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Abstract 
This thesis is focused on the topic of reinforcement learning applied to a task of autonomous 
vehicle driving. First, the necessary fundamental theory is presented, including the state-
of-the-art actor-critic methods. From them the Proximal policy optimization algorithm 
is chosen for the application to the mentioned task. For the same purpose, the racing 
simulator T O R C S is used. Our goal is to learn a reinforcement learning agent in a simulated 
environment with the focus on a future real-world application to an R C scaled model car. 
To achieve this, we simulate the conditions of remote learning and control in the cloud. For 
that, simulation of network packet loss, noisy sensory and actuator data is done. We also 
experiment with the least number of vehicle's sensors required for the agent to successfully 
learn the task. Experiments regarding the vehicle's camera output are also carried out. 
Different system architectures are proposed, among others also with the aim to minimize 
hardware requirements. Finally, we explore the generalization properties of a learned agent 
in an unknown environment. 

Abstrakt 
Tato práce se zabývá problematikou posilovaného učení aplikovaného na úlohu autonom­
ního řízení vozidla. Nejprve je probrána nezbytná teorie posilovaného učení, která je za­
končena představením nejmodernějších aktor-kritik metod. Z nich je vybrána metoda Prox­
imal Policy Optimization, která je následně aplikována na tuto úlohu. Pro tento účel je 
také zvolen závodní simulátor T O R C S . Naším cílem je naučit v simulovaném prostředí 
agenta autonomně řídit, s ohledem na jeho budoucí aplikaci v reálném prostředí v podobě 
zmenšeného R C modelu vozidla. Za tímto účelem jsou simulovány podmínky vzdáleného 
učení a ovládání vozidla v cloudu a to v podobě simulace ztráty paketů s daty od senzorů a 
aktuátorů nebo simulace zašuměných dat. Také jsou provedeny experimenty s cílem zjistit 
nejmenší počet senzorů, se kterým je agent schopen se úlohu naučit. Dále je experimen­
továno s využitím výstupu kamery vozidla. Jsou představeny různé návrhy architektur 
systému, mimo jiné i se zaměřením na co nejnižší hardwarové požadavky. Na závěr jsou 
prozkoumány vlastnosti naučeného agenta z pohledu generalizace v neznámém prostředí. 
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Rozšířený abstrakt 
Tato práce se zabývá problematikou posilovaného učení aplikovaného na úlohu autonomního 
řízení vozidla. V první části práce je nejprve uvedena nezbytná terminologie posilovaného 
učení a následně probrány základní principy a algoritmy. Od Markovova rozhodovacího pro­
cesu, který je základem všech algoritmů posilovaného učení, přes tzv. Value-based metody, 
kdy zjišťujeme kvalitu jednotlivých stavů ve kterých se agent nachází, případně hodnotíme i 
akce, které agent v daném stavu provedl. Mezi tyto přístupy patří Monte-Carlo, Temporální 
diference a Dynamické programování. Od těchto metod se poté přesouváme k Policy-based 
metodám, tedy metodám, které optimalizují přímo agentovu strategii. V tomto přístupu se 
zaměřujeme na vysvětlení algoritmů Stochastic Policy Gradients, Monte Carlo Policy Gra­
dients (REINFORCE) a varianty využívající tzv. baseline a advantage funkce. Následně 
také popisujeme využití neuronových sítí v policy-based algoritmech. 

Na závěr specifikujeme metody zvané Aktor-kritik, tedy spojení Value-based a Policy-
based metod. Mezi tyto metody patří i algoritmus Proximal policy optimization (PPO), 
který v praktické části také využíváme na úloze autonomního řízení vozidla. 

Následně je čtenáři přiblížena problematika autonomního řízení a dostupný simulátor 
T O R C S {The Open Racing Car Simulator). Ten je využíván i pro experimentální část. 
Jsou představeny dostupné senzory a aktuátory, výběr t ra t í a navrženy odměnové funkce. 
Následně je specifikován systém pro samotné autonomní řízení a jsou představeny jeho různé 
architektury. Jako první je představena tzv. Regular architecture, ve které agent využívá 
pouze základních senzorů vozidla, které pak slouží jako vstup pro neuronové sítě Aktor-
kritik. Výstupem jsou pak parametry Normálního rozdělení pravděpodobnosti, tedy střední 
hodnota a rozptyl. Z tohoto rozložení se poté vzorkuje agentova akce. Těmito akcemi 
jsou zatáčení, plyn a brzda. V této architektuře jsou následně zkoušeny různé topologie 
neuronové sítě, hyperparametry algoritmu P P O (batch-size, learning rate, aj.), parametry 
samotného simulátoru (délka epizody, hodnoty odměn a pokut, odměnové funkce, počty a 
typy senzorů, aj.). To vše s cílem co nejlépe naučit agenta projet danou trať. Jako vyhod­
nocovací metriky sbíráme údaje o průměrné rychlosti, ujeté vzdálenosti, celkové hodnotě 
odměn, nebo také počet nárazů vozidla a hodnotu agentovy entropie. Následně je agent 
také testován na nových, pro agenta dosud neznámých tratích, s cílem ověřit jeho schopnost 
generalizovať. 

Dále je představena tzv ConvNet architecture, ve které agent využívá také výstupu 
z kamery. Experimenty jsou rozděleny na dvě části, v první agent využívá pouze výs­
tupu z kamery a druhé, kdy agent využívá jak výstupu z kamery, tak také základních 
senzorů. Zde jsou zkoušeny různé architektury konvoluční neuronové sítě, pro zpracování 
výstupu z kamery. Jako výstup takové sítě je poté tzv. "Features vector", který je následně 
konkatenován k vektoru dat ze senzorů. Tento nově vzniklý vektor je potom vstupem do 
sítě aktor-kritik. 

Jako poslední je představena tzv. Hybrid architecture, ve které reagujeme na empiricky 
získané poznatky, kdy agent není schopen se naučit úlohu autonomního řízení pouze na zák­
ladě výstupu z kamery. To ani v případě využití úprav kamerového snímku pro zachycení 
dynamiky vozidla. Mezi těmito úpravami je například odečtení aktuálního a předchozího 
snímku, nebo jejich spojení. V tomto novém přístupu tedy nejprve naučíme agenta na kla­
sických senzorech. Takto naučeným agentem poté vygenerujeme dataset ve formě: výstup 
z kamery - hodnoty senzorů. Tímto datasetem následně naučíme konvoluční neuronovou 
síť v klasickém přístupu učení s učitelem předpovídat hodnoty senzorů na základě výstupu 
z kamery. Tímto způsobem se nám úspěšně podařilo naučit agenta autonomně řídit. 



Následně byly provedeny experimenty s cílem simulovat podmínky reálného světa. V našem 
případě simulace ztráty paketů při architektuře systému, kdy výpočet a učení agenta 
probíhá v cloudu a s agentem je komunikováno pouze bezdrátově prostřednictvím síťového 
protokolu UDP. Tato architektura je pojmenována jako Cloud architecture. Kromě ztráty 
paketů je také simulováno zašumění dat a to jak sensorických ve směru (agent - cloud), tak 
dat pro aktuátory (cloud - agent). 

Všechny tyto snahy jsou prováděny s cílem co nejlépe připravit agenta posilovaného 
učení v simulovaném prostředí, za použití minimálních hardwarových požadavků tak, aby 
byla možná budoucí aplikace takového agenta v reálném prostředí v podobě zmenšeného 
R C závodního modelu auta. Na základě experimnetů jsme zjistili, že je agent schopen 
autonomního řízení vozidla pouze pomocí kamery a také pouze za použití jediného senzoru, 
který představuje jednoduchý LID A R senzor. Také se chová stabilně při simulaci vnějších 
vlivů a dokáže poměrně úspěšně generalizovať v nových prostředích. Takový agent by měl 
poté být s co nejmenším dodatečným úsilím schopen autonomně řídit reálný R C model na 
reálné trati. Vzniklý systém by se poté v budoucnu mohl zúčastnit například mezinárodní 
univerzitní soutěže pro autonomní řízení R C modelů, soutěže NXP Cup. 
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Chapter 1 

Introduction 

With the technological advances in recent decades such as chip miniaturization, improve­
ments in sensor technology and most importantly rapid progress in artificial intelligence, 
it is estimated that by the year 2035 the first fully autonomous vehicles will be offered to 
the public. Modern Machine learning has played a major role in recent improvements in 
autonomous driving systems. Especially due to the increased reliability of the vehicle's per­
ception and prediction within its environment. Nowadays, an autonomous vehicle is able 
to recognize traffic lights and signs and behave in accordance with them, follow road lanes, 
automatically park and unpark itself. Some technological companies already offer partial 
autonomous driving systems, e.g. Waymo founded by Google or Tesla automotive company. 

The field of Machine learning also includes algorithms and methods in which an agent 
is trying to achieve a set goal by interacting with an environment. The agent can receive 
either a reward or penalty for its actions, which depend on a given environment. Such 
methods are called Reinforcement learning. They have received a great deal of attention 
in academic research over the past years. It is mainly due to the rapid advances in ar­
tificial neural networks, or in short Deep learning, which modern Reinforcement learning 
algorithms heavily utilize. 

This thesis is concerned with the application of such a Reinforcement learning algorithm 
on the task of autonomous vehicle driving. For this purpose, the simulation environment 
T O R C S has been chosen. The Open Racing Car Simulator enables the agent to observe 
through vehicle's sensors and camera output its environment and by actuators such as steer­
ing, acceleration and braking allows the agent to interact with the environment. The agent 
must learn a reward-based mapping between the sensor inputs and the vehicle dynamics. 
This mapping will then represent agent's behavioral strategy, called policy. When such a 
policy is learned, it then serves as vehicle's decision making brain and allows it to drive 
autonomously without further need of external help. 

This thesis sets the goal to not only build a Reinforcement learning agent that can 
operate a vehicle in a simulation environment, but has the ambition in future work, to 
apply such a learned agent to a real world scaled R C model car. For that, simulation of 
different hardware architectures, noisy sensory and actuator data or network packet loss 
will be introduced. Also, the focus on minimal hardware requirements will be important, 
as the on-board embedded system is typically of low performance. The other architectural 
approach is controlling the vehicle wirelessly by a cloud service. 
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For the Artificial Intelligence part, the Proximal Policy Optimization (PPO) will be 
used, which is an on-policy, model-free, actor-critic method, also currently considered as 
the state-of-the-art Reinforcement Learning algorithm. The algorithm will operate on con­
tinuous domain, both for states and actions. Necessary improvements of the P P O will be 
done, in order to be able to operate on the task of autonomous driving. We also propose 
multiple architectures of the P P O agent and three reward functions, as the T O R C S en­
vironment does not specify them directly. Our goal is also to obtain an agent with high 
performing policy in terms of proposed performance metrics, but at the same time encour­
age its generalization property in new, unknown environments. 

Detailed experiments will be carried out for the comparison of different combinations 
of approaches and settings mentioned above as well as the thorough interpretation of its 
results. 

The structure of the thesis will follow this order. In the 1st Chapter, the introduction 
and goals are set. In the 2nd Chapter, the theoretical foundations and detailed description 
of P P O algorithm are stated. In the 3rd Chapter, the design of autonomous driving system 
and its variants are introduced, followed by the experiments and test results in Chapter 4. 
Finally, in Chapter 5, the conclusion and outlook for the future research work is drawn. 
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Chapter 2 

Reinforcement learning 

The goal of this chapter is to provide a thorough introduction to the theoretical foundations 
of Reinforcement learning. Section 2.1 first provides an intuitive introduction to the topic 
and terminology, Section 2.2 describes and formalizes the problem of Reinforcement learning 
with Markov theory in detail. The definitions and derivations from Section 2.2 form the 
basis for the description of the algorithms of Reinforcement learning in Section 2.3 and 
Section 2.4 A l l algorithms relevant for the practical part of this thesis are presented and 
explained there. Section 2.3 deals with value-based algorithms. These create the basis for 
understanding the policy-based and actor-critic algorithms presented in Section 2.4. Policy-
based algorithms have the nice property of being applicable in continuous action spaces -
for actions with real valued output. Thus, they are also useful for autonomous driving. 

2.1 Introduction 

Thinking about the nature of learning, a first intuitive idea of an approach to learning may 
be learning through interaction with our environment. A toddler learns to grasp objects or 
look around at loud noises without being explicitly taught to do so by an adult. Instead, 
the toddler associates the actions taken with the reactions of the environment, learns which 
consequences follow from which actions, and which actions to perform to achieve a particular 
goal. Reinforcement learning (RL) is the algorithmic modeling of this interactive learning. 
A n agent is located within an environment and selects actions within it. As a result, 
the agent receives a positive, neutral or negative reward from the environment as well as 
feedback about the new state of the environment. The agent's goal is to select actions that 
maximize the sum of rewards in the long-term. Formally, the interaction between agent 
and environment in R L can be described as follows: At a discrete time-step t £ N , an agent 
receives a representation of the state of the environment St, which describes the current 
state of the environment. Based on information from St, the agent selects an action At to 
change the state of the environment it is in. The environment subsequently generates a 
reward Rt+i £ M for the agent's action for the next time-step t + 1, describes its changed 
state St+i and returns these two pieces of information to the agent. The dynamics by which 
the environment generates reward and state are determined by a transition model of the 
environment. The agent's goal is to learn a policy for selecting actions that maximize the 
sum of individual rewards over T time-steps. [42] [40] [46] 

The loop of this agent-environment interaction can be described as a sequence of states, 
actions, and rewards that they are associated with and is generatively written in the form: 
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(So, AQ, RI, S\,A\,R2, S2,A2, -R3, S3,...) (2.1) 

This sequence provides exactly the information that an R L agent can use to learn a 
policy. How the agent implements this algorithmically is explained in Section 2.3 and 
Section 2.4. 

Such a sequence can be finite if the environment has a terminating state, i.e., a state that 
has only itself as a subsequent state, with a reward of zero. A n example of a finite sequence 
of states, actions, and rewards is, for instance, the player-game machine interaction. A 
state-action-reward sequence can also be infinite, for example in a space-probe interaction. 
In the context of the present work, a finite sequence is generated by interaction of a vehicle 
with its environment, such as the driving route and the presence of other vehicles. In 
contrast to supervised learning, R L does not require annotated example data, but the 
data results from the interaction between agent and environment. R L also differs from 
unsupervised learning, since the goal is to maximize the sum of rewards and not to discover 
structures in the data. [42] [20] 

state action 

Figure 2.1: The main reinforcement learning interaction loop, Source: [42] 

In addition to a representation of the interaction scheme of agent and environment, 
a consideration of the internal processes in agent and environment is also necessary, in 
order to be able to describe R L algorithmically in a thorough way. In particular, the 
functioning of an agent is considered, since it is the entity that has to develop a policy 
within an environment to maximize the sum of rewards. The dynamics of the environment 
are mostly considered as given and thus are not changeable. A n R L agent algorithm can use 
one or more of the following functions to find a policy that maximizes the sum of rewards: 
a state-value function, a policy function, or an agent-internal model of the transition model 
of the environment. These agent's functions are computed from the data of one or more 
sequences of interactions, for example as the one described above. A state-value function 
describes how good it is for an agent to be in a certain state within the environment. While 
an immediate high reward may seem desirable for the agent in the short term, it is usually 
better for the agent to abandon it and instead look for a high long-term reward, from which 
he will strive much more in the long-run. [40] [42] 

The long-term expected reward of a state is expressed by the state-value function. A n 
agent can thus implicitly select those actions that lead to states for which the state-value 
function assumes a high value. Agents that exclusively use a state-value function are called 
value-based. In addition to state-value functions, there are action-value functions, which 
are defined similarly and will become important in subsection 2.2.2 
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A policy function describes which action an agent should perform in a certain state. A n 
agent can have different policy functions in different interaction sequences, i.e. it can follow 
different strategies. The optimal policy function is such a policy-function that is more 
profitable in the long-term than all others. The goal of all agents is to find this optimal 
policy function for all states. In contrast to a state-value function, the policy function 
does not describe the quality of a state, but which action should be executed in a state. 
Value-based agents can implicitly infer a policy, but do not explicitly compute it. Agents 
that explicitly compute a policy function are called policy-based. Whereas agents that 
compute a policy function and a state-value function at the same time are called Actor-
critic methods. A n internal model of the environment transition model can be computed by 
an agent to predict how the environment will behave when the agent performs a particular 
action in a particular state. The agent can use this internal model of the environment to 
predict future states and future rewards. R L agents that use such an internal model are 
called model-based. A n insight into model-based R L agents is given by Sutton and Barto 
in Reinforcement Learning - An Introduction [42] and in David Silver's lectures [40], or 
Sergey Levine's course on Reinforcement Learning [22], because in this thesis we are mostly 
focused on the model-free approach. 

Figure 2.2: Classification of Reinforcement Learning algorithms, Source: [40] 

A classification of R L agents into categories, based on these different computable ap­
proaches, can thus be made. Such a classification is shown above in Figure 2.2. According to 
it, the R L agents can be categorized based on the type of approach which take to solutions 
to sequential decision problems, where an agent must pursue a goal over many time-steps. 
The algorithms presented in subsection 2.3.1 are planning algorithms, which are model-
based, thus they know the transition model from the beginning. If the transition model is 
not known, R L agents can be used to learn the return maximizing policy. In both cases, 
the environment can be modeled mathematically using Markov decision process (MDP) . 

The above computable components of an R L agent can be defined on an MDP and 
computed by algorithms. In subsection 2.3.2 and subsection 2.3.3, algorithms for value-
based R L agents are presented, and in section 2.4 , algorithms for policy-based and actor-
critic agents are discussed. 
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2.2 Theory 

For the description of an environment of an agent, within an R L framework, the Markov 
theory can be used. Based on it, further algorithms can be derived, having the main objec­
tive of maximizing the sum of rewards from every single time-step individually. In order to 
be able to model such an environment as a Markov decision process, the environment has 
to be fully observable and number of actions and states have to be finite. 

From the interaction scheme of agent and environment presented in section 2.1 it can 
be seen that a formal model must be able to represent states, rewards and actions. For this 
purpose, subsection 2.2.1 first shows how Markov processes can represent the states of an 
environment, later we introduce the rewards and returns. Lastly, we present the Markov 
decision processes, which can represent states, rewards, and actions. [40] [42] 

2.2.1 Markov Process 

Markov process (MP) can be used to formally describe the states of an environment. They 
also describe the dynamics with which the environment determines the state transitions. In 
such a Markov process, an agent can only observe the changing states of the environment 
and thus has no influence on the state of the environment. Markov processes are character­
ized by two properties. First, state transitions are not deterministic, i.e. they are influenced 
by randomness. Therefore, states are modeled as realizations of random variables, defined 
below. Second, the current state of the environment is enough for the selection of the future 
state, so that all previous states should not be considered. [20] [34] 

Random variable and Probability function 

The first property of Markov process states that each concrete state of an environment 
is the realization of a discrete random variable. Thus, a set V contains all states of an 
environment. A discrete random variable X is then able to assume, some state with a 
certain probability ¥(X = x) where x G V. A state can be understood as a realization of a 
random experiment, which with a certain probability the environment assumes. This can 
be then written in terms of Probability function. [34] 

F(X = X(OJ)) = F(X = x) (2.2) 

The repeated successive execution of a random experiment can be represented as a 
sequence of random variables. Such a sequence is then called a stochastic process, since 
each member of the sequence is a random variable Xt{uo) where i £ N and UJ is the elementary 
outcome of all the possible outcomes f2. A n example of such a stochastic process can be 
sequence: Xt(u),Xt+i(u), ..Xn(u), where a single term can be shortened to Xt. 

Stochastic process 

A stochastic process is defined as a collection of random variables defined on a common 
probability space. 

Often in stochastic processes the probability that the environment assumes a certain 
state depends on the realized states of previous random variables. For example, if the 
weather forecast is assumed to be a stochastic process, then the yesterday's weather may 
still have an influence on tomorrow's weather. To represent this causality complicates the 
modeling of stochastic processes, so that with definition of Markov property the dependence 
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of future states is assumed only on the current state. This is the second important property 
of Markov process. [40] 

Markov property 

Definition of Markov property uses conditional probability formalism and can be formulated 
as, „The future is independent of the past, given the present." The stochastic process has 
Markov property if and only if for a l i i € AT holds: F(Xt+1\Xt) = F(Xt+1\X1, ..Xt). 

The Markov property has some advantages in practical R L such as the uniqueness and 
distinctiveness of states and also can be used to exactly formulate the probability of a state 
transition, which is defined as: [20] [40] 

V(x'\x) = F(Xt+1 = x'\Xt = x) (2.3) 

Given | V | = n possible subsequent states, a state x £ V also has n transition probabili­
ties. Thus, if an environment in R L has n states, the environment can map the probability 
of transition from x to x' by an entry in a square n x n matrix. Together with the model­
ing of states as a realization of random variables, the definition of Markov process can be 
expressed. 

The Markov process is a stochastic process with Markov property and is described as 
tuple (5, V) for which holds: 

• S = si,S2, s n is a finite set of states 

• V is an n x n transition matrix with probability values (0; 1) 

The elements of V are defined as: V(i\j) = F(St+i = Si\St = Sj) where i,j G (0, N) 

Single element of the matrix then represents the probability with which the random 
variable St+i assumes the state s', if St = s is given. Each row of the transition matrix 
then gives for a state, a probability function over all subsequent states. On a Figure 2.3 
bellow an example of terminating Markov process can be seen. [34] [7] [17] 

Figure 2.3: Markov process example, on the edges are transition probabilities, nodes rep­
resent states, starting in state so. 

A n agent in a Markov process, can observe the sequence of states. This sequence in R L 
is then called an episode or later in the thesis a trajectory. Because of the probabilities used 
in Markov processes, they are not always the same. Thus, for the Markov process from an 
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example on Figure 2.3, these finite sequences of states could be observed by an agent, if we 
assume that the state so was initial. Episode 0: (so, si, S2, S4), Episode 1: (so, si, S3, S5, sj), 
and so on. 

The episodes shown here as examples only contain the states. In the context of au­
tonomous driving, a completed lap on a race track could be considered as an episode, 
where the visited states can be expressed by the sensory data observed by the agent's vehi­
cle. Now for the complete description of an environment within R L framework, the actions 
and rewards need to be defined. 

Rewards 

Rewards can be defined as an extension to Markov process. This is then called Markov 
reward process (MRP) and is defined below. The main objective of an R L agent is to 
maximize the sum of rewards from each time-step. In the example of Markov process on 
Figure 2.3, the agent can observe different episodes, but has no tools to determine how 
good or bad an episode actually was. When the sum of rewards is high, then the episode 
can be considered as a good one. This sum is then called the return. Wi th returns, we 
are now able to exactly measure this quantity of „goodness". It even becomes possible to 
measure how good or bad a single state is, by calculating a state-value function. In the next 
subsection, this function will then be extended by actions, so that an agent can actively 
transition to good states in order to maximize the return. 

