
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

TOOLS FOR ENSURING INTEROPERABILITY BETWEEN
ARDUINO/ESP AND ROS2
PROSTŘEDKY PRO ZAJIŠTĚNÍ INTEROPERABILITY ARDUINO/ESP A ROS2

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

MATUS FABO

SUPERVISOR
VEDOUCÍ PRÁCE

doc. Ing. VLADIMÍR JANOUŠEK, Ph.D.

BRNO 2024

Zadání bakalářské práce
Ústav:
Student:

Ústav inteligentních systémů (UITS)
Fabo Matúš
Informační technologie
Prostředky pro zajištění interoperabil i ty Arduino/ESP a ROS2
Softwarové inženýrství

155181

Program:
Název:
Kategorie:
Akademický rok: 2023/24

Zadání:

1. Prostudujte problematiku robotických řídicích systémů, zaměřte se na platformu ROS2. Seznamte s
prostředky pro tvorbu software pro mikrokontrolery firmy Espresif a s existujícími prostředky pro
propojení těchto mikrokontrolerů middlewarem ROS2.

2. Vyberte nebo navrhněte vhodný způsob propojení a protokol pro komunikaci mezi mikrokontrolerem
a řídicím počítačem, na kterém poběží ROS2 (například Raspberry Pi 4). Jako motivační a následně
demonstrační aplikaci uvažujte například ESP32 s kamerou, ovládání servomotorů apod.

3. Prostředky pro komunikaci specifikované v bodu 2 navrhněte a realizujte. Navrhněte a realizujte i
demonstrační aplikaci specifikovanou v bodu 2.

4. Realizovaný software otestujte a vyhodnoťte dosažené výsledky.

Literatura:
Dle pokynů vedoucího.

Podrobné závazné pokyny pro vypracování práce viz https://www.fit.vut.cz/study/theses/
Vedoucí práce: Janoušek Vladimír, doc. Ing., Ph.D.
Vedoucí ústavu: Hanáček Petr, doc. Dr. Ing.
Datum zadání: 1.11.2023
Termín pro odevzdání: 9.5.2024
Datum schválení: 6.11.2023

Fakulta informačních technologií, Vysoké učení technické v Brně / Božetěchova 1/2 / 612 66 / Brno

https://www.fit.vut.cz/study/theses/

Abstract
This thesis explores the integration of the low-cost E S P 3 2 line of microcontrollers w i th the
Robot Operat ing System 2 (ROS2) , a widely-used framework i n the field of robotics. The
pr imary goal is to develop methods and tools that facilitate seamless integration of E S P 3 2
microcontrollers into the R O S 2 development ecosystem, leveraging existing middleware
solutions provided by th i rd parties. B y focusing on the incorporation of E S P - I D F projects
into R O S 2 tooling, the research aims to streamline the deployment and management of
ESP32-based systems wi th in robotics applications. This approach enhances the accessibility
and u t i l i ty of R O S 2 , enabling more efficient and effective use of E S P 3 2 microcontrollers in
various robotic contexts.

Abstrakt
T á t o p r á c a s k ú m a in teg rác iu n ízkonákladovej rady mik rokon t ro l é rov E S P 3 2 s Robot Oper
ating System 2 (ROS2) , p o p u l á r n y m frameworkom v oblasti robotiky. P r i m á r n y m cieľom
je vyvinúť m e t ó d y a ná s t ro j e , k t o r é uľahčia b e z p r o b l é m o v ú in teg rác iu mik rokon t ro lé rov
E S P 3 2 do vývojového ekosys t ému R O S 2 s v y u ž i t í m exis tu júcich middleware r iešení posky
tovaných t r e t í m i stranami. Z a m e r a n í m sa na začlenenie projektov E S P - I D F do nás t ro jov
R O S 2 sa v ý s k u m zameriava na zefekt ívnenie nasadenia a riadenia s y s t é m o v za ložených na
E S P 3 2 v robo t i ckých ap l ikác iách . Tento p r í s t u p zvyšuje dos tupnosť a už i točnosť R O S 2 , čo
umožňu je efektívnejšie využ i t i e mik rokon t ro lé rov E S P 3 2 v rôznych robo t i ckých kontextoch.

Keywords
E S P - I D F , E S P 3 2 , R O S 2 , C M a k e , Interoperability, Microcontrollers , Integration, Tooling,
Middleware, IoT, Robot ics

Klíčová slova
E S P - I D F , E S P 3 2 , R O S 2 , C M a k e , Interoperabilita, Mikrokont ro lé ry , In tegrác ia , Nás t ro j e ,
Middleware, IoT, Robo t ika

Reference
F A B O , M a t ú š . TOOLS FOR ENSURING INTEROPERABILITY BETWEEN ARD UINO/ESP
AND ROS2. Brno , 2024. Bachelor's thesis. Brno Universi ty of Technology, Facul ty of In
formation Technology. Supervisor doc. Ing. V l a d i m í r J a n o u š e k , P h . D .

T O O L S F O R E N S U R I N G I N T E R O P E R A B I L
I T Y B E T W E E N A R D U I N O / E S P A N D ROS2

Declaration
I declare that I have prepared this bachelor thesis independently under the supervision of
doc. Ing. V l a d i m i r Janousek P h D . I have cited a l l l i terary sources, publications and other
sources from which I have drawn.

Ma t i i s Fabo
M a y 8, 2024

Contents

1 Introduction 4

2 Robot Operating System (ROS2) 5
2.1 R O S 5
2.2 Architecture 5

2.2.1 Workspace 5
2.2.2 Packages 6
2.2.3 Nodes 6
2.2.4 Interfaces 7

2.3 Middleware 8
2.4 B u i l d System 9

3 ESP-IDF 11
3.1 Structure H
3.2 Components 12
3.3 B u i l d System 12

4 ROS2 -ESP solutions 14
4.1 M i c r o - R O S 14

4.1.1 Integration wi th R O S 14
4.1.2 R O S 2 comparison 15

4.2 M i c r o - R O S E S P - I D F component 15
4.2.1 I D F component 15

5 Integration proposal 17
5.1 Current s i tuat ion summary 17
5.2 The goal of this thesis 17

5.2.1 E S P - I D F projects as R O S 2 packages 17
5.2.2 M i c r o - R O S I D F component as R O S 2 package 17
5.2.3 Example 18

6 Implementation 19
6.1 esp_env package 19

6.1.1 idf script 20
6.1.2 build_micro_ros script 21
6.1.3 new_project script 23

6.2 esp_uros package 24
6.2.1 C M a k e 24

1

6.2.2 add_packages script 27
6.2.3 r e b u i l d script 2 7

6.3 E S P - I D F project as a R 0 S 2 package 28
6.3.1 C M a k e L i s t s . t x t 28
6.3.2 i d f script 29

7 Example Implementation 30
7.1 Cus tom Interface 30

7.1.1 CameraConfig message 30
7.1.2 GetCameraConf ig service 30
7.1.3 SetCameraConfig Service 30

7.2 Camera Node 31
7.2.1 Camera in i t ia l iza t ion 31
7.2.2 Node ini t ia l izat ion 31
7.2.3 Event handling 33

7.3 Camera User Interface Node 35
7.3.1 Node ini t ia l izat ion 35
7.3.2 Node communicat ion 36
7.3.3 Flask server 37

7.4 Q R Detector Node 38
7.4.1 Node ini t ia l izat ion 38
7.4.2 Q R detection 38

7.5 L E D Strip node 39
7.5.1 Node ini t ia l izat ion 39

7.5.2 Subscriber handling 40

8 Conculsion 42

Bibliography 43

2

List of Figures

2.1 V i s u a l representation of R 0 S 2 environment 6
2.2 V i s u a l representation of the R O S 2 middleware 9
2.3 V i s u a l representation of the C M a k e - A m e n t - C o l c o n bu i ld stack 10

3.1 V i s u a l representation of E S P - I D F structure 13

4.1 V i s u a l representation of mic ro -ROS ' s agent-client structure i n relation to the
middleware 15

4.2 V i s u a l representation of mic ro -ROS E S P - I D F project structure 16

5.1 E S P - I D F project integration into R O S 2 18

7.1 R O S graph of the generated by r q t _ g r a p h 41
7.2 Screenshots of the working example 41

3

Chapter 1

Introduction

The Robot Operat ing System 2 (ROS2) is an advanced open-source framework that provides
tools, libraries, and conventions to bu i ld complex robotic applications. However, its u t i l i ty
can be l imi ted by the hardware compat ibi l i ty and accessibility issues, par t icular ly w i th low-
cost microcontrollers that are frequently used in educational settings, hobbyist projects, and
prototype development.

A m o n g these low-cost options, the E S P 3 2 microcontroller stands out due to its process
ing power, wireless capabilities such as W i F i and Bluetooth . This makes it a very popular
choice for IoT and simple robotic applications. B u t these microcontrollers are not l imited
only to hobbyists projects - due to its capabilities the E S P 3 2 has the potential to become the
industry standard. Despite this the integration between the two platforms is challenging.
This is caused mainly by differences in their respective development environments.

Tradit ionally, E S P 3 2 projects are developed using the E S P - I D F (IoT Development
Framework), which is designed to uti l ize the full capabilities of these microcontrollers but
does not natively support the structures and protocols used i n R O S 2 . Because of this,
leveraging the full capabilities of E S P 3 2 wi th in the R O S 2 framework requires bridging
communicat ion protocols and development workflows.

This thesis aims to address these differences by developing streamlined methods and
tools that allow the seamless integration of E S P 3 2 microcontrollers into the R O S 2 frame
work. B y improving interoperability, the goal is to improve the developement of R O S 2
applications. Th i s work improves the pract ical deployment of mixed-technology solutions
in real world applications.

