30]. A substantial amount of research has been dedicated to point features and their applications in computer vision. Lines, on the other hand, are more difficult to represent, especially in spaces of dimension 3 and higher. This was naturally reflected in less research effort dedicated to line features.

Nevertheless, points and lines carry a complementary information about a scene and it is thus desirable to make use of both. Points have an exact location, whereas the "location" of a line along its direction is inherently unknown. On the other hand, lines are a more robust type of a primitive, because they can be broken or partially occluded, but they are still visible and they can be exploited. Additionally, lines provide stronger structural information about a scene than points, see Figure 3.1. Lines are especially useful and sometimes indispensable in situations where point features are unreliable. This

Figure 3.1: Representation of a building (on the left) using points (center) and lines (right). ${ }^{1}$

[^3]might be caused, for example, by a lack of texture or presence of repetitive patterns, see Figure 3.2. Such conditions are typical for man-made environments - wiry structures, streets, facades of buildings, corridors, rooms etc. Lines are often abundant in such environments [49].

The task of camera pose estimation from lines has a finite number of solutions for 3 and more lines. However, in the minimal case of 3 lines, solutions of the Perspective3 -Line (P3L) problem are multiple: up to 8 solutions may exist [11]. The ambiguity is removed by adding one or more lines and thus the $\mathrm{P} n \mathrm{~L}$ problem has a unique solution for $n \geq 4$ [68]. Having said that, special configurations of lines must not be forget, for which the $\mathrm{P} n \mathrm{~L}$ problem has an infinite number of solutions even for $n \geq 4$. Such cases are termed singular configurations (e.g. a set of parallel lines, in which case, it is impossible

Figure 3.2: Point matches (top) and line matches (bottom) in a pair of images of a low-texutre scene. Only 9 matches were found using points, while 54 matches were found using lines. ${ }^{2}$

[^4]to locate the camera along the lines). Generally, methods for pose estimation are known to be prone to singular and sometimes also to quasi-singular configurations of lines [51].

The PnL problem has been receiving attention for more than a quarter of century. Some of the earliest works are the ones of Dhome et al. from 1989 [20] and Liu et al. from 1990 [40]. They introduce two different ways to deal with the PnL problem: iterative and algebraic ${ }^{3}$ approaches. As the names suggest, the algebraic methods solve PnL by minimizing an algebraic error in "one step", while the iterative methods iteratively minimize a nonlinear error function, which usually has a geometric meaning. Both approaches have different properties and thus also different use. A specific subset of algebraic approaches are the methods based on linear formulation of the PnL problem.

3.1 Iterative Methods

The iterative approaches consider pose estimation as a nonlinear least-squares problem by iteratively minimizing specific error function, which usually has a geometric meaning. In the early work of Liu et al. [40], the authors attempted to estimate the camera position and orientation separately developing a method called R_then_T. Orientation of the camera in space is obtained from 8 or more line correspondences which define the entries of a rotation matrix. The matrix is estimated up to an unknown scale factor by linear least squares. The scale of the matrix is corrected ex post by enforcing the Frobenius norm of the matrix to be three. However, the other constraints of the rotation matrix, such as unit-norm and mutually orthogonal rows, are not enforced.

Later on, Kumar and Hanson [37] have introduced a method called R_and_T for simultaneous estimation of camera position and orientation, which is computed using iterative least squares. The authors proved superior performance of their algorithm to R_then_T.

Christy and Horaud [12] have proposed two methods for pose estimation for the paraperspective and weak-perspective camera models. If the methods converge, their results are compatible with the perspective camera model. In the absence of a good initialization, the methods converge faster compared to methods using the full perspective camera model. By using the weak-perspective camera model, an assumption must hold that the depth of an object is small compared to the distance of the object from the camera, and that visible scene points are close to the optical axis. Therefore, the full projective cases cannot be handled.

Inspired by the point-based Orthogonal Iteration (OI) algorithm for points [43],

[^5]X. Zhang et al. [73] proposed the Line-based Orthogonal Iteration (LOI) algorithm, which iteratively minimizes two geometric objective functions in the object space. The objective functions are
\[

$$
\begin{align*}
E^{\mathbf{V}}(\mathrm{R}) & =\sum_{i=1}^{n}\left\|\mathbf{E}_{i}^{\mathbf{V}}\right\|^{2}, \tag{3.1}\\
E^{\mathbf{X}}(\mathrm{R}, \mathbf{T}) & =\sum_{i=1}^{n}\left\|\mathbf{E}_{i}^{\mathbf{X}}\right\|^{2}, \tag{3.2}
\end{align*}
$$
\]

where n is the number of line correspondences, and $\mathbf{E}_{i}^{\mathbf{V}}$ and $\mathbf{E}_{i}^{\mathbf{X}}$ are the coplanarity errors

$$
\begin{align*}
\mathbf{E}_{i}^{\mathbf{V}} & =\left(\mathrm{I}-\mathrm{K}_{i}\right) \mathrm{R} \mathbf{V}_{i}, \tag{3.3}\\
\mathbf{E}_{i}^{\mathbf{X}} & =\left(\mathrm{I}-\mathrm{K}_{i}\right) \mathrm{R}\left(\mathbf{X}_{i}-\mathbf{T}\right) . \tag{3.4}
\end{align*}
$$

For each line correspondence, the matrix $\mathrm{K}_{i}=\mathbf{I}-\mathbf{N}_{i} \mathbf{N}_{i}^{\top}$ is a 3×3 symmetric matrix projecting vectors in Euclidean 3-space orthogonally onto an interpretation plane defined by its normal \mathbf{N}_{i}. Thus, ($1-\mathrm{K}_{i}$) is a matrix which, after it is applied to a vector, yields a rejection of that vector from an interpretation plane defined by its normal \mathbf{N}_{i}. The coplanarity error $\mathbf{E}_{i}^{\mathbf{X}}$ is thus the orthogonal distance of an arbitrary point \mathbf{X}_{i} on a 3D line to the interpretation plane of the corresponding 2D line. Accordingly, the other coplanarity error $\mathbf{E}_{i}^{\mathbf{V}}$ is the orthogonal distance of an endpoint of a unit-norm direction vector \mathbf{V}_{i} of the 3D line to the interpretation plane. By substituting (3.3) into (3.1) and (3.4) into (3.2), and by using the definition of K_{i}, the objective functions are

$$
\begin{align*}
E^{\mathbf{V}}(\mathrm{R}) & =\sum_{i=1}^{n}\left\|\mathbf{N}_{i} \mathbf{N}_{i}^{\top} \mathrm{R} \mathbf{V}_{i}\right\|^{2}, \tag{3.5}\\
E^{\mathbf{X}}(\mathrm{R}, \mathbf{T}) & =\sum_{i=1}^{n}\left\|\mathbf{N}_{i} \mathbf{N}_{i}^{\top} \mathrm{R}\left(\mathbf{X}_{i}-\mathbf{T}\right)\right\|^{2} . \tag{3.6}
\end{align*}
$$

The LOI algorithm alternates between optimization of the rotation matrix R and the translation vector \mathbf{T}.

Recently, Y. Zhang et al. [74] proposed two modifications to the R_and_T algorithm of Kumar and Hanson [37] by exploiting the uncertainty properties of line segment endpoints. The modifications are suitable for cases where line segments are fitted to noisy edge points using least squares, which are cases where errors of the endpoints are negatively correlated.

Several other iterative methods are also capable of simultaneous estimation of pose
parameters and line correspondences. They present an orthogonal approach to separate correspondence filtering and consecutive pose estimation. David et al. [17] proposed an approach called Soft-POSIT (it was first proposed for points [16], then it was proposed also for lines [17]), where two phases are repeated: First, 3D line endpoints are projected onto the image plane and they are matched to nearest 2D line segments by minimizing the point-to-line distances using weighted least squares. This is known as the softassign algorithm [24]. Second, the pose of a weak-perspective (also known as scaled orthographic) camera is estimated using the Pose from Orthography and Scaling with ITeration (POSIT) algorithm [18]. The whole process is then repeated until the pose converges. Again, depth of an object must be small compared to the distance of the object from the camera, and scene points must lie close to the optical axis due to the use of the weak-perspective camera model.

Recently, X. Zhang et al. [73] introduced an approach which outperforms the SoftPOSIT algorithm by taking an advantage of the fact that some prior on the camera pose is often available in practice. The prior is modelled by a Gaussian Mixture Model that is progressively refined by hypothesizing new correspondences. This reduces the number of potential matches and the pose space can be explored more thoroughly than by SoftPOSIT at a similar computational cost. The work of X. Zhang et al. is based on the earlier work of Moreno-Noguer et al. [50] who used pose priors for pose estimation from points.

3.2 Algebraic Methods

The algebraic approaches estimate the camera pose by solving a system of (usually polynomial) equations, minimizing an algebraic error. Their solutions are thus not necessarily geometrically optimal; on the other hand, no initialization is needed.

Among the earliest efforts in this field are those of Dhome et al. [20] and Chen [11]. Both methods solve the minimal problem of pose estimation from exactly 3 line correspondences in a closed form. Dhome et al. [20] proposed a closed-form solution by deriving a P3L polynomial. 3D lines are transformed into an intermediate model coordinate system chosen s.t. the first of the three lines is collinear with the X-axis and the second one is parallel to the $X Y$-plane. Similarly, 2D lines are transformed into a virtual image plane in an intermediate camera coordinate system s.t. its $X Z$-plane corresponds to the interpretation plane of the first image line and its X-axis is collinear to that image line. Chen [11] proposed another approach to derive a P3L polynomial by introducing a canonical configuration. The configurations is achieved by rotating the

3 D lines s.t. one of the three lines already lies in its interpretation plane defined by its 2D image. Camera orientation, which is estimated first, has thus only 2 remaining DoF instead of 3. Camera position is estimated afterwards by solving a system of linear equations. Chen's method often produces complex solutions.

Ansar and Daniilidis [5] developed a method that is able to handle 4 or more lines, limiting the number of possible solutions to 1 . Lifting is employed to convert a polynomial system to a linear system with 46 variables and with unknowns being the entries of a rotation matrix. In the case of four line correspondences, an additional SVD must be computed. The approach of Ansar and Daniilidis may, however, fail in cases of singular line configurations (e.g. lines in three orthogonal directions) [51] as the underlying polynomial system may have multiple solutions. The algorithm has quadratic computational complexity ($O\left(n^{2}\right.$), where n is the number of lines). The method gets unstable with increasing image noise, eventually producing solutions with complex numbers.

Recently, two major improvements of algebraic approaches have been achieved. First, Mirzaei and Roumeliotis [47] proposed a method which is more computationally efficient $(O(n))$, behaves more robustly in the presence of image noise, and can handle the minimum of 3 lines, or more. The approach is inspired by the earlier work of Hesch and Roumeliotis [31], who presented a similar algorithm for the Perspective-nPoint (PnP) problem. Mirzaei and Roumeliotis formulated the PnL problem as nonlinear least squares, and solve it as an eigenvalue problem. A polynomial system with 27 candidate solutions is constructed and solved through the eigendecomposition of a 27×27 multiplication matrix. The multiplication matrix is obtained as the Schur complement [46, 3.7.11] of an intermediate 120×120 Macaulay matrix (the matrix can be precomputed offline in symbolic form). Camera orientations having the smallest leastsquare error are considered to be the optimal ones. The orientation is described using the Cayley-Gibbs-Rodrigues parameterization [55]. Camera positions are obtained separately using linear least squares. The algorithm often yields multiple solutions.

RPnL. The second recent improvement is the Robust PnL (RPnL) algorithm of Zhang et al. [72], inspired by the success of the Robust PnP (RPnP) approach for points [39]. The method works with 4 or more lines and it is more accurate and robust than the method of Mirzaei and Roumeliotis. The RPnL method has two essential stages:
(i) Computation of coarse candidate solutions. The n lines are divided into $n-2$ triplets, each triplet containing the line of longest projection and the line of second longest projection. An intermediate model coordinate system is used s.t. its Z-axis is parallel to the 3 D line of longest projection and its origin is identical to the origin of the world
coordinate system. A P3L polynomial is formed for each line triplet and a cost function is constructed as the sum of squares of the P3L polynomials. The cost function is derived and the real roots of the derivative are selected as solutions of the whole polynomial system. The candidate pose solutions (i.e. rotation matrices and translation vectors) are computed from the solutions of the polynomial system, but the 'coarse' rotation matrices do not necessarily satisfy the orthonormality constraints.
(ii) Refinement of the candidate solutions and selection of the optimal solution. Each line is parameterized by a point \mathbf{X}_{i} and a direction \mathbf{V}_{i}. The points $\left\{\mathbf{X}_{i}\right\}$ are transformed from world to camera coordinate system by the candidate coarse R and \mathbf{T}, and each point is orthogonally projected onto its corresponding interpretation plane, yielding its projection \mathbf{X}_{i}^{\perp}. The two sets of points $\left\{\left(\mathbf{X}_{i}, \mathbf{X}_{i}^{\perp}\right)\right\}$ are aligned using a standard 3D alignment scheme [64]. The alignments yield fine candidate poses. The fine candidate poses are then pruned based on their orthogonal errors

$$
\begin{equation*}
E^{\perp}=\sum_{i=1}^{n}\left(\mathbf{N}_{i}^{\top} \mathrm{R} \mathbf{V}_{i}\right)^{2} \tag{3.7}
\end{equation*}
$$

The orthogonal error E^{\perp} is a sum of squares of dot products (i.e. cosines of angles) between the normal \mathbf{N}_{i} of an interpretation plane and the direction \mathbf{V}_{i} of a corresponding 3D line rotated by R to the camera coordinate system. Compare the orthogonal error E^{\perp} in Eq. (3.7) to the objective function of the LOI algorithm, which uses coplanarity errors (Eq. (3.5) on page 18). Although they may look similar, the orthogonal error E^{\perp} is an algebraic criterion while the objective function in Eq. (3.5) is a geometric criterion.

Finally, the optimal solution is selected based on the smallest reprojection error E^{π} according to Taylor and Kriegman [60]

$$
\begin{equation*}
E^{\pi}=\sum_{i=1}^{n} \int_{0}^{l_{i}} d_{i}^{2}(t) d t=\sum_{i=1}^{n} \frac{l_{i}}{3}\left(d_{i \mathrm{~s}}^{2}+d_{i \mathrm{~s}} \cdot d_{i \mathrm{e}}+d_{i \mathrm{e}}^{2}\right) . \tag{3.8}
\end{equation*}
$$

The reprojection error E^{π} is a sum of reprojection errors of all n line correspondences. Reprojection error of a single line correspondence is an integral of a square of $d_{i}($.$) , which$ is the shortest distance from a point \mathbf{x} on the line segment \mathbf{l} detected in the image to the projection $p(\mathbf{L})$ of the 3 D line \mathbf{L} (see Figure 3.3). A point $\mathbf{x}(t)$ on a line segment is parameterized by t varying from 0 to l_{i}, which is the length of a line segment. The value of $d_{i}($.$) at the start and at the end of a line segment is denoted by d_{i s}$ and $d_{i e}$, respectively.

Figure 3.3: Reprojection error according to Taylor and Kriegman [60].

ASPnL. The RPnL algorithm was later modified by Xu et al. [68] into the Accurate Subset based PnL (ASPnL) algorithm, which acts more accurately on small line sets. The modification is in the second "refinement" stage, which is applied to all coarse candidate poses from the first stage. The refined translation vector is computed by least squares from a set of linear equations. The rotation matrix is optimized iteratively. Small rotation corrections are expressed using the Cayley-Gibbs-Rodriguez (CGR) parameterization ([55], having only 3 parameters), and the optimization is performed using the Newton method. Complexity of each iteration is constant. After all candidate poses are refined, the final pose is selected based on the smallest orthogonal error in Eq. (3.7). The ASPnL method is very sensitive to outliers.

3.3 Methods based on Linear Formulation of PnL

A specific subset of algebraic methods are methods exploiting a linear formulation of the PnL problem (LPnL). Generally, the methods solve a system of linear equations, whose size is linearly proportional to the number of measurements, i.e. the number of line correspondences. The system of linear equations can be transformed into a homogeneous system of linear equations as described in Section 2.6, i. e. a system having only a zero vector at the right-hand side

$$
\begin{equation*}
M x=0 . \tag{3.9}
\end{equation*}
$$

The most straightforward way to solve LPnL is the Direct Linear Transformation (DLT) algorithm. Its name first appeared in 1971 in the work of Abdel-Aziz and Karara [1], but the idea dates back to 1963 to the work of Sutherland [59]. DLT transforms similarity equations (2.14) describing the measured line correspondences into homogeneous linear equations, i. e. into the form of Eq. (3.9). Then, it solves this system by a standard method, e.g. by SVD.

If measurements are inconsistent, which happens almost always in practice, an exact
solution \mathbf{x} does not exist. Nevertheless, an approximate solution \mathbf{x}^{\prime} can be computed in the least-squares sense. The approximate solution lies in the rank- 1 right nullspace of a matrix M^{\prime}, which is obtained through a low-rank approximation of M (the original measurement matrix M usually has full rank due to the measurements inconsistencies).

A necessary condition to apply any DLT method on noisy data is to prenormalize the input in order to ensure that the entries of the measurement matrix are of equal magnitude. Otherwise, the method will be oversensitive to noise and it will produce results arbitrarily far from the true solution [30].

DLT-Lines. The first DLT method for solving PnL is the method of Hartley and Zisserman [30, p. 180] from 2004. Following the terminology of Silva et al. [56], the method is called DLT-Lines. It does not act directly on 3D lines, but rather on 3D points lying on 3D lines (for example line endpoints). It exploits the fact that if a 3D line and a 3D point coincide, their projections also must coincide. The DLT-Lines method requires at least 6 line correspondences. To the best of my knowledge, DLT-Lines was the only existing LPnL method until 2015.

DLT-Plücker-Lines. In 2015, we introduced a new DLT method [II], which acts on 3D lines directly. The lines are parameterized using Plücker coordinates, hence the name of the method is DLT-Plücker-Lines. The method will be elaborated in Section 4.4.

Parallel to our effort in 2016, Xu et al. [68] introduced a new set of methods exploiting the linear formulation of the PnL problem. The authors were inspired by a state-of-the-art PnP solver working on the same principle [22]. Similarly to DLT-Lines, the new methods act on 3D points and 2D lines. The methods of Xu et al. [68] can be categorized by two criteria.

1. By coordinates used to parameterize 3 D points.

- Cartesian coordinates (denoted in the method's names by "DLT").
- Barycentric coordinates (denoted in the method's names by "Bar").

