
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

MMO PLUGIN FOR DEPLOYMENT OF
MICROSERVICES INTO THE CLUSTER
M O D U L M M O PRO NASAZENÍ MIKROSLUŽEB DO CLUSTERU

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR JAKUB KULICH
A U T O R PRÁCE

SUPERVISOR prof. Ing. ADAM HEROUT, PhD.
V E D O U C Í PRÁCE

BRNO 2018

Zadáni bakalářské práce/20508/2017/xkulic03

Vysoké učení technické v Brně - F a k u l t a informačních technologi í

Ústav počítačové g ra f i ky a multimédií Akademický rok 2 0 1 7 / 2 0 1 8

Zadání bakalářské práce
Řešitel: K u l i c h J a k u b

Obo r : Informační t e chno l og i e

Téma: M o d u l M M O p r o nasazen í m i k r o s l u ž eb d o c l u s t e r u

M M O P l u g i n f o r D e p l o y m e n t o f M i c r o s e r v i c e s i n t o t h e C l u s t e r

Ka t ego r i e : W e b

Pokyny :
1. S e z n a m t e se s p r o b l ema t i k ou mikroslužeb a j e j i ch o r c he s t r a c e v c l u s t e r e ch .
2. P r o z k o u m e j t e a popište dostupné orchestrační nástroje.
3. Navrhněte zásuvný m o d u l pro usnadnění práce s mikroslužbami; zaměřte se na ty to

f unk ce : nasazení služeb do c l u s t e ru , spojení se systémem MMO, správa závislostí
mez i službami.

4 . I m p l e m e n t u j t e p ro to typ zásuvného m o d u l u .
5. Ověřte a zhodnoťte funkčnost zásuvného m o d u l u na vhodných

příkladech/prototypech. Iterativně vylepšujte vytvořené řešení.
6. Zhodnoťte dosažené výsledky a navrhněte možnosti pokračování p r o j e k t u ; vytvořte

plakátek a krátké v i deo pro prezentování p r o j e k t u .

L i t e ra tu ra :
• d le pokynů vedoucího

Pro udělení zápočtu za první s e m e s t r j e požadováno:
• Body 1 až 3, značné rozpracování bodů 4 a 5.

Podrobné závazné p o k y n y pro vypracování bakalářské práce na l e zne t e na ad r e se
h t t p : / /www. f i t . vu tb r . c z / i n f o / s z z /

Technická zpráva bakalářské práce musí obsahovat formulaci cíle, charakteristiku současného stavu,
teoretická a odborná východiska řešených problémů a specifikaci etap (20 až 30% celkového rozsahu
technické zprávy).

Student odevzdá v jednom výtisku technickou zprávu a v elektronické podobě zdrojový text technické
zprávy, úplnou programovou dokumentaci a zdrojové texty programů. Informace v elektronické podobě budou
uloženy na standardním nepřepisovatelném paměťovém médiu (CD-R, DVD-R, apod.), které bude vloženo do
písemné zprávy tak, aby nemohlo dojít k jeho ztrátě při běžné manipulaci.

Vedoucí: H e r o u t A d a m , p r o f . I n g . , P h . D . , U PGM FIT V U T

D a t u m zadání: 1. l i s topadu 2 0 1 7

D a t u m odevzdání: 16. května 2 0 1 8 , ,
VYSOKÉ UČENÍ TECHNICKÉ V BRK*

Fakulta informačních technologií
Ústav počítačoví4 araf'kv <» nv f^Wi f

L.SJ2 O D D i n u , oCieitůi iCvd Ĺ

doc. Dr. I ng . Jan Černocký
vedoucí ústavu

http://www.fit.vutbr.cz/info/szz/

Abstract
Orchestration of applications w i th microservice architecture is difficult. Available tools
do not allow deployment of an appl icat ion to the user without deep knowledge of target
platform. Another problem is that many mistakes are done when these tools are used.
M M O - Monorepo Microservice Orchestrator is a tool that makes the development of
applications w i th microservice architecture easier. M M O can be extended w i th parts that
can help the user to avoid problems mentioned above. One part is used for generation
of the configurations for deployment of the appl icat ion to Kubernetes and second part
is used for deployment of the appl icat ion the Kubernetes cluster. A result of using M M O
extension is an abi l i ty of beginner users to create deployment configurations, faster creation
of deployment configurations by advanced users and decreased number of mistakes done
when the appl icat ion is deployed manual ly by Kubernetes users.

Abstrakt
Aplikácie s architektúrou typu „mikroslužby" je náročné orchestrovať. Dostupné nástroje
neumožňujú užívateľom nasadenie aplikácie bez veľkej znalosti cieľovej platformy. Ďalším
problémom je, že užívatelia pr i nepozornosti robia chyby pr i používaní týchto nástrojov.
Vývoj aplikácií s architektúrou typu „mikroslužby" zjednodušuje open-source nástroj M M O
- Monorepo Microservice Orchestrator. Rozšírením tohto nástroja o určité časti nám
umožňuje vyhnúť sa spomínaným problémom. Jedna časť slúži na generovanie konfigurácií
pre nasadenie aplikácie do Kubernetes clustera. Druhá časť umožňuje samotné nasade
nie aplikácie do Kubernetes clustera. Výsledkom používania rozšírenia nástroja M M O je
uľahčenie vytvárania konfiguračných súborov u začiatočníckych používateľov nástroja K u
bernetes, urýchlenie vytvorenia konfiguračných súborov u pokročilých užívateľov nástroja
Kubernetes a zníženie počtu chýb ktoré užívatelia robia pr i ručnom nasadení aplikácie.

Keywords
deployment, microservice, architecture, monorepo,kubernetes, cluster

Klíčová slova
nasadenie, mikroslužby, monorepo, kubernetes

Reference
K U L I C H , Jakub. MMO Plugin for Deployment of
Microservices into the cluster. Brno , 2018. Bachelor's thesis. B rno Universi ty of Technol
ogy, Facul ty of Information Technology. Supervisor prof. Ing. A d a m Herout, P h D .

Rozšířený abstrakt
Aplikácie s architektúrou typu „mikroslužby" je náročné orchestrovať. Vznik lo množstvo
nástrojov na orchestráciu jednotlivých služieb v clusteri, je však problém vybrať spomedzi
nich ten správny pre konkrétne použitie. Každý nástroj má určité výhody a určité nevýhody.
Niektoré sú vhodné pre veľké projekty, iné zase pre projekty menšej veľkosti. Táto práca
sa venuje porovnaniu týchto nástrojov a výberu nástroja, ktorý bude najviac vyhovovať
väčšine používateľov.

Konkrétny nástroj vybratý pre túto pracuje open-source nástroj Kubernetes. Dostupné
nástroje pre správu aplikácií bežiacich v Kubernetes neumožňujú užívateľom nasadenie
aplikácie bez veľkej znalosti cieľovej platformy. Ďalším problémom je, že užívatelia pr i
nepozornosti robia chyby pr i používaní týchto nástrojov. Tieto chyby môžu viesť k časovým
a finančným stratám v závislosti od konkrétnej chyby. V rámci tejto práce bo l urobený
prieskum medzi užívateľmi nástroja Kubernetes pre lepšie pochopenie toho ako užívatelia
nástroj používajú.

Vývoj aplikácií s architektúrou typu „mikroslužby" zjednodušuje open-source nástroj
M M O - Monorepo Microservice Orchestrat ion. Nástroj M M O momentálne dokáže gen
erovať projekty a ich mikroslužby podľa šablón, tiež podporuje zásuvné moduly, pomocou
ktorých dokáže užívateľ rozšíriť základnú funkčnosť nástroja. Nástroju chýbajú funkcie,
ktoré by zjednodušili nasadenie aplikácie do Kubernetes. Rozšírením tohto nástroja o
určitú funkcionalitu, umožňuje užívateľovi vyhnúť sa vyššie spomínaným problémom. Tieto
funkcie budú slúžiť k tomu aby pomohl i vývojárom s vytvorením konfigurácií pre nasadenie
aplikácií do Kubernetes a tiež aby pomohl i so samotným nasadením aplikácie do Kuber
netes clustera. Rozšírenie nástroja je vo forme užívateľského rozhrania, ktoré je pre toto
použitie prehľadnejšie ako konzolová aplikácia.

Výsledkom tejto práce je rozšírenie nástroja M M O , ktoré rieši vyššie spomínané prob
lémy. Rozšírenie umožňuje generovanie konfiguračných súborov pre nasadenie aplikácií
do Kubernetes clustera. To umožňuje začiatočníckym používateľom nástroja Kubernetes
vytvoriť konfiguračné nástroje aj bez hlbšej znalosti nástroja Kubernetes. U pokročilých
užívateľov nástroja Kubernetes prichádza k urýchleniu vytvorenia konfiguračných súborov.
Ďalšia funkcia ktorú prináša rozšírenie nástroja M M O vytvorené vrámci tejto práce je
funkcia určená pre nasadenie aplikácie. Aplikáciu je možné nasadiť dvoma spôsobmi. Prvý
spôsob je nasadenie pomocou G i t H u b Deployments A P I , kde nasadenie prebieha v rámci au
tomatizovaného procesu. Druhý spôsob je priame nasadenie do Kubernetes clustera. Táto
funkcia znižuje počet chýb, ktoré užívatelia robia pr i ručnom nasadení aplikácie. Znížením
počtu chýb môže ušetriť vývojář svoj čas a tým aj financie.

Práca sa tiež zaoberá pokusom, kde bo l vytvorený prototyp platformy určenej na nasade
nie aplikácií. Samostatná plat forma by si našla svojich užívateľov, ale až v prípade, kedy
by integrovala väčšie množstvo funkcií. Rozsah práce na takejto veľkej platforme však nie
je realizovateľný v rámci bakalárskej práce.

M M O P lug in for Deployment of
Microservices into the cluster

Declaration
Hereby I declare that this bachelor's thesis was prepared as an original author's work
under the supervision of prof. Ing. A d a m Herout, P h d . The supplementary information
was provided by Be. Peter Ma l i na . A l l the relevant information sources, which were used
during preparation of this thesis, are properly cited and included in the list of references.

Jakub K u l i c h
M a y 14, 2018

Acknowledgements
First of a l l , I have to thank my supervisor A d a m Herout. Th is thesis would have never
been accomplished without his assistance and abi l i ty to motivate me. I would also like to
thank Peter M a l i n a for his suggestions.

Contents

1 I n t r o d u c t i o n 3

2 D e p l o y i n g A p p l i c a t i o n s w i t h M i c r o s e r v i c e A r c h i t e c t u r e t o t h e C l u s t e r 4
2.1 Development of Microservice Appl icat ions 4
2.2 App l i ca t ion Bu i l d ing and D is t r ibut ion 8
2.3 Deployment of the container applications 12

3 K u b e r n e t e s 16
3.1 Kubernetes Architecture 16
3.2 Basic principles of Kubernetes 17
3.3 Descript ion of Kubernetes Workloads 18
3.4 Descript ion of the objects for network management 20
3.5 Descript ion of the other Kubernetes objects 22
3.6 Storing Kubernetes configurations in the repository 23
3.7 Survey about using Kubernetes 24
3.8 Loca l Development 27

4 E x i s t i n g s o l u t i o n s for d e p l o y m e n t o f a p p l i c a t i o n s t o K u b e r n e t e s 28
4.1 Continuous Integration (CI) solutions 28
4.2 He lm - package manager for Kubernetes 28
4.3 Other existing solutions 29

5 D e s i g n o f t h e M M O E x t e n s i o n for A p p l i c a t i o n D e p l o y m e n t 30
5.1 Design of the Backend 30
5.2 Design of the Frontend 34

6 I m p l e m e n t a t i o n 40
6.1 Implementation of the Backend 40
6.2 Implementation of the Frontend 44

7 E x p e r i m e n t s 46
7.1 T ime savings 46
7.2 Standalone P la t form for Deploying Microservices Projects 48

7.3 User Experience 50

8 C o n c l u s i o n 51

B i b l i o g r a p h y 52

1

A p p e n d i c e s 53

A T h e C o n t e n t o f t h e I n c l u d e d M e m o r y M e d i a 54

2

Chapter 1

Introduct ion

The complexity of developed applications had brought microservice architecture pattern
to use. A disadvantage of the microservice architecture is the difficulty to orchestrate
applications built w i th this pattern in the cluster. The goal of this thesis is to extend open-
source tool MMO - Monorepo Microservice Orchestration so it helps developers to deploy
appl icat ion to the cluster. MMO is an open-source too l that helps to develop projects w i th
microservice architecture. The second object of thesis is to compare available tools for
orchestrating applications in cluster and select one that MMO has to be compatible w i th .

