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1 INTRODUCTION 
The increasing use of fibre-reinforced composites (or other modern materials) in 

high performance structures has brought a renewed interest in the analysis of cracks 
in anisotropic and moreover heterogeneous media. Without the tools for the 
assessment of fracture-mechanics behaviour of these materials it is impossible to 
apply them into any critical machine parts, where the unexpected failure can have a 
catastrophic consequence. Therefore, there is a necessity to correctly assess the 
singular points in constructions (potential stress concentrators) and be able to predict 
their next behaviour during the operation. Lot of recent works has been focused on 
the description of general stress concentrators in isotropic media. As a consequence 
this field is explored quite well. However, in case of the anisotropic materials, there 
are certain complications which generally disallow applying the same approaches as 
for isotropic materials. Therefore, it is necessary to find other possible ways how to 
involve anisotropy into the assessment of general stress concentrators - see Fig. 1. 

The existence of material interfaces in composites, especially in laminates, brings 
other problems in the analysis of cracks - the problem of cracks terminating at the 
interface of two anisotropic (most often orthotropic) solids and the problem of 
interfacial cracks [10]. These problems are also encountered in the technology of 
protective coatings. For the assessment of crack behaviour in the aforementioned 
situations it is essential to investigate and describe the stress field near the crack tip. 
Although the FE analysis is capable of capturing the singular stress behaviour near a 
corner or a crack tip in homogeneous regions with a refined mesh of conventional 
elements, this traditional FE approach fails to accurately capture the appropriate 
singular behaviour near a corner or a crack tip at the junction of dissimilar materials. 
A very promising approach to an accurate calculation of the near crack tip fields 
consists in the application of so-called two-state (or mutual) conservation integrals -
[16], [20], [40]. The two-state conservation integrals, e.g. in conjunction with a 
displacement-based F E M provide an efficient tool for calculating the stress 
intensities and elastic T-stresses without need of the very fine mesh in the singular 
point vicinity. This is a major advantage over the singular finite elements [46], and 
other various special techniques such as the boundary collocation or the X - F E M . 

-G 
Mat. 1 Mat. 2 

anisotropic 

(orthotropic) 

E L, Et, E z , 

V L T , V J Z , V L Z , 

GLT, GTz, G Z L 

Fig. 1. Different types of the general stress concentrators - crack terminating at the interface of two 
dissimilar materials, interfacial crack, notch and V-notch and a general multimaterial wedge. 
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The problem complexity can be further increased by presence of the bridging 
phase which can significantly influence the resulting stress field in the vicinity of the 
crack tip (e.g. in laminated structures composed of layers reinforced by long fibres). 
In spite of the crack existence in some layer, there may be present intact bridging 
fibres which positively influence the fracture behaviour of the structure. Therefore, 
this fact should be also involved in the stress field analysis which stands as a basis 
for the subsequent fracture-mechanics behaviour assessment. The main objective of 
this assessment and of the whole described problems is to understand the mechanism 
of competition between the crack deflection along the interface and penetration into 
the adjoining material and be able to design such a construction which will exhibit 
the desired behaviour. 

2 PRESENT STATE OF THE SOLVED PROBLEMS 
2.1 DESCRIPTION OF THE STRESS FIELD IN THE VICINITY OF THE 

GENERAL STRESS CONCENTRATOR 

2.1.1 Singularity analysis 

In the first stage of the analysis of the stress field induced by the general stress 
concentrator, the eigenvalues and eigenvectors pertaining to the given singularity 
have to be found. These eigenvalues determine the stress singularity exponent Si-1 -
the order of the stress singularity in the Williams-like stress asymptotic expansion: 

^ ^ • ^ • ^ ( ^ ^ ^ (1) 

The eigenvectors determine the shape and distribution of the stress field (see 
functions ft/...) in (1)). For the singularity analysis, two main categories of 
numerical methods are available - explicit and implicit methods - [34]: 

a) Explicit methods 
An explicit form of the transcendent equation for the eigenvalues of the singular 

problem - roots of this equation are the eigenvalues of the singular problem operator 
is derived. Analytical solution was proposed e.g. by Williams or Westergaard and 
used in works [15] or [33] for a solution of the problem of crack terminating at the 
interface in isotropic solids. However, from practical point of view, this solution is 
limited to isotropic materials (or very special cases of anisotropy) and at present, 
only to the problems of maximum tri-material wedge. However, due to the very 
difficult manipulation with the long expressions some other approaches based on the 
semi-analytical solution are preferable to use. 

- L.E.S. method 
The method is named after Lechnitskii [27], Eshelby [8] and Stroh [43] who 

introduced the complex potentials for anisotropic bodies. The complex potentials 
formally satisfy the equilibrium, the compatibility equations and the elastic/strain 
laws but the specific form of the solution is gained by matching boundary 
conditions. The stresses oih displacements U, and a resulting force Tt along the half-
line leading from the origin of coordinate system is possible to write as follows: 
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<rv=H-r"-fv(0,...), U,=H-rl-g,(0t..)t -T, =H-r>-Ftf,..), (2) 

where fi/0,...), g,(0,...) and Ft(0,...) are the functions of the polar coordinate 0, 
material elastic properties (given by material stiffness matrix), further of the 
characteristic material eigenvalues pt and mainly of the searched singularity 
eigenvalue 5. The means of obtaining the complex numbers pt have been proposed 
by Lechnitskii [27], Eshelby et al. [8] and summarized by Suo in [44]. 

- Transfer matrix method: 
The procedure originally developed by Ting [48], [49] is an efficient tool for the 

singular characterization of non-degenerate anisotropic multimaterial corners. Ting's 
procedure makes use of a transfer matrix, which transfers the displacements and 
stress function vector components from one edge of the material wedge to the other. 

It is worthy of note that Ting's procedure directly yields a linear system whose 
size is 3x3 or 6x6, irrespective of the number of materials N, contrary to traditional 
analytical procedures leading to a linear system of (67V x67V). 

- Continuously distributed dislocation (CDD) technique 
This technique can be used for the modelling of arbitrary cracks (opened or closed 

ones) [13] and it is based on the so-called Bueckner's principle. The basic idea is to 
use the superposition of the stress field present in the uncracked body, together with 
the unknown distribution of edge dislocations, chosen so that the crack faces 
become traction free. The goal is to compile an integral equation where the 
appropriate fundamental solution for the isolated dislocation is integrated along the 
crack line. By solving resulting Fredholm's integral equation the dislocation density 
is found. When the dislocation density is known, arbitrary stress or displacement 
component in the vicinity of the crack tip can be calculated. 

