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Reinforcement Learning in Algorithmic Trading 

Abstract 

The field of algorithmic trading has traditionally relied on established financial models and 

technical analysis. However, the rise of deep reinforcement learning (DRL) offers a 

compelling new paradigm for developing trading strategies. This thesis explores the 

potential of D R L for algorithmic stock trading by implementing and comparing the 

performance of five advanced D R L algorithms (A2C, DDPG, PPO, TD3, SAC) against a 

traditional benchmark, the Dow Jones Industrial Average (DJIA) index. 

The study utilizes historical market data to train and evaluate these agents. Key performance 

metrics, including Sharpe ratio, drawdown, and risk-adjusted returns, are employed to assess 

their effectiveness. Results demonstrate that DRL-based trading strategies hold the potential 

to outperform traditional benchmark-following approaches, particularly during periods of 

market volatility. Notably, the DDPG agent displayed remarkable resilience during 

downturns, highlighting DRL's adaptability. 

This thesis contributes to the growing body of research on the intersection of machine 

learning and finance. It provides insights into the strengths and limitations of different D R L 

algorithms for trading applications, paving the way for further research into the development 

of robust and profitable algorithmic trading systems. 

Keywords: Reinforcement Learning, Deep Reinforcement Learning, Machine Learning, 

Algorithmic Trading, Financial Markets, Trading. 



Posilovači učení v algoritmickém obchodování 

Abstrakt 

Oblast algoritmického obchodování se tradičně opírá o zavedené finanční modely a 

technickou analýzu. Rozvoj hlubokého posilovacího učení (deep reinforcement learning, 

DRL) však nabízí nové přesvědčivé paradigma pro vývoj obchodních strategií. Tato práce 

zkoumá potenciál D R L pro algoritmické obchodování s akciemi implementací a porovnáním 

výkonnosti pěti pokročilých algoritmů D R L (A2C, DDPG, PPO, TD3, SAC) s tradičním 

benchmarkem, indexem Dow Jones Industrial Average (DJIA). 

Studie využívá historická tržní data k tréninku a vyhodnocení těchto agentů. K hodnocení 

jejich účinnosti jsou použity klíčové ukazatele výkonnosti, včetně Sharpeho poměru, čerpání 

a výnosů očištěných o riziko. Výsledky ukazují, že obchodní strategie založené na D R L mají 

potenciál překonat tradiční přístupy sledující benchmark, zejména v obdobích volatility trhu. 

Zejména agent DDPG vykazoval pozoruhodnou odolnost během poklesů, což zdůrazňuje 

přizpůsobivost DRL. 

Tato práce přispívá k rostoucímu počtu výzkumů v oblasti propojení strojového učení a 

financí. Poskytuje vhled do silných stránek a omezení různých algoritmů D R L pro obchodní 

aplikace a otevírá cestu k dalšímu výzkumu vývoje robustních a ziskových algoritmických 

obchodních systémů. 

Klíčová slova: Posilovači učení, Hluboké posilovači učení, Strojové učení, Algoritmické 

obchodování, Finanční trhy, Obchodování. 
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1 Introduction 

Financial markets present a complex environment where investors strive to optimize 

returns while managing risk. Traditional algorithmic trading strategies often rely on 

technical indicators and established financial models. However, these approaches can be 

limited in their ability to adapt to rapidly changing market dynamics. The emergence of deep 

reinforcement learning (DRL) offers a compelling alternative, empowering algorithms to 

learn directly from market data and make adaptive trading decisions. 

This thesis investigates the potential of D R L for algorithmic trading. It centres on a 

comparative analysis of five cutting-edge D R L algorithms (A2C, DDPG, PPO, TD3, SAC), 

benchmarked against the Dow Jones Industrial Average (DJIA). Using historical market 

data, these agents are trained and evaluated on their ability to generate profitable trading 

strategies. Performance is assessed through key financial metrics, including Sharpe ratio, 

maximum drawdown, and risk-adjusted returns. 

Existing research suggests that D R L holds the potential to navigate market 

complexities and outperform traditional approaches. This thesis aims to contribute to this 

growing body of knowledge by offering a rigorous comparison of different D R L algorithms 

in the trading domain. The results of this study will shed light on the strengths, weaknesses, 

and practical applicability of D R L for algorithmic trading. 

This thesis is structured to first establish a theoretical foundation in financial trading and 

reinforcement learning, with a specific focus on Deep Q-Networks and policy gradient 

methods. It then delves into the practical implementation, detailing the data processing, agent 

training process, and evaluation criteria for the D R L agents. Subsequently, it presents the 

experimental results and discussions, analysing the agents' performance against the DJIA 

benchmark. 

Ultimately, this research aims to illuminate the potential of reinforcement learning for 

developing intelligent and robust algorithmic trading strategies. 



2 Objectives and Methodology 

2.1 Objectives 

The primary objective of this thesis is to evaluate the effectiveness of various deep 

reinforcement learning (DRL) algorithms for algorithmic stock trading. Through a 

comparative analysis, this study will examine the performance of agents A2C, DDPG, PPO, 

TD3, and SAC. Their performance will be benchmarked against a traditional market index, 

such as the DJIA, using key financial metrics to assess their potential for generating 

profitable trading strategies. 

2.2 Methodology 

This study leverages the FinRL library to construct a stock trading environment and 

obtains historical stock market data from Yahoo Finance. Data preparation involves 

calculation of technical indicators and turbulence index. Five deep reinforcement learning 

agents (A2C, DDPG, PPO, TD3, SAC) are implemented using the Stable Baselines3 library, 

employing default hyperparameter settings for initial exploration. The agents interact with 

the environment, taking actions based on market features and receiving rewards that reflect 

their trading decisions. Key financial metrics such as Sharpe ratio, maximum drawdown, 

and risk-adjusted returns are utilized for evaluation. The D R L agents' performance is 

benchmarked against the DJIA index, and backtesting on out-of-sample data validates the 

strategies' robustness. 



3 Literature Review 

This part of the thesis provides a foundational exploration of key concepts essential 

for understanding the application of deep reinforcement learning (DRL) in algorithmic 

trading. It begins by outlining the principles of financial trading and the core components 

of reinforcement learning, including Markov Decision Processes and Q-learning. 

Subsequently, the review delves into Deep Q-Networks (DQN), a seminal breakthrough in 

DRL, and examines various policy gradient methods. This comprehensive groundwork sets 

the stage for understanding the specific challenges of the financial trading domain and how 

the D R L algorithms investigated in this thesis address them. 

3.1 Financial Trading 

This section of thesis introduces the concept of algorithmic trading, in which the 

execution of trades is automated through rule-based systems. It underscores the prominence 

of technical analysis within this domain, where traders utilize historical price data and 

statistical indicators to identify patterns and inform their strategies. Key technical indicators 

such as the Moving Average Convergence Divergence (MACD) and Relative Strength Index 

(RSI), due to their significance in the agent's decision-making, will be defined. This 

establishes the groundwork for understanding how traditional algorithmic approaches 

function and provides context for the motivation behind exploring machine learning-driven 

techniques. 