The second chapter breaks down the problem of microservice architecture, how appl i
cations w i th this architecture are distr ibuted to target platforms and how they are orches
trated. The th i rd chapter talks about Kubernetes and its concepts to understand how
applications should be deployed. The th i rd chapter also presents the results of the survey
about using Kubernetes to understand Kubernetes users better. Th is is a prerequisite for
finding the best design of the MMO extension. The fourth chapter shows existing solutions,
their advantages and disadvantages. The fifth and s ixth chapters talk about design of the
extension and implementat ion of this design. The seventh chapter is demonstrating the
benefits of using MMO extension for appl icat ion deployment as a result of the mult iple
experiments. The last chapter summarizes the important findings that result from this
thesis.

3

Chapter 2

Deploying Appl icat ions w i th
Microservice Archi tecture to the
Cluster

Software development is usual ly done in accordance w i th iterative models. The classic
development cycle of the iterative model has these parts: planning, development, testing,
evaluation. Figure 2.1 shows development cycle from the point of the view of the DevOps
engineer. Some parts of the development cycle such as planning, testing, etc are omitted
from the diagram in the Figure because they are not important for this thesis. Each part
of the development cycle i n the figure has one section dedicated in this chapter.

Figure 2.1: Development cycle of iterative development model from the DevOps engineer
point of view. W h e n new version of appl icat ion is developed, it has to be bui l t , tested,
distr ibuted to the environment where it w i l l run and in the last step, it has to be launched.

2.1 Development of Microserv ice App l i ca t ions

Microservice architecture is an architecture used for bui ld ing complex applications. The
biggest problem in complex applications is their size and the number of users they have
to serve. One of the new architecture patterns is called microservice architecture. This

4

architecture solves problems w i th managing development teams and scaling appl icat ion
but brings other downsides.

2 .1 .1 M i c r o s e r v i c e A r c h i t e c t u r e

Microservices are a type of software architecture used in the server applications [8]. Op
posite architecture pattern is monol i thic architecture. The principle of the microservice
architecture is to divide appl icat ion to the logical parts where each part acts as a stan
dalone service responsible for its tasks. Decomposit ion of the monol i th to microservices
can be seen i n Figure 2.2. For example, an e-commerce appl icat ion w i th monol i thic archi
tecture is one server that does a l l the work. Us ing the microservice architecture, appl icat ion
can be broken to mult iple services that do smal l tasks - one can manage users w i th authen
t icat ion and authorizat ion, another one can manage products, another service w i l l manage
finance services (payments, invoices), etc.

r
Orders

Transactions

Authentification

Transactions

Authentification
Products

Authentification

Transactions

Products

Figure 2.2: Decomposit ion of the monol i thic appl icat ion to appl icat ion w i th microservice
architecture

A microservice architecture offers better control over the source code - each service is
in its own repository or i n one part of a shared repository [8]. Th is can be also reached
in monol i thic appl icat ion but it is easy to break this rule. Th is plays well w i th team man
agement, because microservice is working as a standalone unit . One team can develop one
service and mult iple services can be div ided into mult iple teams. Th is makes development
faster and more agile. It is also bringing one downside and it is that services must have well
defined communicat ion interfaces to communicate between themselves. The most usual
ways of the communicat ion between the services is using H T T P protocol or using R P C s
(Remote Procedure Calls) [7]. A favorite R P C framework between developers is gRPC -
Google Remote Procedure Call1, which supports more than 10 of the most favorite program
ming languages. It may play a role in the next advantage of the microservice architecture
- a microservice architecture is a polyglot. That means that each of the services can be
programmed in a different language and can use different technology stack that is most
suitable for the use case of the service. Another advantage of microservices is their scalabil
ity. Just services that are resource intensive, can be scaled. In the monol i thic appl icat ion,
whole appl icat ion would have to be scaled which is not that easy as smal l single-purpose

x

https: //grpc.io

5

service. A example of scaling the appl icat ion w i th the microservice architecture is shown
in Figure 2.3.

Authentification Products Orders
v) \) \

Application

Figure 2.3: Scalabi l i ty of the services - each service can have different number of replicas

Microservice architecture offers a better tolerance of errors i n comparison to monol ithic
architecture [8]. C r i t i c a l error i n one service does not affect the runtime of the whole
appl icat ion.

As mentioned before, microservice architecture brings mult iple downsides:

• much more difficult orchestration of the services,

• a more difficult setup of the continuous integration,

• larger network overhead,

• more complex monitor ing of the services.

The biggest drawback of the microservice architecture is the complexity of setting up
continuous integration [8]. Continuous Integration (CI) pipeline consists of mult iple steps
like bui ld ing, testing [4]. A l l advantages mentioned above are turning into disadvantages
when it comes to setting up the continuous integration. It is a lot harder to set up C I
pipeline for the project w i th microservice architecture which can be wr i t ten in the mult iple
programming languages.

Another big disadvantage is the deployment of the appl icat ion to a server. This also
follows the previous problem, because deployment of the appl icat ion is usual ly done from
the C I system [8]. Mono l i th ic appl icat ion deployment is easy because everything that has to
be run is one appl icat ion binary. Mu l t ip l e applications have to be deployed and l inked in the
network in the appl icat ion w i th microservice architecture. The microservice architecture
also brings overhead to the network layer of the appl icat ion. A l l communicat ion between
the services is done on the network layer. They must know where is another service w i th
which they want to communicate so there always have to be service that is responsible for
service discovery.

I.i

A minor problem of the microservice architecture is service monitor ing. In monol ithic
architecture is only one appl icat ion that w i l l be monitored. There is need for the service
that is dedicated to collecting logs in microservice architecture.

There may be questions how smal l a microservice should be or how many microservices
should the appl icat ion have. Th is can differ from appl icat ion to appl icat ion but the common
approach is that a single microservice should be refactored or replaced by the a version in
a short t ime [8].

2 .1 .2 M a n a g i n g S o u r c e C o d e o f t h e M i c r o s e r v i c e A p p l i c a t i o n s

The microservice architecture has mult iple approaches to source code control. One of the
approaches is that each service has its own dedicated repository. This w i l l make the service
completely isolated from other services. Developer has high control over the microservice
in continuous integration in this approach. Someone prefers having each service i n its own
repository to have access control. They can have fine-grained permission over the services.
A disadvantage of this approach is that there are difficulties when it comes to sharing the
communicat ion interfaces between services. For example, programming language Go does
not allow using dependencies from private repositories, because dependencies are cloned
over H T T P . A workaround in the local developer machine is to configure git i n a way that
every clone of the repository over H T T P is done over S S H in the background. It is working
on the developer's machine because the developer has access to a l l dependencies. Th is does
not work in the continuous integration systems, because deploy key has to be added to the
S S H client for each dependency that need to be cloned. Security mechanisms of the version
control system providers do not allow creating one key for mult iple repositories.

The second approach is storing a l l services i n the one repository. Repository w i th
mult iple services or applications is called monorepo. Continuous integration tools have
min ima l support for this approach so sometimes so these tools have to be hacked to run
standalone builds for each service. The scale of a monorepo can be different. Monorepo
can contain 2 services or it can contain mult iple projects. For example, Google stores a
majority of their projects in one big monorepo [9].

2 . 1 . 3 M M O — M o n o r e p o M i c r o s e r v i c e O r c h e s t r a t o r

MMO is an open-source too l that helps w i th the development of monorepo applications w i th
microservice architecture 2 . M M O has a set of features that help generate the structure of
a project and its services. Generat ion is done based on templates so when user wants to
generate a service wr i t ten in a different programming language then everything that has to
be done is to provide another template.

Another feature of the M M O are plug-ins that are used for generating the code. Ex is t ing
plug-ins are for example plug-ins that generate:

• gRPC stub and client from the Protobuf definition (Protobuf is a new mechanism for
serializing structured data in binary format developed by Google [1]).

• gRPC gateway from the Protobuf — this allows us to generate a R E S T A P I from the
Protobuf w i th extended annotations.

2

https: //github.com/f lowup/mmo

7

• Swagger definition from the Protobuf. Th is plug- in works w i th combinat ion w i th
the previously mentioned plug-ins (Swagger definition is documentat ion of the R E S T
AP I) .

• Angular client from the Swagger definition in programming language Typescript.

This combination of the plug-ins allows to generate a gRPC server w i th R E S T A P I
endpoints w i th type compatible frontend client.

M M O ' s version is actual ly Be ta so a lot of features w i l l come later. One of the missing
features is an option to make deployment of the appl icat ion to cluster easier.

2.2 App l i c a t i on B u i l d i n g and D i s t r i bu t i on

Before bui ld ing the appl icat ion, we need to know the platform where the appl icat ion w i l l
be running. Based on that the appl icat ion is bui l t on this specific plat form and then it can
be delivered to that platform.

Appl icat ions are orchestrated in mult iple ways:

• Operat ion system runs directly on hardware and the appl icat ion runs in the installed
operating system.

• Hardware is v ir tual ized and the appl icat ion runs in the operating system installed on
the v ir tual ized hardware.

• The appl icat ion is running in a container.

F i rs t of the options is not used because it takes a lot of effort when an appl icat ion has
to be migrated from a server to another one. The second option is mostly used because of
the f lexibil ity that is offered. The last opt ion is latest and its advantages and disadvantages
against the second option w i l l be summarized in this section.

2 .2 .1 R e l e a s e M o d e l s o f t h e S o f t w a r e

Software has to be released after its development. Two most known release models of
the software are standard stable release model and rol l ing release model [5]. According to
the standard stable release model, software is released at intervals in which bugs are fixed
and new features are added. These intervals can have a different length from software to
software, e.g. some distr ibutions of L inux operation system are released two times in a
year. The second way of releasing software, ro l l ing release model. Ro l l ing release means
that software is released frequently i n smal l updates.

Ro l l ing releases are more preferred because it is more natura l to get new features when
they are finished rather than wait ing some time for a set of features when release planned.

W h e n we choose to have a rol l ing release we have to care much more about release
process because updates are much more frequent too (e.g. it can be w i th every push to the
software repository).

2 .2 .2 D i s t r i b u t i o n o f B i n a r i e s

D is t r ibut ion of binaries is a standard approach that exists as long as software development.
Th is approach is working but i n modern software development, it starts to be outdated.

8

Binaries are usual ly pushed to the v i r tua l machines that have a l l needed dependencies
installed. Lot of t ime we run into the conflicts where mult iple applications need same
dependency but different versions. Th is leads to a lot of weird hacks and fixes. Another
problem which can occur is running mult iple instances of the one network appl icat ion -
operation systems do not allow us to b ind the same port to mult iple applications. Some
applications allow us to change port but a lot of times it is not comfortable. Another
disadvantage is that appl icat ion can have non-deterministic behavior on different systems
due to versions of dependencies where every new combination of versions can lead to new
type of behavior.

Binaries can be distr ibuted through operating system's package managers. Preferred
way when free or open source software is distr ibuted. Another way to distr ibute bina
ries is through ssh, for example, ut i l i ty scp. We have to realize that the binary itself is
not sometimes sufficient. We have to distr ibute configurations of the applications, secrets
(passwords, A P I keys, . . .) . One of the available solutions for this is Ansible.

Ansible is a tool for automat ing deployments. It allows us to push binaries or other files
such as configurations [10]. Ansible also supports a lot of modules for managing dependen
cies through package managers on the different operating systems, managing systemd and a
lot more. Ansible has the feature that makes possible to create templates (of configurations
for example) that are dynamical ly filled before deployment.