Markov reward process is a tuple (S, V, TZ, 7). The set of states S and transition matrix 
V are similar to those in Markov process. 

• 1Z : S —> M. is a reward function, where for state s the expected reward as: TZ(s) = 
IE (Rt+i \ St = s) is defined. 

• 7 £ (0; 1) discount factor parameter 

The reward function specifies how much reward an agent expects from the environment 
for a given state. The reward function is based on an expectation because the concrete 
reward values are for a probabilistic state transitions. Accordingly, scalar reward values 
would be added to the edges in Figure 2.3 for M R P . The sum of rewards weighted by 
probabilities then corresponds to IZ(s). So, if an agent is in a state s at time t, the agent 
receives reward Rt+i at time t + 1, when it transitions to a subsequent state s'. Rewards 
of an episode can then be described as a sequence (Ri, R2, --Rt)- The sum of this sequence 
is called the return and wil l be defined now. [40] [42] [17] [46] 

Expected Return 

The return Gt is the sum of discounted rewards obtained in a single episode by an agent. 

0 0 

Gt = Rt+1 + 7 ^ + 2 + l2Rt+s + •• = ^kRt+k+i (2-4) 
fc=0 

The calculation also includes the discount factor 7. As the return is an infinite series, 
the discount factor is in an interval (0,1), then the following can occur. If it is equal to one, 
then the value of the series goes to infinity. Only in the case of always terminating episodes 
the agent can calculate the return. If it is below one, then the return has a finite value, so 
the agent can determine how good or how bad an episode was. Not only is the discount 
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factor useful mathematically, but it is also useful for tuning of an agent for the benefits of 
rewards. If early rewards in an episode are more important than later ones, then it should 
correspond to a value close to zero. If the rewards express monetary gains, then it is this 
case, because early rewards earn additional interest. In contrast, the closer it is to one, the 
more important later rewards are. For example, for the P P O agent to be evaluated, 7 has 
the value 0.99. 

The return can be used to determine the sum of the discounted rewards of an episode. 
The state-value function according to definition below, can be used to determine how high 
the expected long-term return is, starting from a certain state. Due to the probabilities of 
state transitions, the episodes that always start with a particular state does not need to be 
always the same. Therefore, the expected return of a particular state is the expected value 
of the conditional density function over the probabilities of the returns for a state. The 
return Gt can thus be treated mathematically as a continuous random variable. [40] [42] 
[20] 

State-value function 

If an agent knows from the state-value function what the long-term expected return of each 
state of an environment is, then it can infer which state it should transition to, in order to 
maximize the return of an episode. In this case, the agent has to move to the state that has 
the highest long-term expected return. But in an M R P , there are no actions using which 
an agent could transition to different states. For that we need to define actions, which is 
done in the M D P introduction. 

If the agent observes a sequence of states and rewards, it can remember the subsequent 
rewards for each state, calculate the return of an episode from them, and thus iteratively 
adjust the probabilities for the higher occurrence of a return over several episodes. If 
the number of episodes goes to infinity, the estimated probabilities converge to the true 
probabilities and the long-term expected return of a state is found. Intuitively, the more 
episodes and consequent returns an agent observes, the better it can estimate how good a 
state is. This estimative way of determining the state-value function, or the action-value 
function are going to be introduced in the next subsection. We will also show how the 
state-value function can be determined by a recursive iterative approach. This iterative 
approach originates from Bellman's equation and the long-term return must satisfy it. 
From this equation, an iterative calculation rule can be derived for finding that long-term 
reward of a state. To derive Bellman's equation, a few derivations are necessary. According 
to definition of state-value function: [42] [20] 

v{s) =E[Gt\St = s] 
=E[Rt+1 + 7Gt\St = s] 
=E[Rt+1 + 7v (St+i = s') \St = s] (2.5) 

=K(s)+j^2v(s'\s)v(s') 
s'es 

Finally from that can be derived equation written below. The last derivation expresses 
that the long-term expected return of a state depends only on the immediate reward and 
the long-term expected return of the subsequent state. 

To arrive at the equation, the definitions of state-value function and the explanation, 
that the expected value of v(St+i = s') is the average of all v(s') weighted by transition 
probabilities, can be used. If the equation is further extended to include actions, the most 

11 



important equation in all of Reinforcement learning emerges: the Bellman equation. It 
expresses that if an agent wants to know the long-term expected return from a state, it 
only needs to add together the reward of the state and the long-term expected return of 
the next state. [17] [46] 

2.2.2 Markov Decision Process 

Unlike Markov process or Markov reward process, an agent in Markov decision process 
(MDP) has the possibility to take control over the state transitions of the environment 
through actions. In an M D P , an agent can co-decide which state the environment should 
transition to next. The goal of an agent is to transition to states using actions so that the 
return is maximized according to definition of Expected return. [40] 

The Markov decision process is Markov reward process with actions. It is an tuple 
(5, A, V, TZ, 7) defined as: 

• S = si, S2,.., sn a finite set of states 

• A = ai, a2,.., am a finite set of actions 

• P is an m x m x n transition matrix where an element: 
V(s'\s, a) = P (<St+i = s' \ St = s,At = a) gives the probability of the state transition 
from s to s' when action a is chosen 

• 1Z : S x A —> M is a reward function, where for state s, action o, the expected reward 
1Z(s, a) = E[Rt+i \ St = s, At = a] is defined. 

• 7 £ (0; 1) discount factor parameter 

How an agent determines which action it performs at a time-step in a state is described 
by the policy function. This policy function specifies which action an agent performs and 
can be deterministic or stochastic. First, the stochastic case is considered in definition 
below. [40] [20] [42] [17] [46] 

Stochastic Policy function: 

ir(a\s) = F(At = a\St = s) (2.6) 

Accordingly, the entire behavior of an agent, which describes with which probabilities 
which actions are executed in which states, can be described by an |<S| x |^4| matrix. Each 
entry of the matrix is a policy function ir(ai\sj) and i £ N,j £ M. This matrix is then 
called a policy TT. [40] [42] 

Sum over all possible actions in a given state must be equal to one. The entries of the 
matrix are unchanged across all time-steps of an episode. This means that the underlying 
policy of different episodes can be different, but does not change during an episode. For this 
reason, the state-value function from definition 2.5 must be adapted for MDPs , since only 
the long-term expected return, starting from a state, should be determined with respect to 
a behavior of the agent described by a policy. [40] 
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State-value function: 

vn(s) =Ew[Gt\St = s] 

a s',r 

The definition 2.7 states, that only the rewards of episodes that were based on the 
same policy of the agent may be included in the expected value, which contrasts with the 
definition 2.5. The vn(s) also satisfies the Bellman's equation. [40] 

Act ion-value function: 

q7r(s,a)=E7r[Gt\St = s,At = a] (2.8) 

If an agent has a policy TT, is in a state s at time-step t, and performs action a, the 
action-value function qn(s, a) represents the expected long-term return for this state and 
action under the current policy. Thus, the action-value functions can be described as a 
table, where each entry describes how profitable it is in the long-term for the agent to 
perform a particular action in a particular state. In contrast, the state-value function can 
be defined as ID vector, where each element describes the long-term return of a state. The 
relationship of state-value function and action-value function can consequently be defined 
as: 

V-K(S) = max qn(s, a) (2-9) 
a 

The table of action-value functions is also called Q-Table. A policy and the action-value 
functions of an agent can both be represented by |<S| x |_4| matrix. Implementations of R L 
algorithms then mostly use only the matrix of action-value functions and infer the policy 
from them. The goal of an agent is to maximize the return. In the above context, this 
means to find a policy that yields as much return as possible. For this, we first note what 
it means for one policy to be better than another. Let IT and IT' be two different stochastic 
policies. Then TT' is called better or equal to TT exactly if v^s) > v7T(s) holds for all states. 
It can be shown that there is always at least one policy that is better or equal to all other 
policies. This policy is then called the optimal policy 7r*. If an agent uses the optimal 
policy, then for all states and actions the agent will use the optimal state-value function 
and the optimal action-value function: [40] [42] [29] [17] 

i>*(s) =maxw T (s) and q*(s,a) = maxq7T(s,a) (2-10) 
7T * 7T 

Conversely, if the optimal action-value function is found, the optimal policy can be 
derived. The optimal policy function 7r*(a|s) always has a selection probability of 1 for 
such an action for which q*(s, a) is maximal for a given state. [40] [42] 

7r*(o I s) = 1 : if a = a r g m a x ^ s , a), else 0 (2-11) 
a 

It also follows that the optimal policy is deterministic, meaning for the same state the 
optimal policy function always selects exactly the same action. In contrast, Definition 2.6 
allows for stochastic behavior of the policy. The transition from stochastic to deterministic 
policy is explained by the greedy selection of actions in the last equation. As will be 
shown in the following sections, all R L algorithms presented here use a stochastic policy, 
since it allows exploration of the state space. Policies of value-based algorithms tend to 
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be nearly deterministic. Policies of policy-based algorithms can remain stochastic if the 
optimal policy is stochastic too. Both classes of algorithms have in common that they 
attempt to determine 7r*, because an M D P is said to be solved if such a policy is found. In 
each case, the path to determining an agent's optimal policy in an environment is done by 
an iterative procedure in which the agent repeatedly tries a policy, learns from failure, and 
derives a new, improved policy. [40] [42] [22] [17] 

Bellman's optimality equation 

Just like the state-value functions, the optimal state-value function u*(s) must also satisfy 
Bellman's equation. It was already said that from Bellman's equation iterative computa­
tional rule, the long-term expected return of each state can be derived. Since it is now also 
required that an agent can include actions into its behavior, the state-value function for 
M R P is extended to include actions. For this, Equation 2.9 first states that the optimal 
state-value function of a state under a policy is equal to the value of the return-maximizing 
action of the action-value function for a fixed state. [42] [40] Formally, this means: 

u* (s) = max q^ (s, a) 

= maxE[Rt+1 + iv*(St+i)\St = s,At = a)] ^ ^ 

= max> pis',r\s,a)[r + jv*(s')] 
s' ,r 

This equation derives the recursive relation to the subsequent state, so that the reference 
to the optimal policy can be omitted. The last derivation is called Bellman's optimality 
equation for u*(s). Similarly, for action-value function can be derived too. Unlike above, 
here, the relation to rewards and the expected return is immediate: [42] 

q*(s,a) =E[Rt+i + 7 max q*(St+i, a \St = s,At = a)} 
a' 

= p(s'', r\s, a)[r + 7 max q*(s', a')] (^-13) 
s',r 

Backup diagrams are great for intuitive derivation of the optimality equations. They 
are presented in detail in Sutton and Barto[A2] and Silver[A0]. In the following sections, 
R L algorithms will be presented and derived, based on the definitions presented in this 
subsection. They are able now to compute the optimal policy 7r*, which translates to 
obtaining the maximal return during the interaction with the environment. 

2.3 Value-based methods 

In this section, agent algorithms are presented that first iteratively compute the state-value 
functions or the action-value functions of the states and actions, respectively, in order to 
derive continuously improving policies from them. Therefore, these algorithms are called 
value-based. Subsection 2.3.1 deals with planning algorithms where transition probabilities 
and reward function must be known. Subsection 2.3.2 presents algorithms that are used 
in MDPs with finite episodes. Subsection 2.3.3 explains algorithms for M D P s with infinite 
episodes. Subsection 2.3.4 shows how function approximators, such as neural networks, 
can be used instead of state-action look-up matrices. Finally, thoughts on the value-based 
algorithms are presented. 
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2.3.1 Dynamic Programming 

If the transition probabilities and the reward function of an M D P environment are known, 
then an agent can compute an optimal policy using dynamic programming (DP). Dynamic 
programming is a class of planning algorithms that consists of the evaluation of a given 
policy (policy evaluation) and the subsequent improvement of the policy (policy improve­
ment). The goal of these two steps is to infer u*(s) or q*(s, a) for all the states and actions 
in a procedure called Generalized Policy Iteration. Subsequently, using these to infer the 
optimal policy. For the algorithms presented in here and in subsection related to M C meth­
ods, we will assume the simplest case of the procedure, which is characterized by always 
determining the state-value or the action-value function in the Policy Evaluation step be­
fore computing a new, improved policy in the Policy Improvement step. Other variants of 
the Generalized Policy Iteration procedure only approximate the state-value or action-value 
function and can thus compute the optimal policy faster. In the policy evaluation step, D P 
first computes the state-value function for every state and under current policy. This is 
iterated until convergence to Vk(s) « vn(s) with: [40] [42] [22]. 

u f c + i(a) = ^ H 5 ) (^(*> a ) + T Yl a)Ms')) (2.14) 
aeA s'es 

for all states. This equation is the analogous equation to Bellman's optimality equation 
for u*(s) in iteration form. [40] [42] Once vn(s) is found for a given policy the action-value 
function can be determined. 

qn(s, a) = En(Gt\St = s,At = a) = U(s, a) + 7 ^ V(s'\s, a)vn(s') (2.15) 
s'es 

This equation is then the Bellman's equation for qn(s,a) and can be used in the Pol­
icy Improvement step to create a new policy. It should also be ensured that the new, 
deterministic policy is better or equal to the old policy, when for all states applies: [42] [40] 

fe(«y(«)) >v*(s) (2-16) 

This means that choosing action a' = TT'(S) in state s under policy TT produces a better 
result than action a = TT(S). Next, qw>(s, a) is computed for the new policy TT' in the Policy 
Evaluation step and improved with TT'(S) = argmax a qn>(s, a). If Policy Evaluation and 
Policy Improvement steps are executed enough times and no more improvement of the old 
policy over the new policy is found, then optimal q* and 7r* are found. [40] [22] [42] 

Well-known algorithms in D P which implement this Generalized Policy Iteration are the 
Policy Iteration algorithm and its special case the Value Iteration algorithm. They use the 
equations Bellman's equations for u*(s) and q*(s, a) and a variant of the Generalized Policy 
Iteration method, where vn(s) does not have to be determined. The iteration in the Policy 
Evaluation step is immediately followed by the Policy Improvement step. A n obstacle for 
the practical application of these algorithms is the frequent lack of knowledge about the 
environment dynamics. As the agent does not know all the states of the environment 
already. It has to gradually explore the environment in order to know its surroundings as it 
is not known right from the beginning. This issue is addressed in the following subsections. 
[40] [42] [20] 
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2.3.2 Monte Carlo methods 

Unlike DP, Monte Carlo (MC) methods can be used if the transition probabilities and the 
reward function of the environment are unknown. Wi th M C methods, an agent can infer the 
optimal policy 7r* from the optimal action-value function q*(s,a) estimated by experience. 
Just like algorithms in DP, M C methods use the iterative procedure Generalized Policy Iter­
ation to incrementally infer 7r*. For this, first a finite trajectory (So, AQ, Ri,Si,Ai,.., Rn, Sn) 
is generated. The actions are then determined and selected by a stochastic policy 7r(a|s), 
whose evolution is explained below, and the states and rewards come from the unknown 
environmental dynamics. From this episode, Gt is then computed for all state-action pairs 
reached. This is followed by the policy evaluation step: [42] [40] 

Where, a G (0; 1) is a learning rate and the return Gt gives the sum of discounted 
rewards starting from action a in state s. Consequently, the term Gt — qk(s, a) corrects the 
value of qk+i(s, a) in the direction of the target Gt-

The index k £ No then gives the current episode and in the limiting case applies again 
qk(s, a) = qn(s, a). Since M C methods do not require knowledge of the environment dynam­
ics, a policy for episode generation in M C methods should be non-deterministic, otherwise 
it is not guaranteed that all states and actions are explored. Wi th a stochastic policy, 
actions can be randomly selected and such a policy is therefore used by M C methods for 
exploration. This approach is called the e-greedy approach for exploring all states and ac­
tions in an M D P . Accordingly, a new policy IT' is explored by M C methods with: [22] [40] 

where A* = aigmaxaq7r(St,a). The problem of exploring all states and actions in an 
unknown M D P is a major problem in R L and is referred to as the exploration vs exploitation 
dilemma. Also, in the case of applying the e-greedy approach to exploration, a greedy policy 
improvement theorem ensures that the new policy is better than the old one. The process 
of adjusting action-value values in the Policy Evaluation step and determining a new policy 
in the Policy Improvement of 7r* step are referred to as training the R L agent. Equation 
2.17 shows that M C methods use the reward Gt of an episode. This can only be calculated 
if the episode is already terminated. Consequently, this means that M C methods can only 
be used in environments with finite, i.e. always terminating episodes. [42] [40] [17] [46] 

2.3.3 Temporal Difference methods 

Temporal difference (TD) methods, unlike M C methods, can also be used in environments 
with infinite episodes. The mechanism that makes this possible is called bootstrapping, 
determines Vk+i(s) or qk+i(s, a) from the immediate reward plus Vk(s') or qk(s', a'), respec­
tively, and is already applied in a similar way in D P through Bellman's equations. Unlike 
algorithms of DP, however, T D methods do not depend on the environment dynamics V 
and 7Z. Like D P and M C methods, T D methods also use the iterative Generalized Policy 
Iteration procedure to determine the optimal policy. The policy evaluation step differs in 
T D methods from M C methods, but the policy improvement step is the same for both 
with the e-greedy approach. The difference between T D methods and M C methods in the 

qk+i(s, a) = qk(s, a) + a(Gt - qk(s, a)) (2.17) 

[42] 

(2.18) 
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evaluation step can be most easily illustrated by the iterative calculation of the state-value 
function of a policy with the following equation: [40] [42] [22] 

vt+i(s) = vt(s) + a(Rt+i + jvt(s') - vt(s)) (2.19) 

where the term (Rt+i + 'yvt(s') — vt(s)) is called TD-error and 
the term G[^ = Rt+i + 'yvt(s') is called TD-target. 

This equation illustrates the difference between T D and M C methods. T D methods 
only have to wait until the next time-step before adjusting vt+i(s), whereas M C methods 
usually have to wait until the end of the episode, for the computation of Gt- Therefore, the 
index t now corresponds to the time-step. More generally, the T D target can be expressed 
as the n-step return, formulated as: [42] 

G 4

( n ) = Rt+1 + jRt+2 + . .7 n _ 1 i2t+n + lnv(St+n = s(n)) 

(2.20) 

where for limiting case of n nearing infinity, the T D methods become M C methods. T D 
methods that use are called TD(0). There are methods, where the specific number of 
steps n in G^ do not have to be specified. These methods are called TD(A), we will not 
discuss its concept here, just for now. Later, when we will be discussing the P P O algorithm, 
this concept will be used for definition of Generalized Advantage Estimation (GAE) , one 
of the major aspects of P P O . We can mention, that the concept is known as exponentially 
weighed average. 
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Figure 2.4: Here in graphics we can see the difference between M C and T D methods (n-step 
T D prediction), Source: [42] 

The T D methods use the action-value function for the evaluation step and iteratively 
determine qn(s,a). A T D method that implements this practically is called SARSA and 
adjusts the action-value function in the evaluation step for a state, action pair at each 
time-step of the episode as: 
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qt+i(s, a) = qt(s, a) + a(Rt+i + 7?t(s', a ) - qt(s, a)) (2.21) 

[42] The name SARSA comes from the generated sequence of transitions: (s, a, r, s', a'). 
This sequence is generated by the environment dynamics and the current e-greedy policy. 
Once qt+i(s,a) is computed, the new policy TT' is determined at time-step t + 1. These 
iterations are repeated until optimal action-value and optimal policy functions are found. 
This calculation of action-value finds application in the SARSA(O) algorithm. Analogous 
to TD(A) there are also SARSA(A) methods. [42] 

S A R S A is referred to as an on-policy algorithm, because it evaluates and improves the 
same policy that is used to select the next action. In contrast, there are off-policy algorithms 
that evaluate and improve one policy, but use a different policy for selecting the next action. 
One of the reasons can be an introduction of a new version of an agent with policy IT, which 
wants to learn or even improve the behavior from an old agent with good performing policy 
/u. But still, they can be the very same policy. As an example an off-policy T D algorithm 
can be considered the Q-learning.[29] Consider we have a policy n(a\s) that determines the 
actual actions a and a'. Then we have second policy 7r(a*|s) which is used to compute the 
T D target. Then, in the evaluation step, at each time-step of the episode, the action-value 
function can be calculated as: [40] [42] 

[40] In Q-learning in contrast to S A R S A , the action maximizing action a* of all action-
value functions at a fixed s' is always chosen when adjusting the action-value function for a 
(s, a), regardless of which action a* of policy ir was chosen. As in the S A R S A algorithm, in 
Q-learning the computation of qt+i(s, a) is followed by the policy improvement step with 
the e-greedy approach with respect to TT and optionally fx as well. [40] [17] [46] 

2.3.4 Value-based methods and Function approximators 

The Monte Carlo and Temporal difference algorithms already described are referred to as 
Tabular Methods, since the central building block is the |«S| x |_4| matrix of the action-
value returns. However, if the number of states or actions becomes very large, this matrix 
becomes also very large. A n example of this is an agent for the autonomous guidance of a 
vehicle, which can determine the state of the surrounding environment by a camera output. 
Then, each pixel of the camera image represents three states in the R G B space. In addition 
to the high memory requirements of such a matrix, it will be nearly impossible for an agent 
with M C or T D methods, to evaluate all states in order to derive a policy. [20] 

Approximate Solution Methods emerge as a solution approach to the problems of Tabu­
lar Methods, which are both more memory efficient and can generalize. Such Approximate 
Solution Methods use parametrizable function approximators such as decision trees, re­
gression methods, or neural networks, instead of a matrix, to determine the action-value 
returns. If neural networks with hidden layers are used as function approximators, the 
resulting algorithms are classified as Deep Reinforcement Learning (DRL) . Unlike Tabular 
Methods, Approximate Solution Methods use parametrized function approximators: [42] 

qt+l(s,a) = qt(s,a) + a(Rt+l + 7 max qt(s', a*) - qt(s,a)) 
a* 

(2.22) 

[29] 

v(s, w) ~ VTT(S) or q(s, a, w) « qn(s, a), where w G M. , d € N (2.23) 
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The vector w then represents the weight vectors of the neural network. If a loss function 
E(w) is defined over this weight vector, then in the iterative Stochastic gradient descent 
(SGD) procedure, the weight vector can be updated, as long as the error continuously de­
creases i.e. until: (s, a, w) « qn(s,a) 

As a loss function here the Mean square error (MSE) can be used, which is typically used 
in regression optimization problems. Thereby T is the set of training data from which the 
target variable y is taken. However, unlike in classical supervised learning, no information 
is available about the target variable, here y = q7T(s,a), so the target is assumed to be 
the loss function. Thus, if function approximators are applied to M C methods and SGD is 
assumed as the optimization algorithm, the loss function for one-step S A R S A is defined as: 
[34] [42] [11] [22] 

{Rt+i + jq(s', a', w) - q(s, a, w)f 
MSE = y ^ ' — * v ~ , - , ~ „ ( 2 _ 2 4 ) 

The following rule is used to adjust the weights for one-step SARSA: 

w *+* = wl + a(Rt+1 + jq(s', a, w) - q(s, a, w))Vq{s, a, w) (2.25) 

The update is done in a way that each vector's component that is responsible for a part 
of the error, should be updated accordingly. A high share on the error exists if the slope of 
the error with respect to the particular component is large. The weights are adjusted until 
the difference between two subsequent updates is less than some defined e value (typically 
small number). Then we can say that g* is found, from which the optimal policy can be 
derived. Often also early-stopping is being used in practical deep learning instead of e. 