- Babuska's method: 
The characteristic eigenvalues and eigenvectors can also be evaluated using the 

method developed by Papadakis and Babuska in [34]. Their method can be used 
with multi-material wedges, with anisotropic materials and general boundary 
conditions under the assumption of plane strain. A special iterative procedure named 
Shoot was developed to solve the eigenvalue problem. This method has been also 
used in work [22] for calculation of eigenvalues of the multimaterial wedge. 

b) Implicit methods 
These methods do not lead to the closed form of the equation for the eigenvalues, 

they are slower, however they can be used also for the anisotropic materials and 
multi-material wedges as well. E.g. a method based on the variational formulation of 
the solved problem is available [25]. The main idea is to replace the classical 
formulation by the variational one [34]. The classical approximation for the finding 
of functional minimum using F E M leads to the homogenous system of algebraic 
equations for eigenvalues and eigenvectors. 
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2.1.2 Description of the singular stress field 
Crack in anisotropic homogenous body 
The problem of a crack in general anisotropic material under L E F M conditions is 

presented in work [41]. Three methods are presented for the calculation of the stress 
intensity factors for various anisotropic materials. A l l of the methods employ the 
displacement field obtained by means of the finite element method. The first one is 
known as displacement extrapolation and requires the values of the crack face 
displacements. The other two are conservative integrals based upon the J-integral. 

Crack terminating at the interface of two different anisotropic materials 
Number of works has been devoted to the problem of singularity analysis of 

cracks terminating at the interface in anisotropic media - e.g. [28], [49]. Ting in [49] 
studies the order of stress singularities at the tip of a crack which is normal to and 
ends at an interface between two anisotropic elastic layers in a composite material. 
Work [28] extends this study on problem of inclined crack at the bi-material 
interface. Equations for determining the stress singularity exponent are derived. The 
works are based on the complex potential theory analyzed in more details in [48]. 

Multimaterial wedge in anisotropic media 
In the paper [3] the singular stress states induced at the tip of linear elastic 

multimaterial corners are characterized in terms of the order of stress singularities 
and angular variation of stresses and displacements. Linear elastic materials of an 
arbitrary nature are considered, namely anisotropic, orthotropic, transversely 
isotropic, isotropic, etc. This work is based on an original idea of Ting [48] in which 
an efficient procedure for a singularity analysis of anisotropic non-degenerate 
multimaterial corners is introduced by means of the use of transfer matrices. 

2.1.3 Overview of references focusing on the GSIFs and T-stress calculation 
There are several approaches for the calculation of the generalized stress intensity 

factor. One of the simplest is based on the comparison of numerical calculations of 
the stress (or displacement) field in front of the crack tip (e.g. by FEM) with the 
appropriate analytical expressions for stresses or displacements. GSIF is then 
extracted for r—»0 - see e.g. work [33]. This approach is called a "direct method" 
and it can be used for cases where only one singularity is present. The accuracy of 
this method is strongly dependent on the element size at the crack tip. 

Another, much more effective method, which can be used, for the GSIF 
(eventually T-stress) calculation is based on the method of two state (interactive) 
integrals in combination with F E M - e.g. [7], [19]. This method enables to 
determine the local stress field parameters in the vicinity of the crack tip using the 
deformation and stress field in the remote points, where the numerical results 
obtained e.g. using FE analysis are more accurate. The two-state integrals, which are 
path independent, are based on the J-integral [10], [14] or M-integral [11]. The 
application of the two-state integrals requires knowledge of the so-called auxiliary 
solution in the form of eigenfunctions of the appropriate singular problem [19]. 
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The auxiliary solution has been found for the semi-infinite or finite crack, 
generally terminating at the interface of two anisotropic materials. In the connection 
with a description of V-notches or other general stress concentrators it is necessary 
to point out that J-integral is not path independent. On contrary the two-state M -
integral is path independent for the case of V-notch configurations [11]. 

GSIF can also be determined using the so-called ^F-integral [7]. This method 
which turned out to be very efficient is an implication of the Betti's reciprocity 
theorem. Major advantage of this integral consists in its path independency also for 
cases of multimaterial wedges in anisotropic media [42]. The reciprocal theorem of 
elastostatics states that in the absence of body forces and residual stresses the 
reciprocal theorem states that the following integral is path independent 

Y(U,V) = J[a,(U)n F,-a,(V)ntf ,]d*, (3) 
r 

where T is any contour surrounding the crack tip and U , V are two admissible 
displacement fields. The asymptotic expansion of the displacements U(x) is possible 
to write in the following form 

CO 

V(x) = V(O) + H/>ul(d) + H^u2(0) + Tr&>u3(d) + ... = YJk/>ul(d\ 5 3 =1, (4) 
;=0 

where Hi ,H2 are the generalized stress intensity factors u,.(<9), i = \,2 are the 
angular distribution of the displacements corresponding to the singular terms in the 
stress asymptotic expansion and u 3 (6>) is the angular distribution of displacements 
for the T-stress. In the following we will consider U(0) = 0. T-stress is a non-

singular stress component a22(0,x2) acting at the crack tip, T = a 2 2 (0,x2)|^ ^ o . Due to 

the elastic mismatch, there exists also the non-singular stress component an ahead 
of the crack tip (in the material M l ) , contrary to homogeneous materials, where T-
stress is the only non-singular in-plane stress component. If the following 
displacement fields are considered V = Ui(x) = rs,ui(0), Y = UJ(x) = r5juJ(d), (where 

8/, S7 are obtained by solving the eigenvalue problem, see 2.1.1), it can be proved 
that the contour integral ¥ is equal to zero for -8, ^ S7 and non-zero if -8/ = 87 - [25], 
[50],. Since the basis function corresponding to coefficients k\ =Hh k2 =H2, k3 =Tin 
the asymptotic expansion for U arer 5 |u 1(0),r 5 2u 2(0),r 5 5u 3(0), it holds 

GO 

^(v,r-8'u_l) = YJkl^(r5ui,r-5'u_l) = k^(r5'ul,r-5'u_l), (5) 

where wlr^u^r 5 | u A is computed analytically along the path Ti surrounding the 

crack tip with diameter approaching zero, while Y(u, r 5 | u A is computed along T2 

which is any remote integration path with finite diameter (see Fig. 2). Thus, the 
GSIF H\= k\ can be computed as follows: 
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y f u ^ - v , ) Y ( u \ r ^ V , ) r

J

2L v > - ' v - i ; ds 

1 Y ^ u ^ u . , ) f j / ' u , / - ^ , ) ( [ a j / ' u ^ n - r S ^ a j ^ u ^ n - ^ u , ds 
(6) 

Similarly the GSIF H2 = k2 is calculated. Observe, that the dual displacement 
fields (so called extraction solutions) r 5 u ,(0) are singular at the crack tip, hence 
they have unbounded energy near the crack tip and thus corresponds to some 
concentrated sources at the crack tip. Since the exact solution U is not known, a 
finite element solution Uh can be used as an approximation for U so to obtain an 
approximation for GSIFs see e.g. [37], [38]. 

