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Abstract 

This thesis is concerned wi th camera pose estimation from correspondences of 3 D / 2 D 

lines, i . e. w i th the Perspective-n-Line (PnL) problem. At ten t ion is focused on large 

line sets which can be efficiently solved by methods using linear formulation of P n L . 

U p to date, methods working only wi th point-line correspondences were known. M o ­

tivated by this, two novel methods based on the Direct Linear Transformation ( D L T ) 

algorithm are proposed: DLT-P l i i cke r -L ines working wi th line-line correspondences and 

DLT-Combined-L ines working wi th both point-line and line-line correspondences. In 

the latter case, the redundant information reduces the min imum of required line corre­

spondences to 5 and improves accuracy of the method. The methods were extensively 

evaluated and compared to several state-of-the-art P n L methods i n various conditions 

including simulated and real-world data. DLT-Combined-L ines achieves results similar 

to or better than state-of-the-art, while it is s t i l l highly efficient. In addit ion, the thesis 

introduces a unifying framework for DLT-based pose estimation methods, wi th in which 

the proposed methods are presented. 

Abstrakt 

Tato d i se r tačn í p r áce se zabývá odhadem pózy kamery z korespondenc í 3D a 2D př ímek , 

tedy tzv. p e r s p e k t i v n í m p r o b l é m e m n p ř í m e k (angl. Perspective-n-Line, P n L ) . Pozornost 

je s o u s t ř e d ě n a na p ř í p a d y s ve lkým p o č t e m čar , k t e ré mohou bý t efekt ivně řešeny meto­

dami využívaj íc ími l ineární formulaci P n L . Dosud byly z n á m y pouze metody pracuj íc í 

s korespondencemi 3D b o d ů a 2D př ímek . N a zák ladě tohoto pozorování byly navrženy 

dvě nové metody založené na algoritmu p ř í m é l ineární transformace (angl. Direct Linear 

Transformation, D L T ) : M e t o d a DLT-P lúcker -L ines pracuj íc í s korespondencemi 3D a 2D 

p ř ímek a metoda DLT-Combined-L ines pracuj íc í jak s korespondencemi 3D b o d ů a 2D 

př ímek , tak s korespondencemi 3D p ř í m e k a 2D p ř ímek . Ve d r u h é m p ř í p a d ě je redun­

d a n t n í 3D informace v y u ž i t a k redukci m i n i m á l n í h o p o č t u požadovaných korespondenc í 

p ř ímek na 5 a ke zlepšení p řesnos t i metody. Navržené metody byly d ů k l a d n ě t e s továny 

za různých p o d m í n e k vče tně s imulovaných a reá lných dat a p o r o v n á n y s nej lepšími exis­

tuj ícími P n L metodami. M e t o d a DLT-Combined-L ines dosahuje výs ledků lepších nebo 

s rovna te lných s nej lepšími existuj ícími metodami a zároveň je značně rychlá . Tato dis­

e r t ačn í p r áce t a k é zavádí j e d n o t n ý r á m e c pro popis metod pro odhad pózy kamery za­

ložených na algoritmu D L T . O b ě navržené metody jsou definovány v tomto r ámc i . 
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Chapter 1 

Introduction 

Computers take part in our lives, and that part is increasing as computers get faster, 

smaller, easier to use and more powerful. If a camera is connected to a computer, it is 

given a chance to "see", enhancing its capabilities. The computer does not see in fact; it 

just gets a meaningless mosaic of pixels. In order to give a meaning to the pixels (i. e. 

to s e e ) , the computer must be given instructions for interpreting the pixel values or 

it must be able to learn them. People who prepare such instructions or teach computers 

to learn them deal w i th computer vision. 

The goal of computer vision is to allow computers to see. To see like humans perhaps, 

or even better. Th is is a very ambitious goal and it is s t i l l too far from being true due 

to its complexity. However, some tasks have already been solved. Computers are able, 

for example, to find specific objects in images, to recognize human faces, to localize a 

robot using on-board cameras, or to reconstruct 3D objects, or even whole cities, from 

multiple images. 

Accomplishing of many tasks in computer vision is achieved through the exploita­

t ion of features. Features are interesting parts of an image or a scene in this context. 

Depending on an application, the features can be points, lines, curves, regions, more 

complicated structures, or combinations of them. If features i n a scene are captured by a 

camera, they can be used to infer various geometric relations: Ei ther between objects of 

the scene, or between the scene and the camera. B y exploit ing the geometric relations, it 

is possible to reconstruct a 3D scene, to localize and navigate a mobile robot, to operate 

a robotic arm (solely on the basis of visual information) or to augment user's view wi th 

addit ional information, to give an example. A fundamental underlying task of each of 

these applications is pose estimation - the task of determining the relative posit ion and 

orientation of a camera and an object to each other i n 3D space 1 . 

1 The problem of absolute pose estimation is also known as the problem of absolute orientation or 
exterior orientation in photogrammetry. 
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Whi le pose estimation methods ut i l iz ing point features have been in focus of re­

searchers for some time and they are thus relatively mature, pose estimation methods 

ut i l iz ing line features lag behind. However, points and lines carry a complementary infor­

mation about a scene and it is thus desirable to make use of both. Points have an exact 

location, whereas the "location" of a line along its direction is inherently unknown. O n 

the other hand, lines are more robust primitives because they can be broken or part ia l ly 

occluded, but they are s t i l l visible and they can be exploited. Recent state-of-the-art 

methods are efficient and accurate, but they util ize lines only in the image space. In 

the 3D space, just point features are used (exploiting the fact that i f 3D points lie on 

a 3D line, their projections must coincide wi th projection of that line in the image). 

That means only point-line correspondences are used and the potential of line-line corre­

spondences is wasted, although line-line correspondences may carry stronger geometric 

information about a scene than point-line correspondences. 

The goal of this thesis is to improve accuracy and robustness of current state-of-the-

art on pose estimation from lines by incorporating 3D lines and thus also the line-line 

correspondences directly into the pose estimation process, which w i l l be experimentally 

proved. The thesis studies the linear formulation of pose estimation from lines, which is 

especially suitable for scenarios wi th large sets of lines. The Direct Linear Transformation 

(DLT)-based formulation, which was used to exploit only point-line correspondences so 

far, is of special interest. The thesis contributes to the state-of-the-art by formulating 

two new methods for pose estimation, which are buil t upon the D L T and make use of 

line-line correspondences. A secondary contribution of this thesis is a unifying view on 

the DLT-based methods for pose estimation from lines. 

Al though the work presented in this thesis is my own, it has been influenced by many 

discussions wi th Pavel Zemcik and M a r t i n Cadik . They also both collaborated wi th me 

on wri t ing our joint papers. 

The text of this thesis is organized into six chapters. In Chapter 2, basic concepts are 

introduced upon which this thesis is bui ld . In Chapter 3, a review of related work and 

state-of-the-art of pose estimation from line correspondences is presented. In Chapter 4, 

the state-of-the-art is cr i t ical ly analyzed and two new methods - DLT-Plucker -L ines 

and DLT-Combined-L ines - are proposed and presented in a unifying framework, which 

relates the proposed methods wi th the existing method for pose estimation, D L T - L i n e s . 

In Chapter 5, performance of the proposed methods is benchmarked and compared to 

the state-of-the-art using simulations and real-world experiments. Final ly , the thesis is 

concluded in Chapter 6 by summarizing its key points and by suggesting future research. 

The core of this thesis is constituted by Chapters 4 and 5. 
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Chapter 2 

Basic Concepts 

Since mathematical notation and related concepts vary in literature, they way how they 

are used in this thesis is defined i n this chapter. The mathematical notation is intro­

duced first. Then , coordinate systems are defined and camera model is introduced. A 

brief review of 3D lines parameterizations follows. After that, projection of points and 

lines onto the image plane is derived in the context of the used camera model and line 

parameterization. Next , detection and matching of image lines is outlined. Final ly , a 

method of solving a homogeneous system of linear equations is introduced, and the role 

of Singular Value Decomposit ion i n this task is established. 

2.1 Notation 

Scalars are typeset in italics (x,X), vectors are typeset in bold (1, L ) . A l l vectors are 

thought of as being column vectors unless explici t ly transposed. Matr ices are typeset in 

sans-serif fonts (t, D) , the identity mat r ix is denoted by I and the zero mat r ix by 0. 2D 

entities are denoted by lower case letters (x, 1, t), 3D entities by upper case letters (X, 

L, D) . Some of the symbols used in this thesis are organized in the following table. 

scalar vector matr ix 

2D 

3D 

a - h, j - n , q, s, 
x, y, 5, e, e, 7r, a 

E, L, S, T, X, Y, Z, 
A, B, r, A , s , e 

1, p, t, u, x , e 

0, E, L, N , T , 
U , V , X , Y 

t 

0, 1, D, K, L, M, P, 
R, U, V, w , z , r 

No formal dist inction between coordinate vectors and physical entities is made. Trans­

formation and projection matrices acting on points and lines are distinguished by a dot 

and a bar, respectively (D, P, D, P). 
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Operators and functions are denoted as follows. 

• Equal i ty of up to a nonzero scale factor is denoted by « , 

• transposition by T , 

• £2 norm (Euclidean norm) of a vector by |.| , 

• £\ norm of a vector by I j . ^ , 

• Kronecker product by <8> , 

• vectorization of a matr ix i n column-major order by vec(.) , 

• the skew symmetric matr ix associated wi th the cross product by [.] x , 

i . e. [a] x b = a x b. 

Final ly , the following two functions are defined. The first one is mean o ( .) - the mean 

of al l atomic elements of its argument. In the case of a vector, the result is straightforward: 

mean (a) = ^ i = 1 G i . (2.1) 
n 

In the case of a matrix, the result is the mean of al l mat r ix entries (not just of column/row 

vectors): 

mean D (M) = mean D (vec(M)) . (2.2) 

In the case of a set, the elements of the set are concatenated into a single vector or matr ix 

first, the function is evaluated after the concatenation 

m e a n ^ X i } ) = mean0((x7 X J ... X ^ ) T ) , (2.3) 

where i = 1 . . . n. 

The second function is mean| 0 | ( .) - the mean of absolute values of al l atomic elements 

of its argument. It acts on vectors, matrices and sets in the same way as the function 

mean D(.) does. 

2.2 Camera Model 

A camera wi th central perspective projection is assumed, where 3D points and lines 

project onto an image plane which does not coincide wi th the center of projection. This 

is called a pinhole camera model [30]. The model is parameterized using two sets of 

parameters: extrinsic and intrinsic parameters. 
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Extrinsic parameters encode the posit ion and orientation - i .e . the pose - of a 

camera in space. Let us have a world coordinate system and a camera coordinate system, 

both of which are right-handed. The camera X - a x i s goes right, the F -ax i s goes up and 

the Z-axis goes behind the camera, so that the points placed i n front of the camera 

have negative Z coordinates in the camera coordinate system. A transit ion from the 

world to the camera coordinate system is realized through a translation followed by a 

rotation, see Figure 2.1. The translation is parameterized using a 3 x 1 translation vector 

T = (T i T2 Tz)T, which represents the posit ion of the camera in the world coordinate 

system. The rotation is parameterized using a 3 x 3 rotation matr ix R describing the 

orientation of the camera in the world coordinate system by means of three consecutive 

rotations along the three axes Z, Y, X by respective Euler angles F, B, A. The pose of 

a camera thus has 6 Degrees of Freedom (DoF) : T i , T2, T3, A, B, F. 

Figure 2.1: The world coordinate systems (right), the camera coordinate system (left) 
and the transit ion between them through a translation T followed by a rotation R. 

The task of pose estimation can be alternatively formulated as object pose estimation 

(w. r. t. the camera coordinate system). In this thesis, however, the earlier formulation is 

adopted, i . e. estimation of the pose of a camera (w. r. t. the object or world coordinate 

system). The two formulations are equivalent. 

Intrinsic parameters describe how the (physical) coordinates of 2D points in the 

image plane map to its image coordinates (in pixels). Such mapping can be expressed 
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by an upper-triangular 3 x 3 camera calibration matr ix 

sx k XQ 

K = 0 a. •y VO (2.4) 

0 0 1 

where 

• sx is the scale factor in the x direction of an image, 

• sy is the scale factor in the y direction of an image, 

• k = sy tan 9 is the skew factor, where 9 is the angle between the x and y image 

axis, 

• (%o Vo)T are the coordinates of the pr incipal point - a point in the image plane 

where the plane meets the camera Z-axis . 

Pu t t i ng together both the extrinsic parameters (R, T) and the intrinsic parameters 

(K) , a 3D point X can be related to its projection u in the image by the equation 

B o t h X and u are expressed in homogeneous coordinates. 

W h e n the camera is intr insically calibrated, i . e. when K is known, the image co­

ordinates u can be converted into the normalized image coordinates x = K _ 1 u . The 

projection x of a 3D point X in the normalized image plane can then be computed 

directly 

In the rest of this thesis, a pinhole camera wi th known intrinsic parameters is assumed, 

i . e. coordinates of 2D points and lines are the normalized image coordinates. 

2.3 Parameterizations of 3D Lines 

Using the words of Hart ley and Zisserman [30], "lines are very awkward to represent in 

3- space". A 3D line has 4 D o F , which could be natural ly represented as a homogeneous 

5-vector. However, such representation cannot be used easily together w i th homogeneous 

4- vectors representing points and planes i n projective 3-space. Several parameterizations 

have thus been developed to parameterize 3D lines [8]. They can be categorized based 

u w K [R - R T ] X . (2.5) 

x [R - R T ] X . (2.6) 
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on the abil i ty to represent al l lines - such parameterizations are complete, the other are 

partial. They can also be divided based on how many parameters are used [71]: nonlinear 

minimal representations using 4 parameters, and linear over-parameterizations using 5 

or more parameters. 

M i n i m a l Parameterizations use 4 parameters to describe a 3D line, which equals 

to its number of D o F . The Denavit-Hartenberg parameterization [19] was developed to 

model motion of robots. The idea is to relate each joint of a robot to the adjacent joint 

by two distances and two angles. The Cayley representation was developed by Zhang and 

K o c h [71] to allow unconstrained opt imizat ion during sparse Bundle Adjustment ( B A ) 

[62]. Three of the four Cayley parameters encode rotation of a 3D line w. r. t. the reference 

coordinate system, and the fourth parameter is the distance of the line to the reference 

origin. Other min ima l parameterizations can be found e.g. in [26, 28, 52, 53, 57]. 

Unfortunately, projection functions of the min imal representations are difficult to 

express explici t ly [71]. F rom the point of view of camera pose estimation, this is a dis­

advantage because projection functions of 3D lines are the foundation of pose estimation 

methods. The projection function should be as simple as possible i n terms of the pose 

parameters or, at least, in the entries of a projection matr ix . 

Linear Over-Parameterizations often have simpler projection functions. The pa­

rameterization by Closest Point and Direction and the parameterization by Two Points 

(in Eucl idean coordinates) both have bilinear projection functions [8]. They also both 

have 6 D o F , and they are both part ia l representations because lines at infinity cannot 

be handled. If the points i n the Two Points representations are parameterized using 

homogeneous coordinates, the number of D o F increases to 8, but the parameterizations 

becomes complete because lines at infinity are no longer a special case. The dual repre­

sentation to Two Points is the representation by Two Planes. It has the same properties: 

it has 8 D o F , it is complete, and the projection function is bilinear. 

Another complete parameterizations is the Pliicker Matrix, which is a 4 x 4 skew-

symmetric homogeneous matr ix L constructed from the homogeneous coordinates of two 

distinct 3D points X and Y ly ing on a line 

L = X Y T - Y X T . (2.7) 

The Pli icker matr ix has two major disadvantages: Fi rs t , it has as much as 16 D o F , 
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although it encodes only 6 parameters because it is skew-symmetric. Second, projection 

of a 3D line parameterized using Pl i icker matr ix onto an image plane is a quadratic 

function of a projection matr ix [30, E q . (8.2)]. 

Pliicker Coordinates 

Pliicker Coordinates are the only linear over-parameterization wi th linear projection 

function. Moreover, it is a complete parameterization using "only" 6 D o F . Pl i icker co­

ordinates are any permutation of the 6 parameters of the Pli icker matr ix i n E q . (2.7). 

Usually, the parameters are chosen so that they have a geometric meaning: 

Given two distinct 3D points X = (X1 X2 X3 X4)T and Y = (Y1 Y2 Y3 F 4 ) T in 

homogeneous coordinates, a line jo ining them in projective 3-space is a homogeneous 

6-vector L » ( U T V T ) T = ( L i L2 L3 L 4 L 5 L 6 ) T , where 

U T = ( L i L2 L3) = (X1 X2 X3) x (Yi Y2 Y3) , (2.8) 

V T = ( L 4 L 5 L6) = XA{YX Y2 Y3) - YA{XX X2 X3) . 

The V part encodes direction of the line while the U part encodes posit ion of the line in 

space. In fact, U is a normal of an interpretation plane - a plane passing through the 

line and the origin. A s a consequence, L must satisfy a bilinear constraint U T V = 0. 