So now that the vectors of state-action values are not a look-up table anymore, they 
can be written as follows and are therefore approximated by the neural network. 

/ g ( s , a i , « j ) \ 

y = ; (2.26) 
\q(s,an,w)J 

Also in the policy improvement step, the e-greedy approach for the action selection can 
be applied. [11] [40] [6] [17] [46] [29] 

Thoughts on value-based methods 

A l l algorithms already presented are based on the Generalized Policy Iteration and thus are 
easy to understand and implement in the same way. The disadvantage of this simplicity 
is that they must first compute an action-value function in order to infer an improved 
policy, without it, it is not possible. The main goal of an R L algorithm is to determine the 
optimal policy so that an agent can maximize the return. Therefore, an agent is primarily 
interested in policies and state-value functions and action-value functions are only a means 
to obtain it. If an e-greedy approach is applied to the vector y above, the computational 
costs to calculate an improved policy can increase very heavily for a very large number of 
actions. Also, to find the action with the largest long-term expected return, all elements 
of the vector would have to be iterated. In the extreme case, the action space can be even 
continuous. Thus, the algorithms already presented do not show an efficient solution to 
this problem. 
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Next issue is, due to the vanishing coefficient in the e-greedy approach, the initially 
stochastic policies tend towards deterministic ones, i.e. 7r(a\s) is always either 1 or 0. This 
is a problem at environments, which are not fully observable. The value-based algorithms 
then cannot be used at all. In these stochastic policy would fit the problem more, 
since it always includes randomness in its policy. [42] [40] [22] [34] 

2.4 Policy-based methods 

Policy-based algorithms parametrize the policy directly, similar to the parametrization of 
state-value and action-value functions in subsection 2.3.4. This section deals with algo­
rithms and methods that learn a parametrized policy. In subsection 2.4.1, stochastic policy 
gradient methods are introduced and explained. Building on this, subsequent subsections 
introduce various stochastic policy-gradient algorithms. Subsection 2.4.3 explains the idea 
behind actor-critic methods and subsection 2.4.4 explains the trust-region methods and the 
one policy gradient algorithm (PPO) that is used in Chapter 4. 

2.4.1 Stochastic Policy Gradient methods 

A l l algorithms which use a parametrized policy are called Policy gradient methods. We can 
introduce the parameter vector 9 £ d £ N of a policy. Then, extending Definition 2.6, 
we can derive a formula as: 

is the probability that action a is executed in state s with parameters 9 at time-step t 
of TTQ. If a performance measure J(9) is introduced on the parameter vector, then it can be 
formulated that policy gradient methods, using the gradient ascent procedure, can evaluate 
the parameter vector iteratively with: [40] [22] [42] 

The derivation of a loss function of performance measure for policy gradient methods not 
as easy as in the case of value-based methods. For this, similar to the distinction between 
M C methods and T D methods, we need to differentiate between finite and infinite episodes. 
For both cases, the theorem on policy gradients shows how to compute the V J{9). [40] [42] 

In the case of finite episodes, we can say that: the goodness of the parameter vector 
is measured by the return of the first state of the episode. The policy gradient for finite 
episodes can be then formulated as: [42] 

7r(a|s, 9) F(At = a\St = s,9t = 9) 

(2.27) 

(2.28) 
= ^ ( V 7 r ( a | s,9)q7r9(s,a) +7r(a | s,9)Vqn9(s,a)) 

a 

o o 

(2.29) 
s k=0 a 
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where P (s —>• s', k, TTQ) is the probability of a state transition from s to s' in /c steps 
under policy ir(a \ s,0). This probability thus serves as a weighting of the gradient of the 
return. Moreover, if rj(s) = YlkLo ^ ( s ~~̂  s ' ' ^>7r^) ^ s defined, it can be further written: 

VJ(0) = Vv«e(s) 

= E E V ? r ( a I s> e)l-*e (s, a) 
s a 

= E vi8') E vw î E w( a i s'( s' a) 
= E E m*) E w( a i s'( s>«) (2-30) 

s ' s a 

« E ^ E v?r(a is' (s'a) 
s a 

= qve (s, a) V7r(a | s, 

(Proof of Policy Gradients theorem - for episodic case) [42] 

The equation describes that the gradient of J{9) is proportional to the probability sum 
of the ^2s/i(s), which indicates the probability that the agent is in state s, multiplied by 
the sum weighted gradients of the probabilities for the selection of actions. The ^ s v(s) is 
the proportionality constant. 

Practically, it provides the insight, that when the agent is in a state, it should move in 
the direction of weights that represent the largest increase in the probability of selecting an 
action in that state, weighted by the expected return for that state and action. [42] [22] 

In the case of infinite episodes, the performance measure J{9) is the average reward per 
time-step. The gradient VJ(#) can then be determined by the policy gradients for infinite 
episodes theorem: 

V J ( 0 ) = J > ( s ) ^ V 7 T ( a | s,0)q*9(8,a) (2.31) 
s a 

and thus the calculations of a gradient for infinite case corresponds to the one of episodic 
case. [42] [40] 

2.4.2 Monte-Carlo Policy Gradient ( R E I N F O R C E ) 

The Monte-Carlo Policy Gradient algorithm is a purely policy-based algorithm. Similarly 
to the classical M C methods, it uses the return of complete finite episodes for the parameter 
adjustments. The algorithm is called R E I N F O R C E . In an Algorithm 1 we show a pseudo­
code for it. Here, the return is gradually expanded with each time-step, unlike in M C 
methods. [34] 

Qt+i = 0' + a 7 < G < V l n 7 r ( a | 8,0*) 

This weight adjustment ensures that the weight vector 9* is adjusted with the product of 
return Gt and the gradient vector V hi7r(a | s, 9), which indicates the largest increase in the 
probability of selecting action a in state s. So the return Gt serves here as a scaling factor 
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of the gradient. The higher the return, the greater should be the probability of selecting 
an action a in state s by policy TTQ- [42] [22] 

Algorithm 1: Monte-Carlo Policy Gradient - R E I N F O R C E 
Input: differentiable policy 7r(a | s,9) 
Output: policy parameters 9 
Initialize policy parameter 9 £ M.d 

while True do 
Generate an episode so, ao, n , ..ST-I, a T - i , TT using policy TXQ 

foreach time-step t=0, .. ,T-1 do 
Gt return from step t 
0t+i ^gt + a i t G t V ln7r(a | S ; 0tj 

end 
end 

The algorithm uses as optimization the stochastic gradient ascent, since the weights are 
adjusted at each time-step. For the gradient Vhi7r (a | s,9l), depending on whether the 
environment is discrete or continuous action space, the policy parametrizations explained 
in previous subsection can be used. The disadvantage of this algorithm is the high variance 
of the returns between time-steps and the associated „slowness" of the learning process. 
The reason for the variance is the unadaptive and loose formulation of the scaling factor. 
[20] [42] 

2.4.3 Actor-Crit ic Policy Gradient methods 

The long-term expected return for an action in a state, q1V9 (s,a), visible in the proof of Policy 
Gradients, is a scaling factor for the largest increase in the probability of selecting such a 
given action in a given state. In the previous subsection, the scaling factor is the return Gt-
In order to improve the slowness of learning and the high variance of the R E I N F O R C E , the 
theorem on policy gradients is extended to include a baseline b(s) that acts individually for 
each state, thus acts adaptively on the scaling factor. It can be written as: [42] [22] [41] 

vj(o) oc ( s ' a ) ~ 6 ( s ) ) w ( a I s ' e ) ( 2 - 3 2 ) 
s a 

If the baseline is zero for all the states, the initial equation 2.30 is again obtained. For 
example, a vector of constants could be also used as a baseline. If a function approximator 
with bootstrapping is used as a baseline, such as TD(0) or SARSA(O), the concept of 
Actor-Critic methods can be formulated. Here, the Critic computes the scaling factor and 
the actor adjusts the policy parameter 9. For the Actor network, the weight adjustment 
formula is then as follows: [40] [22] 

9^ = 9t + a {qK9 (s, a) - b(s)) ̂  1 ffi 
7r (a | s, 9t) 

~t /^ »/ / / +\ ~ < ,\ V7r (a I s, Of) 
= 9t + a(Rt+1 + q(s',a',wt)-q(s,a,wt)) 1 

(2.33) 

TT (a | s,9t) 

where 

VTT (a s, 0t) ^ , . . 
— — — — = V l n v r ( a s,9t) 7r(a s,9t) 
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In equation above, the target Rt+i + q (V, a', w f ) is assumed as a scaling factor and the 
baseline q (s,a, w') tries to counteract the strongly fluctuating target values. The Critic 
thus provides the scaling factor to the Actor. The Algorithm 2 shows the pseudo-code for 
such an Actor-Critic algorithm. [42] 

Algorithm 2: Actor-Critic (one-step) 
Input: differentiable policy parametrization 7r(o | S, 9) 
Input: different iable action-value parametrization q(s,a, w) 
Output: policy parameter 9 and action-value weights 
Initialize policy parameter 9 £ M.d and action-value weights w £ M.d 

while True do 
Observe state from environment 
Sample action from ir(a \ s, 9) 
foreach time-step t=0, .. ,T-1 do 

Take action a, observe s' and r from environment 
Sample next action a' from 7r(a' | s',9t) 
5 t ^ r t + 7<? (s1, a', wt) - q (s, a, wt) 
9t+i <r- 9t + a5tV4n 7r (a | s, 9t) 
w t + i <r- wt + l35tVq (s, a, wt) 
a a'; s s' 

end 
end 

Just like n-step T D methods, there are also n-step Actor-Critic algorithms, which are 
fundamentally explained and detailed in [42] Sutton and Barto and [22] Levine. 

To further reduce the variance instead of the action-value function, an Advantage func­
tion can be used. The Advantage function then indicates whether and by how much action 
in state is better or worse compared to all other possible actions in that state. If advantage 
for a given action is greater than one, that action is on average better than all other actions. 
The Advantage function can be then calculated by a function approximator with: [22] [28] 
[17] [46] [40] 

a«g (s, a) = qng (s, a, x) ~ Vne w) 
= Rt+i +7U (s',w) - v(s,w) 

Then, if we plug it into the equations for the policy gradient and the weight adjustment, 
we obtain: 

V J{9) = E^g (V In vr(a | s, 9)a^g (s, a)) 
et+i = et + a ^ R t + i + (S')W*) _ y (s,w*)) Vlnvr (a | s,9l) 

(2.35) 

This algorithm is then called Advantage Actor-Critic (A2C) and has overall much better 
performance than original Actor-Critic with a baseline. [22] [28] 

Continuous Action-space 

Policy Gradient methods can be used in environments with discrete as well as with contin­
uous action space. Value-based methods have the disadvantage that they can only be used 
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in environments with discrete action space. Whether a given policy gradient method can 
be used on discrete or continuous action space is determined by the policy parametrization. 
In the case of a discrete action space, a numerical value h(s, a, 9) G M can be computed 
foreach state-action pair. The computation of these values can be done, for example, via a 
neural network, similar to equation 2.26. A n exponential Softmax distribution: [42] [22] 

( i Q\ exp(h(s,a,0)) . . 
)^bexp(h(s,b,G)) 

can then specify the probability with which an action should be selected. In the case of 
a large or even continuous action space, instead of evaluating individual actions, parameters 
of distribution functions such as the Normal distribution are computed. The parameters of 
the Normal distribution are the mean / j £ K and the variance a2 > 0. 

The Normal distribution is defined on R, as it is a continuous action space. Mean and 
variance, can then be parametrized and thus approximated with: [34] 

n(a \ s,0) = ^ e x p ; —— 5 — (2.37) 
V ' ' a(s,9)V2^ V 2CT(.s,6>)2 J v ' 

From the last equation it can be seen that the policy-parameter vector can be described 
by 6 = (0^, 9a). Its parameters can be then computed by one neural network. This allows 
the implementation of continuous actions for stochastic policies. [42] [40] [20] 

2.4.4 Trust-Region methods 

A l l the policy gradient methods mentioned so far use the approach of optimizing the ob­
jective function such as an M S E , by minimizing the loss and updating the weights vector 
in an iterative way via Stochastic gradient descent. This should continuously lead to a 
learned, well performing model. The gradient descent optimizes via first order derivatives, 
this approach can be called a line search. It follows the direction of the highest gradient 
with fix-sized step. 

The other approach, which optimizes second order derivatives is called a trust-region. 
Instead of going in a line step improvements, in a trusted regions it first defines a re­
gion where it is safe to be, in terms of the value of the gradient and the local optimal point 
within the region is found. This way it better approximates the function's optimal solution. 

In supervised learning, if the SGD during an optimization steps too far in the direction 
of the biggest gradient, it does not matter that much, because it has lot of sample data, 
waiting to be evaluated. Thus, fixing the optimization solution during next steps, step­
ping back in the opposite direction. In R L , if the optimization „over-steps" and misses the 
optimal value, poor policy is obtained. This eventually leads to a very poor results from 
which the R L algorithm is usually unable to recover. Considering this, the trust-region 
methods are in general much more stable and potentially yielding higher returns. There is 
a trade-off for the much higher stability property, which will be discussed later. [22] [36] [32] 
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LINE SEARCH METHOD TRUST REGION METHOD 

Figure 2.5: Line search vs Trust regions, Source: [6] 

The general R L objective is already a pretty complex function, thus a use of some less 
complex function is viable. The trust-region works in a way, where it calculates first the 
region where it can trust the less complex function, which has similar value solutions within 
some region as the original objective. This way, it sets the region boundaries, where the 
trust-region method is looking for the next optimal gradient value. This setup then forms 
a constrained optimization problem, where it optimizes an objective with respect to the 
trust-region boundary. 

The second order approximation of a function can be done, for example by a Taylor 
polynomials in quadratic form, then the subject of optimization would look something like: 

where the / is the Taylor polynomial to be approximated to the / , c is a point where it 
approximates, and H is a Hessian matrix. 

Usually, the trust-region can be a hyper-sphere, constrained as follows: 

where 5 is the maximal boundary of the trust-region. 

In order to find the optimal gradient value within the trust-region, the objective func­
tion has to have a Hessian matrix inside, consisting of second order partial derivatives. 
This would already be a hard problem for some small optimization problem. If we consider 
neural network, consisting of thousands of parameters, it is obvious that such a calculation 
of the second order derivatives is pretty computationally expensive. 

fix) « fix) = /(c) + V / ( c ) T ( x - c) + -ix - c)TH{c){x - c) (2.38) 

x — c 112 < 5 (2.39) 
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Nevertheless, finding of the trust-region and the complete optimization process can be 
formalized in an Algorithm 3 as: 

Algorithm 3: Generic Algorithm of Trust-region method 
Initialize 5, XQ , n = 0 
while not converged do 

n <— n + 1 
Solve x* = arguing f(x) subject to \ \x — x*_ 1 | |2 < 5 

I Increase 5 
end 
else 

I Decrease 5 
end 

end 

This idea of second order optimization is a well-known mathematical problem, as well 
as the method of trust-regions. Though, in the field of R L it is a completely new idea. 
The algorithm that we will discuss in a subsequent subsection, the Trust-Region Policy 
Optimization (TRPO) , uses exactly this novel approach. [36] [20] 

Trust-Region Policy Optimization 

There are some limitations in Policy gradients that the Trust-region policy optimization ad­
dresses. They are data inefficient as they only use collected trajectories once and then they 
need to collect new ones, for later policy updates. This also induces high variance, because 
with bad estimates, bad policy is generated, which consequently generates bad trajectories, 
resulting in the whole policy not being stable. In order to achieve stable updates, the 9 
parameters of the policy network must be updated directly, using the previously learned 
policy 7r0id- Therefore new policy will not be „too far away" with its estimates from the old 
policy, thus will update only within the trusted region. 

This idea of policies not far from each other comes from an Importance sampling [42], 
This approach is also sometimes called the Surrogate loss, this is the case in the original 
T R P O article as well. [36] 

If we have two distributions p(x) and q(x) and we want to calculate the expectation of 
the function f(x) by following the function f(x). In this case q(x) is the old policy and 
p(x) is the new policy. The new trajectory is sampled from the p{x) but since due to the 
learning process it is noisy, so we use the old policy q(x) to estimate the total reward. Then 
two cases are possible > 1, meaning there is high variance, so the current policy is 

far from the old policy. Second, < 1 means, there is low variance, thus updating new 
policy by utilizing the previously learned policy induces control of the variance. [22] [6] 

if / « ) » / « ) then 

(2.40) 

p(x) 
q{x) 
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The gradient of the objective function is only accurate close to the current policy. So 
the new policy should not be too different from the old one. This can be considered as an 
optimization problem within a constraint of a trusted region. 

For that the Kullback-Leibler (KL) [34] divergence can be used. K L divergence can 
assign a value of a distance when comparing two distributions, i.e. it measures how much 
are two distributions different. 

DKL(P\\Q)=Y/P(x)log^) (2.41) 

which subsequently in terms of policy distributions translates to: 

DKL (TT'I |TT) [S] = V 7 r > I s) log ̂ 4 (2-42) ' ir(a s) 

It also encourages exploration of the new policy. Since if the probability for action in 
an old policy is low, you can assign higher probability in new policy, without increasing 
the divergence. The objective function with K L penalty as a constrain of T R P O algorithm 
then can be defined as follows: 

max E+ (at | gt) . , , 
(2.43) 

subject to Et [KL (irdold (• | s)||7r0 (a t | st))] < 5 

Note, that for the calculation of K L divergence, the Hessian vector product (using 
conjugate gradient) of second order derivatives is necessary. To understand this topic fully, 
good mathematical background is necessary. Therefore, further information about the 
complete calculation and proof can be found in the T R P O article [36]. A drawback of this 
approach is the high computational complexity due to the optimization of natural gradient, 
i.e. gradient under constraint. For that, standard gradient descent optimization methods 
like Stochastic gradient descent cannot be used. Even though, the T R P O does not directly 
calculate the Hessian but rather approximates its values, it is still a very difficult algorithm 
to fully understand to, or even to implement it properly. The main contribution of the 
T R P O is the clever application of techniques from different science areas into the field of 
R L . [6] [20] [32] [36] 

For completeness, here in a pseudo-code the Algorithm 4 is presented in the same way 
as in the T R P O article: 

Algorithm 4: Trust-region policy optimization 

for iteration=l,2... do 
Run policy ~KQ ,, in environment for T time-steps: 
Compute advantage estimates Ai, ...,AT] 
Compute policy gradient g; 
Use conjugate gradient to approximate F~xg (Hessian vector product): 
Do line search on Surrogate loss and K L constraint: 

end 

These drawbacks of T R P O are addressed by another trust-region method called Proxi­
mal policy optimization. It is also the algorithm that is used during the experiments in this 
work. 
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Proximal Policy Optimization 

P P O is an Actor-critic On-policy algorithm which simplifies the T R P O , but behaves in the 
same way. Published in 2017 and since then it is considered as a state-of-the-art Policy 
gradient algorithm for R L . 

P P O has three main goals to achieve. First is to make the code cleaner and less math 
dependent. Second is to reduce the computational complexity, thus making the learning 
process faster. Last one, is to use fewer hyperparameters, so the complexity related to 
finding the correct values of hyperparameters is reduced as well. 

P P O consists of two different versions. The first one uses similar approach as the T R P O , 
it is trying to address the constrained optimization problem, so that it can be computed 
using standard gradient optimizers, such as an Stochastic Gradient Descend. It still uses 
the computationally expensive K L divergence, but introduces new technique, the adaptive 
KL-penalty. This allows to adaptively change the influence of the K L by creating a penalty 
for it. [38] [6] [22] [20] 

Unconstrained optimization using KL-Penalty: This is the objective function to 
be optimized, it is almost the same as the T R P O objective, but now unconstrained: 

maximizeE/ {at | st) •At - /3KL [TT0oM (• | st), 7T0 (• | st) (2.44) 
.^ow (a< \st)' 

In the P P O it is called the L K L P E N

 a n d it uses the adaptive (3 parameter to increase 
or decrease the influence of K L divergence. 

L KLPEN {9) = Kt 

{at | st) At - /3KL [TT0oM {• | st),ire{- \ st)] (2.45) 
. ^ o l d I 0 * I

 St) 
This way it deals with the constrained optimization from T R P O , it is a common trick 

in the field of optimization, and is done most of the time by using Lagrandian Duals. The 
(3 acts as a scaling factor and in P P O is also adaptive, since it is already a complex task 
to decide on an exact correct value of the (3. It works as follows. If K L is too small, its 
boundaries can be released a little, thus j3 is reduced. Oppositely, if K L is too large, the 
penalty should be increased for the following trajectories, thus j3 is increased. It follows 
this: 

Compute d = Et [KL [TT0oM {• \ st), TV0 (• | st)}} 
If d < d t a r g /1.5, then: (3 <- (3/2 
If d > d t a r g x 1-5, then: j3 ^ j3 x2 

(2.46) 

where a\ar„ is the target K L distance that was initially set and the d is the current K L 
distance. 

Clipped Surrogate Objective: The downside of the KL-Penalty approach is, that it 
still needs the computationally expensive calculation of the K L . To address this issue, second 
version of the P P O is proposed. The Surrogate objective denoted as LCPI (Conservative 
policy improvement). Next we can call rt{9) the ratio between new and old policy, concept 
known from the Policy Gradient proof in 2.4.1, which results in: 
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Then we can write the L objective as: 

7T6> (at | st) LCPI(9) = Et •At rt(9)At 

. ^ o l d (at \St)' 

If we then plug it into the final objective function L C L I P (9) we get: 

LCLIP(9) = Et min (r t (9)A t , clip (rt(9), l-e,l + e)At 

(2.48) 

(2.49) 

What it does is, that it is clipping the policy update if the ratio between new and old 
policy gets too far from each other. It substitutes the function of K L divergence from the 
first objective, but without the computational expenses that go with it. Here it uses simple 
min and clip operators. It restricts the ratio not to go under 1 — e and above 1 + e, if 
the two policy distributions are getting too far from each other. This clipping function is 
further visualised on a Figure 2.6. 

rCLIP 

1 1 + e r CLIP 

Figure 2.6: Clipping of P P O - typically e = 0.2, A is the advantage function, Source: [38] 

Figure shows the clipping of positive advantage (left), and clipping if the advantage is 
negative (right). We can see that L is a lower bound on L , with a penalty for having 
too large of a policy update. So it makes our policy really pessimistic, about the future 
update, being really conservative about updating too much. Rather than mathematical 
reasons like at T R P O , this PPO's objective L is empirically chosen, with the focus on 
the most similar behavior as the K L divergence of two policy ratios (Surrogate function). 
It was shown that it has similar or better performance than the P P O with KL-penalty. 