I l l M2 M1 

i d " i — 
r, >0 \ 

y r \ 
, 1 M2 i i j 

x2 

F/^. 2 Integration paths surrounding the singular point. 

2.1.4 Description of the non-singular stress field 
The non-singular term in the Williams asymptotic stress expansion - the T-stress -

is often neglected. However, when aiming to describe the stress field in the vicinity 
of the crack tip more exactly, it should be also paid the same attention to the T-stress 
as to GSIF. The T-stress term is related to the characteristic eigenvalue 8 = 1, so it is 
no more singular. In these cases there are several other possibilities and approaches 
how the T-stress can be obtained: 

Calculation of the T-stress using FEM 
Estimation of the T-stress using the FE analysis is possible with a quite good 

accuracy for cracks in the homogenous materials. However in case of the general 
stress concentrators this analysis becomes controversial due to the presence of media 
discontinuity at the interface. This approach can be used only as a first 
approximation, but cannot be taken as an accurate solution. The T-stress is estimated 
by this method as a stress in direction of the crack face at distance r—»0 from the 
crack tip. The estimation is strongly dependent on the mesh refinement in the 
vicinity of the crack tip. 

Calculation of the T-stress using contour integrals 
Calculation of the T-stress in the anisotropic linear elastic homogenous solid is 

presented in papers [53] and [45]. The T-stress is calculated using the path 
independent line integral and Betti's reciprocal work theorem, together with selected 
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auxiliary fields. However, all the presented theory is applicable only to the case of 
crack in the homogenous body. In case of the general stress concentrators the 
application of J-integral is not possible, because it become path dependent. 
Therefore it is necessary to use other path-independent integral such as for example 
the ^F-integral as it was proposed in the previous chapter for the calculation of GSIF. 

Similar arguments which lead to Eq. (6), apply also for T-stress calculation, i.e. 
T= k3 can be computed as follows 

t 1 \ , . , v fro(u*)-n-r _ 1u 3 -a(r- 1 u 3 ) n U 
vP(u,r- 1u_ 3) _ vF(u A,r- 1u_ 3) JL V ) \ 

ds 

T 
V(ru3,r 'u 3) W(rlu3,r 'u 3) J[o(r 1u 3)-n-r lu_3-a(r lu_3)-n-r1u3 ds 

(7) 

Similarly like with GSIF a finite element solution U can be used as an 
approximation for U so to obtain an approximation for T. 

In Eq. (7), u 3(6>) denotes the auxiliary solution for the T-stress. Physically, this 
solution corresponds to the concentrated moment about x3 acting at the crack tip. 

Calculation of the T-stress using CDD technique 
As suggested by Broberg [4], the T-stress can also be determined using 

dislocation arrays. This approach has been widely discussed in [37] . 
Modelling of a finite crack perpendicular to the bi-material interface (of isotropic 

materials), and terminating in front of the interface at distance b, is presented in [17] 
and [52]. The complete solutions of the problem, including the T-stress and the 
stress intensity factors are obtained. 

2.2 CRACK BRIDGING PROBLEM 
Fibre reinforced ceramic materials have promising potential e.g. for high-

temperature applications. Under the tensile loading of the composite in the fibre 
direction, the brittle matrix can undergo extensive cracking normal to the fibres, but 
the associated matrix cracking stress may be substantially greater than the critical 
fracture stress of the unreinforced ceramic - see [6]. Furthermore, with the intact 
fibres, the composite material can continue to sustain additional load up to the fibre 
bundle fracture stress. 

2.2.1 Bridging models 
These models describe a relation between the bridging stress and the crack face 

opening. For a simple sliding with a constant rs, Aveston et al.[l]; Budiansky et 
al.[6] and [5]; Marshall et al. [29] suggested a model of bridging fibres represented 
by a continuous distribution of bridging springs obeying the quadratic bridging law 

( 

P 
(x2)= where p= f f

 2

S , (8) 

where v(x2) is the displacement of the upper crack face, R f is the fibre radius, Ef, 
Em are material characteristics of the fibre and the matrix respectively, cf fibre 
fracture volume and TS is a interface slipping shear resistance stress. 
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Elastic 
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Fig. 3 Interface fibre/matrix: a) decohesion of fibre in matrix; b) frictional constraint 

fibre/matrix; c) characteristic bridging areas and corresponding types of constraints fibre/ matrix. 

Under the assumption that the strength of the fibres, <j0f, has a single, 
deterministic value, failure occurs when the bridging spring stress at the original 
crack tips reaches <J= cj <j0f. Since the stress on the fibres has a maximum value in 
the plane of the matrix crack so the fibres are always broken in the plane of the 
crack. The prediction of the composite toughness and strength may be so unduly 
conservative. The reason is that with dispersion in the fibre tensile strength, fibres 
may fracture within the matrix rather than at bridged faces of the crack, thereby 
leading to frictionally constrained fibre pullout before final failure occurs, and so 
leading to enhanced composite strength. Apparently, fractured fibres still contribute 
to the bridging stresses as they have to be pulled out from the matrix - see Fig. 3 c). 
The relative contribution of intact fibres and broken ones within the matrix, is 
analyzed assuming that the fibre strength follows the Weibull statistics [47]. This 
gave an expression for the average stress transferred by the fibres across crack: 

' br obr exp 

\mw+l 
'br 

c ,E 
V / j 

+ ap \ 1 - exp ' br 

c JL 
V J J 

(9) 

fraction of intact fibres fraction of broken fibres 

where <JP is the average stress exerted by the broken fibres pulled out from the 
matrix, and exp[-(cr^/c /s)""+1] stands for the fraction of intact fibres in the crack 
wake. E is the fibre strength distribution and mw the Weibull modulus [47] 

2.2.2 Generalized bridging stress intensity factor 
To quantitatively express the influence of the bridging fibres on the resulting 

stress field the value of the generalized bridging stress intensity factor Hbr caused by 
the bridging stress have to be calculated. As a result, the local generalized stress 
intensity factor Htip=Happi -Hbr acting in the very crack tip is lower than the remote 
applied stress intensity Happ!. One of the possible ways how to calculate the 
influence of the bridging effect can be found e.g. in [21] or [32]. The generalized 
bridging stress intensity factor is calculated using the following formula: 

Hbr = ]w(x2,h) abr(x2)d: (10) 

where W(x2,h) is the weight function which can be obtained numerically using the 
FE analysis as was proposed for example in [39]. The weight function depends on 
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the component geometry, but it is independent of the applied loading. This technique 
can be modified also for the solution of the plane crack problems. 

