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Abstrakt

Obsahem této prace je numerickd simulace dvoudimenzionalniho proudéni nestla-
¢itelné vazké kapaliny. Uvazujeme rotujici elipsu soustfedné umisténou v kruznici.
Prostor mezi elipsou a kruznici je vyplnén kapalinou. Cilem je popsat proudéni
kapaliny vyvolané otacejici se elipsou, tzn. stanovit rychlostni pole a rozlozeni
tlaku. Dale pak chceme stanovit pridavné silové uc¢inky kapaliny piisobici na elipsu.
Tyto vysledky ziskame resenim Navierovych-Stokesovych rovnic metodou koneénych
prvki. Diraz je kladen na odvozeni numerického schématu v maticové formé vhodné
pro numerickou implementaci. Casové zavisld vypocetni sit je popsdna pomoci Ar-
bitrary Lagrangian-FEulerian (ALE) formulace. Pro obdrzeni relevantnich vysledki
je nutnd stabilizace metody koneénych prvkit. Uvedené vysledky naznacuji, ze
odvozena metoda je dostatecné presna.

Summary

The subject of this thesis is the numerical simulation of the two-dimensional incom-
pressible viscous flow. We consider a rotating ellipse concentric with a circle. The
space between the ellipse and the circle is filled with a fluid. Our goal is to describe
the fluid flow caused by the rotating ellipse, i.e., to determine the velocity field and
pressure distribution. Further, we want to determine the additional effect of the
fluid acting on the ellipse. These results are obtained as a solution of the Navier-
Stokes equations by the finite element method. Special emphasis has been put on the
derivation of the numerical scheme in a matrix form suitable for algorithmization.
The Arbitrary Lagrangian-Eulerian (ALE) method has been used to incorporate the
moving domain into the algorithm. A suitable stabilization technique of the finite
element method is necessary to obtain relevant outcome. Presented results indicate
sufficient robustness and accuracy of the numerical algorithm.

klicova slova
Navierovy-Stokesovy rovnice, metoda konecnych prvki, ALE formulace, stabilizace

key words
Navier-Stokes equations, finite element method, ALE formulation, stabilization
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Introduction

The computational fluid dynamics has experienced a huge progress in recent years,
mainly due to the rapidly rising power of modern computers. Also the finite ele-
ment method has emerged as one of the most used and powerful numerical methods
so far. Among the main reasons of its popularity is the ease of use in modelling
complex geometries, consistent treatment of various boundary conditions and the
possibility to be programmed in a general and easily adaptable way. As for the
applications of the finite element method, there are many for example in aircraft
industry, mechanical engineering (turbines, pumps, etc.) and civil engineering.

In this thesis we focus our attention on the two-dimensional incompressible vis-
cous flow. The rotating ellipse placed concentrically in a circle will serve us as an
example. The mathematical model for this problem consists of the Navier-Stokes
equations and the continuity equation. This system of equations is solved by the
finite element method using the popular Taylor-Hood finite element P,/P;.

One encounters a lot of difficulties when solving the Navier-Stokes equations.
First of all, it is the stability of a solution. In this thesis we use a stabilization using
the following methods (see [2]),

« SUPG (Streamline Upwind Petrov-Galerkin),
o PSPG (Pressure Stabilizing Petrov-Galerkin),

« LSIC (Least Squares on Incompressibility Constraint).

Another possibility is a stabilization by the GLS (Galerkin Least Squares) method
(see [1]). Next we face the problem of moving time-dependent computational mesh
which is worked out using the Arbitrary Lagrangian-Eulerian formulation of the
Navier-Stokes equations.

In section 1 we introduce the classical and weak formulation of the problem.
Section 2 deals with the space discretization and the finite element approximation.
One of the main parts of this thesis is the section 3. Here we derive the numeri-
cal algorithm for the solution of the Navier-Stokes equations by the finite element
method. In section 4 we discuss the stabilization techniques and in section 5 we
present the rotating ellipse example. The ALE form of the Navier-Stokes equations
is derived here. In section 6 we present some numerical results. Throughout this
thesis all the main results are presented in a consistent matrix form.

Algorithm discussed in this thesis was implemented in MATLAB by doc. RNDr.
Libor Cermédk, CSc. Minor changes to adjust this program to solve the rotating
ellipse problem, check of the correctness of the formulas and numerical experiments
were made by the author.
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1 Navier-Stokes Equations

1.1 Classical formulation

Let Q C R? be an open bounded domain with the Lipschitz boundary 02 = I' and
let 'y, I'y be parts of the boundary I' such that I' = 'y UL, I'y N Ty = (. The
incompressible viscous flow is described by the Navier-Stokes equations

0 1

(,;;—l—)\(u-V)u—QVV-s(u)—i—QVp:f in Q x (0,7) (1)
and the continuity equation

V-u=0 in Qx (0,7), (2)

where

T
e u= (ul(x, t),UQ(X,t)> = (uy,us)? is the velocity vector,

x = (z1,79)7 is a point in §,

p = p(x,t) denotes the pressure,

o0 is the density,

v denotes the kinematic viscosity,

f= (f1 (x,1), fa(x, t))T = (f1, f2)T is a vector of the volume force density,
e g(u) = {5ij(u)}z2,j:1»

) =3 (Fe058) L a1,
J (2

is the rate-of-deformation tensor and ~ is a constant which is equal to one or
zero (its meaning will be explained later).

e ) is a constant which is equal to one or zero: for A = 0 we have the linear
Stokes problem and for A\ = 1 we obtain the nonlinear Navier-Stokes problem.

For the sake of uniqueness of the solution we have to add the initial condition

u=u in Qfort=0, (3)
the Dirichlet boundary condition prescribed on I'y

u=g on I'y x (0,7 (4)
and the condition of Neumann type which gives a surface force on I'y

2ve(u)n — Zn =0 on Ty x (0,7, (5)
where
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T
e g = (gl (x, t),g2(x,t)) = (g1,92)T is the given velocity vector,
T
e 0= (01 (x,1), 09(x, t)) = (01,09)7 is the surface force vector,
T
e n= (nl(x), ng(x)) = (n1,n2)7 denotes the unit outer normal vector.

In the condition (5) the constant v plays its role. For v = 1 we get the physically
meaningful boundary condition assigning a normal stress on I's , whereas v = 0
gives an artificial boundary condition which is sometimes called the “do nothing
condition” (see, e.g., [3]).

Let us now write down the equations above in a more insightful component form.
We then have the Navier-Stokes equations

%%-)\ <u131;1+u23u1> -

ot 0xy 01y
0 ouq ouq 0 ouy Ous 1 0p
_ v — 14 7. — fl ’
81'1 81'1 61’1 8 2 8ZE2 8ZE1 Q8I1
Ous Ouy Ouy (6)
o (“ax “m)
8 8uQ 3u1 (9 8uQ 8uQ 1 8p .
01, ly <8x1 +78x2>1 0wy [V (89(;2 +78x2>] * 00xy f2
in Q x (0,7,
the continuity equation
8U1 8u2 - .
871’1—’_871}2—0 1DQX<O,T> (7)

and the boundary condition of Neumann type

P, duy +y Ouy 4 v Ouy oy Ous .
0 0z, 8331 ! Oy 8:51 b "
8

Ous ouq D Ousy Ouy _
RO i —

The component form of remaining conditions is clear. In the rest of this thesis both
vector and component notation will be used. Besides the boundary conditions we
have just mentioned there are also other types of conditions to be imposed, we shall
not discuss them in this work, however.

The classical formulation of our problem may be stated as follows: Find functions
u € C*[Q x (0,7)]?) and p € CY(Q x (0,T)) such that the equation (1) and the
conditions (3)-(5) are satisfied. Finally, let us point out that the Navier-Stokes
equations are nothing but the expression of the balance of momentum and that the
continuity equation is the consequence of the conservation of mass.

15



1.2 Weak formulation

In order to be able to introduce the weak formulation of our problem some facts
from the function spaces theory are needed. These can be found in the appendix.
We introduce the spaces V and Vj in the following way

V= {u € H'(Q); u =0 on Ty in the sense of traces} :
Vy = {u € H'(Q); u = g on I'; in the sense of traces} :
where H'(§2) is the Sobolev space defined in the appendix.

