
Czech University of Life Sciences Prague 

Faculty of Economics and Management 

Department of Information Technologies 

Bachelor Thesis 

A comparison of old and new software testing methods 

Yelaman Nurdauletov 

© 2024 CZU Prague 



CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE 
Faculty of Economics and Management 

BACHELOR THESIS ASSIGNMENT 
Yelaman Nurdauletov 

Informatics 

Thesis title 

A comparison of old and new software testing methods 

Objectives of thesis 
This objective of this thesis is to describe how new methods of software testing differ from older ones 
and why the latest methods for testing should be used. The thesis considers in detail the process of new 
testing methods as a component of the software development quality assurance process, as well as 
theoretically substantiating the main advantages of new testing methods for a particular software and 
testing them practically, on the basis of new tested methods. 

Methodology 

The thesis will be composed of a theoretical and practical part. The first, based on a review of the litera­
ture, will define 'software testing' and exactly what the different methods involve. Various methods and 
strategies of software testing will be examined in detail and a comparative analysis of new and old meth­
ods presented. The practical part will demonstrate the main problems preventing the full maximization of 
some new testing methods, and ways of solving and improving them will be shown. 

Official document * Czech University of Life Sciences Prague * Kamycka 129, 165 00 Praha - Suchdol 



The proposed extent of the thesis 
30-40 pages 

Keywords 
software testing, testing methods, latest methods, testing improvements 

Recommended information sources 
BADGETT, Tom, MYERS, G, J, SANDLER, Corey, 2011. The Art of Software Testing 3rd Edition, Wiley. 256 p. 

ISBN-13 : 978-1118031964. 
CERN, K, FALK, Jack, NGUYEN, Hung Q, 1999. Testing Computer Software, 2nd Edition. Wiley. 480 p. 

ISBN-13 :978-0471358466. 
IBM(lnternational Business Machines).Find software errors and verify that an application or system is fit 

for use [online) 19 August 2020. https://www.ibm.com/topics/software-testingne], Accessed 24 May 
2022. 

Louise Tamres, "Introduction to Software Testing". Addison-Wesley (April 1, 2002) ,304 pages, ISBN-13: 
978-0201719741. 

MCGREGOR, J, D, 2001. A Practical Guide to Testing Object-Oriented Software (Addison-wesley Object 
Technology Series). Addison Wesley. 416 p. ISBN-13 : 978-0201325645. 

PATTON, Ron, 2005. Software Testing, 2nd edition. 408 p. ISBN-13 : 978-0672327988. 

Expected date of thesis defence 
2022/23 SS-FEM 

The Bachelor Thesis Supervisor 
John McKeown 

Supervising department 
Department of Languages 

Electronic approval: 13. 6. 2022 

PhDr. Mgr. Lenka Kucirkovä, Ph.D. 

Head of department 

Electronic approval: 27.10. 2022 

doc. Ing. Tomáš Šubrt, Ph.D. 

Dean 

Prague on 15. 03. 2024 

Official document * Czech University of Life Sciences Prague * Kamycka 129, 165 00 Praha - Suchdol 

https://www.ibm.com/topics/software-testingne


Declaration 

I declare that I have worked on my bachelor thesis titled " A comparison of old and 

new software testing methods" by myself and I have used only the sources mentioned at the 

end of the thesis. As the author of the bachelor thesis, I declare that the thesis does not break 

any copyrights. 

In Prague on 15.03.2024 



Acknowledgement 

I would like to thank John McKeown for his advice and support during the work on 

this thesis. I also would like to thank my friends and my family who have been supporting 

me my whole life. 



A comparison of old and new software testing methods 

Abstract 

The paper discusses software testing methods. 

An analysis of the literature devoted to the consideration of software testing 

methods was carried out. 

A historical overview of old or "classical" testing methods is provided. The features 

of old methods, their advantages and disadvantages are considered. New software testing 

methods that have emerged in the last two decades are explored. The positive and negative 

aspects of the new methods are discussed in detail. 

The theoretical foundations on which software testing methods are based are 

considered, and a classification of these methods is also made. 

A comparative analysis of old and new software testing methods was performed. 

Practical examples are provided to illustrate the strengths and weaknesses of old and new 

methods. Improvements to existing software testing methods are proposed. These 

improvements will increase efficiency and allow you to find all the problem areas of the 

software under test. Recommendations are provided to improve existing software testing 

methods. The proposed improvements were tested in practice. 

Keywords: SOFTWARE, SOFTWARE TESTING METHOD, OLD TESTING METHOD, 

M O D E R N TESTING METHOD, C O M P A R A T I V E ANALYSIS , UNIT TESTING, 

INTEGRATION TESTING, S Y S T E M TESTING, INCREMENTAL M O D E L , SPIRAL 

MODEL. VERIFICATION, VALIDATION 



Srovnání starých a nových metod testování softwaru 

Abstrakt 

Článek pojednává o metodách testování softwaru. 

Byla provedena analýza literatury věnované úvahám o metodách testování softwaru. 

Je uveden historický přehled starých nebo "klasických" testovacích metod. Zvažují 

se vlastnosti starých metod, jejich výhody a nevýhody. 

Jsou zkoumány nové metody testování softwaru, které se objevily v posledních dvou 

desetiletích. Podrobnejšou diskutovány pozitivní a negativní aspekty nových metod. 