Even though we have tools like Ansible, deploying applications is not easy and does
not feel natura l . This leads to researching new technology. Results of this researching are
container technologies.

2 . 2 . 3 C o n t a i n e r s

Containerizat ion is technology that allows running applications in the isolated environment
[3]. A containerization can be compared to v i r tual izat ion. V i r tua l i za t i on is technology that
virtualizes C P U , R A M and other hardware and we can run some operation system on this
v ir tual ized hardware.

Containers w i th v ir tual ized operation systems have in common that they are isolated.
Containers do not use v irtual ized hardware, they share the kernel w i th the host system.
We can run mult iple containers on one host system.

The container is fully isolated from the environment as was mentioned above. Containers
do not see other processes running on the host machine or i n other containers. They are
running on their own network i n default. They do not share any environment variables
w i th the host system. Containers also cannot access host's systems volumes.

Container always has metadata and read-only volume that contains a l l data needed for
runtime.

Containers offer mult iple advantages over the binaries. The largest one is that we can
pack a l l dependencies that appl icat ion needs into the container. That w i l l ensure that
appl icat ion w i l l run on any plat form and it w i l l also run when two applications w i l l use
different versions of the same dependency. Containers have deterministic behavior and run
in the same way on a l l platforms. That makes easy migrat ion from one plat form to another.
Side by side comparison of appl icat ion runtime in a v i r tua l machine and in the container
is shown in Figure 2.4.

9

App 1

Libs

Container

App 2

Libs

App 3

Libs

[Docker

Host OS

Infrastructure

App 1

Libs

V M

App 2

Libs

Guest OS Guest OS Guest OS

App 3

Libs

Hypervisor

Infrastructure

Figure 2.4: Compar ison of the applications running in the containers (left) and i n the
v i r tua l machines (right). App l i ca t ion running i n the container is running directly on the
host operating system. App l i ca t i on running i n the virtual ized operating system have to be
running on the virtual ized hardware.

T h e O p e n C o n t a i n e r I n i t i a t i v e (O C I)

A lot of container solutions appeared and it was necessary to define some standard how
containers should look and how they are supposed to run. In 2015 OCI was launched by
Docker, CoreOS and other leaders i n the container industry.

OCI is a lightweight, open governance structure (project), formed under the auspices of
the L inux Foundat ion, for the express purpose of creating open industry standards around
container formats and runtime [2].

OCI currently contains two specifications: the Runt ime Specification and the Image
Specification. The Runt ime Specification outlines how to run a "filesystem bundle " that is
unpacked on disk. A t a high-level, an O C I implementat ion would download an OCI Image
then unpack that image into an O C I Runt ime filesystem bundle. A t this point, the OCI
Runt ime Bundle would be run by an O C I Runt ime.

D o c k e r

Docker is the best-known container platform. It meets OCI standard (was the first con
tr ibutor to the standard as mentioned above) 3 .

Isolation is achieved using L inux kernel's features - cgroups, kernel namespaces and
using Over layFS to manage volumes.

The image is created on union filesystem (OverlayFS). Every image is based on base
Docker image and there are mult iple layers that describe how to recreate a filesystem as
we see in Figure 2.5. Th is makes storing and sharing of the Docker images less resource
intensive. W h e n Docker image is transferred or stored, only new layers that are not present
are transferred or stored. Each image has a tag. The tag is used for versioning of the
images. Default tag is "latest".

3

https: //docs.docker.com

10

There is a difference between the Docker image and the Docker container. Docker image
is set of layers, that are bu i ld based on the Dockerfile. This set of layers are read-only and
they contain everything needed for runtime. W h e n Docker image is run, then it is named
Docker container. A container has a read-write layer above the read-only layers of the
Docker image. It is a necessity for the appl icat ion in the container so it can write changes.
Difference between Docker image and container can be also seen in Figure 2.5. A read-
write layer is discarded always on the container removal. To keep data persistent we need
to mount needed directories or files to the host system.

R/W layer

Image layer (1.4 kB)

Image layer (94 kB)

Image layer (25 MB)

Image layer (142 MB)

Docker image

Figure 2.5: Structure of the Docker container - container is basically Docker image w i th
th in read-write layer

Docker is not just a container provider but it is the whole platform. The most useful
part of the plat form is Docker registry. It is a tool to manage images. The image can
be pul led from a remote registry to a local registry or local image can be pushed to the
remote registry. There are registries like Docker Hub, Google Container Registry (GCR),
Amazon EC2 Container Registry (ECR) and more that are publ ic and can be used to
share Docker images between users or machines. These registries have usually secured
connection and access control so the only user w i th val id credentials has access to private
images. D is t r ibut ion of images through mentioned registries is very easy thanks to native
versioning of the images.

Docker is integrated into the mult iple infrastructure tools and the most of the container
orchestration tools as well:

• Kubernetes

• Docker swarm

• Marathon on Mesos

&

?
•a

11

L X C a n d L X D

LXC (LinuX Containers) are very similar to Docker containers from the side of function
ality. Isolation of the processes is done i n the same way 4 .

Def init ion of the container is sl ightly different in LXC. It aims to v i r tual i zat ion like the
experience so there are images of L i n u x distr ibutions available (Ubuntu, Fedora, R H E L ,
etc). A user should run these images like a v i r tua l machine and insta l l needed applications
inside.

Does not support versioning and does not have ecosystem bui ld around so managing
L X C images is not as comfortable as i n Docker. LXC is deprecated and it w i l l only get
security updates unt i l A p r i l 2019. Support is moved to the new project called LXD.

r k t

The core execution unit of rkt is the pod, a collection of one or more applications executing
in a shared context (rkt's pods are synonymous w i th the concept of Kubernetes orchestra
t ion system) 5 , rkt allows users to apply different configurations (like isolation parameters)
at both pod-level and at the more granular per-appl icat ion level, rkt's architecture means
that each pod executes direct ly i n the classic U n i x process model (i.e. there is no central
daemon), i n a self-contained, isolated environment, rkt implements a modern, open, stan
dard container format, the A p p Container (appc) spec, but can also execute other container
images, like those created w i th Docker.

rkt meets OCI standard. The image format is different from the Docker images. It
does not need the special registry for providing images. A p p c images can be hosted on the
H T T P (s) server. Its main advantage is that it can convert Docker image to its own format
and then run i t . Containers are run in the simpler way and rkt does not need daemon such
as Docker. The disadvantage is that it does not have ful l support i n orchestrators. Runt ime
is not possible without v i r tual izat ion layer on operation systems Microsoft Windows and
Apple OS X .

2.3 Deployment of the container appl icat ions

Deployment of the container applications to the cluster is much more abstract than deploy
ing applications using Ansible as mentioned i n the 2.2.2. Clusters can have a variety of
sizes - clusters can be smal l where less than 10 nodes are present or there can be clusters
w i th the size of hundreds of nodes. W i t h infrastructure this big it is impossible to manage
running applications manually. We use can use one of the container orchestration tool.

Container orchestrators are responsible for the runtime of the container appl icat ion in
a cluster. These applications do a lot of tasks to manage appl icat ion runtime. These tasks
are:

• Runn ing container w i th provided configuration (published ports, used volumes, num
ber of replicas, ...)

• Provide service discovery so services can communicate among themselves

• Restart ing containers i n case they are not healthy
4

https://linuxcontainers.org
5

https: //coreos.com/rkt/docs/latest/

12

https://linuxcontainers.org

• Provide load-balancing and metric and log systems

2 .3 .1 C o n t a i n e r s c h e d u l e r s

D o c k e r S w a r m

The solution developed by Docker . It was original ly a part of the Docker core. Loca l
development w i th docker swarm can be done easily because Docker Swarm can be run as a
single node cluster for these purposes. Appl icat ions are orchestrated using C L I that is very
similar to standalone Docker. Another way is to use Docker Compose files. Docker Compose
is the too l for running multi-container applications. Docker Compose file uses yaml format
and contains a l l needed information about the appl icat ion. Th is information is a list of
containers to run, mounted volumes, published ports and the most of the options that are
available in Docker. To write Docker Compose configurations for Docker Swarm, everything
that is needed is knowledge of how Docker works. Docker Compose configurations are just
Docker commands transformed to the configuration.

The disadvantage of Docker swarm is that it does not provide that much configuration
options as other orchestrators. Another disadvantage is smal l support from cloud providers.

K u b e r n e t e s

Kubernetes is an open-source system for automating deployment, scaling, and management
of containerized applications [6]. Kubernetes has set of features that allow running appl i
cations i n a massive scale. F rom a l l of the orchestrators, it has the widest community. It's
developed by Google, R ed Hat , CoreOS. There are also special L inux distr ibutions that
are bu i ld just for running Kubernetes - the two most known are CoreOS and RancherOS.
Kubernetes also develops M in ikube which is just one lightweight Kubernetes master node
running i n a v i r tua l machine and can be used for running applications locally. Th is is a nice
feature that can be used for local development. Kubernetes is also supported by largest
cloud providers - Google C l o u d P lat form, Amazon Web Services, Microsoft Azure.

Kubernetes has a lot of configuration options. This is a disadvantage from the point
of view that user needs very wide knowledge to deploy a working appl icat ion. Deploying
the single container appl icat ion is not as easy as w i th other orchestration tools. We can
see an example of Kubernetes configuration i n the code 2.1. Configuration represents an
appl icat ion that has only one service - Redis database. In the code 2.2, we can see the
configuration for the same appl icat ion but for the Docker Swarm. Kubernetes supports
Role-based access control (R B A C) so users can have restricted access only to parts of
Kubernetes that are responsible for.

apiVersion: extensions/vlbetal

kind: Deployment

metadata:

labels:

io.kompose.service: redis-master

name: redis-master

spec:

replicas: 1

template:

6

https: //docs.docker.com/engine/swarm/

13

spec:

containers:

- image: k8s.gcr.io/redis:e2e

name: redis-master

ports:

- containerPort: 6379

apiVersion: v l

kind: Service

metadata:

name: redis-master

spec:

ports:

- name: db

port: 6379

targetPort: 6379

L is t ing 2.1: Kubernetes configuration that can be used for deployment of Redis database to
Kubernetes cluster.

version: "3"

services:

redis-master:

image: k8s.gcr.io/redis:e2e

ports:

- "6379:6379"

L is t ing 2.2: Configuragation that can be used for running Redis database using Docker
Compose. Docker Compose configurations are less complex than configurations for Kuber
netes that can be seen in L is t ing 2.1

Company Red Hat develops its own version of Kubernetes called Openshift. Openshift
offers addi t ional functionality to Kubernetes. It brings new security concepts to Kubernetes.
One of these concepts is that containers are not run in standard way under root user but
they are run by the non-root user. Because of this common images are unusable but
RedHat offers popular images that are compatible w i th the OpenShift . Other features
that are added to OpenShift is multi-tenancy, tools for project management or continuous
integration and deployment tools.

N o m a d

Nomad is scheduler developed by H a s h i C o r p ' . Nomad is more general purpose than Ku
bernetes or Docker swarm. Nomad supports v irtual ized, containerized and standalone ap
plications so we can run Docker container or application's binary. Nomad is designed w i th
extensible drivers. Nomad has much simpler architecture than Kubernetes. It does not have
features like service discovery but a lot of functionality can be extended by HashiCorp 's
other projects - Consul for service discovery, Vault for key and password management, etc.

7

https: //www.nomadproject.io/docs/

14

http://www.nomadproject.io/docs/

M e s o s

Mesos is a solution from company Apache 8 . Mesos provides resources al locat ion i n the
data center based on ut i l i zat ion of the resources. It can switch nodes on when needed and
it can switch off nodes that are no longer needed. Mesos can be fine-tuned for different
applications.

Mesos is great for large-scale applications that are heterogeneous. The appl icat ion does
not have to be just bunch of the containers. It does not have support from cloud providers
so hardware needs to be bought or rent.

