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Abstrakt 
Obsahem t é t o práce je numer ická simulace dvoudimenzionálního p rouděn í nestla
čitelné vazké kapaliny. Uvažujeme rotující elipsu sous t ředně umís těnou v kružnici . 
Prostor mezi elipsou a kružnicí je vyplněn kapalinou. Cílem je popsat proudění 
kapaliny vyvolané otáčející se elipsou, tzn. stanovit rychlostní pole a rozložení 
t laku. Dále pak chceme stanovit př ídavné silové účinky kapaliny působící na elipsu. 
Tyto výsledky získáme řešením Navierových-Stokesových rovnic metodou konečných 
prvků. Důraz je kladen na odvození numerického schématu v mat icové formě vhodné 
pro numerickou implementaci. Časově závislá výpoče tn í síť je p o p s á n a pomocí A r -
bitrary Lagrangian-Eulerian ( A L E ) formulace. Pro obdržení relevantních výsledků 
je n u t n á stabilizace metody konečných prvků. Uvedené výsledky naznačují , že 
odvozená metoda je dos ta tečně přesná. 

Summary 
The subject of this thesis is the numerical simulation of the two-dimensional incom
pressible viscous flow. We consider a rotating ellipse concentric wi th a circle. The 
space between the ellipse and the circle is filled wi th a fluid. Our goal is to describe 
the fluid flow caused by the rotating ellipse, i.e., to determine the velocity field and 
pressure distribution. Further, we want to determine the additional effect of the 
fluid acting on the ellipse. These results are obtained as a solution of the Navier-
Stokes equations by the finite element method. Special emphasis has been put on the 
derivation of the numerical scheme in a matrix form suitable for algorithmization. 
The Arbi t ra ry Lagrangian-Eulerian ( A L E ) method has been used to incorporate the 
moving domain into the algorithm. A suitable stabilization technique of the finite 
element method is necessary to obtain relevant outcome. Presented results indicate 
sufficient robustness and accuracy of the numerical algorithm. 
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Introduction 

The computational fluid dynamics has experienced a huge progress in recent years, 
mainly due to the rapidly rising power of modern computers. Also the finite ele
ment method has emerged as one of the most used and powerful numerical methods 
so far. Among the main reasons of its popularity is the ease of use in modelling 
complex geometries, consistent treatment of various boundary conditions and the 
possibility to be programmed in a general and easily adaptable way. A s for the 
applications of the finite element method, there are many for example in aircraft 
industry, mechanical engineering (turbines, pumps, etc.) and civi l engineering. 

In this thesis we focus our attention on the two-dimensional incompressible vis
cous flow. The rotating ellipse placed concentrically in a circle wi l l serve us as an 
example. The mathematical model for this problem consists of the Navier-Stokes 
equations and the continuity equation. This system of equations is solved by the 
finite element method using the popular Taylor-Hood finite element PijP\. 

One encounters a lot of difficulties when solving the Navier-Stokes equations. 
First of al l , it is the stability of a solution. In this thesis we use a stabilization using 
the following methods (see [2]), 

• S U P G (Streamline Upwind Petrov-Galerkin), 

• P S P G (Pressure Stabilizing Petrov-Galerkin), 

• L S I C (Least Squares on Incompressibility Constraint). 

Another possibility is a stabilization by the G L S (Galerkin Least Squares) method 
(see [1]). Next we face the problem of moving time-dependent computational mesh 
which is worked out using the Arbi t ra ry Lagrangian-Eulerian formulation of the 
Navier-Stokes equations. 

In section 1 we introduce the classical and weak formulation of the problem. 
Section 2 deals wi th the space discretization and the finite element approximation. 
One of the main parts of this thesis is the section 3. Here we derive the numeri
cal algorithm for the solution of the Navier-Stokes equations by the finite element 
method. In section 4 we discuss the stabilization techniques and in section 5 we 
present the rotating ellipse example. The A L E form of the Navier-Stokes equations 
is derived here. In section 6 we present some numerical results. Throughout this 
thesis all the main results are presented in a consistent matrix form. 

Algor i thm discussed in this thesis was implemented in M A T L A B by doc. R N D r . 
Libor Čermák, CSc. Minor changes to adjust this program to solve the rotating 
ellipse problem, check of the correctness of the formulas and numerical experiments 
were made by the author. 
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1 Navier-Stokes Equations 

1.1 Classical formulation 

Let C I 2 be an open bounded domain wi th the Lipschitz boundary dQ = T and 
let T i , T 2 be parts of the boundary T such that T = T i U T 2 , T i fl T 2 = 0. The 
incompressible viscous flow is described by the Navier-Stokes equations 

+ A(u • V ) u - 2z/V • e(u) + -Vp = f mQx(0,T) (1) 
at Q 

and the continuity equation 

V - u = 0 i n f i x ( 0 , T ) , (2) 

where 

• u = (MI(X, t ) , M 2 ( X , t)j = (ui,u2)T is the velocity vector, 

• x = ( x i , x 2 ) T is a point in fl, 

• V — p ( x ) t) denotes the pressure, 

• Q is the density, 

• v denotes the kinematic viscosity, 

• f = (/i(x, £), / 2(x, = ( / i , / 2 ) T is a vector of the volume force density, 

e(u) = {%(u)} 

if dui duj . 

is the rate-of-deformation tensor and 7 is a constant which is equal to one or 
zero (its meaning wi l l be explained later). 

• A is a constant which is equal to one or zero: for A = 0 we have the linear 
Stokes problem and for A = 1 we obtain the nonlinear Navier-Stokes problem. 

For the sake of uniqueness of the solution we have to add the ini t ial condition 

u = Uo in Q for t = 0, (3) 

the Dirichlet boundary condition prescribed on T\ 

u = g o n r l X ( 0 , T ) (4) 

and the condition of Neumann type which gives a surface force on T 2 

2i/e(u)n - - n = a o n T 2 x (0 ,T) , (5) 
Q 

where 

14 



g1(x,t),g2(x,t)) = {gi,g2)T is the given velocity vector, 

n 

<Ji(x, t), cr2(x., t)J = (<Ji, <T2)T is the surface force vector, 

//2(x)) = (ni,n2)T denotes the unit outer normal vector. (ni(x), ' . 

In the condition (5) the constant 7 plays its role. For 7 = 1 we get the physically 
meaningful boundary condition assigning a normal stress on T2 , whereas 7 = 0 
gives an artificial boundary condition which is sometimes called the "do nothing 
condition" (see, e.g., [3]). 

Let us now write down the equations above in a more insightful component form. 
We then have the Navier-Stokes equations 

dui 
~dt 

. ( dui 
+ A ui- h u2 dxi ' dx2 

d 

du2 

~dt 
du 

+ A ui- h u2 

dx\ ^dx\ 

du2\ 

_d_ 

dx2 

v 
du\ du2 

+ 7-dx' dx\ + 
1 dp 
Q dx\ f 1 ; 

(6) 
dx\ 

d 
dx\ 

' du2 

dxx 

dx2 J 

dui 
+ 7 dx? 

_d_ 
dx<? v 

' du2 du2 

+ 7: dx<) dxo + 
1 dp 
gdx2 

in n x (0 ,T) 

the continuity equation 

0 i n f i x ( 0 , T ) 
dui du2 

dxi dx2 

and the boundary condition of Neumann type 

(7) 

V , h v 
, Q 

du\ du\ 
+ 7" 

' du2 

v + 7 

dx\ 

du\ 

dx\ 
rti + v 

P 
dxi dx 

n1+ h v 
\ Q 

(du\ du 
\dx2

 7 

du2 

+ 7 

dx\ 

du2 

n2 = ox 

n2 = a2 on T2 x (0, T ) 
dx2 dx2 

The component form of remaining conditions is clear. In the rest of this thesis both 
vector and component notation wi l l be used. Besides the boundary conditions we 
have just mentioned there are also other types of conditions to be imposed, we shall 
not discuss them in this work, however. 

The classical formulation of our problem may be stated as follows: Find functions 
u e C2([Q x (0,T)] 2 ) and p e Cl(Q x (0,T)) such that the equation (1) and the 
conditions (3)-(5) are satisfied. Finally, let us point out that the Navier-Stokes 
equations are nothing but the expression of the balance of momentum and that the 
continuity equation is the consequence of the conservation of mass. 
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1.2 Weak formulation 

In order to be able to introduce the weak formulation of our problem some facts 
from the function spaces theory are needed. These can be found in the appendix. 
We introduce the spaces V and Vg in the following way 

V = j-u G u = 0 on Fl in the sense of traces j . 

Vg — j i i G u = g on Fl in the sense of tracesj . 

where is the Sobolev space defined in the appendix. 

Let us now derive the weak formulation of the Navier-Stokes equations wi th the 
boundary conditions (4) and (5). We take the first equation in (6), mult iply it by an 
arbitrary test function v\ G V and integrate over Q. After applying the divergence 
theorem and the fact that the functions V\ are equal to zero on r 1 ; we get for an 
arbitrary t G (0, T) 

dui 

~dt 
v1 + A 

' dU! 

li=l dxi 
+ v 

.du\dv\ du\dv\ <9-u2 dv\ 
1 + 7) 1 h 7 

dx\ dx\ 8x2 9x2 dx\ 8x2 

p dv\ 
Q dx\ 

d x i d x 2 = J f1v1 d x i d x 2 + J a1v1 dS. 
(9) 

r 2 

The second equation in (6) is treated similarly. We mult iply it by an arbitrary test 
function V2 G V and integrate over ft. In the same way as before we obtain 

v2 + A 
A du2 

<^Utdx~V2 

i=l u x l 
+ v 

. du2 dv2 du2 dv2 dui dv2 

p dv2 
gdx2 

8x2 dx2 dx\ dx\ 8x2 dx\ 

d x i d x 2 = J J2V2 d x i d x 2 + J a2v2dS. 

