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Title: Effect of competition on resprouting and sprout growth of temperate trees

Abstract:

Presented thesis is focused on competition, sprout growth and resprouting ability of

temperate trees. The main aim was to analyse the effect of competition on resprouting

success and sprout growth of selected trees. Calculations are based on sprout size

measurements of selected resprouting trees on pre-existing TARMAG II experimental

plot near Soběšice, the Czech Republic. Appropriate allometric equations were used to

determine biomass of individual trees and pre- and post-harvest competition indices.

Statistical analysis disclosed that pre-harvest and post-harvest competition can

significantly affect sprout growth of temperate trees, but can differ among species and

has variable effect onto the growth. Results also clearly showed that pre-harvest

competition did not affect resprouting ability of Quercu spetraea. The results indicate

that thinning of sprouts in the early stage of coppice development could support sprout

growth and thus biomass production.

Key worlds: Competition, sprout, resprouting, growth, shading, crowding

Název: Efekt kompetice na růst výmladků a výmladnou schopnost stromů mírného

pásma

Abstrakt:

Předkládaná diplomová práce je zaměřena na kompetici, růst výmladků a výmladnou

schopnost stromů mírného pásma. Hlavním cílem bylo analyzovat vliv kompetice na

výmladnou schopnost a růst výmladků. Pomocí, měření základních charakteristik

výmladků a použitím alometrických rovnic vypočítat biomasu a přírůst výmladků a také

vypočítat před a po-těžební kompetiční indexy na již založené výzkumné ploše

TARMAG II nedaleko Soběšic v České Republice. Analýza odhalila, že před-těžební a

po-těžební kompetice může významně ovlivnit růst výmladků stromů mírného pásma,

liší se však mezi jednotlivými druhy dřevin a také různým vlivem na růst výmladků.

Rovněž se ukázalo, že před-těžební kompetice neovlivňuje výmladnou schopnost dubu

zimního. Výsledky naznačují, že probírky v rané fázi vývoje pařezin by mohly zlepšit

růst výmladků a tak i produkci biomasy.

Klíčová slova: Kompetice, výmladek, růst, výmladná schopnost
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1 INTRODUCTION

Temperate forests are dominant ecosystems in areas of mild climate, where the

influence of mid geographical latitude is distinctly demonstrated by the summer and

winter seasons (Jeník, Pavliš 2011). Trees in such ecosystem can be generally

characterized as a plants which, when undisturbed, develop a single, erect woody trunk

(Ng 1999, Tredici 2001). However, by anthropogenic disturbances such as logging

operations or natural disturbances such as fires, windrows, etc. trees can develop a

secondary trunks by the use of natural mechanism of persistence called resprouting

(Bond, Midgley 2001). Resprouting or ability of trees to develop sprouts as secondary

trunks are in general responses to an injury of primary trunk or root system. They can

also be caused by the displacement of primary stem out of the normal vertical

orientation or by a dramatic change in surrounding environmental conditions

(Helle 1999, Tredici 2001). Therefore, when the aboveground biomass is destroyed or

damaged, woody species with the ability to resprout (''resprouters'') quickly recover by

producing sprouts, whereas species without sprouting ability (''non-sprouters'') need to

persist in form of seeds or seedlings, or usually die (Bond, Midgley 2001). Sprouts are

mostly produced by dormant buds, which are located in the aboveground or

belowground organs or rarely by adventitious buds. Adventitious sprouts are usually

weak and tend to be short-lived (Johnson et al. 2002). The sprouts ("resprouters") rely

on belowground root systems and carbohydrate reserves of parent tree because of

missing or damaged aboveground biomass. Resprouters utilize already established and

functional root systems and nutrition reserves of undamaged organs of mature tree.

Sprouts can, therefore, re-grow more easily and faster and outcompete seedlings

(Matula et al. 2012). The occurrence of sprouts after an outbreak or disturbance depends

on the sprouting (resprouting) ability of the trees, which differs among and within

species (Tredici 2001). The sprouting ability of temperate trees mainly relies on the

viability of dormant buds from which new sprouts are produced (Tredici 2001;

Johnson 2002) and which decrease with size and age of tree (Matula et al. 2014).

According to Kabeya and Sakai (2005) sprouting ability also depends on carbohydrate

storage in roots and the remaining aboveground biomass.

Competition as the interaction of two or more organisms or species, which

adversely affect each other (Mze 1995), is according to Coats et al. (2009) one of the

key mechanisms which affect structure and composition of forest and also influences
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the tree growth, reproduction and mortality. Aboveground competition (for light) and

belowground competition (for nutrients and water) among trees can lead to changes in

growth rates and also causes their death (Coats et al. 2009). From that it is possible to

suggest that competition among trees may affect their sprouts and sprouting ability. To

prove this suggestion, pre-harvest and post-harvest data of temperate trees from three

inventories (2008, 2012 and 2015), which took a place at TARMAG II experimental

plot, were tested.

Firstly, the competition and its possible effect on sprout growth (biomass and

increment) of temperate trees were tested. For that purpose three hypothesized effects

were assessed: the possible effect of pre-harvest crowding (pre-harvest competition

calculated with DBH) on sprout growth, the potential effect of pre-harvest shading

(competition calculated with length of live crown) on sprout growth and the effect of

post-harvest shading (competition calculated with height of the highest sprout) on

sprout growth.

Secondly, the competition was tested for its potential effect on resprouting.

According to Kabeya, Sakai (2005) crown competition (shading by its neighbours)

decreases the light availability for the tree. On that basis a hypothesis can be assumed

that pre-harvest shading (competition calculated with length of live crown) can have an

effect on the resprouting ability of trees as well as that an increase in stem competition

(crowding) from neighbouring trees can decrease the nutrient availability for the tree

(Kabeya, Sakai 2005). On that account, we can assume that increasing pre-harvest

crowding (competition calculated with DBH) increases the sprouting ability of

temperate trees because of lack of nutrients that can lead to boosting the resprouting

ability. Furthermore, dendrometrical characteristics such as diameter at breast height

(DBH) and total tree height were used as variables to determine whether they also have

an effect on resprouting ability. It is also to be determined whether tree size

characteristics or competition have a greater effect on the resprouting ability of

temperate trees.
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2 AIMS AND OBJECTIVES

The main aim of this diploma thesis was to statistically analyse the effect of

competition on resprouting success and sprout growth of selected trees. The goal was

also to calculate biomass of individual trees and pre and post-harvest competition

indices, using measurements of the sprout size in Soběšice experimental plot

(TARMAG II) and appropriate allometric equations.
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3 GENERAL OVERVIEW

3.2 Sprouts and sprout growth

Plants reproduce naturally in two different ways (Svoboda 1952): sexually by

seeds (generative reproduction) and by parts of plants (vegetative reproduction).

Vegetative reproduction (regeneration) covers wide variety of mechanisms that plants

have evolved for asexual reproduction (Harper 1977). One of these mechanisms is

sprouting. The term sprout or sprouting (Figure 1) describes the process whereby a tree

develops secondary replacement trunks (Tredici 2001). In general, a tree can develop

secondary trunks (sprouts) in response to injury to its primary trunk or root system

(Hallé 1996, Tredici 2001). According to Tredici (2001) all broadleaf trees (angiosperm

trees) of temperate zone can crate sprouts, predominantly in initial stage of development

(< 15 cm DBH), and many species retain this ability into adulthood (> 15 cm DBH), on

the other hand most conifers completely lack this ability. It is only yew (Taxus bacata)

that naturally creates sprouts in the Czech Republic.

According to Johnson et al. (2002) we can distinguish sprouts, which originate

from dormant buds or adventitious buds. Sprouts that originate from dormant buds are

connected to the pith of the tree by elements called bud traces (Liming 1942). They

usually remain neglect in dormant state unless their vascular connections are severed by

cutting or otherwise interrupted (Vogt, Cox 1970). There are several forms of sprouts

originating from dormant buds such as stump sprout, seedling sprouts and grubs

(Johnson et al. 2002). Stump sprouts grow from dormant buds at or near the base of the

stump of a cut tree. Seedling sprouts can grow from dormant buds located anywhere

along the stem between the root collar and the terminal bud cluster. Grubs are sprouts,

which grow from dormant buds on the large, mature root systems and usually do not

have any aboveground stumps. Sprouts that originate from adventitious buds are formed

from callous tissue around wounds or other tissues and unlike dormant buds do not have

bud traces extending to the pith of the tree (Johnson et al. 2002). Stool sprouts and root

sprouts, these are two main sprout forms, which originate from adventitious buds. Stool

sprouts develop adventitiously and directly from the cut or wounded surfaces of stumps.

Root sprouts develop similarly from adventitious buds on roots. Adventitious buds are

usually weakly attached to the stump and also tend to be either short-lived or rarely

occur at all (Johnson et al. 2002).
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Figure 1 Drawing by Lukáš Patra depicting sprout originate from: A stump, B root

According to Tredici (2001) it is more significant when and in which part of the

tree life cycles sprouting occurs (ecological perspective) than is the origin of the sprout

(morphological perspective). From this ecological point of view it is possible to

distinguish juvenile seedling and saplings sprouts, sprouts of mature trees that

originated as a response to logging operations and sprouts of mature trees originated as

a response to non-logging disturbances. The most important sprouts of mature trees

from forestry and forestry operations point of view are the ones that originated as a

response to logging operations. When trees are felled and there is still a sufficient

content of storage compounds in the root system, the tree sap is then forced upwards,

but cannot penetrate dead tissues and so remains in the basal part of the stem and

induces the formation of sprouts (Maděra, Martínková 2009). Newly growing sprouts

can uptake large amounts of nutrients from stumps and so grow faster at initial stages of

growth - much faster than seedlings. Therefore culmination of height increment comes

much earlier than in plants that originated from seed (Svoboda 1952). The rate of bud

branching and bud mortality changes with the age, size of the tree and geographical

conditions. The balance of these variables can be partially determined by their spatial

distribution and the total number of sprouts. Some buds fail to produce sprouts simply

because of the physical resistance of the bark (Johnson et al. 2002). Sprouting is

common and important for traditional coppice management of woodlands in both

temperate and tropical forests (Bond 2001).
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3.3 Sprouts in forestry

According to Ministry of Agriculture Decree no. 83/1996 Coll., of forest Act

no. 289/1995 Coll., forests in the Czech Republic can be divided by their form or shape

of into three types as follows: high forest, coppice forests, coppice with standards.