4

Chapter 2

Robot Operating System (ROS2)

2.1 ROS

Robot Operat ing System (ROS) is an open-source collection of tools, libraries and conven
tions used for designing and bui lding complex robotic software systems. Its ma in purpose
is to ensure stable and reliable communicat ion between different processesses, languages
or a completly different devices. This framework also provides tools for easy interaction,
debugging and testing ind iv idua l components or the system as a whole.

R O S 1

https: / / roboticsbackend.com/rosl-vs-ros2-practical-overview/
R 0 S 1 was buil t from scratch by enthusiasts. Th is version has implemented most of the

core R O S concepts. B u t as w i th most of projects wri t ten from scratch, this version became
unstable as the framework evolved over the years. This paired wi th lacking features such
as security or real-time processing led developers of R O S to rebui ld it.

R O S 2

R 0 S 2 was rebuilt from scratch but it has buil t upon the ideas of R 0 S 1 wi th added features
stemming from years of experience. This version has improved on previous shortcomings
such as stabil i ty and security, added features such as Qual i ty of Service. B u t most impor
tant ly for us, this version has added support for embedded real-time systems.

2.2 Architecture

2.2.1 W o r k s p a c e

A R 0 S 2 workspace is a directory where R 0 S 2 project is developed. This workspace includes
various packages and metapackages configured for bui lding and dis tr ibut ion. Workspaces

5

https://roboticsbackend.com/rosl-vs-ros2-practical-overview/

allow for isolation of projects or integration of mult iple related projects, al lowing complex
robotic software development.

C o n t e n t

The workspace directory contains 4 subdirectories:

• src/ holds a l l relevant R O S 2 packages

• build/ holds latest bu i ld artifacts

• install/ holds latest successfully buil t packages

• log/ stores a l l bu i ld and instal l output

ROS 2 Structure

build/ install/ log/

Local ROS 2 workspace

Global ROS 2 workspace

ROS2
package

ROS2
package

src/

Figure 2.1: V i s u a l representation of R O S 2 environment

2.2.2 Packages

Each package is defined by its package.xml manifest file[3] . Th is file contains package
description and its dependencies. R O S 2 packages are the pr imary organizational unit of
software code, and they should contain everything from executable nodes and libraries to
configurations, data files, or anything else that can be logically grouped together. Each
package should to provide a specific feature or functionality wi th in the R O S 2 ecosystem for
ease of testing and maintenance.

2.2.3 N o d e s

ht tps : / /docs . ros .org /en/ foxy/Tutor ia l s /Beginner -CLI-Tools /Unders tanding-ROS2-Nodes /Unders tandin^
ROS2-Nodes .h tml

A node is a fundamental executable entity that performs some sort of computat ion [3].
Each node i n R O S 2 is designed to execute a specific task wi th in a larger applicat ion, such as
controll ing a robotic arm, processing sensor data, or managing communicat ion wi th other

(i

https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understandin%5e

nodes. Nodes communicate w i th one another using one of three interfaces, depending on
the requirements of the communicat ion. This approach allows for independent opreation
wi th collaborative functionality of the robotic system. This design allows easier debugging,
testing, and maintenance, as changes to one node typical ly do not affect the operation of
others. There can be mult iple nodes per device or one node per device - the middleware
layer ensures communicat ion between nodes i n both scenarios.

2.2.4 Interfaces

Interfaces are standardized templates for communicat ion that nodes use to communicate
effectively wi th in the ecosystem. Interfaces are defined inside a package i n their respective
directories. A s mentioned in section 2.2.3 there are three types of interfaces:

• Topics Subscribe-publish style of communicat ion

• Services Request-response style of communicat ion

• Actions A c t i o n based style of communicat ion

These interfaces are declared using Interface Defini t ion Language (IDL) files, which
specify the data types and structures that ensure consistent communicat ion across different
programming languages and hardware platforms. B y standardizing how data is exchanged,
R O S 2 interfaces ensure a scalable and reliable communicat ion wi th in the entire system.

T o p i c

Topics provide a way for simple communicat ion using messages. A topic is designed for
publishing and subscribing mechanisms where information flows between nodes continu
ously. A single topic can have mult iple subscribers as well as mult iple publishers. This is
useful for aggregted messages such as logging.

A message consists of fields of pr imi t ive data types such as an integer or a string. A n
other messages can be used instead of pr imit ive data types, al lowing for more readable
complex messages.

Messages are defined in msg/ directory as .msg files.
Template for .msg files is:

Message
<data-type> <name>

Service

Services provide a request-response interaction model, enabling one node to send a request
to another and receive a response. Services are designed as server like request-response
mechanism where the information flows on demand or the response depends on the request
parameters.

A service consists of a request and a response separated by — . Request and response,
like messages, consist of pr imit ive data types or another messages.

Services are defined in srv/ directory as . srv files.
Template for . srv files is:

7

Request
<data-type> <name>

Response
<data-type> <name>

A c t i o n

Actions extend the service model to handle long-running asynchronous processes, w i th the
capabil i ty for feedback during task execution and the option for cancellation if necessary.

A n action consists of a goal , feedback and result separated by — . A g a i n , like
messages, these consist of pr imit ive data types or another messages.

A goal sent by a client to a server, then feedback that is periodical ly sent from the server
to the client dur ing the execution of a goal, and a result is sent back to the client when the
goal is completed.

Act ions are defined in action/ directory as .action files.
Template for .action files is:

Goal
<data-type> <name>

Feedback
<data-type> <name>

Result
<data-type> <name>

2.3 Middleware

A t the heart of R O S 2 ' s communicat ion system is the middleware layer, which provides
a standardized interface for inter-process communicat ion. This layer abstracts away the
complexities of the underlying network protocols, which allows developers to focus solely
on the applicat ion logic without worrying about communicat ion. The middleware i n R O S 2
is modular , which means it can support different middleware implementations. However,
the default and most commonly used is based on the D a t a Dis t r ibu t ion Service (D D S) .

8

r
— • Python client library

Middleware
Topic interface

/message

Middleware layer <—
C client library

ROS2node

Figure 2.2: V i s u a l representation of the R O S 2 middleware

Q u a l i t y of Service

Middleware i n R O S 2 implements Qua l i ty of Service (QoS), which crucial for ensuring stable
and reliable communicat ion. QoS settings include parameters such as reliability (whether
messages should be delivered reliably or best-effort), durability (whether messages should
be stored unt i l they are taken by some subscriber) and deadline (maximum expected time
between messages). These settings can be customized per topic, providing granular control
over communicat ion behavior based on specific requirements of each part of the system.

N o d e lifecycle management

The middleware manages the lifecycle of nodes wi th in the R O S 2 environment, including
the creation, configuration, execution, and shutdown of nodes. This lifecycle management
is essential for ensuring that resources are allocated and freed appropriately, and for main
taining the health and stabil i ty of the overall system.

R O S 2 middleware supports various security features to ensure secure communicat ion across
nodes. These features include encryption, authentication, and authorizat ion mechanisms,
which are implemented at the middleware level.

The R O S 2 bu i ld system is designed to handle the compilat ion and dis t r ibut ion of soft
ware packages efficiently across various systems. It supports the complex dependencies of
R O S 2 applications and ensures that they are correctly buil t and integrated into the R O S
ecosystem. The R O S 2 bui ld system consists of three tools: Ament , Colcon, and C M a k e .

Secur i ty

2.4 Bu i ld System

9

C M a k e

C M a k e is used wi th in R 0 S 2 for its powerful cross-platform bui ld capabilities. It generates
native makefiles or project files that can be used i n the compiler environment of your
choice. For R O S 2 , C M a k e lists wi th in packages define bu i ld targets, l ibrary and executable
dependencies, and instal lat ion rules.

Ament is the bu i ld system and dependency management tool specifically designed for R O S 2 .
It enhances C M a k e wi th addi t ional features to streamline the bui ld ing process. It man
ages package dependencies, builds processes, and environment setup through integrated
tools and scripts. Amen t ensures that packages are buil t i n the correct order and that
al l necessary components are included at compile t ime. It also handles the environment
configuration, setting up paths and variables that are required for packages to run cor
rectly. Ament packages typical ly contain a manifest file that specifies package metadata,
dependencies, and other configurations necessary for the bu i ld process.

Colcon is a command line tool to improve the workflow of bui lding, testing, and using
mult iple software packages. It extends the capabilities of both Ament and C M a k e , stream
lining the process of bui lding, testing, and packaging software that is developed as a part of
R O S 2 projects. Colcon supports parallel builds and integrates w i th various bu i ld systems
to handle a wide array of programming languages and bu i ld environments. It also keeps
track of dependencies between packages wi th in the workspace, ensuring that lower-level
libraries are compiled before the packages that depend on them.

A m e n t

C o l c o n

Project manager

Dependency manager

CMake Project builder

Figure 2.3: V i s u a l representation of the C M a k e - A m e n t - C o l c o n bu i ld stack

10

Chapter 3

E S P - I D F

E S P - I D F (Espressif IoT Development Framework) is the official developement framework
for their E S P SoCs. Th is framework provides a set of tools and libraries that simplify the
development of high-performance embedded applications.

3.1 Structure

E S P - I D F is structured i n a modular manner, where each feature is contained wi th in a
component. The root of the framework contains 4 directories components/, examples/,
tools/ and docs/, as well as global configurations and setup scripts.

• components/ contains global set of libraries and drivers

• examples/ contains a set of example applications that showcase most of E S P features

• tools/ contains every tool needed for compilat ion, flashing or debugging an applica
t ion

• components/ contains its documentation. Th is documentation can be found at the
[espressif's official documentation website [1]

E S P - I D F also contains a .espressif directory located at the home directory of your
system. This direcotry contains most of the E S P - I D F toolchain such as the E S P - i d f P y t h o n
environment or compilers for the E S P chipsets.