3.1.1 Financial trading 

Financial trading means buying and selling assets like stocks, bonds, currencies, or 

commodities to profit from short-term price changes. Unlike investing, which focuses on 

long-term gains, trading aims to capitalize on quick market movements. Day trading (buying 

and selling within the day), scalping (small, frequent trades), and swing trading (holding for 

a few days or weeks) are all examples of financial trading strategies. (Dodd, 2020) 

3.1.2 Algorthmic trading 

Algorithmic trading involves using computer programs that follow specific rules to 

make trading decisions, place orders, and even manage the trades after they've been 



executed. These programs are designed to analyse market data, identify potential 

opportunities, and act according to pre-programmed instructions. The goal of algorithmic 

trading is to remove human emotion from the process, increase the speed of execution, and 

potentially gain an edge in the ever-changing markets. (Johnson, 2010) 

3.1.3 The Moving Average Convergence and Divergence (MACD) 

The Moving Average Convergence/Divergence (MACD) is a technical analysis tool 

used to identify trend changes, assess trend strength, and spot potential overbought/oversold 

conditions. It works by analysing the relationship between two different exponential moving 

averages (EMAs). 

M A C D line is calculated as: 

MACD line = EMA12 - EMA26 (1) 

The signal line is then the exponential moving average (EMA) of the M A C D line: 

Signal line = EMA9 (MACD line) (2) 

Where EMA is exponential moving average and subscript indicates number of past days. 

Traders often look for crossovers between the M A C D line and signal line. A bullish 

crossover (MACD above signal) may indicate a buy signal, while a bearish crossover 

(MACD below signal) may indicate a sell signal. (Dolan, 2024) 

3.1.4 Relative strength index (RSI) 

The Relative Strength Index (RSI) is a momentum oscillator used in technical 

analysis. Developed by J. Welles Wilder Jr., it measures the speed and magnitude of a 

security's recent price changes to assess overbought or oversold conditions. RSI values range 

from 0 to 100. (Fernando, 2024) 

Relative strength index is calculated as: 

RSI = 100 -



Where RS is relative strength factor. (Fernando, 2024) 

3.1.5 Limitations of pre-defined rule based algorithmic trading. 

Pre-defined rule-based algorithmic trading systems are built upon a static set of 

instructions. This makes them inflexible when faced with changing market conditions or 

unexpected events like sudden volatility or news-driven price swings. Their inability to adapt 

can lead to missed opportunities or significant losses, highlighting the need for constant 

monitoring and refinement to remain effective. (How Is Machine Learning Used in Trading?, 

2022) 

As market dynamics evolve or new rules are added to address shortcomings, rule-

based systems often become increasingly complex. This complexity makes optimization a 

significant challenge, as even small changes can have unintended consequences across the 

interconnected rules. There's also the risk of overfitting, where the system becomes overly 

tailored to historical data and performs poorly in real-time trading environments as it fails to 

generalize well to new market situations. 

The limitations of pre-defined rule-based algorithmic trading, such as their lack of 

adaptability to changing market conditions, their complexity, and the risk of overfitting, 

underscore the potential advantages of reinforcement learning (RL) approaches. R L focuses 

on agents that learn and improve through interaction with their environment, allowing them 

to identify patterns, adapt to shifting dynamics, and make decisions that weren't explicitly 

programmed. This adaptability, along with RL's ability to handle complexity and mitigate 

overfitting, make it a promising avenue for developing more robust and flexible trading 

strategies in the complex financial landscape. 

3.2 Reinforcement Learning 

This section of thesis introduces the concepts of Reinforcement Learning. We will 

discuss the Markov property, Markov decision processes (MDPs), value functions, the 

Bellman equation, and Q-learning. These concepts lay the groundwork for understanding 

more sophisticated R L algorithms, such as the Deep Q-Network (DQN) employed later in 

this work. 



Reinforcement learning is a branch of machine learning concerned with how 

intelligent agents should take actions within an environment to maximize a cumulative 

reward signal. Unlike supervised learning, R L agents do not receive explicit labelled 

examples of correct behaviour. Instead, the agent learns through trial and error, interacting 

with the environment and receiving feedback in the form of rewards or punishments. 

(Sutton, Barto, 2018) 

This learning process is rooted in the principle that actions yielding positive rewards 

should be reinforced, while those with negative consequences should be discouraged. Over 

time, the agent aims to discover an optimal policy, a mapping from states to actions that 

maximizes its expected long-term return. R L draws from principles of psychology, 

neuroscience, and optimal control, offering a framework for sequential decision-making in 

dynamic and uncertain environments. (Sutton, Barto, 2018) 

3.2.1 Markov property 

In the context of reinforcement learning, the Markov property signifies that all 

information necessary to predict future states and rewards is encapsulated in the current state 

of the environment. In other words, the history of past states and actions does not provide 

additional predictive power beyond what is contained within the present state. This property 

underpins many reinforcement learning algorithms, as it allows the agent to make decisions 

based solely on its current situation rather than requiring a complete record of past 

interactions. (Sutton, Barto, 2018) 

Markov property can be formulated as: 

F[St+1\St] = F[St+1\S1,S2...,St] (4) 

Which states that probability of moving to next state St+1 only depends on current state St 

and is independent on previous states before St. 

3.2.2 Markov decision process 

A Markov Decision Process (MDP) is a mathematical framework for modelling 

decision-making in dynamic systems where outcomes are partially random and partially 

controlled. It helps determine the optimal actions for an agent based on the current state of 



the system and potential rewards. MDPs are widely used in artificial intelligence. In 

probabilistic planning, they guide agents with known models to achieve goals, while in 

reinforcement learning (RL), they allow agents to learn from environmental feedback, even 

with uncertain outcomes. (Puterman, 1994) 

MDP framework has following components: 

• S: set of states. 

• A: set of actions 

• P: state transition probability matrix P^sl = F[St+1 = s'\ St = s,At = a] 

• y: discount factor 

• R: reward 

The agent-environment interface in a Markov Decision Process (MDP) is 

characterized by a cyclical interaction. At each time step, the agent selects an action from 

the available set. This action triggers a state transition within the environment, and the agent 

receives a corresponding reward signal. The agent's subsequent decisions are informed 

solely by this new state and reward, upholding the Markov property. This interface forms 

the foundation upon which reinforcement learning algorithms seek to optimize the agent's 

decision-making policy. 

Figure 1 Agent-Environment interface in a MDP 

Agent 

state reward 

'in

action 
A, 

Environment 

Source: www.towardsdatascience.com (Singh, 2019) 

http://www.towardsdatascience.com


3.2.3 Return 

In reinforcement learning, the "return" typically refers to the cumulative sum of 

rewards obtained by an agent over a sequence of time steps. It represents the overall measure 

of the agent's performance in an environment, considering both immediate and future 

rewards. The return is often denoted as G and is defined as the sum of rewards discounted 

by a factor y over time: 

Gt = Rt+1 + YRt+2 + Y2Rt+s + - = I,k=oYkRt+k+i (5) 

Where Gt is return at time step t, Rt+k+i is reward obtained at time step t + k + 1 and y is 

discount factor, determining the importance of future rewards. 

The return is central to R L as it guides the agent's learning process. The agent's 

objective is to find a policy that maximizes the expected value of the return. (Lee, 2005) 

3.2.4 Policy 

In reinforcement learning, a policy is a strategy or a set of rules that an agent employs 

to make decisions in an environment. It defines the mapping from states to actions, 

specifying the agent's behaviour at each point in its interaction with the environment. Policy 

is denoted by n and can be deterministic or stochastic. 

