
Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Technologies

Diploma Thesis

Building a CSS Framework
Bc. Jan Jeřábek

Supervisor: Ing. Petr Benda, Ph.D.

c© 2017 Czech University of Life Sciences Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

DIPLOMA THESIS ASSIGNMENT
Jan Jeřábek

InformaƟcs

Thesis Ɵtle

Building a CSS Framework

ObjecƟves of thesis
The first objecƟve of the Diploma thesis is to analyse advantages and disadvantages of CSS Framework
implementaƟon and to compare it with tradiƟonal development methods using HTML5, CSS3 and
Javascript.

The second objecƟve is to analyse the trending CSS Frameworks and grid systems. Design and build own
CSS Framework based on their disadvantages using modern frontend design tools & methods, including
CSS responsive pre-compiler.

Methodology

Themethodology of this study is based on analysis and synthesis of technical informaƟon resources dealing
with selected issues. In the pracƟcal part, advantages and disadvantages of CSS Framework implementaƟon
will be analyzed and results will be compared with tradiƟonal development methods. Acquired knowledge
will be applied to the creaƟon of own CSS framework based on trending CSS Frameworks analysis.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 21 Praha 6 - Suchdol

The proposed extent of the thesis
40 – 60 stran

Keywords
Frontend, Responsive Design, Webdesign, CSS3, HTML5, Bootstrap, Javascript, SASS, LESS, UI

Recommended informaƟon sources
CASTRO, E. – HYSLOP, B. HTML5 a CSS3 : názorný průvodce tvorbou WWW stránek. Brno: Computer Press,

2012. ISBN 978-80-251-3733-8.
ECCHER, C. Profesionální webdesign : techniky a vzorová řešení pro XHTML a CSS. Brno: Computer Press,

2010. ISBN 978-80-251-2677-6.
MEYER, E A. – MEYER, E A. CSS : the definiƟve guide. Beijing ; Sebastopol, CA: O’Reilly, 2007. ISBN

0596527330.
SCHAFER, S M. HTML, XHTML a CSS : bible [pro tvorbu WWW stránek] : 4. vydání. Praha: Grada, 2009.

ISBN 978-80-247-2850-6.
TEAGUE, J C. DHTML a CSS pro World Wide Web : prakƟcká vizuální příručka. Praha: SoŌpress, 2005. ISBN

80-86497-77-1.

Expected date of thesis defence
2016/17 SS – FEM

The Diploma Thesis Supervisor
Ing. Petr Benda, Ph.D.

Supervising department
Department of InformaƟon Technologies

Electronic approval: 18. 10. 2016

Ing. Jiří Vaněk, Ph.D.
Head of department

Electronic approval: 24. 10. 2016

Ing. MarƟn Pelikán, Ph.D.
Dean

Prague on 02. 01. 2017

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 21 Praha 6 - Suchdol

Declaration

I declare that I have worked on my Master’s thesis titled "Building a
CSS Framework" by myself and I have used only the sources mentioned at
the end of the thesis. As the author of the diploma thesis, I declare that
the thesis does not break copyrights of any third person.

In Prague on 22nd March 2017 .

Acknowledgement

First and foremost, I want to thank my supervisor Ing. Petr Benda,
Ph.D. for his constant support and guidance throughout the process of
writing the diploma thesis.

A special thanks goes to all the members of ESN CULS Prague and
unighters s.r.o., for giving me the opportunity to work on the project uni-
buddy and making this diploma thesis a contribution to a real project.

Tvorba CSS frameworku

Souhrn

V teoretické části této diplomové práce je analyzován responzivní
webový design za použití CSS3.

Dále jsou analyzovány CSS kompilátory, jejich funkce a výhody oproti
konvenčnímu CSS.

V praktické části je detailně popsaný návrh kompletního CSS frame-
worku, jeho porovnání s ostatními frameworky a celkové výhody tohoto
řešení.

Klíčová slova: Frontend, Responzivní Design, Webdesign, CSS3, HTML5,
Bootstrap, Javascript, SASS, LESS, UI

Building a CSS Framework

Summary

In the theoretical part of this diploma thesis, there is given an analysis
of responsive web design using CSS3

Then the CSS precompilers are analysed as well, including their func-
tionality and advantages over traditional CSS.

Practical part includes a design of a CSS framework, described in de-
tail, its comparison to another frameworks and overall pros of this solution.

Keywords: Frontend, Responsive Design, Webdesign, CSS3, HTML5,
Bootstrap, Javascript, SASS, LESS, UI

“The future is deterministic in principle, but not in practice.”

— David Gilmour

Contents

Contents 9

1 Introduction 12

2 Objectives and Methodology 13

2.1 Objectives of the Thesis . 13
2.2 Methodology . 14

2.2.1 OOCSS (Object-oriented CSS) 14

3 Theoretical Part 16

3.1 CSS3 . 16
3.1.1 Versions . 16
3.1.2 Development . 17
3.1.3 Browser compatibility 18

3.2 Measurements units . 18
3.2.1 Absolute Lengths . 18
3.2.2 Font-Relative Lengths 19
3.2.3 The Viewport Percentage Lengths 19
3.2.4 Percentage Length 19
3.2.5 Combination of Lengths in CSS3 20

3.3 Default CSS3 rules . 20

9

CONTENTS 10

3.3.1 Eric Meyer’s “Reset CSS” 2.0 21
3.3.2 Normalize.css . 21

3.4 Responsive design . 22
3.4.1 Layout . 22

3.4.1.1 Fixed-width Layout 22
3.4.1.2 Fluid Layout 23
3.4.1.3 Elastic Layout 24
3.4.1.4 Hybrid Layout 25

3.4.2 Media Queries . 25
3.4.3 Desktop first approach 27
3.4.4 Mobile first approach 28
3.4.5 Breakpoints . 29

3.5 CSS Precompilers . 31
3.5.1 SASS vs. LESS . 32
3.5.2 Variables . 35
3.5.3 Nesting . 36
3.5.4 Extending . 37
3.5.5 Mixins (custom methods) 37
3.5.6 Color Operations . 38
3.5.7 If/Else Statements 39
3.5.8 Loops . 39
3.5.9 Interpolating . 40
3.5.10 Mathematic Operations 40
3.5.11 Imports . 41

4 Practical Part 42

4.1 Existing Solutions . 42
4.1.1 Bootstrap . 43
4.1.2 PureCSS . 44
4.1.3 Foundation . 44
4.1.4 Comparison of the CSS Frameworks 44

4.2 Framework Specification . 46

CONTENTS 11

4.3 Structure . 46
4.4 Grid System . 47

4.4.1 Gutters . 48
4.4.2 Container . 49
4.4.3 Item . 50
4.4.4 Class Generator . 51

4.5 Mixins . 54
4.5.1 Clearfix . 55
4.5.2 Responsive Embed 56
4.5.3 Box Shadow . 56
4.5.4 Rotate . 57
4.5.5 Linear Gradient . 57
4.5.6 Transition . 58
4.5.7 Flexbox . 58

4.6 Typography . 59
4.7 Deployment . 61

4.7.1 Console . 61
4.7.2 IDE Plug-in . 62
4.7.3 Webpack . 62

4.8 Browser Compatibility . 65

Conclusion 67

Bibliography 69

List of Figures 72

List of Tables 73

A List of abbreviations 74

B Normalize.css v5.0.0 76

Chapter 1
Introduction

Since the 1990, when the first html website was published in CERN
by the British scientist Tim Berners-Lee[21], web design has made a long
evolution journey. Internet websites have become a standard form of how
people find information, communicate with each other and even how they
make money.

Nowadays, web users are accessing websites through multiple devices
which are mass-produced by technology leaders in the market. All the
devices - computers, phones, tablets are programmed to read the website
content and show the content on the display[4].

Since there are many methodologies of web-design and this area is
evolving so fast, it is necessary to keep up with the newest trends. However,
the basic languages used for web design are HTML, CSS and JavaScript,
despite how often updated, compiled or generated. This thesis will intro-
duce the newest possibilities how to handle these languages easier than it
was by the time they were being invented.

12

Chapter 2
Objectives and Methodology

2.1 Objectives of the Thesis

The main objective is to develop a reusable front-end framework. The
Framework will be created after an analysis of existing solutions that are
available in early 2017. The results will guide the development, combining
the strengths, whereas avoiding the weaknesses, which shall lead to a general
improvement. The analysis will be made on grid systems, typography and
overall experience.

The framework will consist of a responsive grid system, a set of re-
usable mixins and typography settings. The framework will focus on re-
usability in future projects and ability to be extended - to add more modules
and elements in future.

The framework has to be customizable, in order to serve various pur-
poses, from a simple static web presentation, to a complex information
system. The core of the framework must be universal enough, customiza-
tion must be easier than creating another framework/design for a different
use-case. Nevertheless, the framework also has to serve the required pur-
pose and not have any unnecessary/unused parts which would make the

13

CHAPTER 2. OBJECTIVES AND METHODOLOGY 14

size undesirably large.

The partial objectives are:

• to analyze methods of creating responsive layouts using CSS3 and
CSS precompilers.

• to give a comparison between conventional CSS code and precompiled
CSS code and/or existing CSS frameworks.

• to prepare the proposed CSS framework for implementation

2.2 Methodology

In theoretical part is an analysis of key parts of the modern web design.

Practical part is focused on building a new CSS Framework using
the knowledge gained in the theoretical part. The framework follows the
OOCSS (Object-oriented CSS) methodology.

2.2.1 OOCSS (Object-oriented CSS)

Object oriented CSS is a methodology of writing reusable CSS that
is scalable and maintainable. OOCSS aims at making CSS more modular
and scaleable. OOCSS was introduced by Nicole Sullivan at Web Directions
North in 2009, the object oriented concept comes from more traditional en-
gineering practices that are used in programming languages like PHP, Ruby
or JavaScript. But objects in front-end development are simply HTML ele-
ments. The CSS is the place where those elements are modular to be able
to be placed anywhere on a page and behave predictably. And this is done
by following to Sullivan’s two main principles: separating structure from
skin and container from content.