11

3.2 Components

Components are standalone modules that encapsulate specific features such as drivers for
peripheral devices, networking stacks, or u t i l i ty libraries. These components are the fun
damental bui ld ing blocks of every applicat ion. ESP-IDF comes wi th a set of standard
components provided by Espressif, but developers can also create custom components that
suit their specific requirements.
Every component directory contains (but is not l imi ted to):

• CMakeLists.txt which contains instructions for bui ld ing the component

• main/ directory (can be renamed, but requires effort) that contains its main logic

• components/ directory (optional) that contains addi t ional component dependencies
that are not found i n the global component directory

• Kconf i g (optional) describes what configuration the components needs

P r o j e c t s t ructure

A n ESP-IDF project is a direcoty that contains the main structure and source code of an
executable applicat ionfl] . The project follows similar rules as other components. The root
directory has to contain CMakeLists.txt that provides instructions for proper compila
t ion. Addi t ionaly , because this is the application's ma in structure, the directory has some
additions:

• build/ directory that holds bu i ld artifacts and the compiled applicat ion

• sdkconf i g which holds configuration for the applicat ion as well as a l l its components
dependencies.

The sdkconfg file is generated at bu i ld t ime w i t h default configuration. Changes to the
application configuration can be done wi th the idf .py menuconf i g command. This menu-
config is based on l inux ' menuconfig - a configuration tool which utilizes the [Kconfig
language] (https: / / docs.kernel.org/kbuild/kconfig-language.html)

3.3 Bu i ld System

The ESP-IDF bu i ld system is based pr imar i ly on C M a k e , which can handle complex bui ld
behaviour and dependencies. T H e bui ld system is responsible for automating the config
uration, compilat ion, and l ink ing of the project files into a binary firmware that can be
loaded onto an E S P 3 2 device.

C M a k e

C M a k e is used wi th in ESP-IDF as the pr imary bu i ld system tool that is repsonsible for the
configuration and generation of bu i ld files. Cmake abstracts and automates the compilat ion
process, managing dependencies between components, configuring the necessary compiler
flags, and defining bu i ld targets. ESP-IDF enhances C M a k e wi th its own set of macros
and functions that simplify common tasks such as registering new components, integrating
third-party libraries, and customizing the bu i ld process for different environments.

12

http://docs.kernel.org/kbuild/kconfig-language.html

ESP-IDF Structure

Component Component Main application

Component

ESP-IDF

Figure 3.1: V i s u a l representation of E S P - I D F structure

C o m p i l e r s

E S P - I D F comes wi th G C C - b a s e d compilers for C and C + + , specifically designed for the
Xtensa chipset architecture. These compilers are custom made, since the Xtensa architec
ture is specifically designed for modular embedded systems. The toolchain also includes
other utili t ies like G D B for debugging and E S P T o o l for interacting w i t h the devices like
flashing the compiled applicat ion.

13

Chapter 4

ROS2 - E S P solutions

4.1 Mic ro -ROS

ht tps : / /micro . ros .org/ M i c r o - R O S is an adaptat ion of R O S 2 designed specifically for micro
controllers. This framework extends the R O S ecosystem into the realm of embedded systems
by adapting R O S 2's features, tools, and conventions to resource-constrained devices. The
goal of mic ro -ROS is to provide seamless integration wi th R O S 2, so microcontrollers can
form complex behaviors and coordination between other microcontrollers or more powerful
computing devices.

4.1.1 Integrat ion w i t h R O S

M i c r o - R O S is essentially a client of R O S 2, buil t to integrate seamlessly wi th the R O S 2
ecosystem. It adapts R O S 2 features to be suitable for the constraints of microcontrollers,
such as reduced memory usage, lower processing power, and l imi ted storage capacity. This
integration ensures that systems developed wi th M i c r o - R O S can communicate w i th R O S 2
nodes. To achieve this, the client is split into a client and an agent.

Client

The mic ro -ROS client runs on the microcontroller, handling the execution of R O S 2 nodes,
publishers, subscribers, services, and actions. It is designed to be lightweight and resource-
efficient. The client provides an A P I that mirrors the A P I that is present in R O S 2 but is
adapted to the constraints of embedded systems. The client has to connect to a mic ro -ROS
agent in order to communicate w i th the broader R O S 2 ecosystem.

Agent

The mic ro -ROS agent acts as a bridge between the mic ro -ROS client and the R O S 2 data
space. The agent runs on a more capable machine which allows it to translate messages to
and from the mic ro -ROS clients, reducing the load of the clients, so the microcontrollers
don't waste their l imi ted resources. Th is allows microcontrollers to participate i n a larger
R O S 2 network as i f they were regular R O S 2 nodes, sharing data and cooperating wi th
other nodes across the network.

14

https://micro.ros.org/

Python client library

Middleware

Topic interface
.'message

Middleware layer
C client library

micro-ROS Agenl

^ m i c r o - R O S
client node

Figure 4.1: V i s u a l representation of mic ro-ROS's agent-client structure i n relat ion to the
middleware

4.1.2 R O S 2 c o m p a r i s o n

https://micro.ros.org/docs/overview /R0S_2_feature_comparison/

Becasue of the agent-client architecture, mic ro -ROS provides essentially the same features
as R O S 2[2]. The client l ibrary r c l c is a wrapper of R O S 2's base client l ibrary r c l w i th
added convenience functions, which provides essentially the same A P I as w i th other R O S
2 client libraries.

4.2 Mic ro -ROS E S P - I D F component

The mic ro -ROS E S P - I D F component bridges the mic ro -ROS framework and the E S P - I D F ,
allowing the deployment of mic ro -ROS on E S P 3 2 and other ESP-based microcontrollers.

4.2.1 I D F c o m p o n e n t

This E S P - I D F component integrates mic ro -ROS into the E S P - I D F ecosystem. This com
ponent produces a static l ibrary that can be l inked to the E S P - I D F applicat ion. The
integration is achieved wi th in the E S P - I D F component's CMakeLists.txt file by wrapping
the mic ro -ROS makefile i n such a way that mic ro -ROS is compiled using the compilers
provided by E S P - I D F .

15

https://micro.ros.org/docs/overview/R0S_2_feature_comparison/

ft
micno-ROS

package

micro-ROS as ESP-IDF component

micno-ROS
package

src/ ouid install/J J log/ |

micro-ROS ESP-IDF component Component Main application

Project

V i ESP-IDF

Figure 4.2: V i s u a l representation of mic ro -ROS E S P - I D F project structure

C M a k e

The CMakeLists.txt file in i t ia l ly registers mic ro -ROS as an E S P - I D F component and
setting up the necessary environment for its compilat ion. This C M a k e has several steps:

• Environment Setup: This configures essential variables and settings to ensure that
mic ro -ROS compiles correctly under the E S P - I D F ' s compilat ion environment.

• Compilation: This invokes the mic ro -ROS bui ld process to compile the libmicroros
using E S P - I D F ' s toolchain, which can be ut i l ized i n the E S P environment.

• Linking: After m ic ro -ROS is successfully compiled, it is l inked as a static library.
Th is step involves specifying dependencies and l ink ing the l ibrary to ensure that it
integrates well w i th other components of the E S P - I D F project.

• Cleanup: A custom cleanup command is registered to allow easy rebuilding of the
mic ro -ROS component.

16

Chapter 5

Integration proposal

5.1 Current situation summary

Al though mic ro -ROS addresses the integration of R O S into embedded systems and the
mic ro -ROS E S P - I D F component addresses the integration of mic ro -ROS into the E S P - I D F
plaform and hardware, integration of E S P - I D F applications, which ut i l ized mic ro -ROS, into
R O S 2 ecosystem remained unaddressed. This led to fragmented developement and manual
configuration of R O S 2 projects which ut i l ized E S P microcontrollers.

5.2 The goal of this thesis

The pr imary a im of this thesis is to streamline the integration of E S P - I D F projects into
the R O S 2 ecosystem. This involves developing methodologies and tools that w i l l integrate
E S P - I D F applications as R O S 2 packages. This w i l l reduce the manual labor which was
previously needed to integrate E S P - I D F applicaitons into the R O S 2 ecosystem.

5.2.1 E S P - I D F projects as R O S 2 packages

P r i m a r y objective is to provide a set of tools that would streamline the integration of E S P -
I D F projects into the R O S 2 ecosystem. This is to simplify and streamline work wi th
E S P - I D F projects wi th in the R O S 2 ecosystem.

5.2.2 M i c r o - R O S I D F c o m p o n e n t as R O S 2 package

Another objective is to integrate the M i c r o - R O S I D F component into the R O S 2 ecosystem
as a R O S package. This is to decopule the mic ro -ROS component l ibrary from a single
E S P - I D F project. The bu i ld artifacts are quite large and takes relatively long t ime to
compile. Leaving the mic ro -ROS component as an extra component inside each and every
E S P - I D F project would consume unnecessary disk space and compilat ion time. Th i s is
also to simplify the addi t ion of extra R O S packages like interface definitions, which w i l l be
immediately available to a l l E S P - I D F applications that would rely on this package.

17

Local ROS 2 workspace

Global ROS 2 workspace

Figure 5.1: E S P - I D F project integration into R O S 2

5.2.3 E x a m p l e

The final objective of this thesis is to demonstrate the integration process through a pract ical
example. Th is example involves creating a R O S 2 project that consists of four separate
nodes and a custom interface for communicat ion. These nodes collectively form a system
that processes visual data and responds to environmental cues, showcasing the interaction
between different components i n a R O S 2 ecosystem.