The bridging stress <Jbr can be calculated using the recurrent formulas and 
suitable bridging models as is presented in paper [21]. After the weight function and 
bridging stress is calculated, the generalized bridging SIF Hbr can be determined and 
the local GSIF Htip as well. The SIF Happ! can be calculated on the unbridged 
configuration e.g. using some of the two state integral method. 

The bridging crack problems can also be solved efficiently using the already 
mentioned CDD technique. The solution can be worked out due to recent findings of 
authors in [18]. An integral equation is obtained by choosing the dislocation 
distribution to meet the traction conditions along the line of the crack and within 
crack bridging zone: 

Here, Nuk are regular kernels in the closed interval [-h,0] (along the crack), 
aif' {xi) denotes the negated stresses in Xi=0 produced by the given boundary loads, 
acting on a specimen with boundary <9Q, but without cracks and dislocations. <Jbr is 
the bridging stress as a function of the upper crack face displacement. fk(x2o) is the 
unknown dislocation density. Once the dislocation density fkix2o) is found, the 
displacement of the upper crack face v(x2) is also known and from cr^[v(x 2)], the 
bridging stress as a function of position follows. After the bridging stress and 
dislocation density is known, arbitrary stress component in front of the crack tip can 
be calculated. Afterwards the resulting local GSIF is obtained as the following limit: 

2.3 PROBLEMS OF FRACTURE CRITERIA 
It is now well established that the increase of the toughness of ceramics laminates 

or ceramic-matrix composites can be achieved by introducing weak interfaces 
between layers or between the fibre and the matrix [30]. Deflection along the 
interface then results in a crack blunting and this effect increases the required energy 
for the next crack propagation. Understanding the mechanism of the crack deflection 
along the interface is thus essential to determine, for example, the suitable interlayer 
and the optimum interface toughness which are necessary to favour this 
phenomenon [23]. Various attempts have been made to attain this objective. 

The discontinuity in the elastic properties at the interface strongly influences the 
behaviour of the energy release rate of the crack in the vicinity of the interface. In 
the case of a strong singularity (crack lies in a stiffer material and a characteristic 
eigenvalue 5<l/2), the energy release rates Gp(ap=0), GJ^a^O) for a crack 
terminating at the interface are infinite and interface penetration or deflection is thus 
possible at any finite load level. In contrast, the presence of a weak singularity 
(crack lies in a softer material, 5>l/2) implies that the energy release rates Gp(ap=0), 

5^(v (x 2 ) ) . (11) 

Htip=\im r^an(r,6 = 7Tl2). (12) 
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GJaj=0) for a crack terminating at the interface are zero and interface penetration or 
deflection is not predicted for any applied load. Due to this fact, the classical 
differential theory cannot be used for the case of cracks propagating near the 
interface. This problem may be overcome with the help of the so-called finite 
fracture mechanics [31], where the crack increment of a finite length is used instead 
of the infinitesimal one - for details see section 5.2. 

3 APPLICATION OF METHODS FOR THE STRESS FIELD 
DESCRIPTION IN THE VICINITY OF THE GSC 

3.1 CDD TECHNIQUE 

The semi-infinite crack can be modelled as an array of continuously distributed 
edge dislocations along the negative x2-axis, see Fig. 4. 

interface interface interface 

*1 *1 *1 
Fig. 4 Semi-infinite crack terminating perpendicular to the interface of two anisotropic materials. 

The potential functions for an isolated dislocation located at the point (xijc2) in an 
infinite homogeneous anisotropic medium is 

1 
#a0(z) = 9aln(z"0> where qa = x, + Pax2o, a=l,..3, qa 

4TI 
(13) 

where the vector dk is related to the Burgers vector bt through the equation 

b, =Bikdk, within = ^ ( 4 A - 4 A ) = - im ! 4 A t I (14) 

where the matrix Mak is defined as the inverse of Lia, Mak Lkß = Saß. The quantities 
pa, Aja, Lia are given by Lekhniskii [27]. For the plane deformation, the elastic field 
can be represented in terms of the complex potential functions O i ( z i ) , 0 2(z 2), ® 3(z 3), 
each of which is holomorphic in its arguments za = X\ + Pa^io- Here, pa are three 
distinct complex numbers with positive imaginary parts, which are obtained as the 
roots of the characteristic equation 

d e t [ c ; m + Pfau* + c i 2 k i ) + P 2 c i 2 k i ] = °> ( 1 5 ) 

where cijki is the tensor of elastic constants, i.e. cry = cijkiukj, which satisfies the 
symmetry conditions c m = c m = c m = c m . 

With these holomorphic functions, the representation for the displacements U, and 
stresses ay is 
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U, = 2Re 2Re j -2 Re Z ^ a A ^ a W (16) 

The solution for the stress field produced by an isolated dislocation located at 
point (xlo, x2o) with the Burgers vector bt in an infinite anisotropic bi-material can be 
written e.g. for stress component an as follows 

° l , ( X l > X 2 ) = - 7 ~ Z Z i P a z 
<7, 

ak + C . C , Z E 2 , (17) 

where superscript I and II refers to the material 1 and 2 respectively - see Fig. 4. 
Similar relations are derived also for other stress and displacement components. 

The asymptotic stress field near the crack tip is modelled as a continuous 
distribution of dislocations with density function 

fk(x2o) = Hvk(-x2o)°-\ x2o<0, (18) 

By integration of (17) where 8 is the unknown stress singularity exponent, vk are 
the components of corresponding eigenvector, and 77 is the generalized stress 
intensity factor (GSIF). Substitute Eq. (18) into the integral equation, integrate and 
apply the traction-free condition on the plane of the crack to obtain 

Re<̂  
a ß P" 

csc(ra5)-8. t cot(ra5) >v,r 
(19) 

Eq. (19) can be briefly written as 

D(8) v = 0, where Dik (5) = Re ' p'p~s 

a p V P'l 
csc (TT5) - 5it cot (718) (20) 

The parameter 8 is calculated from the characteristic equation Det[D(S)]=0. 
Substituing 8 back into relations like (17), the arbitrary stress or displacement 
component can be calculated. 