More intuition behind it is, that if A > 0, we want to update just a little bit, so that 
the action happens more often. Similarly, when A < 0 we want to decrease the possibility 
of that action just a bit. When we look at the right most region of the graph, the ratio r 
is high, so the last policy update made that action a lot more probable, but at the same 
time the advantage is negative, so this last policy update is worsening our policy, therefore 
we want to „undo" the last update, proportionally to how bad the action was in the first 
place. We want to move in the opposite direction of the gradient step. This is also the only 
region where the original „unclipped" rt(9)At has a lower value than the clipped objective 
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and thus gets returned by the min operator. 

Then the full objective function that will be implemented is defined as follows: 

L C L I P + V F + S { 9 ) = % [ L C L I P { e ) _ C i L V F ( e ) + C 2 L S ^ ^ ^ 

Where the L?LIP(9) is our newly created clipping objective, the LYf(9) is the squared 
error loss for the critic and the Lf(9) is entropy bonus that ensures sufficient exploration 
of the policy. Maximizing its entropy, forces the policy to wide spread across the possible 
actions, resulting in the most unpredictable outcome, i.e. it drives the policy to be more 
random at the beginning, until the other parts of the main objective take over and start 
dominating the resulting policy update. 

This forms the final objective which is used by the second version of the algorithm. 
The ci and C2 are hyperparameters that restrict the influence of its respective terms. In 
the original implementation its values are set as: c\ = 0.99 and C2 = 0.001, which were 
empirically measured for best performing results. [38] [32] 

The loss function for the critic is defined as: 

LYF(9)=(ve(st)-Vr8)2 (2.51) 

where the V ^ t a r g is the target value and VQ (st) is the value function generated by the 
network. 

The Algorithm 5 for P P O with Clipped objective can then in a simplified pseudo-code 
be defined as [22]: 

Algorithm 5: P P O with Clipped Objective 
Input: initial policy parameters 9Q, clipping threshold e 
for k=0,l,2... do 

Collect set of partial trajectories T>k on policy 7Tk = TT (9k) 
Estimate advantages Ajk using advantage estimation algorithm (GAE) 
Compute policy update 

9k+1 = axgmaxCgLIP(9) 
9 K 

by taking K steps of minibatch SGD (via Adam), where 

' T 

[min ( r t (0) i f% clip (rt(9), 1 - e, 1 + e) i ^ ) ] 
.t=o 

end 

G A E : 

If we take a closer look at the advantage estimation used within P P O algorithm 5, it uses 
the principals of TD-A returns. This approach is called the Generalized Advantage Estima­
tion (GAE) . It tries to solve the bias-variance trade-off when using an approximation of a 
value function, as could be seen in Actor-Critic algorithms discussed earlier. [6] [22] [37] [38] 

If we take the advantage estimate from Equation 2.34: 

Cc

dk

LIP(9)= E 
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A(s,a)=rt + 7V(st+l)-V(st) (2.52) 

this can be considered as a 1-step advantage estimate. If we expand this to more steps, 
consequently we get: 

:=SY =-V(st) + rt + 1V(st+1) 
I f ) := 6Y + = -V (st) + rt + 7 r i + i + 7

2V (st+2) (2.53) 
i t

( 3 ) := 5Y + 7 ^ 1 + 7 2 ^ 2 = -V (st) + rt + i n + 1 + 7 2 r < + 2 + 7
3 ^ (̂ t+a) 

Finally, if we further rewrite this in the context of n-step advantage estimate, we get: 

n—1 

AU) •= Y ^6t+l = ~ V ^ + r t + ^ r*+ 1 + • • • + T n _ 1 n + „ - i + lnV (st+n) (2.54) 
1=0 

This reduces the bias, since it less depends on the estimate of a value function, but 
at the same time it increases variance, as now we rely completely on the extra n-step 
expected return estimates summed together. For example other policy gradient algorithm, 
A3C uses 5-step estimate for its advantage. The G A E does not want to explicitly set an 
exact number of the steps, so a nice workaround is to use the technique form A-returns and 
eligibility traces. The solution is then exponential average across all the steps. [37] 

The equation for G A E using exponentially-weighted average is then defined as follows: 

^ G A E ^ A ) ; = ( 1 _ A ) ^(1) + A i ( 2 ) + A 2 i ( 3 ) + ^ 

= ( i - A) (sy+A (sy+
7
^
+1
)+A

2

 (sy+7sy+l+7

2^+2) + • • •) 

= ( l - A ) ( ^ ( l + A + A
2

 + . . . ) + 7 ^ + i ( A + A
2

 + A
3

 + ...) (2-55) 
oo 

= Y ( ^ y + i 
1=0 

The series can be rewritten into a single sum. Now A is the exponential discount factor 
that controls the bias-variance trade-off. Note, that if A = 0, we are left with the T D 
advantage estimate (high bias, low variance) and if A = 1, this is the equivalent of n-step 
estimate for the extended advantage estimation (low bias, high variance). The optimal 
value chosen for P P O is then A = 0.95. 

In the case of P P O , only a segment of length T time-steps of an episode is used for 
G A E estimation, which should be always T « Tepisocie. Then the advantage estimate can 
be written as: 

At = -V (st) + rt + j r t + 1 + ••• + 7

T " ' + V _ i + 7 T " V (*r) (2-56) 
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Other Policy Gradient methods 

As a side note we can also mention other state-of-the-art algorithms and concepts used 
within the R L domain. The algrithms are for example A3C, D D P G and S A C . By the way, 
before we commited to the P P O algorithm in this thesis, we were really considering the 
use of S A C . As it is more efficient in terms of data samples and connects the on-policy 
actor-critic and off-policy approach. 

Asynchronous Advantage Actor-Critic (A3C), is a policy gradient method with a special 
focus on the learning running in parallel. In A3C, the critics learn the value function while 
multiple actors are trained in parallel and are synchronized by global parameters once in a 
while. Thus the A3C should work well in a parallel setup. [20] [47] 

Deep Deterministic Policy Gradients (DDPG), is a model-free off-policy actor-critic al­
gorithm, combining D P G with D Q N . The D Q N stabilizes the learning of Q-function by 
experience replay buffer and the frozen target network. D D P G works in continuous space 
due to the actor-critic framework while a deterministic policy is being learned. For better 
exploration of the policy, a noise is added to it. The D D P G does also do soft updates 
("conservative policy iteration") on the parameters of both actor and critic networks, in a 
way that the target network is constrained to change slowly whereas in D Q N the target 
network is kept frozen for a period of time. [22] [47] [23] 

Soft actor critic (SAC) - is an off-policy actor-critic model which incorporates the en­
tropy measure of the policy into the reward to encourage exploration and ensure stability. 
Then the policy should act as randomly as possible while being able to get trained suc­
cessfully. It uses separate policy and value function networks for the actor-critic setup. It 
also adds off-policy property by being able to reuse previously collected data, just like the 
experience replay buffer in D D P G . This supports the efficiency of the algorithm. In its 
objective function there are two objective one is the maximization of expected return and 
the second one is the maximization of entropy. [20] [47] 

Great review of other Policy Gradient methods can be found at Lilian Weng Blog [47]. 
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Chapter 3 

Autonomous driving and system 
design 

The aim of this chapter is to describe the various experiments that are attempting to solve 
the task of autonomous driving in a simulation environment T O R C S . These experiments are 
then evaluated and analyzed in Chapter 4 with respect to achieve the objectives described 
in Chapter 1. The specifics of the experiments as well as the variants of it and the design of 
the whole system, are discussed in more detail in this chapter too. Initially, the description 
of autonomous driving task is presented first, following the requirements of a reinforcement 
learning agent and the description of simulation environment are outlined. After that, the 
experiment setup is introduced. 

3.1 Autonomous driving 

The theme context of this work is autonomous driving. This means that an R L agent 
is developed in order to autonomously drive a vehicle within a simulation environment. 
That is why it is necessary to first introduce how autonomous driving is understood by 
international taxonomy standards. In 2014, The Society of Automotive Engineers (SAE) 
[4] created a six-level classification standard of vehicle automation. This was done in order 
to estimate possible legal consequences for vehicles with high degree of autonomy. This 
classification includes not only the lateral and longitudinal guidance of a vehicle, but also 
other aspects of driving such as parking, pedestrian-vehicle interaction, or driving in urban 
traffic. A l l of these conditions are present only in the fifth, highest level. The lower the 
level the least of these conditions are fulfilled. The range begins at level zero, meaning „No 
automation" and ends with level five, meaning „Full Automation". The detailed description 
of the levels is listed below. 

• Level 0 - The human driver does all the driving. No assistance is provided. 

• Level 1 - A n advanced driver assistance system (ADAS) on the vehicle can sometimes 
assist the human driver with either steering or braking/accelerating, but not both 
simultaneously. 

• Level 2 - A n advanced driver assistance system (ADAS) on the vehicle can itself 
actually control both steering and braking/accelerating simultaneously under some 
circumstances. The human driver must continue to pay full attention ("monitor the 
driving environment") at all times and perform the rest of the driving task. 
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• Level 3 - A n automated driving system (ADS) on the vehicle can itself perform all 
aspects of the driving task under some circumstances. In those circumstances, the 
human driver must be ready to take back control at any time when the A D S requests 
the human driver to do so. In all other circumstances, the human driver performs the 
driving task. 

• Level 4 - A n automated driving system (ADS) on the vehicle can itself perform all 
driving tasks and monitor the driving environment - essentially, do all the driving -
in certain circumstances. The human need not pay attention in those circumstances. 

• Level 5 - A n automated driving system (ADS) on the vehicle can do all the driving 
in all circumstances. The human occupants are just passengers and need never be 
involved in driving. 

The other available taxonomy standards include The U.S. National Highway Traffic 
Safety Administration N H T S A [1], Federal Highway Research Institute in Germany BASt 
[2], and Verband der Automobilindustrie V D A . [19] The difference between them is visible 
only in the last two levels of Full automation, differing in terms of full automation during 
high-risk situations. In the S A E , in the fourth level, the vehicle encountering a high-risk 
situation is required to safely come to a stop in a secure place, typically a road shoulder, 
while in the fifth level the vehicle does not need any interference by the human driver and 
can operate fully on its own under any conditions. In comparison in the BASt classification 
the fifth level is missing, therefore the fourth level is considered the highest. Though, that 
does not mean the vehicle is driver less, the classification just does not take into account 
the possibility of no driver. [2] [1] 

The vehicle controls which are to be operated by the R L agent in this work consist of 
lateral and longitudinal guidance on the road. In order to succeed the task, the R L agent 
will have to learn the acceleration, braking and steering control of the vehicle independently. 
If we want to compare it to the classifications above, it can be done to only a limited extent, 
as the official standards take into account all the different tasks. Of course the ideal goal 
would be to meat the requirements for the level five of S A E classification, at least in terms 
of the lateral and longitudinal guidance of a vehicle. The reasons for only focusing on 
the vehicle guidance are mainly because our initial goal is to prepare an agent for an R C 
model car application, secondly most of the freely available simulation environments only 
offer vehicle guidance as well. Also available literature is mostly focused on similar task. 
[10] [16] [43] This leads to the specification of the simulation environment that will be used 
in our experiments and will be discussed in the next subsection. [45] [13] [21] 

3.2 Simulation environment 

The reasons that the available literature focuses mostly on a simulation instead of the real-
world vehicle and environment is quite simple. It is due to the reward function, which plays 
a crucial role in the learning process of the R L agent. The agent needs to fail a lot in order to 
learn some useful policy. That would mean that the real-world vehicle would encounter a lot 
of damage during the training process, possibly destroying itself without learning anything. 
More common way of doing things is to first learn the agent in a synthetic environment 
and later, when the R L agent is trained, just fine-tune it in the real-world environment. 

If we think again about the reward function, it is much easier to manually define a 
reward function for the longitudinal and lateral guidance than for all the other aspects of 
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real driving behavior on public roads, including parking, pedestrian-vehicle interactions and 
the traffic signs and signals. Nonetheless these limitations do not represent a reduction in 
a complexity and usability of R L agents as such. After what was stated above, the racing 
simulators meet these requirements quite well. Also in the literature the use of racing 
simulators as the environment is mostly used. 

3.2.1 T O R C S 

The one, very popular lightweight racing simulator used in the machine learning research 
is The Open Racing Car Simulator (TORCS). It is free, open-source racing game and thus 
will be used in this work as well. The use of T O R C S is also convenient for the reasons 
of future application of the learned agent in real-world environment. Particularly to the 
scaled R C model car, which will then possibly be capable of racing on a custom track. [48] 
[25] 

To mention some alternatives to the T O R C S simulator, there is also simulator called 
C A R L A - which simulates the real urban traffic conditions, but the requirements for com­
puting performance are very high. The same applies for other urban traffic simulators, 
which in addition are not even freely available e.g. Nvidia Drive Sim. As next, we will 
describe the T O R C S environment in a more detail. 

T O R C S is modular, discrete-time simulator which simulates the aspects of vehicle dy­
namics, kinematics, fluid and thermo-dynamics. It also features different driving modes. 
One of them is called „Practice mode" and will be used throughout the experimental part 
of this thesis. It is basically the solo-driving mode without any opponent. The other mode 
is the „Quick race" mode. Differing in the addition of opponents. These opponent vehicles 
are operated internally be the T O R C S game mechanics. The main focus will be on the 
solo-drive mode, where the R L agent will learn the longitudinal and lateral guidance of the 
vehicle on a given track. The mode including opponents is omitted, as our goal is not to 
learn an agent how to compete with opponents but mainly how it succeeds in the driving 
task in general. [48] [26] [33] 

Figure 3.1: T O R C S in game Screenshots, Source: [48] 

The T O R C S environment includes about 40 race tracks, which are divided into three 
categories. The interesting one for us is the first category, Race Tracks. These consist 
of real and artificial asphalted race tracks, which correspond the most to the real-world 
conditions. The other category is Dirt tracks, which are mostly curvy and short in length 
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and simulate the off-road driving experience. The last one can be described as oval-shaped 
circuits, they are asphalted as well, but due to its topology, they are not interesting for 
our experiments. The agent would possibly quite easily learn to race such a trivial shaped 
track with just one type of curve. Thus the tracks selected for our experiments all belong 
into the first category. 

There were eight tracks selected, that will be participating in the experiments, the 
decision takes into account the difficulty of each of the tracks, consisting of number of 
curves, its radius, the total length of the track and the maximal speed that the racing 
vehicle can achieve during the race on such a track. The tracks with its short description 
can be seen in a list 3.2.1 below. 

• E-road - 3260m, width 15m - high speed track, combination of curves and straights 

• E-Track-2 - 5380m, width 12m - lot of curves with one straight 

• E-Track-4 - 7041m, width 15m - high speed long track with few curves 

• Forza - 5784m, width 11m - very fast and smooth circuit, real-world track in Monza 

The main track used for most of the training experiments is the E-Road and E-Track-2 
track, which have the perfect balance between its length, number and type of curves and 
the overall composition of these elements, helping the agent to learn a versatile driving 
style, that can be later benchmarked on the rest of the tracks. Tracks that were used also 
for testing but are not depicted on a Figure 3.2 are E-Track 3, Michigan - which is an oval 
shaped track, G-Track-2 and G-Track-3. 

The car chosen for our experiments is called within the simulator as car7-trbl, which 
is a default racing sport car. As most of the cars have similar parameters in terms of top 
speed, weight or aerodynamics, the selection of the type of car is not significant and therefore 
will not be studied in our experiments. Though, the initial idea was to use different cars 
throughout the learning process, thus inducing the robustness of agent's policy, making it 
more usable in terms of generalization, when moved into real-world conditions. 

Figure 3.2: The T O R C S tracks chosen for the experiments. From left to right: E-Road, 
E-Track 2, E-Track 4, Forza, Source: [48] 

Now we should introduce the usability for experiments of the T O R C S environment. Due 
to the fact that T O R C S was first developed as a regular game, its internal architecture al­
lows the potential R L or any other machine learning agent to access its internal information 
about the state of the simulation. These can be the exact position of the car, its velocity, 
the information about the track itself or about each opponent's vehicle. This would not 
only compromise the results of such experiments but would not in any way simulate the 
real-world conditions. 
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Since there used to be quite popular T O R C S Championship, where machine learning 
researchers used to compete with its agents, there had to be created different architecture of 
the simulator, in order to achieve truly equal conditions for all the competing teams. This 
is typically done by client-server architecture, which was done also in this case by Loiacono 
et al.[25] The T O R C S environment acts as a server and each agent then communicates 
with the environment as a client. The communication is based on U D P protocol. The 
vehicle within the T O R C S environment is located on the server side and the R L agent on 
the client's side is sending the control commands to the vehicle controller. In return the 
vehicle is sending its sensory data about the perceived environment back to the client. This 
sensory data is being send by the server every 20ms. Then the client has 10ms to send a 
packet consisting of the control commands back. This strict separation of the simulation 
environment and the agent's implementation allows for the use of different programming 
language or computing architecture of the client, as the U D P interface is uniform across 
different platforms and languages. [48] [25] [24] [10] 

The client-server architecture can be seen on a Figure 3.3 below. 

Figure 3.3: T O R C S Server architecture from Championship manual [25] 

One such a client available online is the SnakeOil client, which is a lightweight program 
written in Python by C. Edwards [9]. It allows the U D P communication with the T O R C S 
server environment and through it a control and basic settings of the simulation can be 
set. It first opens a U D P socket and then the server side is started. Even though this 
abstraction can be seen as enough, there is another layer available between the client and 
the R L agent, which will also be used in this work. It is the GymTorcs [8] environment, 
which allows us to use the standardized OpenAI Gym environment, which is used all over 
machine learning research. This allows us to further focus just on the implementation of 
the R L agent and do not bother with the complications related to the setup of the T O R C S 
environment and all its caveats related to the communication. 

There were of course many adjustments done to the SnakeOil client and also to the 
GymTorcs framework to function correctly and in alignment with our needs for many 
specific experiments. One of them is the functionality of the camera and its use with other 
sensors, which is not officially supported by the T O R C S . Other can be the different way 
of sending the sensory data to the client due to different learning approaches used or the 
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simulation of the communication failures or the sensor/actuator noisy data, that mimic the 
real-life conditions related to one of the objectives of this work, that is train and prepare 
the R L agent in a simulated environment with the focus to simulate multiple possible 
conditions, so the agent could be without huge modifications deployed into the real-world 
scenario. 

OpenAI Gym and PyTorch 

If we step back and focus on the OpenAI, in 2016 the company released an open-source 
Python library called Gym. It unifies the research simulation environments for R L agents. 
It had the goal of simplifying and unifying the agent's interaction, as well as it allowed 
broader public to use and test the same environments as the research community. Most 
importantly, it brought to the field some sort of standardization for the benchmarking of R L 
agents and the structure of simulation environments in general. This allows the researches 
to compare different R L agents on similar tasks, without worrying about the environment's 
implementation differences. A n alternative to the OpenAI Gym can be the locomotion 
simulation environment Mujoco, which features different n-legged robots and humanoids. 
Coincidentally in 2021 the OpenAI bought the Mujoco simulator and according to the 
company, it plans to make it freely available as part of the OpenAI Gym library. [31] 

Some well-known tasks in Gym can be mentioned, such as the Cart-Pole environment 
by Sutton and Barto, Mountain-Car, Lunar Lander or Atari Games. If we recall the Gym-
Torcs environment, it is not natively included in the Gym, but similar environment had 
been created, which follows the basic structure of Gym environment, which can be seen 
in Algorithm 6 below. The implementation of GymTorcs is located in gym_torcs.py file 
within the thesis implementation source files. It starts the SnakeOil client, which opens a 
connection to the T O R C S server. The GymTorcs interaction with the environment is then 
standard, just like interaction with any other Gym environment and its game's implemen­
tation. 

As had been mentioned earlier, for the implementation of our R L agent - algorithm 
P P O , the use of function approximators will be in the form of neural networks. Since our 
SnakeOil and GymTorcs subprograms are implemented in Python, our R L agent will be 
implemented in this language as well. Therefore there is a need for search of a specialized 
Deep Learning library available also for this language. The available options are Keras, 
TensorFlow, Theano, Caffee, PyTorch and surely many others. The selection came to the 
last one mentioned, the PyTorch library. Released by AI Research at Facebook in 2016. 
The reasons behind the selection of PyTorch are mainly, some previous personal experi­
ences with this framework, also it is the only machine learning framework that we had been 
presented during our study at FIT. According to the GitHub statistics, the currently most 
used machine learning library for that purpose. Also in the research community, PyTorch is 
by many considered as the current standard go-to library for the field of machine learning 
research and business sphere. For example the car manufacturer Tesla uses for its FSD 
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Autopilot software PyTorch as well. 