• C a m e r a node: Th is node is responsible for capturing live video feed from a cam
era. It is configurable, al lowing adjustments to camera settings such as resolution or
exposure through R O S 2 services

• C a m e r a user interface node: Th is node provides a user interface for viewing the
camera feed and interacting wi th the Camera Node. It allows the user to adjust
camera settings of the Camera Node.

• Q R code detector node: Th is node processes the video feed to detect Q R codes.
It identifies and decodes any Q R code present i n the camera feed and publishes the
decoded information as R O S 2 messages.

• L E D strip node: Th is node controls an L E D strip, changing its color based on the
information decoded from Q R codes. The color change serves as a visual indicator of
the Q R code content, demonstrating a physical response to digi ta l input.

18

Chapter 6

Implementation

https://github.com/ros2/ros2cli/issues/427

In the R O S 2 environment exists a command ros2 pkg create <package-name> -build-type
cmake, ament_cmake, ament_python. The first attempt at creating a tool for integrating
E S P - I D F projects was to expand upon this command. However this is not natively possible,
so another method was needed.

The implementat ion comes i n a single package esp_env which contains tools for setting
up the mic ro -ROS component or arbi t rary E S P - I D F projects and interacting w i t h E S P - I D F
projects inside the R O S 2 ecosystem.

6.1 esp_env package

The esp_env is an ament_cmake package which consists of three bash scripts build_micro_ros,
new_project, idf and a templates/ direcory that contains template files needed for new
packages. The scripts automate the manual process of creating a ROS2 compliant package
and interacting wi th the underlying E S P - I D F project i f need be.

Package contents

• CMakeLists.txt — Basic C M a k e script that installs this package so the scripts w i l l
be available i n the R O S 2 environment.

• build_micro_ros — A bash script that automates bui ld ing the mic ro -ROS E S P - I D F
package.

• idf — A bash wrapper around idf .py for other E S P - I D F projects wi th in the R O S 2
environment. W h i l e every E S P - I D F R O S package comes w i t h their own idf .py wrap
per, sometimes the bu i ld requires configuration before compilat ion. This is achieved
using the idf .py menuconf i g command, but since the package was not buil t yet, the
idf package wrapper is not available yet.

• new_project — A bash script that creates a new E S P - I D F package and integrates it
into a R O S 2 package.

• templates/ — A directory w i t h template files and scripts used i n creation of E S P - I D F
projects as R O S 2 packages.

19

https://github.com/ros2/ros2cli/issues/427

6.1.1 i d f script

The idf bash script takes a package name as its only argument. If there are any other argu
ments provided to this script, a l l of them w i l l be passed over unchanged to the subsequent
idf .py command. Since the user is most l ikely to invoke this script from the root direcoty
of the R O S 2 local workspace v ia the ros2 run command, the package name is required to
correctly set up paths to the R O S 2 package that contains the E S P - I D F project.

PACKAGE_NAME="$1"
IDF_ARGS="${@:2>"
PACKAGE_DIR="$COLCON_PREFIX_PATH/../src/$PACKAGE_NAME"
PACKAGE_BUILD_DIR="$COLCON_PREFIX_PATH/../build/$PACKAGE_NAME/build"
UR0S_C0MP0NENT_DIR="$(ros2 pkg prefix uros_esp32)/component"

i f [! -d "$PACKAGE_DIR"]; then
echo "Package '$PACKAGE_NAME' not i n current workspace!" > /dev/stderr
exit 1

f i

• PACKAGE_NAME is the package name provided as an argument

• IDF_ARGS is the rest of provided arguments

• PACKAGE_DIR is where the R O S 2 package which contains the E S P - I D F project is
located

• PACKAGE_BUILD_DIR is where the bu i ld artifacts w i l l be stored as per convention set
by colcon

• UR0S_C0MP0NENT_DIR is the locat ion of the compiled mic ro -ROS component

In this section we set up a l l required variables to correctly invoke the idf .py command and
check for any errors. If the mic ro -ROS component is not buil t (or it has been buil t but local
instal l script, like install/setup.bash, has not been sourced yet), the bash command
$(ros2 pkg prefix uros_esp32) w i l l fail and the script w i l l not continue. Likewise i f
PACKAGE_DIR is not a val id directory, that means that either colcon has not been set up
correctly (local instal l script has not been sourced), or the specified package doesn't exist,
the script fails and exits. Th is prevents incorrect setup for wrapping the idf .py command
and invoking it for the correct E S P - I D F project. However, any addi t ional commands are
not sanitized, which can lead to intorrect usage of the idf .py command.

pushd "$PACKAGE_DIR/$PACKAGE_NAME" > /dev/null
UR0S_C0MP0NENT_DIR="$UR0S_C0MP0NENT_DIR" \

idf.py -B $PACKAGE_BUILD_DIR $IDF_ARGS
popd > /dev/null

In this section the environment is set up correctly and the idf.py command can be in
voked to manage the specified E S P - I D F project. To invoke the idf.py command i n the
correct project we step into its direcory, which locat ion is stored at previously set variable
PACKAGE_DIR, using the pushd command. Since the mic ro -ROS component is decopuled,
we need to somehow l ink the component back into the E S P - I D F bu i ld system. The l ink ing

20

itself is done by the E S P - I D F project itself 6.1.3, but we need to provide the correct path
to the component. Th is is done by setting an environment variable UR0S_C0MP0NENT_DIR.
Then we invoke the idf .py command itself, but to comply wi th the colcon conventions, we
specify the directory where the bu i ld artifacts should be stored. After the idf . py command
is done, we return back to our current direcory by using the popd command.

6.1.2 build_micro_ros script

The build_micro_ros script is designed to automate the bui ld ing of the M i c r o - R O S E S P -
I D F component as a ROS2 package.

This script provides addi t ional option, so there is a usage information that can be
printed out by specifying the - h or -help argument.

C0LC0N_VERB0SE=""
i f [= "-v"] II ["$1" = "—colcon-verbose"]; then

C0LC0N_VERB0SE="~event-handle console_direct+"
f i

The opt ion is to pipe bui ld output from colcon directly into terminal . Th i s opt ion is enabled
by specifying -v or -colcon-verbose argument, which upon detecting the script w i l l set
C0LC0N_VERB0SE variable that contains proper arguemt for colcon to pipe its bui ld output
directly into terminal .

UROS_PACKAGE_NAME="esp_uros"
PREFIX="$(ros2 pkg prefix esp_env)"
UR0S_PREFIX="$(ros2 pkg prefix $UROS_PACKAGE_NAME)"
UROS_IDF_NAME="micro_ros_espidf_component"
UROS_SRC="$UROS_PREFIX/../../src/$UROS_PACKAGE_NAME"

Here, the script sets up several important variables:

• UROS_PACKAGE_NAME is the name of R O S 2 package for mic ro -ROS component E S P -
I D F to reside i n

• PREFIX gets the esp_env package prefix (which is the instal l directory)

• UROS_PREFIX gets the UROS_PACKAGE_NAME package prefix. This is to ensure we don't
unnecessarily overwrite existing mic ro -ROS package

• UROS_IDF_NAME is the mic ro -ROS E S P - I D F component name and where the reposi
tory w i l l be located

• UR0S_SRC is the where the R O S 2 package containing mic ro -ROS E S P - I D F component
located

MOVED_DIRS=
i f [! "$(basename $PWD)" = "src"]; then

pushd "src" > /dev/null
MOVED_DIRS=true

f i

21

Colcon commands have to be invoked from the local R O S 2 workspace directory, but com
mands like ros2 pkg create work wi th the directory from which the command is invoked.
So to ensure the pakcage is created wi th in the correct directory we check i f we are in te
src/ directory. If we aren't, then we step into the src/ directory. This script doesn't check
if we are in the root of a workspace or even i f the src/ directory even exists. Th is is is
intentional, since there is l i t t le to no reason to be anywhere else than the workspace root
or src/ directories.

i f [-z "$UROS_PREFIX"]; then
ros2 pkg create \

—build-type ament_cmake \
— d e s c r i p t i o n "Micro ROS wrapper to esp32 microros component

for ease of use as a standalone ros2 package" \
"$UROS_PACKAGE_NAME"

pushd "$UROS_PACKAGE_NAME" > /dev/null
UROS_SRC="$PWD"
cp $PREFIX/templates/micro_ros.cmakelists CMakeLists.txt
cp $PREFIX/templates/idf_build.sh .
cp $PREFIX/templates/rebuild.sh rebuild
cp $PREFIX/templates/add_packages.sh add_packages
rm - r src include > /dev/null

popd > /dev/null
UR0S_PREFIX="$(ros2 pkg prefix $UROS_PACKAGE_NAME)"

f i

In this section, the script checks i f the M i c r o - R O S package exists in the workspace to prevent
redownloading. If it doesn't exist, we create a new ROS2 package and copy over template
files templates/micro_ros.cmakelsits as CMakeLists.txt, templates/idf_build.sh,
templates/rebuild.sh as rebuild and templates/add_packages.sh as add_packages
from the esp_env templates/ directory that are required to bu i ld and manage the Mic ro -
R O S component. It also removes unnecessary directories which were created by ros2 pkg
create command.

i f [- f "$UROS_PREFIX/components/libmicroros.a"]; then
echo "Micro ROS i s already b u i l t . "
exit 0

f i

This section s imply checks i f the M i c r o - R O S has already been buil t by looking for the
' l ibmicroros.a ' file. If it exists, then the mic ro -ROS package is already bui ld , so there is
nothing more to do.

i f ["$MOVED_DIRS"]; then
popd > /dev/null
colcon build —packages-select "$UROS_PACKAGE_NAME" $C0LC0N_VERB0SE

else
pushd ".." > /dev/null

colcon bu i l d —packages-select "$UROS_PACKAGE_NAME" $C0LC0N_VERB0SE
popd > /dev/null

f i

22

Final ly , i f the mic ro -ROS component has not been buil t yet, this section builds the Mic ro -
R O S package using 'colcon'. However as previously stated, the colcon command has to
be invoked from the R O S 2 workspace root directory. So we need to change directories.
Depending on where we invoked the build_micro_ros command we need to either go back
to where we came from (if we stepped into the src/ directory earlier), or step into the
previous directory, which should be the R O S 2 workspace root.