CHAPTER 2. OBJECTIVES AND METHODOLOGY 15

Separating structure from skin means to abstract the structure and
positioning styles of an object from the presentational styles, or skin.

Separating container from content means to break components’ de-
pendency of their containers. Any object should be able to be placed in
another container and still look and behave the same.

Chapter 3
Theoretical Part

3.1 CSS3

CSS3 is the latest evolution of CSS language, which is recommended
by World Wide Web Consortium (W3C)1. Its initial version was released in
1996.

3.1.1 Versions

CSS3 has been in development since the previous version release and
the first drafts were published in 1999. Despite all the features that CSS1
and CSS2 brought to the web design, there were yet many features that
were not possible to implement easily or misunderstood. Often using vari-
ous hacks or workarounds which were not making these features impossible
to implement, however it usually involved lots of nested divs, use of images
instead of native UI elements or even technologies like Flash (eg. Rounded
corners, color gradients, or animations). Not mentioning the mount of ad-
ditional work required: a single color change required opening an additional
graphics/animation software and saving the new set of assets

1http://www.w3c.org

16

CHAPTER 3. THEORETICAL PART 17

Furthermore, there were couple of features which were not supported
(or at least standardized) entirely. Probably the most used is the support
of font embedding, which could have been done only using JavaScript

Another example is a multiple column layout. In CSS1/CSS2/CSS2.1
it could be done only using floated divs next to each other. But that is
not the intention of floats, floats are designed to position an image within a
text. CSS3 brings more methods to make a multi column layout - with con-
sideration of height of the element (CSS3 Flex), or text wrapping to another
column, making the newspaper-style article (CSS3 Multiple column)[11][5].

3.1.2 Development

Until the CSS version 3, the specification was developed as a whole
bundle of new features and updates. The development of one version
took couple years to be standardized[15]. This caused compatibility is-
sues, because some browser developers pledged to (at least partly) support
single CSS functions as they were being developed (Google, Mozilla, Opera,
Apple), on the other hand, Microsoft Internet Explorer did not support new
CSS features until the whole specification was released by W3C[13]. This
caused issues to all developers, who wanted to work with new and easy-to-
use features, while more than 70% of users were using CSS3 incompatible
Internet Explorer in 2005,which is a significant number of potential website
visitors and cannot be omitted[2].

Since the specification development has tended to be taking a signific-
ant time - CSS3 has been in development for more than 20 years now[11],
W3C decided to split the development to separated modules, each of which
is developed and released separately[15]. This allows to progressively im-
plement finished modules in the browsers’ compatibility[5].

CHAPTER 3. THEORETICAL PART 18

3.1.3 Browser compatibility

Luckily for web developers, since January 2016, Internet Explorer have
changed its update policies and instead of maintaining multiple versions,
where each version has completely different compatibility with CSS spe-
cifications, their users are now forced to update to the newest and officially
supported version[17].

This is a good step for both sides - developers, who are only building
and maintaining (including security updates) just one version and on the
other hand users - who have always the newest, therefore the most compat-
ible version of their browser installed. This is a good reason for developers
to use the newest CSS features. Other browsers have always force their
users to update to the newest version[22].

Since Internet Explorer has always had problems with compatibility
with CSS (which is nowadays almost non-existent in the newest IE versions
/ Edge), along with decreasing number of old version IE users, it is possible
to use the full scope of CSS3 features[18][14].

3.2 Measurements units

CSS uses for its implementation various units for measuring length.
Each unit has its best usage.

3.2.1 Absolute Lengths

The most used are Pixels (px). One pixel is exactly one dot on
the screen. In modern high density displays, one pixel does not have to
necessarily mean exactly one dot, but it is normalized to a chunk of dots,
because one dot would be almost invisible to human eye.

CHAPTER 3. THEORETICAL PART 19

Other absolute lengths are physical, but converted to px using the
constant values. These are Centimeters (1cm = 37.8px), Milimeters

(1mm = 3.78px) and Inches (1in = 96px)[16].

3.2.2 Font-Relative Lengths

To maintain responsiveness and accessibility allowing safely change
the entire page’s font size the unit Em, originally defined as a width of
capital letter "M", presents the scale of current font-size. The default value
of 1em is 16px. Em unit scales the current font size (0.5em = 8px) and its
initial value is changed every time the font-size property is changed[16].

This behavior could cause confusion in nested elements with different
font sizes. This can be solved by using the Rem units, instead of Em. Rem
stands for "root em" and it always keeps the value of font-size of the root
element of the page, instead of overwriting itself every time the font size is
being changed. However, Rem units do not work in IE8, Safari 4 or IOS
3.2[16].

3.2.3 The Viewport Percentage Lengths

The Internet browser window, no matter if it is on computer, tablet
or phone has its width and height of the visible area, which changes with
window resize, or switching phone between portrait and landscape. This size
of visible area is called "Viewport" and it can be described with percentage
units vw (Viewport width) and vh (Viewport height), where 100 is full
Viewport size[16]. Viewport lenghts are always absolute to Viewport size.

3.2.4 Percentage Length

Percentage (%) is technically not a unit, but a fraction of the full size.
Despite of Viewport, which always shows an absolute size of the visible
area, percentage value is a relative value to parent element size[16].

CHAPTER 3. THEORETICAL PART 20

It is possible to find these similarities in Em and Rem.

3.2.5 Combination of Lengths in CSS3

Sometimes it is required to use absolute lengths along with percentages
or font-relative lengths, often used in Hybrid Layouts.

For this reason, CSS3 allows to calculate with multiple lengths using
the function calc(). Each of the length, running through the calculation is
recalculated to corresponding Pixel value[9].

.box {
width: calc(50% - 10px);
}

An example above calculates half the size of the parent element and
substracts 10px. Supported are operators +, -, * and /.

3.3 Default CSS3 rules

By default, every HTML element has its own default preset of CSS
rules, without need of touching the style sheet.

Background would be white, text color would be black, h1 heading
would have twice the size of the normal text and more others. These are
basic values that are defined by W3C.

In some cases it is possible to take an advantage of this behavior and
then it is not necessary to explicitly redefine the same rules and save some
space of the code. However there are many browsers that would interpret
these default settings differently.

In some cases it is required to redefine the whole default preset and
start-over with the complete CSS definition.

CHAPTER 3. THEORETICAL PART 21

That is where CSS Resets come in handy. They are short, sets of CSS
rules that reset the styling of all HTML elements to a consistent baseline[10].

3.3.1 Eric Meyer’s “Reset CSS” 2.0

One of the first CSS Reset tools was created by Eric Meyer, still being
used by millions of websites. It comes with free licence and the author
encourages developers not to use the tool as it comes, but to edit it co be
in compliance with the user style sheet.

The CSS Reset clears all default rules, so they can be re-declared
again which will cause great cross-browser compatibility[10].

Nothing more than a user defined style sheet will be displayed, which
also brings noticeable disadvantages: each HTML element has to be re-
declared and that comes with a lot of redundant code. What was once
removed is added back again. This can be easily fixed by altering the CSS
Reset code and omitting the parts that are used later in the code as the
author suggests[10].

3.3.2 Normalize.css

Normalize.css is an alternative to the CSS reset created by Nicolas
Gallagher and Jonathan Neal. It is considered as a more modern way of
resetting CSS, currently used by Twitter, TweetDeck, GitHub, Soundcloud,
Guardian and many more popular websited. The key difference to CSS
reset is that instead of clearing all CSS rules completely, it sets all rules to
match the W3C default rules.

Because the default rules are usually interpreted differently among
the browsers and cause very basic incompatibilities, Normalize.css solves
these problems and "normalizes" the default CSS to the same level for all
browsers[6]. The source code of Normalize.css is in the Appendix B.

CHAPTER 3. THEORETICAL PART 22

3.4 Responsive design

3.4.1 Layout

Layout is the way how the elements on page are arranged and what
behavior they follow. There 4 basic types of layouts:

• Fixed-width Layout

• Fluid Layout

• Elastic Layout

• Hybrid Layout

3.4.1.1 Fixed-width Layout

Layout with fixed width has its width limited with specific pixel value,
as shown on the Figure 3.1. The most common value of 960px, as written
by Cameron Moll in 2006, was considered as the most universal, because
is divisible by numbers 3, 4, 5, 6, 8, 10, 12 and 15. However, the width of
960px was designed for the display resolution width of 1024px[9].

The advantage of this method is the pixel perfect precision. That can
be useful if parts of the website are external modules, provided by the third
party, with fixed size.

The method of fixed width does not take the current Viewport (men-
tioned in section 3.2.3) in consideration. This means, that significantly
larger Viewport would show the layout as rather smaller portion of the
screen, which does not effectively use the blank areas. If the Viewport
would happen to be smaller than the fixed layout, the lack of space would
be compensated with horizontal scrollbars, making the navigation on the
page unpleasant[9].

CHAPTER 3. THEORETICAL PART 23

Figure 3.1: Fixed-width Layout composition

800 px150 px

10 px

960 px

viewport 1366 px

Source: Own drawing

Nevertheless, this described method of a layout design is highly out-
dated, because while in 2006 the resolution of 1024px was used by almost
60% of Internet browsers, in 2016 it is only 3% of Internet browsers, accord-
ing to W3C statistics. Nowadays, the most common resolution goes from
1366px up to 4K[12].

3.4.1.2 Fluid Layout

Fluid (often also called "Liquid") layouts use percentage values in-
stead of absolute pixel values. The layout scales according to the actual
Viewport. It does not matter if the Viewport is 2560px wide laptop screen,
or 768px wide tablet screen[9].

Single parts of the layout are sized using the Percentage lengths or
Viewport percentage lengths (mentioned in section 3.2). As long as the
sum of all layout components does not exceed 100vw or %, there would not
be any scrollbars (as long as the content does not overlay)[2].

This method deals with the Fixed-width Layout problem, however,

CHAPTER 3. THEORETICAL PART 24

Figure 3.2: Fluid Layout composition

25% 70%

5%

100%

viewport 1366 px

Source: Own drawing

using this method without Media queries (explained in section), or without
aware of the font size would still lead to unwanted results. The larger
displays would stretch the page to be very wide, causing the text paragraphs
extremely wide and very hard to read. The mobile browsers would, on the
other hand, shrink the layout to very narrow and unreadable[9].