2. By a type of the nullspace, from which a solution \mathbf{x} is obtained.

- An exact rank-1 nullspace computed in closed form using homogeneous linear least squares (denoted in the method's names by "LS").
- An "effective nullspace" [38] of a dimension 1-4 (denoted in the method's names by "ENull").

A taxonomy of the methods is depicted in Table 3.1.

Table 3.1: Taxonomy of LPnL methods of Xu et al. [68].

		Coordinates	
		Cartesian	barycentric
	exact rank-1	LPnL_DLT_LS	LPnL_Bar_LS
	"effective nullspace" solver	LPnL_DLT_ENull	LPnL_Bar_ENull

All of the methods require at least 6 line correspondences, although the effective nullspace solver (ENull) is sometimes able to recover the correct solution of an underdetermined system defined by 4 or 5 lines.

The four LPnL methods of Xu et al. are the following.

LPnL_DLT_LS parameterizes 3D points using Cartesian coordinates, and it uses homogeneous linear least squares to recover a 1 dimensional nullspace in which the solution resides. The solution x consists of entries of the rotation matrix and the translation vector. This is exactly the same algorithm as DLT-Lines of Hartley and Zisserman [30, p. 180], so the name DLT-Lines is used to refer to the method in the rest of this thesis.

LPnL_DLT_ENull parameterizes 3D points using Cartesian coordinates, and it uses the effective nullspace solver [38] to recover a solution from a nullspace of dimension 1 4. The solution x consists of entries of the rotation matrix and the translation vector.

LPnL_Bar_LS parameterizes 3D points using barycentric coordinates, which depend on the position of 4 arbitrarily chosen control points. The solution \mathbf{x} consists of Cartesian coordinates of the control points w.r.t. camera, and it is solved using homogeneous linear least squares. Alignment of the 4 camera- and world-referred control points defines the camera pose. The method is roughly as accurate as DLT-Lines.

LPnL_Bar_ENull parameterizes 3D points using barycentric coordinates, which depend on the position of 4 arbitrarily chosen control points. The solution \mathbf{x} consists of

Cartesian coordinates of the control points w.r.t. camera, and it is solved using the effective nullspace solver. Alignment of the 4 camera- and world-referred control points defines the camera pose. The method is even more accurate then LPnL_Bar_LS.

3.4 Handling Mismatched Correspondences

In practice, mismatches of lines (i.e. outlying correspondences) often occur, which degrades the performance of camera pose estimation or even impedes it. It is thus necessary to identify and filter out mismatched correspondences and work preferably with correct matches.

RANSAC-based

The RANdom SAmple Consensus (RANSAC) algorithm [23] is commonly used to identify and remove outliers. It is a hypothesize-and-test scheme, where random samples are drawn from a set of data points, model parameters (i.e. hypotheses) are computed from the samples, and consensus of other data points is tested. This is repeated until a hypothesis with sufficient consensus is found or an iteration limit is exceeded.

A correct hypothesis is generated only if all data points in the sample are inliers. Since the chance of drawing an outlier-free sample depends not only on the fraction of inliers in the data but also on the size of the sample, it is desirable to use a minimal model. A non-minimal model can also be used, but, on average, more iterations are needed to obtain a correct hypothesis with same probability as when using a minimal model.

In the context of pose estimation from lines, the data points are usually tentative line correspondences, the model parameters are parameters of a camera pose, and the consensus may be quantified e.g. by reprojection error of corresponding lines. The minimal number of line correspondences required to determine a camera pose is 3 , but methods working with 4 line correspondences are also being used to generate hypotheses.

The RANSAC scheme can handle any percentage of outliers in theory as long as at least one outlier-free sample can be found. RANSAC is nondeterministic due to the use of random sampling. However, dozens of different RANSAC modifications have been introduced [45] eliminating various drawbacks of the original algorithm, e. g. [13, 14, 61].

Algebraic Outlier Rejection

As the LPnL methods work with 5 and more line correspondences, they cannot compete with the minimal (P3L) methods when plugged into a RANSAC-like framework due to an increased number of iterations.

This motivated an alternative scheme called Algebraic Outlier Rejection (AOR, [22]). It is an iterative approach integrated directly into the pose estimation procedure. Specifically, it is integrated into solving of the homogeneous linear system (2.15). Each line correspondence is assigned a weight, and the weights are arranged on the main diagonal of a square matrix W . This yields a homogeneous system of weighted linear equations

$$
\begin{equation*}
W M x=0 . \tag{3.10}
\end{equation*}
$$

At the beginning, all weights are initialized to 1 , conservatively assuming that all line correspondences are inliers. An approximate least-squares solution \mathbf{x} ' of the system (3.10) is computed by SVD of $M^{\top} W M$, and a residual vector ϵ of the solution is computed as

$$
\begin{equation*}
\epsilon=M x^{\prime} . \tag{3.11}
\end{equation*}
$$

An algebraic error ε of each line correspondence is computed from the residual vector ϵ as a norm of a sub-vector of corresponding residuals. E.g., for a case with 2 equations per line correspondence, the algebraic error of the i-th correspondence is $\varepsilon_{i}=\left\|\left(\epsilon_{2 i-1} \epsilon_{2 i}\right)\right\|$. All correspondences are then assigned new weights

$$
w_{i}= \begin{cases}1 & \text { if } \varepsilon_{i} \leq \max \left(\varepsilon_{\max }, \delta_{\max }\right) \tag{3.12}\\ 0 & \text { otherwise }\end{cases}
$$

and the whole procedure is repeated until convergence of the solution x^{\prime}. The constants $\varepsilon_{\max }$ and $\delta_{\max }$ are predefined thresholds. The strategy for choosing $\varepsilon_{\max }$ may be arbitrary but the authors [22] recommend $\varepsilon_{\max }=\mathrm{Q}_{25}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ which is the algebraic error of the correspondence that is at the boundary of the 25 th percentile. The function is used as a robust estimator to reject correspondences with largest errors. The other threshold, $\delta_{\text {max }}$, needs to be reached to consider a specific correspondence as an outlier. Its purpose is to avoid unnecessary rejections of inlier correspondences in an outlier-free case, and to achieve faster convergence.

The authors claim the break-down point to reach 60% when applied to the PnP problem, and the process to usually converge in less than 5 iterations.

Chapter 4

Pose Estimation from Lines using Direct Linear Transformation

This chapter contains the majority of contributions of this thesis. First, the state-of-the-art is critically analyzed and the resolution is outlined. Then, two novel DLT-based methods for pose estimation from line correspondences are introduced and related to one existing DLT-based method. The methods are formulated within a novel unifying framework for DLT-based PnL methods.

4.1 Analysis of the State-of-the-Art

Pose estimation from line correspondences is a fundamental task required for many applications of computer vision -3 D reconstruction of a scene, localization and navigation of a robot, operation of a robotic arm solely on the basis of visual information, or augmentation of user's view with additional information, for example.

When estimating camera pose "from scratch", the following pipeline is typically used:
(i) Obtain tentative feature correspondences,
(ii) filter out outliers,
(iii) compute a solution from all inliers, and
(iv) iteratively refine the solution, e.g. by minimizing reprojection error (optionally).

Task (i) is usually carried out by appearance-based or geometry-based matching of lines, as outlined in Section 2.5. Task (ii) is usually carried out by iterative solving of a problem with a minimal number of line correspondences (i.e. P3L) in a RANSAC loop. Tasks (iii) and (iv), on the other hand, require solving a PnL problem with potentially high
number of lines, which might be a time-consuming task. It is thus of interest to solve the task using an efficient algorithm.

As presented in the previous chapter, methods for solving PnL can be categorized as either iterative or algebraic. The iterative algorithms [12, 17, 37, 40, 73, 74] need initialization. This makes them suitable only for final refinement (iv) of an initial solution, which must be provided by some other algorithm. The initial solution (iii) may be provided by an algebraic algorithm [5, 11, 20, 47, 68, 72]. Among these, the methods of Chen [11] and Dhome et al. [20] are able to exploit only 3 line correspondences, thus they cannot be used in scenarios with more lines. The algorithm of Ansar and Daniilidis [5] overcomes the limitation of fixed number of lines, allowing to use 4 and more lines. However, it has a quadratic computational complexity in the number of lines, which renders it impractically slow even for scenarios with dozens of lines. Mirzaei and Roumeliotis [47] eliminated the computational burden by introducing a method with linear computational complexity. Nonetheless, its runtime is still high due to a slow construction of a multiplication matrix, causing a high constant time penalty: it takes 78 ms to process 10 lines. Another drawback of the method is that it often yields multiple solutions. The shortcomings of [47] have been overcome by Zhang et al. [72] in their RPnL algorithm: it always yields a single solution and it takes 8 ms to compute a pose of 10 lines. However, the computational time increases strongly for higher number of lines: it takes 880 ms to process 1000 lines. The related method ASPnL of Xu et al. [68] inherits the attributes of RPnL. Alhough ASPnL is more accurate on small line sets, its runtime follows the characteristic of RPnL.

The non-LPnL algebraic methods only have been discussed so far. Nevertheless, in tasks involving a high number of lines, the non-LPnL methods are outperformed by the LPnL methods: by DLT-Lines of Hartley and Zisserman [30] and by the methods of Xu et al. [68]. These state-of-the-art methods are efficient and accurate especially in scenarios with high number of lines. Interestingly enough, they do not exploit all available information: They only utilize points in 3D space, but 3D lines remain unused. This means only point-line correspondences are used and the potential of line-line correspondences is unexploited, leaving a promising room for research and improvement.

This thesis aims for better accuracy and robustness than the state-of-the-art by introducing a new linear method for pose estimation. The method shall utilize line-line correspondences and keep the advantage of being fast which LPnL methods have in common. The goal is elaborated in the rest of this thesis and it is verified experimentally using both synthetic and real-world data.

The attention is focused on methods based on the DLT. First, a unifying framework
for all DLT-based PnL methods is presented in Section 4.2. Then, all three DLT-based PnL methods are formulated within the framework. The methods are:

DLT-Lines of Hartley and Zisserman [30, p. 180], exploiting point-line correspondences only - Section 4.3.

DLT-Plücker-Lines of ours [II], exploiting line-line correspondences only - Section 4.4.
DLT-Combined-Lines of ours [$[$], exploiting both point-line and line-line correspondences - Section 4.5.

4.2 Common Structure of DLT Methods

In this section, the novel unifying framework for DLT-based PnL methods is introduced. Given the point-line or line-line correspondences, the camera pose can be estimated using a PnL method. The DLT-based PnL methods have the following steps in common:

1. Input data is prenormalized to achieve good conditioning of the linear system.
2. A projection matrix is estimated using homogeneous linear least squares, and the effect of prenormalization is reverted.
3. The pose parameters are extracted from the estimated projection matrix. This includes also constraint enforcement in the case of noisy data, since the constraints are not taken into account during the least-squares estimation.

Prenormalization

Since the DLT algorithm is sensitive to the choice of coordinate system, it is crucial to prenormalize the data to get a properly conditioned measurement matrix M [27]. Various transformations can be used, but the optimal ones are unknown. In practice, however, the goal is to reduce large values of point/line coordinates. This is usually achieved by centering the data around the origin and by scaling them s.t. an average coordinate has the absolute value of 1 (which means the average distance to the origin shall equal to $\sqrt{2}$ and $\sqrt{3}$ in the 2D and 3D case, respectively). Specific prenormalizing transformations are proposed for each method in the following sections.

Linear Estimation of a Projection Matrix

As a starting point, a system of linear equations needs to be constructed, which relates (prenormalized) 3D entities with their (prenormalized) image counterparts through a
projection matrix, denoted P. The relation might be the projection of homogeneous 3D points $\mathbf{x} \approx \dot{\mathrm{P}} \mathbf{X}$ in Eq. (2.11), or the projection of Plücker lines $\mathbf{l} \approx \overline{\mathrm{P}} \mathbf{L}$ in Eq. (2.14), or other linear system, or a combination of those. The problem of camera pose estimation now resides in estimating the projection matrix P, which encodes all the six camera pose parameters $T_{1}, T_{2}, T_{3}, A, B, \Gamma$.

The system of linear equations is transformed into a homogeneous system of linear equations (see Appendix A for details), i. e. a system having only a zero vector at the right-hand side.

$$
\begin{equation*}
\mathrm{Mp}=\mathbf{0} \tag{4.1}
\end{equation*}
$$

M is a measurement matrix containing coefficients of equations generated by correspondences between 3D entities and their image counterparts. Each of the n correspondences gives rise to a number of independent linear equations (usually 2), and thus to the same number of rows of M. The number of columns of M equals d, which is the number of entries contained in P. The size of M is thus $2 n \times d$. Eq. (4.1) is then solved for the d-vector $\mathbf{p}=\operatorname{vec}(\mathbf{P})$.

As mentioned in Section 2.6, Eq. (4.1) holds only in a noise-free case. If a noise is present in the measurements, an inconsistent system is obtained:

$$
\begin{equation*}
\mathrm{Mp}^{\prime}=\epsilon \tag{4.2}
\end{equation*}
$$

Only an approximate solution \mathbf{p}^{\prime} may be found through minimization of a $2 n$-vector of measurement residuals $\boldsymbol{\epsilon}$ in a least-squares sense s.t. $\left\|\mathbf{p}^{\prime}\right\|=1$.

Once the system of linear equations given by Eq. (4.2) is solved, the estimate P^{\prime} of the projection matrix \mathbf{P} can be recovered from the d-vector \mathbf{p}^{\prime}.

Extraction of Pose Parameters

The estimate P^{\prime} of a projection matrix P obtained as a solution of the system (4.2) does not satisfy the constraints imposed on P. In fact, a projection matrix P has only 6 DoF - the 6 camera pose parameters $T_{1}, T_{2}, T_{3}, A, B, \Gamma$. It has, however, more entries: The 3×4 point projection matrix

$$
\dot{\mathrm{P}} \approx\left[\begin{array}{ll}
\mathrm{R} & -\mathrm{RT} \tag{4.3}
\end{array}\right]
$$

has 12 entries and the 3×6 line projection matrix

$$
\overline{\mathrm{P}} \approx\left[\begin{array}{ll}
\mathrm{R} & \mathrm{R}[-\mathbf{T}]_{\times} \tag{4.4}
\end{array}\right]
$$

has 18 entries. This means that the projection matrices have 6 and 12 independent linear constraints, respectively.

The first six constraints are imposed by the rotation matrix R that must satisfy the orthonormality constraints (unit-norm and mutually orthogonal rows). The other six constraints in the case of $\overline{\mathrm{P}}$ are imposed by the skew-symmetric matrix $[-\mathbf{T}]_{\times}$(three zeros on the main diagonal and antisymmetric off-diagonal elements).

In order to extract the pose parameters, the scale of an estimate P^{\prime} of a projection matrix P has to be corrected first, since \mathbf{p}^{\prime} is usually of unit length as a minimizer of $\boldsymbol{\epsilon}$ in Eq. (4.2). The correct scale of P^{\prime} can only be determined from the part which does not contain the translation \mathbf{T}. In both cases of $\dot{\mathrm{P}}$ (4.3) and $\overline{\mathrm{P}}$ (4.4), it is the left 3×3 submatrix - let us denote it P_{1}^{\prime} - an estimate of a rotation matrix R. A method of scale correction is recommended based on the fact that all three singular values of a proper rotation matrix should be 1. See Algorithm 1.

```
Algorithm 1: Scale correction of a projection matrix.
Input: An estimate \(\mathrm{P}^{\prime}\) of a projection matrix, possibly wrongly scaled and without
    fulfilled constraints.
    \(\mathrm{P}_{1}^{\prime} \leftarrow\) left \(3 \times 3\) submatrix of \(\mathrm{P}^{\prime}\)
2. \(U \Sigma V^{\top} \leftarrow \operatorname{SVD}\left(P_{1}^{\prime}\right)\)
3. \(s \leftarrow 1 / \operatorname{mean}(\operatorname{diag}(\Sigma))\)
```

Output: $s \mathrm{P}^{\prime}$.

Alternatively, the scale can also be corrected so that $\operatorname{det}\left(s \mathrm{P}_{1}^{\prime}\right)=1$, but Algorithm 1 proved to be more robust in practice.

Further steps in the extraction of pose parameters differ in each method, they are thus described separately in the following sections.

4.3 DLT-Lines

DLT-Lines is the method by Hartley and Zisserman [30, p. 180]. In the following text, the method is put into context using the unifying framework of the previous section. DLT-Lines exploits the fact that a 3D point \mathbf{X} lying on a 3D line \mathbf{L} projects such that its projection $\mathbf{x}=\dot{\mathbf{P}} \mathbf{X}$ must also lie on the projected line: $\mathbf{I}^{\top} \mathbf{x}=0$, see Figure 4.1. Putting this together yields the constraint equation

$$
\begin{equation*}
\mathbf{I}^{\top} \dot{P} \mathbf{X}=0 . \tag{4.5}
\end{equation*}
$$

The pose parameters are encoded in the 3×4 point projection matrix \dot{P}, see Eq. (2.10). Since $\dot{\mathrm{P}}$ has 12 entries, at least 6 lines are required to fully determine the system, each line with 2 or more points on it.

Figure 4.1: A point \mathbf{X} lying on a 3D line projects s.t. its projection must lie on the image line \mathbf{l} - a projection of the 3D line.

Prenormalization

The known quantities of Eq. (4.5), i. e. the coordinates of 3D points and 2D lines, need to be prenormalized. In the case of the DLT-based pose estimation from points [29], Hartley suggests to translate and scale both 3D and 2D points so that their centroid is at the origin and their average distance from the origin equals to $\sqrt{3}$ and $\sqrt{2}$, respectively.

By exploiting the principle of duality [15], it is suggested to treat coordinates of 2D lines as homogeneous coordinates of 2D points, and then to follow Hartley in the prenormalization procedure - i.e. to apply translation to the origin and then anisotropic scaling.

Linear Estimation of the Point Projection matrix

The point projection matrix \dot{P} and its estimate \dot{P}^{\prime} are 3×4, so the corresponding measurement matrix $\dot{\mathrm{M}}$ is $n \times 12$, where n is the number of point-line correspondences $\mathbf{X}_{i} \leftrightarrow \mathbf{l}_{i}$, ($i=1 \ldots n, n \geq 12$). \dot{M} is constructed as

$$
\begin{equation*}
\dot{\mathrm{M}}_{(i,:)}=\mathbf{X}_{i}^{\top} \otimes \mathbf{l}_{i}^{\top}, \tag{4.6}
\end{equation*}
$$

where $\dot{\mathbf{M}}_{(i, \text { : })}$ denotes the i-th row of $\dot{\mathrm{M}}$ in the Matlab notation. See Appendix A. 3 for a derivation of Eq. (4.6). The 3D points \mathbf{X}_{i} must be located on at least 6 different lines.