Existence of this constraint explains the discrepancy between 4 D o F of a 3D line and its 

parameterization by a homogeneous 6-vector. More on Pli icker coordinates can be found 

e.g. in [30]. 

2.4 Projection of Points and Lines 

The way, how transformations of points and lines are made, depends on the chosen 

parameterization. In the following, 3D lines are assumed to be parameterized using 

Pli icker coordinates and 3D points are assumed to be parameterized using homogeneous 

coordinates. 

Transformation of a Point. A homogeneous 3D point X = (Xi X2 X3 X4)T in the 

world coordinate system is transformed to a point D X in the camera coordinate system 
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using a 4 x 4 point displacement matr ix 

D 
R 

0 1 X 3 

-RT 

1 
(2.9) 

Project ion of a Point. After 3D points are transformed into the camera coordinate 

system, they can be projected onto the normalized image plane using the 3 x 4 canon­

ical camera matr ix (I 0). Composi t ing the two transformations yields the 3 x 4 point 

projection matr ix 

R -RT (2.10) 

A 3D point X is then projected using the point projection matr ix P as 

x w P X (2.11) 

where x = {x\ X2 xs)T is a homogeneous 2D point i n the normalized image plane. 

Transformation of a Line. A 3D line parameterized using Pli icker coordinates can 

be transformed from the world into the camera coordinate system using the 6 x 6 line 

displacement m a t r i x 1 

f R Rf-Tlv 
D 

0, R 
(2.12) 

Project ion of a Line. After 3D lines are transformed into the camera coordinate 

system, their projections onto the image plane can be determined as intersections of 

their interpretation planes wi th the image plane; see Figure 2.2 for i l lustrat ion. The 

normal U of an interpretation plane is identical to the image line 1 in the coordinate 

system of the camera, hence only U needs to be computed when projecting L , and only 

the upper half of D is needed, yielding the 3 x 6 line projection matr ix [21] 

R R[-T] ; 
(2.13) 

The line projection matr ix in E q . (2.13) can also be achieved by compositing the two 

1 Please note that our line displacement matrix differs slightly from the matrix of Bartol i and Sturm 
[7, Eq . (6)], namely in the upper-right term: We have R [ - T ] x instead of [ T ] x R due to different coordinate 
system. 
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transformations denned by the line displacement matr ix D (2.12) and by the 3 x 6 canon­

ical camera matr ix (I 0). 

Figure 2.2: 3D line projection. The 3D line L is parameterized by its direction vector 
V and a normal U of its interpretation plane, which passes through the origin of the 
camera coordinate system {C}. Since the projected 2D line 1 lies at the intersection of 
the interpretation plane and the image plane, it is fully defined by the normal U . 

A 3D line L is then projected using the line projection matr ix P as 

1 w PL , (2.14) 

where 1 = (h I2 h)T is a homogeneous 2D line in the normalized image plane. 

2.5 Detection and Matching of Lines 

Methods for pose estimation from lines rely on correspondences between 3D lines and 

image lines. The method how lines are detected in an image and how they are matched 

to their corresponding 3D counterparts is outlined i n this section. 

Line detection. Lines i n an image are typical ly detected in the form of line segments 

using a three-staged algorithm. Fi rs t , a gradient image is computed or edges are detected. 

Second, candidate "line support regions" are bu i ld by grouping of adjacent pixels having 

similar gradient orientation. T h i r d , line segments are fitted to the candidate regions and 

perceptually meaningless segments are discarded. Such an approach is used e. g. by the 

Line Segment Detector (LSD) [25], its modified version L S D F - L o c [9] or EDl ines [4]. 

Line matching. Match ing of lines is based either on their appearance, on geometric 

constraints or on the combination of both. In the case of appearance-based matching, a 
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descriptor is used to encode the line's appearance (i. e. its neighborhood) into a feature 

vector. Similar ly to S I F T [42] for points, several descriptors for lines have been proposed. 

The Mean-Standard deviation Line Descriptor ( M S L D ) [66] was among the first, and 

indeed, it is inspired by S I F T i n how appearance of regions is encoded along a line. 

Alternat ive contemporary line descriptors are e. g. Line Signatures [65], Line-based Eight-

directional Histogram Feature ( L E H F ) [32] or Line B a n d Descriptor ( L B D ) [70]. 

A hybrid approach for line matching combining both appearance-based and geometry-

based features was introduced by Zhang and K o c h [69]. The L B D descriptor and simple 

geometric constraints are used to reject false candidate line matches. K i m and Lee [36] 

deal w i th matching of pairs of intersecting lines, arguing that line pairs are less ambiguous 

for matching than single lines. For that purpose, they proposed the Line Intersection 

Context Feature ( L I C F ) . 

In the case of large distances between camera positions or i n the case of wiry objects, 

the appearance-based attributes of lines change dramatically, and they are thus useless. 

Th is motivated line matching techniques relying exclusively on geometric constraints. 

Schindler et al . [54] proposed a technique suitable for Manha t t an environments, where 

each line is assigned one of three mutual ly orthogonal directions at the time of detection. 

This information simplifies the following matching process. Hofer et al . [33] deal wi th 3D 

reconstruction from mult iple views. W h e n adding a new camera view, a potentially large 

set of hypothetical matches is computed using weak epipolar constraints. The hypotheses 

can be later merged based on their spatial proximity and they are finally verified or re­

jected based on their reprojection error and observation angle. Micus ik and Wildenauer 

[48] approach the joint problem of line matching and camera pose estimation as search­

ing through the parameter space of camera poses. They generate tens of thousands of 

v i r tua l camera views, and compare line segments in the real and v i r tua l view by Chamfer 

matching [6, 58], which can be implemented very efficiently. The number of candidate 

views can also be reduced by estimating vanishing points in the input image. 

2.6 Solving a Homogeneous System of Linear Equations 

Methods presented in this thesis often solve a homogeneous system of linear equations, 

which can be described by the matr ix equation 

M x = 0 . (2.15) 
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If the system has m equations and n unknowns, then the measurement matr ix M contain­

ing coefficients of the equations is m x n, and the vector of unknowns x has n entries. The 

t r iv ia l solution x = 0 is not of interest, hence the desired solution must be constrained, 

typical ly 

112 
a r g m i n | | M x | | 

(2.16) 
s. t. | |x | | = 1 . 

E q . (2.15) holds only i n an ideal (noise-free) case. If equation coefficients i n M are 

perturbed by noise, an inconsistent system is obtained 

M x ' = € , (2.17) 

where x ' is only an approximate solution and e is an m-vector of measurement residuals. 

In an ideal case (2.15) and assuming m > n , M has rank n — 1 and x is the right 

nullspace of M of rank 1. However, i n a noisy case (2.17), M has full rank n , thus its 

nullspace must have rank 0. Th is implies nonexistence of an exact solution. S t i l l , an 

approximate solution may be found in a least-squares sense. If a rank deficient matr ix 

M ' is found 

/ 112 
a r g m i n | | M — M | | 

M ' (2.18) 
s.t. r ank(M' ) = rank(M) - 1 , 

then, the approximate solution x ' of the system (2.17) is the right nullspace of M ' of 

rank 1, i . e. 

M ' x ' = 0 . (2.19) 

Remark 2.1: In the rest of the thesis, the above-described way of solving a homoge­

neous linear system M x = 0 w i l l be referred to as " homogeneous linear least squares". 

Although a mathematical ly correct term would be "low-rank approximation" (of M ) , the 

former designation was chosen due to its analogy to the term "linear least squares", which 

designates solving of a linear system M x = b. 
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Singular Value Decomposition 

The Singular Value Decomposit ion ( S V D ) is a matr ix factorization. Let us have anmxn 

matr ix M of real numbers. It is factorized by S V D into three matrices 

M = U Z V T , (2.20) 

where 

• U is an m x m orthonormal mat r ix whose columns are the left singular vectors of 

M , 

• I is an m x n diagonal matr ix of non-negative numbers - singular values of M , and 

• V is an n x n orthonormal matr ix whose columns are the right singular vectors of 

M . 

It is common to order the singular values on the diagonal of Y. i n descending order. 

In the context of linear systems, S V D can be advantageously used to obtain an 

approximate solution of an over-determined and inconsistent homogeneous system of 

linear equations, as defined by E q . (2.17). The approximate solution x' is exactly the 

right singular vector of M associated wi th the smallest singular value, i . e. the last column 

of V obtained by S V D in E q . (2.20). 

Concepts established in this chapter constitute a foundation for the rest of this thesis. 

Let us now proceed to the description of state-of-the-art of pose estimation from lines. 
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Chapter 3 

Pose Estimation from Lines 

Points are the most commonly used features, not only for pose estimation. It is so 

because points are the simplest geometric primitives, easy to represent mathematically 

and easy to handle in a space of any dimension [30]. A substantial amount of research 

has been dedicated to point features and their applications i n computer vision. Lines, on 

the other hand, are more difficult to represent, especially i n spaces of dimension 3 and 

higher. Th is was natural ly reflected in less research effort dedicated to line features. 

Nevertheless, points and lines carry a complementary information about a scene and 

it is thus desirable to make use of both. Points have an exact location, whereas the 

"location" of a line along its direction is inherently unknown. O n the other hand, lines 

are a more robust type of a primit ive, because they can be broken or part ia l ly occluded, 

but they are s t i l l visible and they can be exploited. Addi t ional ly , lines provide stronger 

structural information about a scene than points, see Figure 3.1. Lines are especially 

useful and sometimes indispensable in situations where point features are unreliable. This 

Figure 3.1: Representation of a bui lding (on the left) using points {center) and lines 
{right).1 

l r rhe data is a courtesy of [67]. 
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might be caused, for example, by a lack of texture or presence of repetitive patterns, see 

Figure 3.2. Such conditions are typical for man-made environments - wi ry structures, 

streets, facades of buildings, corridors, rooms etc. Lines are often abundant in such 

environments [49]. 

The task of camera pose estimation from lines has a finite number of solutions for 

3 and more lines. However, i n the min imal case of 3 lines, solutions of the Perspective-

3-Line (P3L) problem are multiple: up to 8 solutions may exist [11]. The ambiguity is 

removed by adding one or more lines and thus the P n L problem has a unique solution 

for n > 4 [68]. Having said that, special configurations of lines must not be forget, for 

which the P n L problem has an infinite number of solutions even for n > 4. Such cases are 

termed singular configurations (e. g. a set of parallel lines, in which case, it is impossible 

Figure 3.2: Point matches (top) and line matches (bottom) in a pair of images of a 
low-texutre scene. On ly 9 matches were found using points, while 54 matches were found 
using l ines. 2 

2 The images and line matches are a courtesy of [70]. 
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to locate the camera along the lines). Generally, methods for pose estimation are known 

to be prone to singular and sometimes also to quasi-singular configurations of lines [51]. 

The P n L problem has been receiving attention for more than a quarter of century. 

Some of the earliest works are the ones of Dhome et al . from 1989 [20] and L i u et al. from 

1990 [40]. They introduce two different ways to deal wi th the P n L problem: iterative and 

algebraic3 approaches. A s the names suggest, the algebraic methods solve P n L by mini ­

mizing an algebraic error in "one step", while the iterative methods iteratively minimize a 

nonlinear error function, which usually has a geometric meaning. B o t h approaches have 

different properties and thus also different use. A specific subset of algebraic approaches 

are the methods based on linear formulation of the P n L problem. 

3.1 Iterative Methods 

The iterative approaches consider pose estimation as a nonlinear least-squares problem by 

iteratively min imiz ing specific error function, which usually has a geometric meaning. In 

the early work of L i u et al. [40], the authors attempted to estimate the camera posit ion 

and orientation separately developing a method called R_then_T. Orientat ion of the 

camera i n space is obtained from 8 or more line correspondences which define the entries 

of a rotation matr ix . The matr ix is estimated up to an unknown scale factor by linear 

least squares. The scale of the mat r ix is corrected ex post by enforcing the Frobenius 

norm of the matr ix to be three. However, the other constraints of the rotation matr ix , 

such as unit-norm and mutual ly orthogonal rows, are not enforced. 

Later on, K u m a r and Hanson [37] have introduced a method called R_and_T for 

simultaneous estimation of camera posit ion and orientation, which is computed using 

iterative least squares. The authors proved superior performance of their algori thm to 

R_then_T. 

Chr is ty and Horaud [12] have proposed two methods for pose estimation for the para-

perspective and weak-perspective camera models. If the methods converge, their results 

are compatible w i th the perspective camera model. In the absence of a good ini t ia l izat ion, 

the methods converge faster compared to methods using the full perspective camera 

model. B y using the weak-perspective camera model, an assumption must hold that the 

depth of an object is small compared to the distance of the object from the camera, and 

that visible scene points are close to the optical axis. Therefore, the full projective cases 

cannot be handled. 

Inspired by the point-based Orthogonal Iteration (01) algori thm for points [43], 

3Sometimes also called non-iterative approaches. 
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X . Zhang et al . [73] proposed the Line-based Orthogonal Iteration (LOI) algorithm, 

which iteratively minimizes two geometric objective functions i n the object space. The 

objective functions are 

n 

£ V ( R ) = Y P Z t , (3-1) 
i=l 

n 

£ X ( R , T ) = ] T | | E f | | 2 . (3-2) 
i=i 

where n is the number of line correspondences, and E ^ and are the coplanarity errors 

E ^ = (I - Kj )RVj , (3.3) 

E f = ( l - K j ) R ( X j - T ) . (3.4) 

For each line correspondence, the matr ix Kj = I — N j N j is a 3 x 3 symmetric matr ix 

projecting vectors in Eucl idean 3-space orthogonally onto an interpretation plane defined 

by its normal N j . Thus, (I — Kj) is a matr ix which, after it is applied to a vector, yields 

a rejection of that vector from an interpretation plane defined by its normal N j . The 

coplanarity error E ^ is thus the orthogonal distance of an arbitrary point X j on a 3D 

line to the interpretation plane of the corresponding 2D line. Accordingly, the other 

coplanarity error E ^ is the orthogonal distance of an endpoint of a uni t -norm direction 

vector V j of the 3D line to the interpretation plane. B y substi tuting (3.3) into (3.1) and 

(3.4) into (3.2), and by using the definition of Kj, the objective functions are 

n 

£ V ( R ) = U l l N i N T R V j f , (3.5) 
i=i 

n 
EX(R,T) = ] T | | N J N 7 R ( X J - T ) | | 2 . (3.6) 

i=i 

The L O I algori thm alternates between opt imizat ion of the rotation matr ix R and the 

translation vector T . 

Recently, Y . Zhang et al . [74] proposed two modifications to the R_and_T algorithm 

of K u m a r and Hanson [37] by exploit ing the uncertainty properties of line segment end-

points. The modifications are suitable for cases where line segments are fitted to noisy 

edge points using least squares, which are cases where errors of the endpoints are nega­

tively correlated. 

Several other iterative methods are also capable of simultaneous estimation of pose 
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parameters and line correspondences. They present an orthogonal approach to separate 

correspondence filtering and consecutive pose estimation. D a v i d et al . [17] proposed 

an approach called Sof t -POSIT (it was first proposed for points [16], then it was pro­

posed also for lines [17]), where two phases are repeated: Firs t , 3D line endpoints are 

projected onto the image plane and they are matched to nearest 2D line segments by 

minimiz ing the point-to-line distances using weighted least squares. Th is is known as the 

softassign algori thm [24]. Second, the pose of a weak-perspective (also known as scaled 

orthographic) camera is estimated using the Pose from Orthography and Scaling wi th 

ITeration ( P O S I T ) algorithm [18]. The whole process is then repeated unt i l the pose 

converges. Aga in , depth of an object must be small compared to the distance of the 

object from the camera, and scene points must lie close to the optical axis due to the use 

of the weak-perspective camera model. 

Recently, X . Zhang et al . [73] introduced an approach which outperforms the Soft-

P O S I T algorithm by taking an advantage of the fact that some prior on the camera 

pose is often available i n practice. The prior is modelled by a Gaussian Mix tu re M o d e l 

that is progressively refined by hypothesizing new correspondences. Th is reduces the 

number of potential matches and the pose space can be explored more thoroughly than 

by Sof tPOSIT at a similar computat ional cost. The work of X . Zhang et al . is based on 

the earlier work of Moreno-Noguer et al . [50] who used pose priors for pose estimation 

from points. 

3.2 Algebraic Methods 

The algebraic approaches estimate the camera pose by solving a system of (usually poly­

nomial) equations, min imiz ing an algebraic error. Thei r solutions are thus not necessarily 

geometrically optimal; on the other hand, no ini t ia l izat ion is needed. 