• Deterministic policy directly maps each state to a specific action, n • S -> A 

• Stochastic policy specifies a probability distribution over actions for each state. In 

other words, it describes the likelihood of taking each possible action in a given state. 

n : S xA -> [0,1] 

The central goal of many R L algorithms is to find an optimal policy (n*) that 

maximizes the expected cumulative reward the agent receives from the environment. 

Policies can be learned: 

• Implicitly (value-based methods), where the agent learns value functions and then 

derives actions that lead to more favourable states. 

• Explicitly (Policy-Based Methods), where the policy function itself is directly 

modelled and optimized. (Carr, 2023) 



3.2.5 Value functions 

Value functions in reinforcement learning serve as powerful tools for predicting how 

much future reward an agent can expect to receive by being in a specific state or taking a 

particular action within that state. They form a core concept by allowing the agent to evaluate 

the long-term consequences of its decisions. By learning to identify states (or state-action 

pairs) with higher associated values, agents can develop optimal strategies to maximize their 

cumulative rewards. (Szepesvari, 2010) 

State-Value Function (V-function) 

The state-value function, denoted as V(s), predicts the total discounted reward an 

agent can expect to accumulate starting from a state's' and then subsequently following a 

given policy. Mathematically, it's the expected sum of future rewards, with those further in 

the future discounted using a factor (gamma) to prioritize immediate gains. 

(Bertsekas, Tsitsiklis, 1996) 

Vn(s) = En[2l?=oY

tRt+i\So=s] (6) 

Where V(s) is the state value for state s, En denotes the expectation under a policy 

7r, y is the discount factor, Rt+1 is the reward obtained at time step t+1, and S0 = s indicates 

that the agent starts in state s. 

Action-Value Function (Q-function) 

The action-value function, denoted as Q(s,a), focuses on the value of taking a specific 

action 'a' while in state's', and then continuing according to the policy. Similar to the state-

value function, it predicts the expected cumulative discounted reward. This function allows 

the agent to evaluate the potential outcomes of each action in a given state. 

(Bertsekas, Tsitsiklis, 1996) 

Qn(s,a) = E J I ^ o r ^ t + i l S0 = s,A0 = a] (7) 

Here, Q(s,a) is the action value for state-action pair (s, a), En denotes the 

expectation under a policy n, y is the discount factor, Rt+1 is the reward obtained at time 

step t + 1, 5 0 = s and A0 = a indicates initial state and action. 



3.2.6 Bellman equation 

The Bellman equation, named after Richard E. Bellman, is a fundamental equation 

in dynamic programming and reinforcement learning. It expresses the value of a particular 

state (or state-action pair) in terms of the immediate reward received and the discounted 

value of successor states. The Bellman equation can be written for state-value functions V(s) 

or action-value functions Q(s,a). The Bellman equation provides a recursive structure for 

calculating value functions. Iterative methods based on this equation form the basis of many 

dynamic programming and reinforcement learning algorithms. (Bellman, 1957) 

Bellman expectation equation of the state-value and action-value functions are represented 

as: 

Vn(s) = E[Rt+1 + yVn{St+1) \St = s] (8) 

Qn(s,a) = E[Rt+1 + yQn(St+1,At+1) \St = s, At = a] (9) 

Where: 

• Vn(s) is the value of state, representing the expected cumulative future rewards 

following policy n. 

• Qn(s,a) is the action-value function, representing the expected cumulative future 

rewards for taking action a in state s following policy n. 

• Rt+1 is the immediate reward obtained after transitioning from state s to the next 

state St+1. 

• St+1 is the next state reached after taking action a in state s. 

• At+1 is the action chosen in the next state. 

• y is discount factor, emphasizing the importance of future rewards. 

These equations capture the recursive relationships between the current value (or 

action-value), the immediate reward, and the discounted expected value (or action-value) 

of the next state. These equations serve as fundamental building blocks for devising 

reinforcement learning algorithms such as Q-learning and DQN. (Singh, 2019) 

3.2.7 Q-learning 

Q-learning is a core reinforcement learning algorithm designed to find the optimal 

action-selection strategy within a Markov Decision Process (MDP). It focuses on learning 



the Q-function, Q(s,a), representing the expected long-term reward of taking action a in 

state s and then acting optimally from there on. Q-learning is model-free, meaning it doesn't 

need a model of the environment beforehand, making it widely applicable. (Lapan, 2020) 

The algorithm learns through experience. Using temporal difference learning, it 

iteratively updates its Q-values based on the rewards received and the estimated values of 

the next states encountered. Q-learning is off-policy, allowing it to improve its estimates of 

the optimal policy even while following a different behaviour. Through repeated updates, 

Q-values gradually become consistent with the Bellman equation, guiding the agent to select 

actions that eventually maximize its total reward. (Lapan, 2020) 

Bellman update equation in Q-learning: 

Q(s,a) «- Q(s,a) + a[R(s,a) + ymaXa Q(s',a') - Q(s,a)] (10) 

Where: Q(s, a) is the current estimated value for state s and action a. a is the learning rate, 

a value between 0 and 1, controls how much the existing Q-value is adjusted with each 

update. R(s,a) represents immediate reward received for taking action a in state s. y is 

discount factor, value between 0 and 1, balances the importance of immediate rewards vs. 

the potential for future rewards. Higher gamma value places more emphasis on long-term 

gains, while a lower gamma prioritizes immediate rewards, max^ Q(s',a') represents the 

estimated maximum future reward achievable from the next state s' by taking any possible 

action a'. (Bellman, 1957) 

Temporal difference 

Temporal difference (TD) learning is a central concept in reinforcement learning. It 

differs from traditional dynamic programming methods by not requiring a full model of the 

environment and differs from Monte Carlo methods by not needing to wait until the end of 

an episode to learn. Instead, TD methods learn by updating their estimates of value functions 

based on other estimates within the process. (Dutta, 2018) 

Temporal difference is difference between the current estimate of a value and a 

slightly improved estimate obtained from the immediate reward and the estimated value of 

the next state. TD learning algorithms use this difference to drive updates, gradually 



adjusting the current estimates towards more accurate values reflecting the long-term 

rewards the agent can expect. 

Notice that the part of bellman update equation R(s, a) + y max^ Q(s', a') — 

Q(s, a)] represents temporal difference, where R(s, a) + y max^ Q(s', a') is improved 

estimate and Q(s, a) is the current estimate. 

Exploration vs. Exploitation 

A core challenge in reinforcement learning is the trade-off between exploration and 

exploitation. Exploitation refers to the agent leveraging its current knowledge to select the 

actions that it believes will yield the highest rewards based on past experience. Exploration, 

on the other hand, involves trying new actions that may seem suboptimal in the short term 

but could potentially lead to the discovery of better long-term strategies. 

