
University of Hradec Králové
Faculty of Informatics and Management

Department of Informatics and Quantitative
Methods

Desktop Java Application
for Data Analysis in E-sport

Bachelor thesis

Author: Frantǐsek Bláha

Study Programme: Information Management

Supervisor of the bachelor thesis: Vojtěch Vorel

Hradec Králové April 2023

I declare that I carried out this bachelor thesis independently, and only with the cited
sources, literature and other professional sources. It has not been used to obtain
another or the same degree.
I understand that my work relates to the rights and obligations under the Act No.
121/2000 Sb., the Copyright Act, as amended, in particular the fact that the Charles
University has the right to conclude a license agreement on the use of this work as a
school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

This thesis is dedicated to my supervisor, whose guidance, support and expertise have
been essential in the development and completion of this thesis. I would also like to
thank my girlfriend for her understanding and support throughout this process. Her
patience and motivation have been crucial in helping me reach this milestone.

Title: Desktop Java Application for Data Analysis in E-sport

Author: Frantǐsek Bláha

Department of Informatics and Quantitative Methods

Supervisor: Vojtěch Vorel

Abstract: This thesis introduces a Java-based application, developed in IntelliJ IDEA,
designed to assist League of Legends coaches and analysts in match preparation. The
application streamlines the process by automating data acquisition, storage, and pro-
cessing from multiple external sources, including in-game statistics, player performance
metrics, and historical match data. By analyzing this information, the app generates
valuable insights that can be utilized for strategizing and optimizing team performance
in upcoming matches. In addition to its core functionalities, the application offers a
user-friendly interface, allowing for efficient navigation and interpretation of the gener-
ated insights. This research highlights the potential of technology in esports analytics,
specifically within the context of League of Legends, and contributes to the growing
field of data-driven strategies in competitive gaming. The development of this appli-
cation sets the stage for future advancements in integrating analytics and technology
in esports coaching and analysis.

Abstrakt: Tato práce představuje aplikaci v jazyce Java, vyvinutou v prostřed́ı IntelliJ
IDEA, která má pomáhat trenér̊um a analytik̊um hry League of Legends při př́ıpravě na
zápasy. Aplikace zefektivňuje proces automatizovaným źıskáváńım, ukládáńım a zpra-
cováńım dat z několika exterńıch zdroj̊u, včetně herńıch statistik, metrik výkonnosti
hráč̊u a historických dat ze zápas̊u. Analýzou těchto informaćı aplikace generuje cenné
poznatky, které lze využ́ıt pro tvorbu strategie a optimalizaci týmového výkonu v
nadcházej́ıćıch zápasech. Kromě svých základńıch funkćı nab́ıźı aplikace uživatelsky
př́ıvětivé rozhrańı, které umožňuje efektivńı navigaci a interpretaci vygenerovaných
poznatk̊u. Tento výzkum poukazuje na potenciál technologíı v oblasti analýzy e-
sportu, konkrétně v kontextu League of Legends, a přisṕıvá k rostoućı oblasti strategíı
založených na datech v profesionálńım hrańı. Vývoj této aplikace připravuje p̊udu
pro budoućı pokrok v oblasti integrace analytiky a technologíı do koučováńı a analýzy
e-sport̊u.

Keywords: League of Legends; E-sports analytics; Match preparation; Java-based ap-
plication; Data-driven strategies

Contents

Introduction 1

1 Theoretical part 2
1.1 League of Legends . 2

1.1.1 Important game mechanics . 2
1.1.2 Positions in League of Legends 5
1.1.3 Phases of the game . 8

1.2 E-sport . 10
1.2.1 The History of E-sport . 10
1.2.2 E-sports in League of Legends 13

1.3 Application Programming Interface . 15
1.3.1 Representational State Transfer API 15
1.3.2 Used APIs . 16

1.4 Object-Oriented Programming . 17
1.4.1 OOP Principles . 17

1.5 Java Programming Language . 21
1.6 Java libraries . 24

1.6.1 Hibernate . 24
1.6.2 Gson . 28
1.6.3 Bucket4J . 29
1.6.4 Swing . 31
1.6.5 Abstract Window Toolkit . 32

1.7 Web tools . 35
1.7.1 Hyper Text Markup Language 35
1.7.2 JavaScript . 35
1.7.3 C3 . 36

2 Practical part 37
2.1 Front-end to Back-end View . 37
2.2 Application Use Case View . 38

2.2.1 MainFrame . 38
2.2.2 Data Extracting . 43
2.2.3 Database Management . 52
2.2.4 Generating Output . 53
2.2.5 Retrieve data from an external data source 57
2.2.6 Get time in a specific format . 59

2.3 Application’s Configuration . 59

Summary of results 61

Conclusions and recommendations 62

References 64

List of Figures 70

List of Tables 72

List of Abbreviations 73

A Attachments 75
A.1 GitHub Repository . 75
A.2 GitHub Release . 75
A.3 Screenshots of the Application Flow . 75
A.4 Example of HTML Output File . 75
A.5 Compressed Folder with the Application 75

Introduction

The competitive gaming landscape has evolved significantly over the past few years,

with a growing emphasis on the use of data analytics and technology to optimise team

performance. As a result, coaches and analysts in e-sports, particularly in League of

Legends require efficient tools to assist them in match preparation. This thesis aims

to address this need by developing a Java-based application in IntelliJ IDEA that

streamlines the process of extracting, persisting and processing data from multiple

external sources.

One of the key features of the application is its ability to be customised based on

the specific requirements of each customer. This adaptability ensures that the output

generated by the application remains relevant and valuable to individual users, allowing

them to tailor their strategies according to their unique needs and preferences.

The choice of Java as the programming language for this application was made due

to its versatility, widespread adoption, and strong community support, which allows

for easy integration with various external data sources and databases. In addition,

Java’s platform independence ensures that the application can be easily deployed and

maintained across different operating systems, further enhancing its usability.

IntelliJ IDEA was chosen as the development environment for its advanced features,

such as code completion, debugging, and refactoring tools, which greatly improve the

overall development process. The Integrated Development Environment (IDE) also

offers seamless integration with various Java libraries and frameworks, making it an

ideal choice for the development of this application.

In summary, this thesis presents the development of a customisable Java-based

application in IntelliJ IDEA, aimed at enhancing match preparation for League of

Legends coaches and analysts. By leveraging the strengths of Java and IntelliJ IDEA,

this application offers a comprehensive, adaptable, and user-friendly solution for data-

driven esports analysis and strategy development.

1

1. Theoretical part

1.1 League of Legends

League of Legends (LoL) is the most popular computer video game and belongs to the

subgenre of Real-Time Strategy (RTS) games called Multiplayer Online Battle Arena

(MOBA) [1, 2, 3]. It was released in 2009 by a company called Riot Games [1, 3,

4]. MOBAs offer an unprecedented research opportunity thanks to two important

features: the huge player base and easy access to recorded in-game data via Application

Programming Interface (API) [3].

It is a team-based strategy game that pits two teams of five players against each

other with the main objective of destroying the opposing team’s base, called the Nexus

[2, 5, 6]. The game is played on a map called Summoner’s Rift, which has two bases in

opposite corners, with three lanes connecting them, and the area between the lanes full

of side objectives (neutral enemies to kill) which, once captured, gives an advantage

in achieving the main objective [2, 5, 6]. Each lane has 3 lines of defence in the form

of laser weapon turrets called outer, inner and inhibitor turrets. The Nexus has two

more turrets as its own defence. This area between the lanes is then divided into the

neutral area between the centres of the lanes, called the River, and the rest, called the

Jungle [5, 6]. The map of the Summoner’s Rift is shown in Figure 1.1.

1.1.1 Important game mechanics

Snowball effect

Snowball effect refer to scenario where momentum builds progressively, similar to a

snowball rolling downhill, collecting more snow and gaining speed as it moves [7]. In

League of Legends, for example, when a team wins a teamfight, they gain gold from

kills, spend that gold on items, thereby gaining an advantage and having a higher

probability of winning the next teamfight.

2

Figure 1.1: Summoner’s Rift map with three lanes connecting opposing bases and the
river in the middle. Taken from [5].

Scaling

Scaling in League of Legends refers to the concept of a champion or team composition

becoming more powerful as the game progresses into the later stages [8]. Understanding

scaling can be complex, as it involves recognising how game dynamics change over time,

how the distribution of gold and experience affects champion stats, and how certain

abilities and move sets allow champions to excel in the late game [8].

Counterpicking

Counterpicking is the act of gaining a significant advantage over the opponent by

selecting champions whose abilities, items, and scaling give them an advantage over

the opponent’s champions that have already been selected.

Skirmish vs Teamfight

Both terms refer to fighting between teams, but a teamfight involves all or nearly all

of the players in the game, while a skirmish involves anywhere from three to seven

3

players. Teamfights tend to take place in the mid and late game, and skirmishes in the

early and mid game.

Wave management

Every half minute, three groups of Non-Player Characters (NPCs) called minions

spawn at both Nexuses and head towards the enemy Nexus, one group for each lane.

Due to their recurring arrival, this group of minions is known as the Wave. These

minions are much weaker than players. Players kill minions to defend their tower, but

more importantly, to get gold for being the last one to hit the minion.

The main concepts involved in wave management are slow pushing, fast pushing and

freezing. Slow pushing involves killing only a portion of the minions, allowing the wave

to slowly advance towards the enemy’s tower while being replenished by other waves

coming from the nexus [9]. This strategy works well when timed with the spawning of

key objectives or killing enemies under their turrets [9].

Fast pushing involves eliminating entire wave quickly, forcing the enemy to react or

risk losing their last hits. Freezing involves hitting the last minions at the last possible

moment, while matching the enemy’s damage to keep an even number of minions in

the lane, effectively denying them gold and experience if the enemy is not present in

the lane [9].

Warding

Warding is the act of a player placing a ward on a point on the map to maximise a

team’s vision. A Ward is a tool that reveals a certain area of the map around it [10].

Wards can be destructed by opposing players.

Counter-jungling

Counter-jungling refers to the act of invading the enemy’s jungle to steal their resources,

deny them gold and experience, or disrupt their gameplay [11].

4

Ganking

Ganking is the act of a jungler moving into the lane to engage in a small skirmish and

fight for a kill, thereby gaining a significant advantage [11]. Even laners can sometimes

move from their lane to another lane to gank, but this is more commonly referred to

as roaming.

1.1.2 Positions in League of Legends

In League of Legends, positions define both a player’s function within a team and how

they contribute to the team’s overall performance, as well as the area on the map

where they spend most of their time in the game [5, 12]. The positions marked in their

significant areas are shown in Figure 1.2. These positions are crucial in differentiating

each lane and providing structure to the game.

JUNGLE

JUNGLE

Figure 1.2: Summoner’s Rift map with positions marked in their significant areas.
Original image taken from [5].

Understanding these positions helps players identify their own and their opponents’

team compositions and strategies in both the early and late stages of the game [12].

Understanding the positions in LoL is essential for improvement and success in the

5

game, as it helps play a character according to its design and maximise its potential and

effectiveness, as characters in the game are generally better suited to certain positions

based on their stats, abilities, and playstyle [5, 13, 12].

According to [5, 13], making a balanced and competitive team requires all five of

the positions listed here:

• Top Lane

• Jungle

• Middle Lane

• Attack Damage Carry

• Support

Top lane

The top lane is notoriously known as the “island” because it is the most isolated position

of all. It is also the most volatile for two reasons. Firstly, the player with the coun-

terpick usually has a significant advantage [10]. Secondly, it is the most snowballing

position in the game. Players in this position tend to choose strong duel characters

that can take a lot of damage and engage in fights with the opposing team [14]. These

characters must be able to fend for themselves as they are often isolated from other

players in the game [11]. As the game progresses, top lane players can move to other

parts of the map to gank opponents and gain an advantage [14].

Jungle

The jungler is the most complex role in the game, as it is responsible for controlling

the flow of the game, making decisions based on information gathered from warding,

counter-jungling, and ganking, while keeping an eye on the opposing jungler [10, 11].

They spend most of their time in the jungle area between the lanes, collecting

gold and eXperience Points (XP) to build up their economy. They need to provide

good visibility around key points on the map with wards and support their teammates,

6

especially the midline champion, by covering their laners or ganking enemy laners [10,

14].

There are different classes of junglers, such as farming junglers, who will constantly

farm for gold and only gank when they’re sure of success [11]. Carrying junglers, on

the other hand, focus on getting gold quickly through kills and dominating the game

[11].

Mid lane

The mid laner in LoL has two main responsibilities: farming and roaming [10]. Wave

management is important, although it differs from other lanes due to the shorter length

of the mid lane [10].

Choosing a character that complements jungler’s play style is crucial, as they need

to work together to succeed [10]. The symbiosis between the mid laner and the jungler

works in such a way that the jungler covers the mid laner so that he can push, and

then the mid laner has time to roam and create map pressure, which helps the jungler

with ganking or counter-jungling [10].

Mid laners often deal a lot of damage and are usually ranged [14]. They need good

map awareness and vision control as they can be attacked from a variety of positions

[14].

Attack Damage Carry

A bot laner has a choice of playing either an Attack Power Carry (ADC) or an Ability

Power Carry (APC), which differ in their main damage type. Traditionally, it is an

ADC, which is why the bot laner is often referred to as an ADC. Their main focus is

to farm and generate gold from last hit minions, with the aim of becoming the main

damage dealer for their team [10].

Bot laners tend to be ranged champions with relatively low base health and defence

stats, making them vulnerable while still dealing significant damage [14]. That’s why

wave manipulation and positioning are critical skills for bot laners [10]. Their damage

7

is critical to neutral targets such as Dragons, Barons, and Turrets [10].

Support

Support players assist their teammates, especially the ADC, by warding to get vision

and engaging in teamfights at the right time [10, 11, 13, 14]. In teamfights, Supports

shift from dealing damage to providing utility with their abilities [10, 11].