The disadvantage of Mesos is that it cannot run locally, s imilar to Kubernetes, it does
have tool Mini Mesos that makes possible experimenting and testing. Mesos is much more
heavyweight than Docker swarm or Kubernetes.

http://mesos.apache.org/documentation/latest/

15

http://mesos.apache.org/documentation/latest/

Chapter 3

Kubernetes

Kubernetes was selected as a tool for orchestrating applications. Kubernetes was selected
because of the options it provides when running applications and the second important
reason is its community. G o o d community is priceless when it comes to some problem
solving. Other advantage over other tools is the support of the cloud providers - it allows
effortless migrat ion of an appl icat ion to the different provider i n the case of need.

3.1 Kubernetes Arch i t ec ture

3 .1 .1 K u b e r n e t e s N o d e T y p e s

Kubernetes cluster needs at least two nodes in the cluster and at least one of the nodes
have to be master node [6]. Other nodes are s imply called "nodes". In a case, where
high-availabil ity cluster is needed, there may be mult iple master nodes. Master node is
always running tools that are making global decisions about the whole cluster, detecting
and responding to the cluster events.

3 .1 .2 K u b e r n e t e s M a s t e r C o m p o n e n t s

These components are running on Kubernetes master nodes [6]:

• kube-apiserver - component that exposes Kubernetes A P I (Kubernetes A P I is used
to control Kubernetes) .

• etcd - consistent and highly-available key value store used as Kubernetes backing
store for a l l cluster data.

• kube-scheduler - component that watches newly created pods and assigns them
node where they should run.

• kube-controller-manager - component that runs controllers. Control lers are tools
that are watching the state of the cluster and are making changes to reach the desired
state of the cluster.

• cloud-controller-manager - component that runs controllers that interact w i th
cloud providers.

16

Figure 3.1: Architecture of Kubernetes. Kubernetes Master node is running A P I for con
trol l ing cluster and communicat ing w i th other nodes.

3 . 1 . 3 K u b e r n e t e s N o d e C o m p o n e n t s

These components are running on every node (even on the master nodes) [6]:

• kubelet - component that ensures that pods assigned to node are running and
healthy.

• kube-proxy - component that is responsible for networking (service discovery, D N S
resolving and more).

• Container Runtime - software responsible for running containers (Docker, rkt , rune
or any container implementat ion meeting O C I runtime-spec as mentioned i n the
2.2.3).

3.2 Bas ic principles of Kubernetes

As mentioned before, we are describing final state of the appl icat ion that we want to reach.
Kubernetes is t ry ing to reach this state w i th its tools. For describing desired state we
are using Kubernetes workloads [6]. After deploying workloads to the cluster, appl icat ion
w i l l not run instantly based on the deployed workload, but Kubernetes w i l l use workload
to deploy appl icat ion. There are different types of these workloads. The most important
workloads are described i n the section 3.3.

Kubernetes has also other type of resources than workloads - for networking (mentioned
in the section 3.4), managing configurations and volumes (mentioned in the section 3.5).
We can cal l a l l these Kubernetes objects. Each object of one k ind must have a unique name
w i th in a namespace.

17

kube-apiserver

r
kube-controller-

manager

r

kube-scheduler
cloud-controller-

manager

etcd

Kubernetes master node

Figure 3.2: Components present in Kubernetes Master node. A l l components are usin^
component etcd for storing data about the cluster.

A namespace is a way to divide cluster logically for different reasons . One of the
reasons can be running of mult iple environments of appl icat ion i n each namespace. Each
namespace can have C P U and memory resource restriction.

Labels are key/value pairs that can be t ied to objects 2 . Labels do not have to be unique
like names. Labels can be used for organizational purposes. For example, we can add label
"release = be ta " to object, for another object we can add the label "release = canary".
Labels are sometimes necessary i n specific Kubernetes objects - Kubernetes Service is using
label selector to determine which Pods are able to receive network traffic. Another usage of
the labels is object l ist ing and filtering based on the defined labels. Objects should contain
only necessary labels. W h e n we want to add key/value meta-data that is just informational
we should use annotations.

3.3 Descr ip t ion of Kubernetes Work loads

3.3.1 P o d s

A pod is the most basic unit that can be deployed to Kubernetes [6]. A s we can see in
Figure 3.4, the pod encapsulates container (or group of t ightly coupled containers), storage
resources and a unique IP. For example, we can have a pod that has two containers, where
one container is g R P C server and a second container that acts as an H T T P proxy to the
g R P C server i n the first container. The pod can be configured i n a way that we know from
the configuration of the Docker container. We can mount volumes to pod's containers,
publ ish ports, set up health checks and more.

Another th ing we can configure is container's hardware resources - requests and l imits
of the C P U and memory. The request is max imum of the resources the container can take.
Kubernetes allows the container to allocate more resources than defined in the requests,
when requested resources are free on Kubernetes node. The resource requests is also an
information that Kubernetes uses for scheduling pods on the nodes. P o d is not schedulable
on the node that has less free resources than a pod requests. The l imit is the value of which

x

https: //kubernetes. io/docs/concept s/overview/working-with-objects/namespaces/
2

https: //kubernetes. io/docs/concept s/overview/working-with-objects/labels/

18

Pod
Pod Pod

v.

Pod

Pod
Pod

Pod

Pod

Pod

kubelet kube-proxy
f container runtime 1

(Docker)

Figure 3.3: Components present i n Kubernetes node. Kubelet is the spart that is com
municat ing w i th Kubernetes master node, and it is running Pods using container runtime.
Kube-proxy is responsible for service discovery

are resources restricted. Second parameter - l imi t - is used as a hard resource l imi t for the
container. If container takes more resources than its defined l imit then container w i l l be
marked for terminat ion i n the short t ime. If the container does not free the resources in
this short t ime, it w i l l be restarted.

The pod is intended to serve as a single instance of the running appl icat ion. For hori
zontal scaling of the appl icat ion, mult iple pods should be created.

3 .3 .2 D e p l o y m e n t s

A deployment is abstract Kubernetes object that is describing how deployed appl icat ion
should look like [6]. Deployment has always pod template - pods are created based on this
template. Deploying deployment resource to Kubernetes w i l l indirect ly create number of
pods (based on the number of replicas) by creating ReplicaSet object. Deployments have
set of advanced features for updat ing or rol l-backing the appl icat ion. New ReplicaSet is
created always when the Deployment is changed.

One of the features are rol l ing updates. The rol l ing update is a process of updat ing the
appl icat ion when we have more than one replica of the appl icat ion. W h e n rol l ing update
is triggered, Pods are replaced one by one w i th newer version. Deployment has parameter
"repl icas" that says how many of the replicas should be available dur ing the rol l ing update
process. W i t h this feature, we can update appl icat ion without downtime. Reverse operation
to rol l ing update is called ro l l back. Th is can be used when appl icat ion has some serious
bug and we want to downgrade appl icat ion to the previous version.

3 . 3 . 3 R e p l i c a t i o n C o n t r o l l e r s

Repl icat ion controller is the resource that controls the creation of the pods in the cluster [6].
It uses the template of the P o d for P o d creation. Repl icat ion controller must ensure that

19

Figure 3.4: Example of Kubernetes P o d that has two containers communicat ing between
themselves and one container is serving to consumers (clients). B o t h of containers are using
one shared volume.

number of replicas defined in configuration is same as a number of replicas running. Rep l i
cation controllers support rol l ing updates as the Deployments, but they are not automatic
and they have to be triggered manual ly using kubect l tool.

In actual implementat ion it is not recommended creating repl ication controller. We
should create a resource called "Deployment" that manages the creation of ReplicaSets.

3 .3 .4 R e p l i c a S e t

ReplicaSet is next generation of Repl icat ion controller that has the support of label selectors
[6].

3.4 Descr ip t ion of the objects for network management

3.4.1 S e r v i c e s

P o d has IP address assigned on the creation. Pods have to communicate between themselves
and it would not be possible only using IP addresses. Kubernetes Services are used for
service discovery and load-balancing between Pods [6]. P o d that should be accessible over
the network needs to have Service created. After the creation of the Service, D N S entry is

20

reserved inside the namespace for a l l Pods that are matching Service's label selector. We
can then access the P o d using this D N S name <service-name> w i th in the namespace. In
case we want to access this service outside of the namespace we have to use fully qualified
domain name <service-name>.<namespace-name>.svc.cluster.local.

Services have different types. Default Service type is C lus te r lP . This makes Service
accessible only from the inside of the cluster. Next opt ion is NodePort . Th is w i l l make
Service accessible from the outside of the cluster on the every node in the cluster (Each
node has range of the ports reserved for this purpose). There are other options such as
LoadBalancer that are only available i n Kubernetes instances from cloud providers. Opt ion
LoadBalancer w i l l make P o d accessible based on the configuration of the load-balancer -
each cloud provider offers different configuration.

Pod

Client

Service

Automatic Load
Balancing

Pod Pod

Figure 3.5: How Kubernetes Services works - mult iple instances of one service are accessed
by one Kubernetes Service. Component kube-proxy is responsible for correct functionality
of this.

3 .4 .2 I n g r e s s c o n t r o l l e r s a n d I n g r e s s e s

Ingress controller is a gateway to Services from the outside of the cluster [6]. Ingress
controller works on the appl icat ion level of the network model. Ingress controller is usually
reverse H T T P proxy (Nginx for example) w i th watcher of Kubernetes resources named
"Ingress". W h e n watcher captures changes in Ingress resources, then new configuration for
the reverse proxy is generated and reverse proxy is reloaded. Mu l t ip l e ingress controllers
are available:

• Official Ng inx ingress controller (developed by Kubernetes) .

• Ng inx ingress controller (developed by Nginx) .

• G K E (Google Kubernetes Engine) ingress controller.

• Trsefik ingress controller - based on the reverse-proxy Trasfik developed in Go.

Each ingress controller has slightly different set of the features. These features can be:

• Usage of the T L S (Transport Layer Security) certificates for the used domains.

21

• Enab l ing C O R S (Cross Or ig in Resource Sharing) for the locat ions 3 .

• Websocket support

• Authent icat ion

• A n d more . . .

Ingress contains information how to route H T T P (s) requests to ind iv idua l services.
Ingress controllers can usually route requests based on sub-domains and paths.

Client

t

>

k HTTP (GET,
f POST, .)

Ingress controller

Figure 3.6: Kubernetes Ingress controller works on the appl icat ion level of the network
model. This allows rout ing of the H T T P requests to different Services based on hostname
or path they are requesting.

3.5 Descr ip t ion of the other Kubernetes objects

3 .5 .1 C o n f i g m a p s

Configmaps are resources for storing configuration files [6]. Configmaps can be used in the
appl icat ion mult iple ways. One option is configuration in a special format where each line
contains key-value pair i n format KEY: VALUE. Each line of the Configmap is exported to the
container of a P o d as a environment variable. Second option is mount whole configuration
file of Configmap as a volume in the Pod's container. These two are most used and other
options are documented i n Kubernetes documentat ion 1 .

3 .5 .2 S e c r e t s

Secret is very s imi lar Kubernetes object to Configmap. On ly different is that secret should
be used for storing sensitive data such as keys and passwords. Usage of the secrets is well
documented i n Secrets section of Kubernetes documentat ion 5 .

3

https: //developer.mozilla.org/en-US/docs/Web/HTTP/CORS
4

https: //kubernetes.io/docs/tasks/conf igure-pod-container/conf igure-pod-conf igmap/
5

https: //kubernetes. io/docs/concepts/configuration/secret/

22

3.6 Stor ing Kubernetes configurations in the repository

3 .6 .1 S t a t i c K u b e r n e t e s r e s o u r c e s o r K u b e r n e t e s r e s o u r c e t e m p l a t e s

In a lot of cases, we do not want static deployment resources. Stat ic resources are good
in the case that deployed resource is not changed on regular basis, for example, databases.
W h e n we want use Ro l l ing Updates advantage of Kubernetes Deployments, we have to
change the image in the Deployment resource before deploy. Th is can be done in two ways.