Jsou zvažovány teoretické základy, na kterých jsou založeny metody testování 

softwaru, a je také provedena klasifikace těchto metod. Byla provedena srovnávací analýza 

starých a nových metod testování softwaru. Jsou uvedeny praktické příklady, které ilustrují 

silné a slabé stránky starých a nových metod. 

Jsou navržena vylepšení stávajících metod testování softwaru. Tato vylepšení zvýší 

efektivitu a umožní vám najít všechny problémové oblasti testovaného softwaru. Jsou 

poskytnuta doporučení ke zlepšení stávajících metod testování softwaru. Navržená vylepšení 

byla ověřena v praxi. 

Klíčová slova: SOFTWARE, M E T O D A TESTOVÁNÍ SOFTWARU, STARÁ 

TESTOVACÍ METODA, MODERNÍ TESTOVACÍ METODA, SROVNÁVACÍ 

ANALÝZA, TESTOVÁNÍ JEDNOTEK, TESTOVÁNÍ INTEGRACE, TESTOVÁNÍ 

SYSTÉMU, PŘÍSTUPOVÝ MODEL, SPIRÁLOVÝ MODEL. OVĚŘENÍ, V A L I D A C E 



Table of content 

1 INTRODUCTION 

2 OBJECTIVES AND METHODOLOGY 
2.1 Objectives 
2.2 Methodology 

3 LITERATURE REVIEW 
3.1 Svyatoslav Kulikov "Software testing. Basic course" 
3.2 Beizer B. Black Box Testing 
3.3 Sam Kaner, Jack Faulk, Yong Kek Nguyen. Software testing. Fundamental 

concepts of business application management 

4 PRACTICAL PART 
4.1 Waterfall testing model 
4.1.1 Advantages 
4.1.2 Disadvantages 
4.2 Agile testing model 
4.2.1 Advantages 
4.2.2 Disadvantages 
4.3 Automated testing 
4.3.1 Advantages 
4.3.2 Disadvantages 

5 RESULTS AND DISCUSSION 
5.1 Waterfall method 
5.2 Agile testing 

6 CONCLUSION 

7 REFERENCES 
8 LIST OF PICTURES, TABLES, GRAPHS AND ABBREVIATIONS 

8.1 List of pictures 

9 APPENDIX 
9.1 List of basic definitions used in testing 



1 Introduction 

Software testing arose along with the programs themselves, because no one needs a 

program that works incorrectly. 

Every day in our work we come across the rather abstract concept of "software 

quality" and if you ask a tester or programmer "what is quality?", then everyone will have 

their own interpretation. Let's consider the definition of "software quality" in the context of 

international standards [1]: 

• Software quality is the degree to which the software has the required 

combination of properties. 

• Software quality is the collection of software characteristics related to its 

ability to satisfy stated and intended needs. 

Software quality characteristics 

Functionality [2] is determined by the ability of the software to solve problems that 

correspond to the recorded and expected needs of the user, under given conditions for 

using the software. This characteristic means that the software operates properly and 

accurately, is interoperable, meets industry standards, and is protected from unauthorized 

access. 

Reliability is the ability of software to perform required tasks under specified 

conditions over a specified period of time or a specified number of operations. The 

attributes of this characteristic are the completeness and integrity of the entire system, the 

ability to independently and correctly recover from failures, and fault tolerance. 

Usability is the ability of software to be easily understood, learned, used, and 

attractive to the user. 

Efficiency is the ability of the software to provide the required level of performance, 

in accordance with the allocated resources, time and other specified conditions. 

Maintainability is the ease with which software can be analyzed, tested, and changed 

to correct defects to implement new requirements, to facilitate further maintenance and 

adaptation to the existing environment. 

Portability [4] - characterizes software in terms of the ease of its transfer from one 

environment (software/hardware) to another. 

9 



Reasons for errors in programs 

Why does it happen that programs do not work correctly? It's very simple - they are 

created and used by people. If the user makes a mistake, this can lead to a problem in the 

operation of the program - it is used incorrectly, which means it may not behave as expected. 

Error is a human action that produces an incorrect result. 

However, programs are designed and created by people, who can (and do) make 

mistakes. This means that there are shortcomings in the software itself. They are called 

defects or bugs (both designations are equivalent). The important thing to remember here is 

that software is more than just code. 

Defect, Bug [5] - a defect in a component or system that can lead to the failure of 

certain functionality. A defect discovered during program execution can cause failure of a 

single component or the entire system. 

When executing program code, defects that were inherent during its writing may 

appear: the program may not do what it should or, on the contrary, do what it should not do 

- a failure occurs. 

Failure [5] - discrepancy between the actual result of the operation of a component or 

system and the expected result. 

A program failure may be an indicator that it contains a defect. 

Thus, the bug exists when three conditions are met simultaneously: 

• the expected result is known; 

• the actual result is known; 

• the actual result differs from the expected result. 

It is important to understand that not all bugs cause crashes - some of them may not 

manifest themselves at all and go unnoticed (or appear only under very specific 

circumstances). 

Failures can be caused not only by defects, but also by environmental conditions: for 

example, radiation, electromagnetic fields or pollution can also affect the operation of both 

software and hardware. 

There are several sources of defects and, accordingly, failures: 

errors in the specification, design or implementation of the software system; 

• system usage errors; 

• unfavorable environmental conditions; 

10 



• intentional causing harm; 

• potential consequences of previous errors, conditions or intentional actions. 