3.2 L.E.S. METHOD 
Choose the coordination system so that the material containing crack is in the area 

x2<0. Both of these materials are homogenous and linear elastic and the Hooke's law 
is valid for the deformations: 

= Z 0 = 1,2,6). (21) 
7=1,2,6 

Where stj is a compliance matrix and the Eq. (21) holds for the case of the plane 
stress. In the case of plane strain it is necessary to perform a conversion of the 
compliance matrix components. 

The subscripts 1,2,3 denotes the appropriate material direction, where the 
direction 1 is called the Longitudinal (L), 2 - Transversal (T) and 3 as Z. Both 
orthotropic materials are characterized by the complex numbers ph Im(/?/)>0, (see 
also the preceding section) where z=l,2 and Im(.) denotes the complex number 
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imaginary part. Numbers pt are depending on material characteristics and can be 
obtained as the roots of the 4 t h order equation 

+1 = 0, where A = ̂ , p = 2"n + % . (22) 
S22 ^ \ S U S 2 2 

The eq. (22) is a special case of the characteristic equation of the 6 t h order 
presented by Lechnitskii [26]. The case p=l corresponds to material with cubic 
symmetry and X=p=\ corresponds to isotropic material. These are the so-called 
degenerate cases of anisotropy, where the LES formalism cannot be applied directly. 
One of the ways to overcome the problems with material symmetry was introduced 
by Suo [44]. This is an analogy to the Muschelishvilli's complex potential method. 

For the two aligned orthotropic media, it is possible to define two generalized 
Dundurs' parameters a and ft - see [12], which are the only bi-material constants 
that enter the solution for the problem involving dissimilar materials with prescribed 
tractions at the boundary. Thus, the solution for the problem under consideration 
should depend upon X and p for each material and the two bi-material parameters a 
and p. Both parameters a and ft can take the value from interval (-1, 1). For the case 
of anisotropic material, i.e. for /#1 , it is possible to write the relations for 
displacements Uh stresses oih and the resulting force Tt along the half-line leading 
from the CS origin: 

U, = 2 R e | t / 2 R e < t / , / ( _ - ) 

a2l =2Re|£v;(z,)}, a , = - 2 R e J £ L i j P j / ; ( Z j ) 

where zj = xl +ipjX2, (.)' denotes differentiation with respect to Zj and the matrices 
Ay, Ljj holds contains characteristics pt and components - see [36] . 

The exponent 8 depends on the local boundary conditions and the material 
characteristics of both materials. The unknown potentials fj{zj), cp(z) and y/^z) are 
sought in the following form f'(z') ^ V ' \ <pJ(z) = <p*Jz5, y/J'(z) = <p*J'z\ where 

7=1, 2, J=I, II, III and (/)/ and (f>*J are vectors of complex coefficients. The 
superscripts denotes the appropriate bi-material region (see Fig. 2), the subscript 
denotes either the pertinence to characteristic number pt of the orthotropic material 
or pertinence to the potential of the isotropic material. The coordinates z7 and z are 
considered as polar (see Fig. 2) z^ =r(cos<9 + p'sinOY z = r(cos6 , + isin6 |). 

In the crack tip region, the following boundary conditions have to be satisfied 

T. = 0 for 0 = 2x-$ ; U\ = Uf, Tt' = for 0 = 0 ; Uf = Uf, T" = T/11 for 0 = x, (24) 

where § is an angle formed by the crack and the interface. The goal is to find the 
unknown singularity exponent 8 and the corresponding unknown eigenvectors <p/ or 
(f)*J so that the boundary conditions (24) are satisfied. Substituting the assumed form 
of the potential solution fj(zj), <p(z) and \jAz) into (23) one obtain for the case of the 
anisotropic media the following relations 
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UJ = A 7 Z 7 5 0 7 + A 7 Z 7 5 0 7 , - T 7 = L 7 Z 7 5 0 7 + L 7 Z 7 5 0 7 , (25) 

For the bi-material, composed of two anisotropic media, combining the boundary 
conditions (24) and relations for the displacements and resulting force (25) one gets 
the homogenous algebraic equation system of size 12x12 which is is possible to 
reduce on the system of two equations 

K(5)v7 = 0, (26) 
where 0=0, is a vector 2x1 and for the vector v/ holds v7 = (1 /H) • I /O 7 , where H is 

a generalized stress intensity factor (GSIF). The following relation has to hold, in 
order to the solution of the equation system (26) exist 

det[K(5)] = 0. (27) 

The relation (27) leads to nonlinear equation with parameter 5, which has at least 
two roots on interval (0, 1). Substituing 5 back into the relations for fj(zj), cp(z) and 
\jAz) and Eq. (23) the complete stress and displacement field is obtained. 

Analogical relations as in (23)-(25) can be used also for the stress and 
displacement field description in the case of isotropic material. The matrices and 
Ly in (23) are then simplified - see [36]. 

4 SOLUTION OF THE CRACK BRIDGING PROBLEM 
4.1 BRIDGED CRACK MODELLING USING THE WEIGHT 

FUNCTION METHOD 
The weight function method allows setting up a bridging stress-crack opening 

displacement relationship (see section 2.2) by analysing the experimental crack 
opening displacement data and solving an integral equation. Once the weight 
function(s) are known the bridging intensity factor can be easily calculated for any 
bridging stress distribution by evaluating the integral of the form of Eq.(10). The 
weight function method has been extensively used to the modelling of bridged crack 
problems [9]. For a complicated domain, the weight function has to be obtained 
numerically, e.g. by F E M - [39] (performing a number of calculations of the GSIF 
due to unit line load applied to the crack face at arbitrary points - Fig. 5). To this 
end, an application of the reciprocal theorem seems to be very efficient - see 2.1.3. 
To calculate the COD and the bridging stress, the special recurrent calculations are 
applied - see [21] . 

Now assume that a pair of line forces acts on the crack faces at a point xlh -
Fig. 5. Other loading is absent. Eq. (3) modifies with help of Eq. (5) as 

J [ a y . ( U ) « , r " V l y - a y ( ^ 5 ' u _ 1 ) « , T / j ] d ^ + 2F^ s 'u _ 1 =if x P(r s 'u 1 ,^ s 'u_ 1 ). (28) 
r3 

T 3 is an arbitrary contour enclosing a domain containing both the crack tip and the 
pair of line forces. By definition, the weight function W{xlb,h) follows as 

1 r, 
; .1' d.s • 2Fr u , 

^ r r = M ^ — '~n~— • (29) 
|F| |F| f r ' - U L ^ u . ! 
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FE solution U was used as an approximation for U in Eq. (29). Having 
calculated a value of the weight function W for sufficiently large number of line 
force positions, the generalized bridging SIF, Hbr, can be using relation (10) 
obtained for an arbitrary bridging stress distribution abr(x2). 

