
T
BRNO UNIVERSITY DF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY

A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

ANALYSIS OF GPON FRAMES USING MACHINE
LEARNING
ANALÝZA GPON RÁMCŮ S VYUŽITÍM STROJOVÉHO UČENÍ

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. Adrián Tomášov
AUTOR PRÁCE

SUPERVISOR Ing. Martin Holík
VEDOUCÍ PRÁCE

BRNO 2020

Master's Thesis
Master's study field Commun ica t ions and Informatics

Department of Telecommunications

Student: Be. Adrián Tomášov ID: 187373

Year of
study:

2 Academic year: 2019/20

TITLE O F THESIS :

Analysis of GPON frames using machine learning

INSTRUCTION:

The objective of the diploma thesis is to design and implement an algorithm using machine learning and

TensorFlow for the analysis of selected parts of the G P O N (Gigabyte Passive Optical Network) frame. A server

with captured G P O N frames in J S O N (JavaScript Object Notation) format is available. The proposed algorithms

should be implemented in Python. The output of the thesis is a theoretical part containing the method and

possibilities of using TensorFlow and a description of the G P O N frame. The practical part of the diploma thesis

includes the design of the algorithm and its implementation in TensorFlow.

R E C O M M E N D E D L I T E R A T U R E :

[1] TensorFlow: An open-source software library for Machine Intelligence. TensorFlow [online], [cit. 2019-09-07].

Dostupne z: https://www.tensorflow.org/

[2] G E R O N , Aure'lien. Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and

techniques to build intelligent systems. Boston: O'Reilly Media, 2017. ISBN 978-1-491-96229-9.

The author of the Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno

Date of project
specification:

3.2.2020 Deadline for submission: 1.6.2020

Supervisor: Ing. Martin Holík

prof. Ing. Jiří Mišurec, C S c .
Subject Council chairman

WARNING:

https://www.tensorflow.org/

ABSTRACT
This thesis focuses on the analysis of selected part of G P O N frame using machine learning
algorithms implemented by using TensorFlow library. Considering that the G P O N pro
tocol is defined as a set of recommendations, implementation by various device vendors
may be different to designed protocol. Therefore, an analysis by a push-down automaton
is not sufficient. The main goal is to create a system of models using TensorFlow li
brary in Python3 capable of abnormality detection in the communication. These models
use various architectures of neural networks (e.g. L S T M , autoencoder) and focus on
different types of analysis. This system learns from baseline traffic and notifies about
irregularities found in the newly captured traffic. As a result, the system estimates the
similarity level of current traffic compared to the baseline.

KEYWORDS
Autoencoder, G P O N , L S T M , machine learning, neural network, passive optical network,
Python3, TensorFlow

ABSTRAKT
Táto práca sa zameriava na analýzu vybraných častí G P O N rámca pomocou algoritmov
strojového učenia implementovaných pomocou knižnice TensorFlow. Vzhľadom na to,
že G P O N protokol je definovaný ako sada odporúčaní, implementácia naprieč spoloč
nosťami sa môže líšiť od navrhnutého protokolu. Preto analýza pomocou zásobníkového
automatu nieje dostatočná. Hlavnou myšlienkou je vytvoriť systém modelov za použitia
knižnice TensorFlow v Python3, ktoré sú schopné detekovat abnormality v komunikácií.
Tieto modely používajú viaceré architektúry neuronových sietí (napr. L S T M , autoenco
der) a zameriavajú sa na rôzne typy analýzy. Tento systém sa naučí na vzorovej vzorke
dát a upozorní na nájdené odlišnosti v novozachytenej komunikácií. Výstupom systému
odhad podobnosti aktuálnej komunikácie v porovnaní so vzorovou komunikáciou.

KĽÚČOVÉ SLOVÁ
Autoenkodér, G P O N , L S T M , neuronová sieť, pasívna optická sieť, Python3, strojové
učenie, TensorFlow

TOMÁŠOV, Adrián. GPON frame detection by using TensorFlow. Brno, 2020, 76 p.
Master's Thesis. Brno University of Technology, Faculty of Electrical Engineering
and Communication, Department of Telecommunications. Advised by Ing. Martin Holík

Typeset by the thesis package, version 3.05; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

ROZŠÍRENÝ ABSTRAKT

S ras túc im dopytom poskytovaných služieb r a s tú aj pož iadavky na dis t r ibučné

siete, k toré musia podporovať rôzne typy služieb. K a ž d á z nich spotrebuje výraznú

časť dostupnej šírky pásma . A b y poskytovatelia sieťových služieb a výrobcovia

zar iadení udržal i krok s r a s túc im dopytom na trhu, musia napredovať vo vývoji

d is t r ibučných sietí.

Jeden z krokov v evolúcií je v ý m e n a prenosového média z metal ických (medených)

káblov na optické. Ich výhodou je, že podporu jú dá tový prenos na veľké vzdialenosti,

sú odolné voči e lekt romagnet ickému rušeniu a dosahujú oveľa väčšie prenosové rých

losti. Prenos cez optické m é d i u m s použ i t ím pasívnych opt ických prvkov sa upla tňuje

aj v d is t r ibučných sieťach pre koncových užívateľov, kde sa využíva s t romová topoló-

gia. Taký to typ siete vyžaduje aj nový komunikačný p ro toko l / š t anda rd , k t o r ý m je

napr ík lad G P O N . V p r ípade Medzinárodnej te lekomunikačnej únie (ITU) sú všetky

protokoly definované ako odporúčan ia , t akže každý výrobca si ich môže prispôsobiť

podľa vlas tných potrieb. Ana lýza t akého to protokolu vyžaduje pokročilé techniky.

Strojové učenie, k toré je súčasťou umelej inteligencie, rozhodne pa t r í medzi

pokročilejšie techniky dátovej analýzy. Tieto algoritmy sú schopné naučiť sa ro

zoznávať rôzne vzory v dá tach . Čas to sa používajú na klasifikáciu dá t do prís

lušnej množiny, rozlišovanie vzorov alebo spracovávanie pr i rodzeného jazyka. Práve

pos ledná zo zmienených oblast í je veľmi p o d o b n á problému, ktorou sa t á t o p ráca

zaoberá a to je ana lýza čiastočne známeho protokolu.

Jazyk Python3 je veľmi popu lá rny medzi vedcami z oblasti dolovania dá t a stro

jového učenia aj kvôli svojej jednoduchosti a obratnosti. Existuje niekoľko knižníc

pre strojové učenie, k toré ma jú jadro napísané v inom jazyku ako Python3 a posky

tu jú iba apl ikačné rozhranie. T ý m t o získame výhody oboch jazykov, t akže výsledná

knižnica je rýchla a j ednoduchá na používanie s podporou hardvérovej akcelerácie.

Medzi tieto knižnice pa t r í napr ík lad TensorFlow, k to rá tvor í jadro analyzujúcich

modelov v tejto práci .

Skôr než je vyhotovený náv rh ana lyzačného sys tému je dôležité overiť, či je t a k á t o

ana lýza pomocou umelých neurónových sietí vôbec možná . Preto je vytvorených

niekoľko experimentov s rôznymi modelmi strojového učenia, k toré overia schopnosti

detekcie neš tandardne j komunikácie a slúžia ako vzor pre implementác iu modelov

v konečnom analyzá tore . Ana lýza správ sa zameriava na dve oblasti kontroly. P rvá

je syntakt ická kontrola, k to rá overí či d a n á správa vyhovuje š t anda rdu . Zameriava

sa n a j m ä na hodnoty v jednot l ivých poliach PLOAMd správy. Za t ý m t o účelom boli

otes tované a dva modely. P r v ý z nich je OneClassSVM, z knižnice scikit-learn.

Tento model sa učí charakter is t ické rysy zo vzorovej komunikácie, a na jej základe

vie určiť či nový analyzovaný vzor je, alebo nie je podobný vzorovej komunikácií .

Proces učenia je len aproximácia n-rozmernej matematickej funkcie k učiacim dá

tam. So znižujúcou sa odchýlkou tejto funkcie sa zvyšuje citlivosť naučeného modelu

na abnormá lnu komunikáciu. V experimentoch tento model správne odhalil väčšinu

n á h o d n e generovaných správ a dokonca aj tých, k toré boli p o d o b n é vzorovým sprá

vam.

Druhý model analyzujúci syntax správy je au toenkodér . Tento model sa skladá

z dvoch menších modelov: kodér a dekodér. Kodér m á za úlohu zredukovať počet

dimenzií vstupnej správy a zakódovať správu do komprimovanej formy. Dekóder

m á komplemen tá rnu funkciu ku kodéru a to rekonštrukciu pôvodnej správy z kom

primovanej formy. A b y celý model správne pracoval, musí sa naučiť extrahovať

dôležité informácie zo správy. Au toenkodér používa učenia bez učiteľa a t rén ingovú

množinu tvoria prvky, k torých vstup a očakávaný výs tup majú rovnaké hodnoty.

Autoenkodér naučený na vzorovej komunikáci í je použi tý na detekciu neš t anda rd

ných správ tak, že analyzujúca správa je v y h o d n o t e n á a nás ledne je spoč í t aná chyba

siete pomocou chybovej funkcie. Pokiaľ je chyba menšia ako prahová hodnota, an

alyzátor usúdi , že daný vstup je p o d o b n ý vzorovej komunikáci í . A k je chyba siete

väčšia ako prahová hodnota, tak je správa považovaná za abnormálnu , t akže v tomto

pr ípade za neš t anda rdnú .

D r u h á oblasť je sémant ická analýza, k to rá kontroluje nadväznosť jednot l ivých

správ a obsah jednot l ivých polí medzi správami. Inšpiráciou pre t ú t o analýzu sú

neurónové siete spracovávajúce písanú ľudskú reč. Ich základ je tvorený z vrstiev

L S T M buniek, k toré si dokážu udržať vnú to rný stav napr ieč spracovávanými dá

tami. Ana lýza G P O N š t a n d a r d u je tomu veľmi podobná , pre tože kontroluje správy

v danej postupnosti. Vs tupné d á t a sú rozdelené do časových okien konš tan tne j d ĺžky

aby bolo možné model učiť a nás ledne identifikovať kde sa chyba nachádza . Tento

model je schopný správne rozpoznávať správne a chybné sekvencie správ, ale kvalita

jeho predikcie je závislá na učiacich dá tach , k toré musia obsahovať vyvážený počet

vzorových sekvencií z oboch klasifikovaných množín .