There are two types of support: Engage and Enchanter [11]. Engage supports

are more durable and initiate fights, while Enchanter supports focus on healing and

shielding allies [11]. By adapting their play style and understanding their role, support

players have a significant impact on the outcome of the game [10].

1.1.3 Phases of the game

The game is divided into phases, which are characterised by typical player behaviour at

certain points in the game. All phases are shown in Figure 1.3 and Table 1.1 summarises

the characteristics of each phase.

Early game Mid-game Late game

Bot turret destruction Game deciding objectives spawn

0 7 14 21 28 35

Figure 1.3: Timeline of League of Legends game phases.

Early game

In the early game, often referred to as the laning phase, all laners (top, mid, and

bot laners) play cautiously, staying in their lanes and focusing on farming gold and

experience to strengthen their champions. The jungler, sometimes with support, will

try to spot and punish any mistakes made by the opposing laner all over the map (but

mostly around mid lane), giving them a significant advantage as they move into the

next phase of the game. Sometimes both junglers will try to make an action in the

same area, which will usually result in a skirmish.

8

Phase Lane
cover*

Individual
behavior Fighting Impact

positions Objectives

Early game 1:2:2 Laning
Farming

Ganks
Skirmishes
for neutrals

Jungler
Support

Herald
Dragons

Mid game 1:3:1 Holding mid
Capturing sides

Teamfights
for neutrals

Top
Mid

Baron
Dragons

Late game 5/4:1 Grouping Teamfights
for neutrals ADC

Baron
Dragon soul
Elder dragon

Table 1.1: Summarise of the characteristics of each phase of the game.
*For example 1:3:1 means one player playing around top lane, three around mid lane
and one around bot lane.

The early game begins at the start of the game and lasts until the first turret in

the bot lane is destroyed, usually just after the 14th minute, which is when the plates

disappear from the turrets (most lol experts now agree on this). Plates are turret

fortifications that give extra money when destroyed. The main neutral objectives in this

phase are the first herald and the dragons. The time when teams try to capture these

objectives is the only time in this phase when players are grouped and teamfighting

4v4, sometimes even 5v5.

Mid-game

The mid-game begins immediately after the early game, when players begin to group

together to get objectives, push lanes, and fight opponents. At the start of this phase,

the ADC will swap positions with the midlaner. The jungler and support will mostly

play around the midline to cover the ADC and help him hold the most important tower

in the game, the outer midline tower. Mid and top laners will continue to push waves

of minions down the side lanes, visiting the mid lane whenever possible to make an

impact.

Farming is still important, but as this phase progresses, objectives become more

important. The main neutral targets in this phase are outer turrets and dragons, but

the most important is the Baron, which once killed gives enough advantage to destroy

9

inner and inhibitor turrets, usually leading to victory before the next phase even starts.

This phase is characterised by a lot of teamfights for objectives and skirmishes forced

by teams who feel they have an advantage at the time and place. It usually starts

around the 14th minute and ends around the 28th minute.

Late game

The late game begins when players reach high levels and are almost fully equipped

with items, so they no longer need to farm for gold and experience. Most of the time,

players are grouped as 5, or in certain scenarios, when the top laner or mid laner is

playing a character suitable for dueling and pushing, he is separated to push one of the

sidelanes. The grouped teams engage in large team fights with the opposing team for

game-changing objectives such as Dragon Soul, Baron, or Elder Dragon. Typically, the

most important position in this phase is the ADC, who scales the best and therefore

has the most impact in team fights by dealing the most damage. Nowadays, only a

fraction of games make it to late game, many games snowball very quickly and end in

mid-game.

1.2 E-sport

E-sport is video game played in a highly structured competitive environment across

many different genres [1]. E-sport is an industry with a growing global market revenue

of almost $1.4 billion in 2022, which is shown in Chart 1.4. E-sport is a complex global

phenomenon with a rapidly growing audience of 532 million viewers in 2022, which is

shown in Chart 1.5 [15].

1.2.1 The History of E-sport

The first signs of the fast-growing e-sport phenomenon were seen in South Korea in the

early 2000s, with the establishment of the Korean e-SPorts Association (KeSPA) and

a television channel dedicated to e-sports [1].

10

618,72

737,78

884,73
992,80

1209,84

1421,89

1623,80

1811,40

1980,40

2117,30

2235,20

0

500

1000

1500

2000

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027

M
ill

io
ns

 o
f U

.S
. d

ol
la

rs

Year

Global Esports Revenue Prediction of Global Esports Revenue

Figure 1.4: Global E-sports Market Revenue with actual data from 2017 to 2022 and
forecasts for 2023 to 2027. Data taken from [16].

A great example of this industry’s growth is Defense of the Ancients 2 (DOTA2),

a game that started in the early days of e-sports with a network of small tournaments

with prize pools of hundreds of dollars, but has grown massively over time [1, 17].

The winner of The International 2021 (TI21) — the biggest tournament of the year

in DOTA2 — was awarded $18 million out of a total prize pool of $40 million, the

largest prize pool in e-sports history and larger than many prize pools in mainstream

traditional sports [1, 18].

Today, e-sports organisations have players with contracts, coaching and support

staff, and headquarters or training facilities where they practice together, much like

traditional sports [1].

11

345,2
369,3

400,6

475,8

524,1 526,7

580,1

625,8

664,5
696

720,8

0

100

200

300

400

500

600

700

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027

M
ill

io
ns

 o
f u

se
rs

Year

Audience Prediction of Audience

Figure 1.5: Global E-sports Audience with actual data from 2017 to 2022 and forecasts
for 2023 to 2027. Data taken from [16].

Figure 1.6: Venue of The International 2022. Taken from [19].

12

1.2.2 E-sports in League of Legends

The history of LoL e-sports follows a typical e-sports example. Although LoL was

released later (in 2009), it has also grown from individual, privately organised tour-

naments to the first World Championship in 2011 with eight teams, a peak audience

of over 210,000 concurrent viewers and a prize pool of $99,500, to the 2016 World

Championship with more viewers than the National Basketball Association (NBA), to

the 2021 World Championship with twenty-two teams, a peak audience of 73,860,000

concurrent viewers and a prize pool of $2,225,000, plus a percentage of revenue from

special in-game microtransactions [1, 20, 21]. Microtransactions are the purchase of

small in-game items for small amounts of money [22]. The growth in viewership is

shown in Chart 1.7. The growth in prize money is shown in Chart 1.8.

0

15

30

45

60

75

90

105

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Vi
ew

er
s

 in
 m

ill
io

ns

Year

Total Unique Viewers Peak of Concurrent Viewers

Figure 1.7: Growth in total unique viewers and peak concurrent viewers for the World
Championships from 2011-2021. Data taken from [21, 23, 24, 25].

According to [4], the LoL e-sports ecosystem is the largest and most popular in the

e-sports industry, and according to [26], it is the fastest growing sport in the world.

13

0

1

2

3

4

5

6

2011 2012 2013 2014 2015 2016 2017 2018

M
ill

io
ns

 o
f d

ol
la

rs

Year

Total Prize Pools

Figure 1.8: Growth in prize pools of World Championships from 2011-2018. Later data
has not been published. Data taken from https://lol.fandom.com/.

Riot Games, the owner and developer of LoL, is an example of a “hands on” developer,

meaning that they oversee all of the professional competition and therefore have total

control over LoL e-sports [1, 26].

The LoL ecosystem is divided into 9 regions which host regional leagues, with a va-

riety of lower leagues supporting and resourcing a region’s top league with new talented

players [26]. All the regions and their top leagues with shortcuts are shown in Table

1.2. All Regional Leagues except VCS are franchised, meaning that an organisation

must buy into the league in order to compete, similar to traditional sports leagues such

as the National Hockey League (NHL) or the National Football League (NFL) [1, 26].

The regular Regional League season is divided into two parts, known as splits. After

the first split, the top teams from each region compete in an international tournament

called the Mid-Season Invitational (MSI), and after the second split, the top teams

from each region compete in the World Championship [26].

14

https://lol.fandom.com/

Region League League Shortcut

North America League of Legends Championship Series LCS
EMEA* League of Legends European Championship LEC
China LoL Pro League LPL
South Korea LoL Champions Korea LCK
Vietnam Vietnam Championship Series VCS
APAC** Pacific Championship Series PCS
Brazil Campeonato Brasileiro de LoL CBLOL
Latin America Liga Latinoamérica LLA
Japan LoL Japan League LJL

Table 1.2: League of Legends Regional Leagues. Data taken from [26].
*Europe, the Middle East and Africa (EMEA) **Asia-PACific (APAC)

1.3 Application Programming Interface

An Application Programming Interface (API) is a way for two different applications, or

modules of an application, to communicate with each other in a specific way, defined by

a set of rules and protocols, usually written in API documentation [27]. The side that

sends requests for data is called the client, and the other side that receives requests

and returns the requested data is called the server [28, 29].

1.3.1 Representational State Transfer API

There are many different types of API, but the most commonly used API today is

the Representational State Transfer (REST) API [27]. REST is a set of architectural

principles that an API must implement in order to be called a REST API or RESTful

API [28]. The six principles of the REST API are a uniform interface, client-server

decoupling, statelessness, cacheability, layered system architecture and code on demand

(optional) [29]. A uniform interface ensures consistent API requests for the same

resource, while client-server decoupling maintains the independence of client and server

applications [29]. Statelessness, meaning that servers do not store client data between

requests, is a key feature of the REST API [27]. Cacheability improves performance and

scalability by allowing resources to be cached on the client or server side [29]. Layered

system architecture accommodates potential intermediaries in the communication loop

between client and server applications [29]. Code on demand, although optional, allows

15

executable code to be sent in certain cases to run only when needed [29]. The sum of

these principles is shown in Table 1.3.

Data between server and client travels via Hyper Text Transfer Protocol (HTTP)

and is received in many different formats such as JavaScript Object Notation (JSON),

eXtensible Markup Language (XML), or plain text, etc [28].

Principle Explanation

Uniform Interface Consistent API requests for identical resources
Client-Server Decoupling Independence between client and server applications
Statelessness No server-side sessions or client request data storage
Cacheability Resource caching on client or server side to improve

performance and scalability
Layered System Architecture Design accommodating intermediaries in client-

server communication
Code on Demand (Optional) Provision for sending executable code when required

Table 1.3: Representational State Transfer Application Programming Interface princi-
ples and their short explanations.

1.3.2 Used APIs

Riot Games API

The Riot Games API is a REST API with documentation available at [30] and [31].

The Riot Games API always returns data in JSON format [30]. They use their inter-

nal identifiers, such as the Player Universally Unique IDentifier (PUUID) for player

accounts, which are then used in the application.

The Riot Games API can be accessed through different types of keys, development,

personal and production [30]. I have always accessed the API using a personal API Key.

Personal API keys are intended for developer products or a small private community

and have a low rate limit and expire after 24 hours [30].

Leaguepedia API

The Leaguepedia API is a REST API with documentation available at [32]. The

Leaguepedia API returns data in JSON format [32].

16

Basic access to the Leaguepedia API does not require authentication and has a

limit of 500 results per query [32].

1.4 Object-Oriented Programming

Object-Oriented Programming (OOP) is a fundamental programming paradigm that

is essential to understand before writing programs in any OOP language. Programs

consist of two elements: code and data, and can be organised around either [33]. The

process-oriented model focuses on code acting on data, while OOP organises a program

around data and its interfaces [33].

OOP uses abstraction to manage complexity. Hierarchical classifications help to

break down complex systems into manageable layers [33]. For instance, a smartphone

can be perceived as a singular device composed of various subsystems, including the

camera, battery, and operating system. This methodology can also be employed in

software development, by breaking down information into constituent objects.

OOP is at the heart of many modern programming languages, and understanding

how these concepts are translated into programs is crucial. It provides a powerful

paradigm for creating programs that can adapt to changes throughout the lifecycle

of a software project [33]. With well-defined objects and clean interfaces, it becomes

easier to maintain or replace parts of an older system.

1.4.1 OOP Principles

Encapsulation

Encapsulation binds code and data together, protecting them from outside interference

and misuse [33]. It can be thought of as a protective shell that only allows access to the

code and data inside through a well-defined interface [33]. For example, an automatic

gearbox in a car encapsulates various data and the driver can only interact with it

through the gear lever, a unique interface.

In programming, encapsulation is based on classes, which define the structure and

17

behaviour shared by a set of objects [33]. Classes consist of member variables (data)

and member methods (code) that operate on the data. By marking methods or variables

as private or public, a class can hide the complexity of its implementation [33]. Public

methods represent the interface, so what external users need to know and use, while

private methods and data can only be accessed by members of the class. The public

interface should be carefully designed to avoid exposing too much of the inner workings

of a class. An encapsulation scheme is shown in Figure 1.9.

Figure 1.9: Encapsulation of private instance variables using public methods. Taken
from [33].

Inheritance

Inheritance allows one object to take on the properties of another, supporting hierar-

chical classification [33, 34]. Without hierarchies, each object would have to explicitly

define all of its properties [33, 34]. However, through inheritance, an object only needs

to define its unique properties within its class, inheriting general properties from its

parent [33, 34]. This mechanism allows an object to be a specific instance of a more

general case [33, 34].

18

People typically perceive the world as consisting of hierarchically related objects,

such as animals, with attributes such as size, intelligence and type of skeletal system,

and behaviours such as eating, breathing and sleeping, which would be a class defini-

tion of animals. More specific classes of animals, such as mammals, have additional

attributes or methods, such as gestation period or breastfeed, which make them a

subclass of animals and animals their superclass.

Mammals, as more specific animals, inherit all animal attributes. A deeply inher-

ited subclass inherits all the attributes of every ancestor in the class hierarchy [33].

Inheritance interacts with encapsulation; if a class encapsulates certain attributes, any

subclass will have the same attributes, plus any it adds for its specialisation [33].