6.1.3 new_project script

This script reduces the manual labor of creating an E S P - I D F project wrapped as a R O S 2
package.

This script takes at least one argument which is the name of the R O S 2 package. For
easier configuration the containing E S P - I D F projects name is also the first argument of
this script. A n y addi t ional arguments w i l l be passed unchanged to the ros2 pkg create
command.

MOVED_DIRS=""
i f [! "$(basename $PWD)" = "src"]; then

pushd "src" > /dev/null
MOVED_DIRS=true

f i

This is the same as i n 6.1.2. If we aren't i n the src/ directory, step i n the src/ directory.

ros2 pkg create $@ —build-type ament_cmake
pushd "$1" > /dev/null

idf.py create-project "$1"
pushd "$1" > /dev/null

sed - i "/"project(.*)$/i \
idf_build_component(\$ENV{UROS_COMPONENT_DIR»" \
CMakeLists.txt

popd >/dev/null
cp $PREFIX/templates/new_project.cmakelists.in CMakeLists.txt
sed - i "s/@PACKAGE_NAME@/$l/" CMakeLists.txt
sed - i "/<license>/a \ <depend>esp_uros</depend>" package.xml
cp $PREFIX/templates/idf.sh.in idf
sed - i "s/@PACKAGE_NAME@/$l/" idf
rm - r src/ include/

popd > /dev/null

Here we create the new R O S 2 package. A s stated before, any addi t ional arguments besides
the package name w i l l be passed over to the ros2 pkg create command. The bu i ld type
is ament_cmake since E S P - I D F projects also rely on C M a k e . This w i l l make it easier to
integrate the E S P - I D F project into the R O S 2 environment

Next we step into the newly created R O S 2 package and create a new E S P - I D F project
w i th the same name. If there is a need to configure the E S P - I D F project further using the
idf .py command, we can use the ros2 run esp_env idf <package_name> [<idf _argument>
. . .] command, or compile the package once, so its own idf script w i l l be installed and
the ros2 run <package_name> idf [<idf_argument> . . .] command w i l l be available
to reach the package wi th the idf .py tool .

23

After the ESP-IDF package is created, we step into the project directory and insert the
idf_build_component(
$ENVUROS_COMPONENT_DIR) „ line to the project's CMakeLists.txt, so that the decopuled
mic ro -ROS component can be used wi th in the newly created ESP-IDF project.

https://cmake.org/cmake/help/latest/command/configure_file.html#transformations

A s we step out of the ESP-IDF project back into the R O S 2 package directory, we
copy the templates/new_project. cmakelists. in from the esp_env package and save it
as CMakeLists.txt. Th is CMakeLi s t s . t x t file has CMake tranformations style variable,
so this could have been imported by C M a k e . Th is is ul t imately not included by C M a k e , but
the template variable stayed i n this style. We replace the @PACKAGE_NAME@ inside wi th the
package name provided as an argument. Then we insert an esp_uros dependency inside
the package. xml manifest file.

We then copy the templates/idf. sh. i n file as just an idf file. We make the same
replacement here as before, replacing @PACKAGE_NAME@ w i th the package name provided by
the agrument.

Las t ly we remove unnecessary directories that were generated by the r o s 2 pkg create
command and go back to the direcotory the script was invoked in .

6.2 esp_uros package

The esp_uros package, designed as an ament_cmake package, allows the integration and
management the M i c r o - R O S ESP-IDF component wi th in the R O S 2 environment. This
package contains several scripts essential for bui lding, adding packages, and maintaining
the M i c r o - R O S environment.

Package C o n t e n t s

The package includes:

• CMakeLists.txt which prepares and builds the mic ro -ROS ESP-IDF project and
handles the instal lat ion of the compiled component as well as its management scripts

• add_packages automates adding addi t ional R O S 2 packages to the M i c r o - R O S bui ld
environment.

• idf_build.sh automates the bui ld ing process of the M i c r o - R O S ESP-IDF compo
nent..

• rebuild automates cleanint and rebuilding the M i c r o - R O S component.

6.2.1 C M a k e

The CMakeLists.txt file in i t ia l ly ut i l ized the ExternalProject_Add function for integrat
ing the external M i c r o - R O S ESP-IDF component hosted on G i t H u b . However after adding
addi t ional package to the mic ro -ROS environment, the C M a k e re-downloaded the entire
repository, which led to the removal of a l l extra packages. The bu i ld step was modified
to manual download and bu i ld processes, even though there already exists a solution for
adding external projects into C M a k e .

24

https://cmake.org/cmake/help/latest/command/configure_file.html%23transformations

set(IDF_PROJECT_NAME "micro_ros_espidf_component")
set(UROS_SOURCE_DIR ${CMAKE_SOURCE_DIR>/${IDF_PROJECT_NAME»
set(DUMMY_PROJ_DIR ${UR0S_S0URCE_DIR>/examples/int32_publisher)

This configuration sets essential options needed for compilat ion:

• IDF_PR0 JECT_NAME is the name of the mic ro -ROS E S P - I D F component

• UR0S_S0URCE_DIR is the location of the mic ro -ROS E S P - I D F component

• DUMMY_PR0 J_DIR is the location of an E S P - I D F example applicat ion u t i l iz ing micro-
R O S

if(NOT EXISTS ${UR0S_S0URCE_DIR»
execute_process(

COMMAND g i t clone
-b $ENV{R0S_DISTR0>
https://github.com/micro-ROS/${IDF_PROJECT_NAME>

WORKING_DIRECTORY ${CMAKE_SOURCE_DIR»
endif()

This section ensures that the mic ro -ROS E S P - I D F component w i th the correct branch is
fetched from its repository i f it is not already present i n the workspace.

add_custom_target(
${PROJECT_NAME>_build ALL
env - i

IDF_PATH=$ENV{IDF_PATH>
PROJECT_BUILD_DIR=${CMAKE_BINARY_DIR}/build
DISPLAY=$ENV{DISPLAY}
${CMAKE_SOURCE_DIR>/idf_build.sh

WORKING_DIRECTORY ${DUMMY_PR0J_DIR>
VERBATIM

)

Th is section builds the mic ro -ROS E S P - I D F component. The bu i ld process uses a clean
environment to avoid conflicts between the E S P - I D F ' s usage of colcon and the R O S 2
environment. Th is is achieved by the env - i command, which creates a completly clean
environment. However the environment cannot be completly clean, as we need the E S P - I D F
toolchain to be able to bu i ld the E S P - I D F component. We provide this w i th the IDF_PATH
variable, which points to the root directory of our currently active E S P - I D F toolchain.
A l o n g wi th this we provide the package's conventional R O S 2 bu i ld directory location. The
DISPLAY variable passed as colcon uses it for sending system notifications about its bu i ld
status.

add_custom_command(
TARGET ${PROJECT_NAME>_build
POST_BUILD
COMMAND sed ARGS -n "/~idf_component_register/,/)/p"

CMakeLists.txt > /tmp/CMakeLists.txt

25

https://github.com/micro-ROS/$%7bIDF_PROJECT_NAME

COMMAND sed ARGS -n "/~add_prebuilt_library/,//p"
CMakeLists.txt » /tmp/CMakeLists.txt

WORKING_DIRECTORY ${UROS_SOURCE_DIR>
VERBATIM

)

This command generates a modified CMakeLists.txt from the mic ro -ROS E S P - I D F com
ponent without its bu i ld step. In the instal lat ion step we copy a l l necessary files, which the
original CMakeLists.txt would cause problems wi th the E S P - I D F ' s bu i ld system. W h e n
other E S P - I D F projects would include the esp_uros installed component, the E S P - I D F ' s
bu i ld system would attempt to rebuild the mic ro -ROS library. To prevent this we removed
the bu i ld step and leave only the l inks to the buil t l ibrary.

i n s t a l l (
DIRECTORY

${IDF_PROJECT_NAME>/include
${IDF_PROJECT_NAME>/network_interfaces

DESTINATION component
USE_SOURCE_PERMISSIONS

)
i n s t a l l (

FILES
/tmp/CMakeLists.txt
${IDF_PROJECT_NAME>/Kconfig.projbuild
${IDF_PR0JECT_NAME>/libmicroros.a

DESTINATION component
)

i n s t a l l (
PROGRAMS

add_packages
rebuild

DESTINATION lib/${PROJECT_NAME>
)

Th is instal lat ion script places the necessary header files located i n the include/ and
network_interf aces/ directories, the buil t m ic ro -ROS l ibrary libmicroros. a along wi th
its Kconfig.projbuild and CMakeLists.txt files, and add_packages and rebuild scripts
into the appropriate locations wi th in the R O S 2 package structure, ensuring they are ac
cessible for projects that depend on this package.

i d f _ b u i l d . sh script

#!/usr/bin/bash

i f [-z "$IDF_PATH"]; then
echo "IDF_PATH i s undefined!" > /dev/stderr
exit 1

f i

26

export PATH=$(getconf PATH)
. "$IDF_PATH/export.sh" > /dev/null

i f ["$PROJECT_BUILD_DIR"]; then
PROJECT_BUILD_DIR="-B $PR0JECT_BUILD_DIR"

f i

idf.py $PROJECT_BUILD_DIR buil d

Because when bui lding the mic ro -ROS E S P - I D F project we work wi th in a clean environment
(see 6.2.1), which is why we need to set up the E S P - I D F toolchain. To achieve this we source
the t e x t t t $ I D F _ P A T H / e x p o r t . s h in our clean environment. After which we can invoke the
idf .py command and bui ld the mic ro -ROS E S P - I D F component.