1. High forests

High forest (seed forest, high stem forest) is form of forest, which originated by

natural regeneration (by seeds) or artificially by human intervention (by seeding,

seedlings or planting) (Kadavý et al. 2011). High forest is the predominant and the most

widely implemented form of forest management in the Czech Republic. Generative

renewed stands grow slower than the sprouts in their initial phases, but they have a

better quality (straighter) and stronger wood in stems. High forests are generally

characterized by a long rotation period (at least 90 to 100 years) and large, tall mature

trees with a closed canopy (Kadavý et al. 2011). The average rotation period of high

forest in the Czech republic is 114,8 years. In term of wood production high forests are

characterized by high percentage of logwood (Kadavý et al. 2011).

2. Coppice forests

Coppice forest is form of forest, which is systematically restored by vegetative

reproduction of sprouts. These usually come from dormant buds on roots and tree

stumps. Coppice forests are single storey forests (Polanský 1956). Sprouts are highly

accretive due to already developed root systems of stumps. Forests that originate from

sprouts are characterized by growing in bunch or clusters and also by ''sickle'' shape

stems near to its bottom. Due to its development this bunch or cluster growth character

is lost (Kadavý et al. 2011). Rotation of the coppice forests ranges from 5 years (willow

osier plantations), up to 40 years for oak (Quercus sp.), beech (Fagus sp.) or hornbeam

(Carpinus sp.) stands and even up to 60 years in case of alders (Alnus sp.). The rotation

period is determined by the sprouts, tree species, the amount of expected production and

also by natural conditions of the area (fertility) (Poleno 1994). Wood that is harvested

from a coppice forests is of significantly lower quality, usually is with knots and have

worse technical characteristics than high forest wood. Total production of vital, well-

developed coppice forest corresponds to high forest production, but economic value of

wood is significantly lower (Polanský 1956). According to Kadavý et al. (2011) coppice
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forest forms are distant to naturally developed forest ecosystems. Often repeated and

almost complete removal of biomass deeply extends into the material cycle while short

rotation periods maintain coppice forests in phase of re-growth or recruitment. Coppice

forests, from the historical perspective, are known to people since the beginning of

woodworking and first forest activities in Neolithic age (Buček 2010). People used the

ability of trees to create sprouts for as far as can be documented, mainly for the

purposes of easily accessible firewood, for building purposes, charcoal manufacturing

etc. The major purpose of coppice forests stems mainly from reason that people could

easily carry small stems and twigs back to their homes without necessities of using

machines or animals. Coppice forests were probably preserved in some places due to

this accessibility (Buček 2010). The oldest historical evidence of coppice forests in the

Czech Republic is from Mikulov and Lednice forests inventory lists dated to 1384

(Notička 1956 in Buček 2010). These lists contain data such as the names of the forests,

their age and also rotation periods, which were, for example, in Liechtenstein coppice

forests 7-years. The very short rotation periods were probably driven by the needs for

firewood (Buček 2010). The lack of wood of bigger dimensions led to the replacement

coppiced forests by high forests over time. From the point of view of recent history the

area of coppice forests in the Czech Republic constantly declines. In the beginning of

twentieth century coppiced forest covered more than 4% of the forest lands. Today,

however, the area of coppice forests cover less than 1% of forests lands

(Kadavý et al. 2011).

3. Coppice with standards (C-W-S)

According to Kadavý et al. (2011) coppice with standards are multi-storey

forests, where the lower storey is composed of coppices stands (vegetative origin) and

the higher storey is composed of standards (seed trees) of either generative or vegetative

origin. Lower storey of coppice with standards forest is usually composed of broadleaf,

shade tolerant species with good sprouting potential such as lime (Tilia sp.), maple

(Acer sp.), elm (Ulmus sp.), hornbeam (Carpinus sp.), but also of few light demanding

species such as oaks (Quercus sp.), chestnuts (Castanea sp.), alders (Alnus sp.), and

ashes (Fraxinus sp.). Upper storey is usually formed by economically valuable species;

for instance oaks, maples, elms, larches (Larix sp.), poplars (Populus sp.) or birches

(Betula sp.). At the time of lower storey harvest (usually each 30 - 50years), few best

sprouts or trees originating from seed are left uncut (or planted), to form a future upper
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storey. This process leads to creating 3 or 4 successive generations of standards. So

called ''false'' coppice can also be distinguished. Standards of such forest stands

originated from the best sprouts and form an even aged upper storey, thus false stem

wood is crated. Nowadays, the standards (seed trees) are selected exclusively from seed

originated individuals, due to better quality and better growth characteristics. A standard

(seed tree) should be a subject to general qualitative requirements such as perfect health

condition, straight trunk of at least 6 m in length and long dense and healthy crown.

Several types of coppice with standards forests (c-w-s) can be distinguished according

to the numbers of standards per area - standing volume (Polanský et al. 1956;

Kadavý et al. 2011):

i. low standing volume (< 100 m3ha–1) with number of standards

(50 – 100 trees·ha–1)

ii. medium standing volume (100 – 200 m3ha–1) with number of standards

(100 – 160 trees·ha–1),

iii. high standing volume (200 – 400 m3ha–1) with number of standards

(160 – 200 trees·ha–1)

The coppice with standards forest are difficult to manage due to technical silvicultural

practices as controlling the species composition, standard standing volume, etc. These

practices should maintain an optimal relationship between the upper storey and the

lower storey of forest (Kadavý et al. 2011).
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3.4 TARMAG II (according to Kadavý et al.)

TARMAG II experimental site is situated in the Czech Republic (GPS

coordinates: 49°14'43"N, 16°35'59"E) approximately 2 kilometres southwest from the

village of Soběšice, in the southern Moravian region near city of Brno. Site was

established at the turnover of 2008 and 2009 as the second of its kind. Its main purpose

is to simulate the influence of coppice and coppice with standards stands on

biodiversity. It was created as part of the Ministry of the Environment of the Czech

Republic (MoE CZ) project called Biodiversity and Target Management of Endangered

and Protected Species in Coppices and Coppices-with-Standards included in the System

of NATURA 2000 (Kadavý et al. 2011). TARMAG II experimental plot belongs to The

Training Forest Enterprise Křtiny of Mendel University in Brno (TFE) and is situated in

Vranov forest district. It is not the only kind of such experimental site under the

Training Forest Enterprise Křtiny. TARMAG (Hády) experimental research plot of the

same purpose was established earlier in 2008 at the Křtiny Training Forest Enterprise

Masarykův les, Bílovice Forest District (GPS coordinates: 49°13'29.87''N,

16°40'55.391''E).

TARMAG II experimental site belonged to the forest stand type 80C7 before

conversion, which was included in management set of stand No. 205 (exposed oak

habitat with special purpose of lower altitudes), with a rotation period of 130 years and

a regeneration period of 30 years. The forest stand before logging interventions had

a character of upcoming false stem woodland and was described according to current

forest management plan (2003 - 2012) as fully stocked single storey high forest, with

closed canopy. Predominant forest type on the experimental site was 1B1 which can be

described according to Czech forest typology as rich hornbeam-oak steppe on plateaus

and rounded ridges with Carex montana with prevailing typical mesotrophic cambisols

(KMmb) with sandy-clay and gravel soil type and granodiorite substrate. In lesser

extend was also 1C2 (dry oak-hornbeam forest on the slopes with Carex sp.) forest type

represented on site. The forest stand was about 72 years old just before the logging

operations took place in 2009.
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Table 1 Trees species composition on TARMAG II experimental site before

conversion, according to Kadavý et al. (2001). Adjusted by Lukáš Patra

Fifteen different types of woody species were measured on TARMAG II

experimental site before logging operations and its conversion. It can be noted in

Table 1 that total number of trees was 2883, which had a total volume of 928.23 m3

(measured over the bark). The most dominant specie was sessile oak (Quercus petrea)

whose representation on site reached 96% of the total number of trees. The second most

frequently occurring tree species was Scotch pine (Pinus silvestris) with 44 trees

followed by hornbeam (Carpinus betulus) with 43 trees. Black pine (Pinus nigra), larch

(Larix decidua) and small leaved - lime (Tilia cordata) occurred in numbers of 13 trees

each. Maple (Acer campestre), spruce (Picea abies), mountain-ash (Sorbus torminalis)

and etc. occurred on site only in small numbers (< 10).

The design and the establishment of TARMAG II experimental site followed a

similar design pattern formerly used in TARMAG (Hády). The whole site covers an

area of 4 hectares (200 × 200 m). This area was divided into 16 cells. Each of them is

the size of 50 m by 50 m. In addition, a control area was created in a protection zone of

TARMAG II. This control area does not have precisely defined geometric shape, but

measuring 79 trees of various storeys selected it. Four different types of felling

intensities were used as seen in Figure 2: clear cut (cells No. 1, 3, 9 11), very high
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Figure 2 TARMAG II felling intensities according to Kadavý et al. (2009). Where white

represents the clear cut (perspective: coppice ), light grey represents very high felling intensity

(perspective: coppice with standard with low standing volume and a small number of standards),

grey represents high felling intensity (perspective: coppice with standard with standard standing

volume and an average number of standards) and dark grey represents medium felling intensity

(perspective: coppice with standard with standard standing volume and a high number of

standards). Adjusted by Lukáš Patra

intensity felling (cells No. 6, 8, 14, 16), high intensity (cells No. 5, 7, 13, 15) and

medium intensity (cells No. 2, 4, 10 and 12). Each four neighbouring cells (in total 100

x 100 m) represented these four felling intensities and therefore various numbers of

standards.