M2 

, F 

— * > s . M l 

M2 

V h ' B J 

^ • 

x2 

Fig. 5 A pair of line forces acting on the crack faces and the integration path. 

With elastic constants of two layers M l and M2 iiL=137GPa, Ej= iiZ=10.8GPa 
G Z T = 3.36 GPa, G Z L = GJL = 5.65 GPa, v Tz = 0.49 and V Z L = V T L = 0.238, the weight 
functions were calculated for several ratios of the layer thicknesses hIB. Note that 
for M l the L-direction is parallel with x2-axis and for M2 parallel with x r axis. The 
bridging model (9) was applied with the fibre volume fraction cf = 0.4, the fibre 
radius R f = 7 jiim, the sliding resistance T s = 6 MPa, the fibre Young modulus Ef = 
228 GPa, and the matrix Young modulus Em = 76 GPa. An example parametric 
study was performed in order to examine an influence of the fibre characteristic 
strength CTO/ - see Fig. 6. The product W.h is plotted against the dimensionless 
distance from the crack tip -x2/h. The same figure also shows examples of the 
resulting SIFs - Happ!, Hbr and Htip, calculated as a function of the tensile loading a 0 

for several fibre strengths of the bridging model (9). 

Distance from the crack tip (-x2/h) [-] Applied stress [MPa] 

a) b) 
Fig. 6 a) Bimaterial normalized weight function against the dimensionless distance from the crack 
tip for several values of the ratio h/B. b) Remote, bridging, and local GSIFs plotted as functions of 

the applied tensile loading Go for several values of the fibre characteristic strength <j0f 
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5 FRACTURE CRITERION FOR THE ASSESSMENT OF THE 
GENERAL STRESS CONCENTRATOR STABILITY 

5.1 CRACK ONSET CRITERION 
As it was presented in the work [24], both energy and stress criteria are necessary 

conditions for fracture but neither one nor the other are sufficient. Experiments by 
Parvizi et al. - [35] on transverse cracking in cross-ply laminates corroborate this 
assumption. When fracture occurs, the two criteria (energy and strength) are fulfilled 
simultaneously, even if one often hides the other. Both are necessary conditions and 
together they seem to form a sufficient one. Giving both the toughness Gc and the 
strength erc it is possible to define a characteristic length for the crack onset. The 
failure is assumed to be a sudden and quasi-spontaneous mechanism as proposed 
e.g. by [2], [35] and [51]. 

5.2 PERTURBATION ANALYSIS 

In the case of a matrix crack impinging on the interface, a differential energy 
analysis is unsuitable due to the discontinuity in the elastic properties: finite crack 
extensions ad, ap are to be considered (instead of infinitesimal one) and the 
competition between deflection and penetration at the interface is evaluated using 
the condition that the crack will follow the path which maximizes the additional 
energy AW released by the fracture. If crack deflection occurs preferentially to 
penetration at the interface, the following condition must be satisfied: 

AWd = 8Wd -Gc

lad > AWp =8Wp-Gc

lap, (30) 

where Gc

l is the interface toughness, Gj is the toughness of the material M l and 
5W is a change of the potential energy between the original and new crack position. 
Matched asymptotic procedure is used to derive 6W - [27]. A perturbation of the 
domain Q i n is introduced as shown in Fig. 7. The perturbation is a deflected (singly, 
doubly) crack extension of length ad or penetrating crack extension of length ap with 
the small perturbation parameter s defined as s = al Lc « ; 1, a = ap,ad, 

Fig. 7 Outer and Inner domain used in the matched asymptotic analysis (in case of the singly 
deflected crack) - zoomed-in view of crack neighbourhood perturbed by a small crack extension. 
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where Lc is the characteristic length of Q°. A second scale to the problem can be 
introduced, represented by the scaled-up coordinates 

y=\or(y,y2) = { \ ^ \ (31) 
s ^ s s J 

which provides a zoomed-in view into the region surrounding the crack. 

5.2.1 Matched asymptotic procedure 

To derive the change of potential energy, consider a perturbation of the domain Q 
with crack impinging the interface; the perturbation is a deflected crack extension of 
length ad or penetrating crack extension of length ap with the small perturbation 
parameter s. The displacement If of the perturbed elasticity problem due to the 
crack extension can be expressed in terms of the regular coordinate x and the scaled-
up coordinate 3/ - (31) as U E (x) = U E (sy) = V E (.y). Consider now the asymptotic 
expansion for If (which is also known as the "outer expansion") and for V e (which 
is also known as the "inner expansion") 

U E(x)=/ 0(s)W 0(x)+/ 1(s)W 1(x) + ... = 2] J/;(s)^ (x), outer expansion, (32) 
;=0 

where l i m / + 1 ( s ) / / ( s ) = 0, V/ = l,2,...and {UX,U2^) f o r m a s e t of linearly 

independent basis functions, and the inner asymptotic expansion is possible to write 
in the following form - for more details see [50]: 

CO 

\s(y)=F0(e)y0(y)+Fl(e)l{(y) + ... = YJFl(e)l{(y), inner expansion , (33) 

where l i m ^ + 1 (e)/f,(e) = 0, Vz = l,2,..., F0(e) = l , yo(y) = V° (0) = 0 and 

form a set of linearly independent basis functions. The basis functions {Ut} satisfy 
the elasticity problem on the same domain Q «Q e but with zero body force and with 
homogeneous boundary conditions. From the matching conditions of the outer and 
inner asymptotic expansion, the asymptotic expansion coefficients fo(z), fi(z),.. and 
F 0(s), Fi(s),... can be found: 

= V E W = Fy (s) [p5<u 1 (0) + Kld(p)P

5>» _x (0) + K2d(p)P

luj0) + .^ + 

( 3 4 ) 
+ F 2 ( £ ) [ p u 3 ( ^ i ; / i u j ^ + i ; , / u 3 ( ^ . . . . l + 

+F3 ( s ^ u ^ + K^p^u _X0)+K2d{p)o-'u _3 (0) + 

The corresponding terms (with the same power exponent 5) are to be compared 
and from this comparision follows e.g. that F1 (s) = He5', F3 (s) = Te or fx (s) = / / s 2 5 ' . 

Finally, the following asymptotic expansion V E(^)is obtained (by substitution of 
the obtained coefficients Fi(s) and^s) into (34)): 
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IT (x = sy) = V e (y) = tfs5' [p5<u t (0) + Kld(p)p^u ^ K ^ u _3(0) j 

+ r s [ p U ^ ) + ^ ( r t p - 5 ' u i ( ^ ) + i L ( r t p - 1

U 3 ( ^ ) + . n 

The terms in (35) are ordered with respect to the increasing power of parameter s. 
With an eye on applications we will distinguish between two cases: a) crack 

perpendicularly impinging an interface, b) inclined crack impinging a interface. 