Let us now derive the weak formulation of the Navier-Stokes equations with the
boundary conditions (4) and (5). We take the first equation in (6), multiply it by an
arbitrary test function v; € V' and integrate over 2. After applying the divergence
theorem and the fact that the functions v; are equal to zero on I'y, we get for an
arbitrary ¢t € (0,7)

ouy 2 ouy Oup Ovy  Ouy Ovg Ousy OVy
el A it} 1 _
Q/{ a T [Z_:l Yo, ”1] v l( ) 50y 02y Oz 03 Oy O

_ pavl} dzydey = /fl'Ul driday + /01121 ds'.
Qal‘l Q I
2

The second equation in (6) is treated similarly. We multiply it by an arbitrary test
function v, € V' and integrate over {2. In the same way as before we obtain

8u2 2 8u2 8u2 81}2 8u2 8’02 8u1 (9’02
72 T2 1 —
Q/{ o 2 A E: Y e, ”2] Y [( LT TR e e S

1

(10)
- }dxld:vg _ /fgv2 daydy +/02”02 ds .
Q Iy

The continuity equation is multiplied by the test function ¢/, where ¢ € L*(Q).
After integration over {2 we have

/Q [8“1 n 8“21 dzidzs = 0. (11)
20 Ooxr, Oz

After this the weak formulation of our problem reads: For any fized t € (0,T) find
uy (1), ua(-,t) € V, and p(-,t) € L*(Q), such that (9)-(11) are satisfied for arbitrary
test functions vi,v2 € V and g € L*(2).

If we sum the equations (9)-(11), we can write the weak formulation in somehow
more elegant form: For any fized t € (0,T) find u(-,t) € V;? and p(-,t) € L*(Q),
such that

a(u,p,u; v,q) =0, (12)
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a(u,p, w; v, q) :/{gltl-v—i-)\[(va)u] v+ v(Vu:Vv) — ZV-V—i—
)

+qv-u}dx—/f-vdx—/a-vds
Y
Q Ty

for arbitrary test functions v € V? and q € L*(Q). Here

8u1 (%1 i 8U2 (%2 i 8U1 82)1 i 8u2 81)2 4
8x1 8x1 8%2 8%2 8x2 8%2 8%1 89@1

8uQ 81}1 i 8u1 (%Q
i 81’1 8332 8332 (91:1

Vu:Vv = (1+’y)[
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2 Space Discretization

Let us suppose that  is polygonal. We perform a triangulation on (2, i.e., we cover
it with a triangulation T consisting of triangular elements e such that

Q=e.
ecT
Next, we shall suppose that the closures of any two distinct triangles are either
disjoint, or they have a common vertex or edge. The triangles will be often called
elements and the vertices of triangles will be often referred to as nodes.

2.1 Hood-Taylor finite element

The Hood-Taylor finite element P,/ P; will be used in this thesis for the finite element
method discretization. This means that the velocity will be approximated on each
element e € T by a polynomial of degree 2 and the pressure will be approximated by
a polynomial of degree 1. This element satisfies the Babuska-Brezzi condition which
is substantial for the stability of given approximation.

Let e € T be an element with vertices Py (x5, x5,), Ps (259, 25,) and Ps(z55, 253)
and by é denote the reference element with vertices P;(0,0), P5(1,0) and P3(0,1).
Now we introduce a unique mapping, see fig. (1), from the reference element é onto
an element e by equations

vy = 2561, &2) = o + (27, — 276 + (273 — 271)&,
ry = 25(&1, ) = w5y + (25, — 25,)6 + (255 — 25,)62
The jacobian of this mapping is
Or1(&1, &) 0x1(61, &)

(&1,&) €e. (13)

0 0
= 8@(511, &2) 8$2(§127 &) = (2% — 21)) (25 — 2%) — (273 — 27, (43 — 75,) -
aél 852

For the sake of completness let us write down the inverse mapping to the mapping
(13),

€ 6o,y — P T = ) — (22 = a%y) %y —af)
1= , =

Je ’

Lo — x5 ) (2% — x5,) — (1 — x5, ) (259 — 25
€8 = Eo(x1, 1) = (22 51) (77 11)Je( 1 T1)(25, 21)’

Thereinafter, we shall make use of the following notation: for a function ¢(xy, zs,t)
defined on an element e,

#(En, &, 1) = (w5 (61, 60), 2561, 60), 1)

(x1,29) € €.

18



and for a function QAS(&, &5,t) defined on the reference element é,

¢e(x1’x2’t) = $<§f(x1,xg),§§(w1,x2),t) .

x2

&1

Figure 1: Mapping of the reference element é onto an element e.

So far, we have defined the mapping from the reference element € onto an element
e. Using this mapping we will be able to carry all the computations onto the reference
element é, which will much simplify the situation. In the equations (12) there are
integrals and derivatives. First, let us look at how the derivatives in the reference
variables look like. According to the chain rule we have

3%0($§(£17 52)7 I§(£17 52), t) 8@ ax? a(p al’; 690 . . 6(10 e e
06 - Oxy 06 +(3x2 96, om ($12—I11)+87x2(m22—x21)

and in the same manner we would get

8@($§(§1,§2)7$§(§h§2)7t) Qo o e L ¢
96, = or (%3_%1)—'—87932( 55 — T91)

which we may write as

w e e e e M
0&, Tig — 11 Lo — T 011
M 253 — 2§ X5 — T M
852 8x2

From here, by the inversion, we obtain

a%0€($17$2at) 8@6(51752715)

al'l B hll h12 851 (14>
8906($1, T2, t) he he aéﬁe(fla 527 t) ’
83}2 21 22 852

19



where
hiy = (w93 — 2%,)/J°, hiy = (x5 — 2%)/J°,
hy, = (z7; — 2%3)/J¢, hgy = (x7, — 25,)/J¢.

Analogously, we would obtain the relation for the second derivatives

(15)

0?1, o, t) 0%¢° (&1, &, t)

&U% <h§1)2 thlh% (hfz)Q 85%
026$7$’t e he e he e he e he 82Ae§’€’t
W = h11h21 h11h22 + h12h21 h22h12 @82118522) ) (16)
aQWG(be%t) (h§1)2 2h5, 15, (h§2)2 82@6(51752715)

03 083

which do not appear in our weak formulation but we will need them later.

The integrals appearing in (12) will be computed numerically element-wise,

Nge

/90 9517962 dxldﬂfz / 51752 U€|d51d§2 ZW |J€| 127 32)7 (17)

where w}® are the quadrature weights and &5 = (77, €5)7

of some quadrature rule on the reference element é.

are the quadrature points

As was already stated, the Hood-Taylor finite element P,/P; means approxima-
tion of velocity by a polynomial of degree two and approximation of pressure by a
polynomial of degree one on each element. To this end, we will use the base func-
tions with a property that at node Pf of an element e their value is 1 and at all
other nodes their value is 0.

Let Pf(z5,,x5,) be a midpoint of an edge PfPs, Pf(x55,x5;) be a midpoint of
an edge Py Py and P (g, x5¢) be a midpoint of an edge Py Py, see fig. 1. Similarly,
P4( ,0), P5(1 2 and P;(0, 1) are midpoints of the edges P, Py, P,P; and PsP,,

22 ' 2
respectively. Then for the velocity these functions have the following form on é,

A =201-4-8)(G-&-&)
Qy = 261(61 - 3)

Qs =26(&— 1)

Qs =46(1- &~ &)

Qs = 4616

Qs =451 - & — &).

20



For the pressure the base functions on the reference element are

Li=1-6-&
Ly =§& (19)
Ly=6&.

2.2 Approximation by the finite element method

The spaces H'(Q2) and L?(Q) where we look for a solution have an infinite dimension
and consequently, they are useless for numerical computations. The principle of the
finite element method is an approximation of these spaces by their finite dimensional
subspaces. In our case this will be the subspace X}, of continuous functions being on
each element polynomials of degree 2 and the subspace X}, of continuous functions
being on each element linear. Then these functions are piecewise polynomials of
degree 2 and piecewise polynomials of degree 1, respectively. The functions from
X, are uniquely determined by their values in nodes P; including the nodes at
midpoints of the edges and the functions from X}, are uniquely determined by their
values at vertices P; of the elements of triangulation 7.

The fact that a function ¢(xq,x2) is a polynomial of degree m on an element e
will be expressed as p(z1,22)|e € Pn(e). With help of this notation we will define
the spaces X}, and X}, as follows

Xy = {up € C(Q); uple € Py(e)}
Xnp = {pn € C(); prle € Pr(e)}.