A m o n g the earliest efforts in this field are those of Dhome et al . [20] and Chen 

[11]. B o t h methods solve the min imal problem of pose estimation from exactly 3 line 

correspondences i n a closed form. Dhome et al . [20] proposed a closed-form solution 

by deriving a P 3 L polynomial . 3D lines are transformed into an intermediate model 

coordinate system chosen s.t. the first of the three lines is collinear wi th the A - a x i s 

and the second one is parallel to the AY"-plane. Similarly, 2D lines are transformed into 

a v i r tua l image plane in an intermediate camera coordinate system s. t. its A Z - p l a n e 

corresponds to the interpretation plane of the first image line and its A - a x i s is collinear 

to that image line. Chen [11] proposed another approach to derive a P 3 L polynomial 

by introducing a canonical configuration. The configurations is achieved by rotating the 
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3D lines s. t. one of the three lines already lies i n its interpretation plane defined by 

its 2D image. Camera orientation, which is estimated first, has thus only 2 remaining 

D o F instead of 3. Camera position is estimated afterwards by solving a system of linear 

equations. Chen's method often produces complex solutions. 

Ansar and Dani i l id is [5] developed a method that is able to handle 4 or more lines, 

l imi t ing the number of possible solutions to 1. L i f t ing is employed to convert a polyno­

mial system to a linear system wi th 46 variables and wi th unknowns being the entries of 

a rotation matr ix . In the case of four line correspondences, an addit ional S V D must be 

computed. The approach of Ansar and Dani i l id is may, however, fail in cases of singular 

line configurations (e.g. lines i n three orthogonal directions) [51] as the underlying poly­

nomial system may have multiple solutions. The algorithm has quadratic computat ional 

complexity ( 0 ( n 2 ) , where n is the number of lines). The method gets unstable wi th 

increasing image noise, eventually producing solutions w i th complex numbers. 

Recently, two major improvements of algebraic approaches have been achieved. Fi rs t , 

Mirzae i and Roumeliotis [47] proposed a method which is more computationally effi­

cient (O(n)) , behaves more robustly in the presence of image noise, and can handle 

the min imum of 3 lines, or more. The approach is inspired by the earlier work of 

Hesch and Roumeliotis [31], who presented a similar algorithm for the Perspective-n-

Point (PnP) problem. Mi rzae i and Roumeliot is formulated the P n L problem as non­

linear least squares, and solve it as an eigenvalue problem. A polynomial system wi th 

27 candidate solutions is constructed and solved through the eigendecomposition of a 

27 x 27 multiplication matrix. The mul t ip l icat ion matr ix is obtained as the Schur com­

plement [46, 3.7.11] of an intermediate 120 x 120 Macaulay matrix (the matr ix can be 

precomputed offline i n symbolic form). Camera orientations having the smallest least-

square error are considered to be the opt imal ones. The orientation is described using 

the Cayley-Gibbs-Rodrigues parameterization [55]. Camera positions are obtained sepa­

rately using linear least squares. The algori thm often yields mult iple solutions. 

R P n L . The second recent improvement is the Robust P n L ( R P n L ) algorithm of Zhang 

et al . [72], inspired by the success of the Robust P n P ( R P n P ) approach for points [39]. 

The method works w i th 4 or more lines and it is more accurate and robust than the 

method of Mirzae i and Roumeliot is . The R P n L method has two essential stages: 

(i) Computa t ion of coarse candidate solutions. The n lines are divided into n — 2 

triplets, each triplet containing the line of longest projection and the line of second longest 

projection. A n intermediate model coordinate system is used s. t. its Z-axis is parallel 

to the 3D line of longest projection and its origin is identical to the origin of the world 
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coordinate system. A P 3 L polynomial is formed for each line triplet and a cost function is 

constructed as the sum of squares of the P 3 L polynomials. The cost function is derived 

and the real roots of the derivative are selected as solutions of the whole polynomial 

system. The candidate pose solutions (i. e. rotat ion matrices and translation vectors) are 

computed from the solutions of the polynomial system, but the 'coarse' rotat ion matrices 

do not necessarily satisfy the orthonormality constraints. 

(ii) Refinement of the candidate solutions and selection of the opt imal solution. Each 

line is parameterized by a point X j and a direction V j . The points { X , } are transformed 

from world to camera coordinate system by the candidate coarse R and T , and each 

point is orthogonally projected onto its corresponding interpretation plane, yielding its 

projection X ^ . The two sets of points { ( X j , X ^ - ) } are aligned using a standard 3D 

alignment scheme [64]. The alignments yield fine candidate poses. The fine candidate 

poses are then pruned based on their orthogonal errors 

n 

E± = ^ ( N j R V , ) 2 . (3.7) 

The orthogonal error E1- is a sum of squares of dot products (i. e. cosines of angles) 

between the normal N j of an interpretation plane and the direction V , of a corresponding 

3D line rotated by R to the camera coordinate system. Compare the orthogonal error 

Ex i n E q . (3.7) to the objective function of the L O I algorithm, which uses coplanarity 

errors (Eq. (3.5) on page 18). A l though they may look similar, the orthogonal error E± 

is an algebraic criterion while the objective function in E q . (3.5) is a geometric criterion. 

Final ly , the opt imal solution is selected based on the smallest reprojection error W 

according to Taylor and Kr iegman [60] 

^ = E / ' diW dt = i(dl + dis • dte + 4 ) . (3.8) 
i=i J o i=i 6 

The reprojection error Ew is a sum of reprojection errors of al l n line correspondences. 

Reprojection error of a single line correspondence is an integral of a square of which 

is the shortest distance from a point x on the line segment 1 detected in the image to 

the projection p(L) of the 3D line L (see Figure 3.3). A point x( t) on a line segment 

is parameterized by t varying from 0 to li, which is the length of a line segment. The 

value of di(.) at the start and at the end of a line segment is denoted by djs and cke, 

respectively. 
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Figure 3.3: Reprojection error according to Taylor and Kr iegman [60]. 

A S P n L . The R P n L algorithm was later modified by X u et al . [68] into the Accurate 

Subset based P n L ( A S P n L ) algorithm, which acts more accurately on small line sets. The 

modification is i n the second "refinement" stage, which is applied to a l l coarse candidate 

poses from the first stage. The refined translation vector is computed by least squares 

from a set of linear equations. The rotation mat r ix is optimized iteratively. Smal l rotat ion 

corrections are expressed using the Cayley-Gibbs-Rodriguez ( C G R ) parameterization 

([55], having only 3 parameters), and the opt imizat ion is performed using the Newton 

method. Complexi ty of each iteration is constant. After al l candidate poses are refined, 

the final pose is selected based on the smallest orthogonal error in E q . (3.7). The A S P n L 

method is very sensitive to outliers. 

3.3 Methods based on Linear Formulation of PnL 

A specific subset of algebraic methods are methods exploit ing a linear formulation of the 

P n L problem ( L P n L ) . Generally, the methods solve a system of linear equations, whose 

size is l inearly proport ional to the number of measurements, i . e. the number of line 

correspondences. The system of linear equations can be transformed into a homogeneous 

system of linear equations as described in Section 2.6, i .e . a system having only a zero 

vector at the right-hand side 

M x = 0 . (3.9) 

The most straightforward way to solve L P n L is the Direct Linear Transformation 

( D L T ) algorithm. Its name first appeared in 1971 in the work of A b d e l - A z i z and K a r a r a 

[1], but the idea dates back to 1963 to the work of Sutherland [59]. D L T transforms sim­

ilari ty equations (2.14) describing the measured line correspondences into homogeneous 

linear equations, i . e. into the form of E q . (3.9). Then, it solves this system by a standard 

method, e.g. by S V D . 

If measurements are inconsistent, which happens almost always in practice, an exact 
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solution x does not exist. Nevertheless, an approximate solution x' can be computed 

in the least-squares sense. The approximate solution lies i n the rank-1 right nullspace 

of a mat r ix M ' , which is obtained through a low-rank approximation of M (the original 

measurement matr ix M usually has full rank due to the measurements inconsistencies). 

A necessary condit ion to apply any D L T method on noisy data is to prenormalize 

the input in order to ensure that the entries of the measurement matr ix are of equal 

magnitude. Otherwise, the method w i l l be oversensitive to noise and it w i l l produce 

results arbi trari ly far from the true solution [30]. 

D L T - L i n e s . The first D L T method for solving P n L is the method of Hart ley and 

Zisserman [30, p. 180] from 2004. Fol lowing the terminology of Silva et al . [56], the 

method is called D L T - L i n e s . It does not act directly on 3D lines, but rather on 3D points 

ly ing on 3D lines (for example line endpoints). It exploits the fact that i f a 3D line and a 

3D point coincide, their projections also must coincide. The D L T - L i n e s method requires 

at least 6 line correspondences. To the best of my knowledge, D L T - L i n e s was the only 

existing L P n L method unt i l 2015. 

DLT-Pl i i cker -Lines . In 2015, we introduced a new D L T method [II], which acts on 

3D lines directly. The lines are parameterized using Pli icker coordinates, hence the name 

of the method is DLT-P l i i cke r -L ines . The method w i l l be elaborated in Section 4.4. 

Paral le l to our effort in 2016, X u et al . [68] introduced a new set of methods exploit ing the 

linear formulation of the P n L problem. The authors were inspired by a state-of-the-art 

P n P solver working on the same principle [22]. Similar ly to D L T - L i n e s , the new methods 

act on 3D points and 2D lines. The methods of X u et al . [68] can be categorized by two 

criteria. 

1. B y coordinates used to parameterize 3D points. 

• Cartesian coordinates (denoted i n the method's names by " D L T " ) . 

• Barycentr ic coordinates (denoted in the method's names by "Bar"). 

2. B y a type of the nullspace, from which a solution x is obtained. 

• A n exact rank-1 nullspace computed in closed form using homogeneous linear 

least squares (denoted in the method's names by "LS") . 

• A n "effective nullspace" [38] of a dimension 1 - 4 (denoted i n the method's 

names by "ENul l " ) . 
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A taxonomy of the methods is depicted i n Table 3.1. 

Table 3 .1 : Taxonomy of L P n L methods of X u et al . [68]. 

Coordinates 

Cartesian barycentric 

<v exact 
ee rank-1 
a 
CO 

L P n L D L T L S L P n L B a r L S 

"effective 
nullspace" 

solver 
L P n L D L T E N u l l L P n L B a r E N u l l 

A l l of the methods require at least 6 line correspondences, although the effective 

nullspace solver (ENul l ) is sometimes able to recover the correct solution of an under-

determined system defined by 4 or 5 lines. 

The four L P n L methods of X u et al . are the following. 

L P n L _ D L T _ L S parameterizes 3D points using Cartesian coordinates, and it uses ho­

mogeneous linear least squares to recover a 1 dimensional nullspace i n which the solution 

resides. The solution x consists of entries of the rotation matr ix and the translation 

vector. Th i s is exactly the same algorithm as D L T - L i n e s of Hart ley and Zisserman [30, 

p. 180], so the name DLT-Lines is used to refer to the method in the rest of this thesis. 

L P n L _ D L T _ E N u l l parameterizes 3D points using Cartesian coordinates, and it uses 

the effective nullspace solver [38] to recover a solution from a nullspace of dimension 1 -

4. The solution x consists of entries of the rotation matr ix and the translation vector. 

L P n L _ B a r _ L S parameterizes 3D points using barycentric coordinates, which depend 

on the posit ion of 4 arbi trari ly chosen control points. The solution x consists of Cartesian 

coordinates of the control points w. r. t. camera, and it is solved using homogeneous linear 

least squares. Al ignment of the 4 camera- and world-referred control points defines the 

camera pose. The method is roughly as accurate as D L T - L i n e s . 

L P n L _ B a r _ E N u l l parameterizes 3D points using barycentric coordinates, which de­

pend on the posit ion of 4 arbi trari ly chosen control points. The solution x consists of 

24 



Cartesian coordinates of the control points w. r. t. camera, and it is solved using the ef­

fective nullspace solver. Alignment of the 4 camera- and world-referred control points 

defines the camera pose. The method is even more accurate then L P n L _ B a r _ L S . 

3.4 Handling Mismatched Correspondences 

In practice, mismatches of lines (i. e. out lying correspondences) often occur, which de­

grades the performance of camera pose estimation or even impedes it. It is thus necessary 

to identify and filter out mismatched correspondences and work preferably wi th correct 

matches. 

R A N S A C - b a s e d 

The R A N d o m SAmple Consensus ( R A N S A C ) algorithm [23] is commonly used to identify 

and remove outliers. It is a hypothesize-and-test scheme, where random samples are 

drawn from a set of data points, model parameters (i. e. hypotheses) are computed from 

the samples, and consensus of other data points is tested. This is repeated unt i l a 

hypothesis wi th sufficient consensus is found or an iteration l imi t is exceeded. 

A correct hypothesis is generated only i f al l data points i n the sample are inliers. 

Since the chance of drawing an outlier-free sample depends not only on the fraction of 

inliers in the data but also on the size of the sample, it is desirable to use a min imal 

model. A non-minimal model can also be used, but, on average, more iterations are 

needed to obtain a correct hypothesis w i th same probabil i ty as when using a min imal 

model. 

In the context of pose estimation from lines, the data points are usually tentative line 

correspondences, the model parameters are parameters of a camera pose, and the con­

sensus may be quantified e. g. by reprojection error of corresponding lines. The min imal 

number of line correspondences required to determine a camera pose is 3, but methods 

working wi th 4 line correspondences are also being used to generate hypotheses. 

The R A N S A C scheme can handle any percentage of outliers i n theory as long as at 

least one outlier-free sample can be found. R A N S A C is nondeterministic due to the use 

of random sampling. However, dozens of different R A N S A C modifications have been 

introduced [45] el iminating various drawbacks of the original algorithm, e.g. [13, 14, 61]. 
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Algebraic Outlier Rejection 

A s the L P n L methods work wi th 5 and more line correspondences, they cannot compete 

wi th the min imal (P3L) methods when plugged into a R A N S A C - l i k e framework due to 

an increased number of iterations. 

This motivated an alternative scheme called Algebraic Outl ier Rejection ( A O R , [22]). 

It is an iterative approach integrated directly into the pose estimation procedure. Specif­

ically, it is integrated into solving of the homogeneous linear system (2.15). Each line 

correspondence is assigned a weight, and the weights are arranged on the main diagonal 

of a square mat r ix W . This yields a homogeneous system of weighted linear equations 

W M x = 0 . (3.10) 

A t the beginning, al l weights are ini t ia l ized to 1, conservatively assuming that a l l line 

correspondences are inliers. A n approximate least-squares solution x ' of the system (3.10) 

is computed by S V D of M T W M , and a residual vector e of the solution is computed as 

e = M x ' . (3.11) 

A n algebraic error e of each line correspondence is computed from the residual vector e as 

a norm of a sub-vector of corresponding residuals. E . g . , for a case wi th 2 equations per 

line correspondence, the algebraic error of the i - th correspondence is Si = | | (e2i-i ^2i)\\-

A l l correspondences are then assigned new weights 

1 i f Si < m a x ( e m a x , < 5 m a x ) , 
Wi = { (3.12) 

0 otherwise , 

and the whole procedure is repeated unt i l convergence of the solution x'. The constants 

e m a x and <5m a x are predefined thresholds. The strategy for choosing e m a x may be arbitrary 

but the authors [22] recommend e m a x = Q25(ei, • • •, sn) which is the algebraic error of 

the correspondence that is at the boundary of the 25th percentile. The function is used 

as a robust estimator to reject correspondences wi th largest errors. The other threshold, 

<5max, needs to be reached to consider a specific correspondence as an outlier. Its purpose 

is to avoid unnecessary rejections of inlier correspondences in an outlier-free case, and to 

achieve faster convergence. 

The authors claim the break-down point to reach 6 0 % when applied to the P n P 

problem, and the process to usually converge in less than 5 iterations. 
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Chapter 4 

Pose Estimation from Lines 
using Direct Linear Transformation 

This chapter contains the majority of contributions of this thesis. F i rs t , the state-of-

the-art is cr i t ical ly analyzed and the resolution is outlined. Then, two novel DLT-based 

methods for pose estimation from line correspondences are introduced and related to 

one existing DLT-based method. The methods are formulated wi th in a novel unifying 

framework for DLT-based P n L methods. 

4.1 Analysis of the State-of-the-Art 

Pose estimation from line correspondences is a fundamental task required for many ap­

plications of computer vision - 3D reconstruction of a scene, localization and navigation 

of a robot, operation of a robotic arm solely on the basis of visual information, or aug­

mentation of user's view wi th addit ional information, for example. 

W h e n estimating camera pose "from scratch", the following pipeline is typical ly used: 

(i) Obta in tentative feature correspondences, 

(ii) filter out outliers, 

(hi) compute a solution from al l inliers, and 

(iv) iteratively refine the solution, e.g. by minimiz ing reprojection error (optionally). 

Task (i) is usually carried out by appearance-based or geometry-based matching of lines, 

as outl ined i n Section 2.5. Task (ii) is usually carried out by iterative solving of a problem 

wi th a min ima l number of line correspondences (i. e. P 3 L ) in a R A N S A C loop. Tasks 

(hi) and (iv), on the other hand, require solving a P n L problem wi th potentially high 

27 



number of lines, which might be a time-consuming task. It is thus of interest to solve 

the task using an efficient algorithm. 