Extraction of Pose Parameters

First, the scale of $\dot{\mathbf{P}}^{\prime}$ is corrected using Algorithm 1, yielding $s \dot{P}^{\prime}$. Then, the left 3×3 submatrix of $s \dot{\mathrm{P}}^{\prime}$ is taken as the estimate R^{\prime} of a rotation matrix. A nearest rotation matrix R is found in the sense of the Frobenius norm using Algorithm 2.

```
Algorithm 2: Orthogonalization of a \(3 \times 3\) matrix.
Input: A \(3 \times 3\) estimate \(R^{\prime}\) of a rotation matrix \(R\).
    1. \(\mathrm{U}^{\mathrm{L}} \mathrm{V}^{\top} \leftarrow \operatorname{SVD}\left(\mathrm{R}^{\prime}\right)\)
    2. \(d \leftarrow \operatorname{det}\left(\mathrm{UV}^{\top}\right)\)
    3. \(R \leftarrow d U V^{\top}\)
```

Output: R.

Please, note that Algorithms 1 and 2 can be combined and executed at once.
The remaining pose parameter to recover is the translation vector \mathbf{T}, which is encoded in the fourth column $\dot{\mathbf{P}}_{4}^{\prime}$ of $\dot{\mathrm{P}}^{\prime}$, see Eq. (2.10). It is recovered as $\mathbf{T}=\mathrm{R}^{\top} s \dot{\mathbf{P}}_{4}^{\prime}$, completing the extraction of pose parameters.

4.4 DLT-Plücker-Lines

DLT-Plücker-Lines is a novel method, which was published in [II]. It exploits the linear projection of 3D lines parameterized using Plücker coordinates onto the image plane, as described in Section 2.3. A benefit of this method is higher accuracy of camera orientation estimates compared to DLT-Lines.

The formation of a 2 D line \mathbf{l} as a projection of a 3 D line \mathbf{L} is defined by the constraint equation (2.14)

$$
\begin{equation*}
1 \approx \overline{\mathrm{P}} \mathbf{L}, \tag{4.7}
\end{equation*}
$$

as illustrated in Figure 4.2. The pose parameters are encoded in the 3×6 line projection matrix $\overline{\mathrm{P}}$, see Eq. (2.13). Since $\overline{\mathrm{P}}$ has 18 entries, at least 9 lines are required to fully determine the system.

Prenormalization

The known quantities of Eq. (4.7) need to be prenormalized, i.e. the Plücker coordinates of 3D lines \mathbf{L}, and the coordinates of 2D lines 1. Since the homogeneous Plücker coordinates of a 3D line \mathbf{L} cannot be simply treated as homogeneous coordinates of a 5 D point (because of the bilinear constraint, see Section 2.3), the following prenormalization is suggested.

Figure 4.2: A 3D line \mathbf{L} parameterized using Plücker coordinates is defined by a normal \mathbf{U} of its interpretation plane and by its direction vector \mathbf{V}. Its projection is denoted \mathbf{l}.

Translation and scaling is applied in this case as well. However, both translation and scaling affect only the \mathbf{U} part of each \mathbf{L}, and not the \mathbf{V} part. Therefore, the \mathbf{V} parts are adjusted first by multiplying each \mathbf{L} by a nonzero scale factor so that $\|\mathbf{V}\|=\sqrt{3}$. Then, translation is applied to minimize the average magnitude of \mathbf{U}. Since $\|\mathbf{U}\|$ decreases with the distance of \mathbf{L} from the origin, it is feasible to translate the lines so that the sum of squared distances from the origin is minimized. This can be efficiently computed using the Generalized Weiszfeld algorithm [2]. Finally, anisotropic scaling is applied so that the average magnitude of all \mathbf{U} parts matches the average magnitude of all \mathbf{V} parts. Both translation and scaling of lines is achieved by premultiplying them by a 6×6 line similarity matrix [7]. The procedure is summarized in Algorithm 3.

Prenormalization of 2D lines can be carried out in the same way as in the case of the DLT-Lines method, see Section 4.3.

Linear Estimation of the Line Projection Matrix

The line projection matrix $\overline{\mathrm{P}}$ and its estimate $\overline{\mathrm{P}}^{\prime}$ are 3×6, so the corresponding measurement matrix \bar{M} has 18 columns. The number of its rows depends on m, the number of line-line correspondences $\mathbf{L}_{j} \leftrightarrow \mathbf{l}_{j},(j=1 \ldots m, m \geq 9)$. By exploiting Eq. (4.7), each correspondence generates three rows of \bar{M} (Matlab notation is used to index the matrix elements):

$$
\begin{equation*}
\overline{\mathrm{M}}_{(3 j-2: 3 j,:)}=\mathbf{L}_{j}^{\top} \otimes\left[\mathbf{l}_{j}\right]_{\times} \tag{4.8}
\end{equation*}
$$

The line measurement matrix $\overline{\mathrm{M}}$ is thus $3 m \times 18$. Note that only two of the three rows

```
Algorithm 3: Prenormalization of 3D lines parameterized by Plücker coordinates. Note: See Section 2.1 for the definition of function mean \({ }_{|\rho|}(\).\() .\)
```

Input: A set of m 3D lines $\left\{\mathbf{L}_{j}\right\}, j=1 \ldots m$.

1. For all lines do: $\quad \mathbf{L}_{j}=\frac{\sqrt{3}}{\left\|\mathbf{V}_{j}\right\|} \cdot \mathbf{L}_{j}$
2. $\mathbf{T} \leftarrow$ Generalized_Weiszfeld_Algorithm $\left(\left\{\mathbf{L}_{j}\right\}\right) \quad \triangleleft$ Aftab et al. [2]
3. For all lines do: $\mathbf{L}_{j}=\left[\begin{array}{cc}1 & {[-\mathbf{T}]_{\times}} \\ 0 & \mathrm{I}\end{array}\right] \mathbf{L}_{j} \quad \triangleleft$ translation
4. $S_{\mathrm{X}} \leftarrow \frac{\operatorname{mean}_{\mid \mathrm{o}}\left(\left\{\mathbf{V}_{j}\right\}\right)}{\operatorname{mean}_{|\mathrm{o}|}\left(\left\{L_{j, 1}\right\}\right)} \quad, \quad S_{\mathrm{Y}} \leftarrow \frac{\operatorname{mean}_{|\rho|}\left(\left\{\mathbf{V}_{j}\right\}\right)}{\operatorname{mean}_{|\mathrm{o}|}\left(\left\{L_{j, 2}\right\}\right)} \quad, \quad S_{\mathrm{Z}} \leftarrow \frac{\operatorname{mean}_{\mid \mathrm{o}}\left(\left\{\mathbf{V}_{j}\right\}\right)}{\operatorname{mean}_{|\mathrm{o}|}\left(\left\{L_{j, 3}\right\}\right)}$
5. For all lines do: $\quad \mathbf{L}_{j}=\left[\begin{array}{ccc}S_{\mathrm{X}} & & \\ & S_{\mathrm{Y}} & \\ & & 0 \\ 0 & & \\ & & \end{array}\right] \mathbf{L}_{j}$ \triangleleft scaling

Output: A set of m prenormalized 3D lines $\left\{\mathbf{L}_{j}\right\}, j=1 \ldots m$.
of \bar{M} defined by Eq. (4.8) are needed for each line-line correspondence, because they are linearly dependent. $\overline{\mathrm{M}}$ will be only $2 m \times 18$ in this case. See Appendix A. 1 for a derivation of Eq. (4.8).

Extraction of Pose Parameters

First, the scale of $\overline{\mathrm{P}}^{\prime}$ is corrected using Algorithm 1, yielding $s \bar{P}^{\prime}$. Then, the camera pose parameters are extracted from the right 3×3 submatrix of $s \bar{P}^{\prime}$, which is an estimate of a skew-symmetric matrix premultiplied by a rotation matrix (i. e. $\mathrm{R}[-\mathbf{T}]_{\times}$, see Eq. (2.13)). Since $s \overline{\mathrm{P}}^{\prime}$ has the structure of the essential matrix [41], the algorithm of Tsai and Huang [63] is proposed to decompose $s \overline{\mathrm{P}}^{\prime}$, as outlined in Algorithm 4. This completes the extraction of pose parameters.

The variable $q=\left(\Sigma_{1,1}+\Sigma_{2,2}\right) / 2$ in Algorithm 4 is an average of the first two singular values of $s \bar{P}_{2}^{\prime}$ to approximate the singular values of a properly constrained essential matrix, which should be ($q, q, 0$). The ± 1 term in Step 4 of Algorithm 4 denotes either +1 or -1 which has to be put on the diagonal so that $\operatorname{det}\left(R_{A}\right)=\operatorname{det}\left(R_{B}\right)=1$.

Alternative ways of extracting the camera pose parameters from $s \overline{\mathrm{P}}^{\prime}$ exist, e. g. com-
puting the closest rotation matrix R to the left 3×3 submatrix of $s \overline{\mathrm{P}}_{1}^{\prime}$ and then computing $[\mathbf{T}]_{\times}=-\mathrm{R}^{\top} s \overline{\mathrm{P}}_{2}^{\prime}$. However, our experiments showed that the alternative ways are less robust to image noise. Therefore, the solution described in Algorithm 4 was chosen.

```
Algorithm 4: Extraction of pose parameters from the estimate \(\overline{\mathrm{P}}^{\prime}\) of a line projection matrix, inspired by [63].
```

Input: An estimate $\overline{\mathrm{P}}^{\prime}$ of a line projection matrix $\overline{\mathrm{P}}$.
Input: Corrective scale factor s.

1. $\overline{\mathrm{P}}_{2}^{\prime} \leftarrow$ right 3×3 submatrix of $\overline{\mathrm{P}}^{\prime}$
2. $U \Sigma \mathrm{~V}^{\top} \leftarrow \operatorname{SVD}\left(s \bar{P}_{2}^{\prime}\right)$
3. $Z \leftarrow\left[\begin{array}{rrr}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \quad W \leftarrow\left[\begin{array}{rrr}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$,
$q \leftarrow\left(\Sigma_{1,1}+\Sigma_{2,2}\right) / 2$
4. Compute 2 candidate solutions (A, B):
$\mathrm{R}_{\mathrm{A}} \leftarrow \mathrm{UW} \operatorname{diag}(11 \pm 1) \mathrm{V}^{\top}, \quad[\mathbf{T}]_{\times \mathrm{A}} \leftarrow q \mathrm{VZ} \mathrm{V}^{\top}$
$\mathrm{R}_{\mathrm{B}} \leftarrow U \mathrm{~W}^{\top} \operatorname{diag}(11 \pm 1) \mathrm{V}^{\top}, \quad[\mathbf{T}]_{\times \mathrm{B}} \leftarrow q \mathrm{VZ} \mathrm{Z}^{\top} \mathrm{V}^{\top}$
5. Accept the physically plausible solution, so that the scene lies in front of the camera.
$\mathrm{R} \leftarrow \mathrm{R}_{\mathrm{A}}, \quad \mathbf{T} \leftarrow \mathbf{T}_{\mathrm{A}}$ or
$R \leftarrow R_{B}, \quad T \leftarrow T_{B}$.
Output: R, T.

4.5 DLT-Combined-Lines

DLT-Combined-Lines is a novel method published in [I]. It is a combination of DLTLines and DLT-Plücker-Lines methods, exploiting the redundant representation of 3D structure in the form of both 3D points and 3D lines, see Figure 4.3. The 2D structure is represented by 2D lines. The primary benefit of the method is a higher accuracy of the camera pose estimates and smaller reprojection error, the secondary benefit is the lower number of required lines.

The central idea of the method is to merge two systems of linear equations, which share some unknowns, into one system. The unknowns are entries of the point projection matrix \dot{P} used in DLT-Lines and the line projection matrix $\overline{\mathrm{P}}$ used in DLT-Plücker-Lines. The two systems defined by Eq. (4.5) and (4.7) can be merged so that the set of unknowns

Figure 4.3: A 3D line \mathbf{L} is parameterized by both Plücker coordinates of the line (i.e. the normal \mathbf{U} of its interpretation plane and its direction vector \mathbf{V}) and a point \mathbf{X} lying on the line. L may be parameterized by many such points. Projection of the point \mathbf{X} must lie on the projection \mathbf{l} of the line \mathbf{L}.
of the resulting system is formed by the union of unknowns of both systems. It can be observed that the shared unknowns reside in the left 3×3 submatrices of \dot{P} and $\overline{\mathrm{P}}$. If unknowns of the resulting system are arranged in a feasible manner, a new 3×7 matrix \ddot{P} can be constructed, which is a "union" of \dot{P} and \bar{P} :

The matrix is called a combined projection matrix, because it allows to write the projection equations for point-line, line-line, and even point-point correspondences, as follows:

$$
\begin{align*}
& \mathbf{l}^{\top} \ddot{\mathrm{P}}\left(\begin{array}{cccc}
\mathbf{X}^{\top} & 0 & 0 & 0
\end{array}\right)^{\top}=0, \tag{4.10}\\
& \mathbf{l} \approx \ddot{\mathrm{P}}\left(\begin{array}{lll}
\mathbf{U}^{\top} 0 & 0 & \mathbf{V}^{\top}
\end{array}\right)^{\top}, \tag{4.11}\\
& \mathbf{x} \approx \ddot{\mathrm{P}}\left(\begin{array}{llll}
\mathbf{X}^{\top} & 0 & 0 & 0
\end{array}\right)^{\top} . \tag{4.12}
\end{align*}
$$

These equations can then be used to estimate \ddot{P} linearly from the correspondences.
A secondary benefit of the method is that it requires only 5 lines (and 10 points on them) - less then DLT-Plücker-Lines and even less then DLT-Lines. To explain why, the following matrices are defined first: the left-most 3×3 submatrix of \ddot{P} is denoted $\ddot{\mathrm{P}}_{1}$, the middle 3×1 submatrix (column vector) is denoted $\ddot{\mathbf{P}}_{2}$, and the right-most 3×3 submatrix is denoted \ddot{P}_{3}.

$$
\ddot{\mathrm{P}}=\left[\begin{array}{lll}
\mathrm{R} & -\mathrm{RT} & \mathrm{R}[-\mathbf{T}]_{\times}
\end{array}\right]=\left[\begin{array}{lll}
\ddot{\mathrm{P}}_{1} & \ddot{\mathbf{P}}_{2} & \ddot{\mathrm{P}}_{3} \tag{4.13}
\end{array}\right]
$$

\ddot{P} has 21 entries, but since it encodes the camera pose, it has only 6 DoF. This means it has 14 nonlinear constraints (homogeneity of the matrix accounts for the 1 remaining DoF). Ignoring the nonlinear constraints, which are not taken into account during the least-squares estimation, P has 20 DoF. Each point-line correspondence generates 1 independent linear equation (4.10) and each line-line correspondence generates 2 independent linear equations (4.11). Since $\ddot{\mathbf{P}}_{2}$ is determined only by point-line correspondences and since it has 3 DoF , at least 3 3D points are required to fully determine it. An analogy holds for $\ddot{\mathrm{P}}_{3}$: since it is determined only by line-line correspondences and since it has 9 DoF, at least 5 (in theory $4 \frac{1}{2}$) 3D lines are required to fully determine it. The required number of m line-line correspondences and n point-line correspondences is thus $m=9$, $n=3$, or $m=5, n=10$, or something in between satisfying the inequality $(n+2 m) \geq 20$, see Table 4.1. In such minimal cases, the points must be distributed equally among the lines, i. e. each point or a pair of points must lie on a different line; otherwise, the system of equations would be under-determined.

Table 4.1: Minimal numbers of line-line and point-line correspondences required for the DLT-Combined-Lines method.

point-line	$n=$	3	4	5	6	7	8	9	10
line-line	$m=$	9	8	8	7	7	6	6	5

Let us proceed with the description of the algorithm. Please notice that the prenormalization procedure will be unusually described after the definition of a measurement matrix, because prenormalization is strongly motivated by its structure.

Linear Estimation of the Combined Projection Matrix

The combined projection matrix \ddot{P} and its estimate \ddot{P}^{\prime} are 3×7, so the combined measurement matrix $\ddot{\mathrm{M}}$ has 21 columns. Number of its rows depends on n - the number of point-line correspondences $\mathbf{X}_{i} \leftrightarrow \mathbf{l}_{i},(i=1 \ldots n)$, and on m - the number of line-line correspondences $\mathbf{L}_{j} \leftrightarrow \mathbf{l}_{j},(j=n+1 \ldots n+m)$. The minimal values of n and m depend on each other and are given in Table 4.1. Each point-line correspondence (4.10) leads to one row of \ddot{M}, and each line-line correspondence (4.11) gives rise to three rows of \ddot{M} (Matlab notation is used to index the matrix elements):

$$
\begin{array}{ll}
\ddot{\mathrm{M}}_{(i,:)} & =\left(\begin{array}{llll}
\mathbf{X}_{i}^{\top} & 0 & 0 & 0
\end{array}\right) \otimes \mathbf{l}_{i}^{\top}, \\
\left.\ddot{\mathrm{M}}_{(3 j-n-2: 3 j-n,:}\right) & =\left(\begin{array}{lll}
\mathbf{U}_{j}^{\top} & 0 & \mathbf{V}_{j}^{\top}
\end{array}\right) \otimes\left[\mathbf{l}_{j}\right]_{\times} . \tag{4.15}
\end{array}
$$

The combined measurement matrix $\ddot{\mathrm{M}}$ is thus $(n+3 m) \times 21$. Note that only two of the three rows of \ddot{M} defined by Eq. (4.15) are needed for each line-line correspondence, because they are linearly dependent. Our experiments showed that using all three rows brings no advantage, so only two of them are used in practice. In this case, \ddot{M} is only $(n+2 m) \times 21$. See Appendix A for derivations of Eq. (4.14) and (4.15).