Algorithm 6: OpenAI Gym standard environment pseudo-code 
Initialize an environment by gym.makeQ 
for episode=l,2...N do 

Observe initial state from env.resetQ 
while True do 

Select action from policy 
Get next state, reward, done from env.step( action ) 
if done then 

I break 
end 
Assign to current state the next state 

end 
end 

[31] 
As we can see from the pseudo-code above the most important function of the envi­

ronment is the env . s t epO, which takes the agents action as an argument, makes a step 
within the environment and then returns the next observed state, reward related with this 
transition and boolean value whether the episode has ended or not. The rest of the code 
is a simple cycle, iterating over the number of episodes and while loop within an episode, 
representing the individual time-steps. The next section focuses on the next state values, 
which are in our T O R C S environment represented by the sensory values observed by the 
vehicle within the simulation environment. The next subject discussed are the possible ac­
tion values represented by vehicle's build-in actuators. The section 3.2.3 then writes about 
the reward function and the related topic of reward shaping. [8] 

3.2.2 Sensors and Actuators 

The information about the current state of the environment is in the form of sensory data, 
captured by vehicle's sensors within the T O R C S server. Therefore it is the only way for 
the agent to know what is in the simulation happening around him. For the task of lateral 
and longitudinal guidance it is necessary to consider the type and amount of sensors which 
will be used and thus would be enough for the agent to learn well-performing policy. It is 
actually a frequent subject of research in autonomous driving. It also depends on the level 
of autonomy targeted. [35] [26] [33] 

One of the well performing sensor is the L I D A R . Based on the reflection intensity of 
a laser beam it scans the environment and after post-processing the point-cloud can be 
created, representing the detailed 3D scan of the environment. One of the downsides of this 
sensor is its extremely high cost. Another very helpful sensor is radar, it operates on similar 
principles as L I D A R , but with sound waves. Its advantage is, that it is in comparison with 
the L I D A R much cheaper and smaller sensor. Last of the important sensors is the camera, 
this sensor is probably the cheapest one and thus, heavily used in the industry. Also the 
advances in supervised learning, enabled camera sensors to get relatively smart and can be 
used to describe the surroundings in a form of complex vector spaces. For example the Tesla 
company says, that the future of self-driving cars is in the solitary use of camera sensors. 
Also they are strictly against L I D A R technology, as due to its high cost, such vehicles using 
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it will never be mass produced. [44] 

According to research from University of Michigan [35], which compared the L I D A R , 
radar, camera sensor technology for different tasks of autonomous driving, e.g. object recog­
nition and classification, it says that in an effort of achieving Level 5 of S A E classification 
for autonomous driving, all mentioned sensors have to work in combination with vehicle-
to-vehicle communication, and only then they would be able to succeed in all required 
tasks. 

The R L is an end-to-end approach for autonomous driving, so no further division into 
layers for specific tasks, as can be seen in other approaches. The R L agent receives all 
sensory data necessary and then through trial and error, continuously learns a policy. Thus, 
implicitly learning the effect of lane lines during driving, the presence of other vehicles, 
detection of obstacles, etc. 

For our use in this thesis the selection of sensors had been considered in regards with the 
reality. For example the distFromStart, representing the distance measured from the start 
line to the vehicle position on the track, is not the most realistic type of a sensor that can 
be found in real-world autonomous vehicles. Wi th this in mind, in the Table 3.1 below are 
showed all the sensors that are available in the T O R C S environment. The ones highlighted 
are sensors that were selected for the use in our experiments. One important information 
about the vision sensor, representing the front camera input. As this is not an official 
sensor in terms of the T O R C S environment [25], the simulator does not allow usage of other 
sensors, when vision sensor is enabled. This limitation had been successfully bypassed in 
the code, so in the experiments we were able to experiment with different approaches in 
terms of selected sensors, including the combination of camera and regular sensors, as well 
as the comparison of solo regular sensors or solo camera output. 

We also investigated the minimal required set of regular sensors, with which the agent 
was still able to learn a successful policy. We were also experimenting with different camera 
output, so that the agent would not only have the information about its position, position 
of the lane lines but also have some information about its motion and velocity, which is 
crucial when learning only from camera sensory data. But this will be in more detail 
reviewed further in this thesis. 

To further divide selected sensors, the ones describing the state of the vehicle can be 
speed sensors, RPM and WheelSpinVel. The ones describing the state of the environment 
can be considered as track sensor, opponent sensor or focus. The track and focus sensor 
can be then considered as a low-resolution L I D A R sensors. The position of the vehicle via 
GPS is not used in this work as the T O R C S architecture does not provide this type of 
information. We should also mention, that some of these sensors will be used for creation 
of the reward function, which will be discussed later in this chapter. 
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Name Range Description 

angle [-7T, ir](rad) 
Angle between the car direction and the direction 

of the track axis. 
curLapTime [0, oo](a) Time elapsed during current lap. 

damage [0, oo](pts) 
Current damage of the car (the higher is the 

value, the higher is the damage). 

distFromStart [0, oo](m) 
Distance of the car from the start line along the 

track line. 

dist Raced [0, oo](m) 
Distance covered by the car from the beginning 

of the race. 

focus [0, 200] (m) 

Vector with 5 values, each representing the 
distance from the vehicle to the lane boundary 

within 200 m. Unlike the track sensor, the focus 
sensor observes a range of only 5 degrees. However, 

the agent can once a second ask for specific 
field of view, thus it is the subject of learning. 

fuel [0, oo](0 Current fuel level. 

gear {-1,0,1.-6} 
Current gear: -1 for reverse, 0 for neutral, 

and 1 to 6 for regular gear. 
lastLapTime [0, oo](a) Time to complete the last lap. 

opponents [0, 200] (m) 
Vector with 36 values, each representing the distance 
to the nearest opponent, within 200 m. The sensor 

covers the entire area around the vehicle. 
racePos {1.2...N} Position in the race w.r.t. other vehicles. 

rpm [0,oo] (rpm) Number of rotation per minute by the vehicle engine. 

speedX (-oo, oo) (km/h) 
Speed of the vehicle along the longitudinal axis 

of the vehicle. 

speedY (-oo, oo) (km/h) 
Speed of the vehicle along the lateral axis 

of the vehicle. 

speedZ (-oo, oo) (km/h) 
Speed of the vehicle along the Z axis 

of the vehicle. 

track [0, 200] (m) 

Vector of 19 values, each representing the distance 
from the vehicle to the lane boundary, within 200 m. 

A n are of 180 degrees in front of the vehicle is 
scanned with a resolution of 10 degrees. 

trackPos (-co, oo) 
Distance between the vehicle position and the 

center of the lane. Zero if vehicle is in the center 
-1 is the left lane line, 1 the right lane line. 

wheelSpinVel [0, oo] (rad/s) 
Vector with 4 values, each representing the 

radial speed of a wheel. 

z [-co, oo] (m) 
Distance of the car mass center from the surface 

of the track along the Z axis. 

vision (0, 255) 

Tensor of dimension 64x64x3, 
representing R G B pixel input from a camera. 

N O T E that vision can be enabled only by forbidding 
sensory data from every other sensor mentioned. 

Table 3.1: Table with sensors available in the T O R C S environment [25] 
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In the Figure 3.4 below it can be seen the vehicle's perception of the environment and 
its position via some of the sensors, especially the angle, track and focus sensor. This 
is the set of sensors with which the experiments were initially started and then empirically 
were lowered to a minimal possible functioning set. 

Figure 3.4: Visualisation of the officially available „vision" sensors in the T O R C S environ­
ment 

So as for the agent to learn autonomous driving, the lateral and longitudinal guidance 
has to be controlled via vehicle's actuators. In the table 3.2 below we can find information 
about all actuators provided by the T O R C S environment. Again, the ones highlighted, are 
the ones that were chosen for the application during our experimental part of this thesis. 
The remaining sensors, if not controlled by the agent are then automatically controlled by 
the T O R C S . The reasons for not using the clutch and gearing is quite simple. Modern cars, 
especially those that would in the future be fully autonomous are usually already right now 
electric, therefore no need for manual transmission. The next reason is in regards to this 
thesis, that is the R C model for which we are trying to learn our agent, is using regular 
electric D C motor, thus it would make no sense to train our agent also with the clutch and 
gearing actuators enabled. This should not make this task any more trivial, it is still a hard 
problem to solve, as all the actuators used have continuous action space, i.e. combination 
of their possible values is almost infinite. 

road direction 
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Name Range Description 
accel [0,1] Virtual gas pedal (0 means no gas, 1 full gas). 
brake [0,1] Virtual brake pedal (0 means no brake, 1 full brake). 
clutch [0,1] Virtual clutch pedal (0 means no clutch, 1 full clutch). 
gear -1,0,1,-,6 Gear value. 

steering [-1,1] 
Steering value: -1 and +1 means respectively full right and 
left, which corresponds to an angle of 0.366519 rad. 

focus [-90,90] Focus direction in degrees. 

meta 0,1 
This is meta-control command: 0 do nothing, 1 ask 
competition server to restart the race. 

Table 3.2: Table of possible actuator values, highlighted ones were selected for the experi­
ments 

3.2.3 Reward shaping 

Reward shaping is an important discipline within the field of R L . It is not unusual that 
the environment does not include explicitly defined reward function, thus it is up to the 
researcher to carefully design it on its own. This is the case with T O R C S environment as 
well. From the Algorithm 6 describing the Gym environment procedure, it can be seen 
that the env .s tepO takes an action as an argument and in return returns the new state 
of the environment and the reward obtained from this transition. The new state represents 
a vector of sensor values, meaning each element of a vector is from a single sensor. Thus it 
suggests, that we could map some specific sensory values directly to the reward function. 
For example the position of a vehicle to stay within the road. So the trackPos sensor giving 
us the info how far from the lane line the car is, should stay within defined boundaries. 
Once exceeding it, the agent obtains a negative reward. In a similar way, the other sensors 
can be mapped with the reward. 

It is important to mention that the reward shaping is an intensive research topic, as 
the relation with a reward obtained is directly influencing the performance of the agents 
policy. If a reward is too high, then the agent will next time most likely use the same action 
in a given state. If the reward is too low, then the agent will probably choose a different 
action next time visiting the state. This is typical across all R L algorithms, thus it is very 
important to define a good reward function. 

In this section we will propose three reward function designs plus so-called terminal 
conditions for an agent, which determine the end of an episode. For example when the 
agent's vehicle crashes, or goes in a wrong direction, this action will lead to a high negative 
reward, thus will terminate the agent's episode. These terminal conditions are defined in 
a Table 3.3 below. A l l reward functions defined in this section will then be empirically 
evaluated, measured in terms of performance metrics and comprehensively discussed. 

If an agent learns a good policy and none of the terminal conditions occur, then the 
termination of an episode will happen after 1600 time-steps or less, depending on the type 
of experiment. These values were empirically measured. A well trained agent, for most of 
the tracks, was able to drive 3 continuous laps before an end of the episode. 
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Event Reward Terminal 
collision -100 yes 
out of track -70 yes 
stopped moving -1 no 
driving backward -80 yes 
progress too small -10 no 

Table 3.3: The proposed terminal conditions and their penalty values, where some of them 
also end an episode. 

During the early experiments, it was found that in order for the agent to explore the 
environment as much as possible, especially during the initial episodes, it was better that not 
all the terminal conditions mentioned should lead to an end of the episode. Otherwise the 
results were quite poor and the agent's episode was on average only a few time-steps long. 
That meant the agent only knew the beginning of the track, thus was prone to overfitting 
on that part. Later when it discovered further parts of the track, it was unable to overcome 
such an overfitting, which resulted in a poor policy, incapable of further learning. 

Now we will propose the first continuous reward function used during our experiments, 
this one is based on Wang et. al. [45] and [10] It is defined as: 

IZi = SpeedX x cos(^) — SpeedX x s'm(f) — SpeedX x TrackPos (3-1) 

It is defined by considering the maximization of longitudinal velocity SpeedX x cos(ip), 
minimization of lateral velocity SpeedX x sin(ip) and to maintain the agent in the center 
of the track. Thus any movement in the lateral direction is then considered as undesirable 
and has a negative effect on the reward. This is also supported by the third term of the 
reward function, the TrackPos sensor. The first two terms of the equation can be easily 
derived by using trigonometry, where the direction of the vehicle and the direction of the 
road are two sides of a right-angled triangle. This is also the most used reward function 
during our experiments. [24] [17] [33] 

cos(</?) 
Longitude 

SpeedX 
Longitude = cos(p) SpeedX 

and subsequently: 

sin(<£>) 

(3.2) 

Latitude 
SpeedX 

Latitude = s'm(f) SpeedX 

The second reward function mentioned is from [13]. The value of the TrackPos sensor 
is used as well, but this time it is subtracted from the angle cos{<p) and then the result is 
weighed by the SpeedX sensor value. 

K2 = SpeedX x(cos(^) - TrackPos) (3.3) 

There is also third reward function proposed, but it is only used in experiments com­
paring the overall capability of the agent to learn a successful policy with each reward 
functions. That is, measuring the effect of the reward function on the learning process of 
an agent. It is defined as follows: [13] 
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TZ3 = SpeedX (cos <p - - - e_4(|l&̂ kPos|_0.5rii))) (3-4) 

It is a smooth reward, penalizing lateral distance with a sigmoid function. Where the 
rw term is the road width. [13] 

It is obvious that these reward functions have direct influence on the lateral and longi­
tudinal guidance of a vehicle, but the terminal conditions specified in Table 3.3 are of the 
same importance. Especially the amount of penalty with which the agent is „awarded". If 
any of them is too low, the agent would not stop doing such actions, contrary if the value 
is too high, the agent would not learn a good policy, as its overall reward would be high 
negative value, suggesting the whole episode was bad. Also the termination of an episode 
of each terminal condition had to be empirically studied, so the agent would explore the 
environment enough and was not cut off too early. This happened especially with the 
„progress too small" penalty. 

3.2.4 Performance metrics 

When we take a look at the R L algorithm's learning process, it is supposed that the policy 
continuously improves over a period of several episodes, with respect to the return value. It 
is expected that during the first phase of the learning process, the policy won't be good and 
the agent will have problems with controls of the vehicle and would mostly only explore the 
environment. Later, after enough exploration is done, the agent continuously adjusts its 
internal parameters, shifting into the exploitation phase. During that period it improves its 
policy, lowering the entropy for its actions, thus making noticeable progress. This process 
continues until it possibly reaches a high return yielding policy, in terms of the driving 
capabilities of the agent. 

In order to find a suitable performance metrics for checking the quality of an R L agent, 
learning the task of autonomous driving, or more specifically the lateral and longitudinal 
guidance of a vehicle, literature was studied for the most common ones. Here are the three 
most common metrics listed: [24] [17] [33] 

• Total return achieved by the agent controlled vehicle per episode. 

• Distance reached by the agent controlled vehicle per episode. 

• Average speed of the agent controlled vehicle per episode. 

In the literature also the performance of a human driver is sometimes considered and 
compared with the result of the R L agent. This comparison might be interesting to see, but 
due to the settings of the experiments it is not really the main objective of investigation. 

It is easy to deduce that these metrics will improve over the time, as the agent's policy 
gets better and better, and explores the state space more and more. Depending on the 
setup of specific experiments, the training period will be between 600 to 3000 episodes in 
length. These were empirically measured and mostly manually stopped after reviewing the 
results, as due to the behavior specifics of the R L optimization it would not be correct to 
use approaches from supervised learning in the form of early-stopping. The early-stopping 
method is used to finish the training before the agent seems to be over-fitted, so typically 
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when some metric, usually accuracy reaches a specific level. The R L optimization is usually 
oscillating within a range of values, so no strict limit for a metric should be used, as the 
same performance level is usually reached later again. 

In order to be able to evaluate the metrics properly, another condition has to be met. 
We need to propose a type of reference frame within which we can compare two learned 
agents. Two agents can have the same total return, but this does not mean that they 
behave the same or that they are of the same quality. One can be able to successfully and 
repeatedly drive to the half of the track in a high speed and without any collision, whereas 
the other one can for example for the first time finish a whole lap, but in a slow speed or 
with many accidents. For these reasons the agent will have the necessary condition to at 
least once finish a complete lap of the racing track. This would then serve as a reference 
frame for further interpretation of an agent's learned and measured performance. 

One other metric suitable for the P P O algorithm can also be the entropy of its policy. A 
policy has a maximal entropy when all policies are equally likely and minimal when one of 
the action's probability of the policy is dominant. So entropy metric is used as an index of 
„healthy" training, where the entropy should be continuously getting towards lower values. 
When the entropy is getting higher values, we can deduce that the learning is not advancing 
at all, but is actually worsening, suggesting we should stop the experiment and discard its 
results. When entropy converges to a certain value and does not improve further, we can 
consider the training as finished, as the agent would most probably not improve any more. 

Also for the agent to be confidently considered as learned, it also means that the agent 
is able to correctly generalize. 

The agent's learning will be performed completely on a single track, mainly E-road and 
E-Track 2. For the testing, the performance will be measured on a different, for the agent yet 
unknown track. If it is able to correctly generalize, it should immediately get high returns 
for the unknown track. In other case, it means that the agent should be kept learning for 
a longer period of time or that it was over-fitted. This problem of generalization of R L 
agents is also an active area of research. Some techniques from supervised learning can be 
used, such as batch normalization or usage of dropout layers within the neural networks. 
The performance metrics used for the testing, will be the same as those used during the 
learning period. 

Luckily, in most of the experiments the agent was not over-fitted for one track, thus the 
use of techniques preventing from over-fitting were not necessary. 

3.2.5 The Algorithm 

The algorithm primarily used in this thesis is the Proximal Policy Optimization (PPO) 
2.4.4. Since its policy has an output in continuous action space domain, it is well suited for 
the vehicle's actuators, that are defined over real-valued intervals. We will use them in its 
original unchanged form, as it was proposed in the paper. [25] The P P O version with the 
clipped objective will be used, in order to avoid calculations of the KL-divergence, which 
requires lot of performance for its calculation and thus it is not in our interest to use it 
with a relatively low performing hardware, which is also representing the vehicle's on-board 
integrated microprocessor. [38] 

The algorithm will use multiple neural networks, depending on the type of experiment. 
When dealing with only sensory data, there will be two networks design used, one repre­
senting the policy and outputting the means and variances for actions and the second one 
used for outputting the state-value for a given state. When the camera output will be used 
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there will be as well a separate convolutional network extracting features from a vehicle's 
view image. These features will be then concatenated with the other sensory data and 
would be fed into the two regular networks for state-value and policy. 

One other variant will be also tried, that is to collect a pairs camera output - sensory 
data for a given state and in this way create a dataset. The agent for such collection will be 
an already trained one, ensuring that the dataset would consist of samples from a complete 
race track. Then a separate convolutional network would be trained cts ct rc gular neural 
network in supervised learning, outputting sensory data for a given camera image. This 
trained network would then serve as a „simulator" of regular sensors and therefore would 
be used as a substitute of them. This sensory output would then be an input into the 
regular two networks mentioned in the beginning of this paragraph. In this way, if training 
is successful, we could get rid off completely of the sensors, thus relying solely on the camera 
output. 

That would be especially useful for the R C model, where there would not be a need for 
other real sensors to be installed, but the camera. Although it would be a real surprise if 
this last mentioned setup would work. Mainly because a learned agent would not struggle in 
the initial state of learning, so no weird turns, slow speeds or unpredictable behavior would 
be contained within the dataset. Maybe if we plug this learned convolutional network into 
an already enough trained agent, trained by only sensory data, then this problem might not 
be present. So the complete agent would be firstly trained on sensory data, which would 
then be replaced by „camera output to sensory data" network, and then fine-tuned. This 
approach would then might work. 

3.3 Implementation details 

In this section we will discuss the implementation details and provide more information 
about the technical aspects of experiments and what is used for the collection of exper­
iment's results and how they will be compared. We will also dive more into the neural 
networks architecture and the whole data pipeline from the environment to results. 

3.3.1 Algorithm implementation 

As a first thing we have tried to implement the P P O algorithm all by our-self. These efforts 
were not long after abandoned. It was not possible to implement the algorithm in order to 
work even in the slightest form. After that, we have encountered several implementations 
available online and from those, three good ones were chosen. After an extensive experi­
mentation where some of them did not even work at a basic tasks from OpenAI Gym, so 
the simplest one working was chosen. That could now be declared as our baseline imple­
mentation. Surely, it did not meet our requirements in terms of quality of results at basic 
OpenAI Gym environment tasks, nor the „readiness" for our experiments with T O R C S 
environment, but at least it worked - meaning the agent was getting better during the 
learning sessions. Such an implementation was then hugely changed and improved. 

One of the main changes was the support for not equally long episodes, which does not 
seem as much, but it is crucial for our task. As the agent while driving can crash at the first 
corner and the waiting t i l l the end of an episode would be meaningless, but also would waste 
our computational resources. The only requirement for the length of an episode is, that it 
has to be bigger than our batch size. Which for most of the experiments was empirically 
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discovered and set to 32. It is due to the style of training of the neural network. This will 
be also elaborated more later in the text. 

The next quite important improvement was the possibility to use both numerical values 
from sensors and also the images from vehicle's camera, both separately and at the same 
time. Not forgetting to mention the possibility of using the convolutional neural network 
for generation of sensory data. 

Also the possibility of pre-training or fine-tuning a model from previous runs. The 
implementation is fully customizable through a configuration file, where all the hyper-
parameters of P P O algorithm, the neural networks, as well as the type of experiment, 
architectures, including the settings of T O R C S environment can be easily set before each 
experiment. Also from each run multiple metrics and information about the run are saved, 
including the source code at that stage of time and models of an agent at different phases 
of the training session. This is done by an open-source platform called ML flow [27]. Which 
can then also be used for comparison of individual runs, based on hyper-parameters or 
specific metrics and can be viewed through a web browser. 

MLflow 

The MLFlow platform runs on a localhost, where it creates a server which serves as the 
machine learning tool for gathering experiment's data as well as the tool for management 
and comparison of the different experiments. The MLflow also enables the user to watch 
all the statistics and metrics of an experiment run in real-time, as it plots new data every 
10 seconds. This is especially useful when some of the runs are going poorly in terms of 
performance, so the user is able to easily see and analyze the data and eventually finish 
the experiment prematurely. This saves a lot of time during the experimental phase of the 
project. MLflow also allows for addition of description of each experiment, so the user can 
comment with specific insights that he encountered during the run. This then helps during 
the evaluation part, as remembering hundreds of runs is not in a human capabilities. 

The MLflow offers three main methods that take care about the collection of data from 
an experiment. 

mlflow.log_param() logs a single key-value param in the currently active run 
mlflow.log_metric() logs a single key-value metric 
mlf low. log_artif act () logs a local file or directory as an artifact 

The names of the methods are quite a self-explanatory, but in short we can mention their 
use in this work. Wi th the mlf low. log_param(), we were collecting typically before the 
experiment had started, all the hyper-parameters or other special values, that had an impor­
tance and were fixed-values, totalling around 36 values. Wi th the mlflow.log_metric(), 
we were collecting all the changeable values, such as the metrics: rewards, returns, average 
speed, distance raced, entropy, neural network loss and more. Totally around 22 metrics 
were tracked during each experiment. Lastly with the mlf low. log_artif act() method, 
we were collecting the source code of each run, this was especially helpful during the initial 
testing of the functionality of the algorithm and the whole experiment pipeline. Also the 
configuration file was saved this way, because not all parameters were saved directly. Also 
the neural network's models were periodically saved by it. 
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Figure 3.5: Mlflow - screenshot of the web application user interface/ Left: overview of 
available finished and running experiments. Right: detail of a comparison of multiple 
experiments on a return metric 

Lastly, within the Mlflow UI, the graphs can be easily viewed and compared across the 
runs and more importantly, these can be then saved in a form of an image, thus removing 
the need of usage of third-party graph plotting library, e.g. matplotlib for Python. But if 
needed, all the collected metrics are saved in an c s v file, thus it can be used for further 
processing or serve as an input into some other plotting tool or custom code. 