A s presented in the previous chapter, methods for solving P n L can be categorized 

as either iterative or algebraic. The iterative algorithms [12, 17, 37, 40, 73, 74] need 

ini t ia l izat ion. Th is makes them suitable only for final refinement (iv) of an in i t ia l solution, 

which must be provided by some other algorithm. The in i t i a l solution (iii) may be 

provided by an algebraic algori thm [5, 11, 20, 47, 68, 72]. A m o n g these, the methods 

of Chen [11] and Dhome et al . [20] are able to exploit only 3 line correspondences, 

thus they cannot be used in scenarios wi th more lines. The algori thm of Ansar and 

Dani i l id is [5] overcomes the l imi ta t ion of fixed number of lines, allowing to use 4 and 

more lines. However, it has a quadratic computational complexity in the number of 

lines, which renders it unpractically slow even for scenarios w i th dozens of lines. Mirzae i 

and Roumeliotis [47] eliminated the computat ional burden by introducing a method 

wi th linear computational complexity. Nonetheless, its runtime is s t i l l high due to a 

slow construction of a mul t ip l icat ion matr ix , causing a high constant time penalty: it 

takes 78 ms to process 10 lines. Another drawback of the method is that it often yields 

multiple solutions. The shortcomings of [47] have been overcome by Zhang et al. [72] in 

their R P n L algorithm: it always yields a single solution and it takes 8 ms to compute a 

pose of 10 lines. However, the computational t ime increases strongly for higher number 

of lines: it takes 880 ms to process 1000 lines. The related method A S P n L of X u et al. 

[68] inherits the attributes of R P n L . Alhough A S P n L is more accurate on small line sets, 

its runtime follows the characteristic of R P n L . 

The n o n - L P n L algebraic methods only have been discussed so far. Nevertheless, in 

tasks involving a high number of lines, the n o n - L P n L methods are outperformed by the 

L P n L methods: by D L T - L i n e s of Hart ley and Zisserman [30] and by the methods of X u 

et al. [68]. These state-of-the-art methods are efficient and accurate especially i n scenarios 

wi th high number of lines. Interestingly enough, they do not exploit a l l available infor­

mation: They only util ize points in 3D space, but 3D lines remain unused. Th is means 

only point-line correspondences are used and the potential of line-line correspondences 

is unexploited, leaving a promising room for research and improvement. 

This thesis aims for better accuracy and robustness than the state-of-the-art by in­

troducing a new linear method for pose estimation. The method shall utilize line-line 

correspondences and keep the advantage of being fast which LPnL methods have in com­

mon. The goal is elaborated in the rest of this thesis and it is verified experimentally 

using both synthetic and real-world data. 

The attention is focused on methods based on the D L T . Firs t , a unifying framework 
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for a l l DLT-based P n L methods is presented i n Section 4.2. Then, al l three DLT-based 

P n L methods are formulated wi th in the framework. The methods are: 

D L T - L i n e s of Hart ley and Zisserman [30, p. 180], exploit ing point-line correspondences 

only - Section 4.3. 

DLT-Pl i i cker -Lines of ours [II], exploit ing line-line correspondences only - Section 4.4. 

D L T - C o m b i n e d - L i n e s of ours [I], exploit ing both point-line and line-line correspon­

dences - Section 4.5. 

4.2 Common Structure of DLT Methods 

In this section, the novel unifying framework for DLT-based P n L methods is introduced. 

Given the point-line or line-line correspondences, the camera pose can be estimated using 

a P n L method. The DLT-based P n L methods have the following steps in common: 

1. Input data is prenormalized to achieve good conditioning of the linear system. 

2. A projection matr ix is estimated using homogeneous linear least squares, and the 

effect of prenormalization is reverted. 

3. The pose parameters are extracted from the estimated projection matr ix . This 

includes also constraint enforcement i n the case of noisy data, since the constraints 

are not taken into account during the least-squares estimation. 

Prenormalization 

Since the D L T algorithm is sensitive to the choice of coordinate system, it is crucial to 

prenormalize the data to get a properly conditioned measurement matr ix M [27]. Various 

transformations can be used, but the opt imal ones are unknown. In practice, however, 

the goal is to reduce large values of point / l ine coordinates. Th is is usually achieved by 

centering the data around the origin and by scaling them s. t. an average coordinate has 

the absolute value of 1 (which means the average distance to the origin shall equal to a /2 

and a /3 in the 2D and 3D case, respectively). Specific prenormalizing transformations 

are proposed for each method in the following sections. 

Linear Estimation of a Projection Matr ix 

A s a starting point, a system of linear equations needs to be constructed, which relates 

(prenormalized) 3D entities w i th their (prenormalized) image counterparts through a 
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projection matr ix , denoted P. The relation might be the projection of homogeneous 3D 

points x « P X in E q . (2.11), or the projection of Plucker lines 1 « P L in E q . (2.14), or 

other linear system, or a combination of those. The problem of camera pose estimation 

now resides in estimating the projection matr ix P, which encodes al l the six camera pose 

parameters Tu T2, T3, A, B, T. 

The system of linear equations is transformed into a homogeneous system of linear 

equations (see Append ix A for details), i .e . a system having only a zero vector at the 

right-hand side. 

M p = 0 (4.1) 

M is a measurement matr ix containing coefficients of equations generated by correspon­

dences between 3D entities and their image counterparts. Each of the n correspondences 

gives rise to a number of independent linear equations (usually 2), and thus to the same 

number of rows of M . The number of columns of M equals d, which is the number of 

entries contained in P. The size of M is thus 2n x d. E q . (4.1) is then solved for the 

d-vector p = vec(P). 

A s mentioned in Section 2.6, E q . (4.1) holds only in a noise-free case. If a noise is 

present i n the measurements, an inconsistent system is obtained: 

M p = e . (4.2) 

On ly an approximate solution p' may be found through minimiza t ion of a 2n-vector of 

measurement residuals e in a least-squares sense s. t. ||p'|| = 1. 

Once the system of linear equations given by E q . (4.2) is solved, the estimate P ' of 

the projection matr ix P can be recovered from the d-vector p'. 

Extraction of Pose Parameters 

The estimate P ' of a projection matr ix P obtained as a solution of the system (4.2) does 

not satisfy the constraints imposed on P. In fact, a projection matr ix P has only 6 D o F 

- the 6 camera pose parameters T\, T2, T$, A, B, F. It has, however, more entries: The 

3 x 4 point projection matr ix 

R - R T (4.3) 

has 12 entries and the 3 x 6 line projection matr ix 

R R [ - T ] : 
(4.4) 
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has 18 entries. Th is means that the projection matrices have 6 and 12 independent linear 

constraints, respectively. 

The first six constraints are imposed by the rotation matr ix R that must satisfy the 

orthonormality constraints (unit-norm and mutual ly orthogonal rows). The other six 

constraints in the case of P are imposed by the skew-symmetric matr ix [ - T ] x (three 

zeros on the main diagonal and antisymmetric off-diagonal elements). 

In order to extract the pose parameters, the scale of an estimate P' of a projection 

matr ix P has to be corrected first, since p' is usually of unit length as a minimizer of e 

in E q . (4.2). The correct scale of P' can only be determined from the part which does 

not contain the translation T . In both cases of P (4.3) and P (4.4), it is the left 3 x 3 

submatrix - let us denote it P[ - an estimate of a rotation mat r ix R. A method of scale 

correction is recommended based on the fact that a l l three singular values of a proper 

rotation mat r ix should be 1. See A lgo r i t hm 1. 

Algor i thm 1: Scale correction of a projection matr ix . 

Input: A n estimate P' of a projection matr ix , possibly wrongly scaled and without 

fulfilled constraints. 

1. P i <- left 3 x 3 submatrix of P' 
2. U Z V T <- S V D ( P i ) 
3. s <— l /mean(d iag(Z) ) 

Output: sP'. 

Alternatively, the scale can also be corrected so that d e t ( s P i ) = 1, but A lgo r i t hm 1 

proved to be more robust i n practice. 

Further steps in the extraction of pose parameters differ in each method, they are 

thus described separately i n the following sections. 

4.3 DLT-Lines 

D L T - L i n e s is the method by Hart ley and Zisserman [30, p. 180]. In the following text, 

the method is put into context using the unifying framework of the previous section. 

D L T - L i n e s exploits the fact that a 3D point X ly ing on a 3D line L projects such that its 

projection x = P X must also lie on the projected line: l T x = 0, see Figure 4.1. Pu t t i ng 

this together yields the constraint equation 

1 T P X = 0 . (4.5) 
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The pose parameters are encoded in the 3 x 4 point projection matr ix P, see E q . (2.10). 

Since P has 12 entries, at least 6 lines are required to fully determine the system, each 

line w i th 2 or more points on it. 

Figure 4.1: A point X ly ing on a 3D line projects s. t. its projection must lie on the 
image line 1 - a projection of the 3D line. 

Prenormalization 

The known quantities of E q . (4.5), i .e . the coordinates of 3D points and 2D lines, need 

to be prenormalized. In the case of the DLT-based pose estimation from points [29], 

Hart ley suggests to translate and scale both 3D and 2D points so that their centroid is at 

the origin and their average distance from the origin equals to \ /3 and \ / 2 , respectively. 

B y exploit ing the principle of duali ty [15], it is suggested to treat coordinates of 

2D lines as homogeneous coordinates of 2D points, and then to follow Hart ley in the 

prenormalization procedure - i . e. to apply translation to the origin and then anisotropic 

scaling. 

Linear Estimation of the Point Projection matrix 

The point projection matr ix P and its estimate P' are 3 x 4 , so the corresponding measure­

ment matr ix M is n x 12, where n is the number of point-line correspondences X j •<->• lj, 
(i = 1 . . . n, n > 12). M is constructed as 

M ( i > : ) = x T ® l 7 " , (4.6) 

where M(i, o denotes the i - th row of M in the M a t l a b notation. See Append ix A . 3 for a 

derivation of E q . (4.6). The 3D points X j must be located on at least 6 different lines. 
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Extraction of Pose Parameters 

Firs t , the scale of P' is corrected using A l g o r i t h m 1, yielding sP'. Then , the left 3 x 3 

submatrix of sP' is taken as the estimate R' of a rotation matr ix . A nearest rotation 

matr ix R is found in the sense of the Frobenius norm using A lgo r i t hm 2. 

Algor i thm 2: Orthogonalization of a 3 x 3 matr ix . 

Input: A 3 x 3 estimate R' of a rotation matr ix R. 

1. U Z V T <- S V D ( R ' ) 

2. d ^ d e t ( U V T ) 

3. R ^ d U V T 

Output: R. 

Please, note that Algor i thms 1 and 2 can be combined and executed at once. 

The remaining pose parameter to recover is the translation vector T , which is encoded 

in the fourth column P 4 of P', see E q . (2.10). It is recovered as T = R T s p 4 , completing 

the extraction of pose parameters. 

4.4 DLT-Plucker-Lines 

DLT-P l i i cke r -L ines is a novel method, which was published i n [II]. It exploits the linear 

projection of 3D lines parameterized using Pl i icker coordinates onto the image plane, as 

described i n Section 2.3. A benefit of this method is higher accuracy of camera orientation 

estimates compared to D L T - L i n e s . 

The formation of a 2D line 1 as a projection of a 3D line L is defined by the constraint 

equation (2.14) 

1 » P L , (4.7) 

as i l lustrated i n Figure 4.2. The pose parameters are encoded in the 3 x 6 line projection 

matr ix P, see E q . (2.13). Since P has 18 entries, at least 9 lines are required to fully 

determine the system. 

Prenormalization 

The known quantities of E q . (4.7) need to be prenormalized, i . e. the Pli icker coordinates 

of 3D lines L , and the coordinates of 2D lines 1. Since the homogeneous Pl i icker coor­

dinates of a 3D line L cannot be simply treated as homogeneous coordinates of a 5D 

point (because of the bilinear constraint, see Section 2.3), the following prenormalization 

is suggested. 
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R ,T 

Figure 4.2: A 3D line L parameterized using Pl i icker coordinates is denned by a normal 
U of its interpretation plane and by its direction vector V . Its projection is denoted 1. 

Translation and scaling is applied in this case as well. However, bo th translation and 

scaling affect only the U part of each L , and not the V part. Therefore, the V parts are 

adjusted first by mul t ip ly ing each L by a nonzero scale factor so that | | V | | = a/3. Then, 

translation is applied to minimize the average magnitude of U . Since | | U | | decreases 

wi th the distance of L from the origin, it is feasible to translate the lines so that the 

sum of squared distances from the origin is minimized. Th i s can be efficiently computed 

using the Generalized Weiszfeld algorithm [2]. Final ly , anisotropic scaling is applied so 

that the average magnitude of a l l U parts matches the average magnitude of al l V parts. 

B o t h translation and scaling of lines is achieved by premult iplying them by a 6 x 6 line 

similari ty matr ix [7]. The procedure is summarized in A lgo r i t hm 3. 

Prenormalizat ion of 2D lines can be carried out in the same way as i n the case of the 

D L T - L i n e s method, see Section 4.3. 

Linear Estimation of the Line Projection Matr ix 

The line projection matr ix P and its estimate P' are 3 x 6, so the corresponding mea­

surement matr ix M has 18 columns. The number of its rows depends on m, the number 

of line-line correspondences Lj «-> lj, (j = 1 . . . m, m > 9). B y exploit ing E q . (4.7), each 

correspondence generates three rows of M (Mat lab notat ion is used to index the matr ix 

elements): 

M(3j-2:3j, :) = L j ® [LJ X . (4.8) 

The line measurement matr ix M is thus 3m x 18. Note that only two of the three rows 
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Algor i thm 3: Prenormalizat ion of 3D lines parameterized by Pli icker coordinates. 
Note: See Section 2.1 for the definition of function meani 0 i ( . ) . 

Input: A set of m 3D lines {Lj}, j = 1 . . . m. 

1. For al l lines do: L j 
V.; 3 

2. T <(— Generalized_Weiszfeld_Algorithm({Lj}) 

I [ - T ] X
 1 

3. For al l lines do: L j 
0 I 

m e a i i | 0 | ( { V j } ) m e a n | 0 | ( { V j } ) 
4- <->X < 777 T7 > ' m e a n | 0 | ( { L i 5 i } ) 

5. For al l lines do: L,- = 

m e a n | 0 | ( { L i i 2 } ) 

SY 0 
Sz 

Sz 

< Aftab et al . [2] 

< translation 

m e a n | 0 | ( { V j » 

m e a n | 0 | ( { L i i 3 } ) 

< scaling 
0 I 

Output: A set of m prenormalized 3D lines {Lj}, j = 1 . . . m. 

of M defined by E q . (4.8) are needed for each line-line correspondence, because they 

are linearly dependent. M w i l l be only 2m x 18 i n this case. See Append ix A . l for a 

derivation of E q . (4.8). 

Extraction of Pose Parameters 

Firs t , the scale of P ' is corrected using A l g o r i t h m 1, yielding sP ' . Then, the camera pose 

parameters are extracted from the right 3 x 3 submatrix of sP ' , which is an estimate of a 

skew-symmetric matr ix premult ipl ied by a rotation matr ix (i.e. R [ - T ] x , see E q . (2.13)). 

Since sP' has the structure of the essential mat r ix [41], the algori thm of Tsai and Huang 

[63] is proposed to decompose sP ' , as outlined in A lgo r i t hm 4. Th is completes the 

extraction of pose parameters. 

The variable q = (£1,1 + S2,2)/2 i n A lgo r i t hm 4 is an average of the first two singular 

values of sP'2 to approximate the singular values of a properly constrained essential 

matr ix, which should be (q,q,0). The ± 1 term in Step 4 of A lgo r i t hm 4 denotes either 

+1 or -1 which has to be put on the diagonal so that det(PvA) = det(Rs) = 1-

Alternat ive ways of extracting the camera pose parameters from sP' exist, e. g. com-
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puting the closest rotation matr ix R to the left 3 x 3 submatrix of sP^ and then computing 

[ T ] X = - R T s P 2 . However, our experiments showed that the alternative ways are less ro­

bust to image noise. Therefore, the solution described in A lgo r i t hm 4 was chosen. 

Algor i thm 4: Ex t rac t ion of pose parameters from the estimate P ' of a line projection 
matr ix, inspired by [63]. 

Input: A n estimate P ' of a line projection matr ix P. 

Input: Corrective scale factor s. 

1. P' 2 <— right 3 x 3 submatrix of P ' 

2. U Z V T <- S V D ( s P 2 ) 

0 1 0 0 - 1 0 

- 1 0 0 , w <- 1 0 0 

0 0 0 0 0 1 

q <- ( Z i , i + Z 2 j 2 ) / 2 

4. Compute 2 candidate solutions (A , B ) : 

R A <- UVV d i ag ( l 1 ± 1 ) V T , [ T ] X A <- q\IZ V T 

R B <- U W T d i a g ( l 1 ± 1 ) V T , [ T ] X B <- g V Z T V T 

5. Accept the physically plausible solution, so that the scene lies in front of the camera. 

R <- R A , T < - T A or 

R <- R B , T «— T b • 

Output: R, T . 