3.4.1.3 Elastic Layout

The problems with Fluid Layout, causing very wide sections of text
can be solved implementing an Elastic Layout. Instead of Viewport or
Percentage units, the sizes are specified with em or rem units. This assures
that the Layout would keep proportions relative to the font size[9].

According to Robert Bringhurst, the best readability of any document
is assured when the paragraph width is between 45 and 70 characters[1].
Therefore, making the content area around 55em wide would improve the
overall user’s reading experience.

CHAPTER 3. THEORETICAL PART 25

Elastic Layout also scales the layout with user-defined font size, keep-
ing the characters per line number. This improves overall accessibility to
people with sight disorders[9].

Sadly enough, this solution does not solve the issues caused by the
Fixed-width Layout, moreover it extends these issues, because the behavior
of the layout could be unpredictable[9].

3.4.1.4 Hybrid Layout

So far every solution has come with their specific advantages and
disadvantages. It is hard to state which solution is the best or worst, because
their strengths and weaknesses do not usually correspond with each other.

The solution of this dilemma is to use the advantages of each solution,
retain the accessibility principles and mainly, use the Media Queries (ex-
plained in the section 3.4.2), to minimize the negative effects of all layouts

Hybrid Layout uses Viewport percentage where it is needed to allocate
certain portion of the Viewport, Em sizes for the parts which should scale
with font-size and pixel sizes for elements which require constant size.

3.4.2 Media Queries

Media queries allows to make the browser evaluate an expression. If
the expression is true, the browser will process the CSS code enclosed, if
not, it will left ignored.

Media queries are constructed of media type, expression and a piece
of CSS code, to be processed in case the expression is true. Media types
are shown in the table 4.1

CHAPTER 3. THEORETICAL PART 26

Table 3.1: Media types and their scope.

Type Target devices

all All devices (default)

aural Used for speech and sound synthesizers

braille Used for braille tactile feedback devices

embossed Used for paged braille printers

handheld Used for small or handheld devices

print Used for printers

projection Used for projected presentations, like slides

screen Used for computer screens

tty Used for media using a fixed-pitch character
grid, like teletypes and terminals

tv Used for television-type devices
Source: http://css-tricks.com/snippets/css/all-stylesheet-media-types

Most used media types are all, screen and print. Event most of the
handheld devices support only screen type, because developers do not usu-
ally distinguish between media types[9].

Figure 3.3: Using media queries

25% 70% 100%

100%

Source: Own drawing

CHAPTER 3. THEORETICAL PART 27

The basic approach to page responsiveness is to test Viewport for
width. To actually test the value, width is prefixed with min- or max-.
There can be used even multiple expressions, separated by logical operators
like and, or, not, only.

@media screen and (min-width: 500px) {
/*
Any CSS rules here will be processed only, when
the Viewport width is more than 500px.
*/

}

3.4.3 Desktop first approach

Desktop first approach is the traditional way design that has been
practised since the beginning, because the first devices using Internet browsers
were computers.

Global CSS rules are assigned to work for desktop (larger screen) and
as the screen size decreases down to mobile size, additional CSS rules are
applied to overwrite the global ones[9].

.box {
width: 25%;
float: left;

}

@media screen and (max-width: 768px) {
.box {

width: 50%;
}

}

@media screen and (max-width: 480px) {
.box {

width: 100%;
float: none;

CHAPTER 3. THEORETICAL PART 28

}
}

In example above, the element with class "box" would take 25% of
the parent element, which is 1/4 of the space. In other words, it is possible
to place 4 boxes next to each other. If the Viewport size is lower than
768px, the width is overwritten with 50% (only 2 boxes next to each other).
If the Viewport is even smaller, less than 480px, the both width rules are
overwritten with 100%. This brings scalability from large desktop, to tablet
and phone.

3.4.4 Mobile first approach

Mobile first approach puts the basic set of rules for small mobile ver-
sion and media queries are used to scale the design upwards. This also
brings a great experience to users with incompatible browsers, readers and
other devices for people with disabilities, because the basic design is simpler
(because it is mainly for mobile) and easier to read.

According to the W3C Statistics of Operation Systems used for Inter-
net browsing, the mobile devices have been becoming stronger and stronger
way of consuming the Internet. Since 2011, their market share has been
growing from 0 to current 6.3% (as of January 2017)[19]. This phenomena
brings mobile devices to question.

Instead of the Desktop first approach where the full feature desktop
version is scaled down and simplified, the mobile first starts with full func-
tional mobile version, enriching desktop versions with more functionality.

Both principles may sound the same with a different point of view,
however, the Mobile first approach focuses on the best experience on mobile
devices.

CHAPTER 3. THEORETICAL PART 29

.box {
width: 100%;
float: none;

}

@media screen and (min-width: 768px) {
.box {

width: 50%;
}

}

@media screen and (min-width: 1200px) {
.box {

width: 25%;
float: left;

}
}

At this example, the box would maintain the same behavior as in
the example in the Section 3.4.3. The main difference is scaling the boxes
from the single 100% width box, up to 4 smaller 25% width boxes. This is
achieved using min-width instead of max-width in media queries and with
reversed order of rules (Rules are executed from the top to the bottom).

3.4.5 Breakpoints

When designing a responsive website using media queries, no matter
whether using Mobile or Desktop first, it is needed to separate the design
to look different on different devices - mobile phone, tablet (landscape/por-
trait), computer (small screens/large screens).

As mentioned before, in the Section 3.4.2, the separation uses specific
the Viewport width, which is evaluated with operators min-width and max-
width. The widths, which break the layout are called Breakpoints[9].

Breakpoints have to be chosen carefully, because small number of

CHAPTER 3. THEORETICAL PART 30

breakpoints would cause insufficient breaking, leading to bad experience
with multiple devices. Mobile version could display on tablet and one ver-
sion for computer screen would display for 11" and 30" displays. High
number of breakpoints would fit perfectly every device and resolution, but
it would cause a lot of redundant code and every rule would be defined
many times.

To choose balanced number of breakpoints, David Gilbertson wrote
an article from November 2016, where he arguments his approach of making
breakpoints.

Figure 3.4: Breakpoints by David Gilbertson

Source: https://medium.freecodecamp.com/the-100-correct-way-to-do-css-
breakpoints-88d6a5ba1862

According to him, the breakpoints should not be defined as single
points that break the design. He chose a different approach - using the
StatCounter global stats of resolution usage he identified groups with the
most common resolution with accordance to their usage.

It may not seem as a big difference to the conventional naming, where
one breakpoint is called "phone" or "small", then up to the "tablet" or
"medium" and "computer" or "large". The breakpoints - single points
themselves do not define the screen size. It is the range, within the group of
devices with common screen size. In other words there is not one breakpoint

CHAPTER 3. THEORETICAL PART 31

at 600px, called "phone", but there is a range from 0 to 600px, called
"phone".

He also recommends to be declarative and not to name the groups
as "small", "medium", "large", because it does not make any sense. He
encourages to name the groups as "phone", "tablet", etc.

Ultimately, using the StatCounter data, he defined 5 groups that sat-
isfy the most of the devices, while the number of 5 is still convenient enough
for development[7].

The groups are defined as following:

• Phone 0px - 599px

• Tablet portrait 600px - 899px

• Tablet landscape 900px - 1199px

• Desktop 1200px - 1799px

• Desktop large 1800px and more

3.5 CSS Precompilers

CSS is in fact very primitive language. The very basic idea of CSS
is to select an element from the DOM using wide range of selectors and
pseudo-selectors and simply apply a set of styling rules. While rendering,
the browser looks for matching DOM elements and selectors, displaying
them as their CSS rules are set.

CSS offers pseudo-selectors that are able to process primitive events,
like :hover (matches rules on mouse over), :checked (when a checkbox is
checked), form validation rules or operators AND, OR, NOT.

CHAPTER 3. THEORETICAL PART 32

However, CSS does not support features that are commonly available
in higher-level programming languages, or that are simply missing in plain
CSS. These features are available in CSS Preprocessors:

• Variables

• Nesting

• Mixins (custom methods)

• Extends

• Color Operations

• If/Else Statements

• Loops

• Mathematic Operations

• Imports

Since there are these features not available in CSS, many parts of code
becomes redundant because everything has to be explicitly stated. This is
opposing to the DRY (Don’t repeat yourself) idea, which every programmer
should follow[8].

There are 2 major CSS precompilers used in 2017 - SASS and LESS.

3.5.1 SASS vs. LESS

SASS was introduced in 2006 as Style sheet language. Later, its creat-
ors Hampton Catlin and Natalie Weizenbaum continued with development
and made SASS a scripting language implemented in Ruby.

The first syntax (*.sass files) was based on HAML (or YAML), which
is relies on new-lines and indenting.

CHAPTER 3. THEORETICAL PART 33

Figure 3.5: SASS Logo

Source: Wikimedia Commons

$color: #222222

.text
color: $color
font-weight: bold

The original syntax omits semicolons and parentheses. However, de-
velopers were mostly struggling with this syntax, because everyone was used
to CSS syntax. That is why the creators decided to take an inspiration from
LESS and created a new css-like syntax called SCSS (*.scss files)[8].

$color: #222222;

.text {
color: $color;
font-weight: bold;
}

Nowadays, the SCSS syntax is used by majority of developers[3].

LESS was was created as a response to confusing syntax of Sass by
Alexis Sellier. It is highly inspired by it, but it had brought a very clean

CHAPTER 3. THEORETICAL PART 34

syntax, where LESS functions are included in plain CSS syntax. LESS is
implemented in JavaScript[3].

The syntax is very similar to SCSS, because SCSS was actually influ-
enced by LESS

@color: #222222;

.text {
color: @color;
font-weight: bold;
}

At this example there is obvious similarity of the syntax (variables
are prefixed with @ in LESS, with $ in SASS). Though, there are more
syntactic differences in If/Else Statements or Loops.

Figure 3.6: Sass Logo

Source: Wikimedia Commons

According to Chris Coyier from CSS-TRICKS.com, the functionality
of SASS and LESS are very comparable - both precompilers can handle all
the features mentioned in the Section 3.5.