3.3.2 Neural network architectures 

In the subsection 3.2.5, we have already briefly introduced the neural network setup, which 
we will further discuss here. 

As it was mentioned in subsection 2.3.4, modern Deep R L algorithm uses as the func­
tion approximator a neural network. Here we should introduce the architectures of our 
networks used in this thesis. The P P O algorithm is an actor-critic method, where each of 
the components needs a neural network, the actor for outputting the mean and variance 
for a Normal distribution of agent's actions and the critic for outputting the estimated 
state-value function value. 

Regular Architecture (sensors) 

In the chapter discussing experiments we will briefly show results of experiments targeting 
the depth and number of neurons within these two networks. When working architecture 
was found, it was kept unmodified for the rest of the experiments. Such an architecture is 
visualized on a Figure 3.6. This is also the setup where the input vector is only consisting 
of sensory data, more specifically in this case the track sensor and speedX, the speed in 
forward direction. In the experiments this architecture will be refereed to as the Regular 
Architecture setup. The networks have two hidden fully-connected layers, these are simple 
networks, which use as an activation the ReLU, only difference is the last layer of Actor 
network, where in order to ensure correct interval of the actions, the hyperbolic-tangent 
activation is used. The intentions behind the use of such a small networks is mainly the 
speed of processing and the fact that these network work only over numerical values, few 
inputs from sensors and only two outputs for actions, the architecture does not have to 
be anything more complicated. Empirically the 512 neurons within the hidden layers were 
working great with low processing times, so there was no need for changing it to even bigger 
architectures. On the contrary, smaller networks (64, 128 and 256 neurons in hidden layers) 
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worked sometimes even better than bigger ones. The other options that were tried was just 
1 hidden layer. It was shown that these sizes are not enough for the agent to learn a good 
policy. 

Actor 

N(mu,var) 
2x2 

Critic 
471 471 471 

state-value (v) 
1x1 

normalized input vector 

J fully-connected + ReLU 

^ fully-connected + Tanh 

fully-connected 

Figure 3.6: 5 The architecture of the Actor-Critic network, which uses sensory data as an 
input. 

ConvNet Architecture (sensors + camera) 

As a next architecture, we will also use the camera output, that is, we will need some 
convolutional layers inside our network topology. This architecture will be later refereed 
as ConvNet Architecture. It consists of convolutional layers, as well as pooling layers, for 
decreasing the image resolution. As an output from the convolutional network will be ID 
features vector that will be concatenated with regular sensory data and then would be fed 
into the Actor-Critic networks. The architecture of these networks will be the same as in 
case of the Regular Architecture setup. In a more detail the architecture can be seen on a 
Figure 3.7. 

There was as well experimented with different number and types of layers, but these 
experiments were not as comprehensive as in the case of Actor-Critic networks. It is because 
this thesis is mainly about Reinforcement Learning and the P P O state-of-the-art algorithm 
and its performance and possible applications, and not that much about convolutional 
neural networks and finding of its perfectly working topology. There are other papers 
focused solely on that topic. We experimented with 7 possible C N N architectures, but 
when a functioning one was found, it was kept for the rest of the experiments. 

This is also supported by the fact, that the limitations of the T O R C S environment, 
allow for the input image to be maximally 64x64x3, which is a relatively small size in 
comparison with modern CNN's capabilities, which can operate on a much higher input 
image resolutions. Where the amount of data calls for a careful and more sophisticated 
design of the network's architecture. The presented C N N architecture takes the input 
image and continuously lowers the image resolution, so that it can learn specific features 
within the image. It goes from 3 input channels, representing the R G B channels into 
the final 24 channels, where each of them should learn a specific detail, such as the lane 
lines, and the position of the vehicle itself. Then these feature maps are squeezed into 
fully-connected layers, which should dense the knowledge from an image, resulting in an 
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feature vector output, that is then concatenated with the normalized sensor vector from 
the T O R C S environment. This resulting vector is then fed into the Actor-Critic networks. 

camera image 

3x64x64 6x64x64 

sensor vector 

Actor 

Critic 

N(mu,var) 

state-value 
camera features vector 

normalized sensor vector 

fully-connected + ReLU 

average-pooling, 2x2 

2D convolution, 5x5 

Figure 3.7: Scheme of the C N N features vector creation, concatenated with sensor vector, 
which is then fed to the Actor-Critic network architecture 

The version of architecture, where only camera output is used, that is without the 
sensory data from the T O R C S was also tried, but this approach seemed as a dead end. It 
was not possible to train such a network enough, so that the agent would have any significant 
progress. After few experiments, this approach was abandoned and was substituted by this 
combined architecture, where sensors and camera image work together as an input for the 
P P O agent. 

Input image 

During the experiments only with camera sensor, few adjustments were tried, in hope of 
achieving some better results. The idea behind these adjustments was the agent's inability 
to recognize a vehicle's motion from a single image. That is, same camera output can be 
produced by a vehicle driving at high speed, but also by a vehicle being completely stopped 
and without movement. The lack of such information in the agent's input should play a 
great role in its resulting poor performance. For that matter, three different adjustments 
of the input image for ConvNet networks were proposed. These ideas are based on a paper 
[18]. 

First one, simply concatenates a camera output from a previous state, that is, we are 
saving previous state image into a buffer. This image is then concatenated to the current 
one. This way the ConvNet gets the necessary information about the motion of a vehicle. 

Although, the network gets twice as much data as in the case of a single image input, 
these data are mostly the same. Meaning, great part of these two images is the same, as 
the vehicle does not travel great distance between two states, so that the image difference 
would be great as well. This leads to some level of redundancy in the network's input. 

The other approach tries to deal with this issue, but not all the way. We propose 
an absolute difference image input. That is, image from current state is subtracted from 
the previous state's image. This subtraction is then put into absolute value, so every 
pixel is bounded in the interval (0; 255) (before normalization). This approach reduces the 
redundancy of the data, but also removes great portion of the information that can be 
squeezed out of it by the ConvNet network. It also does not change the input dimension, 
as the input stays at 64 x 64 x 3, as a regular camera output image. [14] 
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To address this, third and last adjustment is proposed, and can be easily deduced by 
the two already mentioned adjustments. That is, merging together those two ideas. To 
a standard camera output, we concatenate an absolute difference image ( current state -
previous state ). This way the network gets the standard data from the regular image, but 
also the information about vehicle's motion from the absolute difference image. Although 
the input resolution grows in size (64 x 128 x 3) by this, the amount of data in the absolute 
difference image is mostly none. As most of the same image features are canceled out, and 
only the difference caused by the vehicle's motion is kept. 

Wi th these three proposed adjustments was experimented as well, and the results will 
be discussed in more depth in the next chapter. 
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Figure 3.8: Example of the regular camera images of dimension 64x64x3 pixels 

If we get back to the different network architectures, the last one that will be mentioned 
here, tries to focus on the problem of the agent's inability to solely rely on the camera image 
data as well, but from a different perspective than the manipulation of the input image. 
The architecture and setup is a bit more complicated that the two previous architectures, 
but has the most promising results in terms of real-world application. 

Hybrid architecture (camera to sensors) 

The problem that we are trying to solve by this setup is, that the sensory data, mainly 
the track sensor is just too specific and too much relies on the T O R C S environment. The 
goal of this setup is, that only the camera output will be enough for the agent to learn 
a good policy. The real camera sensors are cheap and easy to operate in the real-world 
environment, whereas specific sensors will be not only more expensive, but also quite hard 
to install in the same manner as they are in the T O R C S . Meaning the 19-values long track 
sensor as the agent's low-res LIDAR/radar sensor, in the field of view of -45 deg to 45 deg, 
is much more complicated to recreate on the R C model. Whereas install one camera sensor 
to a correct position on the car is much easier. 

If we consider the facts, that the agent could not learn just from the image data, but 
was quite easily learned from sensory data, then the idea of merging these two approaches 
arises. This Hybrid architecture, as we will be calling it, is trying to achieve just that. 
We will now introduce this architecture's setup. Few diagrams will be needed for better 
understanding of the attempted setup. 
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Figure 3.9 shows how a regular agent is learned through only sensory data. From the di­
mensions of objects coming from T O R C S environment, we can easily deduce, that 3x64x64 
object is the camera output and the 1x20 object is the sensor vector, both depicted in a 
blue color. The camera output is not used in this learning setup. The process was already 
described in Regular Architecture, so we just summarize it quickly here. T O R C S environ­
ment outputs the state, consisting from sensory and camera data, the sensory data are 
normalized and are fed into the Actor-Critic networks, which produce state-value estima­
tion and mean and variance for agent's actions. These trajectory data go after each episode 
to the P P O algorithm which in an iterative process continuously learns an agent. It does 
it in a way that it samples actions which maximize the agent's expected returns. Every 
single sampled action goes back to the T O R C S environment, resulting in the agent's vehicle 
moving. When the agent's policy converges to a certain state, we consider our agent as 
learned. 

TORCS 
ZA 

3x64x64 

PPO 

Actor N(mu,var) 

Critic state-value 

trained agent 

samp les act ion 

Figure 3.9: Phase one - the learning process of the agent, using only the sensory data. 
Complete standard interaction loop, used in big portion of the experiments 

This learned agent is then used in a different setup, where we collect a dataset - sensory 
vector and camera output pairs. Since the agent is learned, it should have no problem of 
achieving great distances on the track, resulting in a few complete laps driven on the track. 
This way we collect a dataset consisting uniformly of different parts of the track. If we 
have used an unlearned agent, or we collected the pairs during training, we would most 
likely have a big amount of samples from the first few meters of the track and only a small 
percentage would be from later parts of the track. Which is not optimal. This approach 
was tried and empirically was found that the agent could learn how to drive in the first 
small part of the track, but was unable to understand the rest of the track. The mentioned 
approach of using already learned agent fixes the problem. 

When a dataset of satisfactory length is collected, we can start a second phase of this 
Hybrid architecture setup. A separate convolutional neural network will be trained in 
a supervised-learning manner. We will feed the camera output into the C N N and as a 
ground truth will serve the sensory data from the pairs, collected before. The C N N will 
produce prediction of the very same sensory data. This is quite a standard task for the 
supervised learning. As the loss function was used the Mean Square Error metric, Adam as 
the optimizer and learning rate of 0.001. This setup is also pretty standard as well. This 
whole supervised learning process is depicted on a Figure 3.10 below. It includes also the 
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dataset collection from the trained agent and as an output of the process the trained C N N 
model is showed. 

TORCS 3x64x64 CNN 

trained agent 
action 

predicted sensory data 

trained CNN model 
' x20 

A 

ground truth 

Figure 3.10: Phase two - the dataset collection and C N N learning process 

Here on a next Figure 3.11 the details of the C N N used is shown. It is the same network 
architecture as in the ConvNet architecture setup. The only difference is the dimension of 
the output vector, where in the ConvNet setup, the network outputs a features vector 
of 120 floating-point numbers. Here, the vector consists of 20 normalized floating point 
numbers, representing the sensory values. One other architecture was tried as well, but the 
performance was quite similar. So this Figure serves rather for illustration purposes, as the 
architecture of the network for supervised-learning is not that important in the context of 
this thesis. That is also why the description of this phase is not as detailed as one might 
anticipate. 

input camera image 

output sensor vector 

fully-connected + ReLU 

^ - j ^ average-pooling, 2x2 

Q j 2D convolution, 5x5 
3x64x64 6x64x64 

Figure 3.11: Detail of the C N N architecture for the supervised-learning task (prediction of 
sensors from a camera image) 

In the last phase of this Hybrid architecture, we will use the learned C N N model and 
the learned agent. They will work together in the process of autonomous driving task 
within T O R C S environment. The setup is now quite easy to understand. The T O R C S 
environment provides a state as usual, consisting of camera output and sensory data. The 
sensory data are not used - which is also our goal in this approach. The camera output is fed 
into the trained C N N model, which should output the predicted sensory values. It has the 
same dimensions as the trained agent needs and was initially trained on. The agent takes 
this predicted sensory data and it should output correct action, in order to achieve high 
returns. This action is then again fed into the T O R C S . This also finishes the interaction 
loop. The Figure 3.12 shows the last phase complete loop of the processing. 
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Figure 3.12: Phase 3 - complete loop of trained C N N model and trained agent model 

This agent can potentially be trained for a short period of time, in order to get used to 
the new sensory data - as they will not be 100% the same as the sensory data outputted 
from the T O R C S environment itself. We can also help the agent with this. There are 
two approaches that were tried in order to successfully transfer the agent from real sensors 
to the predicted ones by the C N N . First one, the agent during the first phase, would be 
learned on a sensory data, which were artificially changed. The use of Gaussian noise can 
be mentioned as an example. The other approach is, that the image output, during the 
dataset collection phase could be altered as well. The use of Gaussian blur can be used. 
These two approaches should ensure, that both the C N N model and the agent should be 
able to better generalize. Thus both models won't be affected as much by slight differences 
in the training and validation data. The validation data in this case the sensory data 
generated by the setup depicted on the Figure 3.12. This also represents the final agent, 
ready for evaluation, experiments and for testing its ability to correctly generalize on yet 
unknown race tracks. 

Wi th this we finish the description of neural network architectures used throughout the 
thesis. Last thing remaining for the introduction is the Cloud architecture, which is more 
likely an abstract term and describes the simulation of communication and artificial noise 
applied to the sensory and action data. 

3.3.3 Cloud architecture 

The Cloud architecture will be part of the experiments, where our main goal is to simulate 
real-world conditions, where the learning is happening on separate hardware from where the 
vehicle control hardware is located. Precisely, the R C model only receives the commands 
for its control of movement, but the learning and processing happens on the server, or in 
the cloud. These two entities then communicate wirelessly via the U D P network protocol. 

These real-world conditions then consist of network packet loss, communication delay, 
and noisy sensory and action data. In this approach, no additional network architectures 
are introduced; the only difference is in the data preparation. The data then serve as the 
input for our agent (state), or input for the T O R C S environment (action). Although three 
approaches are mentioned, only two of them were actually done. The one that was not is 
the communication delay. 

Unfortunately, the T O R C S environment works with discrete time and the agent has a 
20ms window for the control commands to be sent. During that window, as the time of 
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simulation is discrete, the environment is not acting but is waiting for the agent's control 
commands. When the agent misses the window, next discrete step is performed. Thus 
any delay greater than the length of a window acts as a sort of packet loss, which we do 
differently, and any delay smaller than the window, results in T O R C S environment not 
noticing any delay at all. This is why the communication delay was not implemented and 
therefore was not experimented with. Instead it belongs to the category of packet loss, 
which we have done. 

Network packet loss 

To simulate the network packet loss, the standard Normal distribution is used, which rep­
resents the natural randomness of such an event occurring. It can be arbitrarily set, but 
for most of the experiments this value was set to 5% of the distribution's value interval. 
So in other words if the random value sampled from Gaussian distribution with mean 0 
and variance 1 is less than lower 5-percentile boundary, the event is triggered. In this case 
the packet is lost. The lower 5-percentile boundary is in standard Normal distribution at 
around —1.64. As it has been described above, the T O R C S has the timeout for agent's 
response, as it is discrete time simulation, we „zero" the data within the packet. This data 
then carry no information, but for the continuity of the optimization they are still being 
send to the other side. This is done in both directions. From an „agent to T O R C S " in 
packet carrying action values, and for direction „TORCS to agent" in packet containing 
sensory data - the perceived state. In the case of multiple sensors or camera output, the 
complete data information is zeroed. [39] 

Sensory noise 

In the case of sensory noise, almost the same applies as in the packet loss case. Although 
there are notable differences. Again the standard Normal distribution is used for the event 
occurrence. The range is the same, 5% of the distribution's value interval. When this is 
satisfied, then there is a 50% probability for each of the sensors to be affected by the noise. 
This also applies to the camera output, which is considered as a single sensor. Then, if any 
sensor has to be affected by the noise, a noise value is sampled from a Normal distribution 
with a 0 mean and a 0.1 variance. Since all the sensory data are normalized, the maximal 
noise value can be up to 10% of the sensor's maximal resolution value. In the case of the 
camera image, for each of the pixels, a different noise value is generated and added. [15] 
We also did experiments with the 10% probability, to see and compare the differences in 
influence on the agent's performance. 

This sums up the implementation details, or more precisely the details about the ex­
perimental setup that was created and focused on. 
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Chapter 4 

Experiments and results 

In this chapter we will first mention the hardware that was used for the experiments, 
next we will briefly remind the different subjects of experiments. This will be followed by 
experiments itself and its results will be presented. 

4.1 Computational Hardware 

A l l experiments had been done on a laptop machine. The operating system used is a Linux 
Ubuntu 18.04 distribution, working on a Linux kernel 4.15.0-175-generic. The machine 
runs on Intel Core i5-8250U which is a 4 core, 8 threads processor with peak frequency 
at 3.4GHz and is constructed by 14nm technology. Released in 2017. Its performance 
is for: Integer Math: 21,201 MOps/sec and for Floating Point Math: 13,018 MOps/sec 
[12]. Although the laptop contains a graphics card as well, the NVIDIA GeForce MX150 
has in total 384 C U D A Cores, but empirically was shown that the G P U performance is 
lower than using the processor itself. C U D A Cores are specifically designed for the use in 
Machine Learning, the hardware is specialized in matrix operations, dot product and cross 
product mainly. The PyTorch library is CUDA-ready, meaning that in a matter if one 
line of code, the programmer can move any variable into the G P U memory, where it can 
be further processed by the G P U C U D A cores itself. Since the experiments regarding the 
performance and speed of matrix calculations showed that the C P U is faster, for the whole 
experimental phase, the main processing unit was the C P U . [30] 

Due to the T O R C S simulator limitations, it was not possible to train the agent on a 
cloud computing service or elsewhere in the cluster. This limitation played its role, espe­
cially during the experiments involving camera output. We tried to tackle the obstructions 
immediately from the start by not designing huge C N N architectures that required a lot of 
processing power. We focused on smaller architectures, so we were able to train on such a 
low-performing hardware, that without a doubt, a 5-year old laptop truly is. Due to the 
great number of different experiments, we made the decision that no experiment should be 
longer than 14 hours. The median length is around 7 hours for C N N related experiments 
and around 4 hours for regular network experiments. 

4.2 Subject of experiments 

In the Chapter 3, we have already mentioned multiple subjects of experiments and how 
they would specifically look like. In this section we will briefly remind them. 
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As a first set of experiments we focused on the setting of the P P O algorithm hyper-
parameters such as the learn rate, mini-batch size, optimal length of an agent's episode, 
number of update iterations and so on. 

Next we mentioned the differences in performance in multiple runs of the same experi­
ment and subsequently the issue that we have encountered during experiments containing 
camera output and which are directly related to the T O R C S implementation limitations. 

Then we have discussed the importance of a good initialization of the agent and the 
eventual instability of the optimization process, especially related to the experiments with 
ConvNet architecture. 

Next we compared the different sizes of neural networks used for the actor-critic and how 
the affect the agent's performance. Then we shortly discussed the two most used network 
architectures. 

For the next set of experiments we reviewed the reward functions and how they affect 
an agent's driving style. 

Then we discovered the minimal set of vehicle's sensors that are necessary in order to 
be able to successfully train an agent, and also discussed the effect of different sensors on 
the agent's performance. 

As next experiment, we used the Cloud architecture in order to simulate the real world 
conditions such as the packet loss and noisy sensory data, which can occur during the 
wireless communication between the vehicle and processing hardware in the cloud. These 
experiments should also show us the stability of P P O and improve the generalization prop­
erties of the agent. 

Next we have showed an example of perfectly trained agent and presented how such 
results look like, and also presented an opposite example of the agent that was unable to 
learn any successful policy. The inability is then related to experiments with agent relying 
only on camera output or camera output and some additional sensors. 

Then we showed results of multiple agents regarding the generalization properties and 
we talked about the correct time to stop the optimization to prevent overfitting. 

As a last set of experiments, we focused on the Hybrid architecture, which is an approach 
that we have proposed in this work and which reacts to the reality, that the agent is not able 
to learn from only raw camera output. Instead it is able to generate its artificial sensory 
data which then uses for as the description of the state within the T O R C S environment. 

4.3 Experiments 

In this section we will introduce the results of all the experiments that had been done, we 
also discuss the issues that occurred during the execution of experiments and we provide 
deeper understanding why we chose different methods and why we tested various entities 
more extensively than others. We first begin with the hyperparameter related experiments. 

For every experiment the four performance metrics will be depicted. The main metric 
is the returns value, which is sum of the expected return for a given state across whole 
episode. The rewards is sum of the rewards across whole episode and average speed and 
distance raced are obvious. At all four metrics, higher the value, the better. 

Little sidenote to the plots showed throughout this section. Usually the values on an 
x-axis mean number of agent's steps within the environment. On the y-axis, for the returns 
and rewards these values are unit-less, in case of average speed it is kilometers per hour 
and for distance raced it is meters. At some of the plots, the x-axis is different, and it is 
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the relative time - so it also captures the differences in the time elapsed for each episode. 
Later episodes tend to be longer in time than initial ones and this scale allows us to see it. 

4.3.1 Hyperparameters 

As the example of experiments related to the optimal P P O hyperparameters finding process, 
the learning rate related results will be showed. Then we shortly discuss the other hyper­
parameters such as P P O Update, batch size, episode length and we finish with standard 
deviation. 

Learn rate 

Based on the experiments, the learning rate chosen and used for the rest of the experiments 
is 0.0001. Although the learning process takes more time than for the other higher learning 
rates, we can clearly see that with a lower learning rate the optimization is much more stable, 
without unexpected drops in performance and with steady continuous improvements. It 
also makes more sense, as R L algorithms in general are susceptible to „over-step" the ideal 
policy value, and also with a really small step a bit further than is optimal in the policy 
search space, it can result in a completely differently acting policy, which is most of the times 
much worse. Although PPO's objective function tries to counteract this, by „undoing" the 
previously made bad decisions, but it is not enough in the case of higher learning rates. 
This can be also seen on the plots, where we can see a sudden drops in performances for 
learning rates 0.0003 (orange) and 0.0005 (green). 

Contrary, the learning rate 0.0002 acts during most of the optimization process pretty 
poorly, suggesting the policy is „over-stepping" too, but continuously, thus not achieving 
good results. This behavior can be also explained by bad initialization of the networks 
weights or other initialization variables. This will be showed on a next experiment, how 
initialization is often quite important for the agent's learning process. We will see multiple 
runs of the same experiment setup, most of the time with similar results, but some of them 
will perform very poorly. 