According to Kadavý et al. (2009) all trees with DBH of at least five centimetres

(> 5 cm) were measured in TARMAG II experimental site, similarly to the TARMAG

(Hády) site, and recorded into database. The measured variables were as follows: DBH,

total tree height, and living crown bottom. Specific species code was given to every
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Table 2 TARMAG II experimental site

characterization according to geomorphologic

division of Czech Republic (Culek et al. 2005)

measured tree. According to the cell plot design, on average 24 standards were marked

in cells with very high felling intensity, 35 standards were marked in cells with high

felling intensity and 46 standards were marked in cells with medium high felling

intensity. The purpose was to achieve a 1:3 ratio between the number of standards in the

older and the younger storey. The trees with DBH over the 50 cm (> 50 cm) were not

consider to be a good standards due to advanced age. (Kadavý et al. 2010). Sessile oak

(Quercus petraea) as the predominant specie at experimental plot was used as main

standards tree. The logging operations took place at the turn of 2008 and 2009 and were

performed as whole tree harvest. Undesirable trees were cut down, also all woody

vegetation even of shrubby character was removed from the plot and whole trees were

transported out of the plot. Logging residues were minimal (Kadavý et al. 2010).

3.4.1 Natural conditions of TARMAG II site

1. Geological, geomorphologic and soil conditions

From geomorphologic point of view TARMAG II experimental site belongs into

Precinct: Soběšice uplands (Table 2), which is

characterised by rugged relief with deep

valleys of the river Svitava. According to

Truhlář (1996) an impact of several

geomorphologic formations can be

distinguished on experimental site. The

major influence is represented by Adamov

upland formation, which is composed mainly

by amphibolic granodiorite and less biotic-

acidic granodiorite and diorites. The site is also influenced by Moravian Karst with

Devonian and Jurassic limestone covers and with chertic and flint coverings.

Pleistocene and loess clays, eluvial and deluvial deposits can be identified as main

covering formations on site (Truhlář 1996). Typical mezotrophic cambisols,

albeluvisols, rendzic leptosols crossing over to cambisols (in areas with limestone) and

haplic luvisols typically on loess clays can be found on TARMAG II experimental site

(Culek et al. 2005).
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2. Climatic conditions

According to Quitt (1971) TARMAG II experimental site belongs into MT11

climatic region, which can be characterised as moderately warm with dry summers,

moderately warm springs and autumns and with moderately cold winters. An average

annual rainfall is about 520 mm, and the average annual air temperature is about 8,5°C.

Average annual number of snow days is 50 - 60 and average number of days with snow

cover is also 50 - 60. Average seasonal maximum snow depth ranges from 20 to 30

centimetres. Average annual total global radiation is about 3900 - 4000 MJ/m2. The

average annual sum of cloud days represented by 60 - 65%. Average annual duration of

sunshine is 1600 - 1700 hours and average annual wind speed is 3 - 4 m/s

(Tolasz et al. 2007).

3. Biogeographical conditions

Experimental site is located in Brno bioregion no. 1.24. on the eastern edge of

the Hercynian subprovince, which belongs into Central European Broadleaf Forests

province. Thanks to its location the Brno bioregion is also influenced by Pannonian and

Carpathian subprovince. In terms of geobiocenology and altitudinal zonation the main

vegetational tier of Brno bioregion is the oak-beech vegetation tier followed by

significant proportion of beech-oak vegetation also with enclosed occurrence of beech

vegetation. Natural forests were largely replaced by spruce monocultures, but at the

same time larger complexes of natural hornbeam and beech forests (Svitavy valley) are

still locally preserved (Culek et al. 2005). The bioregion lies on the boundary of

termophyticum and mesophyticum phytogeographical regions whereas two districts can

be found as follows Znojmo-Brno Upland, which lies in termophyticum and the

Moravian foothills of the Vysočina at mesophyticum (Culek et al. 2005).

4. Flora and founa

The flora within the described area consist mainly in sessile oak (Quercus

petraea) and hornbeam (Carpinus betulus) with frequent additions of beech (Fagus

silvatica) and also fir (Abies alba), sometimes lime (Tilia cordata), rowan (Sorbus sp.)

or maple (Acer sp.) etc. Shrubs are frequently represented by hazel (Corylus avellana),

dogwood (Cornus sp.), hawthorn (Crataegus sp.) or Ligustrum vulgare. Undergrowth

synusia is typically demonstrated by wild ginger (Asarum europaeum), stilchwort
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(Stellaria holostea), sweet woodruff (Galium odoratum), bulbiferous coralwort

(Dentaria bulbifera), wood melick (Melica uniflora) and hepatica (Hepatica nobilis)

(Culek et al. 2005).

5. Fauna

Fauna of the region is strongly influenced by agglomeration of the Brno city and

for that reason an increased occurrence of different synantropic species such as martens

(Martes foina) and common kestrel (Falco tinnunculus) can be found. Among the most

important species belonging to the region are (Culek et al. 2005): mammals such as

european hedgehog (Erinaceus europaeus), marten rock (Martes foina), horseshoe bat

(Rhinolophus hipposideros), birds such as sand martin (Riparia riparia), savi's warbler

(Locustella luscinioides), penduline tit (Remiz pendulinus), reptiles such as green lizard

(Lacerta viridis), smooth snake (Coronella austriaca), amphibians such as salamander

(Salamandra salamandra), mollusks such as Cepaea vindobonensis and insects of the

like of grasshopper vine (Ephippiger ephippiger), hungarian ground beetle (Carabus

hungaricus), Lucanus cervus, magnificent flower beetle (Protaetia speciosissima), etc.
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3.5 Competition

Within every biotope, each species uses given conditions of their environment,

abiotic factors as well as biotic factors and their characteristics. However, since these

environmental factors (water, nutrients) are not unlimited, competitive interactions for

natural resources occur (Slavíková 1986). The competition of two or more organisms or

species is based on the interaction, which adversely affects each other (same demands

for food or nutrients, etc.) (Mze 1995). According to Poleno et al. (2011), it is possible

to distinguish competition between individuals as follows:

i. The intraspecific competition- contacts, interaction and links between

individuals of one species.

ii. The interspecific competition- the interaction of two or more species or

populations.

It is theoretically possible to assume according to Laštůvka (1986) that

competition arises when continuous inflow of energy and substances from environment

is somehow interrupted for one or both competitors. Therefore, competitive relations are

significantly manifested in the period of needs (emergency). On the contrary when there

is a sufficient supply of resources competitive relationships are less significant

(Poleno et al. 2011). The major competition factors in natural communities are

considered to be water, light and nutrients (Clements, Shelford 1939). However, their

significance differs. For example, competition for nutrients is generally more important

at an early stage of development of plants. Competition for light is significant in later

phases of development (Wilson 1988). Effects of competition can be observed

especially as differences in vegetative growth, seed production and mortality

(Grimm 2001). When competition occurs it does not result in immediate elimination or

death of plant but demonstrates itself in a decrease of metabolism intensity and growth.

Plants, unless able to adapt, are though eventually eliminated since competing for one

factor sequentially establishes an entire complex of negative effects. Competition is

more intensive, where limited energy and metabolic factors are more important to

metabolism (Laštůvka, 1986).
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Competition indices are used for an evaluation of competition. These indices

allow for the assessment of how much is the growth of individual trees in the stand

affected by the presence and characteristics of neighbouring individuals. Competition

can be expressed as a summary of characteristics of individual tree, or may describe

conditions of the environment in the immediate vicinity of individual trees

(Moravčík 1993).

According to Munro (1974) we can generally divide competition indices into two main

groups according to whether the spatial distribution of individual trees is used or not.

i. Distant independent competition indices: are based on the characteristics

common for the whole stand and use functions of stand-level variables and

initial dimensions of the subject tree as stand density measures, total basal area,

ratios of a tree dimensions compared to the average dimension in the stand,

ratios of a tree dimensions to the average dimensions of the dominant trees,

crown ratios and other characteristics. These indices are usually easy to

calculate.

ii. Distant dependent competition indices: use the distance and spatial

distribution of trees in the stand, which allows expressing the competition in the

closest neighbourhood of individual trees in the forest. The amount of influence

is then evaluated by the numbers, sizes and distances of adjacent trees. Distant

dependent models require tree coordinate location for computations and are used

to measure the influence of local neighbours.

Competition of distant dependent models is most commonly based of several principles

as explained by Moravčík (1993):

i. Zone of influence: This zone is defined around each tree in the stand. This zone

is generally a function of the tree size. Competition, in this case, is assessed

according to the size of the area, which overlaps zones of influence of individual

trees.

ii. The size and dimension of neighbouring trees: The competition is calculated

from the size (DBH, height) of individual trees or as a function of size and

distance.
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iii. Potentially available area: The area of stand is divided into small segments,

which are assigned to individual trees. Potentially available area can have the

shape of polygonal or circular sectors or determined otherwise.

There are several types of distant dependent and distant independent competition

indices according to Burkhard and Tomé (2012). The most famous and mostly used are

as follows:

i. Distant independent indices

Relative dimensions: are indices using mathematical formulations, which

measure the hierarchical position of subjected tree within the stand.

Proportional to relative tree basal area: are indices, which divide forest stand

between the individual trees according to their dimension in relation to the

dimension of the average tree.