Scheme of inheritance at work is shown in Figure 1.10. This concept allows object-

oriented programs to increase in complexity linearly rather than geometrically, because

a new subclass inherits all the attributes of its ancestors without causing unpredictable

interactions with most of the system’s code [33].

Polymorphism

Polymorphism, a concept originating from the Greek words for “multiple shapes”, is

a characteristic that enables an interface to be utilized for a broad range of actions,

with the specific action being determined by the particular context [33, 34]. Consider

a program that necessitates three kinds of mathematical operations (addition, subtrac-

tion, and multiplication) for various data types such as integers, decimals, and complex

numbers. The algorithm for implementing each operation stays consistent, regardless

of the data types involved. In a non-object-oriented language, three separate sets of

operation routines with distinct names would be necessary. However, polymorphism

permits a universal set of operation routines to share the same names.

Often encapsulated by the phrase “one interface, multiple methods”, polymorphism

implies that a single, versatile interface can be created for a collection of related tasks,

thereby reducing complexity [33, 34]. The compiler is responsible for selecting the

specific action or method for each situation, eliminating the need for manual selection

19

Figure 1.10: Inheritance: Example of Lanrador inheriting properties from its ancestors.
Taken from [33].

by the programmer, who only needs to remember and use the generic interface [33].

Using the dog analogy, a dog’s sense of smell is an example of polymorphism. When

a dog smells a cat, it barks and chases it; when it smells food, it salivates and goes to

its bowl. In both cases, the same sense of smell is at work, the difference being the

type of data the dog’s nose is responding to. This concept can be applied in a similar

way to methods within a programme.

20

1.5 Java Programming Language

The Java programming language is a high-level language that according to [33, 34, 35]

can be described by all of the following keywords:

• Simple

• Secure

• Portable

• Object-oriented

• Robust

• Multithreaded

• Architecture-neutral

• Interpreted

• High performance

• Distributed

• Dynamic

Simple

Java is designed to be easy for professional programmers to learn and use effectively

[33]. Those with programming experience, particularly in C++, will find it simple to

master [33, 35]. Java is automatically removing unrefenreced objects and discarded

complex and barely used features [35].

Secure

Dynamic and networked applications, while desirable, can raise significant security and

portability concerns [33]. To ensure that downloaded applications don’t cause harm,

Java confines them to their execution environment, preventing unauthorised access to

system resources [33]. This protection provides a level of confidence that programs

can be downloaded and run without causing harm, and is arguably one of Java’s most

innovative features [33].

21

Portable

The diversity of computers and operating systems on the Internet requires portability

[33]. Java allows applications to run on different systems using the same security

mechanism [33]. The goal is to allow the same application code to run on different

computers without the need for multiple versions, ultimately simplifying the process

of creating portable executable code [33].

Object-Oriented

Java is fulfils all the concepts of OOP. Java was created as an independent language,

unbound by source code compatibility with its predecessors [33]. This resulted in

a clean, pragmatic approach to objects that balances the “everything is an object”

paradigm with a more practical model [33]. Java’s object model is easily extensible,

while primitive types remain non-object for optimal performance.

Robust

It employs robust memory management while eliminating pointers to prevent security

issues [35]. Java restricts certain areas to help developers catch errors early, while elim-

inating common programming errors through its strictly typed nature [33]. Memory

management issues and exceptional conditions, common causes of program failure, are

addressed by Java’s automatic memory allocation and deallocation and object-oriented

exception handling [33].

Multithreaded

Java supports multi-threaded programming to meet the demands of creating interactive,

networked programs [33, 35]. Its sophisticated multi-process synchronisation enables

the creation of smooth-running interactive systems, allowing developers to focus on the

behaviour of the program rather than the multitasking subsystem [33].

22

Architecture-Neutral

Java addresses code longevity and portability by designing the Java language and

the Java Virtual Machine (JVM) to be architecture-neutral [33]. The goal of “write

once; run anywhere, anytime, forever” has been largely achieved through Java’s design

choices [33]. For example, unlike C, Java’s int data type uses 4 bytes of memory on

both 32-bit and 64-bit systems in Java [35].

Interpreted and High Performance

Java’s cross-platform compatibility is achieved through Java bytecode, an intermediate

representation that doesn’t sacrifice performance [33]. Java bytecode can be easily

translated into native machine code, and a just-in-time compiler ensures high perfor-

mance [33, 35].

Distributed

Java accommodates the distributed environment of the Internet by handling Transmis-

sion Control Protocol/Internet Protocol (TCP/IP) protocols and supporting Remote

Method Invocation (RMI), allowing networked method invocation [33, 35]. Accessing

resources using a Uniform Resource Locator (URL) is very similar to accessing a file.

Dynamic

Java programs contain extensive runtime type information for object access verification

and resolution [33]. This enables safe and efficient dynamic linking of code, which

is essential in the Java environment where bytecode fragments can be dynamically

updated on a running system [33].

23

1.6 Java libraries

1.6.1 Hibernate

Hibernate is an external Java library that allows an application to persist data in a

relational database [36, 37]. It is an Object-Relational Mapper (ORM), which means

that it represents relational data as simple Java objects that can be accessed through

a session manager, making it much easier to write applications that interact with

relational databases [36, 37]. The documentation of Hibernate is availible at [38].

Hibernate addresses several challenges and eases the pain of managing resources

and database connections. By working with a Session object, it simplifies resource

management and exception handling [36]. Hibernate also manages object-to-database

table mapping, database schema construction, and relationships between objects, such

as storing a list of addresses for an object [36].

In addition, Hibernate can map new types to the database and provides customis-

able serialisation options [36]. While Hibernate’s startup time may be longer than

direct Java DataBase Connectivity (JDBC) code, this is negligible in the context of

the overall runtime of an application [36]. Its maintenance and object management

benefits outweigh any initial configuration time.

Hibernate is an ideal solution for persisting Java objects in databases, replacing ad

hoc approaches, or serving as a persistence engine in applications without database per-

sistence [36]. Using Hibernate maintains flexibility in an application design decisions,

including database selection.

Hibernate can be accessed directly from any Java application or through other

frameworks such as Swing, servlets, portlets or Jakarta Server Pages (JSP) pages [36].

It is typically used to create or replace a data access layer in applications. Hibernate

supports Java standards such as Jakarta Server Pages (JSP), Java EE Connector

Architecture (JCA) and Java Naming and Directory Interface (JNDI), allowing for

run-time configuration and integration with various frameworks [36]. It uses standard

JDBC drivers to access relational databases and sits on top of the JDBC layer [36, 37].

24

Many Java web and application frameworks, such as Spring, integrate with Hiber-

nate because of its simple and clean API [36]. In any environment, configuration details

have to be defined and then used to create a SessionFactory object. Session objects

are instantiated from the SessionFactory and provide access to Hibernate’s database

representation.

After incorporating Hibernate into an application, there’s no need to modify existing

Java object model with persistence markers or other hints [36]. Hibernate works with

standard Java objects created using the ’new’ operator or by other objects. These

objects can be classified into two groups: those with Hibernate entity mappings and

those not directly acknowledged by Hibernate. Correctly mapped entity objects possess

fields and properties that may be either mapped entities, collections of entities, or value

types.

According to [36] mapped objects in Hibernate can be in one of these four states:

• Transient

• Persistent

• Detached

• Removed

Transient object

Transient objects are independent of Hibernate and don’t have a database representa-

tion [36]. Figure 1.11 shows the scheme of the transient object. To persist changes to a

transient object, a session has to be asked to save it to the database. Once Hibernate

has assigned an identifier to the object, it becomes persistent [36]. There also exists

@Transient annotation for property of object which makes it not managed or affected

by Hibernate.

Figure 1.11: Transient objects are independent of Hibernate. Taken from [36].

25

Persistent object

Persistent objects have a database representation, and Hibernate manages their per-

sistence [36]. Figure 1.12 shows the scheme of the persistent object. When changes are

made to a persistent object, Hibernate updates the database representation when the

application commits the changes [36].

Figure 1.12: Persistent objects are maintained by Hibernate. Taken from [36].

Detached object

Detached objects have a database representation, but aren’t connected to it [36]. Figure

1.13 shows the scheme of the detached object. Changes to detached objects don’t affect

the database and vice versa. Detached objects can be created by closing the associated

session or by evicting them using the session’s evict() method [36]. To persist changes

to a detached object, it has to be reattached to a valid Hibernate session using methods

such as load(), refresh(), merge(), update() or save() [36].

Figure 1.13: Detached objects exist in the database but are not maintained by Hiber-
nate. Taken from [36].

Removed object

Removed objects are managed by Hibernate, but have been passed to the session’s

remove() method [36]. When changes are committed to the session, the corresponding

database entries for removed objects are deleted.

26

Entities

Entities are Java objects with mappings that allow them to be stored in a database,

specifying how fields and properties are stored in database tables [36]. It’s possible to

represent a Java class in the database in different ways, such as having a single class

for users but two different tables. Hibernate can handle these scenarios, which are

common in legacy systems [36].

Objects that represent entities are standard Java classes with entity names that are

typically the same as the class type. However, it can be changed using mappings or

annotations to distinguish between objects of the same type mapped to different tables.

Some Session API methods require an entity name to determine the correct mapping.

If omitted, the method assumes that the entity name is the same as the class name, or

that no distinction is required.

Identifiers

Identifiers, or identity columns, correspond to primary keys in relational databases [36].

They are of two types: natural and artificial [36]. Natural identifiers have application

meaning, such as user identifiers or social security numbers, while artificial identifiers

have arbitrary values, such as database-generated identity columns.

Artificial identifiers may be preferred because they can be smaller in memory than

natural identifiers, remain unchanged during the natural lifecycle of the data, and are

easy to use [36]. In Hibernate, an object attribute is marked as an identifier with the

@Id annotation.

The @GeneratedValue annotation indicates that this is artificial identifier and that

Hibernate manages its generation. There are five different generation types: identity,

sequence, table, auto, and none [36].

Associations

Associations are references between entities, either directly as an embedded property

or indirectly through collections [36]. These associations are represented by foreign

27

keys in the underlying tables, which rely on identifiers, making small artificial keys

preferable [36].

Associations can be unidirectional, where only one entity has a reference to the

other, or bidirectional, where both entities reference each other. In associations, only

one participating class manages the relationship [36]. It is possible to specify the

entity that manages the association using the mappedBy attribute of the association

annotation [36, 37].

Table 1.4 shows how to select the relationship owner in a bidirectional association.

The association owner is only concerned with managing foreign keys in the database

[36, 37].

Type of
Association Options

one-to-one Either end can be made the owner, but one (and only one) of them
should be; if not specified, it will end up in a circular dependency.

one-to-many The many end must be made the owner of the association.
many-to-one This is the same as the one-to-many relationship viewed from the

opposite perspective, so the same rule applies: the many end must
be made the owner of the association.

many-to-many Either end of the association can be made the owner.

Table 1.4: Marking the Owner of an Association. Taken from [36].

1.6.2 Gson

Gson is a external Java library designed to convert Java objects to their JSON repre-

sentation and JSON strings to equivalent Java objects [39]. It can handle Java objects,

including pre-existing ones with no source code available [39].

Gson’s goals include providing easy-to-use mechanisms such as toString() and

constructor (factory method) for seamless Java-to-JSON and JSON-to-Java conver-

sions, allowing pre-existing immutable objects to be converted in both directions, al-

lowing custom representations for objects, supporting complex objects at any level,

and producing compact, readable JSON output [39].

In terms of performance and scalability, Gson has demonstrated impressive metrics

28

on a desktop running numerous other processes alongside the tests [39]. Using the

PerformanceTest class, it was found to deserialise strings over 25 MB, serialise a

collection of 1.4 million objects, and deserialise a collection of 87,000 objects [39]. In

addition, Gson 1.4 increased the deserialisation limit for byte arrays and collections

from 80 kB to over 11 MB [39].

Originally developed for internal use at Google, Gson is now used by several public

projects and companies [39]. To use Gson, the primary class is Gson, which can be

instantiated by simply calling new Gson(). Alternatively, the GsonBuilder class pro-

vides the ability to create a Gson instance with settings such as version control [39].

The Gson instance retains no state during JSON operations, allowing the same object

to be reused for multiple JSON serialisation and deserialisation tasks [39].

1.6.3 Bucket4J

Bucket4j is a external Java-based rate-limiting library based primarily on the token-

bucket algorithm, the de facto standard for rate-limiting in the IT industry [40]. It goes

beyond a simple token-bucket implementation, incorporating several useful extensions

not found in traditional token-bucket interpretations, such as multiple limits per bucket

and overdraft capabilities [40].

Bucket4j provides absolute precision by using integer arithmetic and avoiding floats

or doubles, thus protecting end-users from potential rounding errors [40]. It also pro-

vides an efficient concurrency implementation that scales well in multi-threaded scenar-

ios through a default lock-free implementation, while providing alternative concurrency

strategies when needed [40]. The API minimises the footprint of the garbage collector

by using primitive types wherever possible, and includes a pluggable listener API for

monitoring and logging, a comprehensive diagnostics API for examining internal state,

and dynamic configuration management [40]. It is licensed under the Apache License

2.0 [41].

29

Bucket

A bucket in Bucket4j is a rate limiter based on the concepts of the token bucket

algorithm [40]. It consists of the BucketConfiguration, which specifies an immutable

set of limiting rules to be used during operation, and the BucketState, which stores

mutable state information, such as the current number of tokens available [40]. A

Bucket object is created using the BucketBuilder API [40].

BucketConfiguration

BucketConfiguration is an object representing collection of limits used by the bucket

during its operation [40]. It is immutable, so bounds cannot be added to or removed

from an existing configuration [40]. However, a new configuration instance can replace

the old configuration by calling bucket.replaceConfiguration(newConfiguration)

[40]. The ConfigurationBuilder API allows direct creation of BucketConfiguration

if required [40].