F i rs t opt ion is to store template of Kubernetes resource - this can be bash template
(variables in the tempalate have format ${GIT_COMMIT_HASH}). Advantage of this is that
resources can be much more dynamic. A l l variables i n Kubernetes resource can be changed
in one step. For example, these variables can be: Docker image or its tag, labels i n the
appl icat ion that can contain deployed commit or branch, etc. Disadvantage of this opt ion
is that appl icat ion cannot be deployed direct ly using k u b e c t l but it has to be preprocessed
using tool that fills out variables i n the template.

Second option is to store normal Kubernetes resources. Resources are more static and
change of each value must be done in one step. App l i ca t i on should be running after deploy
to Kubernetes without changing values in the resource. W h e n we want to deploy different
version of the appl icat ion, we need to change Docker image in the resource. Th i s can be
done in the continuous integration system using ut i l i ty sed.

Second option w i l l be more useful, and it w i l l also save problems that are described in
the 3.8.

k i n d : S e r v i c e
a p i V e r s i o n : v l
metada ta :

name: e x a m p l e - s e r v i c e
spec :

s e l e c t o r :
app: e x a m p l e - s e r v i c e

p o r t s :
- p r o t o c o l : TCP

p o r t : 80

a p i V e r s i o n : e x t e n s i o n s / v l b e t a l
k i n d : Deployment
metada ta :

name: e x a m p l e - s e r v i c e
l a b e l s :

commit: ${GIT_C0MMIT}
b r a n c h : ${GIT_BRANCH}

spec :
r e p l i c a s : 1
s e l e c t o r :

ma t chLabe l s :
app: e x a m p l e - s e r v i c e

t e m p l a t e :
me tada ta :

l a b e l s :

23

app: example-service

commit: ${GIT_COMMIT}

branch: ${GIT_BRANCH}

spec:

containers:

- name: example-service

image: ${DOCKER_REGISTRY>-example-service:${GIT_COMMIT}

ports:

- name: http

containerPort: 80

protocol: TCP

env

- name: GCP_PR0JECT_ID

value: ${PR0JECT_NAME}

L is t ing 3.1: Example of Kubernetes resource template

3 .6 .2 S t r u c t u r e o f K u b e r n e t e s r e s o u r c e s

Kubernetes resources can be structured i n many ways. Universal way to structure K u
bernetes resources does not exist. Each appl icat ion has different needs and different size,
according to which we select best structure for files. These ways can be:

• Directory that contains a l l configurations - this can be fitting for smal l applications
that share configurations between environments (staging, development, production).

• Directory that contains sub-directory for each environment - complex applications
that are running i n different ways between environments.

• Combined structure - configurations that are shared are i n one directory and others
that are different for environments are i n the specific environment directory.

Survey about structur ing Kubernetes configurations is i n the next section 3.7. These
three mentioned above are the most used and some other can be used too in some specific
applications.

3.7 Survey about using Kubernetes

Survey about Kubernetes was conducted for two reasons. One reason is verify that other
users are doing mistakes w i th kubectl too l when they are deploying applications to K u
bernetes. Other reason for conducting the survey is to understand how users are using
Kubernetes. Survey form had only four questions so it does not discourage respondents
from filling out the form. Questions were following:

1. Do you use Kubernetes resource templates? (Yes or No)

2. How do you structure your Kubernetes resources? Prov ided multi-choice options were:

• A l l environments (development, staging, production) share one configuration

• Each environment has its own configuration

24

• Combined - some configurations are shared across a l l environments and others
are created for each specific environment

3. How many times d id you deploy appl icat ion to different namespace? Prov ided options
were:

• 0

• 1 - 5

• 5+

4. How many times d id you deploy appl icat ion to different cluster? Prov ided options
were:

• 0

• 1 - 5

• 5+

Respondents had opt ion to leave the comment that can extend their selected answer.
Survey form was posted to Kubernetes community on the social network Reddit and 26
respondents have filled the survey form.

In Figure 3.7, we can see on the chart that the most of the users are using the templates
of Kubernetes resources. One respondent d id not know what are Kubernetes resource
templates and one user noted that they are using He lm charts (mentioned in the 4.2) and
only th ing that is template are Configmaps that are used as environments mappings. Second
chart is shown in Figure 3.8 and it shows how users structure their Kubernetes resources
in the repositories. One of the respondents noted that they have shared resources between
environments and they have only different environment mappings.

Do you use Kubernetes resource templates?

Y e s _

65.0°/.

Mo

35.0%

Figure 3.7: Char t shows how much of Kubernetes users are using Kubernetes resource
templates

Second part of the results is ta lk ing about mistakes that are done w i th kubectl. We
can see that only 27 % of the respondents d id not deploy appl icat ion to the different
namespace on the chart in Figure 3.9. S imi lar numbers are resulting from question that

25

How do you structure your Kubernetes resources?

9 Each environment lias its oivn config • A l l environments (dev. staging, production) share one config

Combined - some configs are shared across all environments and others are created for the each specific environment

Figure 3.8: Char t shows how are Kubernetes structur ing their Kubernetes resources

talks about deploying appl icat ion to the different cluster. On ly 38 % of the users d id not
deploy appl icat ion to the different cluster yet as we see on the chart i n Figure 3.10. One
respondent stated that first or second mistake cannot happen in their company, because
each state-modifying kubect l commands have to be reviewed and approved by the other
coworker.

How many times did you deploy application to different namespace?

Figure 3.9: Char t how many times they deployed appl icat ion to the wrong Kubernetes

26

How many times did you deploy application to different cluster'1

Figure 3.10: Char t shows how many times they deployed appl icat ion to the wrong Kuber -
netes cluster

3.8 Loca l Development

Loca l development of the appl icat ion should be done in the environment that is similar to
product ion environment as much as possible. W i t h this approach, we can avoid problems
that results from the differences between environments. Th i s is possible w i th minikube.
M in ikube is official tool for running lightweight development cluster l oca l l y 6 . Cluster has
only one node that is running in the v i r tua l machine.

M in ikube is controlled as a normal cluster - w i th kubect l tool . We would need to
mainta in two versions of the deployment resources - one that is the template used in the
continuous integration and the second one is resource ready for usage in Kubernetes. Th is
can br ing huge inconsistencies between staging and local environment. Another opt ion
is running some ut i l i ty that fills the template before the every deploy to the minikube.
Templates can be problem in a local development. It creates one more step that is needed
to deployment of an appl icat ion. Another problem that can be encountered is f i l l ing labels
that are not available i n the t ime of development such as git branch or git commit hash.

'https: //github.com/kubernetes/minikube

27

Chapter 4

Exis t ing solutions for deployment
of applications to Kubernetes

Kubernetes can be controlled using official command line interface tool kubect l or using its
A P I . kubectl is official console too l developed by Kubernetes so it supports a l l operations
for Kubernetes management, kubectl is communicat ing over Kubernetes A P I and supports
mult iple versions of Kubernetes A P I (is back-compatible). W i t h kubect l , for example,
resources can be managed, logs from pods can be viewed, deployments can be scaled,
rollback can be issued, kubectl is a too l for manual managing of Kubernetes. It does not
support any type of the automation. Automat ion is usual ly done by creating scripts that
use kubect l to manage Kubernetes and applications running inside. Another opt ion is
running Kubernetes Dashboard using command kubectl proxy. Kubernetes Dashboard is
user interface for control l ing and monitor ing Kubernetes.

4.1 Cont inuous Integrat ion (CI) solutions

CI providers support Kubernetes using its plug-ins. These plug-ins are usually wrappers of
kubect l tool.

Wercker has step named kubect l . Th is step is just wrapper of the kubect l too l and this
step can do a l l kinds of operations that kubect l supports. In case we do not want to use
static deployment resources we can transform these resources to bash templates and use
the step that fills the template w i th values from system environment, and then we can use
kubect l step to deploy this filled template.

O n a platform Travis C I , we can create the script that installs kubect l too l that we can
later use. Solut ion to use resource templates is similar to the solution in Wercker.

Other C I providers offer s imi lar solutions for deploying applications to Kubernetes as
two mentioned above.

4.2 H e l m — package manager for Kubernetes

He lm is package manager for Kubernetes 1 . It allows deployment of appl icat ion w i th its
dependencies to the cluster. The package is named chart. The chart contains chart de
scriptor, Kubernetes resources templates, file w i th appl icat ion configuration and helpers.

x

https: //github.com/kubernetes/helm

28

Kubernetes resources templates are filled w i th appl icat ion configuration before deployment
and helpers can provide an interactive way to finish deployment. Helpers can be used for
fine-tuning deployment for selected environment. Deployment can be slightly changed de
pending on the environment that is selected - minikube, self-hosted cluster, cluster from
cloud provider, etc.

Chart can also have dependencies - list of other charts that should be deployed w i th
the ma in chart. One of these dependencies can be database, for example.

He lm charts would be good solutions for our usage, but they are complex for common
usage and developers and DevOps engineers would have to learn how to use it.

4.3 Other exist ing solutions

In the beginning of the Mar ch 2018, Google created open-source tool skaffold 2 for deploy
ment of applications to Kubernetes. skaffold helps w i th deployment to Kubernetes i n the
mult iple ways:

• Loca l development w i th minikube.

• Remote development w i th dedicated cluster.

• Deployment of the appl icat ion to the staging or product ion environment.

skaffold also supports code watching and automatic bui ld ing of the Docker images and
deploying appl icat ion. Power of this tool is development mode where source code of the
appl icat ion is watched and appl icat ion is bui l t and deployed automatical ly when change is
made.

2

https: //github.com/GoogleContainerTools/skaf fold

29

Chapter 5

Design of the M M O Extension for
App l i ca t i on Deployment

The MMO extension for deploying monorepo applications w i th microservice architecture
was designed as a user interface. The user interface can show a lot more information to the
user and it is less confusing in this type of appl icat ion than command line interface. User
interface of the MMO w i l l be used for managing Kubernetes configurations and deploying
appl icat ion or its services but can be later extended w i th existing features of the M M O
that are actual ly implemented as the features of the command line interface.

User interface w i l l have backend and frontend part. Each part has section dedicated to
it below. User interface w i l l have mult iple parts, each function the too l provides w i l l have
dedicated part of the interface.

One of the sections should be overview of the services that are in the project. Overview
has list of the services where each of the services w i l l have a l ink to standalone service detai l
page.

Service detai l page w i l l contain list of MMO plug-ins that service use. Second part
of the service detai l page is list of Kubernetes resources that service has. Management
of the configuration w i th editor w i l l be useful i n the projects of bigger size (more than
10 microservices) because developer does not have to search for mult iple resources i n one
folder, but he w i l l see just the that resources that belong to service. Th i s is possible due
to fact that user is developing usual ly one service at a t ime. Service detai l page w i l l also
contain too l for generating Kubernetes resources.

Second section of the appl icat ion is used for deploying appl icat ion. The appl icat ion
can be deployed directly to Kubernetes cluster. Another way to deploy an appl icat ion can
be G i t H u b deployment which can be ut i l i zed in the continuous integration and continuous
deployment tools for deploying the appl icat ion.

The data transportat ion is defined in the Protobuf definition from which both server
and client are generated.

5.1 Des ign of the Backend

As shown in Figure 5.1, the backend part of the appl icat ion w i l l be a g R P C server wr i t ten
in Go and it w i l l work as a layer above the M M O core. g R P C is using protocol H T T P / 2
for communicat ion and it is not fully supported by a l l browsers. Due to this, a proxy w i l l

30

between the frontend client and the g R P C server. Th is proxy translates H T T P requests
w i th J S O N body to the g R P C requests.

Figure 5.1: Design of the appl icat ion. Angular Frontend communicates w i th g R P C through
H T T P Proxy and g R P C server is bui l t on the top of existing core of M M O

The appl icat ion w i l l be developed using M M O . The A P I w i l l be defined using Protobuf.
We w i l l use set of M M O plugins that:

1. Generate g R P C server and stubs from the Protobuf definition

2. Generate R E S T A P I from the Protobuf definition (this R E S T A P I is proxy that
translates a R E S T f u l J S O N A P I into g R P C 1)

3. Generate Swagger definition from the Protobuf definition

4. Generate Angu lar A P I client from the Swagger definition

This set of plug-ins ensure that communicat ion between frontend and the backend of the
appl icat ion is type safe. There are only two things that have to be implemented - business
logic of the backend of the appl icat ion and visual part of the frontend of the appl icat ion.