Defects can occur at different levels, and whether and when they are corrected will 

directly determine the quality of the system. 

Conventionally, we can identify five reasons for the appearance of defects in program 

code. 

Lack or lack of communication within the team. Often, business requirements simply 

do not reach the development team. The customer has an idea of what he wants the finished 

product to look like, but if his idea is not properly explained to developers and testers, the 

result may not be as expected. Requirements must be accessible and understandable to all 

participants in the software development process. 

• Software complexity. Modern software consists of many components that are 

combined into complex software systems. Multi-threaded applications, client-

server and distributed architecture, multi-level databases - programs are 

becoming more and more difficult to write and support, and the more difficult 

the work of programmers becomes. And the more difficult the work, the more 

mistakes the person performing it can make. 

• Changes in requirements. Even minor changes to requirements late in 

development require a large amount of work to implement changes to the 

system. The design and architecture of the application changes, which, in turn, 

requires changes to the source code and the principles of interaction of program 

modules. Such ongoing changes often become the source of subtle defects. 

However, frequently changing requirements in modern business are the rule 

rather than the exception, so continuous testing and risk control in such 

conditions is the direct responsibility of the quality assurance department. 

• Poorly documented code. Poorly written and poorly documented code is 

difficult to maintain and change. Many companies have special rules for how 

programmers write and document code. Although in practice it often happens 

that developers are forced to write programs quickly in the first place, and this 

affects the quality of the product. 

• Software development tools [6]. Visualization tools, script generators and other 

development tools are also often poorly functioning and poorly documented 

programs that can become a source of defects in the finished product. 

11 



2 Objectives and Methodology 

2.1 Objectives 

The objectives of the work are to compare old and new software testing methods. 

This section discusses the objectives of this work, namely methods that provide a 

comparison of old and new software testing methods. 

Old or classic software testing methods include the following: 

1. Functional testing [3] is the testing of software manually (without the use of 

automated tools). The specialist performs testing and evaluates the quality of the 

product from the end user's point of view. The tester looks for defects and 

shortcomings at various levels. In this case, the process is regulated using a pre-

developed plan. 

2. Black Box Testing [3]: A testing technique without in-depth knowledge of the 

internal workings of the software is called black box testing. The specialist does 

not take into account the system architecture and does not have access to the source 

code. Typically, when performing a black box test, a specialist works with the 

system's user interface, entering data and analyzing the result. At the same time, 

the tester does not know how and where this data is processed. 

3. White Box Testing [3]: White box testing is a detailed examination of the internal 

logic and structure of the code. Testing using this method is also called glass testing 

or open testing. Knowing how the code works, the expert studies it from the inside 

and finds out which device/block of code is behaving incorrectly. 

4. Gray Box Testing [3]: This method is a cross between the previous two. When 

testing a gray box, a specialist should have an understanding of the internal 

structure of the software - but not too deep. He puts himself in the place of the end 

user, but checks the functionality of the program based on an understanding of its 

internal structure. 

Old or classic testing models include the following: 

Waterfall Model: This is a structured software development model that is quite 

applicable in the testing process. The sequential nature of the model requires the tester 

to adhere to a clear algorithm. The process is divided into several stages: requirements 

definition - design - coding - implementation - verification - installation - maintenance. 

12 



In this process, no stage can overlap or overtake another. It is a simple model that 

makes software testing easy and efficient. 

Iterative Development: Here, each component is tested multiple times. This model 

works in three sequential cycles: form - test - evaluate. Immediately after the iteration 

of each part, a new, improved model is developed and submitted for testing. Thanks 

to prompt feedback from testing results, necessary changes in 

design/functionality/utility can be added to the new model. 

New software testing methods are listed in the following list: 

1. Automated testing [7]. When using this method, the QA engineer writes scripts 

and uses specialized applications in his work. Automation saves time on checking 

the quality of IT systems and is suitable for repeating standard operations - from 

simulating user work to creating test reports. This approach is used in situations 

where manual control cannot be done. Automated tests are developed individually, 

taking into account the relevant characteristics of the software product. 

New or modern testing models include the following: 

Agile Methodology [8] is a more complex software development model with a step-

by-step approach to testing. Sometimes product requirements change—for example, if 

you are developing a startup and testing several business hypotheses. In this case, the 

previous two models will not be suitable. But in the flexible model, each component 

is tested immediately, which reduces the risk factor during the software operation. 

Currently the following levels of software testing are also used: 

• A unit test tests components at the module level. The tester checks each source 

code and compares it with the expected result. 

• Integration test is designed to check the communication between modules. This 

level helps identify errors that prevent integrated components from 

communicating. To carry it out, several approaches are used, such as "top-

down", "bottom-up" and "sandwich". 

• System testing is also known as end-to-end testing because it tests the entire 

software. This technique provides a complete report on the system's 

performance and compliance with specified business requirements. In 

addition, the entire system is tested for performance at the individual 

component level. 

13 



The following methods are used to compare old and new types of testing: 

1) Assessing the speed of software testing using certain methods. 

2) Evaluating the effectiveness of various types of software testing. 

3) Comparing the degree of software functionality coverage by tests in old and 

new methods. 

4) Analyzing how quickly and effectively various testing methods detect 

defects and issues in the software. 

5) Comparing how accurately old and new testing methods identify different 

types of defects. 

Evaluating the quality of testing is an essential component of software development, 

especially when comparing old and new testing techniques. Because it includes multiple 

essential components that enhance the overall efficacy and dependability of the testing 

procedure, this review process is essential. 