Crown ratio: is simply crown length divided by total tree height. It is also being

used to express the past competition undergone by each tree.

ii. Distant dependent indices

Area overlap indices (AO): are the first developed distance-dependent indices

and they are based on the sharing of the areas of influence of the subject tree and

its competitors. One of the AO indices is Arney's index.

Point density measures (PD): the number of competitors dependent on the

basal area and on used factors. One of the PD measures is Spurr's point density.

Distance-weighted size ratio (DR): can be defined as the sum of the ratios

between the dimensions of each competitor to the subject tree. It is weighted by

a function of the inter tree distance. DR types of indices have the advantage of

easy calculation, while explaining variation in growth with precision similar to

other indices. One of the famous DR index is Hegyi competition index.

Area potentially available index (APA): can be described as the area of the

smallest polygon defined by the bisectors to the subject tree and competitor sizes

(inter tree lines). The most known APA index is Brown's index.
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3.6 Field map technology (IFER, Ltd., Jílové u Prahy, Czech Republic)

Field-Map is a hardware-software technology, which enables fast and efficient

data collection in the field and their subsequent office processing and evaluation. Field-

Map combines real-time GIS software with electronic device used for mapping and

dendrometric measurements. This technology originated in the Czech Republic and is

primarily used for forest and vegetation inventories. However, its applications are

diverse: from mapping of the landscape to precise surveying of archaeological

excavations. Field-map technology is currently used for projects in 28 different

countries. As mentioned, it is composed from two parts:

1. Software

The software is the major and most essential part of Field-map technology and it

is consist of several modules:

 FM Project Manager is the basic module used in the process of project

preparation. It also allows database creation and design based on its own

methodology.

 FM Data Collector is used in field computers and tablets. It is an application

that directly supports electronic measuring devices and gives users the option of

mapping and field measurements. The basic principle is simple. Users record the

location and dimensions of trees directly into the computer by using in build

GPS to localize initial point in field and with the help of measuring instruments.

 FM Inventory Analyst is a module that allows the user to statistically evaluate

the measured data, and export the results in the form of graphs and tables.

2. Hardware

The major part of the hardware system is a field tablet or computer on which

Field-map software is installed. To this computer are then connected the other

electronic measurement devices such as GPS, electronic compass, inclinometer,

distance meter etc. The measurements are transmitted online into the computer

where the data are automatically processed and visualized in form of digital

map. There are many different possible combinations solely depends on the

type and needs of a particular project.



- 19 -

4 MATERIALS AND METHODS

Data collection for this diploma thesis took place at TARMAG II experimental

site near Soběšice (Figure 3), in Moravian region near Brno in the south eastern part of

the Czech Republic (49°14'43"N, 16°35'59"E). This study plot belongs to The Training

Forest Enterprise Křtiny of Mendel University in Brno (TFE) and is situated in Vranov

forest district. Since its establishment it served as a foundation for a project, by the

Ministry of the Environment of the Czech Republic (MoE CZ), called ‘Biodiversity and

Target Management of Endangered and Protected Species in Coppices and Coppices-

with-Standards included in the System of NATURA 2000 (Kadavý et al. 2011). The

author of this thesis, therefore, practically follows upon and continues with previously

established measurement methods carried out since the establishments of this study plot.

The author participated in two inventories that took place in 2013 and 2015.

Figure 3 TARMAG II research plot. Data taken from Google maps 2016, adjusted by Lukáš

Patra
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4.1 Study area

The total area of TARMAG II plot is 4 hectares and its average elevation is

about 355 meters above sea level. The geological conditions of the site feature

granodiorite bedrock and Cambisol soils (Culek et al. 2005). According to (Quitt 1971)

the study site belong into MT11 climatic region which can be characterised as

moderately warm with an average annual rainfall of about 520 mm, and the average

annual air temperature of about 8,5°C. The most dominant species occurring on plot

prior to and post conversion is Quercus petrea (hereinafter referred to as the Quercus)

followed by scots pine (Pinus silvestris), Carpinus betulus (hereinafter referred to as the

Carpinus) and Tilia cordata (hereinafter referred to as the Tilia). TARMAG II site was

measured in 2008 where large pre-harvest inventory was created by using Field-map

technology (IFER, Ltd., Jílové u Prahy, Czech Republic). Exact positions (X,Y,Z

coordinates) were measured for each individual tree with DBH > 5 cm and main

dendrometric data such as diameter at breast height (DBH), height, height of the base of

live crown were taken. The high forest was harvested at the turn of the year 2008 and

2009. Logging operations were performed as whole tree harvest (Kadavý et al. 2010).

The study area was fenced to prevent game damage. Four years later (2013) another

inventory took place on the study site. The four years period was selected to eliminate

some trees, which can establish unviable sprouts unable to survive longer than one year.

Only the sprouts that survived the four-year period were considered to be live

(sprouting) and the remaining were considered as dead. Each stump was marked with

sheet metal tag with his unique number. The last inventory relevant to this thesis was

carried out in 2015. The data collected in the 2009, 2013 and 2015 inventories were

used and considered essential for this thesis.

4.2 Data collection

The fundamental operations of this thesis were in-situ field data collections

carried out in the years of 2013 and 2015. Abundance of sprouts and their dimensional

(dendrometric) characteristics were measured within these inventories. In 2013, each

stump of the previously pre-harvest measured trees (2863 in total) was located and

checked to determine whether it had resprouted or not, once again with the use of the
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Field-map technology (IFER, Ltd., Jílové u Prahy, Czech Republic). Only stumps,

which successfully resprouted, were measured. Most sprouts grew directly from the

stump or the stump collar. Specific dendrometric measurements of sprouts took place on

a set of 5 tallest sprouts per stump. Basal diameter (BD) was measured for each sprout.

The measurement was not performed directly on the sprout base since sprouts are

significantly thicker in place of their connection to the stump but took place 5 cm above

its base. The height of the highest sprout (HS) was also measured. The tallest sprout was

used because it is typically considered to be a good predictor of the total sprout biomass

of multi-sprout trees (Matula et al. 2015) and also because it can be used for calculation

of post-harvest competition. The diameters were measured in two perpendicular

directions, and the final diameter was defined as the average of these two diameters.

Calibrated digital callipers ABS SOMET with a precision of ± 0.1 mm were used for

the measurements of diameters. Exactly the same procedures were performed at the

second post-harvest inventory in 2015.

4.3 Data analysis

The total data package analysed consisted of datasets from pre-harvest inventory

(2009) and post-harvest inventories (2013 and 2015). The dataset is unique, capturing

the development of sprouts during six vegetation seasons. It was necessary to calculate

the total sprout biomass per stump and increment at first. Appropriate species-specific

allometric equations were used to calculate sprout biomass production and increment

from the 2013 and 2015 inventories where the value of basal diameter was used as the

parameter. The exponential formula used for calculation of biomass was

(Matula et al. 2015):=
where:

y is the response variable (biomass in this case)

x is the average value of the given parameter (basal diameter)

a, b are the model coefficients
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Own, unique species-specific model coefficients were used for each species (Quercus,

Tilia, Carpinus) (Matula et al. 2015). Individual sprout biomass for calculation of total

biomass per stump (5 from each stump) was summarized. Relative sprout increment

was also calculated since biomass was calculated for both inventories (2013 and 2015).

Distance-dependent tree-level Hegyi competition index (Hegyi 1974) was

chosen to analyse competition of mutual relations. Hegyi competition index is an

individual index using spatial dependence. The formula of the distance-dependent tree-

level Hegyi competition index is as follows (Biging, Dobbertin, 1995):

Where:

Pi is a parameter of a individual tree (i) as DBH, crown length or height of the highest

sprout (HS).

Pj is a parameter of a competitor tree (j) of the same composition as above (DBH, HS,

etc.).

lij is the distance between target tree (i) and competitor tree (j).

n is the number of trees in target radius (10 and 5 meters).

The crown length parameter was calculated as the difference between the total tree

height and the height of the base of the live crown. Two radiuses of interest (10-meter

radius and 5-meter radius) were chosen for precise analysis of competition. The 10-

meter radius was chosen because it is considered to be an area, which host the most

intensive interaction between the competitors. The smaller, 5-meter radius was

subsequently chosen, because the sprouts could be too small to compete with other

sprouts located at a distance greater than 5 meters. It has to be pointed out that only

trees located in distance grater or equal to 10 meters from the TARMAG II plot

boundaries were included in the competition index calculations. Hegyi competition

index was used to analyse the competition effect and to create models (Table 3). Pre-

harvest competition was calculated with the use of DBH and length of live crown and

post-harvest competition was calculated with the use of height of the highest sprout.
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These variables were used for the estimation of pre-harvest crowding (Competition),

pre-harvest shading (Competition L) and post-harvest shading (Competition S).

Calculations of allometric equations, sprout biomass production and increment were

performed in Microsoft Exel.