Pre analýzu sémant iky bol t iež vyskúšaný au toenkodér , k to rý je v svojej podstate

rovnaký ako au toekodér použi tý v syntaktickej kontrole. Jedinou odlišnosťou je

počet vrstiev a počet neurónov v každej vrstve. Vs tupné d á t a sú tak t iež rozdelené

do časových okien konš tan tne j dĺžky, ale naviac je každé okne ešte sploštené na

jednorozmerný vektor. Tento model dokázal správne označiť väčšinu časových okien,

k toré boli úmyselne poškodené, ako neš t anda rdné .

N a v r h n u t ý G P O N ana lyzá tor sa skladá z niekoľkých komponentov. A k o prvý

v po rad í je čitateľ dá t , k torý dokáže načí tať d á t a rôznych formátov. Ďalší v po

radí je dá tový filter, k to rý pred-spracuje d á t a do tvaru vyhovujúcemu pož iadavkám

vstupu modelov. Nasleduje sada modelov pre syntak t ickú a sémant ickú analýzu,

ktoré hľadajú odchýlky v komunikácií . A k o posledný v tomto návrhu je hodnotitel

(Evaluator), k to rý analyzuje výsledky jednot l ivých modelov a vyhodnot í , na koľko

je d a n á komunikácia p o d o b n á vzorovej.

N a v r h n u t ý model je implementovaný v jazyku Python3 s využ i t ím objektovo-

orientovaného paradigma, takže každá časť z náv rhu predstavuje objekt a ana lyzá tor

len riadi tok dá t a správ medzi komponentami. Hlavná funkčná časť analyzujúcich

modelov je p revza tá z experimentov, ale je z jednotená na rovnaké rozhranie, aby

na rában ie s modelmi bolo j edno tné . Všetky modeli sú implementované pomocou

Tensorflow s použ i t ím z jednodušeného rozhrania, k toré definuje knižnica Keras.

Tento projekt je podporuje dva spôsoby používania. P r v ý spôsob je spustenie

programu priamo z pr íkazového riadku a pomocou argumentov meniť chovanie danej

aplikácie. Druhý spôsob je používať ana lyzá tor ako knižnicu, čo umožňuje väčšiu

interakciu s jednot l ivými modelmi, p r ípadne si definovať v las tné a zaradiť ich do

analýzy. Súčasťou projektu je aj v i r tuá lně prostredie, v ktorom sú špecifikované

vše tky ex te rné knižnice, aby bol projekt ľahko spust i te lný na rôznych systémoch.

N a overenia kvality detekčných schopnost í sys tému pre analýzu G P O N rámcov

je vytvorených niekoľko úmyselne poškodených vzoriek komunikácie, k toré obsahujú

syntakt ické aj sémantické chyby. Tieto vzorky sú následne analyzované naučeným

sys témom. Z výsledkov je jasne vidieť, že oba modely pre syntakt ickú analýzu

sú funkčné a zachytili väčšinu syntakt ických chýb. Modely analyzujúce sémant iku

tak t iež objavili väčšinu vložených chýb s podobnou presnosťou. Testy obsahujúce

chyby v komunikáci í dokázali , že G P O N ana lyzá tor m á schopnosti na odhalenie

chýb v komunikáci í a porovnať, ako veľmi sú dve sekvencie komunikácie podobné .

DECLARATION

I declare that I have written the Master's Thesis titled " G P O N frame detection by using

TensorFlow" independently, under the guidance of the advisor and using exclusively the

technical references and other sources of information cited in the thesis and listed in the

comprehensive bibliography at the end of the thesis.

As the author I furthermore declare that, with respect to the creation of this Master's

Thesis, I have not infringed any copyright or violated anyone's personal and/or ownership

rights. In this context, I am fully aware of the consequences of breaking Regulation § 11

of the Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of

any breach of rights related to intellectual property or introduced within amendments to

relevant Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009

Coll., Section 2, Head VI, Part 4.

Brno

author's signature

A C K N O W L E D G E M E N T

I would like to express my gratitude to my supervisor Ing. Martin Holík for the useful

comments, remarks and engagement through the learning process of this master thesis.

Furthermore I would like to thank Ing. Václav Oujezský, Ph.D. for introducing me to the

topic and for the useful tips and ideas on the way. I would like to thank my closed ones,

who have supported me throughout the entire process, both by keeping me harmonious

and helping me putting the pieces together. I will be grateful forever for your support.

Contents

Introduction 15

1 Gigabit-capable passive optical networks 17

1.1 Elements of P O N 17

1.1.1 Optical distribution network (ODN) 17

1.1.2 Optical line termination (OLT) 18

1.1.3 Opt ical network unit (O N U) 18

1.2 G P O N time division multiplexing 19

1.3 G T C downstream frame structure 19

1.4 Bandwidth allocation 20

1.4.1 Static bandwidth assignment 20

1.4.2 Dynamic bandwidth allocation 21

1.5 P L O A M downstream message format 21

1.5.1 P L O A M d messages 22

1.6 O N U activation process 24

2 Machine Learning 28

2.1 Neural Networks 28

2.1.1 Perceptron 28

2.1.2 Feed forward neural network 29

2.1.3 Backpropagation 30

2.2 R N N - recurrent neural network 32

2.2.1 R N N topology 32

2.2.2 Back propagation through time 33

2.3 L S T M - long short term memory 34

2.4 Autoencoder 35

2.4.1 Anomaly detection 36

3 Tensorflow and Keras 37

3.1 Machine learning libraries in Python3 37

3.1.1 Scikit-learn 37

3.1.2 Pytorch 37

3.2 TensorFlow 38

3.2.1 Computational graph 38

3.2.2 Tensor 38

3.2.3 TensorFlow parallelism 39

3.2.4 Gradient evaluation 39

3.3 Keras 39

3.3.1 Mode l 39

3.3.2 Layers 41

4 Designing learning model 42

4.1 Data characteristic 42

4.1.1 Input data format 42

4.1.2 Preprocessing data 43

4.2 System design 43

4.2.1 Data reader 43

4.2.2 Input filter 43

4.2.3 Syntax verification model 44

4.2.4 Semantic verification model 44

4.2.5 Evaluator 45

5 P L O A M d analysis experiments 46

5.1 P L O A M d data mining 46

5.2 Syntax analysis experiment 47

5.3 Sequence analysis experiment 48

5.4 Autoencoder syntax experiments 50

5.5 Autoencoder sequence experiments 51

5.6 Experiments conclusion 52

6 G P O N analyzer implementation 53

6.1 Environment 53

6.2 Analyzer 53

6.3 DataReader 54

6.4 Filters 54

6.4.1 Appl ied filters 54

6.5 M L models 55

6.6 Evaluator 57

6.7 Storing learned model 57

6.8 Command line interface and usage 58

6.8.1 Actions 58

7 G P O N analyzer detection test 61

7.1 Data preparation 61

7.1.1 Change random field value error 61

7.1.2 Drop important messages 62

7.1.3 A d d similar messages 62

7.2 Results evaluation 62

7.2.1 Learning dataset 62

7.2.2 Syntax dataset 62

7.2.3 Sequence dataset 63

7.2.4 A l l errors dataset 63

Conclusion 65

Bibliography 67

List of symbols, physical constants and abbreviations 69

List of appendices 70

A C D content 71

B Extra data and figures 72

B . l M L models of G P O N analyzer 72

B.2 A l l captured P L O A M d messages 73

B.3 Library usage example 74

B.4 Syntax autoencoder histogram 75

B.5 Sequence autoencoder histogram 76

List of Figures
1.1 Logical topology of passive optical network 18

1.2 Structure of downstream G T C frame 20

1.3 P L O A M downstream message format 21

1.4 Fini te state machine describing O N U life cycle [9] 26

2.1 A n artificial neuron 29

2.2 Activat ion functions 30

2.3 A neural network scheme 31

2.4 Neuron scheme of RNN[2] 33

2.5 Scheme of L S T M cell wi th gates [2] 34

2.6 Autoencoder neural network scheme 36

4.1 Analyz ing models system scheme 44

5.1 Accuracy and loos during learning process 49

B . l Inheritance diagram of M L models in G P O N analyzer 72

B.2 Loss values histogram of various datasets evaluated by autoencoder

for syntax analysis 75

B.3 Loss values histogram of various datasets evaluated by autoencoder

for sequence analysis 76

List of Tables
1.1 Transmission rates supported by G P O N systems 17

1.2 P loam downstream message fields description 22

1.3 P L O A M d messages definition 22

1.3 P L O A M d messages definition 23

1.3 P L O A M d messages definition 24

1.4 O N U operational states 24

1.5 Timers supporting activation process 25

2.1 Description of L S T M gates 35

3.1 Definition of Keras layers used in this thesis 41

4.1 Dimensions of input numpy.array 42

5.1 Filtered P L O A M d messages from captured data traffic 47

5.2 OneClas sSVM outlier detection model classification results 48

5.3 Syntax detection autoencoder classification results for each dataset. . 51

5.4 Sequence detection autoencoder classification results for each dataset. 51

6.1 Appl ied data filters in G P O N analyzer 55

6.2 Publ ic interface used by al l implemented M L models 56

6.3 G P O N analyzer command line arguments 59

7.1 Error in testing datasets 61

Listings
3.1 Simple quadratic equation in TensorFlow 38

3.2 Desclaration of model.compile method [3] 40

3.3 Desclaration of model.fit method [3] 40

3.4 Desclaration of model.predict method [3] 41

5.1 P L O A M d syntax analysis model used in experiment 47

5.2 Sequence analysis model used for experiment 48

5.3 Syntax verification autoencoder 50

6.1 Evaluator output example 57

6.2 Example of preprocess action 58

6.3 Example of learn action 60

6.4 Example of print action 60

7.1 Classification of learning dataset 63

7.2 Classification of dataset wi th syntax errors 63

7.3 Classification of dataset wi th errors in message sequences 64

7.4 Datasets classification with al l errors 64

B . l A l l extracted P L O A M d messages (part i) 73

B.2 A l l extracted P L O A M d messages (part2) 74

B.3 G P O N analyzer l ibrary usage 74

Introduction
A s customers service demands grow through time, requirements on service distri

bution network grow too. They need to support various types of services and each

consumes a significant part of bandwidth. To keep pace with customer needs, dis

tr ibution network has to evolve.