The functions @;(x1,x2) whose values are equal to one at node P; and zero at all
other nodes are the special cases of functions from the space Xj,. Let PU, be
a number of all nodes including the midpoints of the edges. Then every function
up, € Xp, may be written in the following form,

PU,

up (1, 2) ZUZQ (21, 22)

where u; = up(x1;, T2;) is the value of a function u, at node P;. From this we observe
that the functions (); form the basis of the subspace X, of the dimension PU,. The
significant property of the finite element method is the fact that the functions @Q;
are nonzero only on a small portion of the domain €.

In an analogous way we choose special functions L;(z1, z2) from the space X,
whose values at node P; are equal to one and at all other nodes they are equal to
zero. If PU is a number of all vertices of the triangulation, then every function
pr € Xpp may be expressed as

fEl,l’Q sz xlaxQ

21



where p; = pp(14, 2;) is the value of a function p;, at node P;. Hence we have
chosen the basis of the subspace Xj, of the dimesion PU.

Let us define the spaces
Vi = {uh € Xno; uh( ) =0 VP € Fl}
‘/gh = {uh € th; uh(P]) = g(P) VP € Fl}

Now we can formulate the discretized weak formulation: For any fized t € (0,7T)
find wy(-,t) € V3 and py(-,t) € Xpp, such that

)
/{ a“t" Vi -+ A Vug] - Vh+V(Vuh::Vvh)—thV-vh+QOV-uh}dx—

—/fh~vhdx—/ah-vhdS:0,
Q
(20)
or

a(uhap}muh; Vith) - 07

for arbitrary test functions v, € V2 and q, € Xp,. We approximated the function
f by a function f, € X?, in the same way as velocity and the function o was
approximated by a function o) € X ﬁp in the same way as pressure.

2.2.1 Integration on elements

Because of the particular form of our basis of the space Xy, every function u;, € Xy,
has on an element e of the triangulation J the following form,

Ny

up (1, v2)le = up, (21, v2) ZueQe Ty, 1), (21)
where u§ = uf(x14,22), ¢ = 1,...,n,, are values of the function u§ at nodes
Pf(xy;,x9:), © = 1,...,m,, of an element e and Q¢(xy,22) € Xpy, @ = 1,... .10,

are the base functions with the values equal to one at node Pf(z1;, z2;) and zero in
all other nodes of an element e. In our case, as may be easily seen from the pic-
ture (1), n, = 6. To achieve some generality we shall stick to writing n,, however,
because if we chose some other finite element the value of n, could be different, in
general.

Similarly, the form of the function p, € X}, on an element e is

Tp
ph(ﬂﬁl, $2)|e = PZ(%;@) = ZPfo(%JQ) ) (22)
i=1
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where p§ = pf, (21, x2), 1 = 1, ... ,n, are values of the function pj§, at nodes Pf (14, T2),
i=1,....n,, of an element e and L§(z1,x3) € Xp,, ¢ = 1,...,n,, are the base func-
tions with the values equal to one at vertex Pf(z1;,z2;) and zero at all other vertices
of a triangle e. We have n, = 3.

We want to transform the last two expressions onto the reference element é.
From (13), (21) and (22) we get

uf (2561, &), 25(61,&2) ) = (61, &) = qusth)

Ph (#5(61,6), 75(6,6)) = (&, &) sz (€1,&) .

where @i, i=1,...,n,, are the base functions on the reference element given by (18)
and L;, i = 1,...,n,, are the base functions given by (19). Then, on the reference
element é, for the velocities u;, and the pressure p; we have

n(61,62,1) ZU” )Qi(61,&6) ="k i=1,2
(23)
Py (&1, 62, 1) ZPZ 51752) p ] )

A A \T . A N\T T

where Kk = (Ql? s 7an) ’ 1= (L17 R an) ) pe = (pi(t% cee Jpzp(t)) and uf =
T

(ufl (t),...,us (t)) . The test functions vy, g, and the force f;, can be expressed

s Ying,

in the same fashion

(61, 62) = ZU’L]Q] (&,8) =[v z] K, i=1,2,
fol&,&) = ZU”Q] (61,6 =11k, =12, (24)
51,52 ZC] 51752 [ ] )

T T T
e __ € € e __ € € € __ € €
where q° = (ql,...,qnp> = ( i1»~-7fmv) and v{ = (vﬂ,...,vmv) .

Let s be an edge of a triangle e with end points P} (x5, 23,), Ps(x,, x5,). We
introduce the mapping from the reference line segment s onto the edge s by

L1 = Ii(g) =z + (fb - xil)g
Ty = 25(8) = 2y + (55 — 75;,)§,

The length of the edge P/ P; will be denoted by

£e(0,1).

J* = \/(ﬁz — 1)+ (03, — 23)%.
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The test functions vy, on an edge s will be again expressed as linear combinations
of the base functions

Nsv

Uih(*rla $2>|3 = vih<xi(§)7 CL’S(&)) = ﬁfh(£> - Zlvfjﬁj(g) - [Vf]TI‘, 1=1,2, (25)

A

T ~ T
where Vf = (Ufh R 1 > , = (Rl, .. .,Rnsv) and

Ry(€) = 26(§ — 3) (26)

from where we observe that in our case n,, = 3 and that the base functions fiz are
restrictions of the corresponding base functions Qk Thus, the function 05, (€, 1) is
a restriction of the function 0§, (&1, &2, t) on an edge s. Analogously, we express the
function o, on an edge s.

Nsp

O—ih(x17$27t)|5 = a—fh(g) = Zo—fj(t)‘g](f) = [O'f]TS, L= 1727 (27)
j=1

where o7 = (Jfl(t), N (t))T, s = (Sl, ce Snsp) and

(28)

from where we see that ng, = 2 and also that the function 63,(£,t) is a restriction
of the function 6§, (&1, &2, 1), on an edge s.

With help of (14) we introduce the following notation

e __ 1e 8’4’ e aK’ — aQ; _

Kk_hklai&—‘f_hmai& = {8xk (fh&)}j_l ; k=12
. T (29)
ol ol oL¢
16 = he, — e 7 = J =1.2
k hkl agl + hk2 852 {axk (517 52)} » ) k I
J=1,.., np
where

ok [0Q; } ol {azj }
= (g, , — =< (&, , k=1,2.
&, {(%k (&.4) §=1,...,ne OEk 23 (& &) j=1,..,np

If we insert the expressions from (23), (24), (25) and (27) into the equation (20),
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then, regarding (17), we obtain

>/ {[vﬂ%nTui + vl rmTi 4 | [vi] i TR g+

+ (Vi) e[S us s us + [vE) ke[r§) sk ug + [v;]Tn[n;]T[uz]TnTuz] +
+ u[(l + ) (51 s ] + [vs] s 5] g ") + [vi]T w5 [5) us +

+ [vslT w5 [R51 a5 + y ([v§) s [es] " Tus)” + [vE) ks [s] T uf)

(30)

1 1
— [ e

a1+ [ s
- ot — [ 8 L dcrdee
=% [{mirnstot s st s o,

s€ls 3

where

1

y (du&(t) dusm<t>>T Z.

u, = dt sy dt
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3 Algorithm for the Finite Element Method

In the previous section, for the purpose of being able to find a weak solution, we
approximated the functions from the infinite dimensional space by the functions
from the space of finite dimension. We have chosen a particular basis and expressed
all the functions as linear combinations of the elements of this basis. We have put
these functions into the weak formulation, expressed the integral over ) as a sum
of the integrals over each element of the triangulation T and hence obtained the
discretized weak formulation (30).

Now we have to perform the numerical integration, taking as a main task to
express the results in a matrix form which is very suitable for the implementation
of this algorithm. Further, we need to perform the time dicretization. After this we
will have to deal with a system of nonlinear equations which have to be linearized
using certain methods based on the Newton method.

3.1 Elementary matrices

In order to integrate (30) it is suitable to use the Gauss quadrature. Let us start with
the first term in (30). Denote by &5 = (&1, ¢3)7, k = 1,...,ng, the quadrature
points on the reference element é and by wi*, k = 1,..., ng, the quadrature weights.
Regarding (17) we have

it a3 w0 s =
P k=1
e .0 KT(€1) (31)
- (s o)) | e
0 o o wie ) \RT(EE)
— vi|"[Q7) G QS
where
e T A e e
Q= (w(et). - om(6te) = {QEE ity
7j=1,...,ny
G® = diag {w{|J°],i=1,...,n4} -
Similarly, the second term in (30) yields
vl kT ) dide ~ [vi]T1Q7)TGE Qe (32)

é
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Finally, after summing (31) and (32), we express the first two terms in (30) as
viT1Q) GeQes + [vil Q) 6o QU =
[QC]TGeQe O u¢
= (v ) ( . ) ( ) - (33)
@) Q' GeQ°/) \u§
— [Ve]TMeue ’
where
a = (g ) L v = (v )
([Qe]TGeQe O )
MF° =
O [Qe]TGeQe
and O is the zero matrix.