In most R L problems, the agent begins without a perfect understanding of the 

environment or how its actions lead to rewards. Exploration is crucial for discovering higher-

rewarding states and actions, f the environment's reward structure changes over time, an 

agent that solely engages in exploitation might get stuck in a suboptimal strategy. Continued 

exploration allows it to adapt. (Russell, Norvig, 2020) 

Epsilon-greedy strategy 

The epsilon-greedy strategy is a fundamental exploration-exploitation technique in 

reinforcement learning. It guides an agent's action selection by balancing between 

exploration of unknown options and exploitation of known optimal choices. With probability 

epsilon e, the agent explores a random action, allowing it to discover potentially better 

alternatives. On the other hand, with probability 1-e, the agent exploits the current best-

known action based on its learned Q-values. This approach ensures a trade-off between 

trying new possibilities to improve the agent's understanding of the environment and 

leveraging established knowledge to maximize cumulative rewards, making epsilon-greedy 

a versatile and widely used strategy in reinforcement learning algorithms. Value of epsilon 

parameter is between 0 and 1 and gradually decreases over time to favour exploitation as 

learning progresses. (Ravichandiran, 2018) 



Hyperparameters in Q-learning 

Hyperparameters play a crucial role in Q-learning, influencing the algorithm's 

behaviour, convergence, and overall performance. The learning rate a determines the step 

size during updates, affecting how much the current Q-values are adjusted based on new 

information. A higher a gives more weight to recent experiences, potentially leading to faster 

adaptation but risking instability. The discount factor y balances immediate rewards against 

future gains, impacting the trade-off between short-term and long-term decision-making. 

Selecting an appropriate e for the epsilon-greedy strategy is vital, as it dictates the agent's 

exploration-exploitation behaviour. Careful tuning of these hyperparameters is necessary to 

ensure Q-learning converges effectively and generalizes well across various environments. 

(Habib, 2019) 

Practical Limitations 

Traditional Q-learning relies on storing Q-values in a table, mapping each possible 

state-action pair to its expected reward value. However, this approach becomes infeasible in 

environments with large or continuous state spaces, like those involving image-based input 

or complex control tasks. The number of entries in the Q-table explodes, hindering learning 

and preventing generalization to unseen but similar states. 

Deep Q-Networks (DQN) address this limitation by replacing the Q-table with a 

neural network. This neural network serves as a powerful function approximator, learning 

to estimate Q-values directly from the state input. This allows DQN to handle the high-

dimensional and complex state spaces common in real-world applications. Since neural 

networks can learn patterns, DQN can generalize knowledge across similar states, leading 

to more efficient learning and better performance in unseen scenarios. (Kvartalnyi, 2023) 

3.3 Deep Q-network (DQN) 

Traditional Q-learning, while a foundational reinforcement learning algorithm, 

encounters limitations when dealing with complex environments characterized by large or 

continuous state spaces. The tabular approach to storing Q-values becomes infeasible, 

hindering learning and generalization. Deep Q-Networks (DQN) elegantly address this 

challenge by replacing the Q-value table with a powerful deep neural network. This network 



learns to approximate the Q-function, estimating the expected future rewards of taking 

actions directly from the state representation. (Kvartalnyi, 2023) 

This section will delve into the components and techniques that underpin DQN's 

success. We will explore the architecture of the neural network Q-value approximator, the 

innovative experience replay mechanism, and the use of a target network to promote training 

stability. Furthermore, we'll examine optimization considerations, loss functions, and the 

role of activation and regularization techniques within the network. These elements 

collectively enable D Q N to achieve state-of-the-art performance in domains where 

traditional Q-learning falters. 

3.3.1 Neural networks 

Neural networks (NNs) are a cornerstone of deep learning, inspired by the structure 

and function of the human brain. They consist of interconnected layers of artificial neurons, 

which process information and learn from data. A typical N N has an input layer that receives 

data, hidden layers that perform computations, and an output layer that produces results. 

Each layer contains multiple artificial neurons, connected by weighted links. NNs learn by 

adjusting the weights of these connections based on the data they are trained on. This 

process, called backpropagation, iteratively minimizes the difference between the network's 

predictions and the desired outputs. (Hardesty, 2017) 

Artificial neuron 

A neuron, the basic building block of a neural network, processes information through a 

series of steps. It receives multiple inputs, each associated with a weight that determines its 

importance. The neuron calculates a weighted sum of its inputs, adds a bias term, and then 

applies a non-linear activation function to this sum. The result of the activation function 

becomes the neuron's output, influencing neurons in subsequent layers or forming part of the 

network's final prediction. (Tucci, 2013) 



Figure 2 Structure of the artificial neuron 

Neuron output 

Source: www.researchgate.net 

Feedforward Neural Network FNN 

A feedforward neural network is a type of artificial neural network where information 

flows strictly in one direction, from the input layer, through hidden layers where 

computations occur, and finally to the output layer. Neurons in a feedforward network do 

not form loops or connections back to earlier layers. Feedforward neural networks learn 

through a process called backpropagation. During training, errors between the network's 

outputs and the desired targets are calculated. Backpropagation systematically determines 

how much each weight in the network contributed to those errors and adjusts the weights 

accordingly, with the goal of minimizing future errors. This iterative adjustment process 

allows the network to gradually learn complex patterns and relationships within the data. 

(Goodfellow etal.,2016) 

http://www.researchgate.net


Figure 3 Structure of Feedforward neural network 

Input layer Hidden layer Output layer 

Source: www.researchgate.net 

3.3.2 Activation function 

An activation function is a non-linear function applied to the weighted sum of a 

neuron's inputs (plus its bias) within a neural network. It determines the neuron's output, 

influencing the signal passed to the next layer. Activation functions are crucial because they 

introduce non-linearity into neural networks, enabling them to learn complex, real-world 

relationships that aren't simple linear combinations of their inputs. (Baheti, 2021) 

ReLU (Rectified Linear Unit) 

The ReLU activation function is a popular choice in neural networks due to its 

computational efficiency and effectiveness in mitigating the vanishing gradient problem. It's 

defined as f(x) = max (0,x), meaning it outputs the input directly if it's positive and zero 

otherwise. ReLU's simplicity speeds up computations compared to functions like sigmoid 

and tanh. Additionally, its non-saturating gradient for positive inputs helps preserve learning 

signals across deep network layers. (Brownlee, 2020) 

http://www.researchgate.net


Figure 4 ReLU Activation function 
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Source: www.researchgate.net 

3.3.3 Optimization Algorithm 

Optimization algorithms are the engines driving the learning process in neural 

networks. They guide how the network's weights (and sometimes biases) are updated to 

minimize a loss function. This loss function quantifies the error between the network's 

predictions and the true target values. The optimization algorithm's goal is to find the 

weights that produce the best possible performance on the task. Common optimization 

strategies include gradient descent (with variations like stochastic or mini-batch gradient 

descent), momentum-based methods that enhance convergence, and algorithms like 

AdaGrad, RMSprop, and Adam that utilize adaptive learning rates for individual parameters. 

(Walia, 2021) 

Adam Optimizer (Adaptive Moment Estimation) 

Adam is an optimization algorithm widely used in deep learning. It combines aspects 

of momentum optimization and RMSprop to adaptively adjust learning rates during training. 

Adam maintains two moving averages, the first moment (mean) and the second moment 

(uncentered variance) of the gradients, providing adaptive learning rates for each parameter. 