4.5 DLT-Combined-Lines 

DLT-Combined-L ines is a novel method published i n [I]. It is a combination of D L T -

Lines and DLT-P l i i cke r -L ines methods, exploit ing the redundant representation of 3D 

structure in the form of both 3D points and 3D lines, see Figure 4.3. The 2D structure is 

represented by 2D lines. The pr imary benefit of the method is a higher accuracy of the 

camera pose estimates and smaller reprojection error, the secondary benefit is the lower 

number of required lines. 

The central idea of the method is to merge two systems of linear equations, which 

share some unknowns, into one system. The unknowns are entries of the point projection 

matr ix P used i n D L T - L i n e s and the line projection matr ix P used in DLT-P l i i cke r -L ines . 

The two systems defined by E q . (4.5) and (4.7) can be merged so that the set of unknowns 
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R,T 

Figure 4.3: A 3D line L is parameterized by both Pl i icker coordinates of the line (i. e. 
the normal U of its interpretation plane and its direction vector V ) and a point X lying 
on the line. L may be parameterized by many such points. Project ion of the point X 
must lie on the projection 1 of the line L . 

of the resulting system is formed by the union of unknowns of both systems. It can be 

observed that the shared unknowns reside in the left 3 x 3 submatrices of P and P. If 

unknowns of the resulting system are arranged in a feasible manner, a new 3 x 7 matr ix 

P can be constructed, which is a "union" of P and P: 

R -RT R[-T] : (4.9) 
P « [ R -RT ] | „ 

P « [ R R[-T] x] J 

The mat r ix is called a combined projection matrix, because it allows to write the projec­

t ion equations for point-line, line-line, and even point-point correspondences, as follows: 

1 TP X T 0 0 0 0 

1 w P ( U T 0 V T 

x X T 0 0 0 

(4.10) 

(4.11) 

(4.12) 

These equations can then be used to estimate P l inearly from the correspondences. 

A secondary benefit of the method is that it requires only 5 lines (and 10 points on 

them) - less then DLT-P l i i cke r -L ines and even less then D L T - L i n e s . To explain why, 

the following matrices are defined first: the left-most 3 x 3 submatrix of P is denoted 

P i , the middle 3 x 1 submatrix (column vector) is denoted P 2 , and the right-most 3 x 3 

submatrix is denoted P3. 

R -RT R[-T] : (4.13) 
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P has 21 entries, but since it encodes the camera pose, it has only 6 D o F . This means 

it has 14 nonlinear constraints (homogeneity of the matr ix accounts for the 1 remaining 

D o F ) . Ignoring the nonlinear constraints, which are not taken into account during the 

least-squares estimation, P has 20 D o F . Each point-line correspondence generates 1 inde­

pendent linear equation (4.10) and each line-line correspondence generates 2 independent 

linear equations (4.11). Since P 2 is determined only by point-line correspondences and 

since it has 3 D o F , at least 3 3D points are required to fully determine i t . A n analogy 

holds for P3: since it is determined only by line-line correspondences and since it has 9 

D o F , at least 5 (in theory 4V2) 3D lines are required to fully determine i t . The required 

number of m line-line correspondences and n point-line correspondences is thus m = 9, 

77 = 3, or m = 5, n = 10, or something i n between satisfying the inequality (n + 2m) > 20, 

see Table 4.1. In such min imal cases, the points must be distributed equally among the 

lines, i . e. each point or a pair of points must lie on a different line; otherwise, the system 

of equations would be under-determined. 

T a b l e 4.1: M i n i m a l numbers of line-line and point-line correspondences required for the 
DLT-Combined-L ines method. 

point-line 7 7 = 3 4 5 6 7 8 9 10 

line-line 777 = 9 8 8 7 7 6 6 5 

Let us proceed wi th the description of the algorithm. Please notice that the prenor-

malizat ion procedure w i l l be unusually described after the definition of a measurement 

matr ix, because prenormalization is strongly motivated by its structure. 

Linear Estimation of the Combined Projection Matr ix 

The combined projection mat r ix P and its estimate P are 3 x 7, so the combined mea­

surement matr ix M has 21 columns. Number of its rows depends on 77 - the number of 

point-line correspondences X j l j , (i = 1. . .77), and on 777 - the number of line-line 

correspondences L j «-> lj, (j = 77 + 1 . . . 77 + 777). The min imal values of 77 and 777 depend 

on each other and are given in Table 4.1. Each point-line correspondence (4.10) leads 

to one row of M , and each line-line correspondence (4.11) gives rise to three rows of M 

(Mat lab notation is used to index the matr ix elements): 

M(i, :) = ( X , T 0 0 0) ® lj , (4.14) 

M , , ; „ , , , = ( U j 0 V j ) ® [ L J X . (4.15) 
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The combined measurement matr ix M is thus (n + 3m) x 21. Note that only two of 

the three rows of M defined by E q . (4.15) are needed for each line-line correspondence, 

because they are linearly dependent. Our experiments showed that using all three rows 

brings no advantage, so only two of them are used in practice. In this case, M is only 

(n + 2m) x 21. See Append ix A for derivations of E q . (4.14) and (4.15). 

The combined measurement matr ix M can also be constructed by stacking and align­

ing the point measurement mat r ix M and the line measurement matr ix M : 

M 
M „ x l 2 0 n X 9 

M ( : , 1:9) 0 3 m X 3 1 0 : 1 8 ) 

(4.16) 

Remark 4.1: It is advisable to scale both M and M so that the sums of squares of their 

entries are equal. (If they were not, it would negatively affect the scales of those parts of 

the solution p = vec(P), which are determined exclusively by M or M , but not by both of 

them. These are the entries 10-12 and 13-21 of p , which contain estimates of translation. 

See the middle and right part of P in E q . (4.13).) 

Remark 4.2: The method can easily be extended to point-point correspondences (4.12) 

by adding extra rows to M . Each of the p point-point correspondences x^, (k = 

n + m+ l . . . n + m + p) generates three rows 

M ( 3 f c _ n _ m _ 2 . 3fc-n-m, :) = (X-J 0 0 0 ) ® [x;] x , (4.17) 

two of which are linearly independent. See Append ix A . 2 for a derivation of E q . (4.17). 

Prenormalization 

Prenormalizat ion of 2D lines is rather complicated in this case. The problem is that a 

2D line 1 is i n the direct form and on the opposite side than the line projection matr ix 

P i n E q . (4.11), and it is i n the transposed form and on the same side like the point 

projection matr ix P i n E q . (4.10). Thus, when undoing the effect of a prenormalizing 

2D transformation t, the inverse transformation is t _ 1 for P, and t T for P. Since both 

P and P are parts of P, both inverse transformations must be identical ( t T = t" 1). 
However, this only holds for a 2D rotation, which is practically useless as a prenormalizing 

transformation. It is thus suggested not to prenormalize 2D lines at a l l . 
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Prenormalizat ion of 3D points and 3D lines is also nontr ivial , because transformations 

of 3D space affect the coordinates of points and lines differently. However, it can be 

achieved by pursuing the goal from the beginning of Section 4.2: to center the data 

around the origin by translation, and to scale them s. t. an average coordinate has the 

absolute value of 1. 

Please note that translation and scaling affects only the U part of a 3D line L , and 

only the (X\ X2 Xz)T part of a 3D point X . Therefore, (i) the unaffected parts of L 

and X (i. e. V and X4) must be adjusted beforehand: Each 3D line and each 3D point is 

normalized by mul t ip l icat ion by a nonzero scale factor, so that | | V | | = \ / 3 , and X4 = 1. 

Note that this adjustment does not change the spatial properties of 3D points/l ines. 

Then, (ii) translation is applied to center the 3D points around the o r ig in 1 . A l though 

the translation is intui t ively correct (it results i n zero mean of 3D points), it is not 

opt imal in terms of entries of the measurement matr ix (joint zero mean of (X\ X2 X^)T 

and U ) . Therefore, (iii) another translation is applied to achieve a joint zero mean of 

all (Xi X2 Xz)T and U . The translation can be easily computed in closed form using 

Algo r i t hm 6. Final ly , (iv) anisotropic scaling is applied so that the average magnitudes 

of al l X\ and L\, X2 and L2, X3 and L3, and X4 and V are equal, i . e. 

mean | 0 | ({JQ 5 i}) + m e a n | 0 | ( { L , 5 i } ) = 

= m e a n | 0 | ( { X i i 2 } ) + m e a n | 0 | ( { L i i 2 } ) = 
(4.18J 

= m e a n | 0 | ( { X i i 3 } ) + m e a n | 0 | ( { L i j 3 } ) = 

= mean | 0 | ( {JQ i 4 }) + m e a n | 0 | ( { V , } ) . 

Th is ensures that also the corresponding blocks of the combined measurement matr ix 

M w i l l have equal average magnitude. The very last step of prenormalization (v) is not 

applied to the input primitives, but to the measurement matr ix after its construction. Its 

point- and line-related parts M and M should be scaled as stated i n Remark 4.1 above. 

The whole prenormalization is summarized in A lgo r i t hm 5. 

Extraction of Pose Parameters 

The estimates of a rotation matr ix R and a translation vector T are mult iple in the 

combined projection mat r ix P (4.13). Moreover, the left-most R is determined by twice 

as many equations. Th is can be exploited to estimate the camera pose more robustly. 

1 Another possible translation is to center the 3D lines using the Generalized Weiszfeld algorithm [2] 
as it is done in Algori thm 3. However, our experiments showed that the two possible translations yield 
nearly identical robustness of the method. It is thus suggested to translate the 3D structure to the 
centroid of points, because its computation is cheaper. 
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Algor i thm 5: Prenormalizat ion of 3D points and 3D lines in DLT-Combined-L ines . 
Note: See Section 2.1 for the definition of function mean 0 ( . ) . 

Input: A set of re 3D points {Xj}, i = 1 . . . re. 
Input: A set of m 3D lines {Lj}, j = re + 1 . . . re + m. 

1. For a l l points X j and lines L j do: 

x x 

X 

V3_ 

IV,- II 

2. T i « - m e a n ( { X ( 1 : 3 ) 

3. For al l points X j and lines L j do: 

X ; 
I - T i 

1 

X , 
I ["Tib 

0 I 

< centroid of points 

< first translation 

4. T 2 <- a r g m i n (mean 0 ( { X ( 1 : 3 ) { ) - T} U {Uj - T x V j j )j < use Algo r i t hm 6 

5. For all points X j and lines L j do: 

I - T 2 X , = 

0 1 

X ; 
I [-T 2] : 

0 I 

< second translation 

6. Sx 

7. For 

X , -

mean o|({*j,4}) + mean o|({V,}) 

mean o | ( {* i , l » + mean o | ( { ^ , l } ) 

mean o|({A,,}) + mean o|({V,}) 

mean o|({*i,2}) + mean o | ( { ^ , 2 } ) 

mean| o | ( { X M } ) + mean| o K i v , } ) 

mean| o | ( {* i ,3» + mean| o\({Lj,3}) 

all points X j and lines L j do: 

sY 0 
Sz X ; 

Sx 
SY 

0 

< scaling 

Output: A set of n prenormalized 3D points {Xj}, z = 1 . . . re. 
Output: A set of m prenormalized 3D lines {Lj}, j = re + 1 . . . re + m. 
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Algor i thm 6: F ind ing a translation T 2 of 3D points {Xj} and 3D lines {L?} s. t. the 
mean of {X( 1 : 3 j j)} U {U?} w i l l be zero after the translation. 

Input: A set of n 3D points {Xj}, i = 1 . . . n. 
Input: A set of m 3D lines {L?}, j = n + 1 . . . n + m. 

1. a <— n + 2m , 

J i j i j i 

i j j 

2. T x 

a2b + be2 — acg + adf + c e / + deg 
a(a2 + e 2 + f2 + ff2) 

a 2 c + c / 2 + 065 — ode + be/ + a!f g 

a ( a 2 + e 2 + f2 + g 2 ) 

a 2 d + i i g 2 — abf + ace + 6eg + cfg 
a ( a 2 + e 2 + f2 + g 2 ) 

Output: Translat ion T 2 = ( T x T y TZ)T. 

In the following text, the definitions of submatrices P i , P 2 , and P3 from E q . (4.13) are 

used. 

Firs t , the scale of the estimated combined projection matr ix P is corrected using 

Algo r i t hm 1, yielding sP . The first estimate of R is in the direct form in sP^, from 

which it can be extracted using A lgo r i t hm 2, yielding R i . The first estimate of T is in 

s P ' 2 , premult ipl ied by -R. It can be recovered as T 2 = -R7-sP' 2 . The second estimates of 

R and T are in the form of an essential matr ix in sP'3, from which they can be extracted 

using A lgo r i t hm 4, yielding R3 and T 3 . 

Now, the question is how to combine R i , R3, and T 2 , T 3 . Our experiments showed 

that R i is usually more accurate than R3, probably because it is determined by twice 

as many equations (generated by both line-line and point-line correspondences). The 

experiments also showed that T 2 is usually more accurate than T3. Th is is probably 

because P ' 2 has no redundant D o F , contrary to P 3 , which has 3 redundant D o F . However, 

the estimates can be combined so that the result is even more accurate. Since the error 

vectors of T 2 and T 3 tend to have opposite directions, a suitable interpolation between 
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them can produce more accurate posit ion estimate 

T = fc.T2 + ( l - k) - T 3 . (4.19) 

The value of k should be between 0 and 1. Based on grid search, an opt imal value of 0.7 

has been found (the error function has a parabolic shape), see Figure 4.4. 

Regarding the rotation estimates, the grid search discovered R i is indeed more ac­

curate than R3. However, R i is not fully 'compatible ' w i th T in terms of reprojection 

error 2 . Interpolating between R i and R3 yields an orientation R 'compatible ' wi th T : 

R = R i - e x p ( A ; - l o g ( R 7 R 3 ) ) • (4.20) 

Here, 'exp' and ' log' denote matr ix exponential and mat r ix logari thm, respectively. The 

whole pose extraction procedure is summarized in A lgo r i t hm 7. 

Algor i thm 7: Ex t rac t ion of pose parameters from the estimate P of a combined pro­
jection matr ix . 

Input: A n estimate P of a line projection matr ix P 
Input: Corrective scale factor s. 

1. [ P i P ' 2 P 3 ] ^ P' 

2. Ext rac t R i from P x using A l g o r i t h m 2. 

3. T 2 = -RjsP'2 

4. Ext rac t R3, T 3 from P 3 using A lgo r i t hm 4. 

5. R = R i -exp(A:-log(R7R3)) 

T = k • T 2 + (1 - k) • T 3 

Output: R, T . 

< divide into submatrices 

< interpolate 

4.6 Algebraic Outlier Rejection 

To deal w i th outliers, the DLT-based methods can be equipped wi th an Algebraic Out­

lier Rejection module. The A O R scheme, developed originally for a P n P method, was 

described in Section 3.4. However, our experiments showed that its application to D L T -

based L P n L methods requires a different setting. 

The difference is in the strategy for choosing the threshold e m a x . The authors [22] 

recommend e m a x = Q25(e±j • • •, £n) which is the algebraic error of the correspondence 

2 A s an example, imagine a camera located left to its ground truth position and oriented even more 
left. 
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Figure 4.4: Search for an opt imal value of the interpolation parameter k, used in 
E q . (4.19) and (4.20). Errors in estimated camera pose for the DLT-Combined-L ines 
method as a function of k. A l l vertical axes are logarithmic, the error values are averaged 
over 1000 random trials. Detai led setup of the experiments can be found i n Section 5.1. 
The opt imal value of k is approximately 0.7. 
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that is at the boundary of the 25th percentile. However, our experiments showed that 

the strategy is not robust enough for L P n L methods. A slightly different strategy is thus 

suggested wi th a good trade-off between robustness and the number of iterations: A t 

the beginning, line correspondences wi th error up to the 90th percentile are accepted. 

In further iterations, the percentile number is progressively decreased unt i l it reaches 25. 

The strategy is thus e m a x = Qp(e i , • • •, £n), where Q p ( . ) denotes the p-th percentile and 

p decreases following the sequence 90, 80, . . . , 30. Then, it remains constant 25 unt i l 

error of the solution stops decreasing. Th is strategy usually leads to approximately 10 

iterations. 

Remark 4.3: It is important not to prenormalize the data before using A O R because 

it w i l l impede the identification of outliers. Prenormalizat ion of inliers should be done 

just before the last iteration. 

Compared to R A N S A C , the greatest benefit of this approach is a low runtime inde­

pendent of the fraction of outliers. O n the other hand, the break-down point is roughly 

between 40 % and 70 % of outliers, depending on the underlying L P n L method, whereas 

R A N S A C , in theory, can handle any fraction of outliers. 