It mostly entails evaluating the system's capacity to provide quality testing using both 

traditional and novel techniques. This is a real problem that practitioners in the field are 

dealing with, not just a theoretical exercise. The evaluation takes into account a number of 

factors, such as the coverage of checks and the testing's development level. It basically aims 

to ascertain how exhaustively and fully the testing procedure investigates the software that 

is being evaluated. 

Furthermore, the evaluation of quality explores the frequency of error detection. This is an 

important feature since it shows how quickly and effectively bugs and issues are found in 

the software. Gaining insight into the error detection frequency can help determine how 

reliable the testing strategy is. 

Moreover, the quality representation of distinguishing flaws is part of quality assessment. 

Not only must errors be correctly identified, but they must also be thoroughly documented 

and described. In order to ensure that faults are addressed appropriately and that 

development teams communicate effectively, this phase is crucial. 

2.2 Methodology 

The methodology used to compare different testing methods is to compare the 

effectiveness of one method or another. 

The following metrics are used to determine the quality of software tests: 

14 



• The number of defects found and corrected is estimated. The number of defects 

found during the testing process and the number of defects successfully 

corrected can serve as an indicator of the quality of testing. 

• The percentage of tests completed is determined. This is the ratio of the number 

of tests performed to the total number of tests scheduled. A high percentage of 

tests completed indicate good testing quality. 

• Estimate the time required to correct defects. Average time between detection 

of a defect and its correction. The shorter this time, the faster and more efficient 

the testing process. 

• The number of missed defects is determined. The number of defects that were 

discovered after the product was released. Fewer missed defects indicate high 

quality testing. 

For the practical implementation of this methodology, selected tests are run for the 

selected program code, and then the metric indicators are evaluated. 

15 



3 Literature Review 

3.1 Svyatoslav Kulikov "Software testing. Basic course". 

For beginners, we primarily recommend the book by Svyatoslav Kulikov "Software 

Testing. Basic course". 

This book covers the following topics: 

1. Software testing and development processes 

Software development model - a structure that systematizes various types of project 

activities, their interaction and sequence in the software development process. The 

choice of a particular model depends on the scale and complexity of the project, the 

subject area, available resources and many other factors. The following software 

development models exist: 

• waterfall model - classic model; 

• V-model - classic model; 

• iterative model, incremental model - modern model; 

• spiral model - special case of the iterative model, incremental model; 

• agile model - a set of different approaches to software development and is 

based on the so-called. In the Agile Manifesto [1], people and collaboration are 

more important than processes and tools. 

Testing life cycle 

Stage 1 (general planning and analysis of requirements) is objectively necessary at 

least in order to have an answer to questions such as: what do we have to test; how much 

work there will be; what are the difficulties; do we have everything we need, etc. As a rule, 

it is impossible to get answers to these questions without analyzing the requirements, 

because it is the requirements that are the primary source of answers. 

Stage 2 (clarification of acceptance criteria) allows you to formulate or clarify metrics 

and signs of the possibility or need to begin testing (entry criteria), suspension (suspension 

criteria) and resumption criteria (resumption criteria) of testing, completion or termination 

of testing (exit criteria). 

Stage 3 (refinement of the testing strategy) is another appeal to planning, but at the 

local level: those parts of the test strategy (test strategy) that are relevant for the current 

iteration are considered and refined. 

16 



Stage 4 (test case development) is devoted to the development, revision, 

clarification, refinement, processing and other actions with test cases, sets of test cases, 

test scripts and other artifacts that will be used in the actual testing. 

Stage 5 (execution of test cases) and stage 6 (fixation of found defects) are 

closely related to each other and are actually performed in parallel: defects are recorded 

immediately after they are detected during the execution of test cases. 

However, often after all test cases have been completed and all defect reports 

have been written, an explicit refinement stage is carried out, in which all defect reports 

are reviewed again in order to form a common understanding of the problem and 

clarify characteristics of the defect such as importance and urgency. Stage 7 (analysis 

of test results) and stage 8 (reporting) are also closely related and are carried out almost 

in parallel. The conclusions formulated at the results analysis stage directly depend on 

the test plan, acceptance criteria and refined strategy obtained at stages 1, 2 and 3. 

The findings are formalized at stage 8 and serve as the basis for stages 1, 2 and 

3 of the next testing iteration. Thus the cycle is completed. 

2. Testing documentation and requirements 

Requirement. A condition or capability needed by a user to solve a problem or 

achieve an objective that must be met or possessed by a system or system component 

to satisfy a contract, standard, specification, or other formally imposed document. 

3. Types and directions of testing 

4. Checklists, test cases, test case sets 

5. Errors, defects, failures, failures, etc. 

6. Defect reports 

7. Examples of using various testing techniques 

8. Test automation 

3.2 Beizer B. Black Box Testing 

Dr. Beiser's book, Black Box Testing, has long been recognized as a classic work in 

the field of behavioral testing of a variety of systems. It deeply examines the main issues of 

software testing, allowing you to find a maximum of errors with a minimum of time. The 

basic testing techniques covering all spectrums of aspects of software systems development 

are described in great detail. The methodical nature and breadth of presentation make this 

book an indispensable assistant when checking the correct functioning of software solutions. 

17 



The book is intended for software testers and programmers seeking to improve the quality 

of their work. 