Limitation/Bandwidth

Bucket limits are expressed as bandwidths characterised by capacity, refill and initial

tokens [40]. Capacity refers to the number of tokens in a bucket, while refill specifies

the rate at which tokens are replenished after consumption [40]. The initial number

of tokens in each bandwidth can also be specified, with defaults equal to capacity

[40]. In addition, identifiers can be assigned to bandwidths for on-the-fly configuration

replacement, particularly when multiple bandwidths are associated with a single bucket

[40].

Refill

The refill refers to the speed at which tokens are regenerated, with three types avail-

able: greedy, interval and intervallyAligned [40]. Greedy regenerates tokens as quickly

as possible, Interval regenerates tokens at the end of a specified period, and Inter-

vallyAligned regenerates tokens in an intermittent manner, but allows the first refill

30

time to be specified, allowing clear interval boundary configuration [40].

BucketState

The BucketState object stores mutable state information such as the number of tokens

available and the timestamp of the last refill [40]. It is not normally interacted with

directly, except in cases where low-level diagnostic API access is required [40].

BucketBuilder

The BucketBuilder object is a key component that utilises a fluid design to efficiently

construct local buckets [40]. It enables the creation of buckets with adjustable syn-

chronisation strategies and precision levels, while ensuring future adaptability and a

modern library design pattern [40].

1.6.4 Swing

Swing is one of the Java Foundation Classes (JFC) libraries used to develop window-

based applications [42, 43]. Based on the Abstract Windowing Toolkit (AWT) API,

Swing is developed entirely in Java [42, 44].

Swing is promoted as a collection of customisable graphical components with a run-

time controllable look-and-feel [43]. But Swing is more than that; it’s a next-generation

Graphical User Interface (GUI) toolkit for large-scale Java application development,

offering a variety of powerful components that can be easily modified or extended to

control appearance and behaviour [43].

Today, developers often use Swing as their preferred framework for creating GUI

components, as it offers more powerful and versatile options compared to the AWT

[33, 44]. Swing has been a popular choice among Java programmers for many years

[33].

31

Swing components

Swing components are predominantly lightweight, meaning they’re entirely Java-based

and don’t map to platform-specific counterparts [33]. This makes them more efficient,

flexible and consistent across platforms [33]. Swing supports Pluggable Look And Feel

(PLAF), which allows the appearance of a component to be separated from its logic

[33]. This separation allows the appearance of a component to be changed without

affecting its functionality or causing side effects [33].

PLAFs provide the ability to maintain consistency across platforms, emulate specific

platform styles, design custom appearances, and dynamically change the look and feel

at runtime [33]. Java provides several looks and feels, such as metal and nimbus, which

are available to all Swing users [33]. The metal look and feel, also known as the Java

look and feel, is platform-independent and serves as the default [33].

Swing components, with the exception of four top-level containers, are derived from

the JComponent class, which provides common functionality such as pluggable look and

feel support [33]. JComponent inherits from the AWT container and component classes,

making Swing components compatible with AWT components [33]. Swing component

classes can be found in the javax.swing package, where each class name begins with

the letter ’J’ (e.g. JLabel, JButton, and JScrollBar) [33]. All the GUI components

of the Swing library can be seen in Figure 1.14.

1.6.5 Abstract Window Toolkit

Java’s Abstract Windowing Toolkit (AWT) is the original GUI, containing numerous

classes and methods for creating windows and basic controls [33]. Although it has

been superseded by more powerful frameworks such as Swing, AWT remains essential

because it underpins Swing and many AWT classes are used directly or indirectly [33].

Gaining a basic understanding of AWT is crucial to using Swing effectively, and may

still be appropriate for small programs that require minimal GUI usage [33]. I only use

a few classes from the AWT library and list them all below.

32

Figure 1.14: GUI Components of Java Swing library. Taken from [43].

BufferedImage

The BufferedImage class, a subclass of the java.awt package, represents an image

that has an accessible buffer containing its data. It consists of a ColorModel and a

Raster that holds the image data [45]. The SampleModel of the Raster must have

the appropriate number and types of bands that correspond with the requirements of

the ColorModel for representing colour and alpha components [45]. All objects created

from the BufferedImage class possess an upper left corner coordinate set at (0, 0) [45].

Consequently, any Raster utilized for constructing a BufferedImage needs to have its

minX and minY values set to 0 [45].

This particular class is heavily dependent on the methods for fetching and setting

data provided by the Raster, as well as the colour characterisation methods provided

by the ColorModel [45].

33

Graphics2D

The Graphics2D class, an extension of the Graphics class, provides sophisticated con-

trol over geometry, coordinate transformations, colour management and text layout,

making it essential for rendering 2D shapes, text and images on the Java platform [33,

45]. Graphics2D class operates in a device-independent coordinate system called User

Space, with an associated AffineTransform object defining the conversion to device-

dependent coordinates in Device Space [45]. Rendering operations are performed in

four phases: determining the content to be rendered, restricting the operation to the

current clip, determining the colours to be rendered, and applying the colours to the

drawing surface using the current composite attribute [45].

Rendering operations can be categorised into shape operations, text operations

and image operations [45]. Shape operations involve creating a new shape object that

outlines the specified shape, transforming the shape and extracting its outline [45]. Text

operations involve determining the glyphs needed to render the given string, querying

the current font for outlines, and filling character outlines [45]. Image operations

involve defining the region of interest, transforming the bounding box from user space

to device space, and determining the colours to render based on the source-destination

coordinate mapping [45].

AlphaComposite

The AlphaComposite class in java.awt implements fundamental alpha compositing

rules for blending source and destination colors in graphics and images. These rules are

based on the twelve primary rules described by T. Porter and T. Duff in “Compositing

Digital Images” [45]. This class also extends the standard equations by incorporating

an additional alpha value that modifies the opacity or coverage of source pixels.

It is crucial to understand that the equations work on color components premul-

tiplied by their corresponding alpha components [45]. As ColorModel and Raster

classes permit pixel data storage in both premultiplied and non-premultiplied forms, all

input data must be normalized into premultiplied form before applying the equations

34

[45]. AlphaComposite introduces an extra alpha value applied to the source alpha, as

if an implicit SRC IN rule were first applied to the source pixel against a pixel with the

indicated alpha [45]. This is achieved by multiplying both the raw source alpha and

raw source colours by the alpha in the AlphaComposite [45].

1.7 Web tools

1.7.1 Hyper Text Markup Language

HyperText Markup Language (HTML) is used to create web pages and web applica-

tions [46]. It involves hypertexts, which provide references to different web pages.

As a markup language, it incorporates layout and formatting standards into tex-

tual documents, transforming text into interactive and dynamic elements such as im-

ages, tables or links using various tag elements. A tag element is specified with a

name and functionality and usually has an opening tag and closing tag, for example

<p>paragraphText</p> are paragraph tags with their content between them. To-

gether with Cascading Style Sheets (CSS), individual tags and elements can be styled

into infinite possibilities.

In summary, HTML is a markup language used to create visually appealing web

pages with styling, displayed in an organised format on web browsers, and composed

of various HTML tags containing different content [46].

1.7.2 JavaScript

JavaScript (JS) is a scripting or programming language that allows complex functional-

ity to be built into web pages. If a web page presents more than static information and

offers features such as real-time content updates, interactive maps, animated 2D/3D

visuals or scrolling video players, JS is likely to be responsible [47]. As the third layer

of the standard web technology stack, it complements the other two layers, HTML and

CSS [47].

35

1.7.3 C3

C3 is a JS library and a preferred choice for creating charts in JS because it offers

convenience, customisation and control [48]. By simplifying the process of creating

D3-based charts, C3 eliminates the need to write complex D3 code [48]. It also assigns

classes to each element, allowing users to define custom styles and extend the structure

using D3 directly [48]. C3 also provides numerous APIs and callbacks to access the

state of the chart, allowing updates to be made even after the chart has been rendered,

making the integration of charts into an application more seamless [48].

36

2. Practical part

2.1 Front-end to Back-end View

The application is divided into separate components based on their purpose. This

view shows whether the application component belongs to the front-end or the back-

end. The view is represented by the diagram in Figure 2.1. The diagram also shows

how the components of the application use each other and how they are connected to

external actors. The DefaultBrowser has external stereotype to point out that it is

not a part of the application.

Back-endFront-end

MainFrame

DataExtractor

NetworkUtil

TimeUtil

DatabaseManager

OutputMaker

«external»
DefaultBrowser

User

ExternalDataSource

Organisation

«flow»

«use»

«use»

«use»«use»

«use»«use»

«use»

«use»

«use»

«use»

Figure 2.1: Diagram of the component’s application and other external actors. With
boundaries defining which domponent belongs to front-end and back-end. Created in
Enterprise Architect.

37

2.2 Application Use Case View

The application’s use case view represents how the user typically uses the application

(each usage is referred to as a use case), by whom each use case is realised, and what

other use cases are included or extend a particular use case. This view divides the

application into separate components, each component realising one or more use cases.

The complete use case view, represented by the use case diagram, is shown in Figure 2.2.

Actors inside the application boundary represent components of the application such

as MainFrame or DataExtractor and actors outside the boundary represent external

actors such as ExternalDataSource or Database. The Figure 2.2 also shows that the

user only interacts with the MainFrame.

Each component in the application code is represented by a Java class placed in

the components package. The application code has been developed component by

component in the order of typical user behaviour when using the application. This

typical user behaviour with the corresponding actions from the application is shown in

Figure 2.3.

2.2.1 MainFrame

The first component of the application, called MainFrame, is responsible for the use

cases that include all interactions between a user and the application. It is represented

by a Java class that extends JFrame with GridBagLayout to centre its GUI components

vertically and horizontally. The only GUI component directly in this object is JPanel

with BorderLayout, which is used as a wrapper for all other GUI components. The

hierarchy of all active GUI components and their containers is shown in Figure 2.4.

Active GUI components are those with which the user can interact, so JLabel instances

are not included.

By adding an ActionListener instance to an active GUI component using the

addActionListener() method, user interaction with the application through active

GUI components is achieved. The parameter of this method is a lambda expression

with a function that first creates and initialises a modal dialogue that forbids any

38

Application

User

OutputViewer

MainFrame

Obtain Data

Persist Data

Select
Organization

Generate
Output

DataExtractor

.

.

.

.

ExternalDataSource

Updating/Obtaining
Organisation

Fetching Accounts
and Matches

Getting Data for
ComboBoxes

ShowRoster

Manage
Database

Select Data

OutputMaker

Retrieve Data from
Extrenal Data Source

NetworkUtil

Get Time in
Format

TimeUtil

DatabaseManager

addHeatmaps
addInfographics

Show Output

Select Roster

addGraphs

Database

«extend»
«extend»

«include»

«include»

«include»

«include»

«include»

«extend»

«include»

«include»

«include»

«include»

Figure 2.2: UseCase Diagram of the application and other external actors. Actors in
the boundary represent modules of the application. Created in Enterprise Architect.

39

Figure 2.3: Process Diagram of typical user behaviour when using the application and
corresponding actions from the application. Created in Enterprise Architect.

GUI extends JFrame

JPanel
wrapperPanel

JPanel
inputPanel

JComboBox
cmbRegion

JComboBox
cmbTournament

JComboBox
cmbTeam

JButton
loadOrg

JPanel
contentPanel

JScrollPane
tblContentScroll

JCellStyleTable extends
JTable tblContent

JButton
btnMakePrep

JButton
btnOpenOutput

JPanel
buttonPanel

Figure 2.4: Hierarchy of all active GUI components and their containers. Created in
Enterprise Architect.

interaction between the user and the MainFrame, while the instance of SwingWorker

executes a block of code that implements an action desired by the user. The block of

code is defined in overridden method doInBackground() which is executed in different

thread and it is also a place in code where I catch all exceptions to deal with them.

The done() method executes after doInBackground() has finished, closing the modal

dialogue and displaying an error message if an exception was thrown. The code of

template for this situation is shown here:

guiComponent.addActionListener(e -> {

JDialog waitDialog = new JDialog();

initWaitDialog(waitDialog);

SwingWorker<Void, Void> worker = new SwingWorker<>() {

@Override

protected Void doInBackground() {

40

try {

// Block of code which is executed by SwingWorker in another thread.

} catch (Exception e) {

// Block of code handling exceptions

}

return null;

}

@Override

protected void done() {

waitDialog.dispose();

if (errorMessage != null) {

JOptionPane.showMessageDialog(errorMessage);

}

}

};

worker.execute();

});

The MainFrame component realises the use cases listed below, which are described in

detail in the following chapters.

• Selecting the Organisation

• Selecting the Organisation’s Roster

• Launching the Output Generation

• Opening the Output File

Selecting the Organisation

This use case is referred to as the “Select Organisation” in Figure 2.2. It is imple-

mented using three JComboBox instances to minimise the human error of misspelling

the organisation name and also to make it easier for the user. The first JComboBox,

called cmbRegion, allows the user to select the region where the desired organisation is

located. At the moment, the application only allows one region to be selected, which

is EMEA, because one of the external data sources only covers this region.

41

Once a region has been selected, the application uses the DataExtractor component

to load all the tournament names from that region into the second JComboBox named

cmbTournament. See chapter 2.2.2 for more details on how the DataExtractor obtains

and returns this data. Similarly, once a particular tournament has been selected, the

application uses the DataExtractor component to load all the names of the organisa-

tions playing in that tournament into the third JComboBox named cmbOrganisation.

Again, see chapter 2.2.2 for more details on how the DataExtractor obtains and returns

this data. The user then selects the desired organisation from the third JComboBox and

confirms his choice by pressing “Show organization’s roster” JButton.

Once the button is pressed, the selected item from cmbOrganisation is passed as a

parameter to the loadRoster() method. This method then calls the DataExtractor

component via the getOrganization() method for the Organisation instance with all

the required properties. See chapter 2.2.2 for more details on how the DataExtractor

obtains and returns this data.