(10) 

r 2 

The continuity equation is multiplied by the test function q/g, where q G L2(Q). 
After integration over Q we have 

du\ du2 
dx\ 8x2 

dx\dx2 = 0 . 

After this the weak formulation of our problem reads: For any fixed t G (0, T ) find 
ui(-,t), w 2(-,t) G Vg and p(-,t) G L2(Q), such that (9)-( l l ) are satisfied for arbitrary 
test functions vi,V2 G V and q G L2(Q). 

If we sum the equations (9 ) - ( l l ) , we can write the weak formulation in somehow 
more elegant form: For any fixed t G (0, T) find u(-,t) G Vg

2 and p(-,t) G L2(Q). 
such that 

a(u ,p ,u; v,q) = 0 (12) 
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where 

/
[ <9u p 
< — • v + A (w • V)u] • v + z/(Vu:: Vv) V • v+ 

at p 

+ - V • u Idx 
Q J 

f • v dx cr • v dS 

r 2 

for arbitrary test functions v E V2 and q G L2(Q). Here 

V u : : V v = (1 + 7) 
dui dvi du2 dv2 

dxi dxi dx2 dx2 

du\ dvi duo dvo 

+ 7 
(9M2 (9̂ 1 (9«i <9t>2 

(9xi <9x2 <9x2 9xi 
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2 Space Discretization 

Let us suppose that f2 is polygonal. We perform a triangulation on fi, i . e., we cover 
it wi th a triangulation T consisting of triangular elements e such that 

Q = | J e. 

Next, we shall suppose that the closures of any two distinct triangles are either 
disjoint, or they have a common vertex or edge. The triangles wi l l be often called 
elements and the vertices of triangles wi l l be often referred to as nodes. 

2.1 Hood-Taylor finite element 

The Hood-Taylor finite element P 2 / P 1 w i l l be used in this thesis for the finite element 
method discretization. This means that the velocity wi l l be approximated on each 
element e G T by a polynomial of degree 2 and the pressure wi l l be approximated by 
a polynomial of degree 1. This element satisfies the Babuska-Brezzi condition which 
is substantial for the stability of given approximation. 

Let e G T be an element wi th vertices P f (xfu x 2 1 ) , -̂ 2 (xi2> ^22) a n d Pf(^13, x 2 3 ) 
and by e denote the reference element wi th vertices Pi(0,0), p2( l , 0 ) and Ps(0,1). 
Now we introduce a unique mapping, see fig. (1), from the reference element e onto 
an element e by equations 

xi = x ^ ( 6 , 6 ) = Ai + K2 - + 04» - x i i ) & , 

£2 = X ^ i , 6 ) = Z21 + ( x 2 2 - X2 l )6 + (^23 - » 2 l ) 6 , 

The jacobian of this mapping is 

0 X i ( 6 , & ) 0 X i ( 6 , 6 ) 

( 6 , 6 ) e e . (13) 

9 6 9 6 

0 x 2 ( 6 , 6 ) 0 x 2 ( 6 , 6 ) 
0 6 0 6 

( x i2 x 1 1 ) ( a ; 2 3 x2i) ( x 1 3 x 1 1 ) ( x 2 2 x 2 1 ) 

For the sake of completness let us write down the inverse mapping to the mapping 
(13), 

6 e = 6 ( x i , x 2 ) 

£2 = 6 ( x i , x 2 ) 

l x l x i m x 2 3 x 2 l J l x 2 x 2 m x 1 3 ^ll) 

1̂X2 ^2lJl x 12 1̂ 1 x l l J l x 2 2 x 2 l J 
(x1,x2) G e. 

Thereinafter, we shall make use of the following notation: for a function (p(xi,x2,t) 
defined on an element e. 

^ ( 6 , 6 , t ) = ^ ( x ^ ( 6 , 6 ) , x ^ ( 6 , 6 ) , t ) 

18 



and for a function 0 ( 6 , 6 , )̂ defined on the reference element e. 

(pe{x1,x2,t) = ^(£l(x1)x2))&{x1)x2))t) . 

x2 

Figure 1: Mapping of the reference element e onto an element e. 

So far, we have defined the mapping from the reference element e onto an element 
e. Using this mapping we wi l l be able to carry all the computations onto the reference 
element e, which wi l l much simplify the situation. In the equations (12) there are 
integrals and derivatives. First , let us look at how the derivatives in the reference 
variables look like. According to the chain rule we have 

9 ^ ( 6 , 6 ) ^ ( 6 , 6 ) , * ) _ d^dxl d^dxl _ 9 ^ \ + ftL<T> _ r e ^ 
9 6 ~ dXl 9 6 + 8X2 9 6 ~ dXl

 [ 1 2 1 1 } + 8X2

 1 X 2 2 X 2 l ) 

and in the same manner we would get 

^ ( ^ 1 ( 6 , 6 ) ^ 2 ( 6 , 6 ) ^ ) _ dip 

<96 dxi 

which we may write as 

/ e > ^ ( 6 , 6 , * ) \ 

9 6 

9 ^ ( 6 , 6 , * ) 

V 9 6 J 

From here, by the inversion, we obtain 

x 13 xe

u) + 
dip 
dx2 

x 2:-! X 21) ; 

(A2 x l l X22 X21 

V^13 — x\x 
X23 ~ X21 

( dipe(x1,x2,t)\ 
dx\ 

dipe(x1,x2,t) 

\ Ox? J 

dx\ 
dipe(x1,x2,t) 

\ dx-: J 

(Ki hei2\ 
9 6 

9 < / ? e ( 6 , 6 , * ) 

V 9 6 J 

(14) 
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where 

(X23 X2l)l J i — {X21 X22)l J ) 

^21 = ( X l l — x\z)l1 J£ i ^22 = ( X 12 — Xll)l' J£ • 

Analogously, we would obtain the relation for the second derivatives 

(15) 

( d2<pe(x1,x2,t)\ 
dx\ 

d2tpe(x1,x2,t) 

dx\dx2 
d2ipe(x1,x2,t) 

OXn \ 

he he  
n \ \ n 2 \ 

\{h 

2^11^12 

l i ) 2 2^21^22 

22"-12 
aV(6,6,t) 

96^6 

\ 

(16) 

which do not appear in our weak formulation but we wi l l need them later. 

The integrals appearing in (12) wi l l be computed numerically element-wise. 

J ^ ( x 1 , x 2 ) d x 1 d x 2 = / ^ e (6,6)l^|d6d6 « E w f W ( * & * a ) . ( 1 7 ) 
e e k = 1 

where u)f? are the quadrature weights and £ q

k

e = ( £ ^ , ̂ k ) T are the quadrature points 
of some quadrature rule on the reference element e. 

As was already stated, the Hood-Taylor finite element P2jP\ means approxima
tion of velocity by a polynomial of degree two and approximation of pressure by a 
polynomial of degree one on each element. To this end, we wi l l use the base func
tions with a property that at node Pf of an element e their value is 1 and at all 
other nodes their value is 0. 

Let P 4 ( x ^ , £ 2 4 ) be a midpoint of an edge PfP2l P§(xl5,xl5) be a midpoint of 
an edge P2P^ and P 6

e (x^ 6 ,x \§ ) be a midpoint of an edge P^Pf, see fig. 1. Similarly, 
p4(|,0), Pb{\,\) and Pe(0, \) are midpoints of the edges P\P2) P2P3 and P3P1, 
respectively. Then for the velocity these functions have the following form on e, 

4 = 2 ( l - £ i - 6 X 1 - 6 - 6 

4 = 2 6 ( 6 - 1 ) 

4 = 26(6 - § ) 

4 = 46(1-6 - 6 ) 

4 = 466 

4 = 46(1-6 - 6 ) -

20 



For the pressure the base functions on the reference element are 

L i = 1 - 6 - 6 

U = 6 (19) 

£3 — £2 • 

2.2 Approximation by the finite element method 

The spaces iP( f2) and L 2(f2) where we look for a solution have an infinite dimension 
and consequently, they are useless for numerical computations. The principle of the 
finite element method is an approximation of these spaces by their finite dimensional 
subspaces. In our case this wi l l be the subspace Xhv of continuous functions being on 
each element polynomials of degree 2 and the subspace Xhp of continuous functions 
being on each element linear. Then these functions are piecewise polynomials of 
degree 2 and piecewise polynomials of degree 1, respectively. The functions from 
Xhv are uniquely determined by their values in nodes p including the nodes at 
midpoints of the edges and the functions from Xhp are uniquely determined by their 
values at vertices Pj of the elements of triangulation T. 

The fact that a function (p(xi,x2) is a polynomial of degree m on an element e 
wil l be expressed as (p(xi,x2)\e £ Pm(e). W i t h help of this notation we wi l l define 
the spaces Xhv and Xhv as follows 

Xhv = {uh e C(fi); uh\e e P2(e)} 

Xhp = {ph e C(fi); ph\e e Pi(e)}. 