SASS have implemented better methodologies of extending classes,
that are more considerate to the output CSS code, which is eventually
cleaner than in LESS. Also the previously mentioned dollar sign, used as a
prefix in SASS has no meaning in plain CSS, while the @ symbol, used by

CHAPTER 3. THEORETICAL PART 35

LESS is also used by plain CSS for declaring media queries or keyframes in
animations.

Coyier also claims that SASS has had larger community of developers,
since both projects are open-source hosted on Github. Comparing Pull Re-
quests, Commits, Issues discussion and Releases[3]. For this reason, follow-
ing Sections are focused on SASS and all examples of the basic functions
are in SCSS syntax.

3.5.2 Variables

Layouts are usually build using precise metrics (lengths and colors)
that are repeated within the code multiple times as specified, or derived
from the original value.

Many layouts use a narrow set of colors that are repeated many times
in the code. This does not comply with the DRY principles, because when
the website owner decides to change one color to a different one, it is ne-
cessary to change all references of this particular color in the code (Using
the text editor’s Find/Replace functions). In long style sheets, there might
be hundreds of references to one particular color.

This issue is solved by implementing variables. As in higher-level pro-
gramming variables, in SASS, variables are used to store a value, which can
be printed on multiple places in code. Considering the previous example,
to change one color in whole style sheet is a matter of changing the color
value in the variable declaration.

SASS also supports saving values in simple arrays. These arrays can
be used for iterating using loops[8].

CHAPTER 3. THEORETICAL PART 36

$color: #FFCC55;
.button {

color: $color;
/* Color will be #FFCC55 as defined above */
border: 1px solid $color;
}

3.5.3 Nesting

Since HTML has a hierarchy of elements - DOM, it is necessary to
consider this hierarchy in CSS as well. In CSS this is possible to be done
by using multiple selectors:

.container { width: 50%; }

.container ul { list-style-type: none; }

.container ul > li { display: inline-block; }

.container ul > li:hover { background: black; }

This, however, brings a lot of writing, copying and most importantly
a lot of code repetitions. In SASS, selector hierarchy can be preserved by
nesting selectors in their parents. Nesting is also possible for whole media
queries for responsive design.

.container {
width: 50%;
ul {

list-style-type: none;
> li {

display:inline-block;
&:hover {

background: black;
}

}
}

}

CHAPTER 3. THEORETICAL PART 37

This would compile to the same CSS output as in the previous ex-
ample. As may be seen in the example, the :hover pseudoselector is prefixed
with & sign. This is for including the parent’s hierarchy into the selector[8].

3.5.4 Extending

Extending keeps SASS code semantic. When it is needed to have a
certain element duplicated from existing one and even altered, it is possible
using @extend. Extended element will clone all rule to another selector,
while maintaining output CSS as simple as possible. This, however is not
possible when both selectors lie in different media scopes[8].

.button-default {
background: #FFF;
border: 1px #CCC;
color: #222;
text-align: center;

}

.button-blue {
@extend .button-default;
background: #FF8;

}

.button-blue will clone all properties from .button-default and over-
write the background color with #FF8.

Extending makes code more clean and easier to edit[8].

3.5.5 Mixins (custom methods)

Mixins allows to take a fragment of SASS code and include everywhere
in the code - just like @extend. But Mixins are more powerful, because in-
stead of extending a class’ properties, a Mixin can be any fragment of code.
This is powerful for properties that are repeated multiple times among the

CHAPTER 3. THEORETICAL PART 38

code. A Mixin can also accept variables as arguments, which make them
scalable for many purposes. Especially for maintaining browser compatibil-
ity, because certain CSS properties have different expressions for a different
browser[8].

@mixin rotate($deg){
-webkit-transform: rotate($deg);
-moz-transform: rotate($deg);
-o-transform: rotate($deg);
transform: rotate($deg);

}

.rotate-right {
@include rotate(90deg);

}

.upside-down {
@include rotate(180deg);

}

Mixins also allows to create multiple color variations of same design -
the only parameter for certain fragment could be the color and the rest of
the code is generated by SASS

3.5.6 Color Operations

SASS is capable to work with colors or color-based variables and pro-
cess various color functions[20]:

• mix Mixes two colors together

• lighten Lightens up by given percentage

• darken Darkens up by given percentage

• saturate Saturates color by given percentage

CHAPTER 3. THEORETICAL PART 39

• desaturate Desaturates color by given percentage

• rgba Adds alpha (opacity) to a color

With these functions it is not necessary to calculate colors manually
when it is needed to use eg. lighter color on hover. For SASS If/Else and
loops is also possible to get lightness, saturation, hue, alpha value of given
color[8].

3.5.7 If/Else Statements

Control expression can help making decisions according to matched
conditions. Supported are If, Else, and Else if. It is possible to use mathem-
atical conditions or functions that return a value to match the statement[8].

@if lightness($color) > 30% {
background-color: black;

}

@else {
background-color: white;

}

3.5.8 Loops

SASS supports loops as they are known in higher programming lan-
guages.

Loops are extremely useful for using arrays of colors. Allows to it-
erate the array and apply a color to a selector. When combined with nth
pseudo selectors or interpolation, iterating through an array can save a
lot of manual writing of code. Also, many cases would be impossible to
implement in CSS without loops[8].

CHAPTER 3. THEORETICAL PART 40

EACH loop iterates every element of an array while executing the
code inside of the loop. It takes the form @each $var in list.

FOR loop considers the index in every iteration. This is useful when
working with nth pseudo selectors. The syntax is @for $i from 1 through 4.

WHILE loop iterates as long as the condition has not been fulfilled,
similarly to if. The condition is written as @while $types == 0.

3.5.9 Interpolating

Interpolation allows to construct selectors by placing variables in their
names or pseudo selectors. Often, they are combined with loops, since it is
possible to create new selectors each iteration.

To print any value anywhere in the code, it is necessary to write the
variable wrapped in braces, prefixed with pound sign - #{ $variable }[8].

$car: skoda;

.car_#{$car} {
display: block;

}

3.5.10 Mathematic Operations

SASS can handle standard arithmetic operations when working with
numbers. It supports unit conversion. There are also functions for working
with numbers[8][20]:

• percentage Converts a unitless number to a percentage.

• round Rounds a number to the nearest whole number.

• ceil Rounds a number up to the next whole number.

CHAPTER 3. THEORETICAL PART 41

• floor Rounds a number down to the previous whole number.

• abs Returns the absolute value of a number.

• min Finds the minimum of several numbers.

• max Finds the maximum of several numbers.

• random Returns a random number.

3.5.11 Imports

Rather than using a one large file, separating code in multiple small
pieces is helpful for expressing the declarations and increasing maintainab-
ility and control over the code. For the code maintenance it is better to
keep all numeric or color values in variables and all variables having stored
in separate file. Code should be split in files according to the purpose of
the code in order to keep code semantic[8].

To import a file, the @import expression is used. SASS does not
require to specify the file extension, it automatically searches for *.scss and
*.sass extensions.

Chapter 4
Practical Part

4.1 Existing Solutions

Nowadays, there are many frameworks, that are available. They all
have their own place on the market, but all of them balance on size, uni-
versality, functionality and compatibility.

The objective of this work is to analyze their strengths and weaknesses
and use these information to build a new framework that will minimize
weaknesses of 3 major CSS Frameworks.

The Major frameworks are

• Bootstrap2 by Twitter

• PureCSS3 by Yahoo

• Foundation4 by ZURB
2http://getbootstrap.com
3https://purecss.io
4http://foundation.zurb.com

42

CHAPTER 4. PRACTICAL PART 43

4.1.1 Bootstrap

Bootstrap uses Floating grid, which can be in 2017 considered as
outdated, although, Bootstrap aims on compatibility.

Bootstrap also does not support font-aware units - ems and rems. All
lengths are made using pixels, which makes whole design lot less responsive
and accessible. In future version 4, the Flexbox will be added and part of
compatibility omitted.

On the other hand, Bootstrap benefits from massive community and
high quality standards - new version has been in development for more than
a year and by the beginning of 2017 it is still in its Alpha version.

Bootstrap aims at less skilled developer group - with small effort it
brings a professional look of the layout, while keeping great compatibility
and gentle learning curve.

The main disadvantage of Bootstrap is its homogeneous design, des-
pite of its modern design, the design keeps repeating and experienced de-
signer can recognize Bootstrap design (which is not necessary a bad thing).
These designs lack creativity.

The proposed CSS Framework should not be considered as a replace-
ment of CSS and Web design work, but it should help developers to create
websites more easily and more consistent.

Bootstrap 3 is, again, very outdated for the absolute lengths and float-
ing system. Its Github repository shows that the last update has been made
in July 2016. Bootstrap version 4 has been in Alpha version since 2015 and
it cannot be expected to be finished any time soon. Version 4 also keeps
backward compatibility with version 3, which makes the final CSS file even
larger.

CHAPTER 4. PRACTICAL PART 44

4.1.2 PureCSS

PureCSS, is on the other hand a very light-weight framework, which
makes it a great for comparison with proposed CSS Framework.

Its grid system is made using floating system, instead of CSS3 Flexbox,
which should not be ignored.

Overall, the aim of PureCSS is in compliance with proposed CSS
Framework, since it aims at experienced developers. Other than the grid
system is only serves with basic typography and form components.

Its official Gihub repository has not been updated since November
2016 and there is no known developing progress on it currently. For this
reason it could be considered as abandoned project.

4.1.3 Foundation

Foundation is a very complex front-end framework that is as funda-
mental as Bootstrap. It aims to more experienced developers.

The grid system is sill floating by default, however it allows to use
Flex-based instead.

The typography is not responsive, which is the main weakness of
Foundation and it would require further implementation.

Foundation offers many components that makes it a very universal
(thus slightly robust) framework.

4.1.4 Comparison of the CSS Frameworks

The following table shows the comparison of 3 major CSS Framework,
summarized in the table:

CHAPTER 4. PRACTICAL PART 45

Table 4.1: Comparison of 3 major CSS Frameworks.