Selecting the Organisation’s Roster

This use case is referred to as the “Select Roster” in Figure 2.2. After the Organisation

instance is returned, the showRoster() method is called. This method creates an

instance of the RosterTableModel, which extends the Swing’s DefaultTableModel

class and is specially modified to work as a cell-based model, meaning that it is possible

to specify for each cell whether it is editable. The model is then passed as a parameter

to the constructor of RosterTableModel, which extends JTable and is also specially

modified to work as a cell-based table, meaning that it is possible to specify for each

cell its renderer and editor. This cell-based concept is implemented so that when there

are multiple player options for a position, the user can select who they want to prepare

against in JComboBox, which is used as the editor and renderer for that player’s cell.

The table is then displayed on the MainFrame using contentPanel.add().

Once the user has decided on the roster, he confirms his decision by pressing the

“Confirm roster to load match data” button. Pressing this button calls the makePrep()

42

method of MainFrame, and because this method can take up to several minutes to

complete, the modal dialogue also contains a JTextArea that displays the current

status. The first thing this method does is to incorporate the user’s roster decision

into the data model via the setStartingRoster() method.

Launching the Output Generation

This use case is referred to as the “Generate Output” in Figure 2.2. As the application

does not yet have all the required data in the Organisation instance, makePrep()

first calls the DataExtractor via the fetchAccountsToPlayer() method for each

player on the roster, then the fetchMatchesToRoster() method for selected roster

and then fetchMatchesToAccount() method for each account of each player on the

roster. See chapter 2.2.2 for details on how the DataExtractor obtains this data.

Now, before any data processing, the Organisation instance with all the required

data is passed as a parameter to the DatabaseManager component’s insertObject()

method to be stored in the database. See chapter 2.2.3 for more details on how the

DatabaseManager persist data. Once the data is persisted, the OutputMaker class is

called via the makeHTMLOutput() method to return the path to the output file. See

chapter 2.2.4 for more details on how the OutputMaker creates output file.

Opening the Output File

This use case is referred to as the “Show Output” in Figure 2.2. The output file path

is then passed to MainFrame component’s addLinkToPrep() method, which replaces

the btnMakePrep for the “Go to match preparation” JButton. When the user clicks

on this button, their default internet browser will open and display the output file.

2.2.2 Data Extracting

The next component of the application, called the DataExtractor, is responsible for

this use case and all the use cases contained within it. A simplified process for imple-

menting this use case is shown in the collaboration diagram in Figure 2.5. It fulfils all

43

the data needs of the other components by transforming data from various external

sources into the application’s data model. The class diagram shows the data model in

Figure 2.6. The component is represented by a static Java class. It is not technically

static, but all methods and properties are static and the construct of the class is set to

private access modifier to prevent any misuse of the class. The DataExtractor com-

ponent realises the use cases listed below, which are described in detail in the following

chapters.

• Getting data for Combo Boxes

• Obtaining the Organisation

• Updating the Organisation

• Fetching Accounts to Players

• Fetching Matches to Roster and Accounts

Us
er

StartTeamSelection DataGained

ConfirmRosterEditRoster

Ap
pl
ic
ati

on

M
ai
nF

ra
m
e

Da
ta
Ex
tr
ac
to
r

Da
ta
ba

se
M
an

ag
er

App
start

DataGained

SelectTeam

GetMatchDataShowRoster GetPlayerData StoreData

Database

ShowConfig

GetOrganisation

GetObject

Database

InsertObject

Figure 2.5: Collaboration Diagram of Simplified implemantaion of “Data Extracting”
use case. Created in Enterprise Architect.

44

Insertable
Timeline

- fram eInterval: long
- fram es: List<Frame>
- gam eID: long
- match: Match

+ getF rameInterval(): long
+ getF ram es(): List<Frame>
+ getG ameID(): long
+ setF ram eInterval(long): void
+ setF ram es(L ist<Frame>): void
+ setG am eID(long): void

Team

- id : Long
- info: Info
- teamId: long
- w in : boolean

+ getTeamId(): long
+ getWin(): boolean
+ setInfo(Info): void
+ setTeam Id(long): void
+ setWin (b o olean): void

Insertable
Roster

- id : Long
- lastU p d ated : LocalDateTime
- m atches: List<Match>
- n O fChanges: Integer
- o rg : Organisation
- p layers: List<P layer>

+ addMatch(Match): void
+ addPlayer(P layer): void
+ getLastU p d ated(): LocalDateTime
+ getMatches(): List<Match>
+ getOrg(): Organisation
+ getP layers(): List<P layer>
+ p layersToString(): String
+ R o ster()
+ R o ster(O rganisation, List<P layer>)
+ setLastU p d ated (LocalDateTime): void
+ setO rg(Organisation): R oster

Position

- x: long
- y: long

+ getX(): long
+ getY(): long
+ setX(long): void
+ setY(long): void

Insertable
Player

- accounts: List<Account>
- n ame: String
- ro le: R ole
- ro sters: List<R oster>

+ addAccount(Account): void
+ deleteAccount(String): void
+ getAccounts(): List<Account>
+ getName(): String
+ getR ole(): R ole
+ P layer(String, R ole, R oster)
+ P layer()

ParticipantFrame

- id : Long
- p articipantId: long
- p o siti on: Position
- totalG old: long

+ getId(): Long
+ getParticipantId(): long
+ getP o sition(): Position
+ getTotalG old(): long
+ setId(Long): void
+ setP articipantId(long): void
+ setP o sition(Position): void
+ setTo ta lG old(long): void

Participant

- ch am p ionName: String
- id : Long
- info: Info
- p articipantId: long
- puuid: String
- su m m o n erName: String

+ getChampionName(): String
+ getInfo(): Info
+ getParticipantId(): long
+ getPuuid(): String
+ getSu m m onerName(): String
+ P articipant()
+ setInfo(Info): void
+ setP articipantId(long): void
+ setPuuid(String): void

Insertable
Organisation

- n ame: String
- ro sters: List<R oster>
- shortcut: String
- startingLineUp: R oster

+ addR oster(R oster): void
+ getLastR oster(): R oster
+ getName(): String
+ getR o sters(): List<R oster>
+ getShortcut(): String
+ getStartingLineUp(): R oster
+ O rganisation(String, String)
+ O rgan isation()
+ setS tartingLineUp(R oster): void

Insertable
Match

- accounts: List<Account>
- info: Info
- matchID: String
- roster: R oster
- ti m elin e: T im eline
- va lue: int

+ getInfo(): Info
+ getMatchID(): String
+ getTim elin e(): T imeline
+ getV alue(): int
+ Match(String, Info, Timeline, Account)
+ M atch(String, Info, Timeline, R oster)
+ Match()
+ setV alu e(int): void

Insertable
Info

- gameCreation: long
- gam eID: long
- match: Match
- p arti c ipants: List<Participant>
- team s: List<Team>

+ getG ameID(): long
+ getP articipants(): List<Participant>
+ getTeam s(): List<Team>
+ setG am eID(long): void
+ setTeam s(List<Team>): void

Frame

- id : Long
- p arti cipantFrames: Map<String, ParticipantFrame>
- ti m estamp: long

+ getId(): Long
+ getParticipantFrames(): Map<String, ParticipantFrame>
+ getTim estamp(): long
+ setId(Long): void
+ setP articipantFrames(Map<String, ParticipantFrame>): void
+ setTim estam p(long): void

Insertable
Account

- lastU p d ated : LocalDateTime
- m atches: List<Match>
- n ame: String
- p layer: P layer
- puuid: String

+ addMatch(Match): void
+ getLastU p d ated(): LocalDateTime
+ getMatches(): List<Match>
+ getName(): String
+ getPuuid(): String
+ setLastU p d ated (LocalDateTime): void
+ setP layer(P layer): void

-matches 0..*

-info

-rosters

0..*

-matches

0..*

-match

-accounts

0..*

-participants 0..*

-players

0..*

-startingLineUp

-accounts 0..*

-roster

-frames 0..*

-match

-org

-player

-participantFrames

0..*

-rosters

0..*

-info

-timeline

-teams

0..*

-info

-position

Figure 2.6: Class Diagram of Data Model. Created in IntelliJ IDEA.

45

Getting data for Combo-Boxes

This use case retrieves data for two JComboBox instances, the cmbTournaments and

the cmbTeams, using the getTournamentsByRegion() and getTeamsByTournament()

public methods when requested by the MainFrame component.

First, the URL string is built using predefined templates, parameters and methods

from the TimeUtil component, which allows many different time formats to be built

and returned. See chapter 2.2.6 for more details on how TimeUtil builds these time

formats. The URL string contains a reference to the Leaguepeadia API as this is where

the information is retrieved from.

Once the URL string has been built, it is passed as a parameter to the NetworkUtil

component’s method called getJSONFromURLString(), which will return the JSON

with all the required information. See chapter 2.2.5 for details on how NetworkUtil

gets this JSON. It then uses the Gson library to parse it into a JsonObject, which is

then returned to the MainFrame component.

Obtaining the Organisation

When the DataExtractor component is asked for an instance of the Organisation

class via the public method getOrganisation(), it then asks the DatabaseManager

component to retrieve data from the database via the method getObject() with the

name of the organisation as a parameter. See chapter 2.2.3 for more details on how

DatabaseManager retrieves data from the database.

If the Organisation instance returned by the getObject() method is null, mean-

ing that this organisation has never been retrieved and persisted, the constructor of

the Organisation class is called with the name of the organisation and it’s short-

cut passed as parameters. The shortcut of the organisation is obtained using the

getOrganisationShortcut() method, which, like similar methods described many

times before, builds the URL string using the getJSONFromURLString() method,

parses it using the Gson library, and extracts the shortcut from the JSONObject.

The URL string contains a reference to the Leaguepeadia API as this is where the

46

information is retrieved from.

Once the instance of the Organisation has been constructed, the getRoster()

method described above is called and a reference to the returned instance of the Roster

class is added to the instance of the Organisation class.

Updating the Organisation

If the Organisation instance returned by the getObject() method is not null, mean-

ing that this organisation was previously retrieved and persisted to the database, the

updateRoster() method is called. This method retrieves the current roster via the

getRoster() method.

The getRoster() method first builds a URL string from a predefine templates

and parameters. The URL string contains a reference to the LeaguepeadiaAPI as this

is where the information is retrieved from. Once the URL string has been built, it

is passed as a parameter to the NetworkUtil component’s getJSONFromURLString()

method, which returns the JSON with all the required information. See chapter 2.2.5

for details on how NetworkUtil gets this JSON. It then uses the Gson library to

parse it into a JsonObject from which arrays of player names and roles are extracted.

The constructor of the Roster class is then called and the arrays are used to construct

instances of the Player class, which are then inserted into the instance of Roster class.

Once this is done, the instance of Roster class is returned to the updateRoster()

method.

When the instance of Roster class is returned, the updateRoster() method com-

pares the old roster and this new roster, and if there are any changes, the new roster

is added to the organisation. If the rosters are the same, the new roster is discarded.

Fetching Accounts to Players

When the DataExtractor component is asked to obtain accounts data for each player

via the public method fetchAccountsToPlayer(), the private method getAccounts()

is first called with an instance of the Player class passed as a parameter.

47

This method first builds a URL string from a predefined template and parameters.

The URL string contains a reference to the Leaguepeadia API as this is where the

information is retrieved from. When the URL string is built, it is passed as a parameter

to the NetworkUtil component’s getJSONFromURLString() method, which returns

the JSON with information for the next step. See chapter 2.2.5 for details on how

NetworkUtil gets this JSON. The Gson library is then used to parse the JSON into a

JSONObject and the URL of the page containing the names of all the players’ accounts

is retrieved from this JSONObject.

This URL is then passed as a parameter to another DataExtractor component’s

method called getDocumentFromURLString() to retrieve an instance of jsoup library’s

Document with all the player’s account names. See chapter 2.2.5 for details on how

NetworkUtil gets the instance of Document.

Sometimes the Leaguepedia API does not contain the required information and

when this happens, getDocumentFromURLString() is passed template with player’s

name as parameter instead and if page is not found, getDocumentFromURLString()

returns specially designed exception which is used to inform the user that player’s

accounts were not found.

For each account name, an instance of Account is created via the getAccounts()

method by passing an account name as parameter, which is then added to the list of ac-

counts and returned by the getAccounts() method as requested. The getAccount()

method works similar to the method described above, it first builds URL string,

then calls NetworkUtil component’s getJSONFromURLString() method and then uses

Gson to parse the JSON to JSONObject and retrieve the requested data from that

JSONObject. The URL string contains a reference to the Riot Games API as this is

where the information is retrieved from.

When the fetchAccountsToPlayer() method has the list of current player ac-

counts, it compares this list with the list of player accounts already persisted in the

database. If it finds an account that is not already in the database, it adds that ac-

count. And if it finds an account that is already in the database but not in the list of

48

current accounts, it deletes that account from the database.

Fetching Matches to the Roster

This section describes the first of two methods for retrieving match data. The matches

fetched in this method are competitive matches, i.e. they are matches from tourna-

ments, so they are played by all players on the roster, which is why they are referenced

in the Roster class property.

When the DataExtractor component is asked to retrieve match data for the in-

stance of the Roster class via the public method fetchMatchesToRoster(), first all

matches that are already in the Roster instance, because they were retrieved from the

database earlier, are added to the list of matches which is a field of the DataExtractor

class. These matches are added there to avoid adding duplicate matches to the roster.

The fetchMatchesToRoster() method builds a URL string from a predefined tem-

plate, parameters and methods of the TimeUtil component, which allows many dif-

ferent time formats to be built and returned. See chapter 2.2.6 for more details on

how TimeUtil builds these time formats. The URL string contains a reference to the

Leaguepedia API as this is where the information is retrieved from. One of the param-

eters used in the URL string is a property of the Roster class, which stores the time of

the last time matches were retrieved for this roster. This parameter is used to reduce

the runtime of the application by reducing the number of URL requests and to avoid

adding duplicate matches to the roster.