This adaptability allows Adam to handle various types of data and optimize neural network 

models efficiently. The algorithm has become a popular choice for its robust performance, 

effective handling of sparse gradients, and the ability to converge quickly during training, 

making it well-suited for tasks like training Deep Q-Networks (DQN) in reinforcement 

learning. (Walia, 2021) 

http://www.researchgate.net


Figure 5 Comparison of optimizers training on MNIST images. 

i MNIST Multilayer Neural Network + dropout 

0 50 100 150 200 
iterations over entire dataset 

Source: www.fast.ai 

3.3.4 Experience Replay 

Experience Replay is a reinforcement learning technique where the agent's past 

experiences (state, action, reward, next state) are stored in a memory buffer. During training, 

the algorithm randomly samples batches from this buffer instead of relying solely on the 

most recent experience. This breaks the correlation between consecutive samples, allows for 

the reuse of valuable experiences, and generally leads to more efficient learning and greater 

stability in the training process. (Lapan, 2020) 

3.3.5 Target Network 

A target network in the context of deep reinforcement learning refers to a separate 

neural network used to stabilize and improve the training process. Typically associated with 

algorithms like DQN, the target network is a copy of the primary network, often referred to 

as the Q-network, but its parameters are updated more slowly. This delayed updating helps 

mitigate the issues of training instability and divergence that can arise when using a single 

network to estimate both current and target values. By periodically updating the target 

http://www.fast.ai


network's parameters, the learning process becomes more robust, as it introduces a smoother 

and more consistent set of target values for the agent to optimize towards during the 

reinforcement learning training. This concept aids in achieving a more reliable convergence 

and improved training efficiency, contributing to the overall stability and effectiveness of 

the reinforcement learning algorithm. (Sutton, Barto, 2018) 

3.3.6 Practical Limitations 

Critic-only methods like DQN, while powerful, have limitations. They struggle with 

continuous action spaces where actions aren't discrete choices. Additionally, they cannot 

directly learn stochastic policies where the agent outputs a probability distribution over 

actions. 

This motivated the evolution towards actor-only methods. These excel at continuous 

actions and stochastic policies but can suffer from high variance and slow convergence. 

Actor-critic methods emerged as a balance, combining the strengths of both. The critic 

provides guidance for policy improvement, reducing variance, while the actor enables the 

flexibility necessary for complex environments. 

3.4 Policy Gradient Method 

Policy gradient methods form a powerful class of reinforcement learning algorithms 

that directly optimize the policy, the agent's decision-making strategy. Unlike value-based 

methods that first learn a value function, policy gradient methods directly update the policy 

parameters to maximize expected rewards. They are particularly well-suited for problems 

with continuous action spaces or when a stochastic policy (a distribution over actions) is 

desirable. (Goodfellow et al., 2016) 

At their heart, policy gradient algorithms seek to increase the probability of actions 

that lead to high rewards and decrease the probability of those that don't. This is often 

achieved through a gradient ascent procedure, where the policy parameters (often denoted 

by 0) are updated in a direction that improves the expected long-term return. A common 

policy gradient update rule takes the form: 

0(t + 1) = 0(t) + aV[/(0)] (11) 

Where a is learning rate, J(9) is an objective function measuring expected return, and V[J(9)] 

is the gradient of the objective function with respect to the policy parameters. 



Policy gradient methods offer advantages such as their ability to handle continuous 

action spaces effectively and their potential to learn stochastic policies. Additionally, they 

have the potential to converge to better local optima in some problems compared to value-

based methods. However, a notable drawback is that they can suffer from high variance in 

the gradient estimates, which can lead to instability in the learning process. Furthermore, 

their convergence might be slower compared to value-based methods in certain scenarios. 

3.4.1 PPO (Proximal Policy Optimization) 

PPO is an influential policy gradient algorithm designed to improve upon the stability 

and sample efficiency of traditional policy gradient methods. To understand PPO, let's 

denote the ratio between the new policy and the old policy as r(9). PPO's clipped surrogate 

objective can then be expressed as: 

LCLIP (Q)=Et [min(rt (Q)Tt, clip (r t (6), 1 - e, 1 + e)Tt)] (12) 

Where Et is the empirical average over time, At is an advantage estimator, and e is a 

clipping parameter. (Lapan, 2020) 

This objective function encourages updates when the ratio r(9) leads to improvement but 

clips the objective to prevent excessively large policy changes. 

The techniques employed by PPO have significantly advanced the applicability of 

policy gradient methods in complex domains, including trading, due to increased stability 

and robustness. 

3.5 Actor-critic methods 

Actor-critic methods offer a powerful paradigm within reinforcement learning, 

strategically blending the strengths of value-based and policy-based approaches. The "actor" 

component represents the agent's policy, directly responsible for selecting actions based on 

the current state of the environment. In contrast, the "critic" component learns a value 

function, which serves to estimate the expected future rewards from a given state or state-

action pair. The critic's evaluation provides a more informed signal for updating the actor's 

policy, going beyond the simple success/failure feedback of pure policy gradient methods. 



This combination offers several key advantages. The incorporation of a learned value 

function helps reduce the variance often present in policy gradient updates, leading to 

increased stability in the learning process. Additionally, actor-critic methods can improve 

sample efficiency, meaning they can learn effectively from less environmental interaction. 

Furthermore, many actor-critic architectures are well-equipped to handle continuous action 

spaces, making them directly applicable to the complexities of algorithmic trading, where 

precise order sizes might be required. (Karunakaran, 2020) 

3.5.1 A2C (Advantage Actor-Critic) 

A2C (Advantage Actor-Critic) is a seminal actor-critic algorithm known for its 

effectiveness and relative simplicity. A core concept in A2C is the utilization of the 

advantage function, which quantifies how much better an action performed, relative to 

expectations. (Simonini, 2022) 

Mathematically, the advantage function can be expressed as: 

A(st,at) = Q(st,at)-V(st) (13) 

Where Q(s t, a t) is the Q-value (expected future reward for taking action at in state st) and 

V(st) is the state value (expected future reward from state st). 

This calculated advantage serves to focus the learning process on surprisingly good 

or surprisingly bad action choices. A2C updates both its actor (policy) and critic (value 

function) components in tandem. 

3.5.2 SAC (Soft Actor-Critic) 

SAC (Soft Actor-Critic) builds upon the successes of A2C, specifically targeting 

continuous action space problems. A key innovation of SAC is the introduction of entropy 

regularization. By explicitly adding an entropy term to its objective function, SAC 

encourages a degree of exploration within its policy. This helps it avoid premature 

convergence to suboptimal strategies, which can be a risk in complex environments. 

(Karunakaran, 2020) 

Mathematically, the core objective of SAC can be described as: 



/00 = It=i a t ) - P t t [r(s t, a t ) + o/ / ( t t ( . |s t)) - Q(s t , a t)] (14) 

Where Z/(tt(. |s t )) is the entropy of the policy and a is a temperature parameter controlling 

the importance of entropy. 

Actor-critic methods, due to their balance of stability, sample efficiency, and 

performance, have become highly popular choices for a wide range of reinforcement 

learning problems. Their applicability to algorithmic trading makes them particularly 

compelling tools for developing intelligent trading strategies. 

3.6 Continuous Control Methods 

The world of algorithmic trading often goes beyond simple, discrete choices like 

buying, selling, or holding a stock. To effectively navigate this complex landscape, 

reinforcement learning offers a subset of algorithms specifically designed for problems 

where the action space is continuous. This means the agent must choose actions from a range 

of possible values, such as determining the exact order size, rather than a limited set of 

options. (Chow, 2021) 

3.6.1 DDPG (Deep Deterministic Policy Gradient) 

DDPG is a foundational algorithm in continuous control, extending the 

groundbreaking concepts of Deep Q-Networks (DQN) to handle continuous actions. It 

employs an actor-critic architecture, where the critic learns to estimate the long-term value 

of being in a certain state and taking an action, while the actor directly learns a policy to 

select these continuous actions. To enable stable learning within this complex setting, DDPG 

borrows crucial techniques from DQN and adds its own core contribution. (Lapan, 2020) 

DDPG uses a few key techniques to enhance stability and efficiency within the 

learning process. Target networks, which are slowly updated versions of the actor and critic 

networks, provide a more stable target for value and policy updates. Experience replay 

involves storing past experiences in a buffer and sampling from it; this breaks up correlations 

within the data, which can make training less erratic. Finally, DDPG differs from standard 

policy gradient methods by using a deterministic policy, meaning it directly outputs a 

specific action instead of a probability distribution over actions. 