Generalized linear models (GLM) with gamma distribution (log likelihood) were

used to determine whether the pre-harvest crowding, pre-harvest shading or post-harvest

shading had an effect on sprout biomass production and increment. The explanatory

variables, which were entered to the models were as follows (Table 1): Competition (for

10 and 5 meter radius), Competition L (for 10 and 5 meter radius), Competition S (for

10 and 5 meter radius), Trees (number of surrounding trees in 10-meter radius), SD

(standards in 10-meter radius), biomass (g) and increment (g). Only three species (Tilia,

Carpinus and Quercus) were abundant enough in the experimental plot to be used in the

data analysis. Other species such as Larix, Pinus, etc. did not resprout, as expected, at

all and the Sorbus and Acer species were not distributed on the plot in numbers, which

can be used in statistics. Statistical significance of models was tested using P-values and

deviance explained (pseudo R2 coefficient of determination; Heinzel 2003). Deviance

explained (D2) was calculated for all generalized linear models. The simplify equation

for deviance explained (D2) was used as follows (Faraway 2006):

1 − Residual Deviance
Residual deviance and null deviance were calculated in the GLM model. The null

deviance shows how well is the response predicted by the model with nothing but an

intercept and the residual deviance shows how well is the response predicted by the

model when the predictors are included. The D2 coefficient describes what proportion of

the total variability in the dependent variable was the model able to explain

(Faraway 2006). The coefficient values ranges from 0 to 1. The higher the number, the

better model is found. In case where the D2 coefficient was greater than 0.05 statistical

significance was demonstrated. The P-value hypothesis test was performed to determine

the significance of results. A small P-value (typically ≤ 0.05) indicates strong level of

significance, so the null hypothesis can be reject. On the other hand when the P-value is

larger than given value (typically > 0.05) insignificance is indicated and the null

hypothesis is fail to reject (Bayarri 2000).
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The probability of resprouting was tested by using generalized linear models

(GLM) with a binomial error distribution. The binary response variable was determined

according to whether the individual tree resprouted (1) or did not (0). The explanatory

variables, which were entered in the models, were as follows (Table 4): DBH (diameter

at breast height), height, crown length, trees (number of standing trees in the 10 m or

5 m radius around each tree) and both pre-harvest competitions (Competition,

Competition L) at both radiuses (5 m and 10 m). Statistical significance of models was

also tested by using the deviance explained (D2). The P-value was also used for the

determination of the resulting significance. Only the Quercus was abundant enough in

the experimental plot to be used in the data analysis.

All models and analyses were performed in the R2.12.0 statistical environment

(R Development Core Team 2010). The ggplot2 package (Wickham 2009) was used for

visualization and graph creation. All results were plotted in graphs.
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5 RESULTS

Overall 2437 stumps of seven tree species (Acer, Carpinus, Quercus, Larix,

Pinus, Sorbus, Tilia) were measured at the area of interest in Soběšice. Only three

species (Carpinus, Quercus and Tilia) had sufficient number of trees for statistical

analysis. 1653 stumps sprouted and the other 784 were classified as ''dead''.

5.1 Effect of competition on biomass production and increment

1054 measured stumps classified as sprouting were used for analyses of

competition on biomass production and sprout increment. From which, 1020 are

Quercus, other 24 were Carpinus and last 10 belonged to the genus Tilia. Characteristic

of the measured dataset are shown in Table 3.

Only four models in total proved any significant interaction between competition

and biomass production or sprout increment. Tilia did not show any effect between

competitions (pre-harvest crowding, pre-harvest shading and post-harvest shading) and

biomass or increment. In the case of Quercus, only post-harvest shading (sprout

competition calculated with height of the highest sprout) was significant and showed

that it negatively affected the biomass production and increment in both tested radiuses

(5 m and 10 m). The models (Figure 8, 9, 14, 15) demonstrate that with an increasing

post-harvest shading the biomass production or increment decreases. Result of Carpinus

showed that only sprout increment was affected by pre-harvest crowding (competition

calculated with DBH) in the 10-meter radius and by pre-harvest shading (competition

calculated with length of live crown) in the lower 5-meter radius. The models (Figure

10, 13) show that with increasing pre-harvest crowding (competition calculated with

DBH in 10 m radius) and shading (competition calculated with length of live crown in 5

m radius), the increment of sprouts declines. Number of surrounding trees (Figure 16,

17) did not affect the growth of sprouts (in terms of biomass and increment). Post

harvest residual trees (standards) negatively affected Quercus and Carpinus sprout

biomass production, where with increasing number of standards, the biomass

production decreased.
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5.1.1 Effect of competition on biomass production

The pre-harvest tree competition calculated with DBH in a 10-meter radius did

not affect sprout biomass production after 5 years of growth (D2 = 0.07; P > 0.05 for

Tilia: P > 0.05; D2 = 0.03 for Quercus and for Carpinus: P > 0.05; D2 = 0.07, Figure 4).

The lowest measured deviance explained was for Quercus species. The other two

species had slightly higher deviance explained, however their P-values were higher than

significance level α = 0.05 so the effect was not significant.

Figure 5 displays that competition calculated with DBH for the smaller radius (5

meters) did not affect sprout biomass production after 5 years of growth either.

Deviance explained was very small for all three species and P-values were higher than

the significance level α = 0.05. For Tilia were D2 = 0.01; P > 0.05, for Quercus: D2 =

0.03; P > 0.05 and for Carpinus: D2 = 0.04; P > 0.05.

Figure 4 The relationship between pre-harvest tree competition calculated with DBH in 10-meter radius and sprout biomass

production 5 years after harvesting. The blue line shows the predicted relationship from the generalised linear model using

gamma distribution with log likelihood. The points represent individual observations
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Figure 5 The relationship between pre-harvest tree competition calculated with DBH in 5-meter radius and sprout biomass

production 5 years after harvesting. The blue line shows the predicted relationship from the generalised linear model using

gamma distribution with log likelihood. The points represent individual observations

Very similar results were discovered for the relationship between pre-harvest

tree competition with surrounding trees in 10-meter radius. It was calculated with length

of live crown and sprout biomass production 5 years after harvesting (Figure 6). The

deviance explained was also very low (for Tilia D2 = 0.000001; P > 0.05, for Quercus

D2 = 0.04; P > 0.05; for Carpinus; D2 = 0.02; P > 0.05). It is evident that also the pre-

harvest competition with surrounding trees in 10 meter radius, calculated with length of

live crown did not have an effect on the biomass production.

Neither the model of pre-harvest tree competition encompassing half radius (5

meters) calculated with length of live crown was significant (Figure 7). The value of

deviance explained for Tilia was not large (D2 = 0.05) and the P-value was not

significant (P > 0.486). Similarly, Carpinus D2 value was slightly higher (D2 = 0.06),

which could indicate some relationship between competition and biomass, but P-value

was also very high (P = 0.217). Insignificant interaction was also discovered at Quercus

data where: D2 = 0.03 and P > 0.05.

- 28 -

Figure 5 The relationship between pre-harvest tree competition calculated with DBH in 5-meter radius and sprout biomass

production 5 years after harvesting. The blue line shows the predicted relationship from the generalised linear model using

gamma distribution with log likelihood. The points represent individual observations

Very similar results were discovered for the relationship between pre-harvest

tree competition with surrounding trees in 10-meter radius. It was calculated with length

of live crown and sprout biomass production 5 years after harvesting (Figure 6). The

deviance explained was also very low (for Tilia D2 = 0.000001; P > 0.05, for Quercus

D2 = 0.04; P > 0.05; for Carpinus; D2 = 0.02; P > 0.05). It is evident that also the pre-

harvest competition with surrounding trees in 10 meter radius, calculated with length of

live crown did not have an effect on the biomass production.

Neither the model of pre-harvest tree competition encompassing half radius (5

meters) calculated with length of live crown was significant (Figure 7). The value of

deviance explained for Tilia was not large (D2 = 0.05) and the P-value was not

significant (P > 0.486). Similarly, Carpinus D2 value was slightly higher (D2 = 0.06),

which could indicate some relationship between competition and biomass, but P-value

was also very high (P = 0.217). Insignificant interaction was also discovered at Quercus

data where: D2 = 0.03 and P > 0.05.

- 28 -

Figure 5 The relationship between pre-harvest tree competition calculated with DBH in 5-meter radius and sprout biomass

production 5 years after harvesting. The blue line shows the predicted relationship from the generalised linear model using

gamma distribution with log likelihood. The points represent individual observations

Very similar results were discovered for the relationship between pre-harvest

tree competition with surrounding trees in 10-meter radius. It was calculated with length

of live crown and sprout biomass production 5 years after harvesting (Figure 6). The

deviance explained was also very low (for Tilia D2 = 0.000001; P > 0.05, for Quercus

D2 = 0.04; P > 0.05; for Carpinus; D2 = 0.02; P > 0.05). It is evident that also the pre-

harvest competition with surrounding trees in 10 meter radius, calculated with length of

live crown did not have an effect on the biomass production.

Neither the model of pre-harvest tree competition encompassing half radius (5

meters) calculated with length of live crown was significant (Figure 7). The value of

deviance explained for Tilia was not large (D2 = 0.05) and the P-value was not

significant (P > 0.486). Similarly, Carpinus D2 value was slightly higher (D2 = 0.06),

which could indicate some relationship between competition and biomass, but P-value

was also very high (P = 0.217). Insignificant interaction was also discovered at Quercus

data where: D2 = 0.03 and P > 0.05.



- 29 -

Figure 6 The Relationship between pre harvest tree competition with surrounding trees in 10-meter radius, calculated with

length of live crown and sprout biomass production 5 years after harvesting. The blue line shows the predicted relationship

from the generalised linear model using gamma distribution with log likelihood. The points represent individual observations

Figure 7 The Relationship between pre-harvest tree competition with surrounding trees in 5-meter radius, calculated with

length of live crown and sprout biomass production 5 years after harvesting. The blue line shows the predicted relationship

from the generalised linear model using gamma distribution with log likelihood. The points represent individual

observations
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The Figure 8 shows that post-harvest (3 years) sprout competition with

surrounding stumps in 10-meters radius, calculated with height of the highest sprout is

affected only in Quercus sprout biomass production 5 years after harvesting where the

deviance explained for Quercus is D2 = 0.13 and indicates strong linear relationship

between biomass and competition. The P-value was highly significant (P = 0.00001). As

it can be seen in Figure 5 in case of Quercus, the smaller is post-harvest competition the

greater is the increase of the sprout biomass. Carpinus with D2 = 0.12 also indicates

strong relationship but its P-value (P= 0.101) is insignificant so in this case competition

did not affect significantly the biomass production. Tilia had both of the values

insignificant (D2 = 0.03 and P > 0.05).