When the URL string is built, it is passed as a parameter to the NetworkUtil

component’s getJSONFromURLString() method, which returns the JSON with all the

required information. See chapter 2.2.5 for details on how NetworkUtil gets this JSON.

The JSON is then parsed into a JSONObject and an array of match ids is retrieved

from the JSONObject using the Gson library.

For each match id, the returnMatch() method is first called with the match id

passed as a parameter, which returns an instance of the Match class if it is found in

already persisted matches or matches that have already been retrieved in this session.

49

If null is returned, the getMatchFromLeaguepedia() method is called with the match

id passed as a parameter to create and return an instance of the Match class.

The getMatchFromLeaguepedia() method obtains match data in two parts from

two different pages. The first part retrieved is an instance of the Info class and the

second part is an instance of the Timeline class. These parts use different predefined

template and same parameters to build URL string which is then passed as parameter

to getDocumentFromURLString() method. This method returns a jsoup library class

called Document containing an important instance of jsoup library’s Element class

containing all the required information. This information is extracted from the element

and parsed into the Info and Timeline instances of the data model using Gson library.

The instances of these classes are then used as parameters in the constructor of the

Match class to create and return the requested Match instance.

The final action of the fetchMatchesToRoster() method is to update the property

of the Roster instance with the last time this method was called.

Fetching Matches to the Accounts

This section describes the second of two methods for retrieving match data. The

matches fetched in this method are solo queue matches, i.e. they are matches from the

public ladder, i.e. they are normally only played by one player from the roster on his

particular account, which is why they are referenced in the Account class property.

When the DataExtractor component is asked to retrieve match data for the in-

stance of the Account class using the public method fetchMatchesToAccount(), it first

adds any matches that are already in the Account instance, because they were retrieved

from the database earlier, to the list of matches that is a property of the DataExtractor

class. These matches are added there to avoid adding duplicate matches to the account.

The fetchMatchesToAccount() method builds a URL string from a predefined

template, parameters and methods of the TimeUtil component, which allows many

different time formats to be built and returned. See chapter 2.2.6 for more details

on how TimeUtil builds these time formats. The URL string contains a reference to

50

the Riot Games API as this is where the information is retrieved from. One of the

parameters used in the URL string is a property of the Account class that stores the

time of the last time matches were retrieved for that account. This parameter is used

to reduce the runtime of the application by reducing the number of URL requests and

to avoid adding duplicate matches to the account.

When the URL string is constructed, it is passed as a parameter to the NetworkUtil

component’s getJSONFromURLString() method, which returns the JSON with all the

required information. See chapter 2.2.5 for details on how NetworkUtil gets this JSON.

The JSON is then parsed into a JSONObject and an array of match ids is retrieved

from the JSONObject using the Gson library.

The Riot Games API has a limit of returning a maximum of 100 results per query.

So if the number of match ids returned is 100, the fetchMatchesToAccount() method

is called again recursively at the end of this method with the second parameter increased

by 100. This second parameter defines from which point in the result set the 100 results

are taken and returned.

For each match id, the returnMatch() method is first called with the match id

passed as a parameter, which returns an instance of the Match class if it is found in

already persisted matches or matches that have already been retrieved in this session.

If null is returned, the getMatchFromRiot() method is called with the match id passed

as a parameter, which creates and returns an instance of the match class.

The getMatchFromRiot() method retrieves match data in two parts from two dif-

ferent pages. The first part retrieved is an instance of the Info class and the second

part is an instance of the Timeline class. These parts use different predefined tem-

plate and same parameters to build URL string which is then passed as parameter

to getJSONFromURLString() method which returns JSON containing required infor-

mation. Gson library is then used to parse the JSON into the Info and Timeline

instances of the data model. The instances of these classes are then used as param-

eters in the constructor of the Match class to create and return the requested Match

instance.

51

The final action of the fetchMatchesToAccount() method is to update the prop-

erty of the Account instance with the last time this method was called.

2.2.3 Database Management

The DatabaseManager, another component of the application, is responsible for all

interactions with the database, such as persisting or selecting data using the Hibernate

library. This is the first of the modules described here that is modular, so it can be used

in any other Java developed application if its methods are needed. The component is

represented by a static Java class. It is not technically static, but all methods and

properties are static and the construct of the class is set to private access modifier to

prevent any misuse of the class. This is the component that implements the “Managing

Database” use case mentioned in the use case diagram. This use case includes two other

use cases listed below, which are described in detail in the following chapters.

• Persisting Data to the Database

• Selecting Data from the Database

Persisting Data to the Database

This section describes the use case that occurs when the DatabaseManager component

is asked to persist data to the database via the insertObject() public method. The

only parameter passed to this method is an instance of a class that implements the

Insertable interface, which implements all classes in the data model.

Firstly, the insertObject() method uses the existing session where all the data

from the database was previously loaded to create an instance of the Transaction

class, then the parameter of this method is passed as a parameter to the merge()

method which is called on the instance of the Session class. The merge() method

adds the object from the parameter to the session or just updates it if it was already in

the session. Finally, the commit() method is called on the instance of the Transaction

class, which completes the process of inserting the object into the database.

52

Selecting Data from the Database

This section describes the use case that occurs when the DataExtractor component

asks for the instance of the Organisation class in the getOrganisation() method via

the getObject() method. This method has two parameters, the first is the reference

to the required class and the second is the id of this class used in the database.

The getObject() method starts by checking if there is already an instance of the

Session class in the DatabaseManager, and if not it creates a new one. Then it uses

the get() method on the instance of the Session class with both parameters passed

to this method as parameters.

The session and the session factory must obviously be closed at the same point,

which happens when the application is closed. For this purpose there is a method

called closeSessionFactory() in the DatabaseManager component that closes the

existing session and the session factory. This method is called as a window listener

that is added to the MainFrame class and executed when the window is closed.

2.2.4 Generating Output

This use case is implemented by the OutputMaker component. This component is

represented by a static Java class. A simplified process for implementing this use case

is shown in the collaboration diagram in Figure 2.2.4. It is not technically static, but

all methods and properties are static and the construct of the class is set to private

access modifier to prevent any misuse of the class. It has only one public method

called makeHTMLOutput() which uses the jsoup library to create a document with all

the neccessities like title, icon or links to JS scripts and CSS styles. Then it creates

a <div> element called container, which is appended to the body of the document

instance and stored in a class variable so that the other methods can add their partial

outputs to it.

The partial outputs in the following sections are just examples of what can be done,

as there is a lot of data available, so there is a large amount of possible infographics,

graphs or heat maps that can be made. This component of the application is designed

53

Co
nt
ro
lle

r
Us

er

O
ut
pu

tM
ak

er
M
ai
nF

ra
m
e

DataGained

OutputShown

CreateInfographics

CreateHeatmaps

CreateGraphs

CallOutputMaker

MakeHTMLOutput

EnableOutputButton

OpenOutput
DataGain

OutputShown

Figure 2.7: Collaboration Diagram of Simplified implemantaion of “Output Making”
use case. Created in Enterprise Architect.

to be customised for each client based on their requirements and opinions about the

game.

Then the makeHTMLOutput() method calls three private methods that implement

the use cases listed below, which are included in the main use case of this section,

which will be described in more detail in the following charters.

• Adding Infographics to the Document

• Adding Graphs to the Document

• Adding Heatmaps to the Document

Once all the above private methods have been called and completed, an instance of

BufferedWriter is created to save the file to disk. It then returns the path to the file

so that the MainFrame component can point to it.

54

Adding Infographics to the Document

The first involved use case described here is implemented by addInfographics(),

which calls a few more private methods to produce these partial outputs:

• Competitive game record

• Competitive Champion Pool

• Solo Queue Champion Pool

The addCompetitiveGameRecord() method creates the first part of the output of

this section by using the data model to find out if the organisation has won or lost any

recent competitive matches, and adding a predefined representation of this record to

the container element.

The next partial output is created by the addCompetitiveChampPool() method,

which processes game by game from the instance of the roster in the method’s pa-

rameter to find out the most played characters by each player in the organisation’s

competitive matches.

The last partial output of this section is created by addSoloQChampPool() method

which procces game by game from the instance of player in method’s parameter to find

out most played characters by each player in his solo queue matches.

Adding Graphs to the Document

The second use case described here is implemented by the addGraphs() method, and

it calls methods that produce partial outputs in the form of graphs made with the C3

JS library. The only partial output here is a graph of the team’s average actual gold

at a given point in a game, made by the addGoldGraph() method. More graphs will

be made in future development, read more here 2.3.

The addGoldGraph() first creates an array in which it stores the cumulative amount

of gold at a certain minute of the game. Then it processes game by game from the

instance of the roster in the method’s parameter to fill the array with values. The

array is then used by the C3 library to create a graph, which is added to the container

element.

55

Adding Heatmaps to the Document

The last use case described here is implemented by the addHeatmaps() method, and

it calls the addHeatmap() method twice, creating the requested partial outputs and

adding them to the container element. The addHeatmap() method is called once with

the team’s jungle position and the second time with the team’s support position, be-

cause movement on the map of these two positions has a big impact on the game.

The addHeatmap() method uses classes from the java.awt package to create images

of the map of Summoner’s Rift that represent where certain players spend most of their

time in the game. First, it creates an instance of BufferedImage from the image of

the empty map. Then it gets its width and height to create a two-dimensional array

of intigers representing the data to create the image of the heatmap.

Once all the preparation is done, first the private method addSoloQFrames() is

called and immediately after that the private method addCompetitiveFrames() is

called. These two methods process one match at a time, the first processing the matches

of the player, the second processing the matches of the roster. Each instance of Match

has a reference to an instance of Timeline, which has a reference to a list of instances

of the Frame class. The Frame class represents the state at a given time, with the same

interval between each of them, that is, 60,000 miliseconds. This state at a given time

contains, among other things, the position of each player.

So for each instance of Frame in the game, the position of a player that the heatmap

is about is written to the array representing the heatmap by the drawCircle() method.

The name of this method suggests that instead of just changing a particular pixel

where the player was positioned, it affects a whole circle of pixels, making the resulting

heatmap easier to read and understand.

The drawCircle() method takes three parameters. The first is an instance of the

ParticipantFrame class, representing the state of a particular player at a particular

time, which is referenced by an instance of the Frame class. The second parameter

is the array representing the heatmap passed to this method as an argument. The

last parameter is called value and is an int representing how much value a particular

56

ParticipantFrame has for a heatmap. Currently all competitive matches have a value

of 5 and all solo queue matches have a value of 1. In future development every match

will have the same value, read more here 2.3.

2.2.5 Retrieve data from an external data source

The NetworkUtil component is a modular class, so it can be reused in any other

application where its methods are needed. It is responsible for all interactions with

external data sources such as APIs or web pages. The component is represented by a

static Java class. It is not technically static, but all methods and properties are static

and the construct of the class is set to private access modifier to prevent any misuse

of the class. This is the component that implements the Retrieve data from external

data source use case mentioned in the use case diagram. This use case includes two

other use cases that are not shown in the diagram, but are listed below and described

in detail in the following chapters.

• Retrieving Document from a URL string

• Retrieving JSON from a URL string

Retrieving Document from a URL string

The first included use case is realised by getDocumentFromURLString() public method.

It is uses when tha application needs some web page in processable format. The URL

string passed to this method as parameter is firstly encoded by encodeURLString()

method.

The encodeURLString() method is a private method of NetworkUtil class which

splits the URL into base URL and query, then splits the query into individual query

parameters and then on each of them replaceAll() method is applied with specially

made regex expression to encode the URL to readable format by web servers. Finally,

it reassembles all the parts of the URL and returns them.

Once the encoded URL string is returned, all of the following objects and methods

are used from the jsoup library. Firstly the connect() method is used with the encoded

57

URL string passed as a parameter to create and return an instance of Connection

which is immediately executed by the execute() method which returns an instance

of Connection.Response. From this instance status code of the response is extracted

and if it is equal to 200 response is parsed into instance of Document and returned. If

the response status code is not 200, an exception is thrown.

Retrieving JSON from a URL string

This second use case is handled by the getJSONFromURLString() public method. It is

used when the application wants to retrieve data from a particular API. The URL string

passed to this method as a parameter is first encoded using the encodeURLString()

method. This method is described above.

Once the encoded URL string is returned, a combination of classes from java.net

package and Bucket4J external library is used to retrieve the JSON smoothly. First

java.net package classes and methods are used to create an instance of HttpRequest

with the Riot Games API key in a header if the URL string contains a reference to

the Riot Games API.

The HttpRequest instance is then sent in a do-while cycle as the Riot Games API

has limitations. First layer to deal with the limitations is an instance of Bucket from

Bucket4J library witch has some token capacity and is refilled constatly based on the

limitations and every time before request is send it checks if there is any token in the

bucket and then takes one and if there is none then it temporarily blocks the thread.

The HttpRequest instance is then sent and if a response code is 200 the thread

leaves the do-while cycle and continues. If the response code is 429 or 503, meaning

the API is overloaded, then the second layer of dealing with API limitations is applied.

By default, the thread is put to sleep for 10 seconds, but some APIs, such as the Riot

Games API, will send back a response if they are overloaded, with a header indicating

how long the requesting side should wait. If the API returns this instead of the default

time, that time will obviously be applied. If any other response code is returned, expect

those mentioned above, the exception will be thrown.

58

Finally, the body of the response is returned by the method.

2.2.6 Get time in a specific format

The last use case is implemented by the TimeUtil component, which is represented by

a static Java class. It is not technically static, but all methods and properties are static

and the construct of the class is set to private access modifier to prevent any misuse

of the class. This component is modular, so it can be reused in any other application

where methods of this class are needed. This component mainly uses the java.time

package.

This class has three public methods. The first method creates an instance of

LocalDateTime, which represents the current time in a particular timezone minus the

offset defined by the method’s parameter, and returns it in seconds from the epoch.