4.7 Summary 

Although the three above described DLT-based P n L methods share a common basis, they 

differ i n certain details. Thei r properties are summarized i n Table 4.2. A l l three methods 

work exclusively wi th lines in the image space. In the scene space, however, D L T - L i n e s 

works wi th points, DLT-Plucker -L ines works wi th lines, and DLT-Combined-L ines works 

wi th both points and lines. The question is whether ut i l iza t ion of 3D lines, i.e. line-line 

correspondences, does improve the accuracy and robustness of camera pose estimation 

while preserving the efficiency of DLT-based methods. 

The most important difference is i n the projection matrices. The line projection 

matr ix P of DLT-P lucke r -L ines encodes the rotation mat r ix R in a form of an essential 

matr ix having only 3 redundant D o F . This is a promise of a more accurate estimation of 

camera orientation compared to D L T - L i n e s , where R is encoded in a direct form having 6 

redundant D o F . The same holds for the combined projection matr ix P of D L T - C o m b i n e d -

Lines. Moreover, P contains mult iple estimates of both R and T . A suitable combination 

of the estimates may further increase the accuracy of the final pose. 

Prenormalizat ion of the inputs of the methods pursues a common goal of having the 
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T a b l e 4.2: Comparison of the DLT-based L P n L methods. 

D L T - L i n e s DLT-P l i i cke r -L ines DLT-Combined-Lines 

2D (image) 2D lines 

prenormalization translation (in dual space) 

Scaling (in dual space) 

2 

3D (scene) 

prenormalization 

3D points 

translation 

scaling 

2D lines 

translation (in dual space) 

Scaling (in dual space) 

3D lines 

mult ipl icat ion by a constant 

translation 

scaling 

2D lines 

3D points + 3D lines 

mult ipl icat ion by a constant 

translation 

translation 

scaling 

M i n i m u m of lines 

specification 12 points, 2 on each line 

5 lines + 10 points 

9 lines + 3 points 

m + n, s. t. (2m + n) > 20 

Project ion matr ix R -RT 
3x4 

R R[-T] ; 

3x6 
R -RT R[-T] ; 

3x7 

Constraint equations 1 T P X = 0 1 « P L 
1 T P ( X T o o o ) T = o 

1 « P ( U T o v T ) T 



data centered around the origin wi th a unit average absolute value of the coordinates. 

Th is goal is motivated by a good condit ion of the resulting linear system. Generally, it 

can be achieved by applying translation and scaling to the inputs. In the case of D L T -

Combined-Lines, it is more complicated due to different effects of the transformations on 

coordinates of points and lines i n the 3D space. Prenormalizat ion of image lines is futile 

in this case as it is restricted to rotations only. 

In principle, the methods could also be extended to estimate the pose of an uncal-

ibrated camera, i . e. to estimate both extrinsic and intrinsic parameters of a camera. 

The corresponding projection matr ix P, P or P would be premult ipl ied by the upper-

triangular 3 x 3 camera calibration matr ix K i n this case, so the number of unknowns of 

the resulting linear system and also the number of D o F of the projection matr ix would 

grow from 6 up to 11 (depending on the number of intrinsic parameters). According 

to prel iminary experiments, robustness of a l l three methods drops considerably in this 

case, making them useless for practical applications. A better choice would be a method 

tailored specifiacaly for estimation of parameters of an uncalibrated camera in this case, 

such as [10]. 

The min imum of required lines is conditioned by the size and structure of the esti­

mated projection matr ix . It ranges from 9 lines for DLT-P lucke r -L ines over 6 lines for 

D L T - L i n e s to only 5 lines for DLT-Combined-L ines . 
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Chapter 5 

Experimental Evaluation and Appli­
cations 

The goal of this thesis was to improve the accuracy and robustness of the state-of-the-art 

in pose estimation from lines by designing a new DLT-based method ut i l iz ing line-line 

correspondences. The method should also be fast comparably to other L P n L methods. 

Two new methods were proposed in the previous chapter: DLT-P l i i cke r -L ines and D L T -

Combined-Lines. 

To verify that the goal was achieved, the newly proposed methods were tested using 

both synthetic and real data and their performance was compared to the state-of-the-art 

methods. The real data comprised bui lding exteriors, an indoor corridor and small-scale 

objects on a table. The tested criteria were following. 

1. The pr imary criterion of experiments was accuracy because it arguably is the pr i ­

mary objective of pose estimation. It was evaluated using both synthetic lines in 

Section 5.1 and real data i n Section 5.4. 

2. A secondary objective, although equally important from a practical point of view, 

is robustness to image noise, because noise is always present in measurements in 

practice. Accordingly, robustness to image noise was evaluated using synthetic lines 

in Section 5.1. 

3. Since the proposed methods were also required to be fast comparably to other 

methods, their speed was measured using synthetic lines in Section 5.1. 

Besides the main criteria, the following aspects were also investigated to have a more 

comprehensive knowledge about behavior of the proposed methods. 
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• Because methods for pose estimation are known to be prone to singular or quasi-

singular configurations of 3D primitives in general, robustness to quasi-singular line 

configurations was examined in Section 5.2. 

• F rom an application point of view, identification and rejection of mismatched line 

correspondences (i. e. outliers) is a frequent scenario. Therefore, the methods were 

also tested for robustness and speed when plugged into an outlier rejection scheme 

or into a R A N S A C loop using synthetic lines in Section 5.3. 

• Lastly, the camera poses estimated by the methods were used as an ini t ia l izat ion for 

B A in Section 5.4 to see how the ini t ia l izat ion affects its convergence and runtime. 

The accuracy of pose estimates is expressed i n terms of position error and orienta­

t ion error of the camera and in terms of reprojection error of the lines. The three error 

measures should cover majori ty of applications for which pose estimation methods are 

used. For example, robot localizat ion requires small posit ion error, visual servoing re­

quires both small position and orientation error, whereas augmented reality applications 

or B A favour small reprojection error. The error measures are defined as follows: 

A T Position error is the distance | |T ' — T | | from the estimated posit ion T ' to the 

true posit ion T . 

A 6 Orientation error was calculated as follows. The difference between the true and 

estimated rotation matr ix ( R T R ' ) is converted to axis-angle representation ( E , 6 ) 

and the absolute value of the difference angle | 6 | is considered as the orientation 

error. 

A t t Reprojection error is an integral of squared distance between points on the image 

line segment and the projection of an infinite 3D line, averaged 1 over a l l individual 

lines. 

The proposed methods were evaluated and compared wi th state-of-the-art methods, 

which are listed below together w i th corresponding marks used throughout this chapter. 

• Ansar, the method by Ansar and Dani i l id is [5], implementation from [68]. 

• Mirzaei , the method by Mi rzae i and Roumeliotis [47]. 

• R P n L , the method by Zhang et al . [72]. 

1 Please note that Taylor and Kriegman [60] defined the reprojection error as a sum over all individual 
lines, see Eq . (3.8) on page 21. Such a definition makes the reprojection error dependent on the number 
of lines, which doesn't make comparison of different scenes very intuitive. For this reason, it was decided 
to define the total reprojection error as an average over all individual lines. 
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• A S P n L , the method by X u et al. [68]. 

• L P n L _ B a r _ L S , the method by X u et al . [68]. 

* L P n L _ B a r _ E N u l l , the method by X u et al. [68]. 

• D L T - L i n e s , the method by Hart ley and Zisserman [30, p. 180] described in Sec­

t ion 4.3, my implementation. 

T DLT-Pl i i cker-Lines , our method published in [II] and described i n Section 4.4. 

D L T - C o m b i n e d - L i n e s , our method published in [I] and described in Section 4.5. 

A l l of the methods were implemented in Ma t l ab . The implementations originate from 

the respective authors, i f not stated otherwise. 

5.1 Synthetic Lines 

Monte Car lo simulations wi th synthetic lines were performed under the following setup: 

at each t r ia l , m 3D line segments were generated by randomly placing n = 2m line 

endpoints inside a cube spanning 10 3 m which was centered at the origin of the world 

coordinate system. For the methods which work wi th 3D points, the line endpoints were 

used. A v i r tua l pinhole camera wi th image size of 640 x 480 pixels and focal length of 

800 pixels was placed randomly i n the distance of 25 m from the origin. The camera was 

then oriented so that it looked directly at the origin, having all 3D line segments in its 

field of view. The 3D line segments were projected onto the image plane. Coordinates 

of the 2D endpoints were then perturbed wi th independent and identically distributed 

Gaussian noise wi th standard deviation of a pixels. 1000 trials were carried out for each 

combination of the parameters m and a, where m = 3 - 10,000 lines and a = 1,2, 5, 10 

and 20 pixels. 

Accuracy and Robustness 

Accuracy of pose estimation and robustness to image noise of each method was evaluated 

by measuring the estimated and true camera pose while varying m and a s imilarly to [47]. 

The results showing accuracy of the methods and their robustness to image noise are 

depicted in Figure 5.1. For the sake of brevity, only noise levels of a = 2 and 10 pixels are 

shown. The complete distr ibution of errors is presented in Append ix B at the end of this 

thesis. Errors for each method are plotted from the min imal number of lines to 10,000 

lines (or less, i f the method runs too long or i f it has enormous memory requirements). In 
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(a) Median orientation error A 0 [°], a = 2 pixels (b) Median orientation error A 0 [°], a = 10 pixels 

3 4 5 6 7 8 9 10 2 5 50 100 200 500 lk 2k 5k 10k 3 4 5 6 7 8 9 1 0 2 5 50 100 200 500 l k 2k 5k 10k 
# lines # lines 

(c) Median position error AT [m], a = 2 pixels (d) Median position error AT [m], a = 10 pixels 

3 4 5 6 7 8 9 10 2 5 50 100 200 500 l k 2k 5k 10k 3 4 5 6 7 8 9 1 0 2 5 50 100 200 500 l k 2k 5k 10k 
# lines # lines 

(e) Median reprojection error An [ ], a = 2 pixels (f) Median reprojection error An [ ], a = 10 pixels 

10" 

10" 

10"' 

1 1 1 1 1 1 1— i — i — i — i — i — i — i — i — 

* 

3 4 5 6 7 8 9 10 2 5 50 100 200 500 lk 2k 5k 10k 3 4 5 6 7 8 9 1 0 2 5 50 100 200 500 l k 2k 5k 10k 
# lines # lines 

• Ansar #Mirzaei • RPnL • ASPnL • L P n L B a r L S * L P n L B a r E N u l l 
A DLT-Lines • DLT-Pliicker-Lines DLT-Combined-Lines 

Figure 5.1: Med ian orientation errors (top), position errors (middle) and reprojection 

errors (bottom) as a function of the number of lines for two levels of image noise (left: 

a = 2 pixels, right: a = 10 pixels). Each data point was computed from 1000 trials. 
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the following text, the method names are typeset in bold and they are often augmented 

wi th their plot marks to ease referencing into result charts. 

The results show high sensitivity to noise of Ansar^ . Even under slight image noise 

a = 2 pixels, the measured accuracy is poor. The other n o n - L P n L methods (Mirza-

ei* , R P n L 4 , A S P n L • ) outperform the L P n L methods for low number of lines (3 -

10), as expected. A S P n L is the most accurate among them. A n exception is the L P n L 

method L P n L _ B a r _ E N u l l * , accuracy of which is close to A S P n L . It even outperforms 

A S P n L in the case of strong image noise (a = 10 pixels), see Figure 5.1 (b, d, f). 

For high number of lines (100 - 10,000), the L P n L methods outperform the non-

L P n L ones. L P n L _ B a r _ E N u l l * and D L T - C o m b i n e d - L i n e s are significantly most 

accurate in both orientation and posit ion estimation, and they also yield the lowest 

reprojection error. W i t h increasing number of lines, accuracy of the L P n L methods 

further increases, while errors of the n o n - L P n L methods do not fall below a certain level. 

Th is gets more obvious wi th increasing levels on noise. Each of the L P n L methods also 

eventually reaches its l imi t , as it can bee seen i n Figure 5.1 (d, f). However, the accuracy 

l imits of n o n - L P n L methods lag behind the l imits of L P n L methods. Moreover, the 

n o n - L P n L methods often yield completely wrong pose estimates, as it can be seen i n the 

distr ibution of errors in Figures B . l - B.15 in Append ix B . 

D L T - L i n e s A and L P n L _ B a r _ L S * behave nearly identically, the latter being slightly 

more accurate. The only difference between the two is the use of barycentric coordinates, 

which is probably the cause of the slightly better results. However, D L T - L i n e s proves 

to be more accurate in posit ion estimation and reprojection under strong image noise. 

D L T - P l i i c k e r - L i n e s T keeps up wi th the two aforementioned methods for 25 and more 

lines. 

The best accuracy on many lines is achieved by the L P n L _ B a r _ E N u l l * and D L T -

Combined-Lines • methods, being the best i n a l l criteria. Whi l e they are comparable 

in orientation estimation, D L T - C o m b i n e d - L i n e s outperforms L P n L _ B a r _ E N u l l in 

estimation of camera posit ion and i n reprojection for many lines. The higher accuracy of 

D L T - C o m b i n e d - L i n e s is most apparent under strong image noise, see Figure 5.1 (d, 

f)-

The distributions of errors of the individual methods over a l l 1000 trials are provided 

in Figures B . l - B.15 in Append ix B . 

Speed 

Efficiency of each method was evaluated by measuring runtime on a desktop P C wi th a 

quad core Intel i5-661 3.33 G H z C P U and 10 G B of R A M . A s it can be seen i n Figure 5.2 
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Figure 5.2: Runtimes as a function of the number of lines, averaged over 1000 trials. 
Logar i thmic vertical axis. 

and Table 5.1, the only method wi th 0(m2) computat ional complexity i n the number 

of lines m is A n s a r K The space complexity of the used implementation is apparently 

also quadratic. It was not possible to execute the method already for 100 lines due to 

lack of computer memory. Other tested methods have 0(m) computat ional complexity. 

However, the runtimes differ substantially. It is apparent that the L P n L methods are 

significantly faster than the n o n - L P n L methods. 

R P n L ^ and A S P n L 4 , being related methods, are nearly equally fast. Runtimes of 

both methods rise steeply wi th increasing number of lines, reaching 630.2 ms on 1000 lines 

for A S P n L . The two methods were not evaluted for more lines. Runt ime of Mirzaei#, 

on the other hand, grows very slowly, spending 155.2 ms on 1000 lines. However, Mirzae i 

is slower than R P n L for m < 200 lines. Th is fact is caused by computat ion of a 120 x 120 

Macaulay matr ix in Mirzaei ' s method which has an effect of a constant t ime penalty. 

The L P n L methods are one to two orders of magnitude faster than the n o n - L P n L 

methods. The fastest two are D L T - L i n e s A and L P n L _ B a r _ L S * , spending about 

l m s on 10 lines, and not more than 3 ms on 1000 lines, see Table 5.1. Slightly slower are 

DLT-Plucker -L ines • , D L T - C o m b i n e d - L i n e s and L P n L _ B a r _ E N u l l spending 

about 3 - 5ms on 10 lines, and about 6 - 12ms on 1000 lines. The slowdown factor 

for DLT-P lucker -L ines is the prenormalization of 3D lines. Th is is also the case of 

D L T - C o m b i n e d - L i n e s , where a measurement matr ix of a double size must be addi­

t ionally decomposed compared to the competing methods, see E q . (4.16). Computat ion­

ally demanding part of L P n L _ B a r _ E N u l l is the effective nul l space solver carrying out 

Gauss-Newton opt imizat ion. 
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Table 5 .1 : Runtimes in milliseconds for varying number of lines, averaged over 1000 
trials. 

# lines 10 100 1000 10,000 

• Ansar 4.1 - - -

• Mirzae i 77.9 84.2 155.2 1097.2 

• R P n L 8.8 41.3 879.5 -

• A S P n L 8.7 29.5 630.2 -

* L P n L _ B a r _ L S 1.1 1.2 2.3 13.7 

* L P n L _ B a r _ E N u l l 5.2 5.3 6.7 19.5 

• D L T - L i n e s 1.0 1.2 2.7 20.5 

T DLT-P l i i cke r -L ines 3.0 3.6 8.2 68.9 

• DLT-Combined-L ines 3.7 4.6 12.1 109.8 

5.2 Quasi-Singular Line Configurations 

Methods for pose estimation are known to be prone to singular or quasi-singular config­

urations of 3D primitives, as stated in Chapter 3. Therefore, robustness of the methods 

to quasi-singular line configurations was also evaluated. The setup from Section 5.1 was 

used wi th the number of lines fixed to m = 200, and standard deviation of image noise 

fixed to a = 2 pixels. Three types of quasi-singular line configurations were tested: 

near-planar line distr ibution, near-concurrent line distr ibution, and l imi ted number of 

line directions. These cases are degenerate for the method of Ansar, thus it is not 

mentioned anymore in this section. 