The functions Qi(xi,x2) whose values are equal to one at node Pj and zero at all 
other nodes are the special cases of functions from the space Xhv. Let PUV be 
a number of all nodes including the midpoints of the edges. Then every function 
Uh £ Xhv may be written in the following form, 

PUV 

uh{xi,x2) = UiQi{xi,x2), 
i=l 

where Ui = Uh(xu, x2i) is the value of a function Uh at node p . From this we observe 
that the functions Qi form the basis of the subspace Xhv of the dimension PUV. The 
significant property of the finite element method is the fact that the functions Qi 
are nonzero only on a small portion of the domain Q. 

In an analogous way we choose special functions Li(xi,x2) from the space Xhp 

whose values at node p are equal to one and at a l l other nodes they are equal to 
zero. If PU is a number of all vertices of the triangulation, then every function 
Ph € Xhp may be expressed as 

PU 
Ph(xi,x2) = ^2piLi(x1,x2), 

i=l 
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where pi = Ph{xu,x2i) is the value of a function ph at node Pi. Hence we have 
chosen the basis of the subspace Xhp of the dimesion PU. 

Let us define the spaces 

Vh = {uh e xhv; Uh(Pj) = o VP,- G F i } 

Vgh = {uh G Xhv; uh(Pj) = g(Pj) V P , G f i } . 

Now we can formulate the discretized weak formulation: For any fixed t G (0, T ) 
find Uh(-,t) G V^ 2

h and Ph{-,t) G X f t p , suc/i that 

n ^ Q Q ) 

-J h • v/, dx - J crh • vh dS = 0 , 
n r 2 

(20) 

or 

a{uh,ph,uh; \ h ) q h ) = 0, 

/o r arbitrary test functions \ h G V h

2 and G Xhp. We approximated the function 
f by a function ih G X 2 ^ in the same way as velocity and the function cr was 
approximated by a function crh G X\p in the same way as pressure. 

2.2.1 Integration on elements 

Because of the particular form of our basis of the space Xhv, every function Uh G X^v 

has on an element e of the triangulation T the following form, 

nv 

uh(xi,x2)\e = ue

h(x1,x2) = ^2ue

iQe

i(x1,x2), (21) 
1=1 

where u\ = ufl(xii,x2i), i = l,...,nv, are values of the function u\ at nodes 
Pi(xu,x2i), i = l,...,nv, of an element e and Q\{xi,x2) G Xhv, i = l,...,nv, 
are the base functions wi th the values equal to one at node P^(xii,x2i) and zero in 
all other nodes of an element e. In our case, as may be easily seen from the pic
ture (1), nv — 6. To achieve some generality we shall stick to writ ing nv, however, 
because if we chose some other finite element the value of nv could be different, in 
general. 

Similarly, the form of the function p^ G X^p on an element e is 

Ph(Xl,X2)\e =pl(x1,X2) = J2PiLi(Xl>Xz) > (22) 
i=l 
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where p\ = p%(xu, x2i), % — 1, . . . ,np are values of the function pe

h at nodes P?(xu, x2i). 
i = 1,. . . ,7ip, of an element e and L\(x\, x2) G Xhp, i — 1,... , n p , are the base func
tions wi th the values equal to one at vertex P£(xu, x2i) and zero at all other vertices 
of a triangle e. We have np = 3. 

We want to transform the last two expressions onto the reference element e. 
From (13), (21) and (22) we get 

< ( z i ( 6 , 6 ) , ^ ( 6 , 6 ) ) = « h & , 6 ) = E < 4 ( 6 , 6 ) 
i=l 

( ^ ( 6 , 6 ) , ^ ( 6 , 6 ) ) = $ 1 ( 6 , 6 ) = E K ^ ( 6 , 6 ) 
i=l 

where Q i , i = 1,. . . the base functions on the reference element given by (18) 
and Li, % = 1, . . . ,np, are the base functions given by (19). Then, on the reference 
element e, for the velocities Uih and the pressure ph we have 

nv 

<4 (6 ,6 ,0 = E < ( * ) 4 ( 6 , 6 ) = [ < f K « = 1,2 

( 2 3 ) 
P e , ( 6 , 6 , 0 = E K ( 0 ^ ( 6 , 6 ) = [p e] Ti , 

i=l 

where K = ( Q i , . . . , Qnv)T, 1 = ( L i , . . . , L „ p ) T , p e = (pf ( t ) , . . . ,pe

np(t))T and u4

e = 

{u\i{t),...,u\nv{t)^ . The test functions Vih, qn and the force fa can be expressed 
in the same fashion 

^ ( 6 , 6 ) = E « & 0 i K i . 6 ) = [ v ' ] T k ' » = i ' 2 ' 

n„ 

& ( 6 , 6 ) = E 4 4 ( 6 , 6 ) = [ t f V « = 1,2, (24) 
i=i 

^ ( 6 , 6 ) = E A ( 6 , 6 ) = [q e] Ti. 
i=l 

where q e = . . . , / f „ J and v4

e = ( u * , . . . , v% 

Let s be an edge of a triangle e wi th end points P[(x{1,x2l), P2{x\2lx22). We 
introduce the mapping from the reference line segment s onto the edge s by 

xi = xl(0 = x u + (xSi2-xu)Z 
e M o , i ) . 

x2 — x2{£) — x21 + [x22 — x2l)£ , 

The length of the edge P(P2 w i l l be denoted by 
JS A IrfS „S ~\2 I (rfS „ s \2 

•J — \l \X\2 -|- • i 2 l J 
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The test functions Vih on an edge s wi l l be again expressed as linear combinations 
of the base functions 

> i , * 2 ) | . = vlh(xi(0,xs

2(0) = vs

ih(0 = £«&4-(0 = t v?] T r ' »= !'2> (25) 
i=i 

where vf = . . . , < s J , r = (ru ..., Rnsv) and 

^ ( 0 = 2 ( 1 - 0 ( 1 - 0 

4 ( 0 = m - i ) (26) 

4 ( 0 = 4 ^ ( 1 - 0 , 

from where we observe that in our case n s „ = 3 and that the base functions Ri are 
restrictions of the corresponding base functions Qk- Thus, the function vlh(£,t) is 
a restriction of the function vfh(£i, £ 2 , 0 on an edge s. Analogously, we express the 
function Oih on an edge s. 

<Jih(xux2,t)\s = as

ih(0 = = K S ] T s ' » = !'2> (27) 

where rr\ = (as

n(t),..., c r | n s p ( t ) ) T , s = ( & , . . . , S „ s p ) and 

5 i = l - £ 
(28) 

from where we see that n s p = 2 and also that the function (rjh(£,t) is a restriction 
of the function afh(£i,£2,t), on an edge s. 

W i t h help of (14) we introduce the following notation 

v / j'=l,..., nv 

^ Jj=l,...,n p 

(29) 

where 

IHf „• 4-{S*4. — 
If we insert the expressions from (23), (24), (25) and (27) into the equation (20), 
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then, regarding (17), we obtain 

E J | [ V ^ A C T U ^ + [ V ^ ] T K K T U ^ + A [ V ^ ] T K [ ^ ] T U ^ V + 

+ 

+ V (1 +7)([vf]T*5[*c5]Tu; + \w\f K\\K\f\xx\f) + [ v ^ K ^ f < + 

+ [vS]T*5[*c5]TuS + 7 ([v;] T *f [«§]T[u§]T + [^]T«§[*5]Tu5) 

1 
[ViJ « i l P + [V 2 J K2l p + [q e]Tl[*5]Tu; + [q e]Tl[«§]TuS 

- [vf]J
 K K f« - [vS]J

 K K f| | J E | d ^ d 6 -

E 
ser 2 

^ | | [ v ? ] W ^ + [ v r r s T ^ | | J l d e = 0. 

where 

'duf^t) duf n(tY 

dt dt 
1,2. 
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3 Algori thm for the Finite Element Method 

In the previous section, for the purpose of being able to find a weak solution, we 
approximated the functions from the infinite dimensional space by the functions 
from the space of finite dimension. We have chosen a particular basis and expressed 
all the functions as linear combinations of the elements of this basis. We have put 
these functions into the weak formulation, expressed the integral over Q as a sum 
of the integrals over each element of the triangulation T and hence obtained the 
discretized weak formulation (30). 

Now we have to perform the numerical integration, taking as a main task to 
express the results in a matrix form which is very suitable for the implementation 
of this algorithm. Further, we need to perform the time dicretization. After this we 
wi l l have to deal wi th a system of nonlinear equations which have to be linearized 
using certain methods based on the Newton method. 

3.1 Elementary matrices 

In order to integrate (30) it is suitable to use the Gauss quadrature. Let us start wi th 
the first term in (30). Denote by £f e = (£ifc,£2fc)T> ^ = 1, • • • ,nqe, the quadrature 
points on the reference element e and by u ^ e , k — 1 , . . . , nqe, the quadrature weights. 
Regarding (17) we have 

| [ v ^ ] T K K T ^ | J e | d 6 d 6 ^ [ v ? ] T 

n, qe 
u. 

[v?r M e n , 

[ v i ] T [ Q e ] T G e Q 6 t i ^ 

<i< 

k=l 

,r\uf . . . o \ ( K T { & ) \ 

V o \Je\<J 

(31) 
u. 

where 

Q e = ( K ( £ D , . . . , K ( C J ) = [QMllm)}i=i 

Ge = d iag{w? e \J e \ , i = l,...,nqe} . 

Similarly, the second term in (30) yields 

J[v^]TKKTu^|Je|d6d6 « [v^] T [Q e ] T G e Q e u^ 

j=l,..., nv 

(32) 
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Finally, after summing (31) and (32), we express the first two terms in (30) as 

[ v i ] T [ Q e ] T G e Q e u ^ + [v^] T [Q e ] T G e Q e u^ 

[ Q e ] T G e Q e O 
([vf] r [v: 

[ v e ] T M e u e 

e lT 
2. O [ Q e ] T G e Q e 

(33) 

where 

u ([u?r, [ u § r ) T , v - ( [ v f , K f 

[ Q e ] T G e Q e O 

O [ Q e ] T G e Q e 

and O is the zero matrix. 