In 5-meter radius it was also only sprout biomass production of Quercus that

was affected by post-harvest (3 years) sprout competition, in the same way (with

increasing post-harvest competition, biomass decreased). The deviance explained was

still high with D2 = 0.08 and the P-value was significant (P = 0.00001) as well. As

shown in Figure 9 the other two species were not affected by sprout competition in term

of biomass. The results measured for Tilia are D2 = 0.02; P > 0.05 and for Carpinus D2

= 0.01; P > 0.05.

Figure 8 The relationship between post-harvest (3 years) sprout competition with surrounding stumps in 10-meter radius,

calculated with height of the highest sprout and sprout biomass production 5 years after harvesting. The blue line shows the

predicted relationship from the generalised linear model using gamma distribution with log likelihood. The points represent

individual observations
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Figure 9 The relationship between post-harvest (3 years) sprout competition with surrounding stumps in 5-meter radius,

calculated with height of the highest sprout and sprout biomass production 5 years after harvesting. The blue line shows

the predicted relationship from the generalised linear model using gamma distribution with log likelihood. The points

represent individual observations

5.1.2 Effect of competition on increment

The results show that only increment of Carpinus was significantly affected by

pre-harvest competition (calculated with DBH) in 10-meter radius. As shown in

Figure 10 the deviance explained indicated strong relationship between the competition

and the sprout increment for Carpinus and Tilia species, but only in case of Carpinus

the P-value was significant. The model predicts that with the increasing pre-harvest

competition (calculated with DBH), the sprout increment declines. The statistical

indices for Carpinus were D2 = 0.11; P = 0.0167 and for Tilia were D2 = 0.20; P > 0.05.

The data for Quercus did not indicate any relationship. The deviance explained was

D2 = 0.03 and P > 0.05.
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Figure 10 The relationship between pre-harvest tree competition in 10-meter radius, calculated with DBH and sprout

increment. The blue line shows the predicted relationship from the generalised linear model using gamma distribution with

log likelihood. The points represent individual observations

Figure 11 The relationship between pre-harvest tree competition in 5-meter radius, calculated with DBH and sprout

increment. The blue line shows the predicted relationship from the generalised linear model using gamma distribution with

log likelihood. The points represent individual observations

In the 5-meter radius (Figure 11), the deviance explained also indicated strong

relationship between the pre-harvest competition and the increment in case of Carpinus,

but the P-value was insignificat. The Carpinus values were D2 = 0.15 and P > 0.05. Its

relationship with increment for the two other species (Quercus and Tilia) was not

affected by pre-harvest competition. The statistical P-value and D2 values were

insignificant for both Tilia (D2 = 0.01; P > 0.05) and Quercus (D2 = 0.03; P > 0.05).
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Figure 12 The Relationship between pre-harvest tree competition with surrounding trees in 10-meter radius, calculated with

length of live crown and sprout increment. The blue line shows the predicted relationship from the generalised linear model

using gamma distribution with log likelihood. The points represent individual observations

Figure 12 shows that the relationship between pre-harvest competition,

calculated with length of live corwn in 10-meter radius did not affect the sprout

increment in all tree species (Tilia, Quercus and Carpinus). Both deviance explained

and P-value were insignificant and did not show any relationship. The values here were:

for Tilia: D2 = 0.01; P > 0.05, for Quercus: D2 = 0.02; P > 0.05 and for Carpinus:

D2 = 0.03, P > 0.05.

However, when we lowered the interest area of competition by half to five meter

radius, as shown in Figure 13, it becomes obvious that there was a statisticly significant

relationship between pre-harvest competition (calculated with length of live crown) and

increment at Carpinus (D2 = 0.07; P = 0.0307). The model predicted, that with a

increasing pre-harvest competition, increment decreases. The results for other two

species (Quercus and Tilia) were insignificant. Tilia values were: D2 = 0.01; P > 0.05

and Quercus values: D2 = 0.02; P > 0.05
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Figure 12 shows that the relationship between pre-harvest competition,

calculated with length of live corwn in 10-meter radius did not affect the sprout

increment in all tree species (Tilia, Quercus and Carpinus). Both deviance explained

and P-value were insignificant and did not show any relationship. The values here were:

for Tilia: D2 = 0.01; P > 0.05, for Quercus: D2 = 0.02; P > 0.05 and for Carpinus:

D2 = 0.03, P > 0.05.

However, when we lowered the interest area of competition by half to five meter

radius, as shown in Figure 13, it becomes obvious that there was a statisticly significant

relationship between pre-harvest competition (calculated with length of live crown) and

increment at Carpinus (D2 = 0.07; P = 0.0307). The model predicted, that with a

increasing pre-harvest competition, increment decreases. The results for other two

species (Quercus and Tilia) were insignificant. Tilia values were: D2 = 0.01; P > 0.05
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Figure 13 The Relationship between pre-harvest tree competition with surrounding trees in 5-meter radius, calculated with

length of live crown and sprout increment. The blue line shows the predicted relationship from the generalised linear model

using gamma distribution with log likelihood. The points represent individual observations

According to Figure 14 only Quercus indicated relationship between the post-

harvest competition with surrounding trees in 10-meter radius (calculated with height of

the highest sprout) and the increment. With an increasing post-harvest competition,

increment decreased. The Quercus deviance explained indicated strong linear

relationship (D2 = 0.10) and the P-value supported this model with strong significance

level, which was approaching to 0 (P = 0.000002). On the contrary, other two species

(Tilia and Carpinus) did not show any particular relationship between the post-harvest

competition and the increment. Tilia's deviance explained was on the edge of

significancy (D2 = 0.05) and could indicate some relationship, however the P-value was

strongly insignificant (P > 0.05). The values for Carpinus were: D2 = 0.03 and P > 0.05.

The same results are visible in Figure 15 where competition radius was lowered

to 5-meter radius. Relationship between post-harvest competition (calculated with

height of the highest sprout) and increment was proved by the model only in case of

Quercus. The deviance explained for Quercus was D2 = 0.03 and also the P-value was

significant P < 0.05. For Carpinus and Tilia the model did not suggest any relationship.

The values were insignificant for both (Carpinus: D2 = 0.01; P > 0.05 and for Tilia:

D2 = 0.01; P > 0.05).
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Figure 14 The relationship between post-harvest (3 years) sprout competition with surrounding stumps in 10-meter radius,

calculated with height of the highest sprout and sprout increment. The blue line shows the predicted relationship from the

generalised linear model using gamma distribution with log likelihood. The points represent individual observations

Figure 15 The relationship between post-harvest (3 years) sprout competition with surrounding stumps in 5-meter radius,

calculated with height of the highest sprout and sprout increment. The blue line shows the predicted relationship from the

generalised linear model using gamma distribution with log likelihood. The points represent individual observations
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Figure 16 The relationship between number of the surrounding trees (10-meter radius) and sprout biomass production 5

years after harvesting. The blue line shows the predicted relationship from the generalised linear model using gamma

distribution with log likelihood. The points represent individual observations

5.1.3 Effect of surrounding trees to increment and biomass production

The number of surrounding trees in 10-meter radius did not affect the biomass

production of all three species. However in the case of Tilia, as shown in Figure 16,

strong linear relationship according to deviance explained (D2 = 0.29) existed, but at the

same time the P-value was insignificant (P = 0.7). Therefore, the model could not prove

an existing statistically significant relationship between the number of surrounding trees

and the biomass production after 5 years. It was also insignificant for the other two

species (Carpinus: D2 = 0.01; P > 0.05 and Quercus: D2 = 0.03; P > 0.05).

As in the previous figure, Figure 17 indicates that, there was a strong

relationship between the numbers of surrounding trees in 10-meter radius and the

increment in the case of Tilia and also of Carpinus. However, the insignificance of P-

value rejected the relationship in both cases. The values measured for Tilia are

D2 = 0.26; P > 0.05 and for Carpinus: D2 = 0.17; P > 0.05. Values of Quercus did not

indicate any relationship between the increment and the number of surrounding trees

where the deviance explained was very low (D2 = 0.01) and the P-value also

insignificant (P > 0.05).
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Figure 17 The relationship between number of the surrounding trees (10-meter radius) and sprout increment. The blue line

shows the predicted relationship from the generalised linear model using gamma distribution with log likelihood. The points

represent individual observations
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Figure 18 The relationship between number of the standards (10-meter radius) and sprout biomass 5 years after harvesting.

The blue line shows the predicted relationship from the generalised linear model using gamma distribution with log

likelihood. The points represent individual observations

5.1.4 Effect of standards to sprout biomass production

The number of post-harvest standards significantly negatively affected the sprout

biomass production of Quercus and Carpinus. The models of Figure 18 show that with

increasing numbers of standards in the 10-meter radius, the sprout biomass decreased.

The measured deviance explained of Quercus was D2 = 0.14 and the P-value was

P < 0.05. Carpinus values were both also significant (D2 = 0.36 and P = 0.002). In case

of Tilia the deviance explained indicated strong significance (D2 = 0.24) but the P-value

was strongly insignificant (P = 0.2) so the model could not prove the relationship

between the number of standards and the biomass production.
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5.2 Resprouting ability

Data from all 2437 measured stumps (sprouting and

death) were used in this analysis but only the Quercus genus

was suitable for this analysis. Tilia successfully resprouted on

every measured stump (10 stumps were observed at the area).

It can, therefore, be noted that its resprouting ability in the

area of Soběšice was 100%. Carpinus resprouting ability was

also very high, from 26 observations 24 stumps successfully

resprouted. Only 2 stumps did not and were classified as

dead. Carpinus resprouting success at the Soběšice area was

92,3%. Tilia and Carpinus were not suitable for the

resprouting ability analysis because of such small data set.

Additional species observed at the target area were not also

suitable for this analysis. Some did not sprout at all

(Pinus sp., Larix sp.) and some like Sorbus sp. occurred in the

area only in very few numbers so it was not statistically

possible to work with them. Summary of used data is shown

in Table 4.