The epoch is the default Java epoch which is 1 January 1970 00:00:00 [49].

The second method creates an instance of LocalDateTime which represents the cur-

rent time in a particular timezone minus the offset defined in the first parameter of the

method and the second parameter of the method, the instance of DateTimeFormatter,

defines the format in which this instance of LocalDateTime will be returned.

The last method simply creates and returns an instance of LocalDateTime that

represents the current time in a particular time zone.

2.3 Application’s Configuration

There are two configuration files for configuring the application. The first is called

hibernate.cfg.xml and it is, as the name suggests, a configuration file specifically

for connecting the application to the database via Hibernate. There you can configure

database properties such as URL, username and password. Also, the application is

not dependent on the type of relational database once the driver and dialect of the

database are configured here. The example of how to configure the properties is shown

below. The rest of the file is the mapping of objects in the database, and changing

59

anything there could cause the application to stop working.

<property name="hibernate.connection.driver_class">com.mysql.jdbc.Driver</property>

<property name="hibernate.connection.url">jdbc:mysql://localhost/test</property>

<property name="hibernate.connection.username">user</property>

<property name="hibernate.connection.password">password</property>

<property name="hibernate.dialect">org.hibernate.dialect.MySQLDialect</property>

<property name="hibernate.hbm2ddl.auto">update</property>

The second configuration file is called config.properties and you can specify

API URLs, API keys, timezone or a property called heatmap.radius that changes the

visualisation of the heatmaps.

60

Summary of results

In the theoretical part, it first introduces League of Legends and explains some impor-

tant game mechanics and strategies so that the reader can understand the reasoning of

decisions in application development. Then it introduces the reader to the growth of e-

sports in a history to show the reader that it is becoming quite valuable and important

part of the entertainment industry.

Then the development technologies and principles are introduced and explained. It

starts with object-oriented programming, followed by the Java programming language

and all the Java libraries used. The Java libraries used include Hibernate, Gson,

Bucket4J, Swing and AWT. Finally, the web tools used in the output of the application

are explained. These include HTML, JS and C3.

In the practical part, the application is derived from two different views. The

first is the front-end to back-end view, which shows how users, external data sources,

application components and databases interact with each other. The second is the

Application Use Case view, which presents many use cases into which the application

is divided and introduces and explains in more detail how each component of the

application works and which use cases the component implements.

61

Conclusions and recommendations

This thesis successfully presents the development of a Java-based application in IntelliJ

IDEA that assists League of Legends coaches and analysts in match preparation by

providing customised output based on their unique requirements. The application

demonstrates the potential of integrating data analysis and technology to optimise

team performance in e-sports.

Looking ahead, there are several avenues for future development to further enhance

the application’s capabilities:

• Match evaluation: Future improvements could involve a more comprehensive

approach to match evaluation, taking into account various attributes that provide

deeper insights into match contexts. Attributes such as roster stability, match age

and roster changes could be considered in the evaluation process to better inform

coaching and analysis decisions. A refined evaluation system that incorporates

these factors would enable users to better understand the factors influencing team

performance and make more informed strategic decisions.

• Expanded output options: In addition to the existing outputs, more customised

output options can be explored based on customer requests, extending the util-

ity of the application in different coaching and analysis scenarios. Examples of

potential outputs include player-specific performance metrics, champion synergy

analysis and objective control statistics. By offering a broader range of outputs,

the application can cater to a wider variety of user needs, making it a more

versatile tool for coaches and analysts.

• AI-driven draft/win predictions: Implementing Artificial Intelligence (AI) to pre-

dict draft phases and win/loss outcomes represents a significant opportunity for

the future development of the application. By incorporating machine learning al-

gorithms and leveraging historical match data, the application could provide users

with data-driven predictions of draft outcomes and match results. This would

62

add another layer of sophistication to the application, providing even more strate-

gic value to users and enabling them to make more informed decisions during the

draft process and throughout the match.

• Support for additional regions: Currently limited to the EMEA region, future

development could incorporate data from other regions by exploring alternative

data sources or conducting more comprehensive research on available resources

for these regions. Expanding the application’s regional coverage would require

assessing the reliability and accuracy of alternative data sources as well as ensur-

ing that the data is current and relevant. By expanding the application’s regional

support, users from different regions would benefit from the insights generated

by the application, making it a more inclusive and valuable tool for the global

LoL community.

• Downloadable output: Implementing a feature to download the output would

enhance the usability of the application, allowing users to access and share the

generated insights more easily. The downloadable output feature could include

different formats such as Portable Document Format (PDF) to accommodate

different user preferences and requirements. By providing convenient access to

the generated data, coaches and analysts can collaborate more effectively and

make data-driven decisions based on the insights provided by the application.

In conclusion, the development of this application marks an important step in the

integration of data-driven strategies into e-sports coaching and analysis. The proposed

future developments will further expand the application’s capabilities, enabling it to

better serve the evolving needs of LoL coaches and analysts worldwide. By continuing

to innovate and adapt to the changing landscape of e-sports, this application has the

potential to become an indispensable tool in the competitive gaming industry.

63

References

1. Esports Part 1: What are Esports? [Harvard International Review] [online]. 2020-

04-24. [visited on 2023-04-02]. Available from: https : / / hir . harvard . edu /

esports-part-1-what-are-esports/.

2. What Is The Difference Between MOBA And Battle Royale Games — HP® Tech

Takes [online]. [visited on 2023-04-01]. Available from: https://www.hp.com/us-

en/shop/tech-takes/moba-vs-battle-royale-games.

3. MORA-CANTALLOPS, Marçal; SICILIA, Miguel-Ángel. MOBA games: A litera-

ture review. Entertainment Computing [online]. 2018, vol. 26, pp. 128–138 [visited

on 2023-04-03]. issn 1875-9521. Available from doi: 10.1016/j.entcom.2018.

02.005.

4. ROBSON, Matthew. The 7 Most Popular eSports Leagues [Game Rant] [online].

2022-12-17. [visited on 2023-04-01]. Available from: https://gamerant.com/

most-popular-esports-leagues/. Section: Lists.

5. How to Play - League of Legends [online]. [visited on 2023-04-01]. Available from:

https://www.leagueoflegends.com/en-gb/how-to-play/.

6. Summoner’s Rift (League of Legends) [League of Legends Wiki] [online]. 2023-04-

02. [visited on 2023-04-02]. Available from: https://leagueoflegends.fandom.

com/wiki/Summoner%27s_Rift_(League_of_Legends).

7. Snowball [League of Legends Wiki] [online]. 2013-05-30. [visited on 2023-04-13].

Available from: https://leagueoflegends.fandom.com/wiki/Snowball.

8. MOBALYTICS. Understanding Scaling and How to Use it to Your Advantage

in League of Legends [Mobalytics] [online]. 2017-08-12. [visited on 2023-04-13].

Available from: https://mobalytics.gg/blog/understanding-scaling-use-

advantage-league-legends/.

64

https://hir.harvard.edu/esports-part-1-what-are-esports/
https://hir.harvard.edu/esports-part-1-what-are-esports/
https://www.hp.com/us-en/shop/tech-takes/moba-vs-battle-royale-games
https://www.hp.com/us-en/shop/tech-takes/moba-vs-battle-royale-games
https://doi.org/10.1016/j.entcom.2018.02.005
https://doi.org/10.1016/j.entcom.2018.02.005
https://gamerant.com/most-popular-esports-leagues/
https://gamerant.com/most-popular-esports-leagues/
https://www.leagueoflegends.com/en-gb/how-to-play/
https://leagueoflegends.fandom.com/wiki/Summoner%27s_Rift_(League_of_Legends)
https://leagueoflegends.fandom.com/wiki/Summoner%27s_Rift_(League_of_Legends)
https://leagueoflegends.fandom.com/wiki/Snowball
https://mobalytics.gg/blog/understanding-scaling-use-advantage-league-legends/
https://mobalytics.gg/blog/understanding-scaling-use-advantage-league-legends/

9. MOBALYTICS. Wave Management Guide: Everything You Need to Know About

Wave & Minion Control in League of Legends [Mobalytics] [online]. 2021-02-08.

[visited on 2023-04-14]. Available from: https://mobalytics.gg/blog/wave-

management/.

10. The Core Concepts of Each Lane in League of Legends [Dignitas] [online]. 2022-

05-11. [visited on 2023-04-11]. Available from: https://dignitas.gg/articles/

the-core-concepts-of-each-lane-in-league-of-legends. Section: Guides.

11. LoL Roles: How to Play Different Roles in League [EarlyGame] [online]. [visited on

2023-04-11]. Available from: https://earlygame.com/lol/what-roles-exist.

12. What Role Should I Play in League of Legends – Roles Explained [online]. [visited

on 2023-04-13]. Available from: https://blog.ggcircuit.com/what- role-

should-i-play-in-league-of-legends.

13. League of Legends Roles ≫ How to choose the right role in LoL [Esports.net]

[online]. [visited on 2023-04-11]. Available from: https://www.esports.net/

wiki/guides/league-of-legends-roles/.

14. BRIDGES, Stuart. The different League of Legends roles explained [Pinnacle]

[online]. [visited on 2023-04-11]. Available from : http://www.pinnacle.com/

fr/old-esports/betting-articles.

15. Esports Part 4: Developer Control [Harvard International Review] [online]. 2020-

07-12. [visited on 2023-04-04]. Available from: https : / / hir . harvard . edu /

esports-part-4-developer-control-the-implications-of-the-company-

behind-riot-games/.

16. eSports - Worldwide — Statista Market Forecast [Statista] [online]. [visited on

2023-04-14]. Available from: https : / / www . statista . com / outlook / amo /

esports/worldwide.

17. Tier 2 Tournaments: Pre 2014 [Liquipedia Dota 2 Wiki] [online]. [visited on 2023-

04-02]. Available from: https://liquipedia.net/dota2/Tier_2_Tournaments/

Pre_2014.

65

https://mobalytics.gg/blog/wave-management/
https://mobalytics.gg/blog/wave-management/
https://dignitas.gg/articles/the-core-concepts-of-each-lane-in-league-of-legends
https://dignitas.gg/articles/the-core-concepts-of-each-lane-in-league-of-legends
https://earlygame.com/lol/what-roles-exist
https://blog.ggcircuit.com/what-role-should-i-play-in-league-of-legends
https://blog.ggcircuit.com/what-role-should-i-play-in-league-of-legends
https://www.esports.net/wiki/guides/league-of-legends-roles/
https://www.esports.net/wiki/guides/league-of-legends-roles/
http://www.pinnacle.com/fr/old-esports/betting-articles
http://www.pinnacle.com/fr/old-esports/betting-articles
https://hir.harvard.edu/esports-part-4-developer-control-the-implications-of-the-company-behind-riot-games/
https://hir.harvard.edu/esports-part-4-developer-control-the-implications-of-the-company-behind-riot-games/
https://hir.harvard.edu/esports-part-4-developer-control-the-implications-of-the-company-behind-riot-games/
https://www.statista.com/outlook/amo/esports/worldwide
https://www.statista.com/outlook/amo/esports/worldwide
https://liquipedia.net/dota2/Tier_2_Tournaments/Pre_2014
https://liquipedia.net/dota2/Tier_2_Tournaments/Pre_2014

18. The International 2021 [Liquipedia Dota 2 Wiki] [online]. [visited on 2023-04-02].

Available from: https://liquipedia.net/dota2/The_International/2021.

19. PHOENIX. The International 2022 FAQ: Everything you need to know [Jaxon]

[online]. 2022-09-25. [visited on 2023-04-02]. Available from: https://www.jaxon.

gg/the-international-2022-faq-everything-you-need-to-know/.

20. Season 1 World Championship [Leaguepedia — League of Legends

Esports Wiki] [online]. 2023-04-03. [visited on 2023-04-03]. Available from:

https://lol.fandom.com/wiki/Season_1_World_Championship.

21. League of Legends World Championship. In: Wikipedia [online]. 2023 [visited on

2023-04-03]. Available from: https://en.wikipedia.org/w/index.php?title=

League_of_Legends_World_Championship&oldid=1147795581. Page Version

ID: 1147795581.

22. KONHÄUSNER, Peter; SEMMERAU, Sharon-Maria; GRUNERT, Marlon. Mi-

crotransactions in games – an analysis of a crowdfunding perspective. Forum

Scientiae Oeconomia [online]. 2021, vol. 9, no. 4, pp. 31–58 [visited on 2023-04-

04]. issn 2353-4435. Available from doi: 10.23762/FSO_VOL9_NO4_2. Number:

4.

23. GOSLIN, Austen. The 2018 League of Legends World Finals had nearly 100 mil-

lion viewers [The Rift Herald] [online]. 2018-12-11. [visited on 2023-04-03]. Avail-

able from: https://www.riftherald.com/2018/12/11/18136237/riot-2018-

league-of-legends-world-finals-viewers-prize-pool.

24. League of Legends Sets Record with 57 Million Viewers for Worlds [EKGAMING]

[online]. 2017-12-21. [visited on 2023-04-03]. Available from: https://ekgaming.

com/2017/12/21/league- of- legends- sets- record- with- 57- million-

viewers-for-worlds/. Section: News.

25. 2019 World Championship Hits Record Viewership [online]. 2019-12-17. [visited

on 2023-04-04]. Available from: https://nexus.leagueoflegends.com/en-

us/2019/12/2019-world-championship-hits-record-viewership/.