One of the evolution steps is to substitute old copper cables with modern fiber

optic cables. Organizations largely replaced old copper wi th fiber optic cables in

point-to-point world area networks, because of their bandwidth capabilities, long

range and resistance of electromagnetic and radio frequency interference. These

days, they have been replacing last mile distribution network, especially because

of higher bandwidth capabilities and longer range. W i t h new medium on phys

ical layer, which creates tree-like topology, it is necessary to create new commu

nication protocol. Several organizations take this opportunity and design various

protocols and recommendation wi th support of diverse services. In case of Inter

national Telecommunication Union, all solutions are released as recommendations,

which means device vendors may keep them in mind, but also can modify them

a little according their special requirements. Considering these changes in recom

mended protocol, analysis and reliable verification process is much more difficult

and requires more advanced techniques.

Machine learning (part of artificial intelligence science field) certainly belongs

into advanced techniques of data analysis. These algorithms are able to recognize

and learn various patterns based on learning dataset. They are widely used for classi

fication, pattern recognition and natural language processing. The last of mentioned

areas is very similar to our problem, which is analysis and classification of unknown

language or protocol.

The main goal is to create and learn model, which should be able to detect new

or different characteristics inside captured communication compared to referenced

baseline (learning dataset). Those different characteristics may be new internal

message type, bad frame field usage or anything else what is distinct from referenced

communication.

In chapter 1, Gigabit-capable passive optical networks (G P O N) are described

wi th physical topology, network components and communication principles. At ten

tion is focused on Physical line operations, administration and management down

stream (P L O A M d) messages used to control units in passive optical network.

Chapter 2 describes several machine learning models, which are considered as

a possible solution of this problem. Special attention is dedicated to definition of

neural networks and learning algorithms used in this thesis.

In chapter 3, various Python3 machine learning libraries are described with spe-

15

cial focus on TensorFlow and Keras, because the final machine learning model is

written using these libraries.

Chapter 4 consists of system architecture for G P O N protocol analysis using ma

chine learning techniques implemented in TensorFlow and Keras libraries. This

system is designed to focus on frame structure analysis and relations between fol

lowing messages. The output of this system is traffic similarity level compared to

baseline (learning) traffic.

In chapter 5, several experiments made during the design process are described.

Algorithms and models in this chapter are not considered as a final solution, but they

are sufficient as a proof of concept demonstration and the final implementation may

vary, but ideas and core of models are reused. Especially, the idea of time windows

of specific length, which are helpful during learning and classification process. Time

windows allow finding abnormal sequence in long communication.

Implementation details are described in chapter 6. It focuses mostly on an in

terface definition of various classes and a usage description. G P O N analyzer is

implemented as a python module and supports execution directly from command

line or it can be used as a library used for further development of analyzing models.

Chapter 7 verifies G P O N analyzer potential and discuss its detection capabilities.

It also describes dataset generation process wi th corrupted messages and message

sequences followed by their classification using learned analyzer.

16

1 Gigabit-capable passive optical networks
Gigabit-capable passive optical networks (G P O N) is technology, which provides

telecommunication and internet services over passive optical network (P O N) . It

is considered as a great replacement for older technologies (e.g. digital subscriber

line (DSL)) , because it achieves much higher transmission speed for various types

of traffic. A s its name already suggested, fiber-optic cables are used as a transmis

sion medium, which makes G P O N capable of providing services for longer distance

wi th higher transmission speed. Recommendation defines l imit at 20 km, but it is

possible to extend the range much farther.

G P O N uses wavelength division multiplexing to separate upstream and down

stream communication. Transmission speed supported by G P O N in each direction

is defined in table 1.1.

Tab. 1.1: Transmission rates supported by G P O N systems.

Upsteam Downstream

1.24416 G b i t / s 2.48832 G b i t / s

2.48832 G b i t / s 2.48832 G b i t / s

G P O N is defined by several G.984.x recommendations defined by International

Telecommunication Union - Telecommunication Standardization sector (ITU-T) .

This standard is designed to be backward compatible with previous I T U - T P O N

standard: asynchronous transfer mode passive optical network (A P O N) , Brodband

passive optical network (B P O N) .

1.1 Elements of PON

Passive optical networks consist of these basics elements: optical network unit

(O N U) , optical line termination (OLT) and optical distribution network (ODN) .

Logical topology of these components is shown in figure 1.1.

1.1.1 Optical distribution network (ODN)

O D N mostly uses passive network components, which provide transmission medium

for G P O N technology. These components connect single O L T and multiple O N U s

or O N T s using optical cables and splitters creating a tree like topology, which can

be also called point-to-multipoint. P O N splitters have various splitting ratio 1 : N.

where N is usually multiple of 2. M a x i m u m splitting ration in G P O N is 1:128 [9].

17

1.1.2 Optical line termination (OLT)

O L T is the root of network tree and implements P O N protocol (defined by I T U -

T) . It is also responsible for communication and administration of network leaves

(O N U / O N T) according to I T U - T recommendations. It provides a bridge between

G P O N network and providing services as internet, video, voice and cable television.

It is also responsible for registration/activation (described in section 1.6) of new

O N U s into network, which includes bandwidth assignment (described in section 1.4)

as well.

1.1.3 Optical network unit (ONU)

O N U 1 is a leaf of O D N nearing customer premises capable of communication us

ing P O N protocol and process P O N P D U s . It provides bridge between P O N and

customer services by converting signal from optical medium into metal cable us

ing different physical layer protocol and vice versa. It actively communicates wi th

O L T to gain time slot for upstream data transmission (this process is described in

section 1.4).

ODN

OLT

Fig . 1.1: Logical topology of passive optical network.

1In GPON recommendation, ONU mostly stands for both ONU and ONT in TC layer, except
special cases. ONT is considered as a single-user ONU.

18

1.2 GPON time division multiplexing

O D N consists of a single optical cable, therefore G P O N uses wavelength division

multiplexing to separate upstream (from O N U s to O L T) and downstream (from

O L T to ONUs) communication. In case O D N uses two optical cables, the second

one is used only backup.

The process of gaining the access to the medium for downstream communication

(generated by O L T) is centralized, because O L T is the only one who gets access

to that media. It labels outgoing G P O N encapsulation method (G E M) frames by

G E M Port-ID, which identifies receiver's logical port. O N U filters the incoming

G E M frame designated to itself based on G E M Port-ID.

In the upstream direction, there may be several O N U s communicating wi th O L T ,

therefore the process of gaining the access is decentralized. O L T assigns time based

windows to O N U s during bandwidth allocation process. O N U uses G E M Port-ID

to select specific logical connection to O L T .

1.3 GTC downstream frame structure

Frames sent by G P O N transmission convergence (G T C) layer in downstream direc

tion have constant time duration of 125 fj,s. A t transmission speed 2.48832 Gbi t / s ,

it represents 38880 bytes long frames [9]. Structure of this frame is graphically

represented in figure 1.2.

Physical control block downstream (P C B d) contains information necessary for

control and management of certain O N U . The most important are Upstream BWmap

and PLOAMd. Upstream BWmap field gives O N U time slots for upstream communica

tion bursts. PLOAMd field contains management message and it is more described in

section 1.5.

GTC payload field contains list of variable length GEM frames. Generic encapsu

lation method (G E M) provides connection-oriented transport mechanism supporting

variable payload length of various data services over P O N . G E M encapsulation is

analogy to asynchronous transfer mode (A T M) circuits. A T M was even supported

as a transport mechanism in previous version of G P O N recommendation, but today

it is deprecated [9].

O L T and O N U ports (part of transmission container (T - C O N T)) create vir tual

connection and label it wi th unique PORT-ID for proper identification. During trans

mission, PORT-ID in G E M header is set accordingly to identify receiving P O R T .

19

125fJS

Psync Ident P L O A M d BIP Plend Plend Upstream BWmap
4 bytes 4 bytes 13 bytes 1 byte 4 bytes 4 bytes N * 8 bytes

G E M frame G E M frame G E M frame G E M frame

"
G E M header

5 bytes
G E M payload

L bytes

PLI Port-ID PTI HEC
12 bits 12 bits 3 bits 13 bits

Fig . 1.2: Structure of downstream G T C frame.

1.4 Bandwidth allocation

From description of P O N (in section 1.1), it is obvious that the P O N is multiple

access network, where transmission collisions may occur. To avoid this situation,

O L T controls access of O N U s to transmission media. When O N U is wil l ing to

communicate over P O N in upstream direction, it needs to have assigned communi

cation time window. O L T assigns these time windows for each T - C O N T of O N U via

bandwidth allocation algorithm. Therefore, it sends Bandwidth Mapping message

(B W M A P) , which consists of several bandwidth allocations for specific O N T / O N U

or its T - C O N T [10].

1.4.1 Static bandwidth assignment

Bandwidth allocation process is approached by static or dynamic method. Static

method assigns time windows to O N U s regardless of what they need. This may

be beneficial for some technologies/services as VoIP, because of constant uplink

bandwidth and stable delay 2 . However, for other IP services, which send data in

2The delay is low, because VoIP packets are usually small enough to fit into one transmission
window.