Bootstrap 3 Pure CSS Foundation

Responsive Grid
Technology Float Float Float
Columns 12 24 (12)
Breakpoints 4 4 3
Responsive gutters no no yes

Typography
Responsive no partial no
Typography units px em em
Reset reboot.css Normalize.css Normalize.css

Miscellaneous
Responsiveness Mobile first Mobile first Mobile first
CSS Precompiler LESS - SASS
Size 143Kb 24Kb 100Kb
Difficulty Easy Medium Easy
GitHUB stars 108k 16k 25k

Source: Own research

After a deep analysis of existing CSS frameworks, there are several
good practises that should be included in the framework:

• Flexbox based grid

• Responsive Typography

• Responsive Gutters

• Variable number of columns

• Normalize.css

• Relative units

CHAPTER 4. PRACTICAL PART 46

• Mobile First

• SASS precompiler

There are also bad practises or out-to-date features that should be
ommited:

• Float based grid

• Pixel units

• Fixed number of columns

• Relative units

• Very old browser support

• No CSS precompiler

4.2 Framework Specification

In web development, there are various elements that have to be taken
care of in every project. These elements are always the same, or more less
similar. Copying, pasting and repeating the code are the main factors that
are eliminated in CSS Framework, making it the major benefit of it.

Considering this, there are three major functions that a CSS Frame-
work need to serve.

4.3 Structure

First of all is a Responsive Grid system. No matter how the design
look like - no matter what theme the design uses, there is a core functional-
ity, which manages the responsiveness and positions the parts of the layout.

CHAPTER 4. PRACTICAL PART 47

The grid system will be Flexbox based. Thus, to maintain compatibility
with old browsers and to follow modern web design trends, the framework
will follow the mobile first approach.

The second part is a set of mixins that help to keep the amount of code
at minimum using pre-coded parts or tools to include them to the project.
These tools help to maintain code semantics while creating a unique design.

The third part is a set of typography settings. Typography has to be
easy to manage and its changes has to be set accordingly within the project.
This part is also connected to the first part, because typography is a key
part of page responsiveness.

4.4 Grid System

Grid system is a core function of the CSS Framework. It manages
positioning and responsiveness of all chunks of the layout.

The basic grid division that many CSS Frameworks follow is 12 columns.
100% of the container width is divided to 12 equal parts, defined by per-
centual portion of chosen number of columns. In other words, the chosen
number of columns is a fragment of the total number of columns.

Figure 4.1: 12 column grid

12

11

10

9

7

6

5

8

4

3

2

1

Source: Own drawing

CHAPTER 4. PRACTICAL PART 48

4.4.1 Gutters

Gutters create the spacing between the individual items. In most
designs they are important to make the content readable.

Gutters are defined by two halves: Container part and Item part. If
gutters were defined only on items, the first and last column of items would
have smaller gutters on the edge of the viewport.

/* grid-gutters by Jan Jerabek 2017 */

@mixin gutters($gutter){
padding-top: ceil($gutter);
padding-right: ceil($gutter);
padding-bottom: floor($gutter);
padding-right: floor($gutter);

$mobile: nth(map-values($screen-breakpoints), 1);
@media screen and (min-width: $mobile) {

// mobile-up viewports have doubled gutters
padding-top: ceil($gutter*2);
padding-right: ceil($gutter*2);
padding-bottom: floor($gutter*2);
padding-left: floor($gutter*2);

}
}

Each pair of gutters on the opposite sides have one gutter that is
floored (Rounded down) and one that is ceiled (Rounded up). This prevents
lose of space when the indivisible value of the gutter is provided, since pixels
can not be decimal numbers (eg. gutter 2.5 is divided to 2 and 3, matching
the sum of 2 x 2.5)

Gutter size is accepted for mobile Viewport as it comes. For larger
Viewports the value is doubled. This has to be taken in consideration when
choosing a gutter value.

CHAPTER 4. PRACTICAL PART 49

4.4.2 Container

Every set of items in Responsive Grid has to be wrapped in container
<div>. The container sets all the properties necessary for making the flex-
box grid work.

The flexbox is configured to wrap the items if necessary. This enables
to create multi-row containers, that will simply wrap overlapping items to
a new row.

All items are aligned to top-left corner and items are not stretched to
the free space - items maintain their width.

Figure 4.2: Equal height of Flexbox items

Source: Screenshot

Container also solves the problem with different height of items that
would cause design inconsistency and most likely would have to be solved
individually (eg. using JavaScript). Flexbox is able to stretch the child
items to fit the largest item and therefore make all items equal height, as
shown on the figure 4.2.

CHAPTER 4. PRACTICAL PART 50

The code of the container mixin is following:

/* grid-container by Jan Jerabek 2017 */

@mixin grid-container($gutter: $grid-gutter) {
@include display-flex;
flex-wrap: wrap;
-ms-flex-wrap: wrap;
justify-content: flex-start;
align-content: stretch;
width: 100%;
height: 100%;

@include gutters($gutter);

> div {
// Making the child item another flex-container
// helps with the compatibility with webkit browsers
@include display-flex;

}
}

4.4.3 Item

An Item is an element of the grid system. It contains a responsive
container for another content - text, div, or even another nested grid.

As mentioned before, columns are defined as a portion of the total
number of columns which is set as a variable attribute. The size of an
item is calculated, as mentioned in Floating layouts (Section 3.4.1.2), in
percentage lengths.

The width value is percentage calculated by as a fragment of desired
size and total number of columns, converted to percents:

width: $size / $grid * 100%;

CHAPTER 4. PRACTICAL PART 51

This calculation achieves that item with size of 6 out of 12 columns
will have 50% width. 3 out of 12 will have 25%, etc.

This value is set explicitly as width, not as flex-basis value, which it
technically should be as flex-basis, but to achieve best compatibility (espe-
cially with Internet Explorer 11).

The mixin for specifying an item looks as following:

/* grid-item by Jan Jerabek 2017 */

@mixin grid-item($size, $grid, $gutter) {

padding-top: ceil($gutter * 2);
padding-right: ceil($gutter * 2);
padding-bottom: floor($gutter * 2);
padding-left: floor($gutter * 2);

// width has to be specified, because of IE11
width: $size / $grid * 100%;

// flex shrink and stretch are 0
// flex basis calculates percentage of the column width
@include flex(0, 0, auto);

}

The class which this mixin is applied to should have either constant
size (including multiple breakpoints), or the classes generated for all break-
points and sizes - the Class generator.

4.4.4 Class Generator

The class generator is present for developers who choose not to de-
velop their own style sheet. For development it is easier - every class has
self-explanatory name which includes a size of the element and which break-

CHAPTER 4. PRACTICAL PART 52

point category is the size for. The naming pattern is: item-%Breakpoint%-
%Number%

HTML:

<div class="container">
<div class="item-md-up-3"><div>Box 1</div></div>
<div class="item-md-up-3"><div>Box 2</div></div>
<div class="item-md-up-3"><div>Box 3</div></div>
<div class="item-md-up-3"><div>Box 4</div></div>

</div>

As shown on figure 4.5, there are 4 boxes, that represent the grid
system behavior. By default, they have full 100% width, in four rows. If
the Viewport width is wider than 900px (md-up), boxes will be shown with
50% width, in two rows. If the Viewport is wider than 1200px (lg-up),
boxes will be shown with 25% width, in single row.

Figure 4.3: Generated classes

Basic Viewport (mobile-�rst)

Viewport more than 900px

Viewport more than 1200px

Source: Screenshot

The generator is built using two loops. The first runs over all screen
breakpoints defined below:

CHAPTER 4. PRACTICAL PART 53

$screen-breakpoints: (
sm-up: 600px,
md-up: 900px,
lg-up: 1200px,
hd-up: 1800px
);

The second loop runs n-times, where n is a total number of columns
(12 by default).

For each combination of breakpoint and column number is @item
mixin called and created appropriate class named using the naming pattern
mentioned previously.

/* class-generator by Jan Jerabek 2017 */

@mixin class-generator($grid, $gutter) {

[class*="item-"]{
@include grid-item($grid, $grid, $gutter);
// mobile-first width and gutter
// default settings 100% width

}

// loop each screen breakpoint
@each $screen in map-keys($screen-breakpoints) {

// loop all grid column numbers
@for $i from 1 through $grid {

.item-#{$screen}-#{$i} {
// then generate classes for
// every other breakpoint and column size
$media: map-get($screen-breakpoints, $screen);
@media screen and (min-width: $media) {

@include grid-item($i, $grid, $gutter);
}

CHAPTER 4. PRACTICAL PART 54

> div {
// IE fix
width: 100%;

@include gutters($gutter);

//@include flex(0, 1, auto);
flex: 1;
@include display-flex;

// Safari does not stretch flex child height.
// Child is then turned to another flex
// container to fix this issue

}
}

}
}

}

This generator will create 48 classes using flexbox grid system in total,
each of which is responsive.

If class specified in HTML element is for wider breakpoint than is the
current Viewport, ie. the class is specified only for desktop, the element
will have 100% width on mobiles and tablets.

The grid system accepts the least defined breakpoint up to the higher
viewport (if exists). All in compliance with mobile-first approach.

4.5 Mixins

The default library of mixins will enhance the development as it in-
cludes the most common tools for web design.

Some of the mixins are only providing backward compatibility with

CHAPTER 4. PRACTICAL PART 55

older Internet browsers by adding so-called Vendor prefixes. These prefixes
are for certain browsers only, from the time, when the functionality was not
completely specified. Vendor prefixes can be also when compiling the code,
using Autoprefixer tool. It can be added to Webpack. However, for the
framework to be able to deployed in various ways, these vendor mixins are
provided.

4.5.1 Clearfix

Since floating was not created to the purpose of floating <div>, as
mentioned in the Section 3.1.1, floated <div> cause its container to collapse.
Typical example is horizontal navigation, where the child ele-
ments are floated. Therefore, the container has to be cleared by including to
the parent . The clearing method was inspired by Nicolas Gallagher’s
Micro clearfix hack, but I decided to omit support for Internet Explorer 6
and 7.