66

https://liquipedia.net/dota2/The_International/2021
https://www.jaxon.gg/the-international-2022-faq-everything-you-need-to-know/
https://www.jaxon.gg/the-international-2022-faq-everything-you-need-to-know/
https://lol.fandom.com/wiki/Season_1_World_Championship
https://en.wikipedia.org/w/index.php?title=League_of_Legends_World_Championship&oldid=1147795581
https://en.wikipedia.org/w/index.php?title=League_of_Legends_World_Championship&oldid=1147795581
https://doi.org/10.23762/FSO_VOL9_NO4_2
https://www.riftherald.com/2018/12/11/18136237/riot-2018-league-of-legends-world-finals-viewers-prize-pool
https://www.riftherald.com/2018/12/11/18136237/riot-2018-league-of-legends-world-finals-viewers-prize-pool
https://ekgaming.com/2017/12/21/league-of-legends-sets-record-with-57-million-viewers-for-worlds/
https://ekgaming.com/2017/12/21/league-of-legends-sets-record-with-57-million-viewers-for-worlds/
https://ekgaming.com/2017/12/21/league-of-legends-sets-record-with-57-million-viewers-for-worlds/
https://nexus.leagueoflegends.com/en-us/2019/12/2019-world-championship-hits-record-viewership/
https://nexus.leagueoflegends.com/en-us/2019/12/2019-world-championship-hits-record-viewership/

26. Riot Games Esports Media Center - LoL Esports - Assets [online]. [visited on 2023-

04-03]. Available from: https://esports.riotgamesmedia.com/LoL-Esports.

27. What is an API? - Application Programming Interfaces Explained - AWS [Ama-

zon Web Services, Inc.] [online]. [visited on 2023-04-01]. Available from: https:

//aws.amazon.com/what-is/api/.

28. What is a REST API? [online]. [visited on 2023-04-01]. Available from: https:

//www.redhat.com/en/topics/api/what-is-a-rest-api.

29. What is a REST API? — IBM [online]. [visited on 2023-04-01]. Available from:

https://www.ibm.com/topics/rest-apis.

30. Riot Developer Portal [online]. [visited on 2023-04-01]. Available from: https:

//developer.riotgames.com/docs/portal.

31. Riot Developer Portal [online]. [visited on 2023-04-01]. Available from: https:

//developer.riotgames.com/docs/lol.

32. Leaguepedia API [online]. [visited on 2023-04-01]. Available from: https://lol.

fandom.com/wiki/Help:Leaguepedia_API.

33. SCHILDT, Herbert. Java: The Complete Reference, Eleventh Edition. 11th edi-

tion. New York: McGraw Hill, 2018. isbn 978-1-260-44023-2.

34. GALLARDO, Raymond; HOMMEL, Scott; KANNAN, Sowmya; GORDON, Joni;

ZAKHOUR, Sharon Biocca. The Java Tutorial: A Short Course on the Basics.

6th edition. Upper Saddle River, NJ: Addison-Wesley Professional, 2014. isbn

978-0-13-403408-9.

35. Features of Java - Javatpoint [online]. [visited on 2023-04-15]. Available from:

https://www.javatpoint.com/features-of-java.

36. OTTINGER, Joseph B.; LINWOOD, Jeff; MINTER, Dave. Beginning Hiber-

nate: For Hibernate 5. Apress, 2016. isbn 978-1-4842-2319-2. Google-Books-ID:

kOt6DQAAQBAJ.

67

https://esports.riotgamesmedia.com/LoL-Esports
https://aws.amazon.com/what-is/api/
https://aws.amazon.com/what-is/api/
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.ibm.com/topics/rest-apis
https://developer.riotgames.com/docs/portal
https://developer.riotgames.com/docs/portal
https://developer.riotgames.com/docs/lol
https://developer.riotgames.com/docs/lol
https://lol.fandom.com/wiki/Help:Leaguepedia_API
https://lol.fandom.com/wiki/Help:Leaguepedia_API
https://www.javatpoint.com/features-of-java

37. Your relational data. Objectively. - Hibernate ORM [Hibernate] [online]. [visited

on 2023-04-05]. Available from: https://hibernate.org/orm/.

38. Documentation - 6.1 - Hibernate ORM [Hibernate] [online]. [visited on 2023-04-

05]. Available from: https://hibernate.org/orm/documentation/6.1/.

39. Gson [online]. Google, 2023 [visited on 2023-04-10]. Avail-

able from: https : / / github . com / google / gson / blob /

b43ccee88927fa65d5e39a8ad4d0bebca7bf9994 / UserGuide . md. original-date:

2015-03-19T18:21:20Z.

40. Bucket4j 8.2.0 Reference [online]. [visited on 2023-04-10]. Available from: https:

//bucket4j.com/8.2.0/toc.html.

41. Java rate-limiting library based on token-bucket algorithm. [online]. bucket4j,

2023 [visited on 2023-04-15]. Available from: https://github.com/bucket4j/

bucket4j/blob/3f6da45c00134e10810c2a91e9bb624a7fac96b8/LICENSE.txt.

original-date: 2014-10-12T14:19:18Z.

42. Java Swing Tutorial - javatpoint [www.javatpoint.com] [online]. [visited on 2023-

04-10]. Available from: https://www.javatpoint.com/java-swing.

43. LOY, Marc; ECKSTEIN, Robert; WOOD, Dave; ELLIOTT, James;

COLE, Brian. Java Swing. ”O’Reilly Media, Inc.”, 2002. isbn 978-1-4493-3730-8.

Google-Books-ID: fU1K9MxaWp0C.

44. ZUKOWSKI, John. The Definitive Guide to Java Swing. Apress, 2006. isbn 978-

1-4302-0033-8. Google-Books-ID: YPjZNlEgAMcC.

45. Java Platform Standard Edition 8 Documentation [online]. [visited on 2023-04-10].

Available from: https://docs.oracle.com/javase/8/docs/.

46. What is HTML? Definition of Hypertext Markup Language - javatpoint

[www.javatpoint.com] [online]. [visited on 2023-04-15]. Available from:

https://www.javatpoint.com/what-is-html.

68

https://hibernate.org/orm/
https://hibernate.org/orm/documentation/6.1/
https://github.com/google/gson/blob/b43ccee88927fa65d5e39a8ad4d0bebca7bf9994/UserGuide.md
https://github.com/google/gson/blob/b43ccee88927fa65d5e39a8ad4d0bebca7bf9994/UserGuide.md
https://bucket4j.com/8.2.0/toc.html
https://bucket4j.com/8.2.0/toc.html
https://github.com/bucket4j/bucket4j/blob/3f6da45c00134e10810c2a91e9bb624a7fac96b8/LICENSE.txt
https://github.com/bucket4j/bucket4j/blob/3f6da45c00134e10810c2a91e9bb624a7fac96b8/LICENSE.txt
https://www.javatpoint.com/java-swing
https://docs.oracle.com/javase/8/docs/
https://www.javatpoint.com/what-is-html

47. What is JavaScript? - Learn web development — MDN [online]. 2023-03-05. [vis-

ited on 2023-04-15]. Available from: https://developer.mozilla.org/en-

US/docs/Learn/JavaScript/First_steps/What_is_JavaScript.

48. C3.js — D3-based reusable chart library [online]. [visited on 2023-04-11]. Available

from: https://c3js.org/.

49. Instant (Java Platform SE 8) [online]. [visited on 2023-04-21]. Available from:

https://docs.oracle.com/javase/8/docs/api/java/time/Instant.html.

69

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/What_is_JavaScript
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/What_is_JavaScript
https://c3js.org/
https://docs.oracle.com/javase/8/docs/api/java/time/Instant.html

List of Figures

1.1 Summoner’s Rift map with three lanes connecting opposing bases and

the river in the middle. Taken from [5]. 3

1.2 Summoner’s Rift map with positions marked in their significant areas.

Original image taken from [5]. 5

1.3 Timeline of League of Legends game phases. 8

1.4 Global E-sports Market Revenue with actual data from 2017 to 2022

and forecasts for 2023 to 2027. Data taken from [16]. 11

1.5 Global E-sports Audience with actual data from 2017 to 2022 and fore-

casts for 2023 to 2027. Data taken from [16]. 12

1.6 Venue of The International 2022. Taken from [19]. 12

1.7 Growth in total unique viewers and peak concurrent viewers for the

World Championships from 2011-2021. Data taken from [21, 23, 24, 25]. 13

1.8 Growth in prize pools of World Championships from 2011-2018. Later

data has not been published. Data taken from https://lol.fandom.com/. 14

1.9 Encapsulation of private instance variables using public methods. Taken

from [33]. 18

1.10 Inheritance: Example of Lanrador inheriting properties from its ances-

tors. Taken from [33]. 20

1.11 Transient objects are independent of Hibernate. Taken from [36]. . . . 25

1.12 Persistent objects are maintained by Hibernate. Taken from [36]. 26

1.13 Detached objects exist in the database but are not maintained by Hi-

bernate. Taken from [36]. 26

1.14 GUI Components of Java Swing library. Taken from [43]. 33

2.1 Diagram of the component’s application and other external actors. With

boundaries defining which domponent belongs to front-end and back-

end. Created in Enterprise Architect. 37

70

https://lol.fandom.com/

2.2 UseCase Diagram of the application and other external actors. Actors

in the boundary represent modules of the application. Created in En-

terprise Architect. 39

2.3 Process Diagram of typical user behaviour when using the application

and corresponding actions from the application. Created in Enterprise

Architect. 40

2.4 Hierarchy of all active GUI components and their containers. Created

in Enterprise Architect. 40

2.5 Collaboration Diagram of Simplified implemantaion of “Data Extract-

ing” use case. Created in Enterprise Architect. 44

2.6 Class Diagram of Data Model. Created in IntelliJ IDEA. 45

2.7 Collaboration Diagram of Simplified implemantaion of “Output Making”

use case. Created in Enterprise Architect. 54

71

List of Tables

1.1 Summarise of the characteristics of each phase of the game.

*For example 1:3:1 means one player playing around top lane, three

around mid lane and one around bot lane. 9

1.2 League of Legends Regional Leagues. Data taken from [26].

*Europe, the Middle East and Africa (EMEA) **Asia-PACific (APAC) 15

1.3 Representational State Transfer Application Programming Interface

principles and their short explanations. 16

1.4 Marking the Owner of an Association. Taken from [36]. 28

72

List of Abbreviations
ADC Attack Power Carry. 7–10

AI Artificial Intelligence. 62

APAC Asia-PACific. 15, 72

APC Ability Power Carry. 7

API Application Programming Interface. , 2, 15–17, 25, 27, 29–31, 36, 46–49, 51, 57,
58, 60, 72

AWT Abstract Windowing Toolkit. 31, 32

CBLOL Campeonato Brasileiro de LoL. 15

CSS Cascading Style Sheets. 35, 53

DOTA2 Defense of the Ancients 2 . 11

EMEA Europe, the Middle East and Africa. 15, 41, 63, 72

GUI Graphical User Interface. 31, 32, 38

HTML HyperText Markup Language. 35

HTTP Hyper Text Transfer Protocol. 16

IDE Integrated Development Environment. 1

JCA Java EE Connector Architecture. 24

JDBC Java DataBase Connectivity. 24

JFC Java Foundation Classes. 31

JNDI Java Naming and Directory Interface. 24

JS JavaScript. 35, 36, 53, 55

JSON JavaScript Object Notation. 16, 28, 29, 46–49, 51, 58

JSP Jakarta Server Pages. 24

JVM Java Virtual Machine. 23

KeSPA Korean e-SPorts Association. 10

LCK LoL Champions Korea. 15

LCS League of Legends Championship Series. 15

73

LEC League of Legends European Championship. 15

LJL LoL Japan League. 15

LLA Liga Latinoamérica. 15

LoL League of Legends. 1–3, 5, 7, 13, 14, 62, 63

LPL LoL Pro League. 15

MOBA Multiplayer Online Battle Arena. 2

MSI Mid-Season Invitational. 14

NBA National Basketball Association. 13

NFL National Football League. 14

NHL National Hockey League. 14

NPCs Non-Player Characters. 4

OOP Object-Oriented Programming. , 17, 22

ORM Object-Relational Mapper . 24

PCS Pacific Championship Series. 15

PDF Portable Document Format. 63

PLAF Pluggable Look And Feel. 32

PUUID Player Universally Unique IDentifier . 16

REST Representational State Transfer . 15, 16, 72

RMI Remote Method Invocation. 23

RTS Real-Time Strategy. 2

TCP/IP Transmission Control Protocol/Internet Protocol. 23

TI21 The International 2021 . 11

URL Uniform Resource Locator . 23, 46–51, 57–60

VCS Vietnam Championship Series. 14, 15

XML eXtensible Markup Language. 16

XP eXperience Points. 6

74

A. Attachments

A.1 GitHub Repository
https://github.com/fatheus97/bpapp

Username: UHK-BLAHAFR1
Password: 4Aqb@CLTGWPMAFb

A.2 GitHub Release
https://github.com/fatheus97/bpapp/releases/tag/alpha

Username: UHK-BLAHAFR1
Password: 4Aqb@CLTGWPMAFb

A.3 Screenshots of the Application Flow
Name of file: screenshots.pdf

A.4 Example of HTML Output File
Name of file: output.pdf

A.5 Compressed Folder with the Application
Name of file: application.zip

75

https://github.com/fatheus97/bpapp
https://github.com/fatheus97/bpapp/releases/tag/alpha

76

	Introduction
	Theoretical part
	League of Legends
	Important game mechanics
	Positions in League of Legends
	Phases of the game

	E-sport
	The History of E-sport
	E-sports in League of Legends

	Application Programming Interface
	Representational State Transfer api
	Used APIs

	Object-Oriented Programming
	oop Principles

	Java Programming Language
	Java libraries
	Hibernate
	Gson
	Bucket4J
	Swing
	Abstract Window Toolkit

	Web tools
	Hyper Text Markup Language
	JavaScript
	C3

	Practical part
	Front-end to Back-end View
	Application Use Case View
	MainFrame
	Data Extracting
	Database Management
	Generating Output
	Retrieve data from an external data source
	Get time in a specific format

	Application's Configuration

	Summary of results
	Conclusions and recommendations
	References
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments
	GitHub Repository
	GitHub Release
	Screenshots of the Application Flow
	Example of HTML Output File
	Compressed Folder with the Application