By the same reasoning we treat the terms in the first square bracket in (30),

[T I TS g 7 dgd; ~

é

VI |35 el b1 € i €)=

(34)
[s5]7(€1)uf ... 0
Qe | Qg
0 o[RS s
= [vi]"1Q]" G diag {Qfu} QuS
where
e e e e e e aQe e aQe 8@"1 e e
Ql = ('4’1(5(11 )7 s 7’61( qu>) hll 85 h12 85 {axf< g@" g@) . noe
Jj=L.., Ny
Here
0Q° _ [0Q5 e o
aé- {ag (117 )} ) 7’21,2
T r i=1,..., nge
7j=1,..., Ny
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Analogously for the remaining integrals,

ST i) T | dgides ~ [v]TIQU]T G ding {Qius QUus, (39)

[Vl ki T ugs g ¢ didgs & [v]T Q1] GEdiag {Q5ug} Qug,  (36)

)T sl " sl 77| d6udee = [vi)T[Q1]T G ding {Q5us} Qug,  (37)
where

Q5 = (K5(E1), ..., k5(EX))

T __ 1€ aQe e aQe _ aQ; qe qe
= hg; ¢, + hs, 08, {8:62( 1i,63;) _

We add (34)-(37) and write the convective term in (30),
A Vi (Q7)7 G diag { Qi Qe + [v1]7[Q1]T G ding {Qgus} Qu+
+[v]"[Q]" G diag {Qfus} Q°us + [v5]"[Q°]" G diag {Q5us} Qeug} =

o (1Q)TGrding {Qius} @ [Q7 Geding {Qgui} Q) (S
= A (v ) o
[Q°)" G*diag {Qfu3} Q¢ [Q°] G*diag {Q5u3} Q) \uj
— [Ve]TAcel (ue)ue’
(38)

where

u = ([uf]”, [wg]") " .

([Qe]TGediag {Qus} Q¢ [Q]"Gediag {Qsus) Qe)
Q7" Gediag {Qfus} Q° Q)" Gediag {Qsus} Q)

Let us introduce an auxiliary matrix

([Qe]TGe @) )
P =

Cel (ue> —

0 Q7 G*
and matrices
H;(0f) = diag{Qjui}Q°,  i,j=1,2,
H*(u®) = diag{ Q“ui}Qf + diag{Q“u3}Q3 .
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Using these matrices we may write down the matrix C* (u®) as follows

1 (Hfl(u‘f) HTQ(UT))
C(u®) = ®° )
HS, (u5) H5y(us)

If we interchanged the order of functions in the integrands of the convective term,
we could alternatively express these integrals as

[VE]T/\CGQ(ue)ue ’ (39)
where
) — o (He(ue) 0 ) |
O Hfu

Now we move on to the second square bracket in (30). We proceed under the
same scenario as above, and thus we may immediately write

(149 (v171Q51" G*Qfus + [va)[Q35]" G*Qsus ) + [v]"[Qs)" G*Qius+
+ [va)T[QS)T GEQius + 4 [vi)T QST G Qi us + 4 [vs)T QST G Qsus = (40)
_ TR
where the matrix K¢ has the following form,
. ((1 +7)[Q1)GQf +1(Q5)"G Q3 1(Q5)7GQs ) |
71Q5)"GQs (1+7)[Q5)7GQ; +7[Q5)" G Q;

For subsequent integrals in (30), we have
1
_ / )
1

~ o [MITQI G L + vl Qg G L] -

elT elT 1 [QﬂTGELe e __
- (" ) (1) ([Q;]TGeLe) b —

Vil R+ (v 1T

’Je|d51d52 ~

1 ([Q?JTGeLe

L= { L ) et
0 [QS]TG@LE) 1
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Similarly,

[l Tt s+ T e

é

1
~ [l LT GAQiug + [0 L G Qaug]

(42)
1 elT elT ee elT ee UT
=g ([L7GQ5  [LI7G°Qs) —
0 u$
_ [qe]T (_[De]T) ut
Finally, the integral where the volume force occurs yields
— [ |V R o [V R || dErdee
~ - VTR QUE + (vl (QT G| =
(43)

QI'G‘Q° O ff
= — (V)" [vsF)( )( ):

0) [Qe]TGeQe er

— [Ve]TMefe ’

T
where f¢ = ([ff]T, [f;]T) . This completes the integration over elements.

There are still the integrals over the edges s € Ty left, though. Denote by &,
k =1,...,ng, the quadrature points and by w{’, kK = 1,...,n4, the quadrature
weights of a quadrature rule over an edge §. Then, following the same recipe as
when integrating over the elements, we get

- [{restor o 101 ~

~ __
~

Vi RGeS oy + (v (R G S o] =

T s1T [RS]TGSSS O Ung =
(0 )).

— _[VS]TNSO_S 7

(44)
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o' = (" [o3") . v = (VI [vs]") R = { Ry o) P

$* = {86 }icrng, » G = diag{w®|J];i = 1,... ,nge}.

After inserting the expessions (33), (38), (40), (41), (42), (43) and (44) into the
equation (30), we finally obtain

Ve T eﬁe 4 _ _
c q° —[De]* (0] p° o (45)
— Y v"N°e*® = 0.

For better convenience we repeat the meaning of individual matrices in (45) here.
On an element e the vectors of parameters are

w = (gl )= v = ()= (67 )
(46)

and on an edge s we have
v (v m) L o= (e o) (47)

In (45), O is a zero matrix and o is a zero vector. We have defined the auxiliary
matrix ®¢ by

([Q@]TG@ 0 )
P = . (48)
@) [Qe]TGe

The elementary matrix M€ is

([QﬂTG@Q& 0 )
M° = (49)
@) [Qe]TGeQe
and the elementary matrix K¢ was defined as
- ((1 +7[QI"G Q] +1(Qs]" G Qs Q5" GeQf )
= U .
7[Q5" G°Qs (1+7)[Q5]"G°Qs +v(Q5]" G°Qf
(50)
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To express C¢(u®) we will make use of the matrices

H;; (uf) = diag{Qjui}Q°, i,j=1,2,

()

H*(u) = diag{Q“ui}Qj + diag{Q u3}Q5 .

(51)

The matrix C¢(u®) may be written in two ways. Either as C¢(u®) = C* (u®), where

(Hil(ui) HTQ(UT))
Cel (ue) — @e ’

H5 (u3) Hy(uj)
or as C¢(u®) = C%(u®), where
H¢(u®) o
C?(u°) = ®° :
0] H¢(u®)

The matrix D¢ is defined as
| (@ eL
D¢ = —— ,
e \[Qs]"GeLe
and finally,
[RS}TGSSS (@)
N = .
O [RS]TGSSS

Further, in these matrices the following occur,

Q" = {Q(El ) f i - Le = {L;(el, &)}
J=Ls Ny
R® = {Rj(ggs)}izl ..... ngs S* = {Sj(5g8>}i‘:1 ..... ngs
7=1,..., Ny 7j=1,..., Nsp
G® = diag{w{“|J|,i =1,...,n4}, G®=diag{w!’|J°|,i=1,...,n4}
and
oQ° oQc | oQ:
e _ pe _'_he = J qf? ql? , k:1’2

Qk) k1 851 k2 862 {axk< 1 2 ) A

7=1,..., Ny

3.2 Time discretization

We consider a partition

O=to<ti<..<th1<t,<...<ty=T

(52)
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of the interval (0,7’) into N intervals and N + 1 time layers. The timestep between
individual time layers will be assumed constant and will be denoted by At. Functions
evaluated at time t, will be denoted by a superscript n. This means that, for
instance, u®” will stand for the vector of velocity parameters at time ¢,,. Similarly,
p®" will be the vector of pressure parameters at time ¢,. Further, u®”~! is a vector
of velocity parameters at time ¢,_; and f*" or " is a vector of parameters of f¢
or o, respectively, at time t,,.

The time derivative of the vector of velocity parameters u® will be approximated
by the backward difference

us" — ue,n—l

At

ul(t,) ~

Then, the implicit Euler method in every time step leads to the following: find u®"
and p®™, such that

>

e

en _ 1.emn—1
Me% + K+ ACH (™) Ju™" + Dp™" — Mf”] -

(58)
. [qe]T[De]Tue,n} o Z[VS]TNSO_S,H, =0

s

holds. The values of u®® and p®° are determined from the initial condition.