The combined measurement matrix $\ddot{\mathrm{M}}$ can also be constructed by stacking and aligning the point measurement matrix \dot{M} and the line measurement matrix $\overline{\mathrm{M}}$:

$$
\ddot{\mathrm{M}}=\left[\begin{array}{cl}
\dot{\mathrm{M}}_{n \times 12} & 0_{n \times 9} \tag{4.16}\\
\overline{\mathrm{M}}_{(:, 1: 9)} & 0_{3 m \times 3}
\end{array} \overline{\mathrm{M}}_{(:, 10: 18)} .\right] .
$$

Remark 4.1: It is advisable to scale both \dot{M} and \bar{M} so that the sums of squares of their entries are equal. (If they were not, it would negatively affect the scales of those parts of the solution $\ddot{\mathbf{p}}=\operatorname{vec}(\ddot{\mathrm{P}})$, which are determined exclusively by $\dot{\mathrm{M}}$ or $\overline{\mathrm{M}}$, but not by both of them. These are the entries 10-12 and 13-21 of $\ddot{\mathbf{p}}$, which contain estimates of translation. See the middle and right part of \ddot{P} in Eq. (4.13).)

Remark 4.2: The method can easily be extended to point-point correspondences (4.12) by adding extra rows to \ddot{M}. Each of the p point-point correspondences $\mathbf{X}_{k} \leftrightarrow \mathbf{x}_{k},(k=$ $n+m+1 \ldots n+m+p)$ generates three rows

$$
\ddot{\mathrm{M}}_{(3 k-n-m-2: 3 k-n-m,:)}=\left(\begin{array}{llll}
\mathbf{X}_{i}^{\top} & 0 & 0 & 0 \tag{4.17}
\end{array}\right) \otimes\left[\mathbf{x}_{i}\right]_{\times},
$$

two of which are linearly independent. See Appendix A. 2 for a derivation of Eq. (4.17).

Prenormalization

Prenormalization of 2D lines is rather complicated in this case. The problem is that a 2D line \mathbf{l} is in the direct form and on the opposite side than the line projection matrix $\overline{\mathrm{P}}$ in Eq. (4.11), and it is in the transposed form and on the same side like the point projection matrix \dot{P} in Eq. (4.10). Thus, when undoing the effect of a prenormalizing 2D transformation t, the inverse transformation is t^{-1} for \bar{P}, and t^{\top} for \dot{P}. Since both \dot{P} and \bar{P} are parts of \ddot{P}, both inverse transformations must be identical $\left(t^{\top}=t^{-1}\right)$. However, this only holds for a 2D rotation, which is practically useless as a prenormalizing transformation. It is thus suggested not to prenormalize 2D lines at all.

Prenormalization of 3D points and 3D lines is also nontrivial, because transformations of 3D space affect the coordinates of points and lines differently. However, it can be achieved by pursuing the goal from the beginning of Section 4.2: to center the data around the origin by translation, and to scale them s.t. an average coordinate has the absolute value of 1 .

Please note that translation and scaling affects only the \mathbf{U} part of a 3 D line \mathbf{L}, and only the $\left(X_{1} X_{2} X_{3}\right)^{\top}$ part of a 3D point \mathbf{X}. Therefore, (i) the unaffected parts of \mathbf{L} and \mathbf{X} (i.e. \mathbf{V} and X_{4}) must be adjusted beforehand: Each 3D line and each 3D point is normalized by multiplication by a nonzero scale factor, so that $\|\mathbf{V}\|=\sqrt{3}$, and $X_{4}=1$. Note that this adjustment does not change the spatial properties of 3D points/lines. Then, (ii) translation is applied to center the 3D points around the origin ${ }^{1}$. Although the translation is intuitively correct (it results in zero mean of 3D points), it is not optimal in terms of entries of the measurement matrix (joint zero mean of $\left(X_{1} X_{2} X_{3}\right)^{\top}$ and \mathbf{U}). Therefore, (iii) another translation is applied to achieve a joint zero mean of all $\left(X_{1} X_{2} X_{3}\right)^{\top}$ and \mathbf{U}. The translation can be easily computed in closed form using Algorithm 6. Finally, (iv) anisotropic scaling is applied so that the average magnitudes of all X_{1} and L_{1}, X_{2} and L_{2}, X_{3} and L_{3}, and X_{4} and \mathbf{V} are equal, i.e.

$$
\begin{align*}
& \operatorname{mean}_{|\rho|}\left(\left\{X_{i, 1}\right\}\right)+\operatorname{mean}_{\mid \rho}\left(\left\{L_{j, 1}\right\}\right)= \\
= & \operatorname{mean}_{|\rho|}\left(\left\{X_{i, 2}\right\}\right)+\operatorname{mean}_{\mid \rho}\left(\left\{L_{j, 2}\right\}\right)= \tag{4.18}\\
= & \operatorname{mean}_{|\circ|}\left(\left\{X_{i, 3}\right\}\right)+\operatorname{mean}_{|\rho|}\left(\left\{L_{j, 3}\right\}\right)= \\
= & \operatorname{mean}_{|\circ|}\left(\left\{X_{i, 4}\right\}\right)+\operatorname{mean}_{|\rho|}\left(\left\{\mathbf{V}_{j}\right\}\right) .
\end{align*}
$$

This ensures that also the corresponding blocks of the combined measurement matrix \ddot{M} will have equal average magnitude. The very last step of prenormalization (v) is not applied to the input primitives, but to the measurement matrix after its construction. Its point- and line-related parts \dot{M} and \bar{M} should be scaled as stated in Remark 4.1 above. The whole prenormalization is summarized in Algorithm 5.

Extraction of Pose Parameters

The estimates of a rotation matrix R and a translation vector \mathbf{T} are multiple in the combined projection matrix \ddot{P} (4.13). Moreover, the left-most R is determined by twice as many equations. This can be exploited to estimate the camera pose more robustly.

[^6]Algorithm 5: Prenormalization of 3D points and 3D lines in DLT-Combined-Lines.
Note: See Section 2.1 for the definition of function mean (.).
Input: A set of $n 3 \mathrm{D}$ points $\left\{\mathbf{X}_{i}\right\}, i=1 \ldots n$.
Input: A set of m 3D lines $\left\{\mathbf{L}_{j}\right\}, j=n+1 \ldots n+m$.

1. For all points \mathbf{X}_{i} and lines \mathbf{L}_{j} do:

$$
\mathbf{X}_{i}=\frac{\mathbf{X}_{i}}{X_{i, 4}}, \quad \mathbf{L}_{j}=\frac{\sqrt{3}}{\left\|\mathbf{V}_{j}\right\|} \cdot \mathbf{L}_{j}
$$

2. $\mathbf{T}_{1} \leftarrow \operatorname{mean}\left(\left\{\mathbf{X}_{(1: 3, i)}\right\}\right)$ \triangleleft centroid of points
3. For all points \mathbf{X}_{i} and lines \mathbf{L}_{j} do:

$$
\mathbf{X}_{i}=\left[\begin{array}{cc}
1 & -\mathbf{T}_{1} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \mathbf{X}_{i}, \quad \mathbf{L}_{j}=\left[\begin{array}{cc}
1 & {\left[-\mathbf{T}_{1}\right]_{\times}} \\
0 & 1
\end{array}\right] \mathbf{L}_{j} \quad \triangleleft \text { first translation }
$$

4. $\mathbf{T}_{2} \leftarrow \underset{\mathbf{T}}{\arg \min }\left(\operatorname{mean}_{0}\left(\left\{\mathbf{X}_{(1: 3, i)}-\mathbf{T}\right\} \cup\left\{\mathbf{U}_{j}-\mathbf{T} \times \mathbf{V}_{j}\right\}\right)\right)^{2} \quad \triangleleft$ use Algorithm 6
5. For all points \mathbf{X}_{i} and lines \mathbf{L}_{j} do:

$$
\mathbf{X}_{i}=\left[\begin{array}{cc}
\mathbf{1} & -\mathbf{T}_{2} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \mathbf{X}_{i}, \quad \mathbf{L}_{j}=\left[\begin{array}{cc}
\mathbf{1} & {\left[-\mathbf{T}_{2}\right]_{\times}} \\
0 & \mathbf{1}
\end{array}\right] \mathbf{L}_{j} \quad \triangleleft \text { second translation }
$$

6. $S_{\mathrm{X}} \leftarrow \frac{\operatorname{mean}_{|\mathrm{O}|}\left(\left\{X_{i, 4}\right\}\right)+\text { mean }_{|\mathrm{O}|}\left(\left\{\mathbf{V}_{j}\right\}\right)}{\operatorname{mean}_{|\mathrm{o}|}\left(\left\{X_{i, 1}\right\}\right)+\text { mean }_{|\mathrm{o}|}\left(\left\{L_{j, 1}\right\}\right)}$
$S_{\mathrm{Y}} \leftarrow \frac{\operatorname{mean}_{|\mathrm{o}|}\left(\left\{X_{i, 4}\right\}\right)+\text { mean }_{|\mathrm{o}|}\left(\left\{\mathbf{V}_{j}\right\}\right)}{\operatorname{mean}_{|\mathrm{o}|}\left(\left\{X_{i, 2}\right\}\right)+\text { mean }_{|\mathrm{o}|}\left(\left\{L_{j, 2}\right\}\right)}$
$S_{\mathrm{Z}} \leftarrow \frac{\operatorname{mean}_{|\mathrm{o}|}\left(\left\{X_{i, 4}\right\}\right)+\text { mean }_{\mid \mathrm{o}}\left(\left\{\mathbf{V}_{j}\right\}\right)}{\operatorname{mean}_{|\mathrm{o}|}\left(\left\{X_{i, 3}\right\}\right)+\text { mean }_{|\mathrm{o}|}\left(\left\{L_{j, 3}\right\}\right)}$
7. For all points \mathbf{X}_{i} and lines \mathbf{L}_{j} do:

$$
\mathbf{X}_{i}=\left[\begin{array}{cc}
S_{\mathrm{X}} & \\
S_{\mathrm{Y}} & \mathbf{0} \\
& \\
S_{\mathrm{Z}} & \\
\mathbf{0}^{\top} & 1
\end{array}\right] \mathbf{X}_{i}, \quad \mathbf{L}_{j}=\left[\begin{array}{ccc}
S_{\mathrm{X}} & & \\
& S_{\mathrm{Y}} & \\
& & 0 \\
0 & & \\
& & \\
& & \\
& & \\
\mathbf{L}_{j} & \triangleleft \text { scaling }
\end{array}\right.
$$

Output: A set of n prenormalized 3D points $\left\{\mathbf{X}_{i}\right\}, i=1 \ldots n$.
Output: A set of m prenormalized 3D lines $\left\{\mathbf{L}_{j}\right\}, j=n+1 \ldots n+m$.

Algorithm 6: Finding a translation \mathbf{T}_{2} of 3D points $\left\{\mathbf{X}_{i}\right\}$ and 3D lines $\left\{\mathbf{L}_{j}\right\}$ s.t. the

 mean of $\left\{\mathbf{X}_{(1: 3, i)}\right\} \cup\left\{\mathbf{U}_{j}\right\}$ will be zero after the translation.Input: A set of $n 3 \mathrm{D}$ points $\left\{\mathbf{X}_{i}\right\}, i=1 \ldots n$.
Input: A set of m 3D lines $\left\{\mathbf{L}_{j}\right\}, j=n+1 \ldots n+m$.

1. $a \leftarrow n+2 m$,

$$
\begin{array}{lll}
b \leftarrow \sum_{j} L_{j, 1}+\sum_{i} X_{i, 1}, & c \leftarrow \sum_{j} L_{j, 2}+\sum_{i} X_{i, 2}, & d \leftarrow \sum_{j} L_{j, 3}+\sum_{i} X_{i, 3}, \\
e \leftarrow \sum_{j} L_{j, 4}, & f \leftarrow \sum_{j} L_{j, 5}, & g \leftarrow \sum_{j} L_{j, 6}
\end{array}
$$

2. $T_{X} \leftarrow-\frac{a^{2} b+b e^{2}-a c g+a d f+c e f+d e g}{a\left(a^{2}+e^{2}+f^{2}+g^{2}\right)}$
$T_{Y} \leftarrow-\frac{a^{2} c+c f^{2}+a b g-a d e+b e f+d f g}{a\left(a^{2}+e^{2}+f^{2}+g^{2}\right)}$
$T_{Z} \leftarrow-\frac{a^{2} d+d g^{2}-a b f+a c e+b e g+c f g}{a\left(a^{2}+e^{2}+f^{2}+g^{2}\right)}$
Output: Translation $\mathbf{T}_{2}=\left(T_{X} T_{Y} T_{Z}\right)^{\top}$.

In the following text, the definitions of submatrices $\ddot{\mathrm{P}}_{1}, \ddot{\mathbf{P}}_{2}$, and $\ddot{\mathrm{P}}_{3}$ from Eq. (4.13) are used.

First, the scale of the estimated combined projection matrix \ddot{P}^{\prime} is corrected using Algorithm 1, yielding $s \ddot{P}^{\prime}$. The first estimate of R is in the direct form in $s \ddot{P}_{1}^{\prime}$, from which it can be extracted using Algorithm 2, yielding R_{1}. The first estimate of \mathbf{T} is in $s \ddot{\mathbf{P}}_{2}^{\prime}$, premultiplied by -R . It can be recovered as $\mathbf{T}_{2}=-\mathrm{R}_{1}^{\top} s \ddot{\mathbf{P}}_{2}^{\prime}$. The second estimates of R and \mathbf{T} are in the form of an essential matrix in $s \ddot{P}_{3}^{\prime}$, from which they can be extracted using Algorithm 4, yielding R_{3} and \mathbf{T}_{3}.

Now, the question is how to combine $\mathrm{R}_{1}, \mathrm{R}_{3}$, and $\mathbf{T}_{2}, \mathbf{T}_{3}$. Our experiments showed that R_{1} is usually more accurate than R_{3}, probably because it is determined by twice as many equations (generated by both line-line and point-line correspondences). The experiments also showed that \mathbf{T}_{2} is usually more accurate than \mathbf{T}_{3}. This is probably because $\ddot{\mathbf{P}}_{2}^{\prime}$ has no redundant DoF, contrary to \ddot{P}_{3}^{\prime}, which has 3 redundant DoF. However, the estimates can be combined so that the result is even more accurate. Since the error vectors of \mathbf{T}_{2} and \mathbf{T}_{3} tend to have opposite directions, a suitable interpolation between
them can produce more accurate position estimate

$$
\begin{equation*}
\mathbf{T}=k \cdot \mathbf{T}_{2}+(1-k) \cdot \mathbf{T}_{3} \tag{4.19}
\end{equation*}
$$

The value of k should be between 0 and 1 . Based on grid search, an optimal value of 0.7 has been found (the error function has a parabolic shape), see Figure 4.4.

Regarding the rotation estimates, the grid search discovered R_{1} is indeed more accurate than R_{3}. However, R_{1} is not fully 'compatible' with \mathbf{T} in terms of reprojection error ${ }^{2}$. Interpolating between R_{1} and R_{3} yields an orientation R 'compatible' with T :

$$
\begin{equation*}
\mathrm{R}=\mathrm{R}_{1} \cdot \exp \left(k \cdot \log \left(\mathrm{R}_{1}^{\top} \mathrm{R}_{3}\right)\right) \tag{4.20}
\end{equation*}
$$

Here, 'exp' and 'log' denote matrix exponential and matrix logarithm, respectively. The whole pose extraction procedure is summarized in Algorithm 7.

```
Algorithm 7: Extraction of pose parameters from the estimate \(\mathrm{P}^{\prime}\) of a combined projection matrix.
```

Input: An estimate $\ddot{\mathrm{P}}^{\prime}$ of a line projection matrix $\ddot{\mathrm{P}}$.
Input: Corrective scale factor s.

1. $\left[\begin{array}{lll}\ddot{P}_{1}^{\prime} & \ddot{\mathbf{P}}_{2}^{\prime} & \ddot{\mathrm{P}}_{3}^{\prime}\end{array}\right] \leftarrow \ddot{\mathrm{P}}^{\prime} \quad \triangleleft$ divide into submatrices
2. Extract R_{1} from $\ddot{\mathrm{P}}_{1}^{\prime}$ using Algorithm 2.
3. $\mathbf{T}_{2}=-\mathrm{R}_{1}^{\top} s \ddot{\mathbf{P}}_{2}^{\prime}$
4. Extract $\mathrm{R}_{3}, \mathbf{T}_{3}$ from $\ddot{\mathrm{P}}_{3}^{\prime}$ using Algorithm 4.
5. $\mathrm{R}=\mathrm{R}_{1} \cdot \exp \left(k \cdot \log \left(\mathrm{R}_{1}^{\top} \mathrm{R}_{3}\right)\right) \quad \triangleleft$ interpolate $\mathbf{T}=k \cdot \mathbf{T}_{2}+(1-k) \cdot \mathbf{T}_{3}$

Output: R, T.

4.6 Algebraic Outlier Rejection

To deal with outliers, the DLT-based methods can be equipped with an Algebraic Outlier Rejection module. The AOR scheme, developed originally for a PnP method, was described in Section 3.4. However, our experiments showed that its application to DLTbased LPnL methods requires a different setting.

The difference is in the strategy for choosing the threshold $\varepsilon_{\text {max }}$. The authors [22] recommend $\varepsilon_{\max }=\mathrm{Q}_{25}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ which is the algebraic error of the correspondence

[^7]

Figure 4.4: Search for an optimal value of the interpolation parameter k, used in Eq. (4.19) and (4.20). Errors in estimated camera pose for the DLT-Combined-Lines method as a function of k. All vertical axes are logarithmic, the error values are averaged over 1000 random trials. Detailed setup of the experiments can be found in Section 5.1. The optimal value of k is approximately 0.7 .
that is at the boundary of the 25th percentile. However, our experiments showed that the strategy is not robust enough for LPnL methods. A slightly different strategy is thus suggested with a good trade-off between robustness and the number of iterations: At the beginning, line correspondences with error up to the 90th percentile are accepted. In further iterations, the percentile number is progressively decreased until it reaches 25 . The strategy is thus $\varepsilon_{\max }=\mathrm{Q}_{p}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$, where $\mathrm{Q}_{p}($.$) denotes the p$-th percentile and p decreases following the sequence $90,80, \ldots, 30$. Then, it remains constant 25 until error of the solution stops decreasing. This strategy usually leads to approximately 10 iterations.

Remark 4.3: It is important not to prenormalize the data before using AOR because it will impede the identification of outliers. Prenormalization of inliers should be done just before the last iteration.

Compared to RANSAC, the greatest benefit of this approach is a low runtime independent of the fraction of outliers. On the other hand, the break-down point is roughly between 40% and 70% of outliers, depending on the underlying LPnL method, whereas RANSAC, in theory, can handle any fraction of outliers.