3.3 Sam Kaner, Jack Faulk, Yong Kek Nguyen. Software testing. 

Fundamental concepts of business application management 

The book by eminent experts in the field of software development is devoted to one of 

the most important and non-trivial aspects within the process of creating complex software 

systems. The book is distinguished, first of all, by its connection to real world conditions 

using examples of well-known development companies located in Silicon Valley. A wide 

range of issues are discussed in detail: from organizing the testing process to the actual 

texting of the project, code, documentation, etc. 

18 



Practical Part 

This part compares two testing methods - the "old" or classic method, waterfall 

testing, and the modern method, agile testing. The labor costs and efficiency of these 

testing methods are compared. 

4.1 Waterfall testing model 

The waterfall model [9] is a model of the software development process in which 

the development process looks like a flow, successively passing through the phases of 

requirements analysis, design, implementation, testing, integration and support. 

Following the cascade model, the developer moves from one stage to another 

strictly sequentially. First, the "requirements definition" stage is completely 

completed, resulting in a list of software requirements. Once the requirements are fully 

defined, the transition to design occurs, during which documents are created that detail 

for programmers how and how to implement the specified requirements. After the 

design is completely completed, programmers implement the resulting project. The 

next stage of the process involves the integration of individual components developed 

by different teams of programmers. After implementation and integration are 

completed, the product is tested and debugged. At this stage, all shortcomings that 

appeared at previous stages of development are eliminated. After this, the software 

product is implemented and its support is provided - introducing new functionality and 

eliminating errors. 

19 



Requirements 

Maintenance 

Fig. 4.1. Waterfall model 

This model implies strictly sequential and one-time execution of each phase of 

the project. The transition from one phase to another is possible only after the 

successful completion of the previous stage. Each stage implies detailed planning and 

complete correctness of the result of the stage. 

Such strict sequence restrictions allow us to build a development process that is 

as transparent and convenient as possible for the Customer. 

The other side of this method is the need to support and constantly update product 

development documentation. Any change must be agreed upon with the Customer. 

And an insufficient level of elaboration of requirements entails an increase in the 

budget and project timescales, which are quite difficult to estimate. 

Today, the waterfall model of software development is practically not used due 

to the low flexibility of the model. However, it continues to be used due to the high 

transparency of development. Thanks to the high level of formalization, managing 

such a project is much easier. It is generally accepted that the waterfall development 

20 



model reduces risks and brings clarity to the development process when several dozen 

people are working on a project. 

The waterfall model is suitable for developing complex and large projects and 

systems with strictly defined functionality. Use when developing large government 

orders or scientific developments. It is highly undesirable to use this methodology for 

developing business applications. 

In the process of comparative testing, the following advantages and 

disadvantages of this technique were discovered. 

4.1.1 Advantages 

• High transparency of development and project phases 

• Clear sequence 

• Stability of requirements 

• Strict control of project management 

• Facilitates the work of drawing up a project plan and assembling a project team 

• Well defines the quality control procedure 

4.1.2 Disadvantages 

• A Waterfall project must have up-to-date documentation at all times. 

Mandatory updating of project documentation. Redundant documentation 

• Very non-agile methodology 

• May create a false impression of work on the project (for example, the phrase 

"45% completed" does not carry any useful information, but is just a tool for 

the project manager) 

• The Customer does not have the opportunity to familiarize himself with the 

system in advance and even with the "Pilot" of the system 

• The User does not have the opportunity to get used to the product gradually 

• A l l requirements must be known at the beginning of the project life cycle 

• There is a need for strict management and regular monitoring, otherwise the 

project will quickly go behind schedule 

• There is no possibility to take into account rework, the entire project is done at 

one time 

21 



4.2 Agile testing model 

Agile development methodology (Agile software development, agile methods) [10] is a 

series of approaches to software development focused on the use of interactive 

development, dynamic formation of requirements and ensuring their implementation as a 

result of constant interaction within self-organizing working groups consisting of 

specialists in various fields. There are several techniques that belong to the class of flexible 

development methodologies, in particular extreme programming. 

Most agile methodologies aim to minimize risk by condensing development into a series of 

short cycles called iterations, which typically last two to three weeks. Each iteration itself 

looks like a miniature software project and includes all the tasks necessary to deliver a 

mini-increment in functionality: planning, requirements analysis, design, programming, 

testing and documentation. Although a single iteration is generally not sufficient to release 

a new version of a product, the assumption is that an agile software project is ready for 

release at the end of each iteration. At the end of each iteration, the team re-evaluates 

development priorities. 

Agile methods are such flexible methodologies as Lean Development, Scrum, etc. They 

were developed in the early 2000s as an alternative to ineffective traditional IT methods. 

Almost all agile teams are concentrated in one office (bullpen). The office includes the 

product owner - the customer, who determines the requirements for the product. The 

customer can be a business analyst, a project manager, or a client. In addition, the office 

may include interface designers, testers, and technical writers. That is, agile methods are 

aimed primarily at direct communication. 

The main metric of agile methods is work product. By prioritizing direct communication, 

agile methods reduce the amount of written documentation compared to other methods. 

Key ideas: 

• people and interaction are more important than processes and tools; 

• a working product is more important than comprehensive documentation; 

• cooperation with the customer is more important than agreeing on the terms 

of the contract; 

• willingness to change is more important than sticking to the original plan. 