20

bursts, it is not beneficial at all . After packet burst is sent and no more services are

wil l ing to transmit the data, the time window is still allocated for specific O N U . This

prevents others to use this idle time window. Static allocation method is sufficient,

if network is not congested or upstream bandwidth required by all O N U s is less than

1.244Gps 3 and is not fully utilized [10].

1.4.2 Dynamic bandwidth allocation

O n the other hand, dynamic bandwidth allocation (D B A) method only assigns time

windows to O N U s , which want to send upstream data. That means big packet bursts

can be sent quicker by this method, because O N U might get longer time window

for sending data. This method also cuts off O N U s , which do not have any data to

send. O L T gets notification from O N U s indirectly by G E M idle frames or directly

through buffer status reporting [11]. Dynamic allocation obviously utilizes trans

mission medium more effectively than static process, but level efficiency depends

on D B A algorithm. G P O N recommendation defines tools for D B A , but does not

specify the whole allocation algorithm, which might be modified according to service

providers needs. D B A enables them to oversubscribe P O N , resulting in providing

more bandwidth than they really have. This manner relies on customers, who do

not use the whole provided bandwidth at the same moment.

1.5 PLOAM downstream message format

Physical layer operations, administrations and maintenance is one of three methods

used by O L T to directly control O N U s in P O N . It is widely used during O N U activa-

Octets

M S B

O N U ID

M e s s a g e ID

Data

C R C

1

10

F ig . 1.3: P L O A M downstream message format.

31.244Gpbs is maximal upstream bandwidth defined by GPON recommendation by ITU-T.

21

t ion process, configuration of encryption, management of keys and alarm signalling

[9]. For communication, it uses P L O A M downstream message (P L O A M d) , which is

part of Physical control block (P C B d) .

P L O A M d message is 13 bytes long and message format is shown in figure 1.3.

Description of each field of P L O A M d message can be found in table 1.2.

Tab. 1.2: P loam downstream message fields description.

F ie ld name

O N U - I D

Message ID

Message Data

C R C

Description

This field represents receiving O N U . This number was as

signed to specific O N U during its activation process. This

field can cover values from range 0-253 for O L T -> O N U

communication or 255 for broadcast.

Type of P L O A M message is represented by this field. Mes

sage IDs are not in direct sequence (1..N), but randomly

assigned in one byte value space (0 — 255).

Each message can transport additional data and this field

is allocated for this purpose. Format of data field may vary

wi th respect to Message ID, but it has constant length.

Frame check sequence verifies data integrity of P L O A M d

message. It contains remainder of division of the this

message (with C R C set to 0) by generator polynomial

X8 + x2 + X + 1.

1.5.1 PLOAMd messages

This subsection briefly describes P L O A M d messages defined in I T U - T G.984.3

G P O N recommendation. Definition refers to several states of O N U activation pro

cess defined later in section 1.6. Types of P L O A M d messages wi th MessagelD used

in G P O N are defined in table 1.3.

Tab. 1.3: P L O A M d messages definition.

ID Message name Message description

1 Upstream

Overhead

3 Assign

ONI-ID

When activation process starts, O L T instructs O N U with

pre-assigned delay settings and number of preamble bytes

for upstream communication. It also may set optical power

of O N U ' s laser.

O L T assigns unique O N U - I D to specific O N U based on

serial number and inform O N U via this message type.

22

Tab. 1.3: P L O A M d messages definition.

4 Ranging time

5 Deactivate

O N U - I D

6 Disable Serial

Number

8 Encrypted

Port-ID

9 Request

Password

10 Assign

Alloc-ID

11 No message

12 P O P U P

13 Request key

14 Configure

Port-ID

15 Physical

Equipment

Error (P E E)

16 Change Power

Level

17 P S T message

18 B E R Interval

During Ranging state (04) O N U measures equalization

delay to synchronize itself for upstream communication.

O N U sets this delay based on this message sent by O L T .

O L T by this message forces O N U to stop transmitting data

in upstream direction, reset itself and start activation pro

cess from the beginning. O L T may broadcast this message

to all O N U s .

This message wi th disable option forces O N U to stop send

ing data, turn off the laser and move to Emergency state

(07). To enable O N U , O L T needs to send Disable Serial

Number wi th enable parameter, which moves O N U to the

state Standby state (02).

O N U is informed about channel encryption v ia this mes

sage.

It is an optional message used for authentication of O N U

against local password table stored in O L T .

O L T uses this message to assign additional Al loc - ID to

O N U , which has multiple T - C O N T s .

It is used when no P L O A M message is wil l ing to be sent

wi th transitioned G T C frame.

After L o S / L o F alarm O N U moves to the P O P U P state

(06). O L T can rescue O N U from this state by sending

directed/broadcsated P O P U P message.

If this message is sent by O L T , O N U needs to generate new

encryption key and sent it to O L T .

O L T assigns 12-bit G E M Port-ID to the individual logi

cal connections via O N U management and control channel

(O M C C) , but O M C C needs this ID too. Therefore, O L T

assigns Port-ID to O M C C via this message.

O L T informs O N U about inability to send G E M and

O M C C frames.

O L T sets/tunes laser power of O N U by sending this mes

sage.

It verifies status of O N U O L T connection v ia P O N .

It is used for evaluation of bit error rate.

23

Tab. 1.3: P L O A M d messages definition.

19 K e y Switching

Time

20 Extended

Burst Length

21 P O N - I D

22 Swift Popup

23 Ranging

Adjustment

This message contains specific time, when O N U should use

new encryption key.

O L T forces O N U to use type 3 preamble.

This message contains mean optical launch power and

P O N - I D tag assigned by operator to specific interface of

P O N .

O L T can force O N U s to move straightly to Operational

state (05) and clear L o S / L o F alarms wi th this message.

This message modifies equalization delay to correct syn

chronization drift. It can be sent to specific O N U or broad

casted to al l .

1.6 ONU activation process

When O N U powers on, it cannot instantly communicate in P O N network, otherwise

it would cause carrier collision due to multiaccess nature of transmission media.

Firstly, it needs to synchronize with O L T , get necessary IDs and activate itself, but

most importantly, it acquires time slot for sending upstream data [8]. The thole life

cycle of O N U in P O N is defined by finite state machine, which is shown in figure

1.4. It also contains O N U activation process defined by the first four states of state

machine. This process is responsible for ini t ial communication wi th O L T , request

of IDs and media access. A l l states of finite state machine are listed in table 1.4.

Tab. 1.4: O N U operational states.

O N U operational states of finite state machine

ID State name

0 1 Initial state

0 2 Standby state

0 3 S e r i a l N u m b e r state

0 4 Ranging state

0 5 Operation State

0 6 P O P U P state

0 7 Emergency stop state

In O N U finite state machine several timers are used to prevent getting stumbled

24

in specific state during activation process or loss of signal/frame error. These timers

are described in table 1.5. Besides, it uses loss of signal (LoS) and loss of frame

(LoF) flags to indicate transmission failure.

Tab. 1.5: Timers supporting activation process.

Timers used in activation process

T O l This timer is used to avoid getting state machine stuck in 0 3 or 0 4

state during unsuccessful activation process. It is also called serial

number acquisition and ranging timer. Recommenced init ial value is

10s [9].

T 0 2 Timer T 0 2 also called P O P U P timer, avoids getting state machine

stuck while waiting on P O P U P message from O L T in state 06 . Rec

ommended value for this timer is 100ms [9].

Initial state (01) is the first state coming after O N U powers on. In this

state, O N U passively listens to communication in the P O N and tries to detect M

following PSYNC fields and then tries to detect M — 1 whole frames. If this detec

tion is successful, O N U moves to the next state 0 2 and clears L o F and LoS flags.

Otherwise, it remains in this state unti l it receives necessary following uncorrupted

data.

O N U in Standby state (02) synchronizes itself in upstream direction. It waits

for global network parameters e.g. delimiter value, power level mode and pre-

assigned delay. A l l of these parameters are in Upstream Overhead message. When

O N U receives this message, configures these parameters and moves to the next state

0 3 Serial Number state.

During Serial Number state (03) O N U lets O L T know about its existence by

sharing its serial number by responding on O L T request. To avoid collisions in the

P O N , O L T sends P L O A M messages wi th empty bandwidth map field, what creates

quite time window for 250 /xs [7]. Through this quite window O N U replies to O L T S N

request with its own serial number. After this step, O N U waits to receive Assign

ONU-ID message, which contains O N U - I D for this specific O N U . W i t h successful

assignment of O N U - I D it moves to the next state, the Ranging state (04). O L T can

use Extended Burst Length message and force O N U to configure received extended

parameters and use the type 3 preamble lengths [9].

Ranging state (04) is crucial for synchronization of upstream communication.

A l l O N U s appear to be in equal distance from O L T even if they are not, in that

case propagation delays are not equal as well. A s a consequence of this situation,

25

Initial state (Ol)
ONU is switched on

ONU receives downstream
frames clears

LOS/LOF

ONL' receives disable request
Standby state (02)

ONU waits for network parameters

ONU detects LOS/LOF ,

ONU receives
Upstream overhead

parameters

TO I timer expires

ONU receives disable request
Serial number state (03) ONU detects LOS/LOF\

ONU waits for serial number request |

ONU receives
ONU-1D

TOl timer expires

ONU receives disable request
Ranging state (04)

ONU waits for ranging request

\ ONU detects LOS/LOF

ONU receives deactivation request

ONU receives
equalization delay

ONU receives disable request
Operation state (OS)

ONU receives and transmits data

ONU receives deactivation request

ONU detects LOS/LOF

ONU receives directed
POPUP message

ONU receives broadcast
POPUP message

ONU receives disable request
POPUP state (06)

ONU asserts LOS/LOF
ONU receives deactivation request
TO2 timer expires

Emergency stop state (07)
ONU stops transmitting data in U/S

until enabled by OLT

ONU receives enable request

Fig . 1.4: Finite state machine describing O N U life cycle [9].

equalization delay is measured in this state. O N U waits for receiving Ranging time

message and moves to the next state 0 5 .