5.2.2 Crack perpendicularly impinging an interface 
The asymptotic expansion of the displacements for the initial state U (x) (main 

crack terminating on the interface and no crack extension of length ad(p) is present) is 
possible to write in the following form 

oc 

U° (x) = U° (0) + H/'u, (Q) + H2r^u2(Q) + Tr^u3(Q) + ... = YJfy6'u, (0), 53 = 1. (36) 

The meaning of the individual terms have been already discussed in the sections 
2.1.3 and 2.1.4. In the following we will considerU° (o) = 0. 

The outer asymptotic expansion of If (when the small crack extension has 
originated) is possible to write as 

U E ( x ) = U ° ( x ) + / 1 ( s ) [ ^ ( ; 7 ) r - 5 ' u _ 1 ( ^ + ...] + ... (37) 

Where {^,^,^,...}are linearly independent basis functions of the inner expansion 
(33) as follows 

yo(y) = V°(0) = 0, H(y) = ps'ul(0) + Kld(p)P-s'u_l(0) + K2d(p)plu _3(0) + ...., p = - , 
8 (38) 

y2(y) = pu^0) + K[d(p)p6>u_l(0) + K'2d(p)plu _3 (0) + ...., p = V-

The first terms on the right hand side of (38) express the asymptotic behaviour of 
the functions Vl for p—»co. The coefficients Kld(p) and K2d(p) are computed on the 

inner domain Q!n, which is unbounded for s—»0 but in the model employed in the 
finite element calculation, Q'n is approximated by a circular region with radius R 
much larger than the crack extension length ad(p). On the circle boundary, the 
condition of the type u^,, =p5lul(0) is prescribed. Kld(p) and K2d(p)arQ calculated 
similarly as H or T-stress as follows: 

^ ( P ^ P V ) y f r » ( p , g ) , p u 3 ) 
K"w= ^ r ' ^ ( „ = - ^ r - ^ f, K -FEapprox.to^ . (39) 

The coefficients K[d(p) and K'2d(p) in (38) are calculated in a similar way with the 
boundary condition = pu 3 {0) prescribed on the circular region boundary. 

A necessary condition for a crack to deflect along the interface is G'JG] <GD/GP 

and vice versa, if the inequality is of the opposite sign, the penetration is preferred 
before the deflection. Note that the criterion G'JG] <GD/GP implicitly assumes the 
considered finite crack extensions of both, deflected and penetrating crack, of the 
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same lengths (ad=ap). Gc

l is the interface toughness, Gc is the toughness of the next 
layer, Gd is the energy release rate (ERR) for a crack deflected at the interface and 
Gp is the ERR for a penetrating crack. The values of toughnesses Gc

l and Gc

l have to 
be specified by virtue of experiments. 

The incremental ERR Gd(p), related to the unperturbed state U° (without the crack 
extension) and perturbed state If (with the finite crack extension), is defined as 

SW WE-W° 1 f/ / „ „v „ n / n i l \ „ „ \ , 1 
G 

8d(P)L 2£<j{p)L r 
\{akl{vE)nkU°-akl{\}°)nkU:)ds. 

2sd(p)L 

y(u s , u ° ) , (40) 

where SW is the potential energy change, c^) = ad{p)ILc, H - GSIF (6) and T is a 
T-stress (7). 

Observe, that line T is any contour surrounding the crack tip and the crack 
increment and starting and finishing on the stress-free faces of the primary crack. 

The ratio of the debonding to the penetrating ERR follows from (40) as 
,2,5,-1 

d(p) ad 

id(p) \ a

P j 
, where n d(p) 

w, = w(p-diu(0), / > S 2 = v(p~lu 3{e),pu 3(&)) 

(41) 

To demonstrate the calculations of the ERRs ratio (41) a parametric study 
displayed in the Fig. 8 was made: 

o 
•3 

O 
•3 

0 
c 

1 

•s=l/50 

c =1/100 

=1/500 

O 

Ratio G s d /G p for H2±0 and J==0 

Ratio G d /G p for#2*0 and 7V0 

Ratio G s d /G p for #2*0 and 7=0 

Ratio G d /G p for/f2*0 and 7=0 

h M2 J \ M2 ) 

b 
Jfi 

.IV 1 

0.6 -0.4 -0.2 0 

Dundurs' parameter a [-] 
0.2 0.4 

Fig. 8 The ratio of Gsd/Gp (Gd/Gp) as a function of Dundurs 'parameter a for several values of the 
characteristic crack extension size s. (sd-single deflection, d-double deflection, p-penetration). 

The ratios of GSJGV and G&IGV were calculated as a function of the Dundurs' 
parameter a and by setting Dundurs' parameter /3=0. Material M l (Fig. 7) of the 
surface layer was considered as an isotropic material with constant elastic properties 
ii=60GPa, v=0.238. The elastic properties of the orthotropic material were computed 
for each value of a using the equations in detail described in the thesis. They relate 
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Dundurs' parameters a, /?, components of the material compliance matrix stj - see 
Eq. (21) and parameters X, p.- see Eq. (22) (the parameters ,3,1=0.1, pi=2, X2=\ and 
P2=\ were considered). The singularity exponent 8, GSIF H and T-stress T, were 
calculated using the theory described in sections 2.1, 3.1 and 3.2. 

When the T-stress term is considered, one can observe, that with decreasing s the 
ratios GSi/Gp (Gd/Gp) approach the limiting case when the T-stress is not considered. 
In other words, when the crack extension is too small, influence of the T-stress is not 
measurable. 

Observe also (in Fig. 7) the difference between the single and double deflection 
ERR ratios is very slight. This implies that for the perpendicular crack it is not 
possible to decide for a certainty whether the single or double deflection will occur. 
The resulting behaviour will depend also on some other factors like the loading, 
geometry or bonding imperfections which will initiate one of these modes of 
deflection. 

5.2.3 Inclined crack impinging a interface 
Asymptotic expansion for the primary inclined crack before the perturbation 

inception takes place reads 
U° (x) =U° (0) +#1r5'u1 (0) + H2r8>u2 {0) + ..., (42) 

The determination of the coefficients KM . , K „ . ,,K'< ,,K'Tproceeds in a similar 

fashion as the coefficients K in the section 5.2.2, K,.,K..t , are calculated in the 
' ld(p)> 2d(p) 

inner domain whose remote boundary 8Q'n is subjected to the boundary condition 
u| =p5 iu (0) and the coefficients K'r ,,K'( .are calculated in the inner domain 
whose remote boundary 8Q"1 is subjected to the boundary condition Jj\miii = p § 2u 2 {0). 