22 



Fig. 4.2. Agile testing model 

Agile principles: 

1. customer satisfaction through early and uninterrupted delivery of valuable 

software; 

2. welcoming changes in requirements even at the end of development (this can 

increase the competitiveness of the resulting product); 

3. frequent delivery of working software (every month or week or even more often); 

4. close, daily communication between the customer and the developers throughout 

the entire project; 

5. the project is carried out by motivated individuals who are provided with the 

necessary working conditions, support and trust; 

6. the recommended method of transmitting information is personal conversation 

(face to face); 

23 



7. working software is the best measure of progress; 

sponsors, developers and users must be able to maintain a constant pace 

indefinitely; 

8. constant attention to improving technical excellence and user-friendly design; 

9. simplicity - the art of not doing unnecessary work; 

10. the best technical requirements, design and architecture are obtained from a self-

organized team; 

11. constant adaptation to changing circumstances. 

.2.1 Advantages 

During the testing process, the following advantages of agile testing were revealed. 

• Product quality 

Involving the customer in the process of each iteration makes it possible to adjust the 

process, which invariably improves quality. 

• High development speed 

The iteration lasts no more than 3 weeks, by the end of this period there will definitely 

be a result. 

• Minimizing risks 

• A large project allows the customer to pay for several iterations and, during the 

work, understand that he will receive exactly what he wants on time and at an 

affordable price. Waterfall models (using specifications and technical 

specifications) do not provide such opportunities. 

• The customer always has the opportunity to monitor the progress of 

development, adjust the functionality of the project, test or launch it, and can 

even stop it at any time. 

In the process of comparative testing, the following disadvantages of this technique 

were discovered. 

.2.2 Disadvantages 

• Difficult to adapt 

24 



When changing the management style to the agile methodology, the team needs time 

to adapt. This concerns new responsibilities and approach to project development. 

Often, managers encounter problems when they first try Agile. 

However, constant practice and training can help everyone on the team get 

comfortable. Agile supports autonomy in achieving goals. Therefore, to begin with, 

you can divide the team into groups. This will facilitate consultation on emerging 

questions or problems. 

• Changing Goals 

Agile pays attention to several goals at the same time, which does not work as a plus, 

it is rather a minus. Sometimes some of them may be forgotten. This can lead to timing 

and cost uncertainty. To prevent unwanted costs and missed deadlines, regular 

meetings can be held to discuss goals. Another way is to implement a cost policy to 

ensure that the project budget is adhered to. 

• Insufficient documentation 

In Agile, documentation is not a priority, compared to planning and progress. This can 

lead to problems with documentation, such as keeping records and plans. To fix this, 

you should get used to regular documentation, at least once a month. If documentation 

is falling behind, emphasizing its importance in the schedule can help bring it back to 

the attention it deserves. 

• Lack of documented improvements 

Agile focuses on quickly introducing improvements, leaving documentation in the 

background. This may slow down progress tracking. While rapid implementation of 

improvements works to the benefit of the process, it is important not to forget the role 

of documentation. Regularly reviewing documents and tracking progress will provide 

the team with transparency about goals. 

• Shifting focus away from goals 

Agile encourages shifting focus depending on the urgency of tasks, which can make it 

difficult for a team to work towards a common goal. Closer to the end of the project, 

the team could focus on one task. To coordinate efforts, it is useful to distribute tasks 

among team members in the final phase of the project. 

• Reduced predictability 

Agile relies on continuous improvement and feedback, which can make it difficult to 

predict profits and costs. Agile aims to ship a quality product quickly, which 

25 



sometimes causes problems with forecasting. However, active use of feedback and 

attention to documentation can help predict possible defects. 

4.3 Automated testing 

The most modern method of testing is automated testing. This type of testing can be 

used in the following areas: 

• execution of test cases that are impossible for a person; 

• solving routine tasks; 

• acceleration of testing; 

• release of human resources for intellectual work; 

• increase in test coverage; 

• improvement of the code due to the increase in test coverage and the use of 

special automation techniques. 

4.3.1 Advantages 

• The speed of execution of test cases can be times and orders of magnitude 

higher than human capabilities. If you imagine that a person will have to 

manually check several files with a size of several tens of megabytes each, the 

estimate of the time of manual execution becomes frightening: months or even 

years. At the same time, 36 checks implemented as part of smoke testing with 

command scripts {284} are performed in less than five seconds and require 

only one action from the tester - to run the script. 

• There is no influence of the human factor in the process of performing test 

cases (fatigue, carelessness, etc.). Let's continue the example from the previous 

point: what is the probability that a person will make a mistake comparing 

(symbolically!) even two ordinary texts of 100 pages each? And if there are 10 

such texts? 20? And do the checks need to be repeated over and over again? It 

is safe to say that a person is guaranteed to make a mistake. Automation will 

not make a mistake. 

• Automation tools are capable of performing test cases that are, in principle, 

impossible for a human due to their complexity, speed, or other factors. 

26 



• And again, our example of comparing large texts is relevant: we cannot afford 

to spend years repeatedly performing an extremely complex routine operation 

in which we are also guaranteed to make mistakes. The second excellent 

example of test cases that are overwhelming for a person is the study of 

performance {91}, in the framework of which it is necessary to perform certain 

actions at high speed, as well as to fix the values of a wide set of parameters. 

Wil l a person, for example, be able to measure and record the amount of R A M 

occupied by an application a hundred times per second? No. Automation wil l 

be able to. 