/* Clearfix mixin by Jan Jerabek 2017
inspired by: http://nicolasgallagher.com/micro-clearfix-hack/ */
@mixin clearfix {

&:before,
&:after {

content: " ";
display: table;

}
&:after {

clear: both;
}

}

Using the :before and :after pseudo selectors prevents the need of a
dedicated clearing <div> element, which saves the amount of code.

CHAPTER 4. PRACTICAL PART 56

4.5.2 Responsive Embed

When embedding a video, either from popular video hosting websites
(such as Youtube). The embed code usually comes as an iframe, which is
in its basis not a responsive object - it does not scale down with with the
Viewport size. This mixin, included to a <div> will calculate its height
using given aspect ratio (if not explicitly given, the most common 16:9 will
be used as default). The iframe will be absolutely positioned over this blank
space. The padding-top property is used for older IE compatibility.

/* Embed mixin by Jan Jerabek 2017 */
@mixin embed($width: 16, $height: 9) {

position: relative;
/* Calculate padding by given ratio */
padding-bottom: $height / $width * 100%;
padding-top: 25px;
height: 0;
overflow: hidden;

iframe {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;

}
}

4.5.3 Box Shadow

Box shadow, although it is single CSS property, it has multiple declar-
ations with different vendor prefixes to maintain support of older browsers,
where the box-shadow property was experimental.

The box-shadow mixin accepts arguments in same form as the box-
shadow property does - vertical position, horizontal position, blur amount,

CHAPTER 4. PRACTICAL PART 57

spread of shadow, color of shadow and an inset boolean. Including a single
mixin will generate all vendor variants of box-shadow property.

/* box-shadow mixin by Jan Jerabek 2017 */
@mixin box-shadow($top, $left, $blur, $spread, $color, $inset) {

@if $inset {
-webkit-box-shadow: inset $top $left $blur $spread $color;
-moz-box-shadow: inset $top $left $blur $spread $color;
box-shadow: inset $top $left $blur $spread $color;

} @else {
-webkit-box-shadow: $top $left $blur $spread $color;
-moz-box-shadow: $top $left $blur $spread $color;
box-shadow: $top $left $blur $spread $color;

}
}

4.5.4 Rotate

Rotate is a simple mixin, for generating vendor prefixes for CSS3
property rotate. The only arguments is degree in degree units.

/* rotate mixin by Jan Jerabek 2017 */
@mixin rotate($deg){

-webkit-transform: rotate($deg);
-moz-transform: rotate($deg);
-o-transform: rotate($deg);
transform: rotate($deg);

}

4.5.5 Linear Gradient

Linear gradient mixin, with vendor prefixes, supports all major browsers.
The arguments are used in the same way as the linear-gradient CSS prop-
erty. There are two colors to be set as well as angle of gradient in degrees.

This mixin is for the simplest purposes, it does not support mutiple
color stops.

CHAPTER 4. PRACTICAL PART 58

/* linear-gradient mixin by Jan Jerabek 2017 */
@mixin linear-gradient($top, $bottom, $deg: 0deg){

background: $top;
background: -moz-linear-gradient($deg, $top 0%, $bottom 100%);
background: -webkit-gradient(linear, $deg, left bottom,

color-stop(0%,$top), color-stop(100%,$bottom));
background: -webkit-linear-gradient(top, $top 0%,$bottom 100%);
background: -o-linear-gradient($deg, $top 0%,$bottom 100%);
background: -ms-linear-gradient($deg, $top 0%,$bottom 100%);
background: linear-gradient($deg, $top 0%,$bottom 100%);

}

4.5.6 Transition

Transition mixin is used for basic animation, when switching between
two values of one property. It will be used for menu sliding. Again, it
takes all default transition properties, while generating all vendor prefixes
for better browser compatibility.

If no attributes are explicitly provided, mixin will use transition for
all properties, with 0.5s animation time and default easing.

/* Transition mixin by Jan Jerabek 2017 */
@mixin transition($property: all, $duration: 0.5s, $ease: ease){

-webkit-transition: $property $duration $ease;
-moz-transition: $property $duration $ease;
-o-transition: $property $duration $ease;
transition: $property $duration $ease;

}

4.5.7 Flexbox

Flexbox is a key part of responsive grid, which is the key function of
the framework. To achieve optimal results and the best browser compatib-
ility, the -ms- prefix was omitted, thus Internet Explorer is not supported
up to the version 11.

CHAPTER 4. PRACTICAL PART 59

However, older versions are supported partly, since the framework
is mobile-first. There are two mixins that handle Flexbox - first is the
substitute for display: flex; property, the second is for flex property.

/* display-flex mixin by Jan Jerabek 2017 */
@mixin display-flex {

display: block;
display: -webkit-box;
display: -moz-box;
display: -webkit-flex;
display: flex;

}

/* flex mixin by Jan Jerabek 2017 */
@mixin flex($flex-grow: 0, $flex-shrink: 1, $flex-basis: auto) {

-webkit-box-flex: $flex-grow $flex-shrink $flex-basis;
-moz-box-flex: $flex-grow $flex-shrink $flex-basis;
-webkit-flex: $flex-grow $flex-shrink $flex-basis;
flex: $flex-grow $flex-shrink $flex-basis;

}

4.6 Typography

Typography is a key part of the Framework, because it determines
how the text content is readable.

Responsiveness is a key to a well readable website. Using the break-
points defined in responsive grid, the font-size is set to default 16px. For
larger screens the size is increased to 18px. For smaller screens it is 12 -
14px, according to the device. Global font size is defined in pixels, as a
reference size. All other font sizes are defined in EMs and REMs.

The line-height is set to so-called Golden ratio (1.61803399), which
is a ratio of two numbers, that sum of the numbers is the same ratio to
the largr of the numbers. This ratio is used in aesthetics (Architecture,
Painting, Photography and Typography).

CHAPTER 4. PRACTICAL PART 60

Figure 4.4: Fibonacci’s spiral of Golden ratio

Source: Wikimedia Commons

The CSS default values are "reseted" using Normalize.css, which sets
all the default CSS properties to be the same in all Internet Browsers. After
resetting, the properties of the responsive typography are following:

$screen-xs: 600px;
$screen-sm: 900px;
$screen-md: 1200px;
$screen-lg: 1800px;

body {
font-size: 16px;
line-height: 1.61803399em;

@media screen and (max-width: $screen-xs) {
font-size: 12px;

}

CHAPTER 4. PRACTICAL PART 61

@media screen and (max-width: $screen-sm) {
font-size: 14px;

}

@media screen and (min-width: $screen-lg) {
font-size: 18px;

}

}

4.7 Deployment

In order to be even able to use the created Framework, it is necessary
to compile it. There are three methods of compilation of this Framework:

• Console

• IDE

• Webpack

4.7.1 Console

To Compile the framework in console, which is useful for develop-
ment, it is possible to achieve it using standard Terminal. The command
to compile the framework to the output CSS is following:

sass input.scss styles.css --style compressed

This will create a file styles.css, minified (printd on one line). It is
also possible to turn on the watch mode, which will start a file watcher,
creating styles.css every time any file included to input.scss is changed until
the user terminates the watcher:

sass --watch input.scss:styles.css --style compressed

CHAPTER 4. PRACTICAL PART 62

4.7.2 IDE Plug-in

The second option of deployment of the CSS Framework is to let the
editor save the minimized assets with all styles.

The most popular IDEs and Editors for web development include CSS
compilers either native or as a plug-in. Every time the source file is saved
(CMD+S / CTRL+S), the compilation script is triggered to immediately
compile the output CSS file

Supported IDEs and Editors

• Atom

• PhpStorm

• Netbeans

• Webstorm

• Sublime Text

• Koala

• CodeKit

• Prepros

4.7.3 Webpack

Webpack is more advanced module bundler with larger effect for JavaS-
cript. It is, however, perfect for compilation of style sheets, since it can com-
pile multiple languages (CSS / SCSS / LESS) and bundle them together to
one minified CSS file for production environment, or debug-friendly code
for development environment.

It also includes post-css processing - Autoprefixer, which will auto-
matically add vendor prefixes wherever they miss in the project.

CHAPTER 4. PRACTICAL PART 63

Figure 4.5: What is Webpack?

Source: http://webpack.github.io

const autoprefixer = require(’autoprefixer’)
const ExtractTextPlugin = require(’extract-text-webpack-plugin’)
const path = require(’path’)

const sassLoaders = [
’css-loader’,
’postcss-loader’,
’sass-loader?indentedSyntax=sass&includePaths[]=’ +
path.resolve(__dirname, ’./src’)

]

const config = {
entry: {

app: [’./src/index’]
},
module: {

loaders: [
{

test: /\.js$/,
exclude: /node_modules/,
loaders: [’babel-loader’]

},

CHAPTER 4. PRACTICAL PART 64

{
test: /\.scss/,
loader: ExtractTextPlugin.extract(’style-loader’,
sassLoaders.join(’!’))

}
]

},
output: {

filename: ’[name].js’,
path: path.join(__dirname, ’./build’),
publicPath: ’/build’

},
plugins: [

new ExtractTextPlugin(’[name].css’)
],
postcss: [

autoprefixer({
browsers: [’last 2 versions’]

})
],
resolve: {

extensions: [’’, ’.js’, ’.scss’],
root: [path.join(__dirname, ’./src’)]

}
}

module.exports = config

The basic config above defines the input and output folders a various
filters for file processing. This config is the most basic way of configuring
of Webpack.

Webpack can provide one time compilation as well as Dev-server,
which runs as a process, watching all files that are bundled by Webpack
for changes. Webpack does not recompile whole bundle every time that
something is changed, but it rather provides small hot updates that are
overwriting only the changes that were made. This benefits with a speed
up in comparison to previous two ways of deployment.

CHAPTER 4. PRACTICAL PART 65

4.8 Browser Compatibility

According to the browser analysis, in the Section 3.1.3, in 2017 it is
not necessary to give up functionality in favor of better compatibility with
more Internet browsers. For this reason, the framework focuses on modern
technologies along with mobile devices - with consideration to performance.

Since the Framework is mobile-first, it brings backwards compatibility
to the old browsers. Basic mobile version should be displayed correctly not
only on mobiles, but on old computers as well. In this scope, there are no
limits on compatibility with old browsers.