B y the same reasoning we treat the terms in the first square bracket in (30), 

JK]TK[Ki]TuiKTui\r\d^2 

e 

- [<}T E<ek>ive\K]T(e:)utKT(ek

e) 
k=l 

(34) 

[ v i ] T [ Q e ] T G e 

v^] T [Q e ] T G e diag{Q^u^}Q e u^ 

Qeut 

where 

<9Qe , , e dQe 

VSli 1 S2i . 
i=l,..., nq, 
j=l,..., nv 

Here 

<9Qe 

VSli ) S2i r = 1,2. 
i=i,. 
3=1, 
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Analogously for the remaining integrals, 

/ [ v ^ f / c ^ f u^u^lr\ d&dfc « [vi]T[Q e]TG ediag{Q^u^} Q e u * , (35) 

/ [ v f ^ f u ^ K T u ; | J e | d&dfc « [ V a f [ Q e ] T G e d i a g { Q ^ } Q e u * , (36) 
e 

/ [ v ^ ] T

K [ ^ ] T u ^ T u ^ | J e | d 6 d 6 « [v^] T[QK] TG ediag{Q^u^}QKu^, (37) 
e 

where 

(K = (^),-- . ,^)) T = ̂ i ^ + ^ ^ = { ^ ( « . « ) } i _ i b • 
•qe 

j=l,..., nv 

We add (34)-(37) and write the convective term in (30), 

A[[v^]T[Q e]TG ediag{Q>nQ eu 1 + [ vi] T[Q e] TG ediag { Q ^ } Q e u | -

+ [ V 2 f [Q e ] T G f i diag{Q^}QX + [v^] T[Q e] TG ediag{Q^u^}Q eu^ 

/ [Q e ] r G e d iag {Q?u?}Q e [Q e ] T G e d iag {Q|uf} Q e 

^[Q e ] T G e diag{Q?u^}Q e [ Q e ] T G e d i a g { Q ^ u ^ } Q V \ue

2/ 

A([vf] r [ v l f 

[v e ] T AC e l (u e )u e 

where 

/ [ Q e ] T G e d i a g { Q ^ } Q e [Q e ] T G e d iag {Q|u^}Q e 

C e l ( u e ) = I 

J Q e ] T G e d i a g {Q?u|} Q e [Q e ] T G e d iag {Qlu|} CT 

Let us introduce an auxiliary matrix 

/ [ Q e ] T G e O 

\ O [ Q e ] T G e

/ 

and matrices 

H ^ ) = d i a g { Q * u * } Q e , *,i = l , 2 , 

H e(u e) = diag{QX}Q^ + diag{Q eu^}Q^. 

(38) 
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Using these matrices we may write down the matrix C e l ( u e ) as follows 

C e l ( u e ) = $ e 

> H 2 l ( U 2 ) H 2 2 ( U 2 ) 

If we interchanged the order of functions in the integrands of the convective term, 
we could alternatively express these integrals as 

[ v f A C e 2 ( u > e , (39) 

where 

C e 2 ( u e ) = $ e 

' H e ( u e ) O 

O H e ( u € 

Now we move on to the second square bracket in (30). We proceed under the 
same scenario as above, and thus we may immediately write 

(1 + 7 ) ( [ v 1 f [ Q 1 ] T G e Q X + [v^] T [Q^] T G e Q^uy + [ v ? ] r [ Q @ r G e Q £ u ; + 

+ [v^] T [Q 1 ] T G e Q 1 u^ + 7 [vf H Q S f G ' Q ^ + 7 [ v ^ [ Q ^ G e Q ^ = (40) 

= [ v e ] T K e u e , 

where the matrix K e has the following form, 

/ ( l + 7 ) [ Q ^ G e Q ^ + 7 [ Q | ] T G e Q | 7 [ Q | ] T G e Q i 
K e = v 

\ 7 [ Q 1 ] T G e Q | (1 + 7 ) [ Q | ] T G e Q | + 7 [ Q i ] T G e Q ? 

For subsequent integrals in (30), we have 

1 

Q 
[ v ^ f ^ i V + [ v ^ i V J \r\ d6d6 « 

[ v i ] T [ Q i ] T G e L e p e + [ V a f [ Q ^ G e I / p e 

/ [ Q i ] T G e L 
(41) 

I? 

where 

( [ v f ] r [v: 

[v e ] T D e p e 

1 / [ Q i ] T G e L e N 

e 1 [ Q | ] T G e L e 

r 

, £ l i ) } i = l , . . . , n g e 

j=l,...,np 
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Similarly, 

[q e] Jl[K;] Ju; + [q e ] J l [^] J u 

1 

Q 

| J e | d 6 d 6 -

= ^ [ q e ] T ( [ L e ] T G e Q ^ [L e ] r G e Q^) (Q£ 

= [ q e ] T ( - [ D e ] T ) u e . 

Finally, the integral where the volume force occurs yields 

(42) 

[vt]TKKTf! + [ V f ^ f 2

£ \Je\d£i<%2 

[v^] T [Q e ] T G e Q e f 1

e + [v^] T [Q e ] T G e Q e f | 

(43) 

[ v e ] T M e f e 

[ Q e ] T G e Q e O \ / f f 

O [ Q e ] T G e Q 7 \fi 

where f e = ([ff] T , [f|]T) • This completes the integration over elements. 

There are still the integrals over the edges s G T 2 left, though. Denote by £jj?s, 
= 1, . . . , nqs, the quadrature points and by u9

k

s, = 1 , . . . , nqs, the quadrature 
weights of a quadrature rule over an edge s. Then, following the same recipe as 
when integrating over the elements, we get 

/ | [ v ^ r s ^ + [ v r r s ^ } | J l d e 

[ v f [ R f G s S V ! + [ v * ] T [ R s ] T G s S V 2 

slT \T* siTsc<s, 

(44) 

(t 

[ R S ] T G S S S 

O 

o 

• [ v f N V s 
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where 

j=l,...,ns 

S s = { W ) } , , , Gs = d i a g K ' l A * = 1, • • • ,n,8} 
' J=l,..., n s p 

After inserting the expessions (33), (38), (40), (41), (42), (43) and (44) into the 
equation (30), we finally obtain 

{ [ v e ] T M e u e + 
' K e + AC e (u e ) D e \ / u e \ / M e f e 

- \ m T o w \ o (45) 

- E t v 1 T N S c r S = 0 

For better convenience we repeat the meaning of individual matrices in (45) here. 
O n an element e the vectors of parameters are 

u 
du e 

~d7 
, v e = ( [ v ^ r , [ v 2 r ) T , r = ( K r , [ c 

and on an edge s we have 

v s = ( [ v f , [ v f T 

i f ) , 
(46) 

(47) 

In (45), O is a zero matrix and o is a zero vector. We have defined the auxiliary 
matrix <&e by 

' [ Q e ] T G e O 

O [ Q e ] T G e , 

The elementary matrix M e is 

[ Q e ] T G e Q e O 

O [ Q e ] T G e Q e , 

and the elementary matrix K e was defined as 

A l + 7 ) [ Q i ] T G e Q U 7 [ Q ! ] T G e Q J 

(4£ 

(49) 

K e = v 
t[QI] G E Q ! 

V 7 [ Q ? ] T G e Q | (1 + 7 ) [ Q | ] T G e Q | + 7 [ Q ; ] r G e Q ; y 

(50) 
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To express C e (u e ) we will make use of the matrices 

H ^ K ) = d i a g { Q ^ } Q e , 1,̂  = 1,2, 

H e (u e ) = diag{Q eu^}Q« + diag{Qeu^}Q^. 

The matrix C e (u e ) may be written in two ways. Either as C e (u e ) 

/ H f ^ u f ) H P

1 2 « 
C e l ( u e ) = $ e 

\ H 2 i ( u | ) HSaCuS), 

or as C e (u e ) = C e 2 ( u e ) , where 

/ H e ( u e ) O \ 
C e 2 ( u e ) = $ e 

V O Win*)) 

The matrix D e is defined as 

/ [ Q i ] T G e I / 
JQS] T G«L« 

D e - — 
Q 

and finally 

N s = 
R S ] T G S S S O 

O [ R S ] T G S S 

Further, in these matrices the following occur, 

Q 6 = {Qj(£,U , £,2i)}i=l,...,nqe ) V = { £ j ( £ l i , £ 2 i ) } i = l 
j = l , . . . , n „ 

j=l , . . . ,n s p i=l , . . . ,n s „ 

G e = d i a g K e | J e U = 1,... ,nqe}, G s = diag{wf | J s | , t = 1 

and 

3Q e 

96 k = l 
i = l , . . . , 
.7=1,..., n „ 

3.2 Time discretization 

We consider a partition 

0 = t 0 < *1 < • • • < *n-l < tn < . . . < tN = T 



of the interval (0, T) into N intervals and N + 1 time layers. The timestep between 
individual time layers wi l l be assumed constant and wi l l be denoted by A t . Functions 
evaluated at time tn wi l l be denoted by a superscript n. This means that, for 
instance, u e , n w i l l stand for the vector of velocity parameters at time tn. Similarly, 
pen wi l l be the vector of pressure parameters at time tn. Further, u e ' n _ 1 is a vector 
of velocity parameters at time t„_ i and fe'n or crs,n is a vector of parameters of f e 

or crs, respectively, at time tn. 