6.2.2 add_packages script

The add_packages script simplifies the process of adding external R O S 2 packages to the
M i c r o - R O S environment by automating the copying of package directories.

The script takes one or more package names as arguments. Since this script behavior
depends on its arguments and it might not be entirely clear on what those should be, there
is an agument option (-h or -help) that w i l l print the script 's usage information.

PACKAGE_DIR="$COLCON_PREFIX_PATH/../src"
echo -n "$@" | xargs -d " " -I °/„ cp -r $PACKAGE_DIR/°/„ \

"$PACKAGE_DIR/esp_uros/micro_ros_espidf_component/extra_packages/"

This script w i l l copy any directories (which should be val id R O S 2 packages) that were
provided by arguments to the mic ro -ROS E S P - I D F project's extra_packages/ directory.
This is achieved by the xargs command which can run duplicate commands based on its
input. We uti l ize this to run cp -r command for each provided package.

6.2.3 r e b u i l d script

The rebuild script simplifies the rebuilding of the esp_uros package. W h e n t ry ing to
bu i ld the package again the mic ro -ROS would not get rebuilt . Th is is because of how the
component gets bui l t , which it builds an E S P - I D F example provided by the mic ro -ROS
package, the E S P - I D F bu i ld system w i l l not trigger a rebui ld of the mic ro -ROS component
when there are no direct changes to its dependencies.

The only way to rebui ld the mic ro -ROS package was to either manual ly invoke make
-f libmicroros .mk clean in the mic ro -ROS E S P - I D F component directory, or to remove
the whole directory, upon which C M a k e would download the project repository again (see
6.2.1).

The rebuild script has the same options and help message as the build_micro_ros
(see 6.1.2) from the esp_env package.

pushd "src/esp_uros/micro_ros_espidf_component" > /dev/null
make - f libmicroros.mk clean

popd > /dev/null
colcon bu i l d —packages-select esp_uros $VERB0SE

27

This script takes the former route of stepping into the mic ro -ROS E S P - I D F directory and
invoking the make -f libmicroros .mk clean command, which removes a l l bu i ld artifacts.
The script assumes that we are invoking it from the R O S 2 local workspace root directory,
so that it can step into the mic ro -ROS E S P - I D F component directory directly.

Las t ly the script just invokes colcon build and let C M a k e take care of the rebuild.

6.3 E S P - I D F project as a ROS2 package

https://docs.espressif.com / projects / esp-idf/en/v5.2.1/esp32 / api-guides/build-system.html De
spite the fact that both R O S 2's and E S P - I D F ' s bu i ld systems are based on C M a k e , the
E S P - I D F project integration into the R O S 2 environment was quite challenging. Ini t ia l
attempts to integrate directly using E S P - I D F ' s C M a k e A P I were unsuccessful, leading to
the adoption of a simpler, more robust approach using C M a k e ' s ExternalProject_Add
function.

This approach is par t icular ly suitable given that the E S P - I D F projects, that would be
integrated as R O S 2 packages, are typical ly applications rather than libraries, and do not
generally require export ing bui ld artifacts as reusable components. However, i f export ing is
necessary, the methodology used in the esp_uros (see 6.2.1) package for handling E S P - I D F
components can be adapted.

Package C o n t e n t s

• A directory named after the R O S 2 package containing the E S P - I D F project.

• CMakeLists.txt that prepares and builds the containing E S P - I D F project

• idf bash script that wraps the idf .py command

6.3.1 C M a k e L i s t s . t x t

The CMakeLists.txt for integrating an E S P - I D F project is relatively straightforward,

find_package(esp_uros REQUIRED)
set(UROS_COMPONENT_DIR ${uros_esp32_DIR>/../../../component)

This script utilizes R O S 2's ament package management to locate the esp_uros package,
setting up a l ink to the buil t mic ro -ROS component.

include(ExternalProject)
ExternalProj ect_Add(

${PROJECT_NAME>
SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR>/${PROJECT_NAME>/main
BINARY_DIR ${CMAKE_CURRENT_SOURCE_DIR>/${PROJECT_NAME>
CONFIGURE_COMMAND ""
BUILD_COMMAND UROS_COMPONENT_DIR=${UROS_COMPONENT_DIR> \

idf.py -B ${CMAKE_BINARY_DIR>/build build
INSTALL_COMMAND ""
BUILD_ALWAYS TRUE

)

28

https://docs.espressif.com

Here, ExternalProject_Add configures the E S P - I D F project, s imilar to esp_uros package
(see 6.2.1), as an external project wi th in the R O S 2 bu i ld environment. However, unlike
in the esp_uros C M a k e setup, there is no need for a clean environment because typical
E S P - I D F projects do not conflict w i th R O S 2 settings. The project is set to rebui ld always
to ensure updates are processed during every bui ld cycle.

The C M a k e bu i ld finishes by instal l ing the idf script, so the idf .py command can be
ut i l ized later.

6.3.2 i d f scr ipt

The idf script i n this package mirrors the idf script in the esp_env package (see 6.1.1),
providing a consistent interface for project configuration and bui ld ing. This script simplifies
the execution of the idf .py tool , streamlining the development process for the package's
E S P - I D F project.

29

Chapter 7

Example Implementation

This example illustrates the integration of E S P 3 2 microcontrollers into the R O S 2 ecosystem
by implementing a multi-node applicat ion that interfaces wi th both hardware and software
components. The implementation consists of four nodes: C a m e r a Node, C a m e r a User
Interface Node, Q R Detector Node, and L E D Strip Node. Communica t ion between
the camera node and the camera user interface node is dependent on a custom interface.

7.1 Custom Interface

To efficiently configure the camera node, we have defined a custom message and service
types.

7.1.1 C a m e r a C o n f i g message

The CameraConfig.msg defines the structure for camera configuration settings. It includes
a set of parameters that can be adjusted to modify the behavior and output of the camera.

7.1.2 G e t C a m e r a C o n f i g service

The GetCameraConf ig.srv service is defined to allow the retrieval of the current camera
configuration on demand. The service does not require any input parameters and responds
w i t h the current configuration settings.

custom_interface/CameraConfig config

7.1.3 Set C a m e r a C o n f i g Service

The SetCameraConf i g . srv service allows for the configuration of the camera settings. The
service accepts a CameraConf i g message as a request and returns a status boolean indicat ing
the success or failure of the operation, along wi th the new camera configuration:

custom_interface/CameraConfig config

bool status
custom_interface/CameraConfig config

30

7.2 Camera Node

The Camera Node is implemented on an E S P 3 2 microcontroller w i th an attached camera
module. Its pr imary function is to capture and periodical ly publ ish images from the camera
feed through a R O S 2 topic. Addi t ional ly , this node offers services to retrieve the current
camera configuration and to adjust the configurations.

Since this node deals w i th images, the E S P 3 2 w i l l most l ikely not have enough R A M to
store the images above a certain size. Enab l ing P S R A M solves this issue.

7.2.1 C a m e r a in i t ia l i zat ion

camera_config_t camera_config = {

.pixel_format = PIXFORMAT_JPEG,

.frame_size = FRAMESIZE_UXGA,

.jpeg_quality = 10,

.fb_count = 2 ,

.grab_mode = CAMERA_GRAB_WHEN_EMPTY
};

esp_err_t ret = esp_camera_init(&camera_config);
i f (r e t != ESP_0K) return ret;
sensor_t * s = esp_camera_sensor_get();
ret = s->set_framesize(s, FRAMESIZE_QVGA);
i f (r e t != ESP_0K) return ESP_FAIL;
return ESP_0K;

To ini t ial ize the camera, the camera configuration structure is populated and the camera
is started. This code configures the E S P 3 2 camera to the highest camera resolution, which
allocates the frame buffer to fit the m a x i m u m frame size possible during the ini t ia l izat ion.
Th is ensures that a l l subsequent camera image grabs w i l l have enough space to store the
frame buffer.

7.2.2 N o d e in i t ia l i zat ion

r c l _ a l l o c a t o r _ t allocator = rcl_get_default_allocator();
rclc_support_t support;

r c l _ i n i t _ o p t i o n s _ t init_options = r c l _ g e t _ z e r o _ i n i t i a l i z e d _ i n i t _ o p t i o n s () ;
RCCHECK(rcl_init_options_init(&init_options, a l l o c a t o r)) ;

#ifdef CONFIG_MICRO_ROS_ESP_XRCE_DDS_MIDDLEWARE
rmw_init_options_t* rmw_options =

rcl_init_options_get_rmw_init_options(&init_options);
RCCHECK(rmw_uros_options_set_udp_address(CONFIG_MICRO_ROS_AGENT_IP,

CONFIG J O CR0_R0S_AGENT_P0RT,
rmw_options));

#endif
RCCHECK(rclc_support_init_with_options(fesupport, 0 , NULL,

31

&init_options, feallocator));

rcl_node_t node;
RCCHECK(rclc_node_init_default(&node, C0NF_R0S_N0DE_NAME, "", fesupport));

This section sets up a default m ic ro -ROS node, in i t ia l iz ing the default R O S environment
and connecting to a mic ro -ROS agent.