5 .1 .1 D e s i g n o f K u b e r n e t e s R e s o u r c e G e n e r a t i o n

This section w i l l ta lk about generation of Kubernetes resources i n detai l . For Kubernetes
resources generation, we need information about:

• Ports used by services

• Volumes that services need to being persistent (if they need to be persistent)

• Environment variables used by service

After collecting this information we can generate Kubernetes resources. Resources are
generated to directory named infrastructure in the root of the project. Th is directory
w i l l contain mult iple directories - one directory per target environment.

In the results of Kubernetes usage survey in Section 3.7 can be seen that most of Kuber
netes users are t ry ing to share resources across environments as most as possible. Because
of this, directory shared w i l l be always present and it w i l l be used for storing resources
that are shared across environments. It w i l l also be the default directory for Kubernetes
resource generation. Other directories can be for example: production, staging. De
ploying appl icat ion is easy w i th this structure of resources. W h e n we want to deploy the

x

https: //github.com/grpc-ecosystem/grpc-gateway

31

appl icat ion to staging environment be have to deploy resources from shared directory and
resources from staging directory. Another advantage is that the services are as same as
possible across environments and l i tt le nuances between environments can be i n environ
ment specific folder. This can be for example environment mapping stored as a Configmap
(approach used by some Kubernetes users that results from the survey in Section 3.7).

Another problem that has to be solved is format of the generated Kubernetes resource.
As mentioned in Section 3.6.1, we can generate Kubernetes resource or its template. Results
from survey in Section 3.7 say that the most of the users prefer templates. Generated
resources by M M O are not very complex and each user prefers different type of variables
in the resource template. This can be also dependent on the type of appl icat ion that is
user orchestrating in Kubernetes. On ly one variable - Docker image name - is worth of
swapping by variable currently generated resource. Due to this fact, generated resource w i l l
not be template. If some user wants to use templates, he just needs to swap image name
by variable and extend Kubernetes resources w i th his parameters.

Generation of the resources is implemented using Go H T M L templates. Th is l ibrary
is part of the standard l ibrary of Go . Go H T M L templates are used for generating static
H T M L web sites, but they w i l l be also useful for generating Kubernetes resources. For
generating file, we need template and object that is passed to template. Properties of the
object w i l l be used for filling the given template. Templates also support more advanced
features such as loops and conditions. For example, loops can be used for adding mult iple
ports to the Kubernetes Deployment and Service.

D e p l o y m e n t s

Deployments are the most important resources along w i th the Services. For generating
deployment file we need this information:

• Ports used by service

• Mounted volumes to the container

• Environment variables used by the appl icat ion

More advanced features of Kubernetes w i l l not be generated. There are lot of these
advanced features and form for generating resources would be cluttered. W h e n some feature
w i l l be demanded by number of the users, it can be added to the form later.

S e r v i c e s

W h e n user provides information about the used ports we can also generate Kubernetes
Services. We w i l l be assuming that ports that user provided are using T C P protocol.

P e r s i s t e n t V o l u m e C l a i m s

Another resource that we want to generate is persistent volume c la im. For generating this
type of resource only information we need is mounted volume and its size. Persistent Volume
Cla ims (P V C) are generated always when the user specifies that he wants to persist data
on disk of a node. We generate P V C resource when user specifies volume mount during
generation process.

32

C o n f i g m a p s a n d Sec r e t s

It would be a nice feature to generate Configmap and Secret resources but these are created
directly from file using kubect l tool.

Ingresses

The ingress resources are quite simple to understand and it would be counterproductive
to make too l for generating this resource. Another disadvantage of the generation is that
resources can have l i tt le differences that depend on the type of the Ingress Control ler used
in Kubernetes.

5 .1 .2 A p p l i c a t i o n d e p l o y m e n t d e s i g n

This section w i l l ta lk about deployment of the appl icat ion to the Kubernetes in detail .

G i t H u b D e p l o y m e n t

G i t H u b deployments is feature hidden to regular users of the G i thub but it is mentioned
in A P I documentation. However, documentation of this functionality is very poor. Some
experimentation was needed to determine what are the deployments good for and how this
endpoint works. After some time spent w i th experimentation w i th deployment endpoint
on the G i t H u b and continuous integration tools, it has been found out that G i t H u b De
ployments can be very useful feature for continuous delivery. In the continuous delivery
process, manual approval for the deployment by the human is needed [5].

G i thub Deployments work i n the following way:

1. P O S T request to G i thub deployment A P I is sent w i th the following information -
reference (branch, commit hash, tag, release, etc 2) , environment and message (other
optional request parameters are in the Gi thub 's A P I documentat ion 3) .

2. G i thub w i l l check reference and i f reference is val id then G i thub sends webhook re
quests to a l l webhook services registered in the repository which are l istening to event
type "Deployment".

3. Receiver of the webhook event can uti l ize information about deployment, for example,
continuous integration tools can run deployment pipeline of the appl icat ion.

Advantage of deploying using continuous integration tool is that a l l steps on which
deployment depends are done (build, test, etc). If continuous integration is set up then
deploy from C I is preferred because ind iv idua l steps of the pipeline done by people can be
done w i th mistakes. These mistakes can lead to put t ing appl icat ion down.

G i t H u b deployments are using G i t H u b A P I and G i t H u b personal access key is needed for
A P I authentication. This key should be exported to environment variable GITHUB_TOKEN.
M M O wi l l read A P I key from the environment variable and utilizes it when G i t H u b de
ployment is invoked from the user interface.

2

https: //developer.github.com/v3/git/refs/
3

https://developer.github.com/v3/repos/deployments/

33

http://github.com/v3/git/refs/
https://developer.github.com/v3/repos/deployments/

M a n u a l D e p l o y m e n t

Manua l deploy should be used when appl icat ion is deployed to the cluster and G i thub de
ployment is not available. Manua l deploy takes a l l files from "shared" directory and a l l files
from environment specific directory that user provided as a target environment. Confir
mat ion summary is shown w i th the list of resources that w i l l be deployed and information
about the cluster. W h e n user confirms the deployment, confirmation is sent to the backend,
where kubect l too l is invoked to deploy resources to the cluster. Log from the deployment
is sent back to the frontend so user knows about the success or fail.

5.2 Des ign of the Frontend

Frontend part w i l l be implemented i n web appl icat ion framework Angular. Frontend wi l l
be designed according to Material Design Guide l ines 1 . People are famil iar w i th Material
Design and another advantage is that Kubernetes Dashboard uses Material Design too, so
people w i l l get used to it faster. Frontend w i l l communicate w i th backend as shown in
Figure 5.1 in the previous section.

Angular framework allows us to create appl icat ion composed of reusable components.
Whole appl icat ion is one big component. This big component is composed of smaller com
ponents and these smaller components can be again composed of even smaller components.
Appl icat ion 's ma in component w i l l be div ided to the 4 ma in components:

• Overview Component

• Service Deta i l Component (accessible from the Overview Component)

• Plug-ins Component

• Deployment Component

M a i n application's component w i l l always have 2 navigation components: Material Tool
bar and Material Navigation Drawer that has buttons for accessing 4 components mentioned
above. A but ton of component that is active w i l l be highlighted. The component that is
active i n default w i l l be Overview component after accessing appl icat ion. Toolbar w i l l con
ta in only but ton for toggling Navigat ion Drawer. It can be later used for adding another
buttons. Pos i t ion of the Toolbar and Navigat ion Drawer can be seen in Figure 5.2.

5 .2 .1 D e s i g n o f t h e O v e r v i e w C o m p o n e n t

Overview component is used for showing overview information about MMO project to the
user. Second part of the overview can show list of the MMO services to the user. Each
service present i n the list has also its description and hyper l ink to the detai l of the service.
After c l icking this l ink, Service Deta i l Component w i l l be shown to the user. Service Deta i l
Component is described i n the following section 5.2.2. Component w i l l have two Material
Cards for both project information and list of services. Th is can be seen in Figure 5.2.

5 .2 .2 D e s i g n o f t h e S e r v i c e D e t a i l C o m p o n e n t

Service Deta i l Component should show information about part icular service. Th is infor
mat ion involves a list of MMO plugins that service uses and list of Kubernetes resources

4

https: //material, io

34

Overview

Plugins

Deployment

Project

Project information

Project information 2

Services

Service 1

Service 2

Service 3

Figure 5.2: Wireframe of the Overview Component. Grey rectangle on the top side of
wireframe is Material Toolbar. Menu on the left side of wireframe is Material Navigation
Drawer. Overview component has two Material Cards. One card contains information
about MMO project. Second card contains list of MMO services w i th hyperactive l ink to
detai l of the service.

associated w i th that service. Aga in , list of M M O plug-ins is i n the separate Material Card
and list of Kubernetes resources is i n another separate Material Card as seen in Figure 5.3.

Each Kubernetes resource has one row in the table. F i rs t co lumn of the row is check box
for selecting resources, second co lumn is the type of resource, th i rd and fourth are buttons
for edit ing and deleting Kubernetes resource. W h e n " E d i t " but ton is clicked, dialog window
opens w i th the content of the resource w i l l be opened as seen in Figure 5.4.

O n the bot tom of the card, there are two action buttons - for creating new resource
for the service and second for deploying a l l resources that are selected. W h e n button for
creating new resource is clicked, dialog window w i th form is shown. Th is window is shown
in Figure 5.5. It contains inputs needed for generating val id Kubernetes configuration for
deployment of appl icat ion:

• Name of the resource (service).

• L is t of the ports that service uses.

• L is t of the environment variables that service needs.

• L is t of the volumes that have to be mounted to container.

Each list of items has button that appends new empty row on the bot tom of the list. " A d d
volume" but ton is l i t t le different - dropdown list of options is shown when clicked. Each
option appends different type of row. F i rs t opt ion adds "Persistent Volume C l a i m " volume,
second option adds " G C E D i s k " volume. F i e ld values w i l l be filled w i th the information
that can get be fetched from the A P I . These values can be determined from the M M O
service plug-ins - e.g. some plug-in is used for generation of the R E S T A P I that runs on
the port number 50080, so we can add this port to the form.

35

Overview

Plugins

Deployment

Information

Information about service

Plugins

Plug in 1

Plug in 2

Version of plugin

Version of plugin

Kubernetes

1 1 Resource 1 Type o f resource 4

1 1 Resource 1
Type o f resource 4

1 1 Resource 1
Type o f resource 4

Figure 5.3: Wireframe of Service Deta i l Component. Component is divided to three Mate
rial Cards. F i rs t contains information about service. Second contains list of MMO plug-ins
that service uses and last one has list of Kubernetes resources w i th abi l i ty to select, edit
or delete them. Selected resources can be deployed or new resource can be generated w i th
two buttons at the bot tom of the last card.

Two buttons are on the bo t tom of the dialog's window - for creating Kubernetes resource
and for canceling generation of the resource (this w i l l close dialog).

5 .2 .3 D e s i g n o f t h e P l u g - i n s C o m p o n e n t

Plug-ins Component is the most simple component among main components. Component
has Material Card, which contains list of the global MMO plug-ins. Th is is shown on the
wireframe in Figure 5.6. Th is component w i l l be later extended w i th plug- in management
(this is not goal of this thesis).

5 .2 .4 D e s i g n o f t h e D e p l o y m e n t C o m p o n e n t

Deployment component w i l l be used for deploying appl icat ion. Component (shown in Figure
5.7) is div ided to two sections, each i n the standalone Material Card. F i rs t section is for
deploying using G i t H u b Deployments which are described in Section 5.1.2. A s mentioned
there, we need G i t H u b reference, deployment subject (form of message that can be later
used, for example, reason for deployment) and environment.