In Operation state (05) upstream communication is synchronized between all

O N U s . Thanks to equalization delay each message is received by O L T in correct

upstream G T C frame and collisions in P O N are avoided. O N U s are able to commu

nicate with O L T via P L O A M message and send data in upstream direction. O N U

26

remains in this state unti l errors (L o S / L o F) occur or O N U is being disabled/deac

tivated.

When LoS or L o F alarm is activated, O N U moves to the POPUP state (06) and

stops sending upstream data. Transmission silence informs O L T that O N U is in this

state. A s the first step, O N U tries to recover from the error state by reacquiring

signal or bring the frame synchronization back, which clears L o S / L o F alarm. When

synchronization is achieved again, O N U waits on P L O A M message from O L T . If

directed POPUP message is received, O N U moves to the state 0 5 . Or if broadcast

POPUP is received, O N U moves to the state 0 4 and measures equalization delay. If

O N U is unable to recover signal and frame synchronization it moves to the state 01

and starts activation process from the beginning.

When O N U receives Disable Serial Number message wi th option disable, which

means some malfunction of O N U occurs, O N U instantly appears in Emergency

state (07). O L T tries to send this message three times and if O N U still does not

move to 0 7 state O L T sustains receiving upstream messages of O N U and asserts

D F i alarm. In this state, laser has to be turned off and all upstream communica

tion is prohibited. When malfunction is fixed, O L T sends Disable Serial Number

message wi th option enable and O N U moves to the state 0 2 and negotiates all

parameters from the beginning.

27

2 Machine Learning
Artif icial intelligence is a scientific study, which research learning and data process

ing systems capable of individual decision. Machine learning, as a subset of artificial

intelligence, studies system learning algorithms [4]. It is used in various cases, where

conventional system designing (writing a computer program) is extremely hard to

achieve. Examples of machine learning application are: image processing, voice

recognition, suspicious task execution analysis and many others.

These days there are many algorithms oriented to machine learning (e.g. neural

networks, decision trees, support vector, machines). Each algorithm has benefits

and disadvantages depending on use-case of project. There are also many frame

works and libraries in various programming languages, where optimized versions of

algorithms can be found.

2.1 Neural Networks

Neural networks (NN) are one of many implementation methods of machine learning

systems. Inspiration was taken from discovered principles of human brain and the

motivation was to create an artificial version of this complex system. The first

designed system was perceptron and was able to learn classification of input space

into two separate categories. W i t h adding more perceptrons into single layer and

stacking more of these layers, neural networks became to the world.

2.1.1 Perceptron

A core of these networks is an artificial neuron, a very simplified abstract replica

of natural neuron. Graphical representation of perceptron is shown in figure 2.1.

The principle is straightforward. Neuron calculates sum of all inputs signals

according to equation 2.1, where Xj is input signal, Wi is weight, 9 represents bias

and z is sum of all signals. This part is the same for across all neurons. Then the

result is passed to the activation function, which evaluates the result of this specific

neuron.
n

z = -e + Y,Xi*Wi (2.i)

i=l

Each input signal is multiplied by specific weight, which represents its importance

to the neuron [6]. If the sum of signals reaches certain level, the neuron is considered

as activated. The bigger the weight is, the higher the impact of signal to activation

function result wi l l be. Weights are defined by the real number, so it also can be

positive or negative number.

28

Fig . 2.1: A n artificial neuron.

Definition of activation function is specified by type of neural network and posi

t ion of neuron in this network (neurons in different layers may use other functions).

It adds necessary non-linearity into N N model. Even though, each project using

N N claims extra attention of model designer, who experiments wi th various combi

nations of activation function and chooses the best one. The most used activation

functions are shown in figure 2.2.

2.1.2 Feed forward neural network

Huge number of artificial neurons separated into layers are connected together into

neural network. These networks differ wi th connection scheme of neurons and their

activation function. Inside feed forward neural networks, output of each neuron is

connected into input of all neurons in the next layer (except output layer). Neurons

in single layer are not connected together at all . In mathematical point of view,

it creates an acyclic oriented graph with perceptron as a vertex and connections

in between as edges. These neuron connections are called synapses and scale the

value by weight. For better understanding see figure 2.3, where x is input vector,

Wi, W2, W3 are weight matrices and Y is output vector. This network accepts vector

of four components as an input and transforms it into vector of two (e.g. classifi

cation of vectors into two sets). The weight matrices have specific weight value for

each synapse and each neuron. The dimension of current matrix in specific layer is

given by number of neurons in previous and following layer.

Input and output layers create an exception in upper connection definition of

N N . The main role of N N input layer is to distribute all parts of input vector to

following perceptron in inner layer, therefore activation function might be linear.

29

Fig . 2.2: Examples of neuron activation functions.

A t the end of N N , there is output layer, which is not connected to anything, but

provides aggregated output.

2.1.3 Backpropagation

The N N handling process is obvious compared to learning process. A l l calculations

related to handling are performed by simple equations and the whole system remains

persistent after handle.

Difficult task is to find weight matrices, that calculate output vector from input

vector wi th the highest precision. This had been the biggest problem and source

of negative opinions about N N , unti l backpropagation algorithm was found out.

A s the title of this algorithm indicates, it evaluates error of N N model and back

propagate error from output layer to previous layers. Error is calculated using loss

function (also called objective function), which can be defined by mean square error,

30

Input
layer

cross entropy or function wi th similar use case. It basically evaluates the difference

between computed and expected output of N N .

Backpropagation algorithm is based on searching gradient of the weight wi th

respect to loss function. Calculated gradient is used to modify weights in order to

gain higher precision of N N model (minimizing loss) by applying one of the iterative

learning method as a stochastic gradient descent or other alternative [15].

Example of error backpropagation

First of all , suitable learning and testing data are necessary to learn/train N N model

by backpropagation algorithm. Bo th data sets (training, testing) need to be labeled

wi th expected output for each input vector, which means these sets should contain

pairs (x, d), where x is input vector and d is output vector.

Assume that N N described in figure 2.3 uses sigmoid as activation in all neurons.

Sigmoid function is defined in equation 2.2.

/ (*) = ^ (2.2)

For this example of backpropaation algorithms we use mean square loss function

defined in equation 2.3, where y is calculated output, d is expected output and N

is dimension of y, d vectors.

1 N
L(y,d) = -j:(yl-dlf (2.3)

J V i=i

31

Finding gradient wi th respect to z-th weight to k-ih output neuron is shown in

equation 2.4. B y design of N N , evaluation of y from x, w and 9 is accomplished

by using several nested function, therefore we can use the chain rule when partial

derivative is being searched.

dL dL dyk dzk

dwik dyk dzk dw.
{Vk ~ dk)yk{l - yk)xi (2.4)

Ik

The weights are changed based on gradients of error function calculated for the whole

training dataset. Hence, gradients for each learning sample are summed together.

If stochastic gradient descent method is used, aggregated gradient is firstly scaled

by learning rate a and then added to original weight [15]. F ina l weight adjustment

is demonstrated in equation 2.5.

wi:j = Wij + aAwij, where Awrf = ^ ^L(yt, d f) ^ ^

Another neuron parameter which needs to be learned is 9 (the bias). Evaluation of

9 difference is similar to weights. The only change is in partial gradient derivation

of loss function, because it is derived wi th respect to 9 not w. The rest of procedure

is exactly the same.

2.2 RNN - recurrent neural network

Feed forward neural networks find their purpose in many areas, but they are not even

close to be considered as a universal tool for data classification or categorization.

Various patterns can be found and learned by N N in single sample, but patterns

occurring across several samples are omitted. This causes difficulties during im

plementation of model for language analysis. Recurrent neural network might be

a simple solution of this problem. R N N neuron does not calculate output based

purely on input vector, but it considers its inner state as well.

2.2.1 RNN topology

To achieve connection wi th its previous state R N N creates cyclic graph by connecting

output of neuron back to the input of the same neuron and passes state h through

this connection. This adds extra matrix of weights Whh for state vector h. Scheme

of R N N neuron is shown in left part of figure 2.4, where all inputs and outputs are

defined as vectors, and weights are defined as matrices, because the whole neural

network is represented by this scheme. In the right part, there is the same neuron,

but rolled through time (through state vector h). This visualization shows that

32

each new input is handled by neuron as if it was a different one, because of the state

vector.

To compute the next state vector at time step t, R N N uses equation 2.6, where

Whh is weight matrix of state vector, h 4_i is previous state vector, Wxh is weight

matrix of input, xt is input and b)̂ is bias.

ht = tanh(Whhht-i + Wxhxt + bh) (2.6)

Prediction zt based on current state ht is evaluated by equation 2.7, where Whz is

weight matrix of preditcion and bz is bias.

zt = softmax(Whzht + bz) (2.7)

2.2.2 Back propagation through time

Proper weight matrices used for input filtering, prediction and next state compu

tation need also wi th their biases are necessary for achieving reasonable results.

Similar approach can be used as in regular N N to find these matrices. It is back-

propagation algorithm. Slight difference is that the gradient is searched through

time (i.e. through sequence of samples).

Let L be a loss function. Considering Whz is shared through time, gradient

wi th respect to Whz is calculated by sum of differences for each time step shown in

equation 2.8 [2].

dL = ^ d L dzt

dWhz ^dztdWhz 1 ')

Gradient with respect to Whh is evaluated by sum of fractional gradients for each

time step from 0 to t + 1, which also depends on several changes in state vector

33

ht. Therefore chain rule is applied on differentiation of state vector in time. This

propagation back in time is demonstrated wi th red line in figure 2.4. Mathematical

definition of mentioned gradient is shown in equation 2.9 [2].

d_L = j+* dL(t + 1) dzt+1 dht+1 dhk

dWhh V f e = i 9zt+1 dht+1 dhk dWhh

 [' '

The gradients of remaining weight matrices or bias vectors can be deduced from

equations: 2.8 and 2.9.

2.3 LSTM - long short term memory

R N N s are the first type of N N , which tried to find patterns in sequences, but they

have several imperfections. The first problem is called the vanishing gradient, which

refers to a situation, when a sum of partial derivations is nearing to zero and as a

consequence R N N does not learn anything. This problem might be a direct opposite

and it is called the exploding gradient. Gradient becomes very big and unstable,

resulting into situation, when R N N does not learn anything as well.