The most significant was the relationship between the

resprouting ability and the pre-harvest DBH. As shown in

Figure 19, the model clearly indicates that with the increasing

DBH, resprouting ability decreased. Deviance explained for

this model was relatively significant (D2 = 0.06) and the P-

value also proved strong significance (P = 0.0001). The same

result occurred in the case of pre-harvest tree height. The

model (Figure 19) shows, that with increasing pre-harvest tree

height, the probability of sprouting decreased. The deviance

explained for height was on the edge of significance

(D2 = 0.05). The P-value, on the other hand was strongly

significant (P = 0.0001). According to the models the pre-

harvest shading and crowding did not affect the resprouting

ability at all (Figure 22, 23).
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Figure 19 Relationship between probability of resprouting and pre-harvest DBH; height. The blue line shows

the predicted relationship from the generalised linear model using a binomial error distribution. The points

represent individual observations

Figure 20 Relationship between probability of

resprouting and pre-harvest crown length. The blue

line shows the predicted relationship from the

generalised linear model using a binomial error

distribution. The points represent individual

observations

It can be observed at Figure 20 that

pre-harvest crown length did not affect the

probability of sprouting. Model suggested

that the probability of resprouting decreased

with an increase in crown length. But both

deviance explained (D2 = 0.002) and P-

value (P > 0.05) were insignificant.
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Figure 21 Relationship between probability of resprouting and pre-harvest number of surrounding trees in-10

meter radius and 5-meter radius. The blue line shows the predicted relationship from the generalised linear

model using a binomial error distribution. The points represent individual observations

According to Figure 21 the number of surrounding trees did not affect the

resprouting ability. The model did not prove any relationship even with the radius

lowered down to 5 meters. The deviance explained was insignificant for both radiuses

(5 and 10 meters). The values for 10-meter radius were: D2 = 0.002 and for 5 meter

radius: D2 = 0.002. The P-value was also insignificant for both (P > 0.05).

Pre-harvest competition, calculated with DBH did not affect the probability of

resprouting in the case of 10-meter radius (Figure 22). The deviance explained for the

10 meters radius was slightly under the edge of significance (D2 = 0,04). The P-value on

the other hand was insignificant (P > 0,05). In the case of half radius (5 meter) model

did not show any effect between the pre-harvest competition and the probability of

resprouting. The deviance explained (D2 = 0.04) and P-value (P > 0.05) were both

insignificant.
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Figure 22 Relationship between probability of resprouting and pre-harvest competition, calculated with DBH

in 10-meter radius and 5-meter radius. The blue line shows the predicted relationship from the generalised

linear model using a binomial error distribution. The points represent individual observations

The last relationship tested was between the pre-harvest competition, calculated

with length of live crown and the probability of resprouting. According to Figure 23

there was no such relationship and the competition did not affect the probability of

resprouting. The deviance explained and the P-value were strongly insignificant in both

cases (10 and 5 meter radius). The values for the 10-meter radius were D2 = 0.002;

P > 0.05 and for the 5-meter radius were D2 = 0.002; P > 0.05.
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Figure 23 Relationship between probability of resprouting and pre-harvest competition, calculated with length

of live crown in 10-meter radius and 5-meter radius. The blue line shows the predicted relationship from the

generalised linear model using a binomial error distribution. The points represent individual observations
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6 DISSCUSION

Sprouts and the resprouting ability of trees were used for centuries as natural

regeneration of forest stands after natural outbreaks (Helle 1999, Tredici 2001,

Johnson 2002) or anthropologically to manage systematically restored coppice forest

(Buček 2010). Nowadays, there is strong increase of interest in sprouts and resprouting

ability to restore the old coppice forests from economical perspective in the sense of

sprout biomass as a source of renewable energy (Hall 2002). But very little is known

about the influence of competition on spouts and resprouting ability of temperate trees.

From that point of view the main goal of this thesis was to find any existing

relationships between competition and sprout growth or resprouting ability of temperate

trees in TARMAG II (Soběšice) experimental plot. This thesis showed that pre-harvest

and post-harvest competition can significantly affect the sprout growth, but can differ

between individual species and by the effect on the growth. The results clearly show

that the pre-harvest competition did not affect the Quercus resprouting ability.

Sprout growth

To discover whether the pre-harvest shading, pre-harvest crowding or post-

harvest shading has an effect on sprout growth of temperate trees, the three main

temperate tree species were tested: Quercus petraea, Tilia cordata and Carpinus

betulus.

The results showed that pre-harvest crowding (competition calculated with

DBH) did not affect sprout growth in terms of biomass and affects only Carpinus in the

10-meter radius in terms of increment. Tilia and Quercus were not affected by pre-

harvest crowding. This is an interesting result, because an increase in stem competition

(crowding) from neighbouring trees usually decreases nutrient availability for trees,

which in turn increases accumulation of carbohydrates in the root mass and that can

lead to sprout growth boost (Kabeya, Sakai 2005). Model (Figure 10) showed that

increased pre-harvest crowding decreased the amount of increment of Carpinus. This

phenomenon of Carpinus could be explained by the fact that decreased availability of

nutrients and water (by crowding) increased accumulation of carbohydrates in the

Carpinus root mass, which could than initiate strong sprout growth and resprouting

ability (Matula et al. 2012), but on the other hand, the lack of available nutrients and

water caused by pre-harvest crowding simply cannot supply the sprouts growth
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afterwards, which could cause that increment was decreased. Therefore, since there is

no such effect of Carpinus to pre-harvest crowding described in literature I suppose that

this effect can be caused by small Carpinus dataset and that could lead to false

statistical significance of the model.

The pre-harvest shading (calculated with length of live crown) also only

affected the sprout growth of Carpinus (Figure 13). Unlike the other species (Tilia and

Quercus) Carpinus was negatively affected not only by pre-harvest crowding (10-meter

radius) but also by crown competition (pre-harvest shading in the-5 meter radius) in

terms of sprout increment. According to Kabey, Sakai (2005) increased light availability

increases the level of stored carbohydrates. Therefore, a decrease in carbohydrate

storage associated with a decrease in light availability of the pre-harvest trees could

negatively affect the future sprout growth. Results corroborate this suggestion only in

the case of Carpinus increment and only at the narrowest radius of 5 meters. But as

previously mentioned this could be a result of false statistical significance of a small

data set. Though, as results show the sprout growth of Carpinus (in terms of increment)

are affected by pre-harvest competition (crowding and shading) and the sprout growth

(neither the biomass or increment) of Tilia and Quercus were not.

Since the original hypothesis was that increasing pre-harvest competition

(crowding, shading) will negatively affect growth of sprouts of temperate trees, due to

decreased nutrient and carbohydrate reserves from pre-harvest time

(Kabeya, Sakai 2005), the results of this thesis did not prove the hypothesis. Sprout

increment was negatively affected by pre-harvest competition (shading and crowding)

only in the case of Carpinus, which could be caused by false statistical significance of

Carpinus model due to small data set of Carpinus (24 individuals). Another possible

explanation could be that rich mesic soils of TARMAG II site can easily supply the

sprouts with nutrients, thus the pre-harvest crowding did not affect sprout growth

afterwards.

The results clearly showed that post-harvest shading (competition calculated

with height of the highest sprout) had a significantly negative effect on sprout growth of

Quercus petraea (both biomass and increment). Increasing post-harvest shading leads to

decreasing the sprout growth of Quercus (Figure 8, 9, 14, 15). This is very important

and interesting conclusion, which can be affirmed by the studies of Coates et al. (2009)
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and Kabeya, Sakai (2005) whose result also showed that increasing shading negatively

affected growth of shade intolerant trees. The results of this thesis, similarly to

Johnson et al. (2002), showed that the growth of oak sprouts is negatively affected by

shading. The explanation to why Quercus was negatively affected by post-harvest

shading and Tilia and Carpinus were not is probably simple: Quercus is shade intolerant

(light demanding) species even at early stages of growth (Johnson et al. 2002). The

initial growth of sprouts is high to help the tree persist and quickly recover from the

intervention or outbreak by using of carbohydrate reserves in belowground organs

(Bond, Midgley 2001). But as observed from the results this initial high growth can lead

to creation of early crown competition (shading) among sprouts. As Quercus is the only

shade intolerant specie (tested in this thesis) its growth (biomass and increment) is

suppressed by crown competition (shading) of surrounding sprouts in both tested

radiuses (5 and 10 meter). By contrast, the growth of shade tolerant species of Tilia and

Carpinus was not affected by post-harvest competition. This is very important because

it indicates that shade tolerant species can easily overcome and suppressed the co-

occurring shade intolerant species after harvest and shift forest composition towards a

long-term dominance of shade-tolerant species, as described by Johnson et al. (2002) on

the examples of oak forests in the USA. Relative abundance of shade-tolerant species

was also evident in TARMAG II experimental plot where 96% of all species was

Quercus. This suggestion is also supported by Matula et al. (2012) whose results

showed that shade tolerant species are better resprouters and can suppress and overcome

shade intolerant species like Quercus. Hence the results are important for managing

future establishments of coppice forests and for re-coppicing old forest in the Czech

Republic or Europe because many of the potential stands are dominated or co-

dominated by Quercus petraea (Poleno 1994). Pruning, thinning and negative selection

of the less economically valuable co-occurring tree species could lower the impact of

competition (shading) on shade intolerant species like Quercus and boost their growth.

However, additional management practices could be costly and they could lead to

economic unprofitability.
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Number of surrounding trees was also taken into consideration. The results

showed that surrounding trees did not affect the sprout growth of temperate trees in

term of biomass or increment. This is also interesting because initial suggestion was:

that higher numbers of surrounding pre-harvest trees can negatively affect sprout

growth.