RCCHECK(rclc_publisher_init_default(
fepublisher,
fenode,
ROSIDL_GET_MSG_TYPE_SUPPORT(sensor_msgs, msg, Compressedlmage),
CONFIG_CAMERA_TOPIC_PATH)

) ;

Th is section initializes the publisher responsible for publishing compressed images captured
by the camera to the topic defined by the project configuration.

r c l _ s e r v i c e _ t srv_cam_conf_set;
custom_interface srv SetCameraConfig
custom_interface srv SetCameraConfig
RCCHECK(rclc_service_init_default(

&srv_cam_conf_set,
fenode,
ROSIDL_GET_SRV_TYPE_SUPPORT(custom
CONF_CAMERA_SET_CONF_TOPIC)

) ;
r c l _ s e r v i c e _ t srv_cam_conf_get;
custom_interface srv GetCameraConfig
custom_interface srv GetCameraConfig
RCCHECK(rclc_service_init_default(

&srv_cam_conf_get,
fenode,
ROSIDL_GET_SRV_TYPE_SUPPORT(custom
CONF_CAMERA_GET_CONF_TOPIC)

) ;

Th is segment details the in i t ia l iza t ion of two R O S services w i th in the camera node. The
first service allows users to set the camera configuration, and the second service enables
retrieving the current camera settings. The paths of these services are defined i n the projects
configuration.

rcl_timer_t timer;
RCCHECK(rclc_timer_init_default(fetimer,

fesupport,
RCL_MS_T0_NS(10),
publish_timer_callback));

In this section a t imer is created to trigger the publish_timer_callback function wi th a
t imer execution timeout of 10 milliseconds.

_Request msg_cam_conf_set_req;
_Response msg_cam_conf_set_res;

_interface, srv, SetCameraConfig),

_Request msg_cam_conf_get_req;
_Response msg_cam_conf_get_res;

_interface, srv, GetCameraConfig),

32

img_msg.header.frame_id = micro_ros_string_utilities_init("ESP32 camera");
img_msg.header.stamp.sec = 0;
img_msg.header.stamp.nanosec = 0;
img_msg.format = m i c r o _ r o s _ s t r i n g _ u t i l i t i e s _ i n i t (" j p e g ") ;

Immediately following node ini t ia l izat ion, we prepare the image message that w i l l be pub
lished. It sets the frame identifier, t imestamp, and image format, establishing the necessary
metadata for image messages sent by this node.

rclc_executor_t executor;
RCCHECK(rclc_executor_init(feexecutor, fesupport.context, 3, feallocator));
RCCHECK(rclc_executor_add_service(feexecutor,

&srv_cam_conf_get,
&msg_cam_conf_get_req,
&msg_cam_conf_get_res,
srv_cam_conf_get_callback));

RCCHECK(rclc_executor_add_service(feexecutor,
&srv_cam_conf_set,
&msg_cam_conf_set_req,
&msg_cam_conf_set_res,
srv_cam_conf_set_callback));

RCCHECK(rclc_executor_add_timer(feexecutor, fetimer));

The executor is a cr i t ica l component i n R O S 2, responsible for managing the callbacks
associated wi th timers and services. This in i t ia l iza t ion code sets up the executor to handle
service requests for camera configuration and to invoke the publishing timer, al lowing the
asynchronous functionality of the node. In r c l c we have to declare the m a x i m u m number
of registrations for the executor, since the E S P 3 2 is a device wi th l imi ted resources. This
allows for better memory management, since the executor size is not dynamic.

while (1H
rclc_executor_spin_some(feexecutor, RCL_MS_T0_NS(10));
vTaskDelay(l / portTICK_PERIOD_MS);

}

This loop is the core of the node's operation. It repeatedly checks for events such as t imer ex
pirations or service requests and processes them as needed. The use of rclc_executor_spin_some
allows the node to remain responsive, processing incoming requests and maintaining regular
image publicat ion.

7.2.3 E v e n t h a n d l i n g

C a m e r a feed p u b l i s h i n g

void publish_timer_callback(rcl_timer_t *timer, int64_t last_call_time) {
st a t i c int64_t since_last_publish = 0;
i f (!timer) return;

since_last_publish += last_call_time;
i f (since_last_publish < RCL_MS_T0_NS(33)) return;

33

since_last_publish = 0;

camera_fb_t *fb = NULL;
fb = esp_camera_fb_get();
i f (! f b) {

ESP_L0GW(TAG, "Camera capture f a i l e d . ") ;
return;

}

img_msg.data.data = fb->buf;
img_msg.data.size = fb->len;
img_msg.data.capacity = fb->len;

ESP_L0GD(TAG, "Publishing Image: 0/„dx0/0d - °/„d B",
fb->width, fb->height, fb->len);

RCSOFTCHECK(rcl_publish(&publisher, &img_msg, NULL));

esp_camera_fb_return(fb);
img_msg.data.data = NULL;
img_msg.data.size = 0;
img_msg.data.capacity = 0;

}

In this function, the t imer callback manages the periodic publishing of the camera feed. It
ensures a frame rate l imi t of approximately 30 frames per second by publishing the image
roughly every l / 3 0 t h of a second. The function retrieves a frame buffer from the E S P
camera and publishes i t . After publicat ion, the buffer is returned to free up memory to
prevent memory leaks.

Service h a n d l i n g

void srv_cam_conf_get_callback(const void *req, void *res) {
RCLC_UNUSED(req);
custom_interface srv GetCameraConfig_Response *response =

(custom_interface srv GetCameraConfig_Response *) res;

const sensor_t *camera = esp_camera_sensor_get();
copy_camera_status(&(response->config), camera->status);
response->config.pixformat = camera->pixformat;

}

This callback function handles requests to get the current camera configuration. It extracts
the camera settings from the hardware and populates the response object, which is then
sent back to the requester. This service is crucial for clients needing to adjust settings based
on current configurations.

void srv_cam_conf_set_callback(const void *req, void *res) {
custom_interface srv SetCameraConfig_Request *request =

(custom_interface srv SetCameraConfig_Request *) req;

34

custom_interface srv SetCameraConfig_Response *response =
(custom_interface srv SetCameraConfig_Response *) res;

sensor_t *camera = esp_camera_sensor_get();

custom_interface msg CameraConfig tmp;
copy_camera_status(&tmp, camera->status);

response->status = 0;
SET_IF_DIFFERENT(framesize);

SET_IF_DIFFERENT(c o1orbar);
SET_IF_DIFFERENT_EXPLICIT(awb, whitebal);
SET_IF_DIFFERENT_EXPLICIT(aec, exposure_ctrl);
SET_IF_DIFFERENT_EXPLICIT(age, g a i n _ c t r l) ;
copy_camera_status(&(response->config), camera->status);
copy_camera_status(&tmp, camera->status);

}

This callback function handles service requests to set new camera configurations. It com
pares requested settings to current settings and only applies changes i f they differ, opti
miz ing performance by avoiding unnecessary hardware interactions. After adjustments, it
updates the response wi th the new settings to confirm the changes to the client.

7.3 Camera User Interface Node

Camera User Interface is a P y t h o n node which also runs a Flask server to interact w i th
users. Th is node subscribes to the image data published by the Camera Node, forwarding
the live camera feed to the user interface. Users can modify camera settings through the
web interface. U p o n receiving user inputs, the node requests an adjustment to the new
settings to the Camera Node using the custom interface.

7.3.1 N o d e in i t ia l i zat ion

def i n i t (s e l f) :
super(). i n i t ('ESP32_Camera_Web_Server')
self.subscription = self.create_subscription(CompressedImage,

'/esp32/camera/image_jpeg),
self.image_callback, 1)

self.sub_color = self.create_subscription(String,
'/qr_message),
self.qr_color_callback, 1)

self.get_conf_client = self.create_client(GetCameraConfig,
'/esp32/camera/config/get')

self.set_conf_client = self.create_client(SetCameraConfig,
'/esp32/camera/config/set')

self.get_conf_timer = None

35

self.set_conf_timer = None
self._get_promise = None
self._set_promise = None
self.current_cam_conf = CameraConfig()

self._wait_for_services()
self.request_config()

This function initializes the node and its subscriptions to both image and Q R color data
streams. It then initiates service availabil i ty checks and requests the current camera con
figuration to synchronize its state wi th the camera's settings.

def _wait_for_services(self):
print("Waiting for Getter", end="")
while not self.get_conf_client.wait_for_service(timeout_sec=l.0) :

self.get_logger().info('Get service not available, waiting again...')
p r i n t (" . " , end="")

print()

self.srv_get_req = GetCameraConfig.Request()

print("Waiting for Setter", end="")
while not self.set_conf_client.wait_for_service(timeout_sec=l.0) :

self.get_logger().info('Set service not available, waiting again...')
p r i n t (" . " , end="")

print()
self.srv_set_req = SetCameraConfig.Request()

This segment initializes the GetCameraConfig and SetCameraConfig service clients. The
node w i l l check every second to see if the services are available before proceeding.

7.3.2 N o d e c o m m u n i c a t i o n

def request_config(self):
def _request_get():

i f self._get_promise and self._get_promise.done():
self.current_cam_conf = self._get_promise.result().config
self._get_promise = None
self.destroy_timer(self.get_conf_timer)
self.get_conf_timer = None

i f not self.get_conf_timer:
self.get_conf_timer = self.create_timer (0 . 1, _request_get)
self._get_promise = self.get_conf_client.call_async(self.srv_get_req)

This method manages asynchronous requests to retrieve the current camera configuration.
It sets a t imer to check the promise status and updates the configuration state upon com
pletion.

def adjust_config(self, new_config):

36

def _request_set():
i f self._set_promise and self._set_promise.done():

self.current_cam_conf = self._set_promise.result().config
self._set_promise = None
self.destroy_timer(self.set_conf_timer)
self.set_conf_timer = None

i f not self.set_conf_timer:
self.set_conf_timer = self.create_timer (0 . 1, _request_set)
self.srv_set_req.config = new_config
self._set_promise = self.set_conf_client.call_async(self.srv_set_req)

This function handles the adjustment of camera settings by sending asynchronous service
requests to set the new configuration parameters.