F ig . 2.5: Scheme of L S T M cell wi th gates [2].

Because of these situations, R N N has problem to find and learn patterns in a

long sequences. L S T M cell tries to provide solution of this problem. It inherits the

design of R N N and add several important features. The topology of L S T M cell is

34

shown in figure 2.5, where x
4
 is input vector, h t _ i is previous state vector, W are

weight matrices and bias vectors are omitted.

The first new feature is an internal memory used for storing necessary information

important to patterns of farther distance. Hence, it is called long short, because

it has long memory defined by ct state, and short memory defined by ht vector

inherited from the R N N .

The second one is gate mechanism providing control of information flow of the

cell. These gates are defined in table 2.1.

Tab. 2.1: Description of L S T M gates.

Gate name Description

Input and Input These gates are used to scale input vector x
4
 and previous

modulation gate state h 4 _ i into specific range of values using sigmoid and

tanh activation function.

Forget gate It is responsible for controlling what kind of information

should be stored in or erased from the memory.

Output gate It decides which information is inside state vector ht and

which information leaks from the memory.

Backpropagation algorithm of L S T M cell is very long, because it has much more

weight matrices and bias vectors, but principle is exactly the same. Mathematical

evaluation is omitted, because it would be out of scope of this thesis.

2.4 Autoencoder

Autoencoder is a type of symmetrical neural network, which uses unsupervised learn

ing method. It tries to learn sparse (less dimensional) approximation of the input

vector x in hidden layer to be able to reconstruct in the output layer [14]. The

reduction of dimensions allows the model to not just copy input vector to the out

put, but extract and find features describing characteristic of this vector and then

reconstruct the output vector.

Autoencoder consists of two sub-models. The first one is called encoder and its

main responsibility is to compress input vector x to less dimensional vector space

called latent space. The second sub-model is decoder, which tries to reconstruct

vector x from latent space vector containing compressed original vector x. Ex

ample of autoencoder wi th highlighted sub-models is shown in figure 2.6.

35

There are many usages of autoencoders, such as anomaly detection (described in

section 2.4.1), noise reduction, dimensionality reduction, information retrieval and

many others.

Encoder Decoder
I

Fig . 2.6: Autoencoder neural network scheme.

2.4.1 Anomaly detection

One autonencoder neural network usage is anomaly detection. A n autoencoder is

learned using normal data, because anomalies are yet to be found. Considering the

fact that autoencoder uses unsupervised learning method, an expected output y is

the same as an input of x [13]. The goal of learning process is to minimize a value

of a loss function. After all learning iteration a anomaly threshold carefully is set

to correctly divide normal samples and possible anomalies.

To classify given vector sample x, it is necessary to predict output y and evaluate

prediction error using loss function. If the error is lower than threshold, the sample

x is considered as normal. Otherwise, it is classified as an anomaly.

36

3 Tensorflow and Keras
This chapter contains description of several machine learning libraries in Python3

language. Focus is mostly concentrated on TensorFlow and Keras, because it is used

as a core for M L models designed in the following chapters. Those projects are being

developed, well-supported and documented. TensorFlow also supports export and

deploy model on remote machine.

3.1 Machine learning libraries in Python3

Machine learning algorithms and techniques are developed and shared by open

source communities founded by universities or data analyzing companies. The main

idea is to avoid inventing of solution already known. Taking into consideration all

difficulties during derivation of loss function gradient, it makes sense to share and

reuse the solutions, so data analytic may focus on M L model improvement instead

of mathematical derivation.

Libraries used for machine learning do not only provide easy way to create,

learn and experiment wi th model, but they are also capable of efficient computation

method. Models based on N N s calculates thousands, even millions of numbers

wi th simple mathematical operators: [+,->*]• To improve computational speed,

libraries support hardware offload, which moves calculation into peripheral device

(e.g. graphics processing unit (G P U)) .

3.1.1 Scikit-learn

Scikit is a community driven open source project focused on many machine learning

algorithms (e.g. random forest, k-Means, nearest neighbors, support vector ma

chines, etc.). It is easy to use, therefore more concentration can be targeted on

quality of training data. O n the other hand, support G P U offload is missing , which

means it does not scale well on large neural networks [12].

3.1.2 Pytorch

Pytorch is machine a learning library in Python3 language developed by Facebook

research group in 2017 and is based on Torch library written in C. It is mostly

used for natural language processing and computer vision. The main advantage

is capability of tensor operation acceleration on G P U , which allows creating and

training N N with several hidden layers.

37

3.2 TensorFlow

TensorFlow library is being developed by artificial intelligence (AI) research com

munity from Google. Model or program development in TensorFlow consists of two

stages: static computation graph definition and running a computational session of

this graph. Thanks to this model representation, it is easy to evaluate data parallelly

in pipelines especially on G P U s allowing creating and learning deep N N .

3.2.1 Computational graph

The core of TensorFlow calculations creates directed graphs structure used for com

putation, where node can be for example value or math function, and edges are

tensors (defined in following section 3.2.2). Each node has zero to TV inputs and

outputs. TensorFlow assigns kernels to node representing math function, which

contain implementation of that function on particular device (e.g. G P U , C P U) [1].

Example of a simple quadratic equation evaluation by computational graph is

shown in listing 3.1. There is only definition of static computational graph, the

second part wi th session execution is omitted, because TensorFlow runs it implici t ly

from version 2.0.0.

Lis t ing 3.1: Simple quadratic equation in TensorFlow.
» > import tensorflow as t f

•2 » > a s s e r t t f . _ _ v e r s i o n _ _ >= '2.0.0'

3 » > a = t f . constant (2)

4 » > b = t f . constant (-3)

r, » > c = t f . constant (5)

(i » > x = t f . const ant (1 i s t (range (- 5 ,5 ,1)))

7 » > y = a*x**2 + b*x + c

8 » > p r i n t (y)

9 t f . Tensor ([70 49 32 19 10 5 4 7 14 25], shape = (10,) , dtype=int32)

3.2.2 Tensor

This library is designed to work with tensors, to be able to design generic mathemat

ical structures or functions using computational dataflow graph. Tensor is generic

mathematical structure representing linear mapping from one set to another. From

library perspective, it is generic data structure unifying scalar, vector, matrix and

n-dimensional array. Thanks to tensors, definition of single dense N N layer can be

as easy as y = sigmoid(Wx * x + b) and it can be used as a generic definition of N N

layer, but dimensions (shapes) of certain vectors have to match.

38

3.2.3 TensorFlow parallelism

TensorFlow is designed to execute graph session on distributed system. Therefore,

scheduling algorithm is a necessary part of this library. Each computing system has

abstract representation used by scheduling algorithm describing available system

resources. Special process called worker runs in this system and executes subgraphs,

which are assigned from master process. To share data between worker processes,

remote direct memory access (R D M A) and transmission control protocol are used.

3.2.4 Gradient evaluation

Considering the fact that the TensorFlow is designed especially for machine learning

using deep neural networks, it directly supports evaluation of gradient for current

graph. When TensorFlow searches gradient for specific tensors with respect to other

tensor, it backtracks to the other tensor and add partial gradients to each node on

the path. F ina l gradient is found by applying chain rule on this partial gradients

together [1].

3.3 Keras

This library provides an easy to use high-level application programming interface

(API) for designing, learning and evaluation N N models. Today it is a part of

TensorFlow library and makes model definition as a computational graph (needed by

TensorFlow) much easier by abstracting several M L components. Whole M L model

is composed of abstract objects compiled into TensorFlow computational graph to

gain benefits of G P U acceleration. These abstract objects can represent: layers,

model, optimizer, loss functions, activation functions of neurons and many others.

The major part of these objects contains methods used for model serialization and

deserialization. Several abstract objects are briefly described in sections below.

3.3.1 Model

Project Keras contains two main model definitions. The first is model .Sequential,

which is also used in our models. It is capable of stacking abstract N N layers (defined

in section 3.3.2) and creates fully functional N N model.

The second one is model.Model providing A P I for customized model definition

using inheritance or functional description. One of the use cases is definition of two

M L models with several layers, but one of these layers is shared across models [3].

39

Both mentioned model classes share basic A P I used for model initialization,

training and prediction. Description of several model methods used in thesis can be

found in the following subsections.

Compile

This method specifies necessary information needed for learning process. The most

important parameters are optimizer specifying iterative algorithm used for up

dating weights based on gradient during learning (e.g. Stochastic gradient descent

(SGD) , Adadelta, Adam, etc.) and loss (or objective) function (e.g. mean square

error, crossentropy, etc.) defining prediction error of model. Also, various model

variables can be evaluated during learning process and can be defined by metrics

parameter. Method declaration can be seen in listing 3.2.

Lis t ing 3.2: Desclaration of model.compile method [3].
c o m p i l e (o p t i m i z e r , loss=None, metrics=None, loss_weights=None, sample_weight_mode=

None, weighted_metrics=None, target_tensors=None)

Fit

Each model needs to learn on training data and for this purpose f i t method exists,

accepting enormous number of arguments, but most importantly it accepts learning

set x, expected results y, number of learning iterations epochs. This method returns

special object History .history containing gathered data learning process, which

can be used to plot accuracy and loss evolution during epochs. Declaration of f i t

method is shown in listing 3.3.

Lis t ing 3.3: Desclaration of model.fit method [3].
fit(x=None, y=None , batch_size=None , epochs=l, verbose = l , callbacks=None,

v a l i d a t i o n _ s p l i t = 0 . 0 , validation_data=None , s h u f f l e = T r u e , class_weight=None.

sample_weight=None, i n i t i a l _ e p o c h = 0 , steps_per_epoch=None, v a l i d a t i o n _ s t e p s =

None, v a l i d a t i o n _ f r e q = l , max_queue_size = 10, workers = l , u s e _ m u l t i p r o c e s s i n g =

False)

Predict

Learned models are usually used for classification or prediction based on current

input. This is achieved using predict method accepting parameter x as input

tensor. Declaration of this method can be seen in listing 3.4.