• Automation tools are capable of collecting, storing, analyzing, aggregating and 

presenting colossal volumes of data in a form convenient for human 

perception. 

• Automation tools are able to perform low-level actions with the application, 

operating system, data transmission channels, etc. In one of the previous 

paragraphs, we mentioned such a task as "one hundred times per second, 

measure and record the amount of R A M occupied by the application." A 

similar task of collecting information about the resources used by the 

application is a classic example. However, automation tools can not only 

collect such information, but also affect the application execution environment 

or the application itself, emulating typical events (for example, lack of R A M 

or processor time) and fixing the reaction of the application. 

4.3.2 Disadvantages 

• The need for highly qualified personnel is due to the fact that automation is a 

"project within a project" (with its own requirements, plans, code, etc.). Even 

if you forget for a moment about the "project within a project", the technical 

qualification of employees engaged in automation, as a rule, should be 

significantly higher than that of their colleagues engaged in manual testing. 

• The development and maintenance of both the automated test cases themselves 

and the entire necessary infrastructure takes a lot of time. The situation is 

aggravated by the fact that in some cases (in the case of serious changes in the 

project or in the case of errors in the strategy), all the relevant work has to be 

performed anew from scratch: in the case of a significant change in 

27 



requirements, a change in the technological domain, reworking of interfaces 

(both user and software) many test cases become hopelessly outdated and need 

to be created anew. 

• Automation requires more careful planning and risk management, because 

otherwise, serious damage may be caused to the project (sees the previous 

paragraph about remaking all the works from scratch). 

• Commercial means of automation are significantly expensive, and the 

available free analogues do not always allow you to effectively solve the tasks. 

And here we are again forced to return to the issue of errors in planning: if 

initially the set of technologies and automation tools was chosen incorrectly, it 

will be necessary not only to redo all the work, but also to buy new automation 

tools. 

• There are too many automation tools, which complicates the problem of 

choosing one or another tool, makes it difficult to plan and define a testing 

strategy, may entail additional time and financial costs, as well as the need to 

train personnel or hire relevant specialists. 

28 



5 Results and Discussion 

In this work, modern and outdated methods of software testing were considered. In 

particular, testing using the waterfall model of software development, the flexible model of 

software development, and testing automation were considered. The following results were 

obtained. 

5.1 Waterfall method 

This development model [9] implies testing at a separate stage, which is associated 

with high costs, especially in the case of detection of serious errors. As established in the 

work, in the case of developing a new software project, the costs of error elimination will be 

many times higher than the costs of error elimination in the case of using other development 

models. 

• Since testing starts at the stage of completion of development, if a bug is 

discovered, its correction will cost more than at the initial stage. After all, 

testers will find an error only when the developer has already finished writing 

the code, and the copywriters - the documentation. 

• The customer gets acquainted with the finished product after the development 

is completed. Accordingly, he can evaluate the product only when it is almost 

completely ready. If he does not like the result, the cost of the project budget 

will increase significantly due to the need for correction. 

• The more technical documentation, the longer it takes to complete the work. 

Such documentation requires more changes and is agreed upon. 

5.2 Agile testing 

In the work, flexible testing methods were studied, as a result of which the following 

results were obtained. 

Cooperation and communication 

• Everyone in the team works together and exchange ideas. 

• Testers and developers work closely together to achieve common goals. 

• Communication takes place throughout the development process to avoid 

misunderstandings and respond to changes in a timely manner. 

29 



Flexibility and adaptability 

• Agile allows you to quickly react to changes in requirements. 

• Plans and priorities may change during development, and the team must be 

ready to adapt. 

• This implies a flexible approach to planning and execution of tests. 

Continuous feedback 

• Interaction and feedback between team members are considered an integral 

part of agile testing. 

• Fast and effective transmission of information about errors and problems 

allows the team to react quickly and improve the product. 

• Feedback also contributes to the improvement of the testing process and 

improvement of methods. 

Iterativeness and incrementality 

• Work on the project is divided into small iterations or sprints. 

• Each iteration has specific goals and priorities for testing. 

• The team strives to gradually improve the product and software quality by 

consistently adding new functions and eliminating errors. 

Testing automation 

• Automatic tests allow you to quickly perform repeated checks and provide a 

wider coverage of testing. 

• This helps speed up the process and provides more reliable testing of the 

product's functionality. 

Customer involvement 

• Agile assumes the active participation of the customer in the development and 

testing process. 

• The customer provides feedback, clarifies requirements and helps determine 

testing priorities. 

• Close cooperation with the customer contributes to the achievement of higher 

product quality. 

30 



6 Conclusion 

The following results were obtained in the work: 

1. The goals and methodology used in the research process are formulated. 

2. Classical ("old") software testing methods are examined and studied in detail. 

3. Modern methods of software testing are also studied. 

In the process of comparative analysis of old and new testing methods, the following 

was determined: 

• Classic (old) testing methods are used in the development of large and medium-sized 

software projects, and as a rule, new versions of previously developed projects. In 

this case, there is a minimal risk of detecting critical (serious) errors, the elimination 

of which requires large labor and financial costs. 

• Flexible (new) testing methods allow testing at each stage. In this case, error 

detection is ensured at each stage of program development, which, in turn, allows 

minimizing the costs of error elimination and speeds up the process of releasing new 

versions of programs. 