However, to achieve the best experience of the CSS framework, it
has been tested on more than 150 Internet browsers using the online test-
ing platform Browserling5. The frameworks takes advantage from Internet
browser’s auto-update feature and from drop of the official support of In-
ternet Explorer.

Figure 4.6: Browser compatibility

Source: Own Drawing

After a deep analysis of the available statistics, testing and improv-
ing the code of the Framework in order to gain better compatibility, the
compatibility is:

5www.browserling.com

CHAPTER 4. PRACTICAL PART 66

• Microsoft Internet Explorer 11+

• Microsoft Edge (all)

• Google Chrome 51+

• Mozilla Firefox 26+

• Apple Safari 7+

• Opera 20+

Lower version do not necessarily mean lack of compatibility, but there
are eg. known issues of behavior, that does not make 100% user experience.

Although, none of these issues are making the framework not to work.
All versions that are compatible are dated back to 2014 (in average), making
sufficient time amount for users to update (as mentioned before - browsers
are usually provided with auto-update feature).

These platform-specific bugs are being fixed over the time and since
they are representing minor issues, it was decided to not to handle with
them, since fixing them would bring external JavaScript libraries that would
not serve anything but a specific scenario under specific conditions.

Conclusion

The main objective of the thesis was to deliver an analysis of modern
CSS development using CSS Framework or CSS precompilers. The theor-
etical part focuses on study of modern CSS Frameworks and Precompilers
that bring much desired order to web development. Using either of them
brings a basic backbone that makes code clean, minimized and most im-
portantly - reusable. As of 2017, these two key elements have become a
standard in web development.

The practical part, which directly follows the theoretical part focuses
on design of a light-weight CSS Framework, that serves as an important
support for a web developer.

The CSS Framework, as a part of the objective, was designed as a
result of an analysis of existing solutions, with consideration to their weak-
nesses and outdatedness. The analysis was made on overall experience, grid
systems and typography.

The scope of the CSS Framework was designed as a Flexbox respons-
ive grid, set of Mixin components and typography settings. The Frame-
work is fully customizable, reusable and supports wide selection of Internet
browsers, that it has been tested on. The browser compatibility has been

67

CONCLUSION 68

narrowed down to browsers versioned to 2014. After an analysis of Internet
browser usage development it was decided to omit old browsers, because
their part in the distribution is minor.

The practical part also shows the options of deployment of a web-
site using the CSS Framework, since certain components are using gener-
ated data, and they have to be recompiled each time, the website is being
changed.

The next step of the CSS Framework development is to develop form
components - easily editable and reusable components for web interaction.
Another possible way of development is to integrate this CSS Framework to
Symfony 3 templating system TWIG and to Javascript front-end framework
React.

In final conclusion, this thesis gives an overview of web design meth-
ods, that are up to 2017, while giving up methods that are not necessary
to use any more.

For the public, a modern CSS Framework has been developed to serve
developers in responsive web design.

Personally, the thesis has given me a deep knowledge about responsive
web design in cooperation with precompilers and CSS Frameworks.

Bibliography

[1] Bringhurst, R.: The Elements of Typographic Style. Hartley & Marks
Publishers, second edition, 2002, ISBN 0881791326.

[2] Castro Elizabeth, H. B.: HTML5 a CSS3: názorný průvodce tvorbou
WWW stránek. Computer Press, 2012, ISBN 9788025137338.

[3] COYIER, C.: Sass vs. LESS. [online] [cit. 2017-02-21]. Available at
WWW: <https://css-tricks.com/sass-vs-less>

[4] Ducket, J.: HTML & CSS - Design and Build Websites. John Wiley &
Sons, Inc., 2011, ISBN 9781118008188.

[5] Eccher, C.: Profesionální webdesign: techniky a vzorová řešení pro
XHTML a CSS. Computer Press, 2010, ISBN 9788025126776.

[6] GALLAGHER, N.: Normalize.css. [online] [cit. 2017-02-22]. Available
at WWW: <https://necolas.github.io/normalize.css>

[7] Gilbertson, D.: The 100% correct way to do CSS break-
points. [online] [cit. 2017-02-17]. Available at WWW: <https:
//medium.freecodecamp.com/the-100-correct-way-to-do-css-

breakpoints-88d6a5ba1862>

69

https://css-tricks.com/sass-vs-less
https://necolas.github.io/normalize.css
https://medium.freecodecamp.com/the-100-correct-way-to-do-css-breakpoints-88d6a5ba1862
https://medium.freecodecamp.com/the-100-correct-way-to-do-css-breakpoints-88d6a5ba1862
https://medium.freecodecamp.com/the-100-correct-way-to-do-css-breakpoints-88d6a5ba1862

BIBLIOGRAPHY 70

[8] Hampton Catlin, M. L. C.: Pragmatic Guide to Sass. The Pragmatic
Bookshelf, 2011, ISBN 9781934356845.

[9] Kadlec, T.: Responzivní design. Zoner Press, 2014, ISBN
9788074132803.

[10] MEYER, E.: CSS Tools: Reset CSS. [online] [cit. 2017-02-22]. Avail-
able at WWW: <http://meyerweb.com/eric/tools/css/reset>

[11] Mills, C.: Practical CSS3 Develop and Design. Peachpit Press, 2013,
ISBN 9780321823724.

[12] Browser Display Statistics. [online] [cit. 2017-02-01]. Avail-
able at WWW: <http://www.w3schools.com/browsers/
browsers_display.asp>

[13] CSS Compatibility in Internet Explorer. [online] [cit. 2017-01-31]. Avail-
able at WWW: <https://msdn.microsoft.com/en-us/library/
hh781508(v=vs.85).aspx>

[14] CSS3 Browser Support Reference. [online] [cit. 2017-01-31].
Available at WWW: <http://www.w3schools.com/cssref/
css3_browsersupport.asp>

[15] CSS3 Introduction. [online] [cit. 2017-01-31]. Available at WWW:
<http://www.w3schools.com/css/css3_intro.asp>

[16] The Lengths of CSS. [online] [cit. 2017-02-01]. Available at WWW:
<https://css-tricks.com/the-lengths-of-css>

[17] Microsoft will force Internet Explorer users to use latest ver-
sion. [online] [cit. 2017-01-31]. Available at WWW: <https:
//features.en.softonic.com/microsoft-finally-forces-

internet-explorer-users-to-use-latest-version>

[18] The Most Popular Browsers. [online] [cit. 2017-01-31]. Available at
WWW: <http://www.w3schools.com/browsers>

http://meyerweb.com/eric/tools/css/reset
http://www.w3schools.com/browsers/browsers_display.asp
http://www.w3schools.com/browsers/browsers_display.asp
https://msdn.microsoft.com/en-us/library/hh781508(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/hh781508(v=vs.85).aspx
http://www.w3schools.com/cssref/css3_browsersupport.asp
http://www.w3schools.com/cssref/css3_browsersupport.asp
http://www.w3schools.com/css/css3_intro.asp
https://css-tricks.com/the-lengths-of-css
https://features.en.softonic.com/microsoft-finally-forces-internet-explorer-users-to-use-latest-version
https://features.en.softonic.com/microsoft-finally-forces-internet-explorer-users-to-use-latest-version
https://features.en.softonic.com/microsoft-finally-forces-internet-explorer-users-to-use-latest-version
http://www.w3schools.com/browsers

BIBLIOGRAPHY 71

[19] OS Platform Statistics. [online] [cit. 2017-02-16]. Available at WWW:
<https://www.w3schools.com/browsers/browsers_os.asp>

[20] SASS Documentation. [online] [cit. 2017-02-25]. Available at
WWW: <http://sass-lang.com/documentation/Sass/Script/
Functions.html>

[21] Tim Berners-Lee. [online] [cit. 2017-01-19]. Available at WWW:
<https://www.w3.org/People/Berners-Lee>

[22] Update Google Chrome. [online] [cit. 2017-01-31]. Available at WWW:

https://www.w3schools.com/browsers/browsers_os.asp
http://sass-lang.com/documentation/Sass/Script/Functions.html
http://sass-lang.com/documentation/Sass/Script/Functions.html
https://www.w3.org/People/Berners-Lee

List of Figures

3.1 Fixed-width Layout composition 23
3.2 Fluid Layout composition 24
3.3 Using media queries . 26
3.4 Breakpoints by David Gilbertson 30
3.5 SASS Logo . 33
3.6 Sass Logo . 34

4.1 12 column grid . 47
4.2 Equal height of Flexbox items 49
4.3 Generated classes . 52
4.4 Fibonacci’s spiral of Golden ratio 60
4.5 What is Webpack? . 63
4.6 Browser compatibility . 65

72

List of Tables

3.1 Media types . 26

4.1 CSS Frameworks comparison 45

73

Appendix A

List of abbreviations

CERN The European Organization for Nuclear Research

CM Centimeter

CSS Cascading Style Sheets

DEG Degrees

DOM Document Object Model

DRY Don’t Repeat Yourself

EM "M"

HAML HTML Abstraction Markup Language

HTML HyperText Markup Language

IDE Integrated Development Environment

IE Internet Explorer

LESS Less CSS

MM Milimeters

OS Operating System

OOCSS Object-oriented CSS

PHP Hypertext Preprocessor

PX Pixel

74

APPENDIX A. LIST OF ABBREVIATIONS 75

REM Root Em

SASS Syntactically Awesome Stylesheets

UI User Interface

VH Viewport Height

VW Viewport Width

W3C World Wide Web Consortium

YAML YAML Ain’t Markup Language

Appendix B

Normalize.css v5.0.0

/*! normalize.css v5.0.0 | MIT License |
github.com/necolas/normalize.css */

/**
* 1. Change the default font family in all browsers
* (opinionated).
* 2. Correct the line height in all browsers.
* 3. Prevent adjustments of font size after
* orientation changes in IE on Windows Phone and in iOS.
*/

/* Document
== */

html {
font-family: sans-serif; /* 1 */
line-height: 1.15; /* 2 */
-ms-text-size-adjust: 100%; /* 3 */
-webkit-text-size-adjust: 100%; /* 3 */

}

/* Sections
== */

/**
* Remove the margin in all browsers (opinionated).