Second part is used for manual deployment to Kubernetes cluser. A s mentioned in
Section 5.1.2, we need target namespace, cluster and source environment for manual de
ployment. Source environment determines which set of Kubernetes resources w i l l be used
in the project. W h e n user clicks on "Dep loy " button, confirmation dialog w i th summary
information w i l l be shown. Summary information contains list of deployed resources, name
of the Kubernetes cluster and namespace. User have to confirm deployment. After confir-

36

Figure 5.4: Wireframe of the dialog window for edit ing Kubernetes resources.

mation, output log w i l l be shown in the dialog window to inform user about the deployment
status.

37

New Kubernetes Configuration

Service name

Service ports
Port name Port number

(Add por t)

Environment variables
Variable name Variable value

(Add variable)

Service volumes
Volume name Volume size (GB)

Volume name GCE Disk name

(Add volume)

Mount path

Mount path

(Cancel)

Figure 5.5: Wireframe of the dialog window for generating Kubernetes resources.

Plugins

Figure 5.6: Wireframe of the Plug- ins Component. For now, just list of global MMO
plug-ins is shown in the card. P lug - in management can be added later.

38

Overview

Plugins

Deployment

GitHub Deployment

Ref:

Subject:

Environment:

Kubernetes Deployment

Namespace:

Source environment:

Target cluster: [Cluster 1

Figure 5.7: Wireframe of Deployment Component. One section is used for deploying appl i
cation using G i t H u b deployments. Second section is used for deploying directly to Kuber
netes.

39

Chapter 6

Implementation

This section talks about the implementat ion of the appl icat ion. The structure of the source
code created w i th in this thesis is shown in Figure 6.1.

mmo Root of the repository
_ api A P I part of the M M O

.protobuf

1 proto .proto Protobuf definition of g R P C server
.server

L
server .go Server l ibrary of A P I

s t a t i c Directory w i th static frontend files
.proto.pb.go Generated g R P C server and stub
proto.pb.gw.go Generated g R P C proxy gateway
. service_test .go Test of the service
service.go Implementation of server's service

ui User interface of M M O - Angu lar project
api Typescript A P I client generated from the Swagger definition

models Generated models
I
api-client-service.ts Generated methods
index.ts

src Angu lar source code
app M a i n Angular component
assets Assets of Angu lar project - pictures, fonts, etc
environments Environments of Angu lar project

templates

L kubernetes Templates used for generating Kubernetes resources

Figure 6.1: Directory tree of the MMO source code created w i th in this thesis.

6.1 Implementat ion of the Backend

The backend part of the appl icat ion is implemented in the programming language Go and
it is present i n the folder " a p i " i n the root of repository. The structure of the source code

40

is presented i n Figure 6.1. F i l e proto.proto i n protobuf directory contains the definition
of the server and its methods. Th is file is used for generating Go g R P C server, Go g R P C
gateway and Swagger definition.

Backend of the appl icat ion is run using command mmo u i . This also opens web browser
w i th U R L of frontend page. W h e n server is run, configuration of the MMO project is
loaded. Th is is later used for some server's methods like reading global plug-ins, services,
its description and plug-ins. A l ong w i th configuration, G i t H u b personal key is loaded from
environment variable $GITHUB_TOKEN too. G i t H u b key is used for integration of G i t H u b ,
in our case, Deployment A P I w i l l be used for deploying applications.

Figure 6.1 shows how is source code of the MMO structured w i th in repository. Directory
api contains a l l files needed for running backend part of the appl icat ion. Inside that,
directory protobuf w i th file proto.proto is present. Th is file is used for generation of
g R P C server and g R P C gateway proxy. Generated files are i n the api directory and they
are named proto.pb.go and proto.pb.gw.go. Generated g R P C server file has interface
of the server that has to be implemented. Implementation of the mentioned sever is in the
file service.go. This is shown in Figure 6.2.

Last file has to be mentioned is file server .go i n the directory server. Th is file contains
function that runs bo th g R P C server and H T T P to g R P C proxy.

Kubernetes resources are generated using Go H T M L templates present i n the Go stan
dard l i b ra ry 1 . Example of the Go template can be seen in L i s t ing 6.1. Go template engine
takes template and an object of type interf aceO as an input. Example of object can be
seen i n L is t ing 6.2. Resul t ing file created from mentioned template and object can be seen
in L i s t ing 6.3.

kind: Service

apiVersion: v l

metadata:

name: {{ .ServiceName }}

spec:

selector:

app: {{ .ServiceName }}

ports: {{range $index, $element := .Ports]-}

- name: {{ $element.Name }}

port: {{ $element.Port }}

protocol: TCP {{end}}

L is t ing 6.1: Go template used for generation of Kubernetes Service resource

{

ServiceName

Ports: [

{

Name ii

auth",

http",

8 0 " , Port II

},{
Name II grpc"

50051 Port II II

}

x

https: //golang.org/pkg/text/template/

41

]

}

Lis t ing 6.2: Object that can be passed to the Go template engine

kind: Service

apiVersion: v l

metadata:

name: auth

spec:

selector:

app: auth

ports:

- name: http

port: 80

protocol: TCP

- name: grpc

port: 50051

protocol: TCP

Lis t ing 6.3: Result of filling template i n L is t ing 6.1 w i th object in L is t ing 6.2.

42

Config: *config.Config

GithubClient: *github.Client

I
APIServiceServer interface

GetServices(context. Context, *google_protobuf. Empty) ("Version, error)

GetGlobalPlugins(context.Context, *google_protobuf. Empty) ("Plugins, error)

GetPlugins(context.Context, "Service) ("Plugins, error)

GetKubernetesConfigs(context.Context, "Service) ("KubernetesConfigs, error)

SaveKuberentesConfig(context.Context, "KubernetesConfig) (*google_protobuf. Empty, error)

RemoveKubernetesConfig(context.Context, "KubernetesConfig) (*google_protobuf.Empty, error)

KubernetesFormFromPlugins(context.Context, "Service) ("KubernetesServiceForm, error)

KubernetesConfigFromForm(context.Context, "KubernetesServiceForm) ("KubernetesServiceForm, error)

GithubDeploy(context.Context, "GithubDeployRequest) (*google_protobuf.Empty, error)

GetKubernetesClusters(context.Context, *google_protobuf. Empty) (*KubernetesClusters, error)

KubernetesDeploy(context.Context, "KubernetesDeployRequest) ("KubernetesConfigs, error)

ConfirmKubernetesDeploy(context.Context, "KubernetesDeployRequest) ("ConsoleOutput, error)

Services

Services: []*Service Pli

Plugins

Plugins: []*Plugin

Service

Name: string

Description: string

I
GithubDeployRequest

Environment: string

Message: string

Ref: string

KubernetesClusters

Clusters: Dstring

Environments: Dstring

1
KubernetesConfigs

Configs: []*KubernetesConfig

KubernetesDeployRequest

Cluster: string

Namespace: string

Environment: string

Plugin

Version: string

Name: string

KubernetesServiceForm

ServiceName: string

ProjectName: string

Ports: []*KubernetesPort

Volumes: []*KubernetesVolume

Variables: []*KubernetesVariable

ConfigEnvConfigmap: bool

KubernetesConfig

Name: string

Type: string

Path: string

Data: string

> f
KubernetesPort

Name: string

Port: string

I
Kubernetes Variable

Name: string

Value: string

KubernetesVolume

Name: string

MountPath: string

PvcName: string

PvcSizeGB: int32

GceDisk: string

Figure 6.2: D iagram of structures and dependencies of Go package
github.com/flowup/mmo/api. Every structure except APIService is generated from
the models in Protobuf definition. Interface ApiServiceServer is generated from R P C
methods in Protobuf definition too.

43

http://github.com/flowup/mmo/api

6.2 Implementat ion of the Frontend

Frontend is implemented in programming language Typescript using web appl icat ion frame
work Angular . L ike mentioned i n 5.2, Angu lar is using reusable components for bui ld ing
appl icat ion. Source code of the frontend is stored in the directory u i of the root of MMO
repository as shown in Figure 6.1. This directory contains directory api which contains
models generated from Swagger definition. Swagger definition is stored i n the root of MMO
repository and it is generated from the Protobuf definition. Second directory that can be
mentioned is src which contains a l l source code related to Angu lar project - components
and dialogs. A t the root of src directory is directory app, which is main component of the
application.

L ibrary Angular Material2 is used for integrating Material Design into the appl icat ion.
A p p Component has Material Toolbar, Material Navigation Drawer and component

based on the route that user has visited. Th i s can be Overview Component, Deployment
Component or P lugins Component. Structure of components w i th in the app component
can be seen i n Figure 6.3.

app

overview Overview Component
I
deployment Deployment Component
I
service Service Deta i l Component

.kubernetes Dialogs for generating and edit ing Kubernetes resources

global-plugins G loba l Plug- ins Component
J
store State management of the appl icat ion using ngrx store l ibrary
I

Figure 6.3: Source code of the Angu lar project's components. Tree starts w i th ma in com
ponent of appl icat ion named app.

A l ibrary ngrx-store is used for managing the state of app l i ca t ion 3 . How this l ibrary
works is described in Figure 6.4. Ngrx effects, reducers and store are a l l stored in store

directory of app component.

Each component consists of three files:

• H T M L template

• Sass style file

• Typescript Component file

H T M L template is used for defining how component should look like. W i t h special d i
rectives, variables from the Typescript file can be used. H T M L template also supports
more advanced features like conditions and loops. Style of H T M L file is defined i n Sass

2

http: / /material, angular, io
3

https: //github.com/ngrx/platf orm

44

file. Sass is an extension of C S S that support features like variables, nesting of the CSS
attributes, etc . Typescript Component file is used for programming background logic of
the component, for example, accessing ngrx store and retrieving data from it.

AP I < ^ Effect fetches data

Dispatch action
Effects

Dispatch action

Component
Dispatch action

Reducer

Component subscribes
to store's observables

Store Update store

Figure 6.4: ngrx state management is based on actions. Act ions can also transport a
payload. Component is reading data from Store and can dispatch act ion that can affect the
state of Store. Effects are side effects that can be triggered by act ion and effect, for example,
can fetch data from A P I . Reducer is component that catches a l l actions and decides how
to change state of the Store based on the action.

4

https: //sass-lang.com/documentation/f ile.SASS_REFERENCE.html

45

Chapter 7

Exper iments

7.1 T i m e savings

T ime savings that come from using user interface can be div ided to two groups: time
savings from Kubernetes resource management and t ime savings from the deployment of
appl icat ion from the user interface.

7 .1 .1 T i m e s a v i n g s f r o m K u b e r n e t e s r e s o u r c e m a n a g e m e n t

Resources are usually copied from the examples of Kubernetes documentation or from dif
ferent projects and then edited for intended purpose. T ime can save be saved by generating
resources w i th MMO. T ime savings w i l l differ for each user. Users who have experience
w i th Kubernetes w i l l save less t ime than unexperienced users. Another advantage of using
MMO generator is that generator uses tested templates so there w i l l be no errors after
generation. User can br ing some errors to resources when resources are copied from the
documentation or from the project.

We have two user test groups for this experiment:

1. Beginner user - user knows the basics of Kubernetes. He can create Kubernetes
resources based on Kubernetes documentation but he cannot check that resource is
correct. This user w i l l have hard t ime when something i n the resources is not correct
and he has to debug it.

2. Experienced user - user can create basic resources like Deployments and Services.
He can check that resource he created is correct (Ports, container image, volume
mounting, environment variables, etc.).

A task of the tested user is to create Kubernetes resource that contains Deployment and
Service. App l i ca t i on is using two ports - one for exposing g R P C server and second one for
exposing H T T P A P I . App l i ca t i on is storing data i n the /opt/data and G C E disk (Google
C loud Compute Engine disk) has to be mounted to that directory. Environment variable
named DB_USER has to be added w i th value postgres. Resource is created manual ly and
second t ime it is generated using the M M O generator. Task was marked as failed, when
user deployed three non-working configurations to Kubernetes.

Each testing group had three users. A s shown in Figure 7.1, experienced user needed
averagely 4m 5s to manual ly create the resource. 1 user had typo in the resource that
was fixed after first deploy. Generat ion of the resource taken l m 14s i n average to the

46

experienced users and resources created i n this way are a l l correct. Beginner users had
similar results when they generated the resources - difference was only l i t t le higher average
time. Beginner users had problem to create Kubernetes resources from scratch - average
t ime was over 17 m in 49 sec but none of the created resources was correct.