3.3 Linearization

The equation (58) is nonlinear because of the convective term AC¢(u®")u®". There-
fore, we have to iterate to solve it for u®” and p®". Using u®™*~! and p®™*~! from

the previous iteration we will compute the new approximations u®™* and p*™*.

Let us look back at the discretized weak formulation

a(uimpha Up; Vp, Qh) =0.

First of all, we will approximate the time derivative in the form a by the difference
quotient and then split it into two forms b and ¢ as follows,

n __ qqn—1 n
b(u",p"; v, q) :/{”-V+U(Vun::VV) Py vy g
A At 0 0
—f"-v}dx—/a"'VdS, (59)
2

c(u", w"; v) :/)\[(W" : V)u”] -vdx.
Q
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Hence we have separated the convective term using the form c¢. Thus in the n-th
time step we are seeking uj and pj, such that

b(uy, ph; Vi, qn) + c(uy, uy; vi) =0 (60)
for each v, € V2 and q;, € X,

Let us now introduce the functionals Fi(u,p) and F»(u) through relations
Fi(u”,p") = Fi(u®, p") (v, q) = b(u", p"; v, q),
Fy(u") = Fy(u")(v) = c¢(u™,u"; v).
If we define d = u}”* —u}"* ' and 6 = pj"* — p}* ', we may write down the scheme
of the Newton method as

dF; (up™ " pp ) (d, 0) + dFy (up™ ') (d) = o
= —F(up™ " ppth = By(upth,

where dFy(u)* ™' pi" ) and dFy(ul*") denote the Gateaux derivative, (see [5]).
Because of the fact that F} is linear, we have

dFl( e 1’ ZJC_I)(d’(S) :Fl(d75) :Fl(u;zl,k?p?}:, ) Fl(uzk 17PZ’k_1>>
which, after substitution in (61), yields
Fy(up® pp™) + dFs(up* ) (d) = —Fa(uy ™). (62)

Let us now compute the Gateaux derivative of F,. First, we shall rewrite the con-
vective term as

ouy;
M@} - V)up - vy, = A ="y,
[ h h] h e,

where we used the summation convention. It means we sum up over the index
occuring twice in a single term. In this case we sum up over ¢ and 7, ¢, = 1,2. The
Gateaux derivative of F} is given by

n,k—1 v d
AR (@) = AL

(d o[, Oy + 7dy)
= )\ _dTQ/(thk ! + Tdy) h 8x] Uhi dQ =

Fy(wy* 4 7d)] =

T=

7=0

nkl )

L J

od,;
Ui + (uZ]k T4 de)%
j

Uhi dQ‘| =

7=0

/l um‘ oni + 1 ij 1 x'vhi] 40 =
Q

= c(u), k-1 ,d; vp) + c(d, qu l,vh),
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from where, after substitution in (62), we obtain the Newton method scheme

b(u%kapz,k; Vh, Qh) + c(u?ka u;zl7k_1; Vh) + C<uZ7k_17 UZ’]C; Vh)_ (63)

—e(uy™ T ve) = 0,

From here one easily sees how the equation (58) will be affected by the Newton
method. The convective term will be approximated by

Ce(ue,n,k)ue,n,k ~ CeZ(ue,n,k—l)ue,n,k+
+ 5|:C61 (ue,n,k—l)ue,n,k’ . Cel (ue,n,k—l)ue,n,k—l} ,

where, for § = 1 we have a linearization by the Newton method, and for 5 = 0 we
obtain a simplified linearization of Oseen type. The unknown parameters u®™* and
p®™* are then computed from the equation

1
Z {[Ve]T|: (AtMe + Ke 4 )\Bcel(ue,n,k—l> + )\Ce2(ue,n,k—1)> ue,n,k+

€

+ Depe,n,k o /\5061 (ue,n,k—l)ue,n,k—l — M¢ (1

en—1 en . 64
At ” (64

-l DT - SN — 0.

We iterate according to this scheme in every time step. Iterations are stopped if
the difference of the two successive iterations is sufficiently small or if the number
of iterations overruns some preassigned value. If this scheme converges, we put
u®" = u®™* pe" = p®™*. As the initial approximation we take a solution from the

previous time, i.e. u®™? = u"~! p*™? =p

e,;n—1
When doing the computations, from (64) we form
vi(Au—f) =0

using a standard algorithm. Because the vector v may be arbitrary, it must be true
that

Au=Tf.

This system of linear equations is then solved by some suitable method.
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4 Stabilization

Stability of (64) is restricted by the Reynolds number. When the Reynolds number is
too high, the convective term dominates the Navier-Stokes equations and the scheme
(64) becomes unstable. Thus it is necessary to stabilize it. Stabilized finite element
method is formed by adding to (12) a stabilizing term causing a small perturbation.
One of the main questions arising quite naturally is “how much of the perturbation
term one has to add to obtain satisfactory results”. This problem is addressed by the
stability parameters whose suitable design may achieve the stability of given scheme.
In general, the design of these parameters depends on the particular method.

4.1 Stability parameters

In this section we assume A = 1 since otherwise the stabilization is not needed. Let
us define the stabilizing term

0 1
as(u,p,w;v,q) = Z/ [(‘;tl + A(w-V)u—2vV-g(u) + EVp —f|¢Y°(w;v,q) dx+

+Z/5e[v-u][v.v]dx.
(65)
Here, as the test function we take
1
Vi(w;v,q) =1 (w-V)v—120V - g(v) + T;EVq. (66)

We may point out here that if u and p is the classical solution of (1) and (2), then
as(u,p,u;v,q) = 0.

The stability parameters 7./, 77, 7{ and ¢ are adjusted using one, or some combina-

tion, of the following methods

SUPG (Streamline Upwind Petrov-Galerkin)

PSPG (Pressure Stabilizing Petrov-Galerkin)

LSIC (Least Squares on Incompressibility Constraint)

GLS (Galerkin Least Squares)
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We perform the space discretization in the same way as in the previous sections.
Now we seek uy,, pn, such that

a(up, P, Wn; Vi, qn) + as(Up, Pry Up; Vi, qn) = 0. (67)

If we approximate the time derivative in the form a, by the difference quotient, we
obtain a form b given by

bs(u”™, p", w";v,q) =

n _ 4n—1 1
::EI/QYIA?'*ACW”-Vhf1—2VV-EOf§%—van—f" YW v, q) dx+

+Z/5€[V -u"][V - v]dx.
e (63)
Define a form B(u™,p", w";v,q) as
B, p",w";v,q) = b(u",p";v,q) + c(u", w";v) + bs(u”, p", w";v,q).  (69)

Thus in the n-th time step we seek the approximate solution uj € V;]Qh and pp € Xy,
satisfying

B(uy, py, Wi Vi, qn) =0 (70)
for each v, € Vi2, qn € Xpp.

Now the description of the stability parameters in particular cases follows,

1. SUPG+PSPG++LSIC for a case where the velocities are approximated by a
polynomial of degree higher than that of a polynomial used for the pressure
approximation. We choose (see [2])

1
i =75 = Zlhfl?

5 =1, (71)

where ¢ is the largest edge of a triangle e.

max

2. In the case of the GLS method we choose (see [1])

1
0<Re <1
e, = e ’
7-527'6:7':: 1
’ ————, Re‘>1, (72)
\/ Afnax 1|
(')‘e :Te|ue|2
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Ret — W
41/\/@
Further,
[u’| ZIQE;XW%I, i=1,2, j=1,...,n,

and \¢ .. is the greatest eigenvalue of the problem

Oe;j(ap) Ogig(vy)
Oz, Oxy,

dx = A° / ey(w)ei(vi)dx vy, € PX(e)/Z (73)

e

for v = 1, where Z = {v € P{(e);e(v) = o}, dimZ = 3, or

/Auh Avydx = \° / Vu,: Vv, dx Vvy, € (Pa(e)/R)? (74)

for 7y = 0. In (73) we used the summation convention again, and

. o 8u1 8?]1 8u1 8?)1 8u2 (91)2 8u2 81)2
Vu:Vv = (%1 81’1 + 8[132 (%2 + 8x1 8x1 + 81‘2 @IQ ’

4.2 Matrix form of the stabilizing term

Obviously, the stabilizing term is nonlinear. Several methods may be used to lin-
earize it. Probably the most simple one, known as Oseen method, computes u™*
and p™* from the equation

nk nk _ nk—1, _
B(uh » P, > Uy, 7Vh7Qh)—0-

A little better linearization, based on the Newton method applied to the convective
term ¢, yields the scheme

B(UZ’k,pZ’ka UZ’kfl; Vi, qn) + C(“Z’kﬂ, UZ’k; Vi) — C(UZ’kﬂ’ UZ’kil; vi) =0.