Near-planar Line Distribution 

Lines were generated inside a bounding cuboid spanning 10 3 m , and the cuboid was 

progressively flattened unt i l it became a plane. The errors of the methods as a function 

of the cuboid's height (relative to its other dimensions) are depicted in Figure 5.3. Nearly 

all methods start to degrade their accuracy when flatness of the cuboid reaches a ratio 

of 1:10 and they perform noticeably worse at the ratio of 1:100. M i r z a e i * , al l three 

D L T - b a s e d methods (A, • , • ) and L P n L _ B a r _ L S * mostly stop working. R P n L 4 

and A S P n L • do work, but they often fail . The only working method is L P n L _ B a r -

_ E N u l l * . The full dis tr ibution of errors can be found in Figure B.16 i n Append ix B . 
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Orientation error A© [°] Position error AT [m] 

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.01 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.01 
relative height relative height 

Reprojection error Arc [ ] 

• Mirzaei 
* R P n L 
• ASPnL 
&LPnL_Bar_LS 
* L P n L B a r E N u l l 
ADLT-Lines 
• DLT-Pliicker-Lines 

DLT-Combined-Lines 

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.01 
relative height 

Figure 5.3: Robustness of the methods to near-planar line distr ibution. Med ian orien­
tat ion errors (top left), posit ion errors (top right) and reprojection errors (bottom left) 
as a function of the height of a bounding volume of 3D lines. The height is relative to 
the other dimensions of the volume. 
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Near-Concurrent Line Distribution 

Lines were generated randomly, but an increasing number of lines was forced to intersect 

at a single random point inside the cube unt i l al l lines were concurrent. Mirzae i 

R P n L # , A S P n L • and L P n L _ B a r _ L S * degrade their accuracy progressively, al­

though A S P n L and L P n L _ B a r _ L S are reasonably accurate even i n the full concurrent 

case, see Figure 5.4. The D L T - b a s e d methods (• , • , ) work without any degradation 

as long as 3 and more lines are non-concurrent. L P n L _ B a r _ E N u l l * works without 

degradation also in the full concurrent case. The full dis tr ibution of errors in the near-

concurrent case can be found in Figure B.17 i n Append ix B. 

Orientation error A 0 [°] Position error AT [m] 

180 160 140 120 100 80 60 40 20 2 1 0 180 160 140 120 100 80 60 40 20 2 1 0 
# non-concurrent lines out of 200 # non-concurrent lines out of 200 

Reprojection error Arc [ ] 

• Mirzaei 
f RPnL 
• ASPnL 
• L P n L B a r L S 
* L P n L B a r E N u l l 
• DLT-Lines 
• DLT-Pliicker-Lines 

DLT-Combined-Lines 

180 160 140 120 100 80 60 40 20 2 1 0 
# non-concurrent lines out of 200 

Figure 5.4: Robustness of the methods to near-concurrent line distr ibution. Med ian 
orientation errors (top left), posit ion errors (top right) and reprojection errors (bottom 
left) as a function of the number of lines which are not concurrent out of total m = 200 
lines. 
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Limited Number of Line Directions 

Lines were generated randomly, but they were forced to have a certain direction. Three 

different scenarios were tested: 

• 2 random directions, 

• 3 random directions, and 

• 3 orthogonal directions. 

M i r z a e i • does not work in either case, see Figure 5.5. R P n L # and A S P n L # do 

work, but they are susceptible to failure. D L T - P 1 iicker-Lines T and D L T - C o m b i n e d -

Lines do not work in the case of 2 directions, they work unreliably in the case of 3 

directions, and they start working flawlessly if the 3 directions are mutual ly orthogonal. 

D L T - L i n e s A , L P n L B a r L S * and L P n L B a r E N u l l * work in al l three cases. 

2 random line directions 3 random line directions 3 orthogonal line directions 

Figure 5.5: The distr ibution of orientation errors (top), posit ion errors (middle) and 
reprojection errors (bottom) for the case wi th 2 random line directions (left), 3 random 
line directions (center) and 3 orthogonal line directions (right). Each distr ibution over 
1000 trials is depicted by a box, where median is depicted by a black dot, the interquartile 
range (IQR) by the box body, min ima and max ima in the interval of 10 x I Q R by whiskers, 
and outliers by isolated dots. 
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Behavior of the DLT-based methods in quasi-singular cases is similar. The proper­

ties of D L T - C o m b i n e d - L i n e s are apparently inherited from its two predecessor meth­

ods D L T - L i n e s and DLT-Pl i i cker -Lines . Accuracy of the DLT-based methods is 

degraded: 

• If 3D lines tend to be planar (flatness « 1:10 or more). 

• If al l 3D lines but 2 (or less) are concurrent. 

• If 3D lines are organized into 3 or less directions. 

(DLT-Lines works, but DLT-Pliicker-Lines and DLT-Combined-Lines work only if the 3 

directions are orthogonal.) 

5.3 Line Correspondences with Mismatches 

A s mismatches of line correspondences (i. e. outliers) are often encountered in practice, 

robustness to outliers was also tested. The experimental setup was the same as i n Sec­

t ion 5.1, using m = 500 lines having endpoints perturbed wi th slight image noise a = 2 

pixels (which is less then 0.5 % of the 640 x 480 pixels image). The image lines simulating 

outlying correspondences were perturbed wi th an addit ional extreme noise wi th a = 100 

pixels. The fraction of outliers varied from 0% to 80%. 

Ansar, Mirzaei , and R P n L methods were plugged into a M L E S A C [61] framework 

(a generalization of R A N S A C which maximizes the l ikelihood rather than just the num­

ber of inkers). Since Ansar cannot handle the final pose computat ion from potentially 

hundreds of in ly ing line correspondences, the final pose is computed by R P n L . The 

probabil i ty that only inliers w i l l be selected in some iteration was set to 99%, and the 

number of iterations was l imi ted to 10,000. The in ly ing correspondences were identified 

based on the line reprojection error. N o heuristics for early hypothesis rejection was 

uti l ized, as it can also be incorporated into A O R , e. g. by weighting the line correspon­

dences. D L T - L i n e s , DLT-Pl i i cker-Lines , and D L T - C o m b i n e d - L i n e s methods were 

equipped wi th A O R , which was set up as described in Section 3.4. 

The setup presented by X u et al . [68] was also tested: L P n L _ B a r _ L S and L P n L -

_ B a r _ E N u l l methods wi th A O R , and a P 3 L solver and A S P n L plugged into a R A N S A C 

framework, generating camera pose hypotheses from 3 and 4 lines, respectively. The au­

thors have set the required number of in ly ing correspondences to 40 % of al l correspon­

dences, and l imi t the number of iterations to 80. W h e n this is exceeded, the required 

number of inliers is decreased by a factor of 0.5, and another 80 iterations are allowed. 

The in ly ing correspondences are identified based on thresholding of an algebraic error -
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the residuals e% of the least-squares solution in E q . (4.2), where the measurement matr ix 

M is used, defined by E q . (4.6). 

The tested methods are summarized i n the following list (the number at the end of 

M L E S A C / R A N S A C denotes the number of lines used to generate hypotheses). 

• Ansar + M L E S A C 4 + R P n L , Ansar plugged into a M L E S A C loop, the final 

solution computed by R P n L . 

• Mirzae i + M L E S A C 3 . 

• R P n L + M L E S A C 4 . 

P 3 L + R A N S A C 3 , the setup by X u et al . [68]. 

• A S P n L + R A N S A C 4 , the setup by X u et al . [68]. 

• L P n L _ B a r _ L S + A O R , the setup by X u et al . [68]. 

* L P n L _ B a r _ E N u l l + A O R , the setup by X u et al . [68]. 

• D L T - L i n e s + A O R . 

T DLT-Pl i i cker -Lines + A O R , the proposed method wi th A O R , published i n [II]. 

D L T - C o m b i n e d - L i n e s + A O R , the proposed method wi th A O R , published in 

[I]-

The R A N S A C - b a s e d approaches can theoretically handle any percentage of outliers. 

Th is is confirmed by Mirzae i + M L E S A C 3 • and R P n L + M L E S A C 4 4 , as their 

accuracy does not change w. r . t . the fraction of outliers. W h a t does change however, 

is the number of iterations (and thus also the runtime). Even though, the l imi t of 

10,000 iterations was almost never reached. A different si tuation occurred when testing 

Ansar + M L E S A C 3 + R P n L • , where the i teration l imi t was sometimes reached even 

at 20 % of outliers (see the distr ibution of runtimes in Figure B.18d in Append ix B ) . This 

suggests that Ansar is a poor hypothesis generator, and the M L E S A C framework needs 

to iterate more times to get a val id hypothesis. 

P 3 L + R A N S A C 3 and A S P n L + R A N S A C 4 • have much lower runtimes, which 

is caused mainly by the setup l imi t ing the number of iterations to a few hundreds. The 

setup has, on the other hand, a negative effect on the robustness of the method: the 

break-down point is only 60 - 70 %, as it is apparent i n Figure 5.6. Th is issue was not 

observed by X u et al . [68], because they tested the methods only up to 60% of outliers. 
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Figure 5.6: Experiments wi th outliers. Mean camera orientation errors (a), posit ion 
errors (6), reprojection errors (c) and runtimes (d) depending on the percentage of out­
liers out of total m = 500 line correspondences. Standard deviation of image noise was 
a = 2 pixels. Each value is an average over 1000 trials. 

L P n L methods wi th A O R have constant runtimes regardless of the fraction of out­

liers. The fastest one is D L T - L i n e s + A O R A running 10 ms on average. The pro­

posed method D L T - C o m b i n e d - L i n e s + A O R runs 31ms on average, and L P n L -

_ B a r _ E N u l l + A O R ^ is the slowest one wi th 57ms, see Figure 5.6d. 

The robustness of the L P n L methods differs significantly. DLT-Plucker -L ines 

— A O R . T breaks-down at about 40%, but it occasionally generates wrong solutions 

from 3 0 % up (see the isolated green dots in Figures B.18a - c i n Append ix B ) . It is 

called a "soft" break-down point. L P n L _ B a r _ E N u l l + A O R ^ behaves similarly, but it 

yields smaller pose errors. D L T - L i n e s + A O R A , L P n L _ B a r _ L S + A O R . * , and the 

proposed method D L T - C o m b i n e d - L i n e s + A O R • , on the other hand, have a "hard" 
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break-down point at 70%, 65%, and 60%, respectively. Th is means they do not yield 

wrong solutions unt i l they reach the break-down point. The distributions of errors of the 

tested methods over a l l 1000 trials are provided i n Figure B.18 in Append ix B . 

The R A N S A C - b a s e d approach is irreplaceable i n cases wi th high percentage of out­

liers. Nevertheless, for lower fractions of outliers, the L P n L + A O R alternatives are more 

accurate and 4 - 31 x faster than the R A N S A C - b a s e d approaches, depending on the 

chosen L P n L method. 

5.4 Real-World Buildings and Man-Made Objects 

In this section, the proposed methods are validated on real-world data and compared to 

state-of-the-art methods. Ten datasets were ut i l ized, which contain images wi th detected 

2D line segments, reconstructed 3D line segments, and camera projection matrices. E x ­

ample images from the datasets are shown i n Figure 5.7, and their characteristics are 

summarized in Table 5.2. Line correspondences are also given except for datasets Timber-

frame House, Bu i ld ing Blocks and Street in which case the correspondences were estab­

lished automatically based on geometric constraints. The Timberframe House dataset 

contains rendered images, while the rest contains real images captured by a physical 

camera. The Bu i ld ing Blocks and M o d e l House datasets capture small-scale objects on a 

table, the Corr idor dataset captures an indoor corridor, and the other six datasets cap­

ture exterior of various buildings. The Bu i ld ing Blocks dataset is the most challenging 

because many line segments lie i n a common plane of a chessboard. 

Accuracy 

Each P n L method was run on the data, and the errors i n camera orientation, camera 

position and reprojection of lines were averaged over al l images in each dataset. The 

mean errors achieved by al l methods on indiv idual datasets are given in Table 5.3 and 

visualized in Figure 5.8. 

O n datasets wi th small number of lines ( M H : 30 lines, C O R : 69 lines), the results 

of n o n - L P n L and L P n L methods are comparable, see Figure 5.8. Contrari ly, on other 

datasets w i th high number of lines (177 - 1841 lines), the n o n - L P n L methods are usually 

less accurate than the L P n L methods. A n s a r ^ was run only on the M H dataset con­

taining 30 lines, because it ran out of memory on other datasets. It shows rather poor 

performance. M i r z a e i * yields usually the least accurate estimate on datasets wi th high 
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Figure 5.7: Example images from used datasets. The images are overlaid w i th repro-
jections of 3D line segments using the camera pose estimated by the proposed method 
DLT-Combined-Lines . 
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Table 5.2: Datasets used in the experiments wi th real data. 

Dataset Source Abrevia t ion ^ images #lines 

Timberframe House M P l t T F H 72 828 

Bu i ld ing Blocks M P I * B B 66 870 

Street M P I * S T R 20 1841 

M o d e l House V G G * M H 10 30 

Corr idor V G G * C O R 11 69 

Mer ton College I V G G * M C I 3 295 

Mer ton College II V G G * M C 2 3 302 

Mer ton College III V G G * M C 3 3 177 

Universi ty L ib ra ry V G G * U L B 3 253 

Wadham College V G G * W D C 5 380 

M P I dataset h t t p : / / r e sources . m p i - i n f .mpg.de /LineRecons t ruc t ion/ . 

V G G dataset h t t p : / /www.robots. ox .ac .uk/~vgg/data /da ta-mview.html . 

number of lines ( T F H , B B , M C I , M C 2 , M C 3 , W D C ) . O n other datasets, it performs 

comparably to the other methods. A slightly better accuracy is achieved by R P n L ^ , but 

it also has trouble on datasets w i th high number of lines ( T F H , B B , S T R ) . The related 

method A S P n L • mostly performs better than R P n L w i th an exception of datasets 

wi th many lines ( B B , S T R ) . Nevertheless, A S P n L yields the most accurate pose esti­

mates on M H and C O R . This complies w i th the findings of X u et al . [68], who state that 

A S P n L is suitable rather for small line sets. 

The most accurate results on each dataset are predominantly achieved by the L P n L 

methods: Most of the top-3 results are achieved by L P n L _ B a r _ E N u l l * , followed by 

the proposed method D L T - C o m b i n e d - L i n e s , see Table 5.3. L P n L _ B a r _ _ L S * and 

D L T - L i n e s • also sometimes achieve top-3 accuracy, although it happens less frequently. 

D L T - P l i i c k e r - L i n e s T is the least accurate L P n L method on real-world data, being the 

only L P n L method which performs slightly below expectations based on synthetic data. 

Results of other methods are consistent wi th the results achieved on synthetic lines 

(Section 5.1). 

64 

http://mpg.de/LineReconstruction/
http://www.robots


Table 5.3: Experiments w i th real data. Mean orientation error A O [°], posit ion error A T [] and reprojection error A T T [] for 

each method and image dataset. The top-3 results for each dataset are typeset i n bo ld and color-coded ( best , 2 n d -bes t 

and 3 r d -best result). 

Dataset T F H B B S T R M H C O R M C I M C 2 M C 3 U L B W D C 
A 6 - - - 4.96 - - - - - -

• Ansar A T 
ATT 

- - - 0.38 
5e-05 

- - - - - -

AO 32.24 88.18 0.90 0.46 0.22 4.83 15.47 5.00 2.51 36.52 
• Mirzaei A T 11.04 168.47 1.92 0.04 0.10 1.53 7.37 1.82 1.27 6.44 

A T T le+06 2e+06 8e-07 4e-07 le-06 3e-06 3e-05 le-02 2e-06 7e+03 
A 6 20.46 23.27 4.91 0.61 0.40 1.45 0.43 2.33 3.96 0.50 

• R P n L A T 15.32 53.03 9.73 0.07 0.13 0.43 0.22 1.22 2.08 0.23 
ATT 6e-05 7e-06 9e-05 3e-06 6e-06 2e-06 le-07 2e-05 6e-06 le-06 
A 6 7.76 37.82 22.08 0.25 0.10 0.15 0.20 2.08 4.89 0.51 

• A S P n L A T 6.11 76.61 30.47 0.02 0.03 0.04 0.08 0.74 2.22 0.23 
A T T 6e-04 2e+03 3e+02 5e-08 9e-08 2e-08 le-08 4e-06 3e-06 le-06 
A 6 1.10 1.98 0.15 0.45 0.13 0.03 0.03 0.09 0.49 0.18 

• LPnL_Bar_LS A T 1.05 7.23 0.27 0.04 0.05 0.01 0.02 0.03 0.22 0.11 
ATT 7e-07 le-06 8e-08 8e-07 le-06 2e-09 le-09 6e-08 2e-07 4e-08 
A 6 0.57 0.30 0.11 0.32 0.10 0.04 0.03 0.07 0.39 0.08 

* LPnL_Bar_ENul l A T 0.45 1.13 0.16 0.02 0.04 0.01 0.02 0.02 0.18 0.05 
A T T 2e-07 2e-08 3e-08 2e-07 4e-07 8e-10 7e-10 5e-08 le-07 2e-08 
A 6 0.47 2.18 0.11 0.95 0.12 0.12 0.28 0.23 0.23 0.16 

• DLT-Lines A T 0.44 8.11 0.18 0.09 0.05 0.04 0.16 0.08 0.10 0.10 
A T T 2e-07 le-06 2e-08 le-06 2e-06 6e-09 4e-08 3e-07 3e-08 6e-08 
A 6 1.11 1.04 0.93 17.58 0.38 0.28 0.22 0.48 0.77 0.34 

T DLT-Plucker-Lines A T 1.28 11.69 1.78 0.74 0.13 0.40 0.50 0.27 0.47 0.39 
ATT le-06 8e-07 2e-06 3e-02 3e-06 2e-06 9e-07 2e-05 8e-07 le-06 
AO 0.39 0.40 0.22 0.41 0.11 0.11 0.15 0.16 0.20 0.23 

DLT-Combined-Lines AT 0.32 1.88 0.38 0.04 0.04 0.04 0.07 0.05 0.08 0.12 
ATT 7e-08 4e-08 6e-08 3e-07 2e-07 2e-08 2e-08 2e-07 7e-08 2e-07 
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Figure 5.8: Experiments w i th real data. Mean orientation errors (A@,top), posit ion errors ( A T , middle) and reprojection 
errors (ATT, bottom) on indiv idual datasets. A l l vertical axes are logarithmic. 