4.7 Summary

Although the three above described DLT-based PnL methods share a common basis, they differ in certain details. Their properties are summarized in Table 4.2. All three methods work exclusively with lines in the image space. In the scene space, however, DLT-Lines works with points, DLT-Plücker-Lines works with lines, and DLT-Combined-Lines works with both points and lines. The question is whether utilization of 3D lines, i.e. line-line correspondences, does improve the accuracy and robustness of camera pose estimation while preserving the efficiency of DLT-based methods.

The most important difference is in the projection matrices. The line projection matrix \bar{P} of DLT-Plücker-Lines encodes the rotation matrix R in a form of an essential matrix having only 3 redundant DoF. This is a promise of a more accurate estimation of camera orientation compared to DLT-Lines, where R is encoded in a direct form having 6 redundant DoF. The same holds for the combined projection matrix \ddot{P} of DLT-CombinedLines. Moreover, \ddot{P} contains multiple estimates of both R and T. A suitable combination of the estimates may further increase the accuracy of the final pose.

Prenormalization of the inputs of the methods pursues a common goal of having the

Table 4.2: Comparison of the DLT-based LPnL methods.

data centered around the origin with a unit average absolute value of the coordinates. This goal is motivated by a good condition of the resulting linear system. Generally, it can be achieved by applying translation and scaling to the inputs. In the case of DLT-Combined-Lines, it is more complicated due to different effects of the transformations on coordinates of points and lines in the 3D space. Prenormalization of image lines is futile in this case as it is restricted to rotations only.

In principle, the methods could also be extended to estimate the pose of an uncalibrated camera, i.e. to estimate both extrinsic and intrinsic parameters of a camera. The corresponding projection matrix $\dot{P}, \overline{\mathrm{P}}$ or $\ddot{\mathrm{P}}$ would be premultiplied by the uppertriangular 3×3 camera calibration matrix K in this case, so the number of unknowns of the resulting linear system and also the number of DoF of the projection matrix would grow from 6 up to 11 (depending on the number of intrinsic parameters). According to preliminary experiments, robustness of all three methods drops considerably in this case, making them useless for practical applications. A better choice would be a method tailored specifiacaly for estimation of parameters of an uncalibrated camera in this case, such as [10].

The minimum of required lines is conditioned by the size and structure of the estimated projection matrix. It ranges from 9 lines for DLT-Plücker-Lines over 6 lines for DLT-Lines to only 5 lines for DLT-Combined-Lines.

Chapter 5

Experimental Evaluation and Applications

The goal of this thesis was to improve the accuracy and robustness of the state-of-the-art in pose estimation from lines by designing a new DLT-based method utilizing line-line correspondences. The method should also be fast comparably to other LPnL methods. Two new methods were proposed in the previous chapter: DLT-Plücker-Lines and DLT-Combined-Lines.

To verify that the goal was achieved, the newly proposed methods were tested using both synthetic and real data and their performance was compared to the state-of-the-art methods. The real data comprised building exteriors, an indoor corridor and small-scale objects on a table. The tested criteria were following.

1. The primary criterion of experiments was accuracy because it arguably is the primary objective of pose estimation. It was evaluated using both synthetic lines in Section 5.1 and real data in Section 5.4.
2. A secondary objective, although equally important from a practical point of view, is robustness to image noise, because noise is always present in measurements in practice. Accordingly, robustness to image noise was evaluated using synthetic lines in Section 5.1.
3. Since the proposed methods were also required to be fast comparably to other methods, their speed was measured using synthetic lines in Section 5.1.

Besides the main criteria, the following aspects were also investigated to have a more comprehensive knowledge about behavior of the proposed methods.

- Because methods for pose estimation are known to be prone to singular or quasisingular configurations of 3D primitives in general, robustness to quasi-singular line configurations was examined in Section 5.2.
- From an application point of view, identification and rejection of mismatched line correspondences (i.e. outliers) is a frequent scenario. Therefore, the methods were also tested for robustness and speed when plugged into an outlier rejection scheme or into a RANSAC loop using synthetic lines in Section 5.3.
- Lastly, the camera poses estimated by the methods were used as an initialization for BA in Section 5.4 to see how the initialization affects its convergence and runtime.

The accuracy of pose estimates is expressed in terms of position error and orientation error of the camera and in terms of reprojection error of the lines. The three error measures should cover majority of applications for which pose estimation methods are used. For example, robot localization requires small position error, visual servoing requires both small position and orientation error, whereas augmented reality applications or BA favour small reprojection error. The error measures are defined as follows:
$\Delta \mathrm{T}$ Position error is the distance $\left\|\mathbf{T}^{\prime}-\mathbf{T}\right\|$ from the estimated position \mathbf{T}^{\prime} to the true position T.
$\Delta \Theta$ Orientation error was calculated as follows. The difference between the true and estimated rotation matrix $\left(R^{\top} R^{\prime}\right)$ is converted to axis-angle representation (\mathbf{E}, Θ) and the absolute value of the difference angle $|\Theta|$ is considered as the orientation error.
$\Delta \pi$ Reprojection error is an integral of squared distance between points on the image line segment and the projection of an infinite 3D line, averaged ${ }^{1}$ over all individual lines.

The proposed methods were evaluated and compared with state-of-the-art methods, which are listed below together with corresponding marks used throughout this chapter.

- Ansar, the method by Ansar and Daniilidis [5], implementation from [68].
- Mirzaei, the method by Mirzaei and Roumeliotis [47].
- RPnL, the method by Zhang et al. [72].

[^8]- ASPnL, the method by Xu et al. [68].

ڤ LPnL_Bar_LS, the method by Xu et al. [68].

* LPnL_Bar_ENull, the method by Xu et al. [68].
- DLT-Lines, the method by Hartley and Zisserman [30, p. 180] described in Section 4.3, my implementation.
$\boldsymbol{\nabla}$ DLT-Plücker-Lines, our method published in [II] and described in Section 4.4.
- DLT-Combined-Lines, our method published in [I] and described in Section 4.5.

All of the methods were implemented in Matlab. The implementations originate from the respective authors, if not stated otherwise.

5.1 Synthetic Lines

Monte Carlo simulations with synthetic lines were performed under the following setup: at each trial, m 3D line segments were generated by randomly placing $n=2 m$ line endpoints inside a cube spanning $10^{3} \mathrm{~m}$ which was centered at the origin of the world coordinate system. For the methods which work with 3D points, the line endpoints were used. A virtual pinhole camera with image size of 640×480 pixels and focal length of 800 pixels was placed randomly in the distance of 25 m from the origin. The camera was then oriented so that it looked directly at the origin, having all 3D line segments in its field of view. The 3D line segments were projected onto the image plane. Coordinates of the 2 D endpoints were then perturbed with independent and identically distributed Gaussian noise with standard deviation of σ pixels. 1000 trials were carried out for each combination of the parameters m and σ, where $m=3-10,000$ lines and $\sigma=1,2,5,10$ and 20 pixels.

Accuracy and Robustness

Accuracy of pose estimation and robustness to image noise of each method was evaluated by measuring the estimated and true camera pose while varying m and σ similarly to [47].

The results showing accuracy of the methods and their robustness to image noise are depicted in Figure 5.1. For the sake of brevity, only noise levels of $\sigma=2$ and 10 pixels are shown. The complete distribution of errors is presented in Appendix B at the end of this thesis. Errors for each method are plotted from the minimal number of lines to 10,000 lines (or less, if the method runs too long or if it has enormous memory requirements). In

Figure 5.1: Median orientation errors (top), position errors (middle) and reprojection errors (bottom) as a function of the number of lines for two levels of image noise (left: $\sigma=2$ pixels, right: $\sigma=10$ pixels). Each data point was computed from 1000 trials.
the following text, the method names are typeset in bold and they are often augmented with their plot marks to ease referencing into result charts.

The results show high sensitivity to noise of Ansar $\$$. Even under slight image noise $\sigma=2$ pixels, the measured accuracy is poor. The other non-LPnL methods (Mirzaei•, RPnL \downarrow ASPnL \downarrow) outperform the LPnL methods for low number of lines (310), as expected. ASPnL is the most accurate among them. An exception is the LPnL method LPnL_Bar_ENull*, accuracy of which is close to ASPnL. It even outperforms ASPnL in the case of strong image noise ($\sigma=10$ pixels), see Figure 5.1 (b, d, f).

For high number of lines ($100-10,000$), the LPnL methods outperform the nonLPnL ones. LPnL_Bar_ENull* and DLT-Combined-Lines are significantly most accurate in both orientation and position estimation, and they also yield the lowest reprojection error. With increasing number of lines, accuracy of the LPnL methods further increases, while errors of the non-LPnL methods do not fall below a certain level. This gets more obvious with increasing levels on noise. Each of the LPnL methods also eventually reaches its limit, as it can bee seen in Figure 5.1 (d, f). However, the accuracy limits of non-LPnL methods lag behind the limits of LPnL methods. Moreover, the non-LPnL methods often yield completely wrong pose estimates, as it can be seen in the distribution of errors in Figures B. 1 - B. 15 in Appendix B.

DLT-Lines $\boldsymbol{\Delta}$ and LPnL_Bar_LS \star behave nearly identically, the latter being slightly more accurate. The only difference between the two is the use of barycentric coordinates, which is probably the cause of the slightly better results. However, DLT-Lines proves to be more accurate in position estimation and reprojection under strong image noise. DLT-Plücker-Lines $\boldsymbol{\nabla}$ keeps up with the two aforementioned methods for 25 and more lines.

The best accuracy on many lines is achieved by the LPnL_Bar_ENull * and DLT-Combined-Lines \square methods, being the best in all criteria. While they are comparable in orientation estimation, DLT-Combined-Lines outperforms LPnL_Bar_ENull in estimation of camera position and in reprojection for many lines. The higher accuracy of DLT-Combined-Lines is most apparent under strong image noise, see Figure 5.1 (d, f).

The distributions of errors of the individual methods over all 1000 trials are provided in Figures B. 1 - B. 15 in Appendix B.

Speed

Efficiency of each method was evaluated by measuring runtime on a desktop PC with a quad core Intel i5-661 3.33 GHz CPU and 10 GB of RAM. As it can be seen in Figure 5.2

Figure 5.2: Runtimes as a function of the number of lines, averaged over 1000 trials. Logarithmic vertical axis.
and Table 5.1, the only method with $O\left(m^{2}\right)$ computational complexity in the number of lines m is Ansar . The space complexity of the used implementation is apparently also quadratic. It was not possible to execute the method already for 100 lines due to lack of computer memory. Other tested methods have $O(m)$ computational complexity. However, the runtimes differ substantially. It is apparent that the LPnL methods are significantly faster than the non-LPnL methods.

RPnL and ASPnL , being related methods, are nearly equally fast. Runtimes of both methods rise steeply with increasing number of lines, reaching 630.2 ms on 1000 lines for ASPnL. The two methods were not evaluted for more lines. Runtime of Mirzaei \bullet, on the other hand, grows very slowly, spending 155.2 ms on 1000 lines. However, Mirzaei is slower than $\mathbf{R P n L}$ for $m<200$ lines. This fact is caused by computation of a 120×120 Macaulay matrix in Mirzaei's method which has an effect of a constant time penalty.

The LPnL methods are one to two orders of magnitude faster than the non-LPnL methods. The fastest two are DLT-Lines \boldsymbol{A} and LPnL_Bar_LS ${ }^{\star}$, spending about 1 ms on 10 lines, and not more than 3 ms on 1000 lines, see Table 5.1. Slightly slower are DLT-Plücker-Lines v, DLT-Combined-Lines ${ }^{-1}$ and LPnL_Bar_ENull*, spending about $3-5 \mathrm{~ms}$ on 10 lines, and about $6-12 \mathrm{~ms}$ on 1000 lines. The slowdown factor for DLT-Plücker-Lines is the prenormalization of 3D lines. This is also the case of DLT-Combined-Lines, where a measurement matrix of a double size must be additionally decomposed compared to the competing methods, see Eq. (4.16). Computationally demanding part of $\mathbf{L P}$ nL_Bar_ENull is the effective null space solver carrying out Gauss-Newton optimization.

Table 5.1: Runtimes in milliseconds for varying number of lines, averaged over 1000 trials.

\# lines	10	100	1000	10,000
- Ansar	4.1	-	-	-
- Mirzaei	77.9	84.2	155.2	1097.2
- RPnL	8.8	41.3	879.5	-
- ASPnL	8.7	29.5	630.2	-
* LPnL_Bar_LS	1.1	1.2	2.3	13.7
* LPnL_Bar_ENull	5.2	5.3	6.7	19.5
\triangle DLT-Lines	1.0	1.2	2.7	20.5
\checkmark DLT-Plücker-Lines	3.0	3.6	8.2	68.9
- DLT-Combined-Lines	3.7	4.6	12.1	109.8

5.2 Quasi-Singular Line Configurations

Methods for pose estimation are known to be prone to singular or quasi-singular configurations of 3D primitives, as stated in Chapter 3. Therefore, robustness of the methods to quasi-singular line configurations was also evaluated. The setup from Section 5.1 was used with the number of lines fixed to $m=200$, and standard deviation of image noise fixed to $\sigma=2$ pixels. Three types of quasi-singular line configurations were tested: near-planar line distribution, near-concurrent line distribution, and limited number of line directions. These cases are degenerate for the method of Ansar, thus it is not mentioned anymore in this section.

Near-planar Line Distribution

Lines were generated inside a bounding cuboid spanning $10^{3} \mathrm{~m}$, and the cuboid was progressively flattened until it became a plane. The errors of the methods as a function of the cuboid's height (relative to its other dimensions) are depicted in Figure 5.3. Nearly all methods start to degrade their accuracy when flatness of the cuboid reaches a ratio of 1:10 and they perform noticeably worse at the ratio of 1:100. Mirzaei \bullet, all three DLT-based methods ($\mathbf{\Delta}, \boldsymbol{\nabla}, ■)$ and LPnL_Bar_LS \star mostly stop working. RPnL and ASPnL do work, but they often fail. The only working method is $\mathbf{L P n L}$ BarENull*. The full distribution of errors can be found in Figure B. 16 in Appendix B.

- Mirzaei
- Mirzaei
RPnL
RPnL
- ASPnL
- ASPnL
* LPnL_Bar_LS
* LPnL_Bar_LS
* LPnL_Bar_ENull
* LPnL_Bar_ENull
DLT-Lines
DLT-Lines
\nabla DLT-Plücker-Lines
\nabla DLT-Plücker-Lines
\squareDT-Combined-Lines
\squareDT-Combined-Lines

Figure 5.3: Robustness of the methods to near-planar line distribution. Median orientation errors (top left), position errors (top right) and reprojection errors (bottom left) as a function of the height of a bounding volume of 3D lines. The height is relative to the other dimensions of the volume.

Near-Concurrent Line Distribution

Lines were generated randomly, but an increasing number of lines was forced to intersect at a single random point inside the cube until all lines were concurrent. Mirzaei \bullet, RPnL , ASPnL and LPnL_Bar_LS \star degrade their accuracy progressively, although ASPnL and LPnL_Bar_LS are reasonably accurate even in the full concurrent case, see Figure 5.4. The DLT-based methods ($\mathbf{\Delta}, \boldsymbol{\nabla}, \boldsymbol{\square}$) work without any degradation as long as 3 and more lines are non-concurrent. LPnL_Bar_ENull works without degradation also in the full concurrent case. The full distribution of errors in the nearconcurrent case can be found in Figure B. 17 in Appendix B.

Figure 5.4: Robustness of the methods to near-concurrent line distribution. Median orientation errors (top left), position errors (top right) and reprojection errors (bottom left) as a function of the number of lines which are not concurrent out of total $m=200$ lines.

Limited Number of Line Directions

Lines were generated randomly, but they were forced to have a certain direction. Three different scenarios were tested:

- 2 random directions,
- 3 random directions, and
- 3 orthogonal directions.

Mirzaei does not work in either case, see Figure 5.5. RPnL and ASPnL do work, but they are susceptible to failure. DLT-Plücker-Lines $\boldsymbol{\nabla}$ and DLT-CombinedLines $\begin{aligned} & \text { do not work in the case of } 2 \text { directions, they work unreliably in the case of } 3\end{aligned}$ directions, and they start working flawlessly if the 3 directions are mutually orthogonal. DLT-Lines 4 , LPnL_Bar_LS * and LPnL_Bar_ENull* work in all three cases.

Figure 5.5: The distribution of orientation errors (top), position errors (middle) and reprojection errors (bottom) for the case with 2 random line directions (left), 3 random line directions (center) and 3 orthogonal line directions (right). Each distribution over 1000 trials is depicted by a box, where median is depicted by a black dot, the interquartile range (IQR) by the box body, minima and maxima in the interval of $10 \times I Q R$ by whiskers, and outliers by isolated dots.

Behavior of the DLT-based methods in quasi-singular cases is similar. The properties of DLT-Combined-Lines are apparently inherited from its two predecessor methods DLT-Lines and DLT-Plücker-Lines. Accuracy of the DLT-based methods is degraded:

- If 3 D lines tend to be planar (flatness $\approx 1: 10$ or more).
- If all 3D lines but 2 (or less) are concurrent.
- If 3D lines are organized into 3 or less directions.
(DLT-Lines works, but DLT-Plücker-Lines and DLT-Combined-Lines work only if the 3 directions are orthogonal.)

5.3 Line Correspondences with Mismatches

As mismatches of line correspondences (i. e. outliers) are often encountered in practice, robustness to outliers was also tested. The experimental setup was the same as in Section 5.1 , using $m=500$ lines having endpoints perturbed with slight image noise $\sigma=2$ pixels (which is less then 0.5% of the 640×480 pixels image). The image lines simulating outlying correspondences were perturbed with an additional extreme noise with $\sigma=100$ pixels. The fraction of outliers varied from 0% to 80%.

Ansar, Mirzaei, and RPnL methods were plugged into a MLESAC [61] framework (a generalization of RANSAC which maximizes the likelihood rather than just the number of inliers). Since Ansar cannot handle the final pose computation from potentially hundreds of inlying line correspondences, the final pose is computed by RPnL. The probability that only inliers will be selected in some iteration was set to 99%, and the number of iterations was limited to 10,000 . The inlying correspondences were identified based on the line reprojection error. No heuristics for early hypothesis rejection was utilized, as it can also be incorporated into AOR, e.g. by weighting the line correspondences. DLT-Lines, DLT-Plücker-Lines, and DLT-Combined-Lines methods were equipped with AOR, which was set up as described in Section 3.4.