In this thesis we will use yet more sophisticated scheme, although still not the
full Newton method. It is obtained by applying the Newton method also to the
convective term occuring in the stabilizing term. To be more precise, we add to the
left hand side of the equation (64) an approximation of the expression

n,k:_ n—1
>/ luh U Vgt A - Tt
— n — n 1 n n e n —

M TR o) + L - fh] - [mu,;k LGyt (75)

1
+ 7e(vy) + T;Qth] dx + Z/ée[v PNV - v dx
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where e(w) = (el(w), €Q(W>)T with

(9211)1 8211}1 82?1)2
er(w) = l(l +7) o0x? + 03 * 783&1&752
02w2 821112 8221)1

To integrate (75), we proceed in exactly the same way as we did when deriving the
equation (45). Using (16) we employ the following notation

20Ne 20Ne 20Ne
Q) = hiu i 2 S SEFREAS

ST 852 + (hyhiz + hy, zhll)af 26, 52 128753 =

G=1." Zz}e
OLe oLe [ oLs
L = hiy =+ hiy 2 = { S (ge, g
k1 agl k2 a£2 {axk( 1 2 )}i_l ..... .
7j=1,..., p

Let us start with the second term in (75) multiplied by the first term in the second
square bracket. Then we get

ATE /z{ nk— 1810/” Wk 130hz nk— 18um un,k—lavhi+

hl 0 +u Up1 8331 h2 8.(52

e =1

n,k
i nk—1 avhi nk—1 auhi nk—1 31};”-
+upy P) uhl P u u dx
xQ 'Tl

and, after integration, this is approximately equal to
22:{ Q¢|7 ding{Q°uS e k— 1}Ged1ag{Qe ek 1}Q5 cond
_ +Iv)TIQE T diag{Qeus ™ 11 G diag{ Qe uS ™ T Qius 4
+vTIQE T diag{Qeus ™ 11 G diag{ Qeu ™ T QGus ™ F 4+
v [QE i QU™ Geding [Qus™ } Qout™].

which can be written as

T T He(usmk-1) O (e o
ATE ([Vﬂ [VS]) o He (uenh-1) 0O G¢

He(ue,mk—l) ) uink

(77)

nk— nk
O He(ue n 1) u; n
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Writing down the integration of the second term in the first square bracket multiplied
by the second term in the second square bracket would be quite cumbersome so we
confine ourselves to stating just the result

/[A(uzk LV)up k} : [Tf@(Vh)} dx ~

e

(1+7)Q¢, + Qs v QS, !
~ —ariv ([vi)T [vs)”)

78

Q1 (1+7)Q% + Qfy 78)
Ge O He<ue,n,k71) O ui .k
O Ge @) He(ue,n,k—l) ug,n,k

Finally, the second term in the first square bracket in (75) multiplied by the last
term in the second square bracket after integration yields

A
ak 7IL]T G diag{Q ui™* "} Qfuy + [a [L{] "G diag{ Qus™" T} Qu "+

+Hla'l"L5)" G diag Qeup™ ) Qfus* + [q] LG ding{Q u ™ Qg

which we write in a matrix form as

1 Ge O He(ue,n,k—l) e} u;; n,k
A= o] (L) [Lg]”) i . (19)
0 O Ge @) He(ue,n,k 1) u;,n,k

Let us define matrices

Ve ((1 + 7) 11+ Q5 7Qf, )
7Q5, (1+7)Q5, + QF,
and
Hew) O L (L)) (G o
d*(u) = | ¢ —TivVe  T—
O H¢(u®) 2 \Lg 0O G¢

Now, if we sum up (77), (78) and (79), we may write the second term multiplied by
the second square bracket in (75) as

e,n,k

uy’

A ([VT]T [VS]T [qe]T) (I)se(ue,n,kz—l)cseQ(ue,n,k—l) 7 (80)
ug n,k

where
H¢(u®) @)
CseZ(ue) —
O Hfu"
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Our experience now suggests that the third term multiplied by the second square
bracket in (75) will have the following form,

en,k
u177
/\6 ([VﬂT [VE]T [qe]T> (I)se(ue,n,k—l)csel(ue,n,k—l) . , (81)
u§7n7
where
Hf, (uf) Hfy(uf)
C* (uf) = e
Hs, () Hsy(us)

Further, for the fourth term multiplied by the second square bracket in (75) we have

en,k—1

u,
-3 ([V?]T [VS]T [qe]T) @S@(ue,n,kfl)csel (ue,n,k—l) e (82)
uy"t
Integrating in the same way again and again, for the fifth, sixth and seventh term
in (75), all multiplied by the second square bracket, we arrive at

e,n,k
(W7 W17 ") (- @ ve | (83)
L
(w17 " la]?) et (L) ph (54)
Q 0\ ("
(V)™ )™ fa]”) @ (uemt ) o o] (85)

respectively. Analogously, for the difference quotient we have

e e,n,k e;n—1
1 se en,Kk— Q O U1 UI
a (V7 bl ]T) @t | o) o] g+ &9

us u;
and finally, integration of the last term in (75) yields

QII'GQ  [Q7GQs) (ui™
o (V)T [vel") :
Qi)'G Qi [Qsl"G Qs

(87)

en,k
Uy

Now, if we insert the expressions (80)-(87) into (75), we obtain the stabilizing
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term in the following matrix form,

zg: ([VE]T [qe]T) q)se(ue,n,k—l){ [LMS@ + Kse—f—

+ /\ﬁcsel(ue,n,k—l) + Acse2(ue,n,k—1)1 ue,n,k + Dsepe,n,k_

1
Y Csel enk—1\ Mse | — en—1 fon
I5; (u ) [ Nk + ] }—i—

+ Z 5 [Ve]Tngue,mk )

The description of matrices occuring in (88) now follows. We have already defined
matrices

%5 ) ) (6 o)
d*(u) = | ¢ —TvVe - (89)
0O H(uw) o \Lg 0 G

and
((1 +7)Qf; + Q5 7Q5, )
V¢ = . (90)
7Q12 (14+7)Q5, + Qf;
Then we have,
Q O
M?¢ = , (91)
O Q°
K = —-vV©, (92)

Hf,(uf) Hi,(uf)
Csel (ue) — , (93)
HS, (u5) HS,(us)

H(u?)  0)
Cse2<ue) — ’ (94)
O H(u)

1 (Li
D* =~ , (95)
0 LS
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Qi"GQ  [Q"G Qs
K9 = . (96)
@5)7GQ; Q)" GQs

In practice we proceed as follows. We add the stabilizing term (88) to the left
hand side of the equation (64) and from this equation we form
vi(Au—f)=0.
Because the vector v may be arbitrary,
Au=f
must hold. We solve this system of linear equations in every iteration.

We have still not shown how to solve the eigenvalue problem (73). Using the same
integration process as always in this thesis, we arrive at the generalized eigenvalue
problem

Au® = \Bu°®, (97)
where
1 G O 1
A€ — 7[V€]T \/e7 B¢ = —K¢
4 O Ge 2v
for v =1, and
G O
A€ — [Ve]T Ve ’
O G°
L (lerea s @res 0
0 [QITG°Qf + [Q5]"G°Qs
for v = 0.

We may note here that this eigenvalue problem does not depend neither on n
nor on k. Therefore, for each element we compute the greatest eigenvalue only once
and for all.
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5 Example: Rotating Ellipse

In this section we finally arrive at an example where we can test our algorithm. Let
us consider an ellipse inside a circle (see fig. 2), where

e 7 1is a radius of the circle,

a is a semi-major axis of the ellipse,

b denotes a semi-minor axis of the ellipse,

w(t) stands for angular velocity of the ellipse with w,, the maximal angular
velocity,

Q) is the domain,

I'y and I'y are two parts of the boundary 0f).

The hatched area between the circle and ellipse is occupied by a fluid.