7.3.3 F l a s k server

https://htmx.org/

Flask is a simple developement http server. For client-side reactivi ty we boosted the h tml
wi th H T M x .

app = Flask(__name__, root_path=f"{env['C0LC0N_PREFIX_PATH']}/
{__name__.split(' . ') [0]}/flask")

The F lask server is ini t ia l ized w i t h a root path of the installed H T M L templates.

Server paths

@app.route("/", methods=["GET", "POST"])
def index():

global server

i f request.method == "POST":
converted = {}
for key, val i n request.form.items():

converted [key] = int(val.replace("on", "1"))
new_config = CameraConfig(**converted)
node.set_config(new_config)
sleep(l)

server.update_config(node.get_config())

return render_template("index.html", menus=server.menus,
sliders=server.sliders,
toggles=server.toggles,
qr_color=qr_color)

The m a i n server route handles both G E T and P O S T requests. P O S T requests process
form submissions to adjust camera configurations, while G E T requests serve the main page
template populated wi th the current settings.

37

https://htmx.org/

@app.route('/stream')
def image_stream():

global server
return Response(server.generate_image_stream(),

mimetype='multipart/x-mixed-replace; boundary=frame')

This route serves a continuous stream of images from the camera, formatted as mul t ipart /x-
mixed-replace for continuous update without requiring page refreshes.

@app.route("/qr_color")
def qr_color_square():

return f'<div class="color_box"
hx-get="/qr_color"
hx-swap="out erHTML"
hx-trigger="every Is"
style= "background-color: {qr_colorJ-; "></div>'

This route dynamical ly updates the background color of a displayed element based on the
most recently detected Q R code, u t i l iz ing H T M x to periodical ly fetch updates without
refreshing the page.

7.4 Q R Detector Node

Q R Detector is a P y t h o n node that processes the incoming video feed from the Camera
Node to identify and decode Q R codes. E a c h detected Q R code is decoded, and the content
is published onto a R O S 2 topic, making the information available to other nodes i n the
network. This node leverages image processing techniques of the pyzbar python module to
efficiently scan and interpret Q R codes from the video stream.

7.4.1 N o d e in i t ia l i zat ion

def i n i t (s e l f) :
super(). i n i t (JQR_Scanner')
self.publisher_ = self.create_publisher(String, Vqr_message), 1)
self.subscription = self.create_subscription(CompressedImage,

'/esp32/camera/image_jpeg),
self.image_callback, 1)

This function initializes the Q R Detector Node, setting up a publisher for the detected Q R
code messages on the /qr_message topic. It also subscribes to the /esp32/camera/image_jpeg
topic to receive compressed images from the Camera Node, which are then processed to
detect Q R codes.

7.4.2 Q R detect ion

def image_callback(self, msg):
img = PIL_Image.open(io.BytesIO(bytes(msg.data)))
decoded_objects = decode(img)
self._old_qr

38

for obj i n decoded_objects:
qr_message = obj.data.decode("utf -8")
i f self._old_qr != qr_message:

self._old_qr = qr_message
print(f"Decoded new qr_message {qr_message}")
tmp = String()
tmp.data = qr_message
self.publisher_.publish(tmp)

Each incoming image frame is converted from its compressed format into a PIL image
object. The pyzbar l ibrary 's decode function scans the image for Q R codes. If a Q R
code is detected and its content has changed from the previous scan, the new content is
published to the /qr_message topic. T h i s method ensures that only new or changed Q R
code information is sent, reducing redundant data transmission and enhancing the efficiency
of the system.

7.5 L E D Strip node

The L E D Str ip node is implemented on an E S P 3 2 microcontroller, which controls an R G B
L E D strip. Th i s node listens to the messages published by the Q R Detector Node. W h e n it
receives a message containing a hex color code (formatted as either # R G B or ^ R R G G B B) ,
it parses the data and changes the color of the L E D strip. Th is setup demonstrates the
reactive capabil i ty of the system to image feedback received by a camera sensor.

7.5.1 N o d e in i t ia l i zat ion

L E D strip node in i t ia l iza t ion is largely same as Camera node (see 7.2.2).

RCCHECK(rclc_subscription_init_default(
fesubscriber,
fenode,
ROSIDL_GET_MSG_TYPE_SUPPORT(std_msgs, msg, String),
C0NFIG_R0S_C0L0R_T0PIC));

This section initializes a subscription to a topic specified by C0NFIG_R0S_C0L0R_T0PIC.
This topic carries messages that potential ly contain hex color codes. If the message is
indeed a hex color code, the node w i l l change the color of the L E D strip to match the
received color.

while (1H
rclc_executor_spin_some(feexecutor, RCL_MS_TO_NS(100));
vTaskDelay(10 / portTICK_PERIOD_MS);

}

In this loop, the node periodical ly checks for new messages wi th a reduced processing
demand, since it has a non-cri t ical role i n the system. This frequency reduction helps to
conserve computat ional resources and bandwidth , pr ior i t iz ing more cr i t ical tasks wi th in the
network.

39

7.5.2 S u b s c r i b e r h a n d l i n g

void subscribe_ledcolor_callback(const void *msg) {
std_msgs msg String *parsed_msg = (stdjnsgs msg String *)msg;
if(parsed_msg->data.data[0] != '#'){

return;
}

i f (! l e d _ s t r i p) {
ESP_LOGW(TAG, "LED s t r i p not i n i t i a l i z e d ! ") ;
return;

uint8_t r, g, b;
char tmp[3] = {0};
switch(parsed_msg->data.size) {

case 4: {
tmp[0] = parsed_msg->data.data[l];
r = (strtoKtmp, NULL, 16)&0xf) « 4;
tmp[0] = parsed_msg->data.data[2];
g = (strtoKtmp, NULL, 16)&0xf) « 4;
tmp[0] = parsed_msg->data.data[3] ;
b = (strtoKtmp, NULL, 16)&0xf) « 4;

} break;
case 7: {

tmp[0] = parsed_msg->data.data[l];
tmp[l] = parsed_msg->data.data[2];
r = strtoKtmp, NULL, 16)&0xff;
tmp[0] = parsed_msg->data.data[3] ;
tmp[l] = parsed_msg->data.data[4] ;
g = strtoKtmp, NULL, 16)&0xff;
tmp[0] = parsed_msg->data.data[5] ;
tmp[l] = parsed_msg->data.data[6] ;
b = strtoKtmp, NULL, 16)&0xff;

} break;
default: {

return;
} break;

}

ESP_L0GI(TAG, "Changing colors to {°/„d, °/.d, °/„d}", r, g, b) ;
for (int i = 0; i < C0NFIG_LED_C0UNT; i++) {

ESP_ERROR_CHECK(led_strip_set_pixel(led_strip, i , r, g, b));
>
ESP_ERROR_CHECK(led_strip_refresh(led_strip));

This callback function checks i f the received string starts w i th a hash (#) symbol, which
indicates the start of a hex color code. It then parses the str ing to extract R G B values,
handling both three-character and six-character formats. Color val idat ion is done only wi th
a leading hash symbol check and a str ing length check. If the received string passes those

40

checks, but does not represent a color, then the color w i l l be set depending on the A S C I I
representation of received characters. The L E D strip then changes to the requested color.

Figure 7.1: R O S graph of the generated by rqt_graph

Figure 7.2: Screenshots of the working example

41

Chapter 8

Conculsion

In conclusion, the ma in objective of this thesis was the successful integration of E S P -
I D F projects into the R O S 2 framework, enabling these projects to function seamlessly
as standard R O S 2 packages. This integration was designed to address the fragmentation
encountered i n managing projects that uti l ize E S P microcontrollers wi th in a R O S 2 envi
ronment. This objective was accomplished through the development and deployment of the
esp_env and esp_uros packages, which simplify the integration process and expand the
potential applications of E S P 3 2 microcontrollers in robotics. B y accomplishing this, the
thesis adheres to and fulfills its in i t i a l intention and formal assignment.

The integration of E S P - I D F projects into the R O S 2 framework posed several challenges.
Merging two distinct bu i ld systems directly, even though both are based on the same
technology, proved to be difficult enough. The implemented solution involved treating
E S P - I D F projects as standalone projects wi th in the R O S 2 packages, which ut i l ized the
modular nature of bo th systems to mainta in a clear boundary while ensuring functional
integration. Th is thesis has significantly deepened my understanding of the C M a k e bui ld
system and expanded my knowledge on robotics and distr ibuted systems.

There are several future advancements to this thesis could focus on further refining.
For exmaple the integration of the mic ro -ROS project wi th in the R O S 2 architecture. A
possible direction is the potential reconfiguration of the esp_uros package wi th the E S P -
I D F toolchain to fully uti l ize colcon, the R O S 2 bui ld system, which would create a more
unified development environment. Th is would involve adjusting the colcon configuration to
completely eliminate the need for the idf .py command, which would streamline the bui ld
process.

42

Bibliography

[1] ESP-IDF Programming Guide v5.2.1 documentation online. Available at: https://
docs.espressif.com/projects/esp-idf /en/v5.2. l/esp32/api-guides /build- system.html.
[cit. 2024-05-06].

[2] Features and Architecture / micro-ROS online. Available at:
https://micro.ros.org/docs/overview/R0S_2_feature_comparison/. [cit. 2024-05-06].

[3] Q U I G L E Y , M . ; C O N L E Y , K . ; G E R K E Y , B . ; F A U S T , J . ; F O O T E , T . et a l . R O S : an

open-source Robot Operat ing System. In: Kobe , Japan. ICRA workshop on open
source software. 2009, vol . 3, 3.2, p. 5.

43

http://docs.espressif.com/projects/esp-idf
https://micro.ros.org/docs/overview/R0S_2_feature_comparison/