40

List ing 3.4: Desclaration of model.predict method [3].
1 p r e d i c t (x , batch_size=None, verbose=0, steps=None, callbacks=None, max_queue_size

=10, workers=l, u s e _ m u l t i p r o c e s s i n g = F a l s e)

3.3.2 Layers

To make model definition a bit easier, Keras contains huge number of abstract

N N layers definitions in keras. layers submodule. A l l of them share the same

basic A P I , which is extended for specific layers requiring different parameters. The

major part of layers requires only single parameter during initialization, which is

units specifying number of neurons in that layer. It is also common to set specific

activation function different to default 1 using activation parameter. Dimension of

inner layer tensors is derived from number of neurons in adjacent layers. Therefore,

layer input shape can be assigned automatically. Exceptions are the first model

layers, where automatic evaluation may not be possible and tensor dimension has

to be set using shape parameter. Layers used in this thesis are defined in table 3.1.

Tab. 3.1: Definition of Keras layers used in this thesis.

Layer name Description

Dense This is the most used layer representing fully-connected N N

accepting vectors as an input and transform them into output

of desired shape.

Dropout To avoid overfitting during learning and to gain more accured

N N , several randomly chosen neurons may be "turned off"

using this layer.

L S T M This layer is abstract implemetation of L S T M cell (described

in section 2.3) requiring sequences as an input.

TimeDistr ibuted To add Dense layer (or similar accepting vectors instead of

sequences) before L S T M layer, Dense layer needs to be deco

rated by TimeDistr ibuted decorator, which allows Dense layer

to handle each vector in sequence as single input.

Default activation function of Keras layer is linear.

41

4 Designing learning model
This chapter contains a design of M L system responsible for traffic verification based

on baseline communication, which follows G P O N recommendations. Input data

structure and format are discussed together with preprocessing of learning data and

the whole system component by component. Models in each component are chosen

wi th respect to TensorFlow.

4.1 Data characteristic

Considering the fact that this is a communication protocol, similar approach may

be used as for natural language processing. Bo th contain a sequence of related

information in specific order, which means different order may results in a distinct

or even misinterpreted context.

4.1.1 Input data format

Model definition is based on TensorFlow library, which well collaborates wi th numpy
1

library. Thus, it is reasonable to use numpy.array as data structure, where input

vectors are stored. This array has three dimensions defined in table 4.1.

Tab. 4.1: Dimensions of input numpy.array

No. Dimension name Description

1 sequence Model can classify several sequences and by using this

dimension is able to separate them.

2 message Sequence consists of several following messages.

3 feature/field Each P C B d message has several fields and this dimension

divides them.

Single input vector has the same structure as P C B d field of G T C downstream

frame and it is shown in figure 1.2. Fie ld representing length are aggregated to a

single number, but fields representing data (e.g. P L O A M d data field) are divided

into separate features.

1 Numpy is Python3 library supporting various mathematical operations with complex multidi
mensional structures (e.g. vectors, matrices, etc.) and much more.

42

4.1.2 Preprocessing data

P C B from captured communication are stored in Microsoft SQL database [8]. This

data cannot be directly injected into analyzing system. During normalization pro

cess of database design, several changes are applied to achieve certain normal form

resulting in effective data storing and removal of duplicated data. Unfortunately

this format is suitable for M L model, which requires correctly formatted tensors

and data duplication in some field is not considered. Therefore, data is grouped 2

together and then extracted in JavaScript Object Notation (JSON) format from

the database. This extract needs to be loaded, all nested arrays expanded to a flat

structure and a result modified into a suitable format described in section 4.1.1.

4.2 System design

G P O N verification system consist of several components due to the fact that the

single N N should be primarily focused on a narrow purpose to gain optimal results.

Otherwise, we would have complex N N model, which is hard to train, test and

enhance. This can be sorted out by decomposition into smaller narrowly aimed parts,

which positively influences learning and evaluation speed, because each models has

to learn dependencies between fewer weights. Scheme of this model system is shown

in figure 4.1. Each component of this system is discussed in following subsections.

4.2.1 Data reader

This is the first component in the system and it is mainly responsible for:

• reading data wi th specific format and load them into memory

• preprocessing R A W data from database and storing in the specific file format

Based on the fact that G P O N network can produce thousands of messages per

second, the data reader object should use suitable format for huge numbers of small

vectors. Data are loaded into n-dimensional arrays and passed to model for learning

or classification sequentially, so the performance random data access can be ignored.

4.2.2 Input filter

Input data may contains some mistakes or have different length 3 . This component is

responsible for filtering such messages and for normalizing rest messages into suitable

format for M L model input. It also helps during learning process by filtering or

reducing long sequences of the same messages, which would prevent correct learning.

2Applying group by operation on certain tables.
3Length of BW Map field is not constant.

43

Filtered Data

Input filter

Parsed data

Data reader

Syntax
verification

Classification/
Prediction vectors

Semantic
verification

Evaluator

G-PON standard
estimation

Fig . 4.1: Analyz ing models system scheme.

4.2.3 Syntax verification model

Content of each message field has specific rules, which should be considered during

analysis. This component is responsible for this verification, which can be achieved

by several proposed models.

The first proposed model is a deep neural network consisting of several dense

layers. The model would be trained by supervised learning algorithm requiring

correct and faulty input data to learn. The advantage of this approach is that the

model is able to learn more complex relations. O n the other side, it is necessary to

generate synthetic faulty data needed by learning process.

The second option is to use one of outlier detection models capable of classifi

cation similar and different data compared to learning dataset. This technique uses

unsupervised learning and no additional data has to be generated, but it may not

learn complex relations compare to deep neural network.

4.2.4 Semantic verification model

This model verifies message relations in time. Proposed model may use LSTM cells

(described in section 2.3) to achieve this time based sequence check. L S T M based

networks prove their capabilities in various similar use cases. For example language

translator uses these cells and the whole sentences are processed to a single state and

44

then this same state is used to generate similar sentence in a different language. The

first part of mentioned system solves a similar problem, which is finding patterns in

time. This part can be used for message sequence analysis and provided state is not

used for translation to different language, but for a prediction whether it satisfies

G P O N recommendation or not. Keras A P I in TensorFlow has support of LSTM

layers, so the proposed model is possible to create. If combination of dense layers

and L S T M is necessary, each previous layer has to be TimeDistributed, because

L S T M layer input shape has more dimensions.

4.2.5 Evaluator

Evaluator is the final component, which creates human-readable output from pre

vious classifications. Its responsibility is to create statistics about classification or

prediction of machine learning models used in this system. Based on this informa

tion it creates aggregated output, which represents similarity to baseline traffic and

highlights strange messages and non-standard message sequences.

45

5 PLOAMd analysis experiments
This chapter describes ideas and experiments made during design process of learn

ing model for analysis of unknown protocol, which should keep definition G P O N

recommendation. In the first experiment, the effort is focused on P L O A M d (defined

in section 1.5) message analysis. The goal is to create model used for inspection of

each message field and search for possible abnormalities.

The second experiment is focused on analysis of the whole protocol, which is a

difficult task. Inspiration is taken from natural language processing models based

on R N N s (R N N are defined in section 2.2.) or N N derived from R N N s . Analysis of

network protocol is very similar, because there is sequential data with given syntax.

The thi rd and the fourth experiment use autoencoders based models (described

in section 2.4) for syntax and sequence analysis respectively. These models are very

similar. The only difference is the number of layers, number of neurons in each layer

and the data shape. The model used for sequence analysis accepts input as flatten

message windows of constant length, instead of pure messages.

5.1 PLOAMd data mining

Downstream network traffic in P O N was monitored and captured to obtain real

data. Learning data is a building stone for a precision of each artificial intelligence

model. Capturing system do not store the whole G T C frame due to the size of

frames and transmission speed in G P O N , but only the P C B d headers. This is not a

problem, because important protocol messages used by G P O N are in these headers

and stored in the database.

For the following experiments, models need information from PLOAM field of down

stream P C B header. During the preprocessing phase, messages are grouped by

MessagelD column and counted. Sorted P L O A M d messages wi th number of occur

rence are shown in table 5.1.

From filtered data it is obvious that the most used P L O A M d message is NoMessagen

used when no managing instruction is being sent by O L T , which is standard oper

ating state when no O N U is executing the activation process.

There are four different values in ONU-ID field, which represent three distinct

O N U addresses and the broadcast address. Based on the occurrence of various

AssignONU-IDs and RangingTime^ messages it is clear that activation processes of

these units are captured.

Among others there is one message, which is not specified or described in G P O N

recommendation: 24- This and similar unknown message are the main reason of

protocol analysis wi th A I / M L .

46

Tab. 5.1: Fil tered P L O A M d messages from captured data traffic.

O N U i d MessagelD Data C R C Count

0 4 A A A E u U g A A A A A A A = = 196 1

0 8 A v n w A A A A A A A A A A = = 12 1

0 10 Q A A B A A A A A A A A A A = = 147 1

0 18 A A E 4 g A A A A A A A A A = = 251 1

1 4 A A A E u U I A A A A A A A = = 132 1

1 8 A g A Q A A A A A A A A A A = = 66 2

1 8 Avng A A A A A A A A A A = = 102 1

1 10 Q B A B A A A A A A A A A A = = 75 1

1 18 A A E 4 g A A A A A A A A A = = 166 1

2 10 Q C A B A A A A A A A A A A = = 36 1

2 14 A Q A g A A A A A A A A A A = = 6 1

255 1 IA A Aqqt ZgyA A A A = = 41 26

255 3 A E h X V E M qi Y h p A A = = 253 1

255 3 A U h X V E N d V d F 7 A A = = 100 1

255 3 A k h X V E N d W u F 7 A A = = 239 1

255 11 A A A A A A A A A A A A A A = = 158 299945

255 20 H h I A A A A A A A A A A A = = 23 12

255 21 I A A A A A A A A A D / / w = = 212 1

255 24 B + M L F B M b 6 h O B A A = = 66 1

5.2 Syntax analysis experiment

A model in this experiment should detect anomalies in the G P O N communication.