3.6.2 TD3 (Twin Delayed DDPG) 

TD3 (Twin Delayed DDPG) is an improved version of DDPG designed to be more 

stable and avoid overestimating values. Key changes include delaying the frequency of 

policy updates in comparison to critic updates, using two critic networks instead of one 

(taking the minimum of their outputs to reduce overestimation), and injecting a bit of 

controlled noise into target actions to encourage exploration and make policy updates 

smoother. (Santhosh, 2022) 

The ability to model continuous outputs directly makes these methods powerful tools 

for algorithmic trading. Whether it's dynamically determining order sizes, optimizing bid-

ask spreads, or managing complex portfolio allocations, continuous control methods allow 

for fine-grained decision-making that better reflects the nuances of financial markets. 

4 Practical Part 

Building upon the theoretical foundation, this chapter delves into the practical 

application of deep reinforcement learning for algorithmic trading. It describes the process 

of training multiple D R L agents within a FinRL environment, fed with historical data from 

Yahoo Finance. The chapter lays out the evaluation framework and anticipates how the 

performance metrics will illuminate the strengths, weaknesses, and potential promise of 

these DPvL-driven trading strategies. 

4.1 Data 

This section outlines the fundamental processes of creating a suitable dataset for 

training and evaluating a reinforcement learning model in the context of financial trading. It 

describes the strategic acquisition of historical stock market data for the Dow Jones 30 

constituents, covering essential O H L C V components. The importance of data preprocessing 

is emphasized, including the handling of potential inconsistencies and the use of technical 

indicators to generate valuable insights. Furthermore, the transformation of data to represent 

distinct states compatible with reinforcement learning principles is explained. 

4.1.1 Data Acquisition and Preparation 

This project aimed to apply reinforcement learning to financial trading, and reliable 

data formed the foundation. The FinRL library's YahooDownloader class was used to 



acquire historical financial data from the Yahoo Finance API. The focus was on the Dow 

Jones 30 constituents, providing a diverse representation of the stock market. Daily OHLCV 

data (open, high, low, close, volume) was chosen because it encapsulates essential price and 

volume dynamics. The dataset was divided into training (2010-01-01 to 2020-01-01) and 

testing (2020-01-02 to 2023-01-01) sets, ensuring the model would be trained on historical 

data and evaluated on unseen data for a realistic assessment of performance. 

Figure 6 Data fetch from Yahoo finance 

[ ] d f r a w = YahooDownloader{start_date = TRAIN_START_DATE, 
end_date = TRADE_END_DATE, 
t i c k e r l i s t = c o r f i g t i c k e r s . D O W 3 0 T I C K E R ) . f e t c h _ d a t a ( ) 

^*********************^00%%«***************«**«*«j ^ ^ completed 
^*********************200%%******************* > f i* > f i] l of 1 completed 
^*********************200%%******************* > f i* > f i] l of 1 completed 

^ Q-f ̂  completed 
^*********************^00%%«***************«**«*«j ^ ^ completed 

Source: Own processing. 

4.1.2 Data Preprocessing 

Raw financial data often contains inconsistencies such as missing values. There were 

no missing values in our fetched data. 

Next, feature engineering was performed to augment the raw data with insights and 

patterns relevant to trading decisions. Technical indicators provide valuable signals for 

market analysis. The FinRL library was leveraged to calculate trend-following indicators 

like M A C D and RSI, aiding in identifying potential buy or sell opportunities based on 

momentum shifts. Furthermore, FinRL's turbulence index calculation was incorporated, 

enabling the model to measure extreme price fluctuations in the market and adjust its 

behaviour in response to differing volatility conditions. 



Figure 7 Date feature engineering 

[ ] f e = F e a t u r e E n g i n e e r ( u s e _ t e c h n i c a l _ i n d i c a t o r = T r u e j 
t e c h _ i n d i c a t o r _ l i s t = INDICATORS, 
u s e v i x = T r u e , 
use_turbulence=True, 
u s e r _ d e f i n e d _ f e a t u r e = F a l s e ) 

processed = fe. p r e p r o c e s s _ d a t a ( d f _ r a w ) 

S u c c e s s f u l l y added t e c h n i c a l i n d i c a t o r s 
r * * * * * * * * * * * * * * * * * * * * * ^ ^ * * * * * * * * * * * * * * * * * * * * * * ] ^ 0f ^ completed 
Shape of DataFrame: {3271, S) 
S u c c e s s f u l l y added v i x 
S u c c e s s f u l l y added t u r b u l e n c e index 

Source: Own processing. 

4.1.3 Data Transformation 

Reinforcement learning models require data to be structured in a way that defines 

distinct states upon which the agent will make decisions. To achieve this, the pre-processed 

data was organized such that each row represented a unique state, combining a specific date, 

the stock ticker, and relevant features. This transformation ensured compatibility with the 

reinforcement learning environment. 

Figure 8 Data transformation for state space 

] l i s t _ t i c k e r = p r o c e s s e d [ " t i c " ] . u n i q u e ( ) . t o l i s t ( ) 
l i s t _ d a t e = l i s t ( p d . d a t e _ r a n g e ( p r o c e s s e d [ "date" ] .min(),processed[ 'date' ] .rnax()). a s t y p e ( s t r ) ) 
combination - l i s t ( i t e r t o o l s . p r o d u c t ( l i s t d a t e , l i s t t i c k e r ) ) 

p r o c e s s e d _ f u l l - pd .DataFrame(combination, columns^ [ "date", " t i c " ] ) .merge(processedj on = [ "date' 1, " t i c " ] j how=" l e f t ' 1 ) 
p r o c e s s e d _ f u l l = p r o c e s s e d _ f u l l [ p r o c e s s e d _ f u l l [ ' d a t e ' ] . i s i n ( p r o c e s s e d [ ' d a t e ' ] ) ] 
p r o c e s s e d _ f u l l = p r o c e s s e d _ f u l l . s o r t _ v a l u e s ( [ ' d a t e ' , " t i c ' ] ) 

p r o c e s s e d _ f u l l - p r o c e s s e d _ f u l l . f i l l n a f O ) 

Source: Own processing. 

4.1.4 Dataset Split and Storage 

Dividing the dataset into distinct training and testing sets is a standard practice in 

machine learning. The data_split function facilitated this, using the predefined date ranges. 

The segregated datasets were saved as CSV files for later use during model training and 

evaluation. 

4.2 Train 

This section explores the process of training the reinforcement learning trading agent. 

It begins by outlining the setup of necessary tools for model development. Next, it describes 



the transformation of financial data into a reinforcement learning-compatible market 

environment, emphasizing how this environment guides the agent's choices. The section then 

highlights the diverse deep reinforcement learning agents used for training, explaining the 

core principles behind their distinct approaches to learning and optimizing trading strategies. 