The setup presented by Xu et al. [68] was also tested: LPnL_Bar_LS and LPnL_Bar_ENull methods with AOR, and a P3L solver and ASPnL plugged into a RANSAC framework, generating camera pose hypotheses from 3 and 4 lines, respectively. The authors have set the required number of inlying correspondences to 40% of all correspondences, and limit the number of iterations to 80 . When this is exceeded, the required number of inliers is decreased by a factor of 0.5 , and another 80 iterations are allowed. The inlying correspondences are identified based on thresholding of an algebraic error -
the residuals ϵ_{i} of the least-squares solution in Eq. (4.2), where the measurement matrix \dot{M} is used, defined by Eq. (4.6).

The tested methods are summarized in the following list (the number at the end of MLESAC/RANSAC denotes the number of lines used to generate hypotheses).

- Ansar + MLESAC4 + RPnL, Ansar plugged into a MLESAC loop, the final solution computed by RPnL.
- Mirzaei + MLESAC3.
- RPnL + MLESAC4.
- P3L + RANSAC3, the setup by Xu et al. [68].
- ASPnL + RANSAC4, the setup by Xu et al. [68].

ڤ LPnL_Bar_LS + AOR, the setup by Xu et al. [68].

* LPnL_Bar_ENull + AOR, the setup by Xu et al. [68].
\triangle DLT-Lines + AOR.
\checkmark DLT-Plücker-Lines + AOR, the proposed method with AOR, published in [II].
- DLT-Combined-Lines + AOR, the proposed method with AOR, published in [I].

The RANSAC-based approaches can theoretically handle any percentage of outliers. This is confirmed by Mirzaei + MLESAC3• and RPnL + MLESAC4 \downarrow, as their accuracy does not change w.r.t. the fraction of outliers. What does change however, is the number of iterations (and thus also the runtime). Even though, the limit of 10,000 iterations was almost never reached. A different situation occurred when testing Ansar + MLESAC3 $+\mathbf{R P n L} \downarrow$, where the iteration limit was sometimes reached even at 20% of outliers (see the distribution of runtimes in Figure B.18d in Appendix B). This suggests that Ansar is a poor hypothesis generator, and the MLESAC framework needs to iterate more times to get a valid hypothesis.

P3L + RANSAC3 and ASPnL + RANSAC4 have much lower runtimes, which is caused mainly by the setup limiting the number of iterations to a few hundreds. The setup has, on the other hand, a negative effect on the robustness of the method: the break-down point is only $60-70 \%$, as it is apparent in Figure 5.6. This issue was not observed by Xu et al. [68], because they tested the methods only up to 60% of outliers.

Figure 5.6: Experiments with outliers. Mean camera orientation errors (a), position errors (b), reprojection errors (c) and runtimes (d) depending on the percentage of outliers out of total $m=500$ line correspondences. Standard deviation of image noise was $\sigma=2$ pixels. Each value is an average over 1000 trials.

LPnL methods with AOR have constant runtimes regardless of the fraction of outliers. The fastest one is DLT-Lines + AOR \triangle running 10 ms on average. The proposed method DLT-Combined-Lines + AOR $■$ runs 31 ms on average, and LPnL_Bar_ENull + AOR * is the slowest one with 57 ms , see Figure 5.6d.

The robustness of the LPnL methods differs significantly. DLT-Plücker-Lines + AOR ∇ breaks-down at about 40%, but it occasionally generates wrong solutions from 30% up (see the isolated green dots in Figures B. 18 a - c in Appendix B). It is called a "soft" break-down point. LPnL_Bar_ENull+AOR * behaves similarly, but it yields smaller pose errors. DLT-Lines + AOR $_$, LPnL_Bar_LS + AOR \star, and the proposed method DLT-Combined-Lines + AOR $■$, on the other hand, have a "hard"
break-down point at $70 \%, 65 \%$, and 60%, respectively. This means they do not yield wrong solutions until they reach the break-down point. The distributions of errors of the tested methods over all 1000 trials are provided in Figure B. 18 in Appendix B.

The RANSAC-based approach is irreplaceable in cases with high percentage of outliers. Nevertheless, for lower fractions of outliers, the LPnL + AOR alternatives are more accurate and $4-31 \times$ faster than the RANSAC-based approaches, depending on the chosen LPnL method.

5.4 Real-World Buildings and Man-Made Objects

In this section, the proposed methods are validated on real-world data and compared to state-of-the-art methods. Ten datasets were utilized, which contain images with detected 2D line segments, reconstructed 3D line segments, and camera projection matrices. Example images from the datasets are shown in Figure 5.7, and their characteristics are summarized in Table 5.2. Line correspondences are also given except for datasets Timberframe House, Building Blocks and Street in which case the correspondences were established automatically based on geometric constraints. The Timberframe House dataset contains rendered images, while the rest contains real images captured by a physical camera. The Building Blocks and Model House datasets capture small-scale objects on a table, the Corridor dataset captures an indoor corridor, and the other six datasets capture exterior of various buildings. The Building Blocks dataset is the most challenging because many line segments lie in a common plane of a chessboard.

Accuracy

Each PnL method was run on the data, and the errors in camera orientation, camera position and reprojection of lines were averaged over all images in each dataset. The mean errors achieved by all methods on individual datasets are given in Table 5.3 and visualized in Figure 5.8.

On datasets with small number of lines (MH: 30 lines, COR: 69 lines), the results of non-LPnL and LPnL methods are comparable, see Figure 5.8. Contrarily, on other datasets with high number of lines ($177-1841$ lines), the non-LPnL methods are usually less accurate than the LPnL methods. Ansar was run only on the MH dataset containing 30 lines, because it ran out of memory on other datasets. It shows rather poor performance. Mirzaei - yields usually the least accurate estimate on datasets with high

Figure 5.7: Example images from used datasets. The images are overlaid with reprojections of 3D line segments using the camera pose estimated by the proposed method DLT-Combined-Lines.

Table 5.2: Datasets used in the experiments with real data.

Dataset	Source	Abreviation	\#images	\#lines
Timberframe House	MPI^{\dagger}	TFH	72	828
Building Blocks	MPI^{\dagger}	BB	66	870
Street	MPI^{\dagger}	STR	20	1841
Model House	VGG^{\ddagger}	MH	10	30
Corridor	VGG^{\ddagger}	COR	11	69
Merton College I	VGG^{\ddagger}	$\mathrm{MC1}$	3	295
Merton College II	VGG^{\ddagger}	MC 2	3	302
Merton College III	VGG^{\ddagger}	MC 3	3	177
University Library	VGG^{\ddagger}	ULB	3	253
Wadham College	VGG^{\ddagger}	WDC	5	380

${ }^{\dagger}$ MPI dataset http://resources.mpi-inf.mpg.de/LineReconstruction/.
${ }^{\ddagger}$ VGG dataset http://www.robots.ox.ac.uk/ ${ }^{\text {vgg/ }}$ data/data-mview.html.
number of lines (TFH, BB, MC1, MC2, MC3, WDC). On other datasets, it performs comparably to the other methods. A slightly better accuracy is achieved by $\mathbf{R P n L} \leqslant$, but it also has trouble on datasets with high number of lines (TFH, BB, STR). The related method ASPnL mostly performs better than $\mathbf{R P n L}$ with an exception of datasets with many lines (BB, STR). Nevertheless, ASPnL yields the most accurate pose estimates on MH and COR. This complies with the findings of Xu et al. [68], who state that ASPnL is suitable rather for small line sets.

The most accurate results on each dataset are predominantly achieved by the LPnL methods: Most of the top-3 results are achieved by LPnL_Bar_ENull*, followed by the proposed method DLT-Combined-Lines \square, see Table 5.3. LPnL_Bar_LS \star and DLT-Lines $\boldsymbol{\Delta}$ also sometimes achieve top-3 accuracy, although it happens less frequently. DLT-Plücker-Lines $\boldsymbol{\nabla}$ is the least accurate LPnL method on real-world data, being the only LPnL method which performs slightly below expectations based on synthetic data. Results of other methods are consistent with the results achieved on synthetic lines (Section 5.1).

Table 5.3: Experiments with real data. Mean orientation error $\Delta \Theta\left[{ }^{\circ}\right]$, position error $\Delta \mathrm{T}[]$ and reprojection error $\Delta \pi$ [] for each method and image dataset. The top- 3 results for each dataset are typeset in bold and color-coded (best, $2^{\text {nd }}$-best and $3^{\text {rd }}$-best result).

Dataset		TFH	BB	STR	MH	COR	MC1	MC2	MC3	ULB	WDC
- Ansar	$\Delta \Theta$	-	-	-	4.96	-	-	-	-	-	-
	$\Delta \mathrm{T}$	-	-	-	0.38	-	-	-	-	-	-
	$\Delta \pi$	-	-	-	$5 \mathrm{e}-05$	-	-	-	-	-	-
- Mirzaei	$\Delta \Theta$	32.24	88.18	0.90	0.46	0.22	4.83	15.47	5.00	2.51	36.52
	$\Delta \mathrm{T}$	11.04	168.47	1.92	0.04	0.10	1.53	7.37	1.82	1.27	6.44
	$\Delta \pi$	$1 \mathrm{e}+06$	$2 \mathrm{e}+06$	$8 \mathrm{e}-07$	4e-07	1e-06	$3 \mathrm{e}-06$	$3 \mathrm{e}-05$	$1 \mathrm{e}-02$	$2 \mathrm{e}-06$	$7 \mathrm{e}+03$
- RPnL	$\Delta \Theta$	20.46	23.27	4.91	0.61	0.40	1.45	0.43	2.33	3.96	0.50
	$\Delta \mathrm{T}$	15.32	53.03	9.73	0.07	0.13	0.43	0.22	1.22	2.08	0.23
	$\Delta \pi$	$6 \mathrm{e}-05$	7e-06	$9 \mathrm{e}-05$	$3 \mathrm{e}-06$	6e-06	$2 \mathrm{e}-06$	$1 \mathrm{e}-07$	2e-05	$6 \mathrm{e}-06$	$1 \mathrm{e}-06$
- ASPnL	$\Delta \Theta$	7.76	37.82	22.08	0.25	0.10	0.15	0.20	2.08	4.89	0.51
	$\Delta \mathrm{T}$	6.11	76.61	30.47	0.02	0.03	0.04	0.08	0.74	2.22	0.23
	$\Delta \pi$	$6 \mathrm{e}-04$	$2 \mathrm{e}+03$	$3 \mathrm{e}+02$	5e-08	9e-08	$2 \mathrm{e}-08$	$1 \mathrm{e}-08$	4e-06	$3 \mathrm{e}-06$	1e-06
* LPnL_Bar_LS	$\Delta \Theta$	1.10	1.98	0.15	0.45	0.13	0.03	0.03	0.09	0.49	0.18
	$\Delta \mathrm{T}$	1.05	7.23	0.27	0.04	0.05	0.01	0.02	0.03	0.22	0.11
	$\Delta \pi$	$7 \mathrm{e}-07$	$1 \mathrm{e}-06$	$8 \mathrm{e}-08$	$8 \mathrm{e}-07$	1e-06	2e-09	$1 \mathrm{e}-09$	6e-08	$2 \mathrm{e}-07$	4e-08
* LPnL_Bar_ENull	$\Delta \Theta$	0.57	0.30	0.11	0.32	0.10	0.04	0.03	0.07	0.39	0.08
	$\Delta \mathrm{T}$	0.45	1.13	0.16	0.02	0.04	0.01	0.02	0.02	0.18	0.05
	$\Delta \pi$	2e-07	2e-08	3e-08	2e-07	4e-07	$8 \mathrm{e}-10$	7e-10	5e-08	1e-07	2e-08
\triangle DLT-Lines	$\Delta \Theta$	0.47	2.18	0.11	0.95	0.12	0.12	0.28	0.23	0.23	0.16
	$\Delta \mathrm{T}$	0.44	8.11	0.18	0.09	0.05	0.04	0.16	0.08	0.10	0.10
	$\Delta \pi$	2e-07	$1 \mathrm{e}-06$	2e-08	$1 \mathrm{e}-06$	$2 \mathrm{e}-06$	6e-09	$4 \mathrm{e}-08$	3e-07	3e-08	6e-08
マ DLT-Plücker-Lines	$\Delta \Theta$	1.11	1.04	0.93	17.58	0.38	0.28	0.22	0.48	0.77	0.34
	$\Delta \mathrm{T}$	1.28	11.69	1.78	0.74	0.13	0.40	0.50	0.27	0.47	0.39
	$\Delta \pi$	$1 \mathrm{e}-06$	$8 \mathrm{e}-07$	$2 \mathrm{e}-06$	$3 \mathrm{e}-02$	$3 \mathrm{e}-06$	$2 \mathrm{e}-06$	$9 \mathrm{e}-07$	2e-05	$8 \mathrm{e}-07$	$1 \mathrm{e}-06$
DLT-Combined-Lines	$\Delta \Theta$	0.39	0.40	0.22	0.41	0.11	0.11	0.15	0.16	0.20	0.23
	$\Delta \mathrm{T}$	0.32	1.88	0.38	0.04	0.04	0.04	0.07	0.05	0.08	0.12
	$\Delta \pi$	7e-08	$4 \mathrm{e}-08$	6e-08	3e-07	2e-07	$2 \mathrm{e}-08$	2e-08	$2 \mathrm{e}-07$	$7 \mathrm{e}-08$	$2 \mathrm{e}-07$

66

Figure 5.8: Experiments with real data. Mean orientation errors ($\Delta \Theta$,top), position errors ($\Delta \mathrm{T}$, middle) and reprojection errors ($\Delta \pi$, bottom) on individual datasets. All vertical axes are logarithmic.

Bundle Adjustment

As Bundle Adjustment (BA) is commonly used as a final step in 3D reconstruction problems, it is interesting to see how its results are affected by initialization. For this purpose, BA was run on the datasets ${ }^{2}$ and initialized using camera poses provided by the tested methods.

A line-based BA engine was preferred. Unfortunately, the only suitable engine was the one of Mičušík and Wildenauer [49], which was a commercial solution unavailable to public. Thus, it was chosen to use a more common point-based BA engine, representing 3D structure only by line segment endpoints. Similarly to [49], an implementation based on the publicly available Ceres Solver [3] was chosen. The implementation uses the Levenberg-Marquardt algorithm [44] to optimize an objective function based on reprojection errors - the distances between observed and reprojected point positions. However, the objective function does not utilize the frequently used squared loss, but it is robustified instead by using the Huber's loss function [35], making it less sensitive to outliers. Furthermore, optimization of intrinsic camera parameters was deactivated to allow comparison to pose estimation methods, which do not take the intrinsic parameters into account. As a result, only camera poses and 3D structure were optimized.

BA was initialized using 3D structures provided by the datasets and using camera poses generated by the tested pose estimation methods. Furthermore, BA was also initialized using the ground truth camera poses provided in the datasets. The BA engine then optimized each problem. Because we wanted it to find the optimum as accurately as possible, the stopping criterion (a change in the value of an objective function between consecutive iterations) was set to 10^{-16}. After the optimization, the resulting camera poses and 3D structure were obtained. Because initialization by different camera poses may cause the resulting 3D structures to be slightly different both in shape and position in space, they were aligned by a similarity transformation. The resulting camera poses were transformed using the same transformation. After the alignment, the camera poses were compared.

All optimizations initialized by various pose estimation methods and by the ground truth poses terminated successfully by finding a minimum of the objective function. All minima had the same function value but, within the scope of each single dataset, the minima were not identical: After aligning the optimized 3D structures, the camera poses differed by a magnitude of 0.1° and 0.01 length unit. This is approximately the same magnitude of difference as before BA. Since a unique minimum of the objective function

[^9]Total time spent on pose estimation +BA [s]

Figure 5.9: Total time spent on pose estimation and Bundle Adjustment in seconds.
was not found, accuracy of the individual pose estimation methods could not be compared in relation to BA, results of which could be considered as a more accurate ground truth.

Nevertheless, it is possible to compare the rate of convergence of BA expressed in terms of runtime. Generaly, BA initialized by camera poses computed by a pose estimation method ran comparably long to the BA initialized by the ground truth camera poses (the runtimes ranged from $\approx 0.6 \mathrm{~s}$ for the Model House dataset to $\approx 7.5 \mathrm{~s}$ for the Wadham College dataset). An exceptionally long runtime was observed in the case of $\mathbf{R P n L}$ and ASPnL in the Merton College III dataset and in the case of Mirzaei in the Wadham College dataset. This indicated the initialization was worse.

From a practical point of view, the time spent on estimation of camera poses (i.e. initialization of BA) also counts. Therefore, the total time spent on pose estimation and on BA is a more appropriate measure. The used datasets contain rather a few camera poses, thus the time of pose estimation is relatively low compared to the time of BA. Even though, the differences in total runtime between individual methods are clearly visible in Figure 5.9. Apart from the exceptionally long runtimes mentioned above, it can be observed that the LPnL-based methods systematically yield lower total runtimes of pose estimation and BA compared to the non-LPnL ones. Differences can be observed even among the LPnL-based methods: The proposed method DLT-Combined-Lines provides a speedup over its closest competitor LPnL_Bar_ENull* ranging from none (for the Wadham College dataset) to $1.27 \times$ (for the Merton College I dataset).

5.5 Summary

As it was stated at the beginning of Chapter 4, the thesis aims for better accuracy and robustness than the state-of-the-art in pose estimation from lines by designing a
new DLT-based method utilizing line-line correspondences. The method shall keep the common advantage of LPnL methods of being fast.

Two new linear methods for pose estimation were introduced which utilize line-line correspondences. First, The DLT-Plücker-Lines method which competes with the state-of-the-art in some aspects, but it does not exceed it. Second, the DLT-Combined-Lines method which does outperform the state of the art.

1. Accuracy - The DLT-Combined-Lines method outperforms the state-of-the-art in estimation of camera position for many lines (Section 5.1: Figure 5.1) and it is comparable to state-of-the-art in orientation estimation. The performance is confirmed also by the results on real data (Section 5.4: Table 5.3), where DLT-CombinedLines achieves top- 3 results on majority of the used datasets.
2. Robustness to image noise - The higher accuracy of the estimates of DLT-CombinedLines is most apparent under strong image noise, which proves its better robustness to this disturbance (Section 5.1: Figure 5.1).
3. Speed - DLT-Combined-Lines does not deviate from other LPnL methods as it preserves their common advantage of being fast. A pose of 1000 lines is estimated in about 12 ms (Section 5.1: Figure 5.2).

As it was proven in the experiments listed above, the criteria were fulfilled: Both accuracy and robustness improved while speed was comparable to other DLT-based methods. Thus the dissertation goal was achieved.