The time derivative of the vector of velocity parameters ü e wi l l be approximated 
by the backward difference 

ü e ( t r , 
u e , n _ u e , n - l 

At 

Then, the implicit Euler method in every time step leads to the following: find u e 

and p e ' n , such that 

e,n _ u e , n - l 

M e + [K e + AC e (u e ' n ) ]u e ' n + D e p e ' n - M e f e ' n 

E [ v e ] T 

- [q e ] T [D e ] T u e ' n \ - E [ v s ] T N V s ' " = 0 

(5f 

holds. The values of u e ' and p e' are determined from the init ial condition. 

3.3 Linearization 

The equation (58) is nonlinear because of the convective term A C e ( u e ' n ) u e ' n . There
fore, we have to iterate to solve it for u e , n and pe,n. Using u e ' n ' f c _ 1 and p e ' n ' f c _ 1 from 
the previous iteration we wi l l compute the new approximations u e , n , k and p e' n' f c. 

Let us look back at the discretized weak formulation 

a(uh,ph,uh; vh,qh) = 0. 

First of al l , we wi l l approximate the time derivative in the form a by the difference 
quotient and then split it into two forms b and c as follows, 

b(un,pn; v,q) 
At 

• v + z/(Vu n:: Vv) - • v n + • u n -
Q Q 

- P - v d x - y c r n - v d ^ . 
' r 2 

(59) 

c (u n ,w n ; v) =J \[(wn • V ) u r v dx. 
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Hence we have separated the convective term using the form c. Thus in the n-th 
time step we are seeking and such that 

b(ul,pl; v f t , ? f t ) + c « X ; v h ) = 0 

for each v/j G V^2 and qy, G 

Let us now introduce the functionals F i (u ,p ) and F 2(u) through relations 

F i ( u " , p n ) = F i (u r \ p n ) (v , g ) = &(un,j/*; v,g), 

F 2 (u n ) = F2(u")(v) = c (u n , u n ; v) . 

(60) 

If we define d = u^'fc — u^'k 1 and 5 = pn^K — p%K 1 , we may write down the scheme 
of the Newton method as 

n.k n,k—l 

d F 1 ( u r - i , p r _ 1 ) ( d , < 5 ) + d F 2 ( U r - i ) ( d ) = 

7-i / ra.fe— 1 n.k—1\ 771 / Ti.fe—1\ 
= - i 7 l ( u / i >Pft ) , 

where d F i ( u ^ ' f c _ 1 , p ^ ' f c _ 1 ) and dF 2 (u^' f c _ 1 ) denote the Gateaux derivative, (see 
Because of the fact that F1 is linear, we have 

d F 1 K ' f e - 1 , p ^ - 1 ) ( d , 5 ) = F^S) = F1(u%k,pl'k) - F i W * - 1 , ^ - 1 ) , 

which, after substitution in (61), yields 

Fi{<\pnnk) + dF2(un

h>k~l)(d) = - F 2 ( u f - 1 ) . 

(61) 

(62) 

Let us now compute the Gateaux derivative of F 2 . First , we shall rewrite the con
vective term as 

A < ' V K -vh = Xu 

where we used the summation convention. It means we sum up over the index 
occuring twice in a single term. In this case we sum up over i and j, i, j — 1, 2. The 
Gateaux derivative of F 2 is given by 

d F 2 K ' f c - 1 ) ( d ) = A 

- A 

r_d_ 
dr 

_d 
dr 

n,k— 1 rdl 
r = 0 

n , f c - l | J \d(Uhi + Tdi) , n 

.lifci +rd,) vhidil "hj dxj J r = 0 

- A 

- A 

J' dx~- V h l ^ T d ^ ~ V H d Q 

T=0 

n,k-l o r 
fei i n , f c - l u a i 

^—vhi + uh- —vhi 

du 
dxj 

I n,k—1 i \ i / j n,/c— i 
= c(u h' , d; v h ) + c(d, u h ' ; v h 

n.fc—1 
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from where, after substitution in (62), we obtain the Newton method scheme 

r / n,k n,k \ , / n,k n,k—l \ . / n.k—1 n,k \ 
H u f t ,Ph I vh, qh) + c(uh' , uh' ; v h ) + c(u h' , u h ' ; v h ) -

— c u 
n,fc—1 n,fc—1 
ft 5 "ft v h) = 0. 

(63) 

From here one easily sees how the equation (58) wi l l be affected by the Newton 
method. The convective term wi l l be approximated by 

C e (u e ' n ' f c )u e ' n ' f c « c e 2 (u e ' n ' f c - 1 )u e ' n > f c + 

+ /3 

where, for /3 — 1 we have a linearization by the Newton method, and for (3 = 0 we 
obtain a simplified linearization of Oseen type. The unknown parameters u e , n , k and 

}e,n,fc a r e ^ j i e n computed from the equation 

1 
At 

M e + K e + A^C^fu"'"'*- 1) + AC^fu"'"'*-1)) ue'n'k+ 

+ D e p e ' n ' f c - A / 9 C e l ( u 

- [q e]T[D e]Tu e'"' f c] - ^ [ v f N V 8 ' " = 0 

el ^„e,n,fc—1\ e,n,fe—1 ]\/[ e 

A t u e,n—l i pe,n - (64) 

We iterate according to this scheme in every time step. Iterations are stopped if 
the difference of the two successive iterations is sufficiently small or if the number 
of iterations overruns some preassigned value. If this scheme converges, we put 

pe,n,fc ^ g ini t ial approximation we take a solution from the u u 
e,n,k r.e,n 

previous time, i . e. u e,n,0 
U e.n—1 r.e.n.0 _e,n—1 

When doing the computations, from (64) we form 

v T ( A u - f) = 0 

using a standard algorithm. Because the vector v may be arbitrary, it must be true 
that 

A u = f. 

This system of linear equations is then solved by some suitable method. 
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4 Stabilization 

Stability of (64) is restricted by the Reynolds number. When the Reynolds number is 
too high, the convective term dominates the Navier-Stokes equations and the scheme 
(64) becomes unstable. Thus it is necessary to stabilize it. Stabilized finite element 
method is formed by adding to (12) a stabilizing term causing a small perturbation. 
One of the main questions arising quite naturally is "how much of the perturbation 
term one has to add to obtain satisfactory results". This problem is addressed by the 
stability parameters whose suitable design may achieve the stability of given scheme. 
In general, the design of these parameters depends on the particular method. 

4.1 Stability parameters 

In this section we assume A = 1 since otherwise the stabilization is not needed. Let 
us define the stabilizing term 

(u,p ,w;v ,g) = J2 
e e 

+ E / < 5 e [ V - u ] [ V - v] d x . 

+ A(w • V )u - 2z/V • e(u) + -Vp - f 
at Q 

i/je(w; v, q) d x + 

(65) 

Here, as the test function we take 

ij£(w; v, q) = re

u(w • V)v - r s

e 2z /V • e(v) + re

p-Vq . (66) 
Q 

We may point out here that if u and p is the classical solution of (1) and (2), then 

as(u,p, u; v,q) = 0 . 

The stability parameters r „ , rp, r s

e and Se are adjusted using one, or some combina
tion, of the following methods 

• S U P G (Streamline Upwind Petrov-Galerkin) 

• P S P G (Pressure Stabilizing Petrov-Galerkin) 

• L S I C (Least Squares on Incompressibility Constraint) 

• G L S (Galerkin Least Squares) 
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We perform the space discretization in the same way as in the previous sections. 
Now we seek U / j , ph, such that 

a(uh,ph,uh; V h , q h ) + as(uh,ph,uh;vh,qh) = 0. (67) 

If we approximate the time derivative in the form as by the difference quotient, we 
obtain a form bs given by 

6 s (u n ,p n ,w n ; v,q) = 

E 
u n _ u n - l 

A / + A(w n • V ) u n - 2iA7 • e(un) + -Vpn - f" f(w"; v, q) dx+ 

E y 5 e [ V -u"][V • v] dx. 

Define a form B(un,pn, w n; v, g) as 

B ( u n , p n , w"; v, q) = b(un,pn; v, g) + c(u", w"; v) + bs{un,pn, w"; v, g) . (69) 

Thus in the n-th time step we seek the approximate solution G V2

h and p% G -X^p 
satisfying 

B K , p g , < ; v f c , g f c ) = 0 

for each v f t G V^ 2 , g/,, G A % , . 

Now the description of the stability parameters in particular cases follows, 

(70) 

1. S U P G + P S P G + L S I C for where the velocities are approximated by a 
polynomial of degree higher than that of a polynomial used for the pressure 
approximation. We choose (see [2]) 

e e —\he
 l 2 AE

 1 
Tu ~ Tp ~ A ["'ma.xi 5 0 — 1 ; 

where / i m a x is the largest edge of a triangle e. 