• Also, in case of application of flexible testing methods, the possibility of automation 

of testing is provided. Thanks to the automation of the testing process, the work of 

specialists in the field of testing is facilitated by the use of the following solutions: 

• The use of command files to perform sequences of operations — from copying 

several files from different directories to deploying a test environment. 

• Data generation and processing using the capabilities of office applications, 

databases, small programs in high-level programming languages. There is no sadder 

picture than a tester who manually numbers two hundred lines in a table. 

• Preparation and design of technical sections for reports. You can spend hours 

scrupulously reading logs of the work of some automation tool, or you can write a 

script once, which will prepare a document with neat tables and graphs in an instant, 

and all that remains is to run this script and attach the results of its work to the report. 

• Management of the tester's workplace: creation and verification of backup copies, 

installation of updates, cleaning of disks from outdated data, etc. etc. The computer 

can (and should!) do all this by itself, without human involvement. 

• Mail sorting and processing. Even sorting incoming correspondence into subfolders 

is guaranteed to take you a few minutes a day. If you assume that setting up special 

31 



rules in your email client will save you half an hour a week, the savings will amount 

to approximately 24 hours per hour. 

• Visualization as a way of getting rid of the need to install and configure the necessary 

set of programs every time. If you have several pre-prepared virtual machines, it will 

take seconds to start them. And if it is necessary to eliminate failures, deploying a 

virtual machine from a backup copy replaces the entire process of installing and 

configuring the operating system and all necessary software from scratch. 

32 



7 References 

1. Agile-manifesto, [http://agilemanifesto.org/iso/ru/manifesto.html]. 

2. Agile System Development Life Cycle. 

[http://www.ambysoft.com/essays/agileLifecycle.html]. 

3. Boris Beizer. Black-Box Testing: Techniques for Functional Testing of Software 

and Systems 1st Edition, Wiley & Sons, 320 pages, 1995. 

4. David Gelperin, B i l l Hetzel. Growth of Software Testing. 

[https://www.researchgate.net/publication/234808293_The_growth_of_software_te 

sting]. 

5. International Software Testing Qualifications Board Glossary. 

[http://www.istqb.org/downloads/glossary.html]. 

6. History of Software Testing, [http://www.testingreferences.com/testinghistory.php]. 

7. James Whittaker. The Plague of Aimlessness. 

[https://testing.googleblog.com/2009/06/7-plagues-of-software-testing.html]. 

8. Sam Kaner, Jack Faulk, Yong Kek Nguyen. Testing Computer Software, 496 

pages, 1999. 

9. Svyatoslav Kulikov. Software testing. Basic course. 301 pages. E P A M Systems. 

10. What are the Software Development Models? 

[http://istqbexamcertification.com/what-are-the-software-development-models/]. 

33 

http://agilemanifesto.org/iso/ru/manifesto.html
http://www.ambysoft.com/essays/agileLifecycle.html
http://www.researchgate.net/publication/234808293_The_growth_of_software_te
http://www.istqb.org/downloads/glossary.html
http://www.testingreferences.com/testinghistory.php
http://testing.googleblog.com/2009/06/7-plagues-of-software-testing.html
http://istqbexamcertification.com/what-are-the-software-development-models/


8 List of pictures, tables, graphs and abbreviations 

8.1 List of pictures 

The following figures are used in this work: 

Figure 4.1. Waterfall model 

Figure 4.2. Agile testing model 

34 



9 Appendix 

9.1 List of basic definitions used in testing 

Alpha testing. Testing that is performed within the developer's organization with the 

possible partial involvement of end users. It can be a form of internal acceptance testing. 

Automated testing. A set of techniques, approaches, and tools that allow you to 

exclude a person from performing some tasks in the testing process. 

Beta testing. Testing that is performed outside the developer's organization with the 

active involvement of end users/customers. 

Black box testing. A testing method in which the tester either does not have access 

to the internal structure and code of the application, or is not sufficiently familiar with 

them to understand them, or he does not consciously refer to these data during the testing 

process. 

Border condition, boundary condition. A value located on the boundary of the 

equivalent class. 

Code review, code inspection. A family of techniques for improving code quality 

due to the fact that several people participate in the process of creating or improving code. 

In contrast to the techniques of static code analysis (by control flow and data flow), code 

audit also improves such characteristics as comprehensibility, maintainability, 

conformance to design conventions, etc. Code auditing is performed mainly by the 

programmers themselves. 

Defect, anomaly. Deviation of the actual result from the observer's expectation, 

formed on the basis of requirements, specifications, other documentation or experience and 

common sense. 

Dynamic testing. Testing with running the code for execution. 

Integration testing. Testing, which is aimed at checking the interaction between 

several parts of the application (each of which, in turn, is checked separately at the stage of 

module testing). 

Gray box testing. A combination of white box and black box methods, consisting in 

the fact that the tester has access to part of the code and architecture, but not to part. 

35 



Smoke test. Testing that is aimed at checking the most important, most important, 

most key functionality, the inoperability of which makes the very idea of using the 

application (or other object subject to smoke testing) pointless. 

Software Development Model. A structure that systematizes various types of 

project activity, their interaction and sequence in the software development process. The 

choice of one or another model depends on the scale and complexity of the project, subject 

area, available resources and many other factors. 

Root cause analysis. The process of research and classification of the root causes of 

the occurrence of events that negatively affect safety, health, the environment, quality, 

reliability and production process. 

White box testing. A testing method in which the tester has access to the internal 

structure and code of the application, and is also familiar enough to understand what he 

saw. 

36 