Laa
Iy w(t) = wm (1l —e™ )

I'y )

N

A

Figure 2: Ellipse rotating in a circle

So we are given the geometry of the problem and the expression for angular
velocity to assure smooth start of the rotation. Our aim is to describe the velocity
field and the pressure of a fluid as the ellipse rotates. Moreover, from these data we
shall compute a force and momentum acting on the ellipse. The boundary condition
on I'y is defined by the angular velocity w(t). On I'y; we impose u = 0. Note that
on both I'y and I'y we assign the Dirichlet boundary condition, which means there
will be no surface integral in the weak formulation. There are also no sources, which
implies f = 0.
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5.1 ALE formulation

In the example presented above we have to deal with a moving domain €2, a problem
we could not solve using the algorithm presented in the previous sections. Thus
we need to use the ALE (Arbitrary Lagrangian Eulerian) formulation. Very good
description of the ALE formulation may be found in [4]. To describe the motion of
a fluid one usually works with material domain Rx and/or spatial domain Ry. To
pass from one domain to another one introduces a mapping

0 (X,8)— p(X,1) = (x,1), (98)

which assigns to every material point X a spatial position x at time ¢. Obviously,
for the material velocity u we have

u(p(X,t),t) = a"gf’”. (99)

To describe the moving domain we introduce yet another domain, 12, ., and a mapping
® (see fig. 3),

D (x,t)— P(x,t) = (x,1), (100)

which describes the motion of the domain in spatial coordinates x. Then the domain
point velocity is

c(®(x 1)) = a‘}g"t). (101)

Usually, the domains Rx and R, are fixed and correspond to some initial configu-
ration at time %g.

P

Rx T R,

Ry

Figure 3: ALE description

In what follows, for a function f(x,t) defined in spatial domain, the material time
derivative will be denoted as

d 0

dt — otlx’
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the spatial time derivative as

o_9
ot~ Otlx’
and the ALE time derivative as
0* 0
ot~ Dty

where, for example,  means “holding X fixed”.

To derive the Navier-Stokes equations in the ALE formulation, we need to con-
sider the derivatives of the integrals over a moving volume occupied by a fluid. Let
V; be an arbitrary volume at time ¢ with dV; its boundary and let f(x,t) be a scalar
function defined in the spatial domain. Then, (see, e.g., [7])

dt/f t)dv = /<8f x¢) -[f(x,t)u(x,t)]>dx —

:/af(a’;’t) v+ [ fGxtuonds,

Vi oVy

(102)

where n denotes the unit outward normal to the surface 0V, at time ¢. The last
identity is known as the Reynolds transport theorem.

Accordingly, if we interchange the material time derivative with the ALE time
derivative, we obtain

/f HdV = /(af (x,?) [f(x,t)c(x,t)})dx—

(103)
—/ant dV—l—/fxtc ndsS.
Vi
Now, if we subtract (103) from (102), we can write
d
dtv/f(x,t at/fxthJrafot [u—c nds. (104)

The equation (104) allows us to express the material time derivative in terms of the
ALE time derivative.

Let us note that the continuity equation remains unchanged in the ALE formu-
lation. Hence V - u = 0 holds. Using (104) we may write down the second Newton
law for an arbitrary control volume V; as

/guxtdv+/guu—c] ndS = /Qfxtdx—i-/TndS
oVi Vi Vi
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where f is the density of the body force and 7 = (7;;);';—; is the stress tensor.
Applying (103) to the first integral and the divergence theorem to the last integral
in the above identity yields

/ (g;gu(x,t) + ou(x,t)V - C(X,Zf)) dx + / oulu—c|-ndS =
: o (105)

:/ﬁ@ﬂ@+/V¢@.
Vi Vi
Next, we apply the divergence theorem to the second integral in (105). Thus

/ ou(x,t)u(x,t) — c(x,t)] -ndS = /g[(u(x, t) — c(x, t)) . V}u(x,t) dx+
Vi Vi

+ [ oulx )V - ulx, 1)~ V- e, 1)) dx.

Substituting this identity in (105) and using the continuity equation, we obtain

gtgudx—l—/g[(u—c)‘V]udx:/gfdx—l—/VMrdx,
Vi Vi Vi Vi
and hence
aa
agu—%@[(u—c)-V]u:gf—i-V-‘r. (106)

For the Newtonian fluids one may derive the following form of 7, (see, e.g., [6])
T = _pI + 2[&6(11) )

where I is the unit tensor and p is the dynamic viscosity assumed constant. Using
this expression we finally obtain the Navier-Stokes equations in the ALE formulation,

a

1
s +[(u—c)-Vju—2vV-eg(u) + EVp =f inQ, (107)

where v = u/p and € is the domain at time ¢. Obviously, we have to add the
continuity equation

V-u=0 in €, . (108)
5.1.1 ALE discretization

Let us fix some point x in the reference domain R,. We may imagine this point as
a mesh node, for example. For given time steps t,, and t,,_;, we denote by

x" = ®(x,tn)
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and
x" = D(x,tnh1)

the images of the point x at times ¢, and ¢,_1, respectively. We shall also use the
following notation,

u*(x,t) = u(@(x,t),t) .
Then,

9 _out(x,tn) _ut(x te) —ut (X, teo1) | ut(x") —u(x"TY)
gp ) = g N At - At '

This is only a little variance with regard to the algorithm derived in the previous
sections. We only have to note that the new value u”, and also p”, computed at
time ¢,, belongs to the node x", translated with respect to the node x"~! due to the
ALE mapping ®.

If we take a look at our algorithm, we can easily see that the moving domain
will affect it as follows

o We compute the new position of the points x" of the computational mesh and
then we find the velocity

e,n e,n—1

X — X

At

o In matrices C®2, C*? and ®°¢, we substitute the velocity u®™*~! by the dif-
ference of velocities u c™*=1 Also in (72) and subsequent expression
for Re® we consider [u®™*=1 — ¢®m*~1] instead of [u®™k~1|.

en,k—1

In computations presented below we proceeded differently. To avoid computation of
the new position of points X" in every time step and to assure better convergence of
the Newton method we use the difference u®™*~! — ¢! instead. This is possible
since the mesh velocity is relatively small.

5.2 Resulting force and moment acting on the ellipse

In every time step t, we want to compute the force and moment acting on the
rotating ellipse. For the force we have

2
ﬂ:—/znjnjds, i=1,2, (109)

r, J=1
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and the moment is obtained from

2
Z Tijnjﬁ- dS, (110)
P ii=1
where
7 = —(r2 — To2), Ty = X1 — Zo1 ,

X0 = (Zo1, Zo2)T is a point we compute the moment with respect to. In our case this
will be the origin. We shall proceed according to [9].

5.2.1 Force

We start by writing the time-discretized Navier-Stokes equations in the ALE form
component-wise,

n—1 2 2
ul — u; ou? 0Ty
Lt oA (u)f =) 94 of; inQ,, (=12, (111
0 At te jzl(uj Cj)ﬁxj o 0z; ofs 1n ‘ (111)

where Q, = ;. Let us define Qp, = U{e € T,;e N Qp, # 0}, which represents
the union of finite elements having nonempty intersection with I';. T, denotes
the triangulation at time ¢,. Next, we choose a test function ¢ € Xj, such that
p(x) =1 for x € 'y and ¢(x) = 0 outside {2r,. Multiplying the equation (111) by
©, integrating over (), and using the divergence theorem, we arrive at

-1

B 2
/gu pdridry + / QAZu — )g pdridry = /ZTijnde_

r, /=1

- /Tij(g(pdxldx2+ / inQOd.Tld%Q, 1=1,2.
Zj

Qr, or,
From here we see that

n—1 n

F, = —{ / QlAt—i—/\Z:l(uj —cj)(?xj}godxldm—
Q J= Qr,

r

+2V/QZ€U dxlde /szgpdxldxg} 1=1,2.

Qry
(112)

Now we perform the finite element approximation as in previous sections and the
function ¢ will be approximated as velocities, i.e.,

X)|e NZSOQ (&1,6) = o ] K,
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where ¢ = (¢5,..., goflv)T is the vector of parameters of ¢. Applying the usual
integration process, we may express the resulting force as

en—1

u®" —u
~ —QZ[@e]T{MeN+[AC€1 (ue’n_ce’n)—i—Ke]ue:n_i_Depe,n_Mefe,n} ’

(113)

A€ elT elT T
where ¢ = ([¢°]", [¢°]7) ",
1 for Pf el
0 for Pf¢T, ’

and F = (Fl, FQ)T.

5.2.2 Moment

Again, we start from the equation (111). This time we choose a function v =
(01, D0)T = (71, oF9)T. We approximate 7;, i = 1,2, same as ¢, i.e.,

K, 1=172.

Let us multiply (111) by @;, sum over ¢ = 1,2, and integrate over Qr,. Similarly as
for the force, we obtain

2 n __ - 2 a
Y e R R -
er :

+ 2v / 0 Z gij(u 8 dmldxg / ofiU; dxldxg}

Ory |

After numerical integration we get

1 - -
=X l¢ { l M° + AC! (u*" — ") + K] u®" + Depen—
(114)
e|gen 1 —1
-M [f + —Atu ] } .