2. In the case of the G L S method we choose (see [1]) 

T = T ' u p 

1 

4z/A 
max 

1 

\e | i i e 

max I 

0 < R e e < 1 

, R e e > 1, 

Se = r:\ue\2, 

(71) 

(72) 
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where 

R e e 
i r 

W A ^ 

Further, 

|u e | = max \u ij\ • 1,2, j = l , . . . , n v 

and A ^ a x is the greatest eigenvalue of the problem 

deij(uh) deik(yh 

dxj 
dx = A e / et]{uh)et]{vh) dx V v h G P2(e)/Z (73) 

<, dxk 

for 7 = 1, where Z = {v G -Pf (e); e(v) = o}, d i m Z = 3, or 

J Auh • A v h dx = A e J V u f t : V v f t dx Vv h G (P 2 (e 

for 7 = 0. In (73) we used the summation convention again, and 

„ _ du\ dvi dui dv\ du2 dv2 du2 dv2 

V u : V v = 1 1 1 . 
dxi dxi dx2 dx2 dx\ dx\ dx2 dx2 

(74) 

4.2 Matrix form of the stabilizing term 

Obviously, the stabilizing term is nonlinear. Several methods may be used to l in
earize it. Probably the most simple one, known as Oseen method, computes un,k 

and pn,k from the equation 

r-t / n.k n.k n,k—l \ 0. 
A little better linearization, based on the Newton method applied to the convective 
term c, yields the scheme 

T> i n,k n,k n,k—l \ . i n.k—I n,k \ i n.k—I n.k—I \ 
B i u h ,Ph >uh ;vh,qh)+ c{uh> ,uh' ;v h) - c(uh' ,uh' ;vh) 0 

In this thesis we wi l l use yet more sophisticated scheme, although still not the 
full Newton method. It is obtained by applying the Newton method also to the 
convective term occuring in the stabilizing term. To be more precise, we add to the 
left hand side of the equation (64) an approximation of the expression 

E 
n.k 71 — 1 

. \ / n.k—1 n.k , \ ni n.k T - 7 \ n.k—1 

\ ni n,k—l T-7\ n,k—l , / n,k\ . •'•»-7 n.k cn 

- A^(u h' • V ) u h ' + e iv + -Vph' - rh 

Q 

+ re

se{\h) +rl-Vqh 

< { < k - X • V)v f c + (75) 

dx + ^ | ^ [ V - u f ] [ V - v , ] d x , 
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where e(w) = (ei(w), e 2 (w)) with 

d2w\ d2wi 
e i l w ) = —v 

e 2 (w) = —v 

( 1 + 7 ) - + 7 
d2w2 

dx2 dx\ dx\dx2 

( 1 + 7 ) 
d2w2 t d2w2 

dx 
d2w\ 

2 9xf ~'~^(9X1(9X2 

To integrate (75), we proceed in exactly the same way as we did when deriving the 
equation (45). Using (16) we employ the following notation 

Q A.7 
(9 2 O e (9 2 O e (9 2 O e 

Oil 

d2Q) 

dxkdxi 
(tie p. 

2 i ) 

i=l,...,nqe 

j=l,...,nv 

(76) 

he
kl + h k:2 

8Le 

W2 

dL 

dxk 

3 (c1e d1e^ 
I S l i 5 S 2 i ) 

i=l,...,nqe 

j=l,...,np 

Let us start wi th the second term in (75) multiplied by the first term in the second 
square bracket. Then we get 

A < / E u hi 

r\ n,k r\ r\ U,k -\ 
k-lauhi n,k-lovhi n,k-l °uhi n,k-l°vhi , 

+ Uhl o _
 uh2 r . + 

i = l 

/a dx? 

n,k-
h2 

-idu n,k 
hi _.n,fc- n,fc-

/ i , 2 

n,k 
hi _.n,fc- dx 

e,n,k 

dx2

 111 dxx h l dx2

 h l dx2 

and, after integration, this is approximately equal to 

A r : E [ [ v l

e ] T [ Q ^ ] T d i a g { Q e u r ' f c - 1 } G e d i a g { Q e u r ' f c - 1 } Q 1 u r + 
i=l 

+ [ v l

e ] T [ Q ^ ] T d i a g { Q e u r ' f c - 1 } G e d i a g { Q e u ^ " ' f c - 1 } Q ^ u r f c + 

+ [v l

e ] T [Q^] T diag{Q e ur ' f c - 1 }G e diag{Q e ur ' f c - 1 }Q^r f c + 

+ [ v - ] T [ Q 2 ] T d i a g { Q e u r ' f c - 1 } G e d i a g { Q e u r ' f c - 1 } Q ^ u 

which can be written as 

A r u

e ( [ v ^ [ V 2 f 
/ H e ( u e,n,k— 1 

(77) 
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Wri t ing down the integration of the second term in the first square bracket multiplied 
by the second term in the second square bracket would be quite cumbersome so we 
confine ourselves to stating just the result 

/
\ / n.k—1 T - 7 \ n.i dx 

Ar>([vf ] r [v l f 

r*e(vft) 

/(i + 7)Q!i + Q e 
22 TQ 12 

V 7Q12 (1 + 7)Q22 + Qll) 

/ H e ( u e ' n ' f c - O \ 

G V [ 0 H e ( u e , n , f c -

(78) 

Finally, the second term in the first square bracket in (75) multiplied by the last 
term in the second square bracket after integration yields 

A 
[q1 T [L f ] T Gdiag{QX ' n , f e " 1 }QiUr ' f e + [q e] T[Lf] TGdiag{Q eur , f e- 1}Q^u i' f e+ 

+ [ q r [ L 2 f G d i a g { Q V ' n ' f e " 1 } Q i ^ 

which we write in a matrix form as 

/He(ue,n,fc-1) Q 

ra, k 

t 

[0 V o e (-~e,n,k—1 H e ( u 
(79) 

Let us define matrices 

; i + 7 ) Q n + Q22 7Q? 

(i + 7 ) Q | 2 + Q i i , 

>12 

and 

$ s e(u e 

/ H e ( u e 

T 

\ 

o 
^ O W{ue)/ 

- r!z/V e 

Now, if we sum up (77), (78) and (79), we may write the second term multiplied by 
the second square bracket in (75) as 

u 
A ([vj]T [ V ^ ] T [qe]T) $ s e ( u e ^ - l ) C s e 2 ( u e ' n ' f e _ 1 ; 

e,n,k\ 
1 

e,n,k 
JO) 

where 

Cse\ue) = 
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Our experience now suggests that the third term multiplied by the second square 
bracket in (75) wi l l have the following form, 

X(3 ( [ V ^ ] T [ V | ] T [ q e ] T ) ^se^ue,n,k-l^Csel^ue,n,k-U 
/ u e,n,fc^ 

1 

e.n.k 

where 

C s e l ( u e ^ 
^ H i i ( u i ) H l 2 « 

^ ( u l ) H ^ u * ) 

Further, for the fourth term multiplied by the second square bracket in (75) we have 

A / 3 ( [ V ^ ] T [ V | ] T [ q e ] T ^ a e ( u e 1 n 1 f c - l ) C « S l ( u e 1 n 1 f c - l > 
U 

e,n,k—Is 

1 

e,n,k—1 

Vu2 

(82) 

Integrating in the same way again and again, for the fifth, sixth and seventh term 
in (75), a l l multiplied by the second square bracket, we arrive at 

( [vf ] T [ v | ] T [ q e ] T ) ( - i/)$ a e(u e>n> f c- 1)V e 

e,n,k^ 
1 

e,n,k 

e,n,k—1 i 
( [v f ] T [ v | ] T [ q e ] T ) - * S e ( u ' 

( [v f ] T [ v | ] T [ q e ] T ) ^ - ( u ^ - 1 ; 

ne,n,k 
P ) 

°1 
1° Q V 

(83) 

34) 

35) 

respectively. Analogously, for the difference quotient we have 

(Qe O 

and finally, integration of the last term in (75) yields 

/ e,n,k\ 

e,n,k 

Vu2 

/ e,n—1^ 

e,n—1 
U 0 

36) 

^ ( [ v f F [v: i f 
/ [ Q i ] T G 6 Q i [ Q i ] T G e Q e,n,k^ 

U i 

e,n,k 

Vu2 

37) 
V [ Q S ] T G e Q f [ Q 2 ] T G e Q 2 / 

Now, if we insert the expressions (80)-(87) into (75), we obtain the stabilizing 
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term in the following matrix form, 

e 

+ \pcsel(ue'n'k-1) + A C s e 2 ( u e ' n ' f e - x 

A t 
Mse + Ks 

u 
e,n,k i T~vse_,e,n,fc 

- A/3C s e l (u e ' n ' f c _ 1 ) -Mse 

+ ^ ( 5 e [ v e ] T K 9 e u e ' n ' f c . 

A t u e,n— 1 i r e , n 

The description of matrices occuring in (88) now follows. We have already defined 
matrices 

$ s e ( u e 

V 

/ H e ( u e ) O \ 

v O H e ( u e ) y 

e y e e. 
'a v 

(Ge O 

O G e 

(89) 

and 

/ ( l + 7 ) Q 1 1 + Q ^ 2  

v 7 Q ? 2 ( i + 7 ) Q ! 2 + Q W 

(90) 

Then we have, 

A T 
O Q e

y 

K s e = - z / V e , 

C s e l / e > 

C s e 2 ( u e ^ 

^ ( u l ) HSa(uS)y 

/ H e ( u e ) O) 

v O H e ( u e ) y 

D 
1 ^ 

(91) 

(92) 

(93) 

(94) 

(95) 
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K <!< 

^[Qi ] T G e Qi [Qi] T G e Q2 

v[QI] T G e Qi [ Q | ] T G e Q | 
(96) 

In practice we proceed as follows. We add the stabilizing term (88) to the left 
hand side of the equation (64) and from this equation we form 

v T ( A u - f) 0. 

Because the vector v may be arbitrary, 

A u = f 

must hold. We solve this system of linear equations in every iteration. 