I Experienced user Beginner user

Manual resource creation

M M O resource generation

0:00 2:30 5:00 7:30 10:00 12:30 15:00 17:30 20:00

Time (min: sec)

Figure 7.1: Char t showing the results of Kubernetes resources creation experiment

In the result, experienced Kubernetes users are able to generate Kubernetes resources
approximately 226 % faster. Beginner users are able to generate configurations that are
working out of the box so they much of their t ime and time of the DevOps engineers.

7 .1 .2 T i m e s a v i n g s f r o m u s i n g t h e M M O d e p l o y m e n t s

T ime savings from using the MMO deployments come mainly from el iminat ion of the mis
takes that can be done when the appl icat ion is deployed. Mistakes can happen easily when
deploying appl icat ion cluster. Mistakes are more l ikely when mult iple applications are de
ployed to the different clusters and to different namespaces of the cluster. A result of the
survey in 3.7 says that the most made mistake is deploying to the different namespace.
Namespace must be provided v ia flag i n kubectl too l and default namespace is selected
when it is not provided. In other cases, namespace may be mistyped or namespace of an
other project can be typed by not paying attention. Mistake like this is not cr i t ica l when
nothing is running i n the targeted namespace. Th is can be cr i t ica l when existing appl i
cation i n mistaken namespace is put down by deploying different resources. Th is mistake
can cause finance losses when product ion is put down. S imi lar mistake can happen when

47

appl icat ion is deployed to the different cluster. This is very l ikely when user is switching
between different clusters and he forgets to switch to cluster where he wants to deploy
appl icat ion.

A l l these mistakes costs the user money or t ime. W h e n no appl icat ion is put down
by deploying in the wrong environment, we always have to remove deployed resource from
the environment. Th is can take various t ime depending on the status of environment. It
takes less t ime to fix deploy mistake in namespace or cluster where nothing is running. O n
the other side, it may take long t ime to fix deploy mistake when appl icat ion is deployed
in the namespace where another appl icat ion is running. User must be careful that he w i l l
not remove resources from original applications, because this can make appl icat ion work
improperly.

7.2 Standalone P l a t f o rm for Dep loy ing Microserv ices Projects

This experiment consisted of bui ld ing a prototype of a standalone plat form for managing
microservice applications. The platform should be used for deploying applications after
they are bui l r and testet i n a continuous integration tool . The platform should serve to
end-users, especially to developers and DevOps engineers.

The plat form should be able manage projects and services. After creating the applica
t ion you can create service and configure each service. Conf igurat ion of the service consists
of s imilar options as those mentioned in Design section 5.1.1. We need information about
which ports are used by appl icat ion, i f an appl icat ion uses some volumes to persist data,
which variables should be exported into the container, and which configurations should be
mounted into the container.

The plat form should have a webhook endpoint that would be accessible to continuous
integration tools to deploy appl icat ion into the cluster. Use-cases of the platform:

1. User signs i n and creates project.

2. Services are added to project.

3. Each service is configured.

4. User configures cluster where appl icat ion w i l l run (Kubernetes cluster or Docker
Swarm cluster) and provides credentials to this cluster.

5. User w i l l setup continuous integration system to notify the platform that some service
from the project should be deployed and information about changes is provided (can
be name of the Docker image).

6. P la t form w i l l deploy appl icat ion after notif ication.

App l i ca t ion w i l l use web appl icat ion framework Angu lar for a frontend and Firebase for
a backend. Firebase is suitable for prototyping applications like this because of its s impl ic i ty
and number of features it provides. The most important feature that we w i l l use is Firestore
which is real-time document database. The database w i l l be used to store data about users,
their projects, and services that are i n the project. Configurations of a l l services w i l l be
also stored in Firestore. Storage in Firebase w i l l be used for storing configurations that
w i l l be deployed as Conf igMaps to Kubernetes. We w i l l also use Firebase Authenti f icat ion
for authenticating and authoriz ing users. Users w i l l be able to sign-in using their G i t H u b

18

account. Each user should have access only to projects and services that he owns. Firebase
hosting w i l l be used for hosting frontend of our platform. Last part of the Firebase that w i l l
be used is Firebase functions. Functions serve as support functions for Firestore database.
We can create functions that w i l l watch some resources in the database and trigger them
when some event happens. For example, this type of the event can be write to the database.
Firebase Functions should be used always when we have to do some operation that is C P U or
memory intensive, or when the operation should not be done on the application's frontend.
The technologies used in this implementat ion are shown in Figure 7.2.

Firestore < > Functions

Storage

Authentification
A

|H Firebase

OAuth

o
Figure 7.2: App l i ca t i on frontend is implemented using web appl icat ion framework Angular .
Users can authenticate w i th their G i t H u b account using Firebase Authenti f icat ion. Da ta
of the users are stored in the Firestore and Storage of Firebase. Firebase Funct ions are
supportive functions for Firestore database.

Each service has mult iple settings - used ports, mounted volumes, exported environment
variables and used configurations. These settings are stored in Firebase Firestore database.
Configurations are uploaded to the Firebase Storage. For deployment, user needs A P I
key which is used for authenticat ion and authorizat ion. User can generate A P I key for his
appl icat ion in project settings. Webhook endpoint is implemented using Firebase Functions.
W h e n user sends deploy request to this endpoint, function w i l l validate his A P I key and
append this deploy request to Firestore. There is another Firebase Funct ion that watches
these deploy requests and does deployments according these requests. The deployment of
appl icat ion is done over Kubernetes A P I . Kubernetes resources are created based on the
configuration of the service that should be deployed and information from the deploy request
- Docker image name. These resources are sent to Kubernetes A P I w i th the credentials
that are stored in the Firestore.

The appl icat ion was implemented according to the design above. After doing user
testing, it has been found out that experience the platform provides is not sufficient. Exact
problems are:

49

• The appl icat ion is just another plat form that the developers and DevOps engineers
would have to visit and have some basic knowledge about it.

• The application's feature that deploys appl icat ion to the cluster on the webhook event
should be part of the continuous integration pipeline.

• Configuration of the services is not t ied to the version of the services. To make this
possible, application's configuration would have to be stored in the repository instead
of the platform's Firebase.

P la t form would be useful, but i n the case that it would integrate also continuous in
tegration and deployment tools so developers would use only one too l instead of the two.
P lat form would have to be more advanced. Advanced options are necessary so applications
can be set up to run in different environments (production too). P la t form should cover
stuff like monitor ing, scaling, logging and more. P la t fo rm w i th this many features is big
project that is not realizable as a bachelor thesis. Development would need team of the
people and lot of planning.

7.3 User Exper ience

User experience tests were done to find out user experience flaws in appl icat ion. F i rs t round
of the user tests revealed some serious bugs i n the appl icat ion. A l l of these bug were fixed.

The most serious bug was that deployed appl icat ion was always deployed to the default
namespace of the Kubernetes, no matter which namespace was selected in the user interface.
The second bug was a problem w i th refreshing the user interface in the browser, which just
shown error "404 - Not found". This problem was caused by Angu lar which uses path i n the
browser for appl icat ion routing. W h e n browser path contained something after slash, H T T P
static file server returned error, because it had not found that file in the static files. Last bug
appeared when user tr ied to generate Kubernetes resource. Fo rm w i th service configuration
was not filled because server crashed while it was reading MMO service configuration.

F i rs t round of the user tests also br ing enhancement to generated Kubernetes resources.
Enhancement is adding healthcheck sidecar container to the Deployment of the g R P C
server. Kubernetes offers native healthchecking of the container, which is used for termi
nat ing containers that cannot respond because they are unheal thy 1 .

Second round of user tests have brought the idea to generate Configmap environment
mappings and use them as environment variables i n the Deployments. Some users men
tioned i n survey in 3.7 that they prefer] this approach. Second enhancement was loading of
the source environments i n the Kubernetes Deployment section of the appl icat ion. Th is w i l l
save to users, because they do not have to check available environment in the application's
repository.

x

https: //kubernetes. io/docs/tasks/conf igure-pod- container/conf igure-liveness-readiness-

probes/

50

Chapter 8

Conclusion

The result of this thesis is a extension of the too l MMO that helps developers to deploy
applications to Kubernetes cluster. Extension of the tool is in the form of an user interface.
The most beneficial feature that came w i th the extension is generation of Kubernetes config
urations for the deployment of applications. It is saving the precious t ime of both beginner
and advanced users of Kubernetes. Other feature is useful for deployment of appl icat ion
using G i t H u b deployments or by direct deploy to Kubernetes cluster. The advantage of
this feature is reduction of mistakes done by Kubernetes users, where they deployed their
appl icat ion to a different Kubernetes namespace or a different Kubernetes cluster.

MMO user interface can show much more information in comparison w i th command
line interface. It can be extended w i th features that MMO provides as a command line
interface tool . It could help the developer to focus his attention to the service that he is
developing. Whole new features are possible w i th user interface. For example, one of the
features can be running a service i n a development mode, where source code of the service
is tested and the results of the tests are shown in the user interface. Another useful feature
would be watching source code and deploy appl icat ion to Kubernetes cluster upon change.
Th is would be useful when MMO would integrate the too l skaffold mentioned in Chapter
4. Th is is not possible at the moment because skaffold is a new tool i n early stages of
development and 4 a lpha releases of the tool already rolled out between the first release
and finishing this thesis. A l l of these changes would need redesign of the MMO tool as a
whole to provide the best user experience to developers.

51

Bibl iography

[1] Anonymous: Protocol buffers. [Online; visited 24/04/2018].
Retrieved from: https://developers.google.com/protocol-buffers/

[2] Anonymous: The Open Container Initiative. [Online; visited 03/13/2018].
Retrieved from: https://www.opencontainers.org/about

[3] D u a , R.; Raja , A . R.; Kakad ia , D . : V i r tua l i za t i on vs Container izat ion to Support
PaaS. In 2014 IEEE International Conference on Cloud Engineering. Ma r ch 2014.
pp. 610-614. doi:10.1109/IC2E.2014.41.

[4] Fowler, M . ; Foemmel, M . : Continuous integration. Thought-Works) http://www.
thoughtworks. com/Continuous Integration, pdf vol. 122. 2006: page 14.

[5] Humble, J . ; Farley, D. : Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Addison-Wesley Pub l i sh ing Company.
2010. I S B N 0-321-60191-2.

[6] Kubernetes: Kubernetes. [Online; visited 04/10/2018].
Retrieved from: https://kubernetes.io

[7] Nelson, B . J . : Remote Procedure Call. P h D . Thesis. P i t tsburgh, P A , U S A . 1981.
aAI8204168.

[8] Newman, S.: Building Microservices: Designing Fine-Grained Systems. O 'Re i l l y
Med ia . 2015. I S B N 978-1491950357.

[9] Rachel Po tv in , J . L. : W h y Google Stores Bi l l ions of Lines of Code in a Single
Repository. Communications of the ACM. vol. 59, no. 7. 7 2016: pp. 78-87.

[10] Red Hat , I.: Ansible documentation. [Online; visited 04/02/2018].
Retrieved from: http://docs.ansible.com

52

https://developers.google.com/protocol-buffers/
https://www.opencontainers.org/about
http://www
https://kubernetes.io
http://docs.ansible.com

Appendices

53

Append i x A

The Content of the Included
Memory M e d i a

A memory media attached to this thesis contains following files and directories:

• m m o / - a source code of tool MMO (parts that were designed and implemented
w i th in this thesis are l isted in Figure 6.1).

• m m o - d e m o / - a MMO project for demonstrating functionality implemented in this
thesis.

• p l a t f o r m / - a source code of plat form that was created as an experiment in this
thesis.

• t e x / - D T g X source code of this thesis.

• R E A D M E . m d - a file that contains instructions for bui ld ing and running tool MMO.

• t h e s i s - p r i n t . p d f - a final version of this document for pr int ing.

• t h e s i s - w i s . p d f - a final version of this document for submit t ing to WIS .

54