On the other hand the post-harvest number of standards significantly affected

the sprout biomass production of Quercus and Carpinus (Figure 18). This is probably

because of the shade-intolerance of Quercus. The increasing numbers of standards

probably create an effect of shading, which can negatively affect the sprout growth of

shade intolerant species. Tilia, as shade tolerant species, can support this suggestion

because it was not affected by the amount of post-harvest standards. This hypothesis

corroborates with Kabeya, Sakai (2005) whose result showed that increased shading

negatively affect growth of shade intolerant trees. Also Johnson et al. (2002) showed

that Quercus as shade intolerant (light demanding) species was negatively influenced by

shading. However, Carpinus which is shade tolerant species, was also negatively

affected by increasing numbers of standards. It should not be affected according to

previous suggestions made. Therefore the reaction of Carpinus is unclear. It seems that

increasing numbers of post-harvest standards can also create competition for nutrients

and water, which can have an effect on Carpinus. As it is a shade tolerant species it is

more likely to be negatively affected in terms of competition for nutrients and water

(crowding), subsequently by competition for light (shading). It could also be that the

negative reaction of Carpinus to numbers of standards was caused by false statistical

significance of the model, due to small amount of Carpinus data set.
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Resprouting ability

Only Quercus, among all species found on TARMAG II experimental plot, was

statistically suitable for the creation of binomial models in which initial hypothesis was

tested. The effects of pre-harvest tree characteristic and pre-harvest competition on

resprouting ability were tested here. Used variables were: size parameters of the parent

tree such as diameter at breast height (DBH), total tree height and crown length, and

pre-harvest competitions such as crowding and shading. According to the results DBH

and height of the parent tree had the most significant effect on the resprouting ability of

Quercus in TARAMAG II research plot (Figure 19). Specifically, the bigger was the

DBH and the tree height of the parent tree, the smaller was the ability to resprout. Tree

height and DBH are considered to be in strong correlation with age of the tree

(Matula et al. 2012, Johnson et al. 2002). So the results of this thesis are in agreement

with the study of Tredici (2001) and Johnson et al. (2002) who discovered that

resprouting ability declines with increasing age of the parent tree. But it is evident that

the influence of age on resprouting ability can be species specific, because in contrast to

Quercus, almost every stump of Tilia and Carpinus across all the ages classes and

diameters, resprouted. Possible explanation of this theory can be attributed to bark

thickness. Johnson et al. (2002) found that with increasing age and DBH the bark

thickness (physical resistance) also increases. So that tree species with a thin and soft

bark like Tilia and Carpinus can easily resprout in older ages and tree species like

Quercus with thicker and harder to penetrate bark could have considerable difficulties

to resprout (Matula et al.2012).

In contrast to initial hypothesis, which assumed that pre-harvest crowding and

pre-harvest shading does affect the probability of sprouting of Quercus, the results

showed that competition did not affect the resprouting ability of Quercus at all

(Figure 22, 23). This is interesting for coppice forestry and re-coppicing of old stands,

because it shows that shaded and crowded stands do not have an effect on the

resprouting ability of Quercus after harvest.

Tilia successfully resprouted from every measured stump. Tilia proved to be the

most successful resprouter (best sprouter) on the site. This finding corroborates with the

works of Matula et al. (2012) and Piggot (1989) who both proved a very high sprouting

ability of Tilia cordata. Also almost every individual of Carpinus resprouted. As both
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species are shade tolerant, and successfully resprout on almost every stump, we can say

that resprouting ability of shade tolerant temperate tree species is very high or that

shade tolerant species are better resprouters than shade-intolerant species of temperate

trees. This suggestion can be confirmed by the study of Everham, Brokaw (1996), who

also observed that shade-tolerant species resprout with greater frequency than shade-

intolerant species. Given the results we can assume that resprouting ability have

implications in forest composition because better resprouters, such as the shade-tolerant

species (Tilia and Carpinus) in TARMAG II site, could easily outcompete poorer

resprouters as Quercus and thus shift the future forest composition.

Implications for coppice management

The negative effect of post-harvest competition of the sprouts growth in

Quercus, the most valuable species in terms of wood value, suggests that some level of

thinning to support this species and to suppress better sprouting of less valuable species

can be recommended. The thinning should therefore focus on the removal of sprouts of

Tilia and Carpinus in the neighbourhood of resprouting oaks, which may limit oak

growth, thus decrease the value of wood produced.
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7 SUMMARY

Resprouting and sprout growth are life strategies and key traits of persistence of
trees. Together with competition they are crucial and critical to the development and
sustainable management of coppice forests. Very little is known about the influence of
competition on spout growth and resprouting ability of temperate trees although it is
crucial for developing optimal silvicultural measures for coppice management.
Therefore, the main aim of this diploma thesis was to statistically analyse the effect of
competition on resprouting success and sprout growth of temperate trees. The unique
dataset, capturing the development of sprouts from harvest through six vegetation
seasons, were measured by Field-map technology within three inventories (2009, 2013
and 2015) at the TARMAG II (Soběšice) experimental plot. Species-specific allometric
equations and distance-dependent tree-level Hegyi competition index were used for the
calculation of sprout biomass, the increment and the competition analysis of mutual
interactions. An effect of pre-harvest crowding, pre-harvest shading or post-harvest
shading on sprout biomass production and increment was tested through the use of
generalized linear models (GLM) with gamma distribution (log likelihood). Probability
of resprouting was tested through utilizing generalized linear models with a binomial
error distribution. According to the results the pre-harvest competition (crowding,
shading) did not affect sprout growth of Quercus and Tilia, but it negatively affected the
increment of Carpinus by pre-harvest competition (shading in the 5-meter radius and
crowding in the 10-meter radius). Additionally, the post-harvest shading showed a
significantly negative effect on sprout growth of Quercus (both biomass and increment).
The number of standards also negatively affected sprout biomass production of Quercus
and Carpinus. The pre-harvest shading and crowding did not affect the resprouting
ability of Quercus. DBH and height of the parent tree had the most significant effect on
the resprouting ability of Quercus petraea, where the higher was the DBH and the tree
height was, the lower was the resprouting ability. It can be noted that the results are
important for future management and establishment of coppice forests or for re-
coppicing of old forest in Europe. The results indicate that there is a significant crown
competition (shading) among sprouts in early stages of growth, which negatively affects
sprout biomass production and increment. Also, that pre-harvest competition does not
affect the resprouting ability of temperate trees. Due to significant post-harvest
competition, appropriate management practises (like thinning) should be applied in the
future. There is a lack of empiric information for sustainable management of coppice
and restored coppice forest. Further research on this topic is needed.
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8 SHRNUTÍ

Růst výmladků a výmladná schopnost stromů jsou strategie a klíčové vlastnosti

pro persistenci stromů. Spolu s kompeticí jsou důležité pro vývoj a udržitelné

hospodaření s výmladkovými lesy. Stále toho moc nevíme o vlivu kompetice na růst

výmladků a na výmladnou schopnost stromů mírného pásma, i když tato informace je

klíčová pro vývoj optimálního managementu pro pařeziny. Z toho důvodu bylo hlavním

cílem této diplomové práce statisticky analyzovat vliv kompetice na výmladnou

schopnost a růst výmladků. Unikátní soubor dat, zachycující růst výmladků od těžby

přes 6 vegetačních sezón, byl naměřen pomocí technologie Filed-map během tří

inventarizací (v letech 2009, 2013, 2015). Měření a sběr dat byl prováděn na výzkumné

ploše TARMAG II (Soběšice). Alometrické rovnice a Hegyiho kompetiční index byly

použity pro výpočty biomasy a přírůstů výmladků a k analyzování konkurenčních

vztahů. Ke zjištění, kde měly před-těžební kompetice a po-těžební kompetice vliv na

přírůst a biomasu výmladků, byly použity generalizované lineární modely s gamma

rozdělením. Výmladná schopnost stromů byla testována pomocí generalizovaných

lineárních modelů s binomickým rozdělením. Dle výsledků před-těžební kompetice o

světlo (shading) a kompetice o vodu a živiny (crowding) neovlivnila růst výmladků lípy

malolisté a dubu zimního, ovlivněn byl pouze přírůst u habru. Na druhou stranu po-

těžební kompetice o světlo významně negativně ovlivnila růst výmladků u dubu

zimního. Před-těžební kompetice o světlo a kompetice o vodu a živiny neovlivnila

výmladnou schopnost dubu. Nejvýznamnější vliv na výmladnou schopnost dubu měla

výška a tloušťka (DBH) matečného stromu, kde se zvyšující se výškou a tloušťkou se

výmladná schopnost dubu snižovala. Výsledky této práce jsou důležité pro hospodaření

a budoucí zakládání výmladkových lesů v Evropě, protože ukazují, že i velmi brzo po

těžbě se u výmladků významně projevuje negativní vliv kompetice (o světlo) na přírůst

a růst výmladků. Také, že před-těžební kompetice (o světlo, o vodu a živiny) neovlivní

výmladnou schopnost stromů po těžbě. Z důvodu významné kompetice (o světlo) mezi

výmladky po těžbě by bylo do budoucna vhodné aplikovat výchovné zásahy, například

probírky. Nicméně, protože je stále málo empirických dat pro udržitelné hospodaření ve

výmladkových lesích, je zapotřebí dalších výzkumů a měření na toto téma.
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Appendix 2 TARMAG II map

Map of measuered trees at TARMAG II research plot (Soběšice). The green points represent individual stumps (sprouting
and dead) and red points represent standards. As the source for this map were data from in situ Field-map measurements.
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Appendix 3 Photos from TARMAG II research plot

Stump sprouts of Quercus petraea at
TARMAG II research plot (Soběšice).
Author: Lukáš Patra

Sheet metal tag with an identification number
of tree
Author: Lukáš Patra

Basal diameter measurement of the sprouts, using a digital caliper
Author: Lukáš Patra
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