These agents leverage methods such as policy gradients, actor-critic techniques, and 

strategies suited for continuous control or improved exploration. 

4.2.1 Package Installation 

Key packages were installed to facilitate the training of a reinforcement learning 

trading agent. The FinRL library provided core components for constructing a trading 

environment and defining reinforcement learning models. Additionally, the Stable Baselines 

3 library was crucial, offering implementations of several popular deep reinforcement 

learning (DRL) algorithms. 

Figure 9 Libraries and imports for DRL agent to train 

from stalble_baselines3.common.logger import c o n f i g u r e 
from f i n r l . a g e n t s . s t a b l e b a s e l i n e s 3 . m o d e l s import DRLAgent 
from f i n r l . c o n f i g import INDICATORS, TRAINED_MODEL_DIR, RESULTS_DIR 
from f i n r l . m a i n import check_and_make_directories 
from f i n r l . m e t a . e n v _ s t o c k _ t r a d i n g . e n v _ s t o c k t r a d i n g import StockTradingEnv 

Source: Own processing. 

4.2.2 Market Environment Creation 

To apply reinforcement learning, it was necessary to structure the financial data into 

an environment adhering to the OpenAI Gym standard. Let's break down the key elements: 

State (s): The state represents the agent's current view of the market, encapsulating 

historical price data, technical indicators, and other relevant factors calculated from the 

training dataset. This state definition enables the agent to make informed decisions based on 

observed market conditions. 

Action (a): The action space comprises the actions the agent can take (e.g., buy, sell, 

hold). When an action operates multiple shares, a G {-k, - 1 , 0, 1, k}, e.g. "Buy 10 

shares of A A P L " or "Sell 10 shares of A A P L " are 10 or -10, respectively. 

Reward Function (R(s, a, s'j): The reward function is critical in guiding the agent's 

learning. It provides feedback on the outcomes of actions taken in a given state. Here, the 



reward is designed around changes in portfolio value, encouraging the agent to develop 

profitable trading strategies. 

The pre-processed training data (train_data.csv) was loaded, and essential parameters 

were calculated for the environment's construction. The StockTradingEnv class within the 

FinRL library handled the creation of this environment, incorporating transaction costs, 

allowed actions, state and reward definitions, and more. 

Figure 10 Creation of stock trading environment for DRL agents 

b u y c o s t l i s t = s e l l _ c o s t _ l i s t = [0,001] * s t o c k d i m e n s i o n 
num_stock_shares = [0] * stock_dimension 

env_kwargs = { 
"hmax": 100, 
" i n i t i a l amount": 1000000, 
" n u m s t o c k s h a r e s " : n u m s t o c k s h a r e s , 
" b u y c o s t p c t " : b u y c o s t l i s t , 
" s e l l _ c o s t _ p c t " : s e l l _ c o s t _ l i s t , 
" s t a t e s p a c e " : state_space, 
"stock dim": s t o c k d i m e n s i o n , 
"tech i n d i c a t o r l i s t " : INDICATORS, 
" a c t i o n s p a c e " : stock dimension, 
"neward_scaling": l e - 4 

} 

e_train_gym = StockTradingEnv(df = t r a i n , **env_kwargs) 

Source: Own processing. 

4.2.3 DRL Agent Training 

Stable Baselines 3 library provided implementations of several advanced DRL 

algorithms. A DRLAgent object was created to manage the training and interaction with 

the trading environment. The following algorithms were selected for training: 

• A2C (Advantage Actor-Critic): An on-policy algorithm that combines policy 

gradients and value function estimation for improved stability. 

• DDPG (Deep Deterministic Policy Gradient): Suited for continuous action spaces, 

useful when fine-grained control of buying/selling quantities is required. 

• PPO (Proximal Policy Optimization): An on-policy algorithm that ensures policy 

updates remain within a controlled range to avoid drastic changes in behavior. 

• TD3 (Twin Delayed DDPG): Enhances DDPG with techniques to mitigate 

overestimation bias in value functions. 



• SAC (Soft Actor-Critic): An off-policy algorithm that emphasizes entropy for 

greater exploration, aiding in discovering diverse strategies. 

The training process involved each algorithm interacting repeatedly with the market 

environment. Hyperparameters, such as learning rate and network size used their default 

values within the library's implementation. Logging was configured to measure 

performance metrics during training. Finally, the trained models were saved for 

subsequent use in backtesting and analysis. 
Figure 11 Training process ofDRL agent 

[ ] t r a i n e d _ a 2 c - agent.train_model(model-model_a2c J 

tb_log_name='a2c', 
t o t a l _ t i i n e s t e p s - 5 9 0 0 0 ) i f i f _ u s i n g _ a 2 c e l s e None 

time/ 
f p s I 85 
i t e r a t i o n s | 100 
time_elapsed 5 
t o t a l _ t i t n e s t e p s 500 

t r a i n / 
e n t r o p y _ l o s s -41.2 
e x p l a i n e d _ v a r i a n c e 0.0429 
l e a r n i n g r a t e 0.0007 
n_updates 99 
p o l i c y l o s s -32.9 
reward -0.4555351 
st d 1 
value l o s s I 3.95 

Source: Own processing. 

4.3 Agent Evaluation 

This section focuses on evaluating the performance of the trained reinforcement 

learning agents within a simulated market environment. This backtesting process is essential 

to understand how well the agents have learned to make profitable trading decisions and how 

they might perform in a real-world scenario. By observing the agents' actions within the 

simulation, we can track their account values over time, gaining valuable insights into their 

performance. 

4.3.1 DJIA Index 

The Dow Jones Industrial Average (DJIA) is a stock market index that measures the 

performance of 30 large, publicly traded companies listed on U.S. stock exchanges. 

Calculated since 1896, it provides a snapshot of the overall health of the U.S. stock market, 

influencing investment decisions worldwide. The Dow Jones Industrial Average (DJIA) 



index was incorporated as an additional benchmark to gauge the performance of the 

reinforcement learning models. Historical DJIA price data was fetched for the testing period. 

4.3.2 Metrics for Evaluating Performance 

Metrics for Evaluating Performance refer to quantifiable measures used to assess the 

effectiveness and efficiency of a system, process, or entity. These metrics provide objective 

insights into key aspects, such as financial returns, risk, and operational efficiency. Common 

examples include Sharpe Ratio for risk-adjusted returns, Annual Return for overall 

performance, and Max Drawdown for measuring downside risk. Effective performance 

metrics enable informed decision-making, support goal alignment, and help stakeholders 

evaluate success or identify areas for improvement in various domains, including finance, 

business, and technology. (Groette, 2023) 

• Sharpe ratio: The Sharpe Ratio measures the risk-adjusted performance of an 

investment by assessing the excess return per unit of risk. A higher ratio indicates 

better risk-adjusted returns. 

mean(Rt)-rf 
S t = std(Rt) ( 1 5 ) 

Where Rt = Vt Vt 1 , ry is risk-free rate and t = 1,.. T. 
v t - i ' 

Cumulative return: It represents the total gain or loss of an investment over a 

specified period, expressed as a percentage. It shows the overall performance, 

incorporating all changes in value. 

R = (16) 

Where v0 is initial capital and v is final portfolio value. 

Max Drawdown: Measures the largest decline in investment value from peak to 

trough during a specified period. It indicates the maximum loss an investor could 

have experienced. 