Beyond this goal, limits of DLT-Combined-Lines were determined when handling quasi-singular line configurations (near-planar, near-concurrent, and 2 or 3 line directions, see Section 5.2), it was shown that DLT-Combined-Lines can be used together with AOR to filter out mismatched line correspondences for up to 60% of mismatches (Section 5.3), and it was also shown that DLT-Combined-Lines can decrease the total time spent on pose estimation and the following BA over the state-of-the-art (Section 5.4).

Chapter 6

Conclusions

The goal of this thesis was to improve accuracy and robustness of pose estimation from lines - i.e. of the Perspective-n-Line (PnL) problem - with accent on the formulation based on the Direct Linear Transformation (DLT). The methods based on a linear formulation of $\mathrm{PnL}(\mathrm{LPnL})$ are especially suitable for scenarios with large line sets due to their efficiency and accuracy. The goal shall have been achieved by proposing a new linear method utilizing line-line correspondences and keeping the common advantage of LPnL methods of being fast.

Starting from the existing method DLT-Lines which exploits only point-line correspondences, this thesis contributes to the state-of-the-art by proposing two novel methods for pose estimation: DLT-Plücker-Lines which exploits line-line correspondences, and DLT-Combined-Lines which exploits both point-line and line-line correspondences. Another contribution of this thesis is a unifying framework for all DLT-based methods for pose estimation from lines.

The method DLT-Combined-Lines uses DLT to recover the combined projection matrix. The matrix is a combination of projection matrices used by the DLT-Lines and DLT-Plücker-Lines methods, that work with 3D points and 3D lines, respectively. The proposed method works with both 3D points and lines, which leads to a reduction of the minimum of required lines from 6 (and 9 , respectively) to only 5 lines. The method can also easily be extended to use not only 2D lines but also 2D points. The combined projection matrix contains multiple estimates of camera rotation and translation, which can be recovered after enforcing constraints of the matrix. Multiplicity of the estimates leads to better accuracy compared to the other DLT-based methods.

Both novel methods are benchmarked on synthetic data and compared to several state-of-the-art PnL methods. Practical usefulness of the methods is tested on real data comprising buildings and other man-made objects. For larger line sets, DLT-Combined-

Lines is comparable to the state-of-the-art method LPnL_Bar_ENull in accuracy of orientation estimation; Yet, it is more accurate in estimation of camera position and it yields smaller reprojection error under strong image noise. On real-world data, DLT-Combined-Lines achieves top-3 results in both orientation estimation, position estimation and reprojection error. When using pose estimation methods to initialize Bundle Adjustment (BA), DLT-Combined-Lines provides a speedup up to $1.27 \times$ over LPnL_BarENull in the total runtime of pose estimation and BA. This also indicates the proposed method keeps the common advantage of LPnL methods: very high computational efficiency. The poses of 1000 lines are estimated in 12 ms on a contemporary desktop computer. Altogether, the proposed method DLT-Combined-Lines shows superior accuracy and robustness over its predecessors DLT-Lines and DLT-Plücker-Lines, which make use either of point-line or line-line correspondences. DLT-Combined-Lines make use of both types of correspondences, yet it is fast. As it was proven in the experiments, the requirements were fulfilled: Both accuracy and robustness improved while speed was comparable to other DLT-based methods. Thus the dissertation goal was achieved.

Future work involves examination of the combined projection matrix to adaptively combine the multiple camera rotation and translation estimates contained in the matrix. Inspired by the work of Xu et al. [68], the proposed methods can also be combined with the effective null space solver. This might further increase accuracy of the methods.

Matlab code of the proposed methods as well as other tested methods and the experiments are made publicly available. ${ }^{1}$

[^10]
References

[1] Y. I. Abdel-Aziz and H. M. Karara. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. In Symposium on Close-Range Photogrammetry, Falls Church, VA, USA, 1971. American Society of Photogrammetry.
[2] Khurrum Aftab, Richard I. Hartley, and Jochen Trumpf. Lq-closest-point to affine subspaces using the generalized weiszfeld algorithm. International Journal of Computer Vision, 114(1):1-15, 2015. ISSN 1573-1405. DOI: 10.1007/s11263-014-0791-8.
[3] Sameer Agarwal, Keir Mierle, et al. Ceres solver. http://ceres-solver.org. Accessed: January 26, 2017.
[4] Cuneyt Akinlar and Cihan Topal. Edlines: A real-time line segment detector with a false detection control. Pattern Recognition Letters, 32(13):1633-1642, 2011. ISSN 0167-8655. DOI: 10.1016/j.patrec.2011.06.001.
[5] Adnan Ansar and Kostas Daniilidis. Linear pose estimation from points or lines. Transactions on Pattern Analysis and Machine Intelligence, 25(5):578-589, 2003. ISSN 0162-8828. DOI: 10.1109/TPAMI.2003.1195992.
[6] Harry G. Barrow, Jay M. Tenenbaum, Robert C. Bolles, and Helen C. Wolf. Parametric correspondence and chamfer matching: Two new techniques for image matching. In International Joint Conference on Artificial Intelligence, pages 659-663, San Francisco, CA, USA, 1977. Morgan Kaufmann Publishers Inc. URL http://dl.acm.org/citation.cfm?id=1622943.1622971.
[7] Adrien Bartoli and Peter Sturm. The 3d line motion matrix and alignment of line reconstructions. International Journal of Computer Vision, 57:159-178, 2004. ISSN 1573-1405. DOI: 10.1023/B:VISI.0000013092.07433.82.
[8] Adrien Bartoli and Peter Sturm. Structure-from-motion using lines: Representation, triangulation, and bundle adjustment. Computer Vision and Image Understanding, 100(3):416-441, 2005. ISSN 1077-3142. DOI: 10.1016/j.cviu.2005.06.001.
[9] Mark Brown, David Windridge, and Jean-Yves Guillemaut. A generalisable framework for saliency-based line segment detection. Pattern Recognition, 48(12):39934011, 2015. ISSN 0031-3203. DOI: 10.1016/j.patcog.2015.06.015.
[10] Martin Bujňák, Zuzana Kukelová, and Tomáš Pajdla. New efficient solution to the absolute pose problem for camera with unknown focal length and radial distortion. In Asian Conference on Computer Vision, pages 11-24, Queenstown, New Zealand, November 2010. Springer. DOI: 10.1007/978-3-642-19315-6_2.
[11] Homer H. Chen. Pose determination from line-to-plane correspondences: Existence condition and closed-form solutions. In International Conference on Computer Vision, pages 374-378, Osaka, Japan, 1990. IEEE. DOI : 10.1109/ICCV.1990.139554.
[12] Stéphane Christy and Radu Horaud. Iterative pose computation from line correspondences. Computer vision and image understanding, 73(1):137-144, 1999. ISSN 1077-3142. DOI: 10.1006/cviu.1998.0717.
[13] Ondřej Chum and Jiří Matas. Matching with prosac-progressive sample consensus. In Conference on Computer Vision and Pattern Recognition, volume 1, pages 220226, San Diego, CA, USA, June 2005. IEEE. DOI: 10.1109/CVPr.2005.221.
[14] Ondřej Chum, Jiří Matas, and Josef Kittler. Locally optimized ransac. In Joint Pattern Recognition Symposium, pages 236-243, Magdeburg, Germany, September 2003. Springer. ISBN 978-3-540-45243-0. DOI: 10.1007/978-3-540-45243-0_31.
[15] Harold S. M. Coxeter. Projective Geometry. Springer New York, 2003. ISBN 9780387406237.
[16] Philip David, Daniel DeMenthon, Ramani Duraiswami, and Hanan Samet. Softposit: Simultaneous pose and correspondence determination. In European Conference on Computer Vision, pages 698-714, Copenhagen, Denmark, May 2002. Springer Berlin Heidelberg. ISBN 978-3-540-47977-2.
[17] Philip David, Daniel DeMenthon, Ramani Duraiswami, and Hanan Samet. Simultaneous pose and correspondence determination using line features. In Conference on Computer Vision and Pattern Recognition, volume 2, pages 424-431, Madison, WI, USA, June 2003. IEEE. DOI: 10.1109/CVPR.2003.1211499.
[18] Daniel F. DeMenthon and Larry S. Davis. Model-based object pose in 25 lines of code. International journal of computer vision, 15(1):123-141, 1995. ISSN 15731405. DOI: 10.1007/BF01450852.
[19] Jacques Denavit and Richard S. Hartenberg. A kinematic notation for lower-pair mechanisms based on matrices. Journal of applied mechanics, 22:215-221, 1955. ISSN 0021-8936.
[20] Michel Dhome, Marc Richetin, Jean-Thierry Lapresté, and Gérard Rives. Determination of the attitude of 3d objects from a single perspective view. Transactions on Pattern Analysis and Machine Intelligence, 11(12):1265-1278, 1989. ISSN 01628828. DOI: 10.1109/34.41365.
[21] Olivier D. Faugeras and Bernard Mourrain. On the geometry and algebra of the point and line correspondences between n images. In International Conference on Computer Vision, pages 951-956, Cambridge, MA, USA, June 1995. IEEE. DOI: 10.1109/ICCV.1995.466832.
[22] Luis Ferraz, Xavier Binefa, and Francesc Moreno-Noguer. Very fast solution to the pnp problem with algebraic outlier rejection. In Conference on Computer Vision and Pattern Recognition, pages 501-508, Columbus, OH, USA, June 2014. IEEE. DOI: 10.1109/CVPR. 2014.71 .
[23] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the $A C M, 24(6): 381-395,1981$. ISSN 0001-0782. DOI: 10.1145/358669.358692.
[24] Steven Gold, Anand Rangarajan, Chien-Ping Lu, Suguna Pappu, and Eric Mjolsness. New algorithms for 2 d and 3 d point matching: Pose estimation and correspondence. Pattern recognition, 31(8):1019-1031, 1998. ISSN 0031-3203. DOI: 10.1016/S0031-3203(98)80010-1.
[25] Rafael Grompone von Gioi, Jeremie Jakubowicz, Jean-Michel Morel, and Gregory Randall. Lsd: a fast line segment detector with a false detection control. Transactions on pattern analysis and machine intelligence, 32(4):722-732, 2010. ISSN 0162-8828. DOI: 10.1109/TPAMI.2008.300.
[26] Ayman Habib. Motion parameter estimation by tracking stationary threedimensional straight lines in image sequences. ISPRS journal of pho-
togrammetry and remote sensing, 53(3):174-182, 1998. ISSN 0924-2716. DOI: 10.1016/S0924-2716(98)00003-3.
[27] Richard I. Hartley. In defense of the eight-point algorithm. Transactions on Pattern Analysis and Machine Intelligence, 19(6):580-593, 1997. ISSN 0162-8828. DOI: 10.1109/34.601246.
[28] Richard I. Hartley. Lines and points in three views and the trifocal tensor. International Journal of Computer Vision, 22(2):125-140, 1997. ISSN 1573-1405. DOI: 10.1023/A:1007936012022.
[29] Richard I. Hartley. Minimizing algebraic error in geometric estimation problems. In International Conference on Computer Vision, pages 469-476, Bombay, India, January 1998.
[30] Richard I. Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, second edition, 2004. ISBN 0521540518. DOI: 10.1017/CB09780511811685.
[31] Joel A. Hesch and Stergios I. Roumeliotis. A direct least-squares (dls) method for pnp. In International Conference on Computer Vision, pages 383-390, Barcelona, Spain, November 2011.
[32] Keisuke Hirose and Hideo Saito. Fast line description for line-based slam. In British Machine Vision Conference, Guildford, UK, 2012. BMVA Press. ISBN 1-901725-464. DOI: 10.5244/C. 26.83.
[33] Manuel Hofer, Andreas Wendel, and Horst Bischof. Incremental line-based 3d reconstruction using geometric constraints. In British Machine Vision Conference, Bristol, UK, September 2013. BMVA Press. DOI: 10.5244/C.27.92.
[34] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, UK, 1994. ISBN 9780521467131. DOI: 10.1017/CB09780511840371.
[35] Peter J. Huber et al. Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35(1):73-101, 1964. DOI: 10.1214/aoms/1177703732.
[36] Hyunwoo Kim and Sukhan Lee. A novel line matching method based on intersection context. In International Conference on Robotics and Automation, pages 1014-1021, Anchorage, AK, USA, May 2010. IEEE. DOI: 10.1109/ROBOT.2010.5509472.
[37] Rakesh Kumar and Allen R. Hanson. Robust methods for estimating pose and a sensitivity analysis. CVGIP: Image understanding, 60(3):313-342, 1994. ISSN 1049-9660. DOI: 10.1006/ciun.1994.1060.
[38] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Epnp: An accurate $\mathrm{o}(\mathrm{n})$ solution to the pnp problem. International journal of computer vision, 81(2): 155-166, 2009. ISSN 1573-1405. DOI: 10.1007/s11263-008-0152-6.
[39] Shiqi Li, Chi Xu, and Ming Xie. A robust o(n) solution to the perspective-n-point problem. Transactions on Pattern Analysis and Machine Intelligence, 34(7):14441450, 2012. ISSN 0162-8828. DOI: 10.1109/TPAMI.2012.41.
[40] Yuncai Liu, Thomas S. Huang, and Olivier D. Faugeras. Determination of camera location from 2-d to 3 -d line and point correspondences. Transactions on Pattern Analysis and Machine Intelligence, 12(1):28-37, 1990. ISSN 0162-8828. DOI: 10.1109/34.41381.
[41] H. Christopher Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293:133-135, 1981. ISSN 0028-0836. DOI: 10.1038/293133a0.
[42] David G. Lowe. Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2):91-110, 2004. ISSN 1573-1405. DOI: 10.1023/B:VISI.0000029664.99615.94.
[43] Chien-Ping Lu, Gregory D. Hager, and Eric Mjolsness. Fast and globally convergent pose estimation from video images. Transactions on Pattern Analysis and Machine Intelligence, 22(6):610-622, June 2000. ISSN 0162-8828. DOI: 10.1109/34.862199.
[44] Donald W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics, 11(2): 431-441, 1963. ISSN 0368-4245. DOI : 10.1137/0111030.
[45] Jiří Matas. Ransac in 2011. Lecture in the tutorial on Tools and Methods for Image Registration at the Conference on Computer Vision and Pattern Recognition, 2011. URL http://www.imgfsr.com/CVPR2011/Tutorial6/RANSAC_CVPR2011.pdf.
[46] Carl D. Meyer. Matrix analysis and applied linear algebra, volume 2. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000. ISBN 0-89871-454-0. DOI: 10.1137/1.9780898719512.
[47] Faraz M. Mirzaei and Stergios I. Roumeliotis. Globally optimal pose estimation from line correspondences. In International Conference on Robotics and Automation, pages 5581-5588, Shanghai, China, May 2011. IEEE. DOI: 10.1109/ICRA.2011.5980272.
[48] Branislav Mičušík and Horst Wildenauer. Descriptor free visual indoor localization with line segments. In Conference on Computer Vision and Pattern Recognition, pages 3165-3173, Boston, MA, USA, June 2015. DOI: 10.1109/CVPR.2015.7298936.
[49] Branislav Mičušík and Horst Wildenauer. Structure from motion with line segments under relaxed endpoint constraints. International Journal of Computer Vision, 2016. ISSN 1573-1405. DOI: 10.1007/s11263-016-0971-9.
[50] Francesc Moreno-Noguer, Vincent Lepetit, and Pascal Fua. Pose priors for simultaneously solving alignment and correspondence. In European Conference on Computer Vision, pages 405-418, Marseille, France, October 2008. Springer Berlin Heidelberg. ISBN 978-3-540-88688-4. DOI: 10.1007/978-3-540-88688-4_30.
[51] Nassir Navab and Olivier D. Faugeras. Monocular pose determination from lines: Critical sets and maximum number of solutions. In Conference on Computer Vision and Pattern Recognition, pages 254-260, New York, NY, USA, June 1993. IEEE. DOI: 10.1109/CVPR.1993.340981.
[52] Morgan S. Ohwovoriole. An Extension of Screw theory and its Applications to the Automation of Industrial Assemblies. PhD thesis, Stanford University, Departhment of Mechanical Engineering, 1980.
[53] Kenneth S. Roberts. A new representation for a line. In Computer Society Conference on Computer Vision and Pattern Recognition, pages 635-640, Ann Arbor, MI, USA, June 1988. DOI: 10.1109/CVPR.1988.196303.
[54] Grant Schindler, Panchapagesan Krishnamurthy, and Frank Dellaert. Line-based structure from motion for urban environments. In Third International Symposium on 3D Data Processing, Visualization, and Transmission, pages 846-853, Chapel Hill, NC, USA, June 2006. IEEE. DOI: 10.1109/3DPVT.2006.90.
[55] Malcolm D. Shuster. A survey of attitude representations. Journal of the Astronautical Sciences, 41(4):439-517, 1993. ISSN 0021-9142.
[56] Manuel Silva, Ricardo Ferreira, and José Gaspar. Camera calibration using a colordepth camera: Points and lines based dlt including radial distortion. In IROS