The description of the matrices occuring in (114) now follows. Let us define the
auxiliary matrices

R; = diag{Q°r;}Q°, i=1,2,

. ) . ) - (115)
Rj; = diag{Q°T; }Qj + diag{Q;T;}Q°, i,7=1,2
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and

. R{'G* O
P = : (116)
O [RS]TG®
Then
- ((Hv)[R&]TGQH [Rp,]"GQs RG] GQ; )
=V
1[R5 )" GQs (1+7)[Rs,]"GQs + [Rs, "G QS
(117)
and
Q O
Me = &° ( ) , (118)
0 Q°
. (H%(ui) Hiz(ui))
C'u) =& : (119)
HS, (u3) H3,(us)
) 1 (RLJTGL?
D= - : (120)
¢ \[R5,]"GL
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6 Numerical Results

In this section we present the results of the numerical computations using the algo-
rithm described in this thesis. The algorithm will be tested on the rotating ellipse
introduced in the previous section, see fig. (2). First of all, we define all the necessary
data.

Geometry of the problem

e The radius r = 0,2m
e The semi-major axis a = 0,15m

e The semi-minor axis b = 0,1 m

Properties of the fluid

« The density o = 1000 kg/m3
e The dynamic viscosity pu = 0,05 Ns/m?

 The kinematic viscosity v = p/o =5-107°m?/s

The angular velocity is defined by
w(t) = wp(1l —e ),

where w,,, = 50rad/s and o = 2.

6.1 Triangulation

Here we show how the triangulation of the computational domain is implemented
and how it changes its shape as the ellipse rotates. The domain is discretized by n.
nodes around the circumference and n, nodes in the radial direction. The nodes of
the triangulation at the initial time can be seen in figure (4).

There is a refinement near the boundary of the ellipse since it is a critical place
where good approximation must be assured. As the ellipse rotates, the nodes of the
computational mesh are moving only in the radial direction. This may be observed
in figure (5).
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ne = 60, n, = 20.

0,

4: Nodes of the triangulation at time ¢

Figure

~

i

N

| —

_______
555555555
........

= 20.

= 60, n,

Figure 5: Nodes of the rotated triangulation, n.
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These nodes

0.2f

0.15¢

0.05F

-0.05f

-0.1}

-0.15f

-0.2}

are the vertices of the triangles as shown in figure (6).

—

— )

7
4

4
Z

ﬂ,,//, 7

W)

17

Wy

Af e

Figure 6: Triangulation at time ¢t = 0, n. = 60, n,. = 20.




6.2 Unsteady solution

The computation was performed for a time period of 5 seconds with a time step
At = 0,01s, which means 500 time steps. With n. = 60 and n, = 20 we have 2280
elements, 4680 nodes and 1200 vertices.

We start with a velocity field at some early time, say, 0,04s. The velocity field
is depicted in figure (7). Let us note that the length of arrows does not correspond
to the real length of the velocity vectors. These arrows are proportional, however.
One thing we may point out here is that the fluid starts to swirl at the narrow part

05 05
0.4 0.4
03 03
0.2 02
0.1 01
0 -0.04  -0.02 0 0.02 0
(a) Velocity field with details A and B (b) Detail A
0.05f
0.04f 05
0.03
0.02 0.4
0.01}
03
0,
-0.01} 0.2
-0.02f
-0.03 01
-0.04}

-0.2 -0.18 -0.16 —0.14 -0.12 -0.1

(c) Detail B

Figure 7: Velocity field at time ¢ = 0,04s.

of the domain while at the wider part it moves in the direction of rotation, see fig.
7(b) and 7(c). As we will see this swirling will pass away as time goes ahead.

55



Next we examine the pressure at time ¢t = 0,04s. Its filled contour plot is in
figure (8). We see from this figure that the pressure is symmetric. With regard to
the geometry of the problem it is something we could expect and hence we may
convince ourselves it is right. Pressure is uniquely determined except for a constant.

0.27
0.15¢

0.1

0.05¢
-100

-0.2 -0.1 0 0.1 0.2

Figure 8: Filled contour plot of the pressure measured in Pa. Time ¢ = 0,04s.

The last thing we present at this time step is the magnitude of the velocity, see
fig. (9). We see very steep decline near the boundary of the ellipse.

0.8 05

L s

Figure 9: Magnitude of the velocity in m/s. Time ¢t = 0,04s.

Now we check the results at time t = 5s. Again, we start with a velocity field,
see fig. (10). Compared to the previous case we observe that the fluid now moves
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in direction of rotation at the narrow part of the domain and there is no swirling,
see fig. 10(b).

(a) Velocity field with details A and B (b) Detail A

-012 -0.1 -0.08 -0.06 -0.04 -0.02 0
(c) Detail B

Figure 10: Velocity field at time ¢ = 5s.

As for the pressure, it still remains symmetric. This may be observed in figure

(11).

Finally, we show the magnitude of the velocity, see fig. (12). Note that the steep
decline now remains only at the narrow part of the domain. The decrease of the
magnitude of the velocity is now smooth elsewhere. It is expected to be smooth also
at this narrow part as time goes on.

We have shown how the velocity and pressure evolve with time. The last thing
to do is to compute the resulting force and moment acting on the ellipse. Using
the method described above we arrived at the resulting force equal identically to
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0.2f
0.151
0.1F

0.051

-0.2 -0.1 0 0.1 0.2

Figure 11: Filled contour plot of the pressure measured in Pa. Time t = 5s.

Figure 12: Magnitude of the velocity in m/s. Time t = 5s.

zero. This is the consequence of the symmetry of the geometry and pressure. The
evolution of the moment for ¢t € (0,5) is in figure (13).
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t[s]

Figure 13: Evolution of the moment, ¢ € (0, 5).
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7 Appendix

We shall denote the Lebesgue measurable functions in € by 9(2). Let u: Q2 — R
be a function. We define the functional || - || = || - ||, as

Jull = [ [ 1260 ax] "

where the integral is meant in the Lebesgue sense. Next, we introduce a subset of
the set of measurable functions 2%(£2) as follows,

L) = {u € M(Q); [|ul| < oo}

The set £2(€) forms a linear space. However, the functional ||-||o does not satisfy the
third axiom of norm, for it gives the same value for the functions that are distinct
on a set of measure zero. Therefore, we identify such functions in the space £%(Q)
using the equality almost everywhere. We then obtain the Lebesgue space

L2(Q) = £2(Q)

a.e.

The elements of L?(£2) are the classes of functions that are distinct at most on a set
of measure zero. Thus, L?(Q) together with the norm || - ||, forms the normed linear
space. It is possible to define the scalar product in this space by

(u,v) :/qudx.

We are now ready to define the Sobolev space H'(f2), where we shall seek the
solution of our problem,

ou Ou
1 . 2 . 2
H(Q) = {ue L*(2); 05, 01 e L (Q)} ,

where the derivatives are understood in the sense of distributions. One defines the
scalar product in this space by

B B ou Ov ou Ov
(u, U)LQ = (u,v), —/Q luv + Br O + 0t 8@] dx.

This scalar product defines the norm

[ully 0 = llully = /(4w

The norm || - ||, may be easilly generalized for the vector function u from the space

()] by
el = s, + el
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and in the same fashion we generalize the scalar product of two functions u, v €
2

@),
(u,v); = (u1,v1); + (ug,v2); -

2
It may be shown that the space H'(2) and also {H 1(9)] is a separable and reflexive
Banach space. Moreover, together with the scalar products (u,v); and (u,v),
respectively, they form the Hilbert spaces with scalar products.

For the reasons of the weak formulation we define the spaces
V= {u € H'(Q); u =0 on I'; in the sense of traces} )

Vy = {u € H'(Q); u = g on T'; in the sense of traces} :
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8 Conclusion

This work is mainly focused on the solution of two-dimensional incompressible vis-
cous flow by the finite element method. Such a problem may be addressed in various
ways and finds applications in many engineering problems.

We have derived the comprehensive and directly applicable algorithm for the
solution of two-dimensional Navier-Stokes equations. Further, we have seen how it
can be readily modified for the case of moving computational domain using the ALE
formulation. A stabilization of the finite element method was necessary to achieve
convergence of the Newton method. The algorithm was tested on the rotating ellipse
problem (cf. section 5) and its results were presented in section 6. We may conclude
these results are satisfactory.
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