From the entropy graph, we can see that the highest learning rate has also the steepest 
slope, so the policy quickly converges to a certain certainty of its actions, but that includes 
the unpredictable behavior in terms of performance. Empirically, at entropy around -1.6 
is the agent's best performance for a given track, but we usually stopped around -0.3, as 
it has showed that best performance on a training track implies a subtle overfitting of the 
agent, thus performing poorly on other tracks. The entropy decrease of learning rate 0.0001 
is the slowest, but continuous and mostly we can be pretty sure, that there are not going 
to be any significant drops in performance during the training. 
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Figure 4.1: Experiment 1 - Finding of optimal learning rate value 

If we focus on other hyperparameters regarding P P O algorithm or the optimization 
setup, we also experimented with few others. Mostly the hyperparameters related purely 
to P P O were set to the same values as they were mentioned in the P P O article [38]. 

P P O Update 

For example the P P O Updates is a parameter that specifies how many updates of the actor-
critic networks are performed at one P P O iteration. Higher values than 20 caused the agent 
to almost no training at all, whereas lower values caused the optimization to be too slow. 
The 20 updates per iteration was a sweet spot. The agent is still able to train well, but 
the training is not that time-consuming. One other reason is, that the P P O is an online 
algorithm, meaning it is directly learning from the agent's current episode trajectory. So in 
general it is not very sample efficient algorithm. But we can at least help it in this way and 
increase the number of P P O Updates. In the paper the value is set from 3 to 15 updates, 
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depending on the specific learning task. Although we run the agent within a simulation, 
we still should not „waste" agent's episode trajectories too extensively. 

Batch size 

Next focus of the experiments was the mini-batch size. In the paper, they use between 64 
to 4096 samples within a single batch. Due to the implementation of our P P O algorithm 
and due to the nature of the T O R C S environment, we were limited in terms of the variable 
mini-batch size. The size 32 was empirically chosen, based on the speed of the update 
but also because of the necessary minimal length of an episode. Too small and the update 
would take too much time, too high and the minimal length of the episode would have to 
be increased as well. If we imagine that the agent crashes after few time-steps, especially 
during the initial learning, the episode could not have been terminated and the agent would 
have to stay in the simulation until the time-steps reach the minimal episode length, while 
being crashed and not doing anything useful. Then the mini-batch samples would be full 
of useless data, where the agent does not move, resulting in almost no learning progress, or 
even degradation of achieved policy performance. 

Episode length 

Last hyper parameter we focused on, is the maximal episode length. Again, empirically was 
set to 1600 time-steps. The reasoning behind this value is, that the agent is able to explore 
the environment for longer, which is really helpful during the first quarter of the learning 
period. That is the phase where the agent is able drive, but is driving at a low speed. 
The higher episode length then supports the exploration of the environment, so the agent 
can get further on the track, thus discovering new, yet unknown profile of the track (new 
curves, straights, etc). Experiments were done with 350, 768 and 1280 time-steps, which 
were all too low. Contrary, the 2000 was already too high, as the optimization took too 
much time, and the issue of sparse reward was taking an effect. If we consider that at most 
of the tracks, the 350 time-steps were for a pretty well trained agent enough to circle one 
full lap. On average 1600 time-steps allow the trained agent to drive 3 full laps. The agent 
usually reaches the maximal episode length right from the start and then at last third of 
the optimization period, when it is already trained quite well, but is polishing its skills. 
E.g. tries higher speeds, perfects the turning into the curves, etc, as a result increasing its 
total distance raced and lowering the lap time. 

Standard deviation 

To also support the exploration of the environment the standard deviation of the action's 
probability distribution was set to 0.1, so the agent tries little different actions each time 
when it appears at the same state. This shows also in the evaluation test of the agent, 
that no two runs are the same. This is different than with the deterministic R L algorithms, 
which always use the same action, every time they appear at a given state. 

In the table below we can find listed hyperparameters with its values, which, once were 
found, were used throughout the rest of the experiments 4.1. 

61 



Critic Discount 0.5 Learn Rate 0.0001 
Entropy Beta 0.001 Mini-Batch Size 32 
Epsilon 0.2 P P O Updates 20 
G A E Lambda 0.95 Episode Steps 1600 
Gamma 0.99 Std. dev. action 0.1 

Table 4.1: Table of default P P O hyper-parameter values 

4.3.2 Differences in performance 

The next experiment is just for illustration. It is not exactly an experiment, but it is worth 
mentioning, that the role of good initialization is sometimes crucial for the agent. On a 
Figure 4.2 we can see 7 runs of the identical experiment. Although the differences are not 
that great, they can still be seen. Especially the run nn4, which has the worst results. 
Considering that at the same stage of optimization two different runs with same initial 
conditions can differ in more than 4km in driven distance, or one can have almost double 
the return, it is significant. So during the experiments it was to us to decide whether each 
run should be kept running or if it was better to terminate it prematurely. Also the spread 
of all the runs is quite large. 

On other note, it can be noticed certain similarities between some of the graphs. Es­
pecially between the distance raced and the total reward. From that we can assume that 
main part of the agent's high reward is the distance that the agent traveled. On the other 
hand, if we compare the average speed and returns achieved by the agent, they are also 
similar. This behavior repeats in other experiments as well. Here it is just nicely shown, 
on multiple runs at the same time. We can deduce that the overall reward is dependent 
on the distance, whereas the quality of every state is mostly based on the vehicle's current 
velocity in that state. 

Little side note, just for reference we have showed also the plot of agent's lap time. The 
times are not in simulation time, but in real-time. They consist also of the time taken for 
the machine to run the code, but the time is without the P P O update, only the episode 
simulation. As the computation time is the same for every run, and the version of the code 
was the same, we can state that the measured time and the lap time, can be interchanged 
and used for rough measurement of each agent's performance. 

These runs were based on the ConvNet architecture, so that the agent uses the sensors, 
in this case speed, track and the camera output, which are together concatenated into 
one feature vector which is the fed into the actor-critic network. The camera output is the 
version with one single image, without further adjustments. As we can see, although the 
results are not that amazing, they can still be considered as good. 

ConvNet architecture issue 

There were huge amount of experiments done in the similar manner, meaning with the 
ConvNet architecture. The unfortunate is, that all these experiments could not be used 
for this thesis. There was found an issue in the late stage of experiments, regarding the 
camera output. The T O R C S simulator does not include the camera sensor as the „omcial" 
sensor, based on the T O R C S Manual [25]. Although the implementation consisted of such 
a sensor, its usage was very limited. We made it possible to use it in cooperation with the 
official sensors, as opposing the base T O R C S implementation, where the user could choose 
either he wants to use sensors or the camera sensor. 
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The unfortunate is, that in order to speed up the experiments, we increased the T O R C S 
simulation speed, from 4x to lOOx. We continuously tried higher speeds 8, 16, 32 and then 
we have reached the lOOx speed-up. Everything seemed normal so we continued in all the 
experiments. Although it had been tried and tested before in low speeds, that the camera 
output works well. The images from it were multiple times saved and reviewed. But this 
all happened at low simulation speeds. The problem was, that once the simulation speed 
reached e.g. 8x the normal speed, the simulation window with the vehicle's view froze. 
During that time it was assumed that the laptop, where the experiments were done, simply 
does not have the performance for the simulation to show continuous simulation picture and 
also that the lOOx speed is just too fast for the T O R C S to visualize it properly. Plus all the 
sensors were working properly and the agents during experiments were learning successfully. 
In fact the camera was outputting only the picture that could be seen in the simulation 
window. So when the window froze, as well the camera output for the agent's convolutional 
networks froze. Meaning, the network was getting as the input during the whole simulation 
period the same image. So the agent was basically learning just from the working sensors 
and the camera data were only useless data, that it had received every time-step throughout 
each episode and subsequently each experiment which used the camera output. 
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Figure 4.2: Experiment 2 - Initialization, 7 runs of the same experiment (with ConvNet 
architecture issue) 

This was found during the preparation of the last architecture's experiments, where 
we tried to learn separate convolutional neural network to predict sensor values from the 
camera image. The architecture is referred as Hybrid architecture in the theory section 
3.3.2. As we have trained the network from a collected dataset on the Google Colab, for 
faster learning, the dataset was inspected. Only then we were able to recognize this issue, 
so good amount of the previous experiments had to be scrapped, including the experiments 
showed in this section on Figure 4.2, which is discussing the initialization and differences 
in same setup experiment runs. 

It is important to note, that although the P P O had most of the input data with zero 
information value, it was still able to learn the agent quite well. We can consider the camera 
data as a great noise experiment, considering that the features vector which was in these 
experiments created by the convolutional neural network, was of length 120 floats and the 
useful sensory data were only 20 floats. That is 85% of the input data for the actor-critic 
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network. This also shows the power of the P P O algorithm, that is able to learn from such a 
noisy input. Although experiments, which were done in regards to the input/output noise 
conditions but were done on purpose, are discussed later, when we experiment with the 
Cloud architecture. 

4.3.3 Initialization and Instability 

This experiment continues with the ConvNet models, discussed above, but this time we 
use the camera image adjustment in a form of absolute image difference. The Figure 4.3 
then shows the impact of a really bad initialization. It is even more severe than in the last 
mentioned experiment. Here we can clearly see, that sometimes the agent just picks up 
a poor behavior right from the start, possibly caused by the poor initialization and poor 
selection of actions in the initial phase of the learning. For the comparison the blue and 
red runs, which behave quite well, had no real struggle to continuously obtain better and 
better policy, even though the red run had the Cloud architecture - which we can consider 

type of additional obstacles for the agent. 
Which is the simulation of packet loss and sensory noise both for sensors and for the 

camera image. So technically it should learn slower and possibly achieve poorer policy 
in general, though with better generalization properties. The orange and green run, both 
show what bad initialization does to the agent's performance, but in a slightly different 
way. The green run just started with poor policy but eventually started to get better and if 
the optimization lasted longer, it might recovered completely. Whereas the orange run, just 
picked up poor policy right from the start, with no clear signs of improvement. It appears 
that it achieved some local optima and was unable to recover from it. In these cases it is 
better for us to prematurely terminate such a run and start over. Visually, such runs most 
of the time behave in a way that right from the start of an episode agents start turning and 
go immediately to the area outside of the road and crash to the barrier or do not move at 
all, usually use only the break actuator. 
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Figure 4.3: Experiment 3 - initialization and instability during optimization 

It was also shown that usually a good agent starts with a medium slow speed, and in a 
few initial episodes continues in a forward direction, exploring the most of the track ahead 
of him. Usually runs, that start very slow, do not move forward at all, tend to take longer 
and sometimes are not able to achieve such results, as the medium speed runs. They usually 
tend to learn the forward motion, but then turn and go outside of the track, and that is 
the most they can pick up during the learning. 

The other topic is the instability of an agent. That is the behavior when the agent picks 
up a good policy, or is on its way to achieve a good policy, continuously is improving its 
results, but unexpectedly its performance drops a lot. That can be seen on a Figure 4.4. 
This run, started just normally, already picking a good habits, thus getting higher returns, 
but at around 2.5k return and 50k time-steps its performance dropped dramatically to way 
below zero return value. This agent at that stage of training visually behaves, just like the 
orange or green one from Figure 4.3. That is the agent is unable to even drive forward, and 
if it does, it goes straight to the barrier outside of the track. The difference is, that this 
time, the agent had already picked up some good behavior in its policy, but is temporarily 
unable to use it. It was not discovered why this happens, but this behavior was already 
seen during other experiments. Usually such an agent recovers from this drop in a matter of 
multiple episodes, in this example we can see that it took the agent around 25k time-steps, 
which is a lot of episodes, to recover from it, but it did it successfully. Then the agent 
is in a matter of one episode, when it managed to somehow pick up the already learned 
behavior, able to drive through the track and not crashing in a first few time-steps. As a 
result it immediately achieves the same returns as it have before the drop of performance. 
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Figure 4.4: Experiment 4 - instability during optimization (ConvNet architecture) 

This behavior happened mostly during the ConvNet architecture experiments, so it can 
be related to the camera output issue already discussed. It is possible that suddenly the 
camera output had changed, meaning the agent was not ready for it, thus good part of its 
input data got changed and it took some time to adjust to that change of input data. That 
is one of the possible explanations of such a behavior. Also we can see at this particular 
run, that the same happened just around the 300k time-step. Although that time the 
agent was not able to recover from such a drop. This also happened multiple times, usually 
when the agent got to its highest peak performance and stayed there for a while. Then 
immediately lost all of its achieved performance. This behavior was more probable at agents 
with bigger networks architectures and for example agents with 128 neurons in its hidden 
layers did not suffer from such a behavior. So one explanation can be, when the agent 
gets well trained, and cannot anymore increase its performance in a way that it achieves 
higher returns, drives more distance or has higher average speed, it just starts exploring 
other possible improvements" of its behavior, which result in a sudden drop to below zero 
returns performance. That is the probable explanation of such a behavior. So in order to 
avoid these, we periodically saved the agent's model, thus when such a drop happened, we 
could take the last well-behaving model of an agent from the saved models. Usually, when 
we tried and continued to train such a saved model, the almost same drop happened again, 
sometimes it was sooner, sometimes later, compared to the original run, but the drop was 
still present. Also these agents are often not very good in terms of generalization, they tend 
to perform well on the track that they were trained on, but usually are not that great on 
other tracks. In comparison with other models that did quite well on the training track, but 
far from perfect, usually performed much better on new yet unknown tracks, thus better 
generalized. 

4.3.4 Comparison of network sizes 

As a next experiment we have tried to focus on the optimal size of neural networks used for 
the actor-critic. Our goal was to find a size and topology of the networks that work best 
for the task of autonomous driving. As the actor-critic networks require as an input only 
numerical values from the sensors, or in case of ConvNet architecture, also the features 
vector extracted from the camera output, all the networks are of the feed-forward type, 
consisting only of linear layers. As an activation function they use the ReLu activation for 
the hidden layers. For the output layer, depending on the network, they use hyperbolic 
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tangent for the actor network, as it outputs the mean and variance of action probability 
distribution and the actions are in the interval (—1,1), which is the same as the hyperbolic 
tangent output. For the critic network, there is no special activation, as the output value 
should not be limited by anything. 

First experiments were done with network topologies consisting of one hidden layer. We 
started with the 32 neurons in hidden layer size and we gradually increased the value to 
64, 128, 256 and 512. A l l these sizes showed to be insufficient and the agent struggled to 
learn any good behavior. It took some time to figure this out, that the problem is in the 
topology of the network and not within other parts of the system. Visually the agent was 
usually able to drive correctly first few tens or low hundreds of meters, but usually failed at 
first turn and was unable to pick up the skills required for the correct turning maneuvers. 

In the next set of experiments we then increased the number of hidden layers to two. 
We then started with slightly higher number of neurons than in the previous case. First 
experiments were done with 64 neurons, then again increased in power of two multiples, 
such the 128, 256 and 512. This time the agent was finally able to learn some good behavior 
and its policy was continuously improving as the training process went onward. On a Figure 
4.5 we can see picked examples of such a learning. Again we have done multiple runs of 
different topologies and different settings of the experiment, so here we provide just a small 
fraction of the results, that are the most representing examples of the common training 
features and behavior encountered during the experiments. 

As we can see, the differences between the topologies are not that obvious, also the 
smaller networks were able to achieve similar results as the bigger networks. Also we can 
see the comparison of different set of sensors and their impact on the agent. The runs 
named with snrs at the end, denote the use of all possible sensors described in section 
3.2.2. On the other hand the runs without it are using only the track sensor. As we can 
see the difference is almost non-existing, but we will focus to it more in the subsequent 
experiment. 

What we have observed though is the tendency of bigger networks to have a slightly 
less stable learning process, than the smaller ones, and the sweet spot in terms of size is the 
128 neurons version, as it seems it has the most stable learning process and also it takes 
obviously less time for such a network to be trained, compared to the 512 neuron network. 
But these differences are not of a big concern. 

The other difference though occurs during the late phase of the training, after around 
200-300k time-steps. At that time the agent is almost always perfectly trained but it tries 
to just get better in the driving style, which results in higher average speeds, more distance 
raced, etc. But this is also usually the time when the agent gets overfitted for the training 
track. During this time it is much more clear that the bigger networks have the ability to 
outperform the smaller networks, at least if we compare them by the graph readings. For 
example for the experiments at Figure 4.5, we used the e-track-2 track, as we can see, 
all of the agents achieved little over 6k in returns, which usually does not improve much 
more. It peaks around 7k, sometimes 8k. But the bigger networks, here the 512 neurons 
type is able to outperform them by a good margin. For this specific track, it is often able 
to achieve returns peaking around 10k, usually little less. But it takes almost twice the 
training time, compared to the results depicted here. As the overfitting is not required nor 
wanted, we usually did not train the agent any longer than 350k time-steps. 
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Figure 4.5: Experiment 5 - Comparison of network sizes 

Comparison of most used network sizes 

On a next set of graphs on Figure 4.6 we can see a direct comparison of 512 neuron and 
128 neuron version of the network, which we used the most throughout the experiments. 
Mostly it was the 512 neurons version, as it turned out that the bigger networks were able 
to generalize slightly better than the smaller ones, also they were yielding higher returns 
in general. Even though the results on the training tracks were similar. In this example 
we have added the graphs of lap times and damage counter. From that we can see a 
characteristics typical for all the other experiments. During the initial training, the agents 
make a lot of damage per episode, which is understandable, as they are at that phase yet 
unable to drive correctly and are just starting to grasp the driving skill. As the training 
continues the damage count gets lower and ultimately is none, when the agent acquires the 
basic driving skills. In the later phase from time to time the agents cause some additional 
damage, meaning they are trying to improve their skills by trying different styles e.g. drive 
through a specific turn a little differently in order to drive through it in higher speeds and 
in lower times. 

In this example we also omitted the smoothing of the distance raced graph, so we can 
see the real nature of an R L algorithm, which almost periodically goes from high distances 
to almost none - in this case roughly 300 meters. Which is the first turn in the e-track-2 
track. This is usual for almost every agent trained, that before a really good episode, where 
the agent achieves (learned agent 8-10km in distance), a really low distance is raced, in the 
low hundreds of meters. 

It may be due to the P P O objective function, which basically erases a previous bad 
step in a policy, by the clipping feature for negative advantage, discussed in 2.6. So the 
agent picks up a little unwanted behavior within its policy, then acts accordingly poorly. 
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The P P O „undo's" the policy step, which basically corrects the agents behavior, and the 
agent is then able to achieve high distances again. This is the probable explanation of such 
a behavior of the distance raced performance. 
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Figure 4.6: Experiment 6 - Small vs big network 

4.3.5 Reward functions 

If we take a look at the reward functions described in section regarding Reward shaping 
3.2.3, there were three proposed. This experiment then represents the performance of an 
agent which receives rewards or penalties based on these reward functions. At first sight 
we can see on the graphs in Figure 4.7, that the third reward function does not perform 
well at all. The agent was not able to learn any good behavior, reaching no distance at 
all. This happened both with ConvNet and Regular architecture. The reward function 
used the sigmoid function to smoothen the TrackPos sensor role and the track width 
as a parameter. This reward function was not expected to work well, but this almost non 
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existing progress of the agent was not anticipated. However, the main focus was to compare 
the performance of reward functions 1 and 2. The first one is being the more complex one, 
which considers both the forward motion, as well as the „stay in the center" policy. It 
supports the agent to stay at the center of the track, any deviance decreases the reward 
as well as it supports the minimization of speed in lateral direction. This reward function 
proved to work well with the agent, and it was able to learn good policies. 

There is maybe one side effect to this reward function. That is, when the agent's vehicle 
travels on a straight road, it is not able to simply drive in a direction of the track, instead 
of it, it „zig-zags" in the middle of the track, trying to correct its direction by little turns 
from left to right. That is probably caused by the term decreasing the lateral velocity the 
—SpeedX x sin(<p) term, which penalizes such a behavior. Other than that, the agent with 
reward function 1 works great. Although we must admit, that this type of reward function 
in a way decreases agent's potential to reach fast lap times, as the optimal travel trajectory 
on a track is not always in the middle of the road. But in terms of the learning, we can 
agree that the more sophisticated reward function, the easier and better the agent learns. 
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Figure 4.7: Experiment 7 - Comparison of reward functions 

As for the reward function 2, it is basically the same as the first one, but it does not 
include the —SpeedX x sin((p) term, but still with the —SpeedX x TrackPos term, it 
penalizes the agent for not being in the center of the track. Although there are differences 
in the performance of agents using the reward function 2. Mainly as the „keep in centre" 
policy is not that strict anymore, the agent appears to drive through the curves little 
bit more smoothly, as it does not try so hard to stay in the centre. But what is maybe 
more important, on the straight parts of the track, the behavior of „zig-zags" is almost 
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eliminated. It is still there, but it is almost not perceivable. Also, when the agent prepares 
for a subsequent turn, while it is driving through a straight, it does not drive in the centre 
of the track. Instead it tends to drive on one side, so that the turn is for the agent easier 
to maneuver. Then such a behavior definitely feels more natural and the overall visual 
perception of such a driving style feels more race-professional. 

Although as the experiments regarding the comparison of reward functions were done 
in the later stage of the experimental phase, most of the time we used the reward function 
1. In retrospective, it might be feasible to use instead of it the reward function 2, despite 
the assumption that more sophisticated means better. It is better for the agent, but for 
the „racing car performance", we prefer the second one. 

Also it might be noticed that on the graph showing distance raced, the red agent, which 
uses the reward function 1 - it struggles for some time on the 2km mark, where in reality 
is a pretty hard right turn on the track. It suggests that it causes problems for the agent 
to drive successfully through this part with the „stay in the centre" function term. So 
the agent with reward function 2, which does not include this term, struggles with this 
part of the track less and is able to faster pick up the correct turning maneuver through 
it. This also supports the fact, that it probably chooses better trajectory for that specific 
turn, thus does not have to slow as much as the red agent. The returns are though almost 
identical, suggesting both reward functions 1 and 2, are similarly able to learn the agent to 
successfully drive the vehicle on a given track. 

4.3.6 Number of sensors required 

These sets of experiments focus on the minimal number of available vehicle's sensors re­
quired for the agent to learn a successful policy. These experiments were performed in 
order to minimize the set of real sensors which will be needed for the real-world R C model 
car. As every additional sensor is expensive and its correct mapping into the real world 
brings the possibility of inaccuracy and unwanted misbehavior by the vehicle. The lower 
the number of necessary sensors to be installed onto the vehicle, the better for the complete 
system to function properly. Also we can explore the possibilities of the P P O algorithm in 
terms of the amount of input data it needs in order to train a successful policy for the task 
of autonomous driving in a racing environment T O R C S . 

On the Figure 4.8 we can see the results of such experiments. There were done many 
more experiments regarding other sensors but they showed that they are not that important 
and could be easily removed from the agent's vehicle. These sensors were the damage, rpm, 
wheelSpinVel, trackPos, focus and lateral and Z-axis speed. The trackPos, which is 
the sensor measuring the lateral position of the vehicle on the track. If the vehicle is right 
in the centre of the lane, the sensor's value is zero. For left and right lane it is in the interval 
(—1,1). The quite surprising was the possibility of removal of such a sensor. The agent 
seemed not to struggle at all during the learning without it. 