We have still not shown how to solve the eigenvalue problem (73). Using the same 
integration process as always in this thesis, we arrive at the generalized eigenvalue 
problem 

A e u e = A B e u e (97) 

where 

for 7 = 1, and 

elT 
/ G e O 

O Ge 

B e = — K e 

2u 

[V elT 
/ G e O 

v e 

B' 

for 7 = 0. 

O G e

7 

A Q i ] T G e Q i + [ Q | ] T G e Q | O \ 

v O [ Q i ] T G e Q i + [ Q ^ ] T G e Q ^ 

We may note here that this eigenvalue problem does not depend neither on n 
nor on k. Therefore, for each element we compute the greatest eigenvalue only once 
and for al l . 
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5 Example: Rotating Ellipse 

In this section we finally arrive at an example where we can test our algorithm. Let 
us consider an ellipse inside a circle (see fig. 2), where 

• r is a radius of the circle. 

• a is a semi-major axis of the ellipse. 

• b denotes a semi-minor axis of the ellipse. 

• uj(t) stands for angular velocity of the ellipse wi th u m the maximal angular 
velocity, 

• Q is the domain, 

• T i and T 2 are two parts of the boundary dfl. 

The hatched area between the circle and ellipse is occupied by a fluid. 

b 

Figure 2: Ellipse rotating in a circle 

So we are given the geometry of the problem and the expression for angular 
velocity to assure smooth start of the rotation. Our aim is to describe the velocity 
field and the pressure of a fluid as the ellipse rotates. Moreover, from these data we 
shall compute a force and momentum acting on the ellipse. The boundary condition 
on T i is defined by the angular velocity u(t). O n T 2 we impose u = 0. Note that 
on both Ti and T 2 we assign the Dirichlet boundary condition, which means there 
wi l l be no surface integral in the weak formulation. There are also no sources, which 
implies f = 0. 
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5.1 A L E formulation 

In the example presented above we have to deal wi th a moving domain f2, a problem 
we could not solve using the algorithm presented in the previous sections. Thus 
we need to use the A L E (Arbitrary Lagrangian Eulerian) formulation. Very good 
description of the A L E formulation may be found in [4]. To describe the motion of 
a fluid one usually works wi th material domain i ?x and/or spatial domain Rx. To 
pass from one domain to another one introduces a mapping 

( X , t ) ^ ^ ( X , t ) = (x, t ) (9£ 

which assigns to every material point X a spatial position x at time t. Obviously, 
for the material velocity u we have 

„( v ( x,.) ,0 = * f J ) . (99) 

To describe the moving domain we introduce yet another domain, Rx, and a mapping 
$ (see fig. 3), 

= (x , t ) , (100) 

which describes the motion of the domain in spatial coordinates x . Then the domain 
point velocity is 

d*{X,t) 
dt 

101 

Usually, the domains i ?x and Rx are fixed and correspond to some ini t ial configu
ration at time to-

Figure 3: A L E description 

In what follows, for a function / ( x , t) defined in spatial domain, the material time 
derivative wi l l be denoted as 

d_ = d_ 
dl = di 
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the spatial time derivative as 

d_ = d_ 
di = di*' 

and the A L E time derivative as 
Qa Q 

1 

X dt dt 

where, for example, means "holding X fixed". 

To derive the Navier-Stokes equations in the A L E formulation, we need to con
sider the derivatives of the integrals over a moving volume occupied by a fluid. Let 
Vt be an arbitrary volume at time t wi th dVt its boundary and let / ( x , t) be a scalar 
function defined in the spatial domain. Then, (see, e.g., [7]) 

- / / (x, t) dV = J I + V • [/(x, t)u(x, t)} dx = 

(102) 

= jdJ^1^V+ J / ( x , t ) u - n d 5 , 
Vt dVt 

where n denotes the unit outward normal to the surface dVt at time t. The last 
identity is known as the Reynolds transport theorem. 

Accordingly, if we interchange the material time derivative wi th the A L E time 
derivative, we obtain 

vt vt 

Jf(x,t)dV = J p ^ 2 + V - [ / ( x , t ) c ( x , t ) ] dx 

dt 

vt dvt 

Now, if we subtract (103) from (102), we can write 
d r . , s , „ & 

(103) 

dt Jf(x,t)dV=-Jf(x,t)dV+ J / ( x , * ) [ u - c ] . n d 5 . (104) 
Vt Vt dVt 

The equation (104) allows us to express the material time derivative in terms of the 
A L E time derivative. 

Let us note that the continuity equation remains unchanged in the A L E formu
lation. Hence V • u = 0 holds. Using (104) we may write down the second Newton 
law for an arbitrary control volume Vt as 

dt 
J £>u(x, t)dV+ J gu[u — c] • ndS = J ^f(x, t ) d x + J rndS, 
Vt dVt Vt dVt 
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where f is the density of the body force and r = ( T J J ) " j = 1 is the stress tensor. 
Apply ing (103) to the first integral and the divergence theorem to the last integral 
in the above identity yields 

J (—£>u(x, t) + £>u(x, t ) V • c(x , t) J d x + J gu[u — c] • n dS = 
vt ^ ' dVt 

(105) 

= J of (x, t) dx + J V • r dx . 
V v t 

Next, we apply the divergence theorem to the second integral in (105). Thus 

J £>u(x, t) [u(x, £) — c(x, t)] • n dS = J g (u(x , t) — c(x, if) • V u(x , t) d x + 
9V V 

+ J ^u(x, t) [V • u(x , t) - V • c(x , *)] d x . 
V 

Substituting this identity in (105) and using the continuity equation, we obtain 

J — gu dx + y g[(u — c) • V ] u d x = J g{ d x + ^ V • r dx , 
Vt V t Vt Vt 

and hence 
Qa 

— QU + Q[(U-C) • V]u = + V - T . (106) 

For the Newtonian fluids one may derive the following form of r , (see, e.g., [6]) 

r = - p i + 2/ie(u), 

where I is the unit tensor and \i is the dynamic viscosity assumed constant. Using 
this expression we finally obtain the Navier-Stokes equations in the A L E formulation, 

| - u + [(u - c) • V ] u - 2z/V • e(u) + - V p = f in ttt, (107) 

where v — fi/g and Qt is the domain at time t. Obviously, we have to add the 
continuity equation 

V • u = 0 in Qt. (108) 

5.1.1 A L E discretization 

Let us fix some point x m the reference domain Rx. We may imagine this point as 
a mesh node, for example. For given time steps tn and t „ _ i , we denote by 

x n = * ( x , 0 
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and 

the images of the point x a t times tn and £„_i, respectively. We shall also use the 
following notation, 

u*(x,t) = u(^(X,t),t). 

Then, 

da du*(X,tn) U * ( x , t n ) - U * ( x , * n - l ) _ U ^ X ^ - U ^ ^ X " - 1 ) 
^ U ( X , t „ ) - - » — - — . 

This is only a little variance wi th regard to the algorithm derived in the previous 
sections. We only have to note that the new value u n , and also pn, computed at 
time tn belongs to the node x™, translated wi th respect to the node x n _ 1 due to the 
A L E mapping <J>. 

If we take a look at our algorithm, we can easily see that the moving domain 
wi l l affect it as follows 

We compute the new position of the points x™ of the computational mesh and 
then we find the velocity 

Y e , n Y e,n—1 
ce,n = X 

• In matrices C e 2 , C s e 2 and «frse, we substitute the velocity u e ' n ' f c _ 1 by the dif
ference of velocities u e ' n ' f c _ 1 — ce,n,k~1. Also in (72) and subsequent expression 
for R e e we consider | u e ' n ' f c _ 1 — ce,n,k~1\ instead of | u e ' n ' f c _ 1 | . 

In computations presented below we proceeded differently. To avoid computation of 
the new position of points x™ in every time step and to assure better convergence of 
the Newton method we use the difference u e ' n ' f c _ 1 — c e ' n _ 1 instead. This is possible 
since the mesh velocity is relatively small. 

5.2 Resulting force and moment acting on the ellipse 

In every time step tn we want to compute the force and moment acting on the 
rotating ellipse. For the force we have 

2 

^TijUjdS, i = l , 2 , (109) 

r, J = 1 
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and the moment is obtained from 

r 2 

M = J E njnjfidS, (110) 
r i » J ' = 1 

where 

f\ = -{x2 - xo2), r 2 = x i - x 0 i , 

x o — (^oi) X02)T is a point we compute the moment wi th respect to. In our case this 
wi l l be the origin. We shall proceed according to [9]. 

5.2.1 Force 

We start by writ ing the time-discretized Navier-Stokes equations in the A L E form 
component-wise. 