The ratio of the debonding to the penetrating ERR exhibits a similar form as for 
perpendicular crack: 

Gd _ KJVX +(K\J¥X +K2dV2)Vd +K'uW27Tt 

a 
v PJ 

s2-st 

Gp KYpVY+{K[pVY+K2pV2)rip+K'2pV2ri 

' F . E ' P I A M . A , ^ ) ) , v2=v(ps>u2{e),P-s>u_2{e)), 
i v ^ y 

H2 _p_ 

(43) 

In the same manner (and the same materials) as in Section 5.2.2 and Fig. 8, the 
appropriate ratios G s d / G p and G d / G p for the inclined crack were calculated - see Fig. 
9. In this case only the singular terms (characterized by Hx and H2) of the asymptotic 
expansion were taken into account for calculation of the ratio (43). 

By comparison of Fig. 9 a) and b) one can conclude that the influence of the 
second singular term on the ratios G(S)d/Gp is very significant and it can strongly 
affect the resulting verdict about the further propagation direction. The second 
singular term seems to be here more dominant for the fracture criterion than the first 
singular term. The other general conclusion which can be drawn for the inclined 
cracks is that the single deflection is preferred before the double deflection. 

23 



Dundurs' parameter a [-] Dundurs' parameter a [-] 
a) b) 

Fig. 9 Ratios Gsc/Gp and G/Gp as a function of Dundurs 'parameters a for several values of the crack 
inclination angle (f> (the characteristic crack extension length e=1/100) a) the case when the second 

singular term is not considered (H2=0); b) both Hj and H2 singular terms are considered. 

6 CONCLUSION 
It is possible to conclude, that the main aims of the thesis were achieved. Briefly 

speaking a complex computational tool for the assessment of the general stress 
concentrators in anisotropic media (especially cracks terminating at the interface of 
two dissimilar materials) was created. 

The main particular outputs of this work are possible to summarize as follows: 
c g = Using the complex potential theory and the Lechnitskii-Stroh formalism a 

technique for the calculation of the stress singularity exponents and 
description of the singular (regular) stress field in the vicinity of general stress 
concentrator in anisotropic media have been developed. 

, 3 r Next to this approach, the Continuously Distributed Dislocation technique has 
been employed to attain the same objective (singularity analysis, description 
of the stress and displacement field and the GSIFs calculations). 

, 3 r Using the Betti's reciprocal theorem and the two state (integration path 
independent) ^F-integral, a powerful tool for the calculation of the GSIFs and 
T-stresses has been developed. It takes advantage of the FE analysis, which 
was performed within the code ANSYS 10.0, and the post-processing, which 
has been programmed in the mathematical software M A T L A B 7.1, including 
the integration process for GSIF (T-stress) calculation. 

c g = A technique for the involvement of the possible crack bridging effect into the 
resulting stress field in the vicinity of the bridged crack was developed. The 
two different bridging models were introduced and compared - a simple 
Budiansky's model and advanced statistical bridging model. 
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, 3 r A suggestion of the suitable fracture criterion for the general stress 
concentrators has been made. The theory of the finite fracture mechanics in 
combination with the matched asymptotic expansions technique has been 
employed here. A relation for the energy release rate of the crack terminating 
at the interface of two different (anisotropic) materials has been derived. This 
relation can involve two parameters. Either the leading singular term of the 
Williams-like asymptotic expansion together with the T-stress (for 
perpendicular cracks) or the two singular terms (for inclined cracks). The FE 
analysis and ^F-integral are used for the mentioned calculations. 

, 3 r A direction of the prospective crack extension (crack penetration across the 
interface or the crack deflection) has been studied (for the crack terminating at 
the interface of the orthotropic substrate and the isotropic surface layer). If the 
crack penetrates to the next material, then it follows that penetration direction 
which maximizes the ERR for the chosen small crack extension. 

, 3 r It was shown, for the case of the crack perpendicular to the interface, that in 
some cases, also a consideration of the T-stress can influences the resulting 
direction of the propagation - see Fig. 8. Due to this reason, it is 
recommended to take also the T-stress into the account. On the contrary, for 
the case of the inclined cracks, it is always recommended to consider both 
singular terms from the Williams's like asymptotic expansion for the 
definition of the fracture criteria (especially for cracks inclined more than 10° 
from the perpendicular state) - see Fig. 9. The T-stress term was not proved to 
exist for the inclined cracks, at least for investigated configurations. The 
existence of the T-stress is closely related to the existence of the root 8=1 of 
the eigenvalue-equation pertaining to a particular singularity problem. This is 
a necessary condition but it is still not clear whether this condition is also 
sufficient one. Further investigations are needed. 
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ABSTRACT 
The presented Ph.D. thesis has originated in the framework of the 

postgraduate study under tuition of my supervisor Prof. RNDr. Michal Kotoul, 
DrSc. The thesis focuses to the solution of the problems of general stress 
concentrators in anisotropic media. Particularly, it is a problem of cracks 
terminating on the interface of two dissimilar materials or problems of general 
multi-material wedge. The work is possible to sectionalize into three parts. The 
first part is dedicated to the search study in the area of interest, the second part to 
the methods chosen for the achievement of the thesis aims. These aims are as 
follows: the description of the stress field in the vicinity of the general stress 
concentrator, the inclusion of the effect of crack bridging into the resulting stress 
field, and definition of the fracture criteria for the crack impinging at the interface 
in dissimilar anisotropic media. The last, third, part contains several 
demonstrative examples - applications of methods on specific bi-material models. 
For the description of the stress field the so-called Lechnitskii-Stroh formalism 
and continuously distributed dislocation technique, exploiting the complex 
potential theory. The first step is the singularity analysis of the general stress 
concentrator, next the calculation of the generalized stress intensity factor and of 
the T-stress. The obtained asymptotic expansion for stresses and displacements is 
subsequently used for the fracture criterion definition, where the theory of Finite 
Fracture Mechanics and matched asymptotic expansions is used for its derivation. 
A l l the needed calculations are performed in the mathematical softwares M A P L E 
10.0 and M A T L A B 7.1 and in the finite element system ANSYS 10.0. The two-
state ^F-integral is widely applied in this work - especially for the calculation of 
the generalized stress intensity factor or T-stress, calculation of the bridging effect 
and for the application of the fracture criteria. 
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