Bundle Adjustment 

A s Bundle Adjustment ( B A ) is commonly used as a final step i n 3D reconstruction 

problems, it is interesting to see how its results are affected by ini t ia l izat ion. For this 

purpose, B A was run on the datasets 2 and ini t ia l ized using camera poses provided by 

the tested methods. 

A line-based B A engine was preferred. Unfortunately, the only suitable engine was 

the one of Micus ik and Wildenauer [49], which was a commercial solution unavailable to 

public. Thus, it was chosen to use a more common point-based B A engine, represent­

ing 3D structure only by line segment endpoints. Similar ly to [49], an implementation 

based on the publ ic ly available Ceres Solver [3] was chosen. The implementation uses the 

Levenberg-Marquardt algorithm [44] to optimize an objective function based on reprojec-

t ion errors - the distances between observed and reprojected point positions. However, 

the objective function does not uti l ize the frequently used squared loss, but it is robus-

tified instead by using the Huber 's loss function [35], making it less sensitive to outliers. 

Furthermore, opt imizat ion of intrinsic camera parameters was deactivated to allow com­

parison to pose estimation methods, which do not take the intrinsic parameters into 

account. A s a result, only camera poses and 3D structure were optimized. 

B A was ini t ia l ized using 3D structures provided by the datasets and using camera 

poses generated by the tested pose estimation methods. Furthermore, B A was also 

ini t ial ized using the ground t ru th camera poses provided in the datasets. The B A engine 

then optimized each problem. Because we wanted it to find the opt imum as accurately 

as possible, the stopping criterion (a change i n the value of an objective function between 

consecutive iterations) was set to 1 0 ~ 1 6 . After the opt imizat ion, the resulting camera 

poses and 3D structure were obtained. Because ini t ia l izat ion by different camera poses 

may cause the resulting 3D structures to be slightly different both in shape and posit ion 

in space, they were aligned by a similari ty transformation. The resulting camera poses 

were transformed using the same transformation. After the alignment, the camera poses 

were compared. 

A l l optimizations ini t ia l ized by various pose estimation methods and by the ground 

t ru th poses terminated successfully by finding a min imum of the objective function. A l l 

min ima had the same function value but, wi th in the scope of each single dataset, the 

min ima were not identical: After aligning the optimized 3D structures, the camera poses 

differed by a magnitude of 0.1 ° and 0.01 length unit . Th is is approximately the same 

magnitude of difference as before B A . Since a unique min imum of the objective function 

2 The Timberframe House, Building Blocks and Street datasets were excluded from the experiment 
because the line correspondences were not provided. 
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Figure 5.9: Tota l t ime spent on pose estimation and Bundle Adjustment in seconds. 

was not found, accuracy of the indiv idual pose estimation methods could not be compared 

in relation to B A , results of which could be considered as a more accurate ground truth. 

Nevertheless, it is possible to compare the rate of convergence of B A expressed in 

terms of runtime. Generaly, B A ini t ia l ized by camera poses computed by a pose esti­

mation method ran comparably long to the B A ini t ia l ized by the ground t ru th camera 

poses (the runtimes ranged from « 0.6s for the M o d e l House dataset to « 7.5 s for the 

Wadham College dataset). A n exceptionally long runtime was observed in the case of 

R P n L # and A S P n L • i n the Mer ton College III dataset and in the case of M i r z a e i * 

in the Wadham College dataset. Th is indicated the ini t ia l izat ion was worse. 

From a practical point of view, the time spent on estimation of camera poses (i. e. 

ini t ia l izat ion of B A ) also counts. Therefore, the total t ime spent on pose estimation and 

on B A is a more appropriate measure. The used datasets contain rather a few camera 

poses, thus the t ime of pose estimation is relatively low compared to the time of B A . 

Even though, the differences in total runtime between indiv idual methods are clearly 

visible in Figure 5.9. Apar t from the exceptionally long runtimes mentioned above, it 

can be observed that the L P n L - b a s e d methods systematically yield lower total runtimes 

of pose estimation and B A compared to the n o n - L P n L ones. Differences can be observed 

even among the L P n L - b a s e d methods: The proposed method D L T - C o m b i n e d - L i n e s 

provides a speedup over its closest competitor L P n L _ B a r _ E N u l l * ranging from none 

(for the Wadham College dataset) to 1.27x (for the Mer ton College I dataset). 

5.5 Summary 

A s it was stated at the beginning of Chapter 4, the thesis aims for better accuracy 

and robustness than the state-of-the-art in pose estimation from lines by designing a 
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new DLT-based method ut i l iz ing line-line correspondences. The method shall keep the 

common advantage of L P n L methods of being fast. 

Two new linear methods for pose estimation were introduced which util ize line-line 

correspondences. Fi rs t , The DLT-P l i i cke r -L ines method which competes wi th the state-

of-the-art in some aspects, but it does not exceed it . Second, the DLT-Combined-L ines 

method which does outperform the state of the art. 

1. Accuracy - The DLT-Combined-L ines method outperforms the state-of-the-art in 

estimation of camera position for many lines (Section 5.1: Figure 5.1) and it is com­

parable to state-of-the-art in orientation estimation. The performance is confirmed 

also by the results on real data (Section 5.4: Table 5.3), where D L T - C o m b i n e d -

Lines achieves top-3 results on majority of the used datasets. 

2. Robustness to image noise - The higher accuracy of the estimates of D L T - C o m b i n e d -

Lines is most apparent under strong image noise, which proves its better robustness 

to this disturbance (Section 5.1: Figure 5.1). 

3. Speed - DLT-Combined-L ines does not deviate from other L P n L methods as it 

preserves their common advantage of being fast. A pose of 1000 lines is estimated 

in about 12ms (Section 5.1: Figure 5.2). 

As it was proven in the experiments listed above, the criteria were fulfilled: Both ac­

curacy and robustness improved while speed was comparable to other DLT-based methods. 

Thus the dissertation goal was achieved. 

Beyond this goal, l imits of DLT-Combined-L ines were determined when handling 

quasi-singular line configurations (near-planar, near-concurrent, and 2 or 3 line directions, 

see Section 5.2), it was shown that DLT-Combined-L ines can be used together w i th A O R 

to filter out mismatched line correspondences for up to 60 % of mismatches (Section 5.3), 

and it was also shown that DLT-Combined-L ines can decrease the total t ime spent on 

pose estimation and the following B A over the state-of-the-art (Section 5.4). 
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Chapter 6 

Conclusions 

The goal of this thesis was to improve accuracy and robustness of pose estimation from 

lines - i . e. of the Perspective-n-Line (PnL) problem - w i th accent on the formulation 

based on the Direct Linear Transformation ( D L T ) . The methods based on a linear 

formulation of P n L ( L P n L ) are especially suitable for scenarios wi th large line sets due 

to their efficiency and accuracy. The goal shall have been achieved by proposing a new 

linear method ut i l iz ing line-line correspondences and keeping the common advantage of 

L P n L methods of being fast. 

Start ing from the existing method D L T - L i n e s which exploits only point-line corre­

spondences, this thesis contributes to the state-of-the-art by proposing two novel meth­

ods for pose estimation: DLT-Pliicker-Lines which exploits line-line correspondences, 

and DLT-Combined-Lines which exploits both point-line and line-line correspondences. 

Another contribution of this thesis is a unifying framework for a l l DLT-based methods 

for pose estimation from lines. 

The method DLT-Combined-L ines uses D L T to recover the combined projection ma­

tr ix . The matr ix is a combination of projection matrices used by the D L T - L i n e s and 

DLT-P l i i cke r -L ines methods, that work wi th 3D points and 3D lines, respectively. The 

proposed method works w i th both 3D points and lines, which leads to a reduction of 

the min imum of required lines from 6 (and 9, respectively) to only 5 lines. The method 

can also easily be extended to use not only 2D lines but also 2D points. The combined 

projection matr ix contains mult iple estimates of camera rotation and translation, which 

can be recovered after enforcing constraints of the matr ix . M u l t i p l i c i t y of the estimates 

leads to better accuracy compared to the other DLT-based methods. 

B o t h novel methods are benchmarked on synthetic data and compared to several 

state-of-the-art P n L methods. Prac t ica l usefulness of the methods is tested on real data 

comprising buildings and other man-made objects. For larger line sets, D L T - C o m b i n e d -
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Lines is comparable to the state-of-the-art method L P n L _ B a r _ E N u l l in accuracy of ori­

entation estimation; Yet , it is more accurate in estimation of camera position and it 

yields smaller reprojection error under strong image noise. O n real-world data, D L T -

Combined-Lines achieves top-3 results in both orientation estimation, posit ion estima­

t ion and reprojection error. W h e n using pose estimation methods to init ial ize Bundle 

Adjustment ( B A ) , DLT-Combined-L ines provides a speedup up to 1.27x over L P n L _ B a r -

_ E N u l l in the total runtime of pose estimation and B A . This also indicates the proposed 

method keeps the common advantage of L P n L methods: very high computat ional ef­

ficiency. The poses of 1000 lines are estimated in 12 ms on a contemporary desktop 

computer. Altogether, the proposed method DLT-Combined-L ines shows superior ac­

curacy and robustness over its predecessors D L T - L i n e s and DLT-P l i i cke r -L ines , which 

make use either of point-line or line-line correspondences. DLT-Combined-L ines make 

use of both types of correspondences, yet it is fast. A s it was proven in the experiments, 

the requirements were fulfilled: B o t h accuracy and robustness improved while speed was 

comparable to other DLT-based methods. Thus the dissertation goal was achieved. 

Future work involves examination of the combined projection matr ix to adaptively 

combine the mult iple camera rotation and translation estimates contained i n the matr ix . 

Inspired by the work of X u et al . [68], the proposed methods can also be combined wi th 

the effective nul l space solver. Th i s might further increase accuracy of the methods. 

Ma t l ab code of the proposed methods as well as other tested methods and the exper­

iments are made publicly available. 1 

1http://www.fit.vutbr.cz/~ipribyl/DLT-based-PnL/ 
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Appendix A 

Derivation of M from 3D/2D Corre­
spondences 

Correspondences between 3D entities and their 2D counterparts are defined by equations 

which, in turn, generate rows of a measurement matr ix M. The following derivations are 

made for a single 3 D / 2 D correspondence. More correspondences lead simply to stacking 

the rows of M. 

A . l Line-Line Correspondence 

We start from E q . (2.14) defining the projection of a 3D line L by a line projection matr ix 

P onto the image line 1 

1 « P L . ( A . l ) 

Its sides are swapped and premult ipl ied by [1] x 

[ l ] x P L w [l]xl • (A.2) 

The right-hand side is apparently a vector of zeros 

[1]XPL = 0 . (A.3) 

Using L e m m a 4.3.1 of [34], we get 

( L T ® [l]x) -vec(P) = 0 . (A.4) 

The left-hand side can be divided into the measurement matr ix M = L T <g> [1] x and the 
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vector of unknowns p = vec(P), finally yielding the homogeneous system 

M p = 0 . (A.5) 

A.2 Point-Point Correspondence 

The derivation is the same as in the case of line-line correspondences, but starting from 

E q . (2.11) defining the projection of a 3D point X by a point projection matr ix P onto 

the image point x . 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

A.3 Point-Line Correspondence 

We start from E q . (4.5) relating the projection of a 3D point X and an image line 1 

1 T P X = 0 . ( A . l l ) 

Since E q . ( A . l l ) already has the right-hand side equal to 0, L e m m a 4.3.1 of [34] can be 

applied directly to see how the measurement matr ix M is generated: 

X T ® 1 T ) • vec(P) = 0 , (A.12) 

M p = 0 . (A.13) 

X « P X 

x ] x P X « [ x ] x 

x ] x P X = 0 

vec(P) = 0 

M p = 0 
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Appendix B 

Error Distributions of the Methods 

This appendix contains boxplots visualizing distributions of errors of indiv idual P n L 

methods under various conditions. Each distr ibution over 1000 trials is depicted by a 

box, where: 

• black dot inside a mark = median, 

• box body = interquartile range ( IQR) , 

• whiskers = min ima and max ima in the interval of 10 x I Q R , and 

• isolated dots = outliers. 

The methods are assigned the following marks i n the figures: 

• Ansar . 

• Mirzae i , 

• R P n L , 

• A S P n L , 

• L P n L _ B a r _ L S , 

• L P n L _ B a r _ E N u l l , 

• D L T - L i n e s , 

T DLT-P l i i cke r -L ines , 

• DLT-Combined-L ines . 

B. l Robustness to Image Noise 

Figures B . l - B .5 depict errors in estimated camera orientation A 6 [°] as a function of 

the number of lines (m = 3 - 10,000) for increasing levels of image noise wi th standard 

deviation a = 1, 2, 5, 10 and 20 pixels. Accordingly, Figures B.6 - B.10 depict errors 

in estimated camera posit ion A T [m], and Figures B . l l - B.15 depict reprojection errors 

Avr [ ] . 
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B.2 Robustness to Quasi-Singular Cases 

Figure B.16 depicts errors in estimated camera pose as a function of 'flatness' of the lines 

(lines in near-planar configuration). Similarly, Figure B.17 depicts errors as a function 

of the number of non-concurrent lines. The total number of lines was m = 200 and 

standard deviation of image noise was a = 2 pixels. 

B.3 Robustness to Outliers 

Figure B.18 depicts errors in estimated camera pose as a function of the fraction of 

outliers out of total m = 500 line correspondences wi th image noise a = 2 pixels. 
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Figure B . l : Errors in camera orientation A O [°] for image noise wi th standard deviation a = 1 pixel . 
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Figure B.2: Errors in camera orientation A O [°] for image noise wi th standard deviation a = 2 pixels. 
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Figure B.3: Errors in camera orientation A O [°] for image noise wi th standard deviation a = 5 pixels. 
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Figure B . 4 : Errors i n camera orientation A 6 [°] for image noise wi th standard deviation a = 10pixels. 
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Figure B.5: Errors i n camera orientation A O [°] for image noise wi th standard deviation a = 20pixels. 



Figure B.6: Errors i n camera posit ion A T [m] for image noise wi th standard deviation a = 1 pixel . 
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Figure B.7: Errors i n camera posit ion A T [m] for image noise wi th standard deviation a = 2 pixels. 
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Figure B.8: Errors i n camera posit ion A T [m] for image noise wi th standard deviation a = 5 pixels. 
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Figure B.9: Errors i n camera position A T [m] for image noise wi th standard deviation a = 10pixels. 
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Figure B.10: Errors i n camera position A T [m] for image noise wi th standard deviation a = 20pixels. 
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Figure B.13: Reprojection errors An [] for image noise wi th standard deviation a = 5pixels . 
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Figure B.14: Reprojection errors Air [] for image noise w i th standard deviation a = 10pixels. 
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Figure B.15: Reprojection errors Air [] for image noise w i th standard deviation a = 20pixels. 
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Figure B.16: Robustness to near-planar line distr ibution. The dis tr ibut ion of orientation 
errors ( A O , top), posit ion errors ( A T , middle) and reprojection errors (A-7T, bottom) as a 
function of 'flatness' (the ratio of height of a volume containing 3D lines w . r . t. to its other 
dimensions). The number of lines was m = 200 and standard deviation of image noise was 
a = 2 pixels. 
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Figure B.17: Robustness to near-concurrent line distr ibution. The distr ibution of orienta­
t ion errors ( A 0 , top), posit ion errors ( A T , middle) and reprojection errors (ATT, bottom) as a 
function of the number of lines, which are not concurrent, out of al l m = 200 lines. Standard 
deviation of image noise was a = 2 pixels. 
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(a) Orientation error A© [°], m = 500 lines, o = 2 px 
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(b) Position error AT [m], m = 500 lines, a = 2 px 
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Figure B.18: Robustness to outliers. The distr ibution of orientation errors ( A O , a), position 
errors ( A T , b), reprojection errors (Air, c) and runtimes (d) as a function of the fraction of 
outliers, out of total 500 line correspondences. 
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