^ + ^ E K - ^ ) g = E g + ^ < = 1 ,2 , (111) 
3—1 ^ j—1 3 

where fi„ = fitn. Let us define fin = U{e G T „ ; e fl fin 7̂  0}, which represents 
the union of finite elements having nonempty intersection wi th T i . T„ denotes 
the triangulation at time tn. Next, we choose a test function ip G Xhv such that 
p(x) = 1 for x G and v?( x) = 0 outside fin- Mul t ip ly ing the equation (111) by 
if, integrating over fip1 and using the divergence theorem, we arrive at 

r U

n — U

n - X r 2 Qun f 2 

J Q 1 £-r—V dx1dx2 + J g\J2(uj- cl^~QJ~iP d x i d a ; 2 = J E r * i n i d S ~ 

~ y r i j ^ - d x i d x 2 + y gfiip d x i d x 2 , « = 1,2 
(9<̂  

From here we see that 

- (p d x i d x 2 — I p 
3=1 ""i 

r 2 dip r ) 
+ 2z/ J g^eij(un)—dxldx2- j gfiipdxldx2 > , z = l , 2 . 

r>„ i= l r>„ J 
- 1 s ' r l 

; i i 2 ) 

Now we perform the finite element approximation as in previous sections and the 
function ip wi l l be approximated as velocities, i.e., 

nv 

¥ > ( x ) | . « E</>-4(6 ,&) = [*> e ]V 
i=l 

19 



where cp = (ipl,..., (pnv)T is the vector of parameters of ip. App ly ing the usual 
integration process, we may express the resulting force as 

At 
f [ A C e l ( u e ' n - c e ' n ) + K e ] u e ' n + D e p e ' n - M e f e 

; i i 3 ) 

where cpe = ([<pe}T', [ipe]1 

l for Pf e r j 

0 for P / £ T i 

a n d F = {Fl,F2)T. 

j = l , . . . , n v 

5.2.2 Moment 

Again, we start from the equation (111). This time we choose a function v 
(^ i ,^2) T = (Wi,ipf2)T• We approximate fj, % — 1,2, same as 99, i.e., 

p (x) | e « [v?e]TK e i T „ ~ I ^ r 9 . e l T K . 7 — 1 0 

Let us mult iply (111) by viy sum over i — 1,2, and integrate over firi. Similarly as 
for the force, we obtain 

M = £ / e 
i = l 

< - «r 1 

A t 

2 9M™ 

j=l O X J J 
pnTT— dx idx2+ 

OXi 

2 z / / 2 H % ( u ™ ) d x i d a ; 2 - y e / Ä d x i d x 2 1 • 
n r , i = 1 X j n r i ^ 

After numerical integration we get 

1 ~ 
M e + A C e l ( u e ' n - c e ' n ) + K 

A t 

- M e 

u e ' n + D e p e ' n -

1 
f?e,n I •*• e,n—1 

A t 

; i i 4 ) 

The description of the matrices occuring in (114) now follows. Let us define the 
auxiliary matrices 

R, e = diag{Q erJCr i = 1,2. 

R « = d i a g { Q e f i } Q " + d i a g { Q " f i } Q e , i,j = 1,2 
; i i 5 ) 
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and 

([Rf]TGe O 

V O [Rol T G e 

(116) 

Then 

K e = v 
/ r ( l + 7 ) [ R f i ] T G Q f + [Rf 2 ] T GQ| 

7 [ R | 1 ] T G Q ^ 

and 

M e = $ e 

/ Q e O 

7 [R? 2 ] T GQ^ 

(l + 7 ) [ R y T G Q | + [ R y T G Q ^ 
(117) 

(118) 

C e l ( u 
' H f ^ u f ) Hf 2 (uf 

D e = -
/ [ R f 1 ] T G L e 

j R 2

e

2 ] T G I / 

(119) 

(120) 
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6 Numerical Results 

In this section we present the results of the numerical computations using the algo
r i thm described in this thesis. The algorithm wi l l be tested on the rotating ellipse 
introduced in the previous section, see fig. (2). First of al l , we define all the necessary 
data. 

Geometry of the problem 

• The radius r = 0,2 m 

• The semi-major axis a = 0,15 m 

• The semi-minor axis b = 0 ,1m 

Properties of the fluid 

• The density g = 1000 k g / m 3 

• The dynamic viscosity /x = 0,05 N s / m 2 

• The kinematic viscosity v — /j,/g — 5 • 1 0 _ 5 m 2 / s 

The angular velocity is defined by 

u(t)=um(l-e-at), 

where u m = 50rad/s and a = 2. 

6.1 Triangulation 

Here we show how the triangulation of the computational domain is implemented 
and how it changes its shape as the ellipse rotates. The domain is discretized by nc 

nodes around the circumference and nr nodes in the radial direction. The nodes of 
the triangulation at the ini t ial time can be seen in figure (4). 

There is a refinement near the boundary of the ellipse since it is a critical place 
where good approximation must be assured. A s the ellipse rotates, the nodes of the 
computational mesh are moving only in the radial direction. This may be observed 
in figure (5). 
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These nodes are the vertices of the triangles as shown in figure (6). 

X 

Figure 6: Triangulation at time t = 0, nc = 60, nr = 20. 
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6.2 Unsteady solution 

The computation was performed for a time period of 5 seconds wi th a time step 
A t = 0,01 s, which means 500 time steps. W i t h nc = 60 and nr = 20 we have 2280 
elements, 4680 nodes and 1200 vertices. 

We start wi th a velocity field at some early time, say, 0,04 s. The velocity field 
is depicted in figure (7). Let us note that the length of arrows does not correspond 
to the real length of the velocity vectors. These arrows are proportional, however. 
One thing we may point out here is that the fluid starts to swirl at the narrow part 
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Figure 7: Velocity field at time t = 0,04 s. 

of the domain while at the wider part it moves in the direction of rotation, see fi£ 
7(b) and 7(c). A s we wi l l see this swirling wi l l pass away as time goes ahead. 
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Next we examine the pressure at time t = 0,04 s. Its filled contour plot is in 
figure (8). We see from this figure that the pressure is symmetric. W i t h regard to 
the geometry of the problem it is something we could expect and hence we may 
convince ourselves it is right. Pressure is uniquely determined except for a constant. 

Figure 8: Filled contour plot of the pressure measured in Pa. Time t = 0,04 s. 

The last thing we present at this time step is the magnitude of the velocity, see 
fig. (9). We see very steep decline near the boundary of the ellipse. 

Figure 9: Magnitude of the velocity in m/s. Time t = 0,04s. 

Now we check the results at time t — 5 s. Again , we start wi th a velocity field, 
see fig. (10). Compared to the previous case we observe that the fluid now moves 
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in direction of rotation at the narrow part of the domain and there is no swirling, 
see fig. 10(b). 

B 

(a) Velocity field with details A and B (b) Detail A 

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 

(c) Detail B 

Figure 10: Velocity field at time t = 5 s. 

A s for the pressure, it stil l remains symmetric. This may be observed in figure 
(11). 

Finally, we show the magnitude of the velocity, see fig. (12). Note that the steep 
decline now remains only at the narrow part of the domain. The decrease of the 
magnitude of the velocity is now smooth elsewhere. It is expected to be smooth also 
at this narrow part as time goes on. 

We have shown how the velocity and pressure evolve wi th time. The last thing 
to do is to compute the resulting force and moment acting on the ellipse. Using 
the method described above we arrived at the resulting force equal identically to 
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-0.2 -0.1 0 0.1 0.2 

Figure 11: Filled contour plot of the pressure measured in Pa. Time t = 5 s. 

Figure 12: Magnitude of the velocity in m/s. Time t = 5 s. 

zero. This is the consequence of the symmetry of the geometry and pressure. The 
evolution of the moment for t G (0, 5) is in figure (13). 
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7 Appendix 

We shall denote the Lebesgue measurable functions in Q by Let u : Q —> 
be a function. We define the functional 

,2/ 

as 

u (x) dx 

where the integral is meant in the Lebesgue sense. Next, we introduce a subset of 
the set of measurable functions 971(0) as follows, 

L2(tt) = {ue Ott(ft); \\u\\ < oo}. 

The set £2(Q) forms a linear space. However, the functional || • | | 2 does not satisfy the 
thi rd axiom of norm, for it gives the same value for the functions that are distinct 
on a set of measure zero. Therefore, we identify such functions in the space £2(Q) 
using the equality almost everywhere. We then obtain the Lebesgue space 

L2(Sl) = £ 2 ( 0 ) 

The elements of L2(Q) are the classes of functions that are distinct at most on a set 
of measure zero. Thus, L2(Q) together wi th the norm || • | | 2 forms the normed linear 
space. It is possible to define the scalar product in this space by 

(u,v) — I uvdx. 
Jn 

We are now ready to define the Sobolev space where we shall seek the 
solution of our problem, 

H\Q) = ![ueL2(Qy, ^ L , ^ G L 2 ( n ) | , 

where the derivatives are understood in the sense of distributions. One defines the 
scalar product in this space by 

du dv du dv 
uv + —— — h 

dxi dxi dx2 dx2 

dx. 

This scalar product defines the norm 

l«lli,n = Wu Ii = >J(u,u)i 

The norm || • | | x may be easilly generalized for the vector function u from the space 

H\Q)]2by 

ll ulli = Ikilli + l l M 2 | l i , 
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and in the same fashion we generalize the scalar product of two functions u, v G 

( U , V ) 1 = ( u l , V l ) 1 + {U2,V2)1 . 

r 12 
It may be shown that the space H1 (Q) and also H1 (Q) is a separable and reflexive 
Banach space. Moreover, together with the scalar products (u,v)1 and (u,v) 1 ; 

respectively, they form the Hilbert spaces with scalar products. 

For the reasons of the weak formulation we define the spaces 

V = j-u G u = 0 on Ty in the sense of traces j , 

Vg = j-u G u = g on Ty in the sense of traces j . 
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8 Conclusion 

This work is mainly focused on the solution of two-dimensional incompressible vis
cous flow by the finite element method. Such a problem may be addressed in various 
ways and finds applications in many engineering problems. 

We have derived the comprehensive and directly applicable algorithm for the 
solution of two-dimensional Navier-Stokes equations. Further, we have seen how it 
can be readily modified for the case of moving computational domain using the A L E 
formulation. A stabilization of the finite element method was necessary to achieve 
convergence of the Newton method. The algorithm was tested on the rotating ellipse 
problem (cf. section 5) and its results were presented in section 6. We may conclude 
these results are satisfactory. 
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