As the most important sensors turned out to be the track sensor, the angle sensor and 
the speed in all three dimensions. Based on the experiments we have found that the agent 
was able to learn almost identically with these three sensors as with all the sensors at once. 
We then continued removing these sensors one by one, to test whether it is possible to find 
even smaller set of necessary sensors. As a result, we were able to remove the speed sensors 
in one set of experiments, also the angle sensor in other one. This was also quite a surprise 
that the agent was able to learn only with one sensor, which is the track sensor. On the 
contrary when we removed this specific one, the agent performed very poorly. It makes a 
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perfect sense, as we basically removed its only forward vision. The track sensor serves as a 
low-res L I D A R or radar sensor. It covers the frontal aerial field of view (—45 deg, +45 deg) 
and consists of 19 values. It tells the distance between the vehicle and the boundary of the 
road. Without this sensor, the agent only perceives the environment through angle sensor 
of the vehicle and its lateral and longitudinal velocity, which is obviously not enough. This 
run is depicted on the Figure 4.8 in red color. Also if we compare the purple run, which is 
the agent using all available sensors, it shows us, that the agent's performance is the second 
lowest. It might be due to the amount of information provided by the sensors, which could 
be just a little too much for the agent to understand. This behavior was noticeable in other 
similar experiments. 
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Figure 4.8: Experiment 8 - Number of sensors required 

The fact that just the track sensor is enough is great for the R C model car, as the 
total cost of the necessary real-world components is greatly reduced. Also to physically 
install just one sensor reduces the possibility of mistakes during the process. This idea is 
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further discussed in the subsequent experiment, where we use the Hybrid Architecture and 
we attempt to completely abandon the use of sensors and only rely on the camera output, 
but in a different way than one might suspect. 

Sensors vs Track sensor 

For a completeness we also show a graph of comparison of the all sensors variant and the 
only track sensor variant, both in big and small neural network sizes. As we can see on 
Figure 4.9 there is almost no difference between the network sizes and the only track sensor 
variant works in both of them. Also in general the results (512 neurons exp.) are pretty 
identical, this time both of the agents suffered a little from a bad initialization and its 
policies performed pretty poorly for the first 50k time-steps. But they were able to recover 
from it very well, resulting in a 6k+ returns and 8k+ kilometers around 150k time-steps, 
which is still fine. Note that the 64 neurons version denoted snrs include only the: track, 
trackPos, speed in 3D and angle. It supports the idea that the ability of the agent to 
learn a good policy with different set of sensors is not related or dependent on the size of 
the neural network. 
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Figure 4.9: Experiment 9 - Combination of sensors vs only track sensor (different network 
sizes) 

4.3.7 Cloud architecture 

To further support the effort of successful application of the learned agent into the real-
world we have already proposed and discussed the Cloud architecture. Here we present the 
results of the experiments related to it. On a Figure 4.10 we can see results of three runs, 
where the pb in its names means probability. It is in reality the percentile of the standard 
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Normal probability distribution with which we defined the occurrence of the packet loss or 
the noise in the sensory data. The results are as expected, the agent with the simulation 
of events occurring turned off has the best performance, after it the agent with probability 
0.05 and subsequently the worse performance has the agent with the highest probability of 
0.1. Though, the results of the 0.05 (green) run are great and the agent can be considered 
fully trained. This suggests that the P P O algorithm performs well, even if its input or 
output data are corrupted and do not represent the real environment state. It can also 
be considered that it is in this sense a very stable algorithm and can generalize on the 
input. The results of the 0.1 (orange) run are not that important, the experiments with 
it were done just for comparison and to show us the potential further possibilities of the 
algorithm's stability. Based on [39], the simulated packet loss is usually in articles related 
to networking and its simulation testing set to 5% anyways. 
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Figure 4.10: Experiment 10 - A l l Sensors and Cloud architecture, where pb is the probability 
of an event occurring (packet loss, noisy data) 

These experiments were done with all sensors available to show the real impact of the 
Cloud architecture simulation. In comparison the results on the Figure 4.11 were done 
only using the track sensor. We can notice the lower performance in general. The most 
interesting is probably the performance of the 0.1 probability variant, which suffers from 
the Cloud architecture much more than in the version with all sensors. This is because 
when the event got triggered and the data were corrupted by noise, it always affected the 
only available sensor, the track sensor. It makes sense that the vehicle, with its only 
„vision" not working correctly is not going to be able to drive properly. From the previous 
experiment, when the event got triggered, it only affected some of the sensors by the noise, 
again based on the probability. But the probability of affecting all the sensors at once was 
very unlikely. 
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So the sensory noise probably has greater influence than in the case of the simulated 
packet loss (no data at all), which is on one hand unexpected and little disappointing but 
on the other it is great, that the agent can probably handle the complete loss of data quite 
well. 
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Figure 4.11: Experiment 11 - Track sensor and Cloud architecture, where pb is the proba­
bility of an event occurring (packet loss, noisy sensor) 

These experiments were done on a e-track-2 race track. The neural networks had 512 
neurons in its hidden layers and the rest of the hyperparameters were default. 

4.3.8 Example of perfect training and inability to learn 

Here is an example of a run on e-road track with Regular architecture agent. However, it 
had been pre-trained a little, that is why the returns on the Figure 4.12 do not start from 
zero but around a 4k mark. This is not important for the purpose why we are showing this 
run here. We run it for over 1.5 million time-steps which is way over average training time. 
The network used for this experiment was the 128 neuron version. If we have used another 
bigger network the results would look a bit different. We have already discussed the issue 
bigger networks tend to have, that is the instability in later training phases (300k+), as 
the performance unexpectedly crashes down to negative values and the agent is most of the 
times unable to recover from it. This is a beautiful example of stability during the training. 
Since roughly 100k time-steps it continuously hits the 10km mark, overall performance 
peaks at around 500-600k time-step. The 150km/h average speed and the returns passing 
10k marks are the highest that we were able to achieve throughout the experimental phase 
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of this thesis. Note that the 10km mark is limited by the 1600 time-steps limit for the 
length of one episode. 

This learned agent is for sure overfitted for the training track, so it makes it unusable 
for later use. We simply wanted to show the maximal performance we were able to achieve. 
Though the agent performs great, we can still see the high deviation in distance trav­
eled, reaching 10km mark then dropping down to few hundreds meters. We have already 
discussed the possible causes of this behavior. 

returns, dist_raced, average_speed 

Figure 4.12: Experiment 12 - Run with a great performance (Regular architecture, 128 
neurons) 

In contrast and as a different example, we next present experiments targeting the in­
ability of an agent to learn, which relies solely on the camera output. The presented 
results which are depicted on a Figure 4.13 are from the experiment regarding the differ­
ent convolutional neural network topologies. There we were finding the ideal arrangement 
configuration of the pooling and convolution filter layers as well as the size of the filter's 
kernel and the number of such filters. The best performing architecture was then used for 
the Hybrid architecture experiments, which results are presented as a last section of this 
chapter and finalize the work done in this thesis. 

In this section though, the exact architecture is not important, as we want to only 
demonstrate the inability of such an approach to learn the agent properly. The peak 
performance is around 900 meters for the green run (architecture 3), and around 2k in 
returns. But most of the time the run is heavily below this performance. Note that the 150k 
time-steps took around 9 hours of training, as the simulation speed could be mostly around 
2x the real-time speed. The simulator issue was also already discussed at the beginning of 
this chapter. Although the learning progress is taking place, it is not continuous. Suggesting 
the unhealthy training process, where the agent is not getting better as time passes. Making 
this approach unusable for later use. 
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Figure 4.13: Experiment 13 - Agent is unable to learn 

As a next example of the same issue we can see another experiments regarding the 
different image adjustments discussed in section regarding Input image. Again the agent is 
trained only from camera output data. The results are presented on a Figure 4.16 on the 
left. The dif f in the name signifies the use of absolute image difference, the reg signifies the 
use of regular image without any adjustment and the numerical value in front of it means 
the number of images used. So the 2 d i f f variant represents the input image as regular 
image concatenated with absolute image difference image, which subtracts the current and 
previous camera image received by the environment. 

Again, no significant signs of performance progress, the optimization is unstable and 
the agent is not getting better or does not keep its performance. 

As for the graph on the right, this experiment represents the multiple runs of the 
architecture 4, which is showed also on the previous Figure 4.13. This represents the 
architecture that was later used also for the Hybrid architecture setup, where we learned 
such a convolutional network topology, on the image-sensors dataset for the prediction of 
sensory data. 

Here we can see the same lack of performance, but this time most of the runs have 
negative reward, which usually suggests that the agent acts randomly, without any sign of 
logical behavior. 
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Figure 4.14: Experiment 14 - Agents are unable to learn (ConvNet architecture) 

There were also tried approaches which use different sizes of linear layers within the 
C N N , as well as different sizes of the output feature vector (60,90,120) - which were con­
catenated to the forward velocity sensory value. That is also the only sensory value that 
was always used for all other experiments, as it makes it easier for the code implementation 
to work, but mainly that this velocity is usually always known to the vehicle. 

Also the ideas from article [18] were tried, such as the propagation of gradients during 
the network back-propagation phase, only to the critic network, the already mentioned 
camera image adjustments, especially the capture of motion within the image by absolute 
image difference method. 

Nevertheless, none of the attempts made this setup to work at all. This brought us the 
idea to learn a separate convolutional network in a regular supervised learning manner with 
the already mentioned (camera output, sensory data) pairs dataset and simply predict the 
sensory data from the camera image. Since we know that the agent is able to learn high 
return yielding policy by using only the sensors. 

4.3.9 Generalization 

As it had been already mentioned, the trained agent should be able to generalize on a 
different track than it was initially trained on. Here we sampled few agents and collected 
their performance results on a number of different tracks, which are presented in Table 
4.2 and Table 4.2. The results are showed in terms of distance traveled per episode and 
percentage of the track covered by that distance. Since the main metric, the returns are 
calculated only when the agent is learning, the distance raced is the second most accurate 
metric, which helps us to show the overall performance quality of agent's policy. 

The first table shows the results for two averagely trained agents, one of them being 
trained with the Cloud architecture. For comparison, the second one was trained as a 
regular agent. The table can also help us to see and decide whether the aspect of simulated 
cloud conditions allow the agent to generalize better. 

Each agent performed around 20 episodes on each of the tracks and then the highest 
result was recorded into the table. The agents were performing in an evaluation mode, 
which does not allow the agent to be trained, so it solely relies on the policy trained by the 
one track used during the training process. 
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Model / Track Avg Trained - Cloud Avg Trained 
Trained on: e-track-2 e-track-2 
Sensors: O N L Y track sensor O N L Y track sensor 
e-track-2 9354m, 174% 9978m, 186% 
e-road: 9251m, 284% 7086m, 218% 
g-track-3 3724m, 131% 2110m, 74% 
forza 6107m, 106% 2789m, 48% 
e-track-3 3260m, 78% 2166m, 52% 
e-track-4 2532m, 36% 2946m, 42% 
michigan 2615m, 113% 4348m, 188% 
g-track-2 5753m, 181% 6914m, 217% 

If we calculate the mean percentage for each of the agents, it shows us, that the agent 
trained with the Cloud architecture actually performed a little better than the second one 
(138% vs 128%). If it does really mean that it can indeed better generalize is not sure. 
There are many aspects that surely influence such results. As an example we can mention 
the point in time when the training of the agent was stopped, more concretely how overfitted 
or underfitted was for that training track at that time. As there is no precise way to decide 
and measure, whether two agents are identically trained. We can stop the training after 
the same number of episodes or time-steps,or end the training after they reach the same 
traveled distance or achieve the same returns value, but the level of training congruence 
will never be accurate. 

Nonetheless, if we omit such statements, we can truly deduce that the Cloud architecture 
indeed helps the agent to generalize better on new, yet unknown tracks and that our initial 
assumptions were correct. 

As for the Table 4.2, we present the results for agents trained this time on another track, 
the E-road and with a different focus in mind, the size of the neural network. The same 
applies here as it was stated above in terms of similarity of the training process. Here, the 
smallest network seems to be the best in terms of generalization, which is somehow a little 
unexpected behavior, based on the previous experiments and assumptions. Based on the 
concrete results though, it achieved at almost every track 100% of the track length or more. 
This suggests that it knew well all different types of turning maneuvers and was able to 
correctly apply them in unknown environments. As for the versions with 512, 256 - it seems 
that it struggled with specific parts of the tracks, as both agents during their 20 episodes 
scored the same distance almost every time for a given track. As a result, it did not pick 
up the necessary skills needed to successfully drive through the specific part of the track. 
As for the 128 neuron variant, we can reason its good performance by the possibility that 
its training process was stopped at the right time, when the agent was neither overfitted 
nor underfitted. 
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Model / Track 
Well Trained 

512 
Well Trained 

256 
Well Trained 

128 
C N N Trained 

( C A M ) 
Trained on: e-road e-road e-road e-road 

Sensors: A L L sensors A L L sensors A L L sensors 
track, angle, 
speed, cam 

e-track-2 9277m, 172% 1452m, 27% 9451m, 176% 291m, 5% 
e-road: 9884m, 303% 9881m, 303% 9889m, 303% 1835m, 56% 
g-track-3 2188m, 77% 730m, 26% 3235m, 113% 350m, 12% 
forza 10929m, 189% 1257m, 22% 11266m, 194% 1870m, 32% 
e-track-4 2949m, 42% 11800m, 168% 12258m, 174% 2922m, 41% 
michigan 2342m, 101% 4848m, 209% 2196m, 95% 1478m, 64% 
g-track-2 9657m, 303% 9660m, 303% 9666m, 303% 1356m, 43% 

As for the CNN Trained model, we mentioned its results here, just so it is visible for 
comparison and that it was truly unable to successfully learn a good policy. The small 
distances achieved are also mainly thanks to the enabled sensors and not the camera output 
at all. The camera output was more of a burden, making the agent's training even more 
difficult. 

4.3.10 H y b r i d architecture 

The last experiment of this thesis is related to the Hybrid architecture proposed and dis­
cussed in section 3.3.2. In order to make it work, we had to first collect the dataset, which 
consisted of around 100k samples. Then the C N N got trained separately on these data. As 
a label for each sample we first tried to include only the track sensor, as it was proven 
that it is enough sensory data for the agent to get trained. This, however, did not prove to 
be the same case in this scenario. The agent was not able to get further than few meters 
on the track, occasionally passing the first turn, which is on the e-track-2 at around 300 
meters. This was the maximum the agent was able to accomplish. On other tracks the 
results were similarly bad, but usually even much worse. It might be also due to the fact, 
that the dataset was roughly a third of the size than for the later experiment, at around 
35k samples. 

Also the experiment where we have tried to learn a new model from scratch, was not 
successful. This could be caused by the fact, that the dataset was captured by a trained 
agent, which for example was not almost crashing and typically had different driving style 
than a newly started agent has. New agent usually for the first number of episodes does 
not have any idea what it is doing, so it crashes a lot and does unpredictable turns. For 
these untypical situations there was almost no data in the dataset. So it makes sense that 
the agent was not able to get trained by this approach, as the neural network was not 
generalizing well for these types of unpredictable situations. 

Later, when we have tried to learn a new agent. We captured into the dataset both 
trained and untrained agent experience. Around 80% of the dataset was from the trained 
agent and the 20% was from the untrained one. Then we have trained a usual agent before 
hand. This agent trained on a bigger number of sensors, concretely track, angle, speed, 
and trackPos sensors. The same sensors (but speed) were then also captured during the 
dataset creation. For the C N N supervised learning task, we used as a loss the M S E {Mean 
Square Error) and a custom metric called percDiff. It calculates the cumulative difference 
between all unique sensory values as: 
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percDiff = x 100 
V T Vpred 

2 
This is calculated for the batch of size 32 and then a mean from an absolute values 

of percDiff is taken. We were able to achieve cumulative sum of 45% for the training 
set and 44% for the test set for 21 values, which is about 2% average deviation from the 
single sensory value. For the M S E loss, we have achieved the value of 0.0022. The training 
was done on a Google Colab service in a Python Notebook, which is also part of the code 
submitted with this thesis. 

This way we were quite successfully able to produce sensory data from a camera output 
image and bypass the fact that the R L agent was not able to learn solely from raw camera 
output. The results were much better than in the previous case. The agent was immediately 
able to drive greater distances of around 3km, but yet at some points of the track, especially 
during a sharp turns, it was not able to properly drive through it. This was probably caused 
by the lack of computational performance of our machine. As the agent relies completely on 
the camera output and a much more computation is being done during every time-step, the 
machine periodically struggled during certain parts of the track. This resulted in a small 
lag and window image freeze for a short period of time, which was around 5-8 in-game 
frames. This was usually the cause of the short distances of the agent's vehicle. As when 
the screen unfroze, the vehicle was already too far into the turn, and it was too late for any 
correction as the reaction time was very limited. This resulted in an agent being unable to 
handle the sharp curves, thus crashing into the barrier and the episode has ended. 

When this lag happened during a slightly curved turn or on a straight, the agent usually 
did not have greater issues of handling the lag event well. It surely helped that the initial 
agent was trained with Cloud architecture setup, so that it was used to these types of 
incidents (missing data) much more, than a regularly trained agent. 

As we were unable to obtain a more powerful machine, we could not test the abilities 
of the agent in more depth. Nevertheless, it is still a great result, considering the amount 
of problems we have met during the practical part of this thesis. 

4.4 Summary and further outlook 

For future works, it would be advisable to increase the generalization of the agent, together 
with further camera output alternation, where the G A N s Generative adversarial networks 
could be used to generate a real-world looking image from a simulation environment's 
image. This concept is already employed by the Tesla Company, so it is feasible. Also, 
further improvements of the P P O algorithm, mainly the ability to optimize in parallel on 
multiple processors to speed-up the learning process, should be considered. These attempts 
were done as well, but were later abandoned, as the computational hardware was not able 
to handle such tasks sufficiently Lastly, to concentrate on the physical implementation of 
the agent's vehicle in a real-world. 

Initial experiments with the R C model car were done even before the topic for this thesis 
was selected, as it was a personal side project of mine. Due to the insufficient knowledge 
in the electrical engineering field and the lack of skill in the computer modelling (as lot 
of the custom components had to be 3D printed) and mainly the lack of finance for the 
additional, necessary, electronic components for further experiments, as they were destroyed 
a lot during the process, resulted in a halt of this physical implementation of the project. 
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We then continued working only on the software, more concretely, the machine learning 
approach to autonomously drive an R C car. Which is also the topic of the thesis. 

But surely, the future goal is to return to the hardware side of the project, now finally 
with a working M L software solution for it. 

Figure 4.15: Photo taken during the testing of the R C model car, controlled wirelessly via 
ESP32 and Raspberry P i 

The idea was to use a micro-controller ESP32 mounted on the car, together with the 
necessary sensors and a camera, which will then communicate wirelessly with the computer 
over MQTT protocol, where all the processing would be done. The computer would then 
send back the commands for the actuators. The computer could be either Raspberry Pi 
mounted right on the vehicle (in this case no wireless communication) or communicate with 
a more powerful computer (referred as the Cloud) wirelessly. The goal would then be for 
the R C vehicle to be able to drive autonomously on a custom track and participate in a 
competition, such as the NXP Cup organized by NXP Semiconductors company [5]. 

Figure 4.16: Example of the competition cars created by university teams [3] 
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Chapter 5 

Conclusions 

In this thesis, the goals stated in Chapter 1 were successfully accomplished. We were able 
to learn an agent in the task of autonomous driving. 

As we were unable to train the agent solely from the camera output, and partly with the 
proposed ConvNet architecture, where creation of features vector from a camera image was 
concatenated with data from other sensors, the novel approach was proposed. The novel 
Hybrid architecture reacts to the inability by incorporating convolutional neural network 
learned in a classical supervised learning approach on a camera output - sensory data, 
dataset pairs. We were able to train such a network to predict sensory data, which then 
served as an input to an already trained agent by Regular architecture approach. In this 
approach, the agent was learned by regular sensory data, such as the speed, low-res L I D A R 
sensor (track) and angle of the vehicle related to the road direction. 

We have also found minimal set of sensors required for the agent from which it could 
learn a successful policy. It was found that only the track sensor is enough for the agent 
to yield high returns. We have also discovered that smaller networks are better in terms 
of stability of the optimization process, whereas bigger networks are able to achieve higher 
returns. As for the reward function, we empirically found that reward function without a 
term penalizing the „not in the centre" driving style performed overall better, as the agent 
was able to discover more human-like driving style and was not unnecessarily forced to 
drive only in the centre of the road. 

In terms of generalization, agents with lower performance tended to generalize better, 
than agents that could be considered as overfitted for the training track. Also, agents that 
were trained on a track with suitable track topology were better at generalization, as they 
had the knowledge of diverse sets of curve types. 

The use of proposed Cloud architecture and the ability of the agent to perform well 
under the simulated real-world conditions, also helped the agent to be more stable and 
better prepared for the real use. 

A l l these findings help us in future work, as we plan to apply such a learned agent to the 
real-world scaled R C model car. The necessity of only one sensor or the ability to predict 
sensory data from a camera image greatly reduce the costs and requirements for physical 
sensor components as well as the need for low-performance embedded hardware, as we have 
achieved great results by only using small neural network models. 

It will be interesting to see, whether these preparatory works of learning the agent in a 
simulated environment were worth it and will also work in harsh, outdoor conditions. 
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Appendix A 

Installation and run of the program 

In the files attached to this thesis, in the root directory a README.txt file is located, where 
the complete installation process is described. 

For the complete installation, it should be enough to run a shell script i n s t a l l _ s c r i p t . sh. 
The installation was tested on a Linux Ubuntu 18.04, other Linux distributions might re­
quire additional steps. 

It is necessary to activate the Python environment from root directory by: 

source . / v e n v / b i n / a c t i v a t e 

To run the program, following command should be entered from the root directory: 

python3 run.py -c config.yaml 

In the same root directory there is config.yaml file, which contains the configurable 
parameters for the experiments, with a description for every parameter. 

For the MIFlow server to run, the following command is required to run in separate 
terminal instance: 

mlflow u i 

To access it, enter in an internet browser the localhost address with port 5000: 

h t tp : / /127 .0 .0 .1 :5000 

Agent models are located in the /checkpoints directory, specific models can be down­
loaded from the MIFlow UI. 

Also an example of a trained agent is visible at: https://www.youtube.com/watch?v= 
vEEQYFklChg 

Complete source code of this work is also available at: ht tps: / /gi thub.com/Vosa23/ 
master_ thes is_f ina l 
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