• Annual return: Expresses the percentage change in the value of an investment over 

a one-year period. It summarizes the overall performance and provides a simple 

metric for assessing investment success. 



365 
r = (1 + R)~- 1 (17) 

Where, t is number of trading days. 

• Annual volatility: Annual volatility quantifies the degree of variation in the value 

of an investment over a one-year period. It reflects the level of risk or uncertainty 

associated with the investment's returns. 

Where, rt is annualized return in year i, n is number of years and r is the average 

annualized return. 

5 Results and Discussion 

In this section, we carefully analyse the performance of different Deep 

Reinforcement Learning (DRL) agents applied to financial trading. We examine key metrics 

like annual return, cumulative returns, max drawdown, and Sharpe ratio for several agents 

(A2C, DDPG, PPO, TD3, SAC). This analysis reveals the strengths of each agent, 

highlighting DDPG's superior performance. We then compare DDPG in detail to the Dow 

Jones Industrial Average (DJI) benchmark. The goal of this section is to provide clear 

insights into how well D R L strategies work in the complex world of financial markets. 

5.1 Comparison of DRL agents 

Our experimental results reveal significant discrepancies in the performance of the 

evaluated deep reinforcement learning (DRL) agents. Visual analysis of the account balance 

over time figure 12 and the figure 13 of evaluation metrics highlights the following key 

observations. 

(18) 



Figure 12 Comparison graph ofDRL agents along with DJI 

Comparison of performances of DRL agents to Benchmark DJI 
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Source: Own processing. 

The DDPG agent emerged as the top performer in our evaluation. It demonstrated 

the largest cumulative returns (32.17%), along with impressive risk-adjusted returns as 

evidenced by its strong Sharpe ratio. This success could be attributed to DDPG's design, 

combining actor-critic methods and off-policy learning, making it potentially well-suited for 

continuous control problems like trading. In contrast, the PPO agent exhibited the weakest 

performance with negative annual returns and the worst Max Drawdown. This 

underperformance suggests sensitivity to hyperparameters or potential mismatch between 

the algorithm's strengths and our trading environment. A2C, TD3, and SAC occupied a 

middle ground, showing promise but possibly requiring refinement for this specific problem. 

It's essential to consider not only returns but also the risk profiles of these agents; analysing 

metrics like Annual Volatility and Max Drawdown would provide a more comprehensive 

picture. 

Figure 13 Performance stats 

Agents & DJI Cumulative Return Annual Return Max Drawdown Annual Volatility Sharpe Ratio 

A2C 14.59% 4.66% -32.87% 23.29% 31.30% 

DDPG 32.17% 9.77% -26.01% 20.60% 55.59% 

PPO -0.87% -0.29% -33.14% 23.23% 10.46% 

TD3 22.98% 7.16% -27.24% 21.08% 43.39% 
SAC 24.15% 7.50% -32.65% 22.28% 43.71% 
DJI 14.82% 4.72% -37.09% 25.17% 30.99% 

Source: Own processing. 



DDPG's significant outperformance in this experiment makes it a compelling 

choice for further analysis. Its ability to surpass other D R L agents suggests the potential to 

compete with traditional financial benchmarks, like the Dow Jones Industrial Average 

(DJI). In the next section, we'll take a closer look at how DDPG stacks up against the DJI 

index. 

5.2 DDPG vs. DJI Benchmark 

A deeper dive into DDPG's performance against the Dow Jones Industrial Average 

(DJI) reveals notable strengths, particularly during market chaos. 

Figure 14 Bar chart, annual return 

Annual return - DDPG vs DJI 

DDPG DJI 
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Source: Own processing. 

The bar graph figure 14 of annual returns shows that DDPG had positive 

returns in 2022, a year when the DJI declined significantly (around -8%). Even during 

the COVID-related market downturn, DDPG's performance held up relatively well. 

This suggests that DDPG can adapt to difficult market conditions better than strategies 

that simply track an index. 



Figure 15 Heatmap, monthly return 
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As shown in the figure 15 of monthly returns, both DDPG and the DJI 

struggled in March 2020 (the COVID crash). However, both saw a strong performance 

in October 2022, which might suggest that DDPG can identify and react to positive 

market trends. 

Figure 16 Underwater graph, Max Drawdown 

Drawdown Comparison - DDPG vs DJI 
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In the underwater graph figure 16 of Max Drawdown, we can see that DDPG's 

drawdown is much smaller than the DJI's. Even during their worst period in March 

2020, DDPG's maximum drawdown was only -25% compared to -35% for the DJI. 

This suggests that DDPG may be better at managing risk than traditional index 

tracking. 



Figure 17 Rolling Sharpe graph 
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As it appears in figure 17, DDPG's ability to maintain a Sharpe ratio around its mean 

even after 2022 demonstrates consistency and risk control in a volatile environment. The 

declining Sharpe ratio of the DJI, on the other hand, signals increasing risk relative to returns. 

DDPG's performance compared to the DJI benchmark suggests that it offers distinct 

advantages for trading strategies. Its ability to generate positive returns and minimize losses 

during market downturns demonstrates the power of reinforcement learning in the financial 

domain. DDPG's apparent capacity to adapt to market changes and prioritize risk 

management further highlights the potential limitations of traditional index-tracking 

approaches. 

5.3 Limitations and future directions 

While our findings demonstrate the potential of D R L in algorithmic trading, it's 

important to acknowledge key limitations. Real-world financial markets are incredibly 

complex, and R L agents may not fully grasp every market dynamic. Additionally, the 

quality and quantity of training data significantly impact agent performance. Therefore, 

ensuring robust data sourcing and addressing potential biases are essential. It's also crucial 

to test an agent's generalizability across diverse market conditions to assess its true 

adaptability. 

To build upon these findings, future research should prioritize hybrid approaches that 

combine R L with traditional financial models or sentiment analysis. Explicitly incorporating 

risk management into the R L framework is vital for real-world deployment. Moreover, 



realistic modelling of transaction costs, investigating wider algorithmic market impact, and 

exploring the potential of newer R L algorithms offer exciting avenues for further 

advancement in this field. 



6 Conclusion 

This thesis embarked on a comprehensive investigation into the potential of deep 

reinforcement learning (DRL) for algorithmic stock trading. The primary objective was to 

evaluate the effectiveness of various D R L algorithms and benchmark their performance 

against the traditional DJIA index. Through rigorous experimentation, the study has 

demonstrated both the promise and challenges inherent in applying D R L to this complex 

domain. 

A key finding of this research is the ability of D R L agents to exhibit adaptability, 

particularly during market downturns. Notably, the DDPG agent displayed greater resilience 

compared to the benchmark, maintaining positive returns in periods when the DJIA 

experienced significant losses. This highlights the potential of RL-driven strategies to 

navigate market volatility more effectively than purely index-tracking approaches. 

While the results of this study are encouraging, it's crucial to acknowledge limitations 

and outline avenues for future research. The complexity of real-world markets necessitates 

further exploration of factors such as transaction costs, market impact, and the integration of 

diverse data sources. Additionally, advancements in explainable R L could pave the way for 

greater transparency and trust in these algorithmic trading systems. 

This thesis contributes to the ongoing dialogue on the intersection of machine 

learning and finance. By systematically evaluating D R L algorithms and offering insights 

into their performance characteristics, this work lays a foundation for the development of 

increasingly sophisticated, intelligent, and robust trading strategies powered by 

reinforcement learning principles. 
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