76

APPENDIX B. NORMALIZE.CSS V5.0.0 77

*/

body {
margin: 0;

}

/**
* Add the correct display in IE 9-.
*/

article,
aside,
footer,
header,
nav,
section {

display: block;
}

/**
* Correct the font size and margin on ‘h1‘ elements
* within ‘section‘ and
* ‘article‘ contexts in Chrome, Firefox, and Safari.
*/

h1 {
font-size: 2em;
margin: 0.67em 0;

}

/* Grouping content
== */

/**
* Add the correct display in IE 9-.
* 1. Add the correct display in IE.
*/

figcaption,
figure,
main { /* 1 */

APPENDIX B. NORMALIZE.CSS V5.0.0 78

display: block;
}

/**
* Add the correct margin in IE 8.
*/

figure {
margin: 1em 40px;

}

/**
* 1. Add the correct box sizing in Firefox.
* 2. Show the overflow in Edge and IE.
*/

hr {
box-sizing: content-box; /* 1 */
height: 0; /* 1 */
overflow: visible; /* 2 */

}

/**
* 1. Correct the inheritance and scaling of
* font size in all browsers.
* 2. Correct the odd ‘em‘ font sizing in all browsers.
*/

pre {
font-family: monospace, monospace; /* 1 */
font-size: 1em; /* 2 */

}

/* Text-level semantics
== */

/**
* 1. Remove the gray background on active links in IE 10.
* 2. Remove gaps in links underline in iOS 8+ and Safari 8+.
*/

APPENDIX B. NORMALIZE.CSS V5.0.0 79

a {
background-color: transparent; /* 1 */
-webkit-text-decoration-skip: objects; /* 2 */

}

/**
* Remove the outline on focused links when
* they are also active or hovered
* in all browsers (opinionated).
*/

a:active,
a:hover {

outline-width: 0;
}

/**
* 1. Remove the bottom border in Firefox 39-.
* 2. Add the correct text decoration in
* Chrome, Edge, IE, Opera, and Safari.
*/

abbr[title] {
border-bottom: none; /* 1 */
text-decoration: underline; /* 2 */
text-decoration: underline dotted; /* 2 */

}

/**
* Prevent the duplicate application of ‘bolder‘
* by the next rule in Safari 6.
*/

b,
strong {

font-weight: inherit;
}

/**
* Add the correct font weight in Chrome, Edge, and Safari.
*/

APPENDIX B. NORMALIZE.CSS V5.0.0 80

b,
strong {

font-weight: bolder;
}

/**
* 1. Correct the inheritance and scaling of
* font size in all browsers.
* 2. Correct the odd ‘em‘ font sizing in all browsers.
*/

code,
kbd,
samp {

font-family: monospace, monospace; /* 1 */
font-size: 1em; /* 2 */

}

/**
* Add the correct font style in Android 4.3-.
*/

dfn {
font-style: italic;

}

/**
* Add the correct background and color in IE 9-.
*/

mark {
background-color: #ff0;
color: #000;

}

/**
* Add the correct font size in all browsers.
*/

small {

APPENDIX B. NORMALIZE.CSS V5.0.0 81

font-size: 80%;
}

/**
* Prevent ‘sub‘ and ‘sup‘ elements from
* affecting the line height in
* all browsers.
*/

sub,
sup {

font-size: 75%;
line-height: 0;
position: relative;
vertical-align: baseline;

}

sub {
bottom: -0.25em;

}

sup {
top: -0.5em;

}

/* Embedded content
== */

/**
* Add the correct display in IE 9-.
*/

audio,
video {

display: inline-block;
}

/**
* Add the correct display in iOS 4-7.
*/

APPENDIX B. NORMALIZE.CSS V5.0.0 82

audio:not([controls]) {
display: none;
height: 0;

}

/**
* Remove the border on images inside links in IE 10-.
*/

img {
border-style: none;

}

/**
* Hide the overflow in IE.
*/

svg:not(:root) {
overflow: hidden;

}

/* Forms
== */

/**
* 1. Change the font styles in all browsers (opinionated).
* 2. Remove the margin in Firefox and Safari.
*/

button,
input,
optgroup,
select,
textarea {

font-family: sans-serif; /* 1 */
font-size: 100%; /* 1 */
line-height: 1.15; /* 1 */
margin: 0; /* 2 */

}

/**

APPENDIX B. NORMALIZE.CSS V5.0.0 83

* Show the overflow in IE.
* 1. Show the overflow in Edge.
*/

button,
input { /* 1 */

overflow: visible;
}

/**
* Remove the inheritance of text transform
* in Edge, Firefox, and IE.
* 1. Remove the inheritance of text transform in Firefox.
*/

button,
select { /* 1 */

text-transform: none;
}

/**
* 1. Prevent a WebKit bug where (2)
* destroys native ‘audio‘ and ‘video‘
* controls in Android 4.
* 2. Correct the inability to style
* clickable types in iOS and Safari.
*/

button,
html [type="button"], /* 1 */
[type="reset"],
[type="submit"] {

-webkit-appearance: button; /* 2 */
}

/**
* Remove the inner border and padding in Firefox.
*/

button::-moz-focus-inner,
[type="button"]::-moz-focus-inner,

APPENDIX B. NORMALIZE.CSS V5.0.0 84

[type="reset"]::-moz-focus-inner,
[type="submit"]::-moz-focus-inner {

border-style: none;
padding: 0;

}

/**
* Restore the focus styles unset by the previous rule.
*/

button:-moz-focusring,
[type="button"]:-moz-focusring,
[type="reset"]:-moz-focusring,
[type="submit"]:-moz-focusring {

outline: 1px dotted ButtonText;
}

/**
* Change the border, margin, and padding
* in all browsers (opinionated).
*/

fieldset {
border: 1px solid #c0c0c0;
margin: 0 2px;
padding: 0.35em 0.625em 0.75em;

}

/**
* 1. Correct the text wrapping in Edge and IE.
* 2. Correct the color inheritance from
* ‘fieldset‘ elements in IE.
* 3. Remove the padding so developers are
* not caught out when they zero out
* ‘fieldset‘ elements in all browsers.
*/

legend {
box-sizing: border-box; /* 1 */
color: inherit; /* 2 */
display: table; /* 1 */

APPENDIX B. NORMALIZE.CSS V5.0.0 85

max-width: 100%; /* 1 */
padding: 0; /* 3 */
white-space: normal; /* 1 */

}

/**
* 1. Add the correct display in IE 9-.
* 2. Add the correct vertical alignment in
* Chrome, Firefox, and Opera.
*/

progress {
display: inline-block; /* 1 */
vertical-align: baseline; /* 2 */

}

/**
* Remove the default vertical scrollbar in IE.
*/

textarea {
overflow: auto;

}

/**
* 1. Add the correct box sizing in IE 10-.
* 2. Remove the padding in IE 10-.
*/

[type="checkbox"],
[type="radio"] {

box-sizing: border-box; /* 1 */
padding: 0; /* 2 */

}

/**
* Correct the cursor style of increment and
* decrement buttons in Chrome.
*/

[type="number"]::-webkit-inner-spin-button,

APPENDIX B. NORMALIZE.CSS V5.0.0 86

[type="number"]::-webkit-outer-spin-button {
height: auto;

}

/**
* 1. Correct the odd appearance in Chrome and Safari.
* 2. Correct the outline style in Safari.
*/

[type="search"] {
-webkit-appearance: textfield; /* 1 */
outline-offset: -2px; /* 2 */

}

/**
* Remove the inner padding and cancel
* buttons in Chrome and Safari on macOS.
*/

[type="search"]::-webkit-search-cancel-button,
[type="search"]::-webkit-search-decoration {

-webkit-appearance: none;
}

/**
* 1. Correct the inability to style
* clickable types in iOS and Safari.
* 2. Change font properties to ‘inherit‘ in Safari.
*/

::-webkit-file-upload-button {
-webkit-appearance: button; /* 1 */
font: inherit; /* 2 */

}

/* Interactive
== */

/*
* Add the correct display in IE 9-.
* 1. Add the correct display in Edge, IE, and Firefox.

APPENDIX B. NORMALIZE.CSS V5.0.0 87

*/

details, /* 1 */
menu {

display: block;
}

/*
* Add the correct display in all browsers.
*/

summary {
display: list-item;

}

/* Scripting
== */

/**
* Add the correct display in IE 9-.
*/

canvas {
display: inline-block;

}

/**
* Add the correct display in IE.
*/

template {
display: none;

}

/* Hidden
== */

/**
* Add the correct display in IE 10-.
*/

APPENDIX B. NORMALIZE.CSS V5.0.0 88

[hidden] {
display: none;

}

	Contents
	Introduction
	Objectives and Methodology
	Objectives of the Thesis
	Methodology
	OOCSS (Object-oriented CSS)

	Theoretical Part
	CSS3
	Versions
	Development
	Browser compatibility

	Measurements units
	Absolute Lengths
	Font-Relative Lengths
	The Viewport Percentage Lengths
	Percentage Length
	Combination of Lengths in CSS3

	Default CSS3 rules
	Eric Meyer’s “Reset CSS” 2.0
	Normalize.css

	Responsive design
	Layout
	Fixed-width Layout
	Fluid Layout
	Elastic Layout
	Hybrid Layout

	Media Queries
	Desktop first approach
	Mobile first approach
	Breakpoints

	CSS Precompilers
	SASS vs. LESS
	Variables
	Nesting
	Extending
	Mixins (custom methods)
	Color Operations
	If/Else Statements
	Loops
	Interpolating
	Mathematic Operations
	Imports

	Practical Part
	Existing Solutions
	Bootstrap
	PureCSS
	Foundation
	Comparison of the CSS Frameworks

	Framework Specification
	Structure
	Grid System
	Gutters
	Container
	Item
	Class Generator

	Mixins
	Clearfix
	Responsive Embed
	Box Shadow
	Rotate
	Linear Gradient
	Transition
	Flexbox

	Typography
	Deployment
	Console
	IDE Plug-in
	Webpack

	Browser Compatibility

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of abbreviations
	Normalize.css v5.0.0