Workshop in Color-Depth Camera Fusion in Robotics, Vilamoura, Portugal, October 2012.
[57] Minas E. Spetsakis and John Aloimonos. Structure from motion using line correspondences. International Journal of Computer Vision, 4(3):171-183, 1990. ISSN 1573-1405. DOI: 10.1007/BF00054994.
[58] Björn Stenger, Arasanathan Thayananthan, Philip H. S. Torr, and Roberto Cipolla. Model-based hand tracking using a hierarchical bayesian filter. Transactions on pattern analysis and machine intelligence, 28(9):1372-1384, 2006. ISSN 0162-8828. DOI: 10.1109/TPAMI . 2006. 189 .
[59] Ivan E. Sutherland. Sketchpad: A man-machine graphical communications system. Technical report 296, MIT Lincoln Laboratories, 1963. Also published as "Three-dimensional data input by tablet" in the Proceedings of the IEEE in 1974, DOI: 10.1109/PROC.1974.9449.
[60] Camillo J. Taylor and David Kriegman. Structure and motion from line segments in multiple images. Transactions on Pattern Analysis and Machine Intelligence, 17 (11):1021-1032, 1995. ISSN 0162-8828. DOI : 10.1109/34.473228.
[61] Philip H. S. Torr and Andrew Zisserman. Mlesac: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding, $78(1): 138-156,2000$. ISSN 1077-3142. DOI : 10.1006/cviu.1999.0832.
[62] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon. Bundle adjustment - a modern synthesis. In International workshop on vision algorithms, pages 298-372, Corfu, Greece, September 1999. Springer. ISBN 978-3-540-44480-0. DOI: 10.1007/3-540-44480-7_21.
[63] Roger Y. Tsai and Thomas S. Huang. Uniqueness and estimation of threedimensional motion parameters of rigid objects with curved surfaces. Transactions on pattern analysis and machine intelligence, PAMI-6(1):13-27, 1984. ISSN 01628828. DOI: 10.1109/TPAMI. 1984.4767471.
[64] Shinji Umeyama. Least-squares estimation of transformation parameters between two point patterns. Transactions on Pattern Analysis and Machine Intelligence, 13 (4):376-380, April 1991. ISSN 0162-8828. DOI : 10.1109/34.88573.
[65] Lu Wang, Ulrich Neumann, and Suya You. Wide-baseline image matching using line signatures. In International Conference on Computer Vision, pages 1311-1318, Kyoto, Japan, September 2009. IEEE. DOI: 10.1109/ICCV . 2009.5459316.
[66] Zhiheng Wang, Fuchao Wu, and Zhanyi Hu. Msld: A robust descriptor for line matching. Pattern Recognition, 42(5):941-953, 2009. ISSN 0031-3203. DOI: 10.1016/j.patcog.2008.08.035.
[67] Tomáš Werner and Andrew Zisserman. New techniques for automated architectural reconstruction from photographs. In European conference on computer vision, pages 541-555, Copenhagen, Denmark, May 2002. Springer Berlin Heidelberg. ISBN 978-3-540-47967-3. DOI: 10.1007/3-540-47967-8_36.
[68] Chi Xu, Lilian Zhang, Li Cheng, and Reinhard Koch. Pose estimation from line correspondences: A complete analysis and a series of solutions. Transactions on Pattern Analysis and Machine Intelligence, 2016. ISSN 0162-8828. DOI: 10.1109/TPAMI . 2016.2582162.
[69] Lilian Zhang and Reinhard Koch. Line matching using appearance similarities and geometric constraints. In Joint DAGM and OAGM Symposium: Pattern Recognition, pages 236-245, Graz, Austria, August 2012. Springer. DOI : 10.1007/978-3-642-32717-9_24.
[70] Lilian Zhang and Reinhard Koch. An efficient and robust line segment matching approach based on lbd descriptor and pairwise geometric consistency. Journal of Visual Communication and Image Representation, 24(7):794-805, 2013. ISSN 10473203. DOI: 10.1016/j.jvcir.2013.05.006.
[71] Lilian Zhang and Reinhard Koch. Structure and motion from line correspondences: Representation, projection, initialization and sparse bundle adjustment. Journal of Visual Communication and Image Representation, 25(5):904-915, 2014. ISSN 1047-3203. DOI: 10.1016/j.jvcir.2014.02.013.
[72] Lilian Zhang, Chi Xu, Kok-Meng Lee, and Reinhard Koch. Robust and efficient pose estimation from line correspondences. In Asian Conference on Computer Vision, pages 217-230, Daejeon, Korea, November 2012. Springer. DOI: 10.1007/978-3-642-37431-9_17.
[73] Xiaohu Zhang, Zheng Zhang, You Li, Xianwei Zhu, Qifeng Yu, and Jianliang Ou. Robust camera pose estimation from unknown or known line correspondences. $A p$ plied optics, 51(7):936-948, 2012. ISSN 1559-128X. DOI: 10.1364/A0.51.000936.
[74] Yueqiang Zhang, Xin Li, Haibo Liu, and Yang Shang. Probabilistic approach for maximum likelihood estimation of pose using lines. IET Computer Vision, 10(6): 475-482, 2016. ISSN 1751-9632. DOI : 10.1049/iet-cvi.2015.0099.

List of Publications

My work at FIT BUT led to the following publications, listed in reversed chronological order.

Peer-reviewed publications containing the core of this thesis.
[I] Bronislav Přibyl, Pavel Zemčík and Martin Cadík: Absolute Pose Estimation from Line Correspondences using Direct Linear Transformation, Computer Vision and Image Understanding (CVIU), 2017: ISSN 1077-3142. DOI: 10.1016/j.cviu.2017.05.002.
[II] Bronislav Přibyl, Pavel Zemčík and Martin Čadík: Camera Pose Estimation from Lines using Plücker Coordinates. In Proceedings of the British Machine Vision Conference (BMVC), BMVA, 2015, ISBN 978-1-901725-53-7, p. 12. DOI: 10.5244/C.29.45.

Other peer-reviewed publications.
[III] Bronislav Přibyl, Alan Chalmers, Pavel Zemčík, Lucy Hooberman and Martin Čadík: Evaluation of Feature Point Detection in High Dynamic Range Imagery. Journal of Visual Communication and Image Representation (JVCI), vol. 38, no. 1, 2016: pp. 141-160, ISSN 1047-3203. DOI: 10.1016/j.jvcir.2016.02.007.
[IV] Michal Seeman, Pavel Zemčík and Bronislav Přibyl: Hue Correction in HDR Tonemapping. In Proceedings of the special session on High Dynamic Range imaging: from theory to deployment in real life applications on the European Signal Processing Conference (EUSIPCO Special Session), EURASIP, 2013, ISSN 2219-5491, p.5, http://ieeexplore.ieee.org/document/6811784/.
[V] Bronislav Přibyl, Alan Chalmers and Pavel Zemčík: Feature Point Detection under Extreme Lighting Conditions. In Proceedings of the Spring Conference on Computer Graphics (SCCG), Comenius University in Bratislava, 2012, ISBN 978-80-223-3211-8, pp. 156-163. DOI : 10.1145/2448531.2448550.
[VI] Bronislav Přibyl and Pavel Zemčík: Simple Single View Scene Calibration. In Proceedings of Advanced Concepts for Intelligent Vision Systems (ACIVS), num. 6915 in LCNS, Springer Verlag, 2011, ISBN 978-3-642-23686-0, ISSN 0302-9743, pp. 748-759. DOI: 10.1007/978-3-642-23687-7.
[VII] Pavel Zemčík, Bronislav Přibyl, Adam Herout and Michal Seeman: Accelerated Image Resampling for Geometry Correction. Journal of RealTime Image Processing (JRTIP), vol.6, no.3, 2011: p.9, ISSN 1861-8200. DOI: 10.1007/s11554-011-0213-x.
[VIII] Pavel Zemčík, Bronislav Přibyl and Adam Herout: Precise Image Resampling Algorithm. In Proceedings of the GraVisMa Workshop, University of West Bohemia in Pilsen, 2009, ISBN 978-80-86943-90-9, pp.135-138. https://gaupdate.wordpress.com/2010/02/12/proc-gravisma-2009-online/.

Other works.
[IX] Pavel Zemčík, Bronislav Přibyl, Martin Žádník and Pavol Korček: Fast and Energy Efficient Image Processing Algorithms using FPGA. In Proceedings of the Workshop on Computer Vision on Low-Power Reconfigurable Architectures, Conference on Field Programmable Logic and Applications (FPL Workshops), IEEE, 2011, ISBN 978-0-7695-4529-5, p. 2. https://www.techfak.uni-bielefeld.de/~fwerner/fpl2011/.
$[\mathrm{X}]$ Bronislav Přibyl and Pavel Zemčík: Fine Image Resampling Algorithm. In Proceedings of the Central European Seminar on Computer Graphics for students (CESCG), Vienna University of Technology, 2010, ISBN 978-3-9502533-2-0, pp. 175-181.
http://www.cescg.org/CESCG-2010/proceedings/CESCG-2010.pdf.
[XI] Bronislav Přibyl and Michal Seeman: Precise Image Resampling for Optics Geometry Correction. In Digital Technologies Workshop, Faculty of Electrical Engineering of Žilina University, 2007, p. 6.

Appendix A

Derivation of M from 3D/2D Correspondences

Correspondences between 3D entities and their 2D counterparts are defined by equations which, in turn, generate rows of a measurement matrix M. The following derivations are made for a single 3D/2D correspondence. More correspondences lead simply to stacking the rows of M .

A. 1 Line-Line Correspondence

We start from Eq. (2.14) defining the projection of a 3D line \mathbf{L} by a line projection matrix $\overline{\mathrm{P}}$ onto the image line \mathbf{l}

$$
\begin{equation*}
\mathrm{l} \approx \overline{\mathrm{P}} \mathbf{L} \tag{A.1}
\end{equation*}
$$

Its sides are swapped and premultiplied by $[1]_{\times}$

$$
\begin{equation*}
[1]_{\times} \overline{\mathrm{P}} \mathrm{~L} \approx[1]_{\times} \mathbf{1} . \tag{A.2}
\end{equation*}
$$

The right-hand side is apparently a vector of zeros

$$
\begin{equation*}
[1] \times \overline{\mathrm{P}} \mathbf{L}=\mathbf{0} . \tag{A.3}
\end{equation*}
$$

Using Lemma 4.3.1 of [34], we get

$$
\begin{equation*}
\left(\mathbf{L}^{\top} \otimes[\mathbf{l}]_{\times}\right) \cdot \operatorname{vec}(\overline{\mathbf{P}})=\mathbf{0} . \tag{A.4}
\end{equation*}
$$

The left-hand side can be divided into the measurement matrix $\mathrm{M}=\mathbf{L}^{\top} \otimes[1] \times$ and the
vector of unknowns $\overline{\mathbf{p}}=\operatorname{vec}(\overline{\mathbf{P}})$, finally yielding the homogeneous system

$$
\begin{equation*}
M \overline{\mathbf{p}}=\mathbf{0} . \tag{A.5}
\end{equation*}
$$

A. 2 Point-Point Correspondence

The derivation is the same as in the case of line-line correspondences, but starting from Eq. (2.11) defining the projection of a 3 D point \mathbf{X} by a point projection matrix $\dot{\mathrm{P}}$ onto the image point \mathbf{x}.

$$
\begin{align*}
\mathbf{x} & \approx \dot{\mathrm{P}} \mathbf{X} \tag{A.6}\\
{[\mathbf{x}]_{\times} \dot{\mathrm{P}} \mathbf{X} } & \approx[\mathbf{x}]_{\times} \mathbf{x} \tag{A.7}\\
{[\mathbf{x}]_{\times} \dot{\mathrm{P}} \mathbf{X} } & =\mathbf{0} \tag{A.8}\\
\left(\mathbf{X}^{\top} \otimes[\mathbf{x}]_{\times}\right) \cdot \operatorname{vec}(\dot{\mathrm{P}}) & =\mathbf{0} \tag{A.9}\\
\mathbf{M} \dot{\mathbf{p}} & =\mathbf{0} \tag{A.10}
\end{align*}
$$

A. 3 Point-Line Correspondence

We start from Eq. (4.5) relating the projection of a 3D point \mathbf{X} and an image line \mathbf{l}

$$
\begin{equation*}
\mathbf{I}^{\top} \dot{\mathbf{P}} \mathbf{X}=0 . \tag{A.11}
\end{equation*}
$$

Since Eq. (A.11) already has the right-hand side equal to 0, Lemma 4.3.1 of [34] can be applied directly to see how the measurement matrix M is generated:

$$
\begin{align*}
\left(\mathbf{X}^{\top} \otimes \mathbf{l}^{\top}\right) \cdot \operatorname{vec}(\dot{\mathbf{P}}) & =0, \tag{A.12}\\
M \dot{\mathbf{p}} & =0 . \tag{A.13}
\end{align*}
$$

Appendix B

Error Distributions of the Methods

This appendix contains boxplots visualizing distributions of errors of individual PnL methods under various conditions. Each distribution over 1000 trials is depicted by a box, where:

- black dot inside a mark $=$ median,
- box body $=$ interquartile range (IQR),
- whiskers $=$ minima and maxima in the interval of $10 \times I Q R$, and
- isolated dots = outliers.

The methods are assigned the following marks in the figures:

- Ansar,
- Mirzaei,
- RPnL,
- ASPnL,
* LPnL_Bar_LS,
* LPnL_Bar_ENull,
- DLT-Lines,
- DLT-Plücker-Lines,
- DLT-Combined-Lines.

B. 1 Robustness to Image Noise

Figures B. 1 - B. 5 depict errors in estimated camera orientation $\Delta \Theta\left[^{\circ}\right]$ as a function of the number of lines ($m=3-10,000$) for increasing levels of image noise with standard deviation $\sigma=1,2,5,10$ and 20 pixels. Accordingly, Figures B. 6 - B. 10 depict errors in estimated camera position $\Delta \mathrm{T}[\mathrm{m}]$, and Figures B. 11 - B. 15 depict reprojection errors $\Delta \pi[]$.

B. 2 Robustness to Quasi-Singular Cases

Figure B. 16 depicts errors in estimated camera pose as a function of 'flatness' of the lines (lines in near-planar configuration). Similarly, Figure B. 17 depicts errors as a function of the number of non-concurrent lines. The total number of lines was $m=200$ and standard deviation of image noise was $\sigma=2$ pixels.

B. 3 Robustness to Outliers

Figure B. 18 depicts errors in estimated camera pose as a function of the fraction of outliers out of total $m=500$ line correspondences with image noise $\sigma=2$ pixels.

Figure B.1: Errors in camera orientation $\Delta \Theta\left[{ }^{\circ}\right]$ for image noise with standard deviation $\sigma=1$ pixel.

Figure B.2: Errors in camera orientation $\Delta \Theta\left[{ }^{\circ}\right]$ for image noise with standard deviation $\sigma=2$ pixels.

Figure B.3: Errors in camera orientation $\Delta \Theta\left[{ }^{\circ}\right]$ for image noise with standard deviation $\sigma=5$ pixels.

Figure B.4: Errors in camera orientation $\Delta \Theta\left[{ }^{\circ}\right]$ for image noise with standard deviation $\sigma=10$ pixels.
\because

Figure B.5: Errors in camera orientation $\Delta \Theta\left[^{\circ}\right]$ for image noise with standard deviation $\sigma=20$ pixels.

Figure B.6: Errors in camera position $\Delta \mathrm{T}[\mathrm{m}]$ for image noise with standard deviation $\sigma=1$ pixel.
95

Figure B.7: Errors in camera position $\Delta \mathrm{T}[\mathrm{m}]$ for image noise with standard deviation $\sigma=2$ pixels.

Figure B.8: Errors in camera position $\Delta \mathrm{T}[\mathrm{m}]$ for image noise with standard deviation $\sigma=5$ pixels.

Figure B.9: Errors in camera position $\Delta \mathrm{T}[\mathrm{m}]$ for image noise with standard deviation $\sigma=10$ pixels.
98

Figure B.10: Errors in camera position $\Delta \mathrm{T}[\mathrm{m}]$ for image noise with standard deviation $\sigma=20$ pixels.
99

Figure B.11: Reprojection errors $\Delta \pi$ [] for image noise with standard deviation $\sigma=1$ pixel.

Figure B.12: Reprojection errors $\Delta \pi$ [] for image noise with standard deviation $\sigma=2$ pixels.

Figure B.13: Reprojection errors $\Delta \pi$ [] for image noise with standard deviation $\sigma=5$ pixels.

Figure B.14: Reprojection errors $\Delta \pi$ [] for image noise with standard deviation $\sigma=10$ pixels.

Figure B.15: Reprojection errors $\Delta \pi$ [] for image noise with standard deviation $\sigma=20$ pixels.

Figure B.16: Robustness to near-planar line distribution. The distribution of orientation errors $(\Delta \Theta$, top $)$, position errors ($\Delta \mathrm{T}$, middle) and reprojection errors ($\Delta \pi$, bottom) as a function of 'flatness' (the ratio of height of a volume containing 3D lines w.r.t. to its other dimensions). The number of lines was $m=200$ and standard deviation of image noise was $\sigma=2$ pixels.

Figure B.17: Robustness to near-concurrent line distribution. The distribution of orientation errors ($\Delta \Theta$, top), position errors ($\Delta \mathrm{T}$, middle) and reprojection errors $(\Delta \pi$, bottom) as a function of the number of lines, which are not concurrent, out of all $m=200$ lines. Standard deviation of image noise was $\sigma=2$ pixels.
(a) Orientation error $\Delta \Theta\left[^{\circ}\right], m=500$ lines, $\sigma=2 \mathrm{px}$

(b) Position error $\Delta \mathrm{T}[\mathrm{m}], m=500$ lines, $\sigma=2 \mathrm{px}$

(d) Runtime [s], m=500 lines, $\sigma=2 \mathrm{px}, \log$ scale

Figure B.18: Robustness to outliers. The distribution of orientation errors $(\Delta \Theta, a)$, position errors $(\Delta \mathrm{T}, b)$, reprojection errors $(\Delta \pi, c)$ and runtimes (d) as a function of the fraction of outliers, out of total 500 line correspondences.

[^0]: PH.D. THESIS
 dISERTAČN PRACE
 AUTHOR
 Ing. Bronislav Přibyl
 AUTOR
 SUPERVISOR
 prof. Dr. Ing. Pavel Zemčík
 ŠKOLITEL

[^1]: ${ }^{1}$ The problem of absolute pose estimation is also known as the problem of absolute orientation or exterior orientation in photogrammetry.

[^2]: ${ }^{1}$ Please note that our line displacement matrix differs slightly from the matrix of Bartoli and Sturm [7, Eq. (6)], namely in the upper-right term: We have $R[-T]_{\times}$instead of $[T]_{\times} R$ due to different coordinate system.

[^3]: ${ }^{1}$ The data is a courtesy of [67].

[^4]: ${ }^{2}$ The images and line matches are a courtesy of [70].

[^5]: ${ }^{3}$ Sometimes also called non-iterative approaches.

[^6]: ${ }^{1}$ Another possible translation is to center the 3D lines using the Generalized Weiszfeld algorithm [2] as it is done in Algorithm 3. However, our experiments showed that the two possible translations yield nearly identical robustness of the method. It is thus suggested to translate the 3D structure to the centroid of points, because its computation is cheaper.

[^7]: ${ }^{2}$ As an example, imagine a camera located left to its ground truth position and oriented even more left.

[^8]: ${ }^{1}$ Please note that Taylor and Kriegman [60] defined the reprojection error as a sum over all individual lines, see Eq. (3.8) on page 21. Such a definition makes the reprojection error dependent on the number of lines, which doesn't make comparison of different scenes very intuitive. For this reason, it was decided to define the total reprojection error as an average over all individual lines.

[^9]: ${ }^{2}$ The Timberframe House, Building Blocks and Street datasets were excluded from the experiment because the line correspondences were not provided.

[^10]: ${ }^{1}$ http://www.fit.vutbr.cz/~ipribyl/DLT-based-PnL/