Message is considered as an anomaly, when it is not similar to messages in the

training dataset. The model capable of this function choosed for this experiment

is OneClassSVM from scikit library, which approximates mathematical function to

create an envelope, which decides whether classifying vector is normal or outlier.

Lis t ing 5.1: P L O A M d syntax analysis model used in experiment.
1 from s k l e a r n import svm

2 model = svm.OneClassSVM(kernel='rbf', nu=0.03, degree=13,

3 gamma = 0.00001, verbose=True, max_iter=-l)

m o d e l . f i t (n p . c o n c a t e n a t e ([i _ t r a i n , x _ t r a i n + 0.5, x _ t r a i n - 0.5]))

The model used in this experiment is shown in listings 5.1. Approximat ion

function of model uses radial basis function as a kernel. The gamma coefficient of

47

this model is very low to wrap the envelope around normal vectors more t ight ly

which raises the sensitivity of this model.

Captured messages shown in table 5.1 are split to learning and testing dataset.

Both these datasets represents standard traffic. The model is learned only learning

datasets with a variation of ± 0.5, because OneClassSVM expects outliers to be in

learning dataset and this guarantees the normal traffic is classified correctly. Testing

datasets verifies whether the model classifies unknown standard traffic correctly.

Outlier detection capabilities are tested wi th two datasets. The first dataset is

randomly generated within range < 0; 255 > for each field, but the second one

is generated within range < 25; 35 > in MessagelD and O N U i d fields and range

< 0; 255 > in remaining files, which simulates possible outliers. Classification results

of this model for each dataset is shown in table 5.2.

Tab. 5.2: OneClas sSVM outlier detection model classification results.

Dataset Accuracy Elements Errors

train 100% 14 0

test 100% 5 0

similar outliers 100% 50 0

random 100% 50 0

5.3 Sequence analysis experiment

Model with two L S T M layers suitable for sequence analysis is created to learn system

relations between message type and content using Keras and TensorFlow library.

This model is shown in listings 5.2.

List ing 5.2: Sequence analysis model used for experiment
i from tensorflow import keras

model = keras . Sequent i a l ([

3 keras.layers.LSTM(16,input _shape=data[0].shape,

4 return_sequences=True, a c t i v a t i o n = ' t a n h ') ,

5 keras.layers.LSTM(16, a c t i v a t i on='t anh') ,

keras.layers.Dense(64, act i v a t ion='relu') ,

keras.layers.Dense(64, act i v a t ion='relu') ,

8 k e r a s . l a y e r s . D e n s e (2 , a c t i v a t i on='softmax') ,

])
10 model.compile(optimizer='adam' ,

l o s s = ' s p a r s e _ c a t e g o r i c a l _ c r o s s e n t r o p y ' ,

12 metrics = [' accuracy '] ,

13)

48

Experiments with this model are focused on a detection of correct message order.

This model uses supervised learning, which means it needs data samples from both

classified groups. The dataset wi th correct samples is created by message sequences

from the captured communication and all samples are labeled as good. The dataset

wi th corrupted message sequences has to be generated using several procedures.

The first one takes the correct dataset and flips the order of messages. The second

procedure drops certain message important for the G P O N protocol (e.g. message id

4 or 10 used in activation process). The last procedure duplicates certain messages to

create non-standard sequences as well. A l l corrupted message sequences are labeled

as bad and simulates possible outliers.

These two datasets are source for generating a learning time window of constant

length by sampling these subsequences. This process uses sliding window of length

30 and shifts this windows by 1 messages after each sample.

- i 1 1 1 r - ^ ^ 1 1 1 r - ^

0 50 100 150 200 0 50 100 150 2 00
Epochs Epochs

Fig . 5.1: Accuracy and loos during learning process.

Several sequences are popped from learning dataset to create a disjunctive val

idation set and the learning process can start. Accuracy and loss history of both

learning and validation datasets captured during learning is shown in figure 5.1.

Considering the size of dataset,it is hard to say whether it learns input data exactly

49

or finds generalized principles, but it is clear that the model is able to distinguish

time sequences.

These results prove that the sequence analysis of G P O N is possible with L S T M

cells, but learning generalized rules relies on proper dataset. The biggest disadvan

tage is that the model needs to be learned wi th corrupted or improper communica

tion samples, which are not available.

5.4 Autoencoder syntax experiments

In this experiment, autoencoder is used for anomaly detection in each field of

P L O A M d message. Autoencoder principles are described in section 2.4. Several

model configurations are tried with different number of layers and neurons in each

layer and also wi th different activation functions. A model wi th the best performance

is shown in listing 5.3. The model uses exponential linear unit (E L U) function in

the input and hidden layers and sigmoid function in the output layer. In this con

figuration, model is able to compress and reconstruct input vector into the latent

space wi th dimension of two with very low error.

Lis t ing 5.3: Syntax verification autoencoder
i from tensorflow import keras

model = keras . Sequent i a l ([

3 k e r a s . l a y e r s . D e n s e (x _ t r a i n . s h a p e [1] , a c t i v a t i on='elu') ,

4 k e r a s . l a y e r s . D e n s e (8 , a c t i v a t i on='elu') ,

5 k e r a s . l a y e r s . D e n s e (4 , a c t i v a t i on='elu') ,

keras.layers.Dense(2 , a c t i v a t i o n = ' e l u ') ,

keras. layers.Dense (4 , a c t i v a t i o n = ' e l u ') ,

8 k e r a s . l a y e r s . D e n s e (8 , a c t i v a t i on='elu') ,

ke r a s . l a y e r s . D e n s e (x _ t r a i n . s h a p e [1] , a c t i v a t i on=out _act) ,

])
11 model . compile (

optimizer=keras . optimizers .Adam(learning_rate=0.01) ,

13 loss='mean_squared_error ' ,

14)

15 m o d e l . f i t (x _ t r a i n . v a l u e s , x _ t r a i n . v a l u e s , s h u f f l e = T r u e , b a t c h _ s i z e =3, epochs = 200)

This model is learned on captured vectors listed in table 5.1, which define normal

traffic. Several vectors are dropped to create a testing dataset. To test anomaly

detection capabilities, two additional datasets are made. The first one contains

randomly generated vectors of proper dimension with maximum number 255 1 . The

second generated dataset simulates possible real outliers and contains vectors similar

to standard ones (e.g. similar message ID with low values in the other fields, etc.).

xEach PLOAMd field is 1 byte long, so maximal generated number is 255.

50

The threshold for outlier detection is set by maximal loss function evaluation of

learning dataset by learned model.

Tab. 5.3: Syntax detection autoencoder classification results for each dataset.

Dataset Accuracy Elements Errors

training 100% 14 0

testing 100% 5 0

similar outliers 93.33% 150 10

outliers 100% 500 0

Classification results for each dataset by learned model are visible in table 5.3.

Mean squared error loss function result histogram for each dataset is shown in figure

B.2, where red doted line represents outlier threshold.

5.5 Autoencoder sequence experiments

Sequence analysis autoencoder searches for differences in time windows of specific

length. B y its design, it focuses on different message sequence or usage. It is also

capable to find a missing/additional message or a bad message usage.

In this experiment, the time window has length of 30 messages. This autoencoder

is very similar to the syntax analysis model. The only difference is the input vector

shape, which is 390 (30 messages by 13 features) for this time window, and number of

neurons in each layer, which is [390, 256, 128, 64, 32,64, 128, 256, 390] respectively.

A l l activation functions are exponential linear unit, except of the activation function

in the output layer, which is sigmoid function.

Tab. 5.4: Sequence detection autoencoder classification results for each dataset.

Dataset Accuracy Elements Errors

training 100% 25 0

testing 100% 3 0

corrupted 51.54% 97 47

random 100% 97 0

The model is learned by training dataset consisting of normal traffic as syntax

autoencoder. This dataset is created from captured frames wi th omitted message

NoMessagen, but without dropping duplicates. A sliding window of specific length

(30 in this case) travels though frames and generates new data samples, which are

51

divided into learning and training dataset. Detection capabilities are tested by two

datasets. The first one contains data windows generated from captured frames, but

some message types (4 and 20) are dropped, which clearly create corrupted message

sequences. The second outlier dataset contains randomly generated data.

This anomaly detector correctly classifies training, testing and random datasets

wi th 100% accuracy. The results are shown in table 5.4, The dataset containing

corrupted frame windows is classified wi th accuracy below 50%, which means the

autoencoder correctly classifies some corrupted windows, but there are many win

dows classified as normal. The reason for this is that some windows are still very

similar to standard traffic and are not changed by dropping messages 4 and 20. Loss

function results histogram is shown in figure B .3 , where red dashed lines represent

outlier threshold.

5.6 Experiments conclusion

Outlier detection using OneClas sSVM is able to correctly classify normal and abnor

mal G P O N frames, but it uses approximate function unable to learn the importance

of frame field usage.

L S T M model is powerful system capable to extract useful information from each

message and use it in the next frame analysis during the sequence classification pro

cess. This requires correctly labeled sequences of normal and invalid traffic to learn,

which may be difficult if undocumented message appears within the communication.

Both autoencoder models prove their outlier detection capabilities and make

a great alternative to L S T M model, especially because of unsupervised learning.

These models can learn usage and syntax of undocumented messages. L S T M model

uses supervised learning and for higher classification accuracy it requires samples

of normal and abnormal traffic. Abnormal traffic dataset is generated by adding or

dropping certain messages, which creates sequences that does not meet the standard.

This requires adding additional information into learning process, but in case of

unknown messages this information is not available.

A l l models have relatively good outlier classification accuracy and it is worth

considering these models in G P O N analyzing system and to evaluate model capa

bilities wi th much bigger dataset. Each of these models has pros and cons, which

makes them individually special. Suggested solution is to use all models in the

G P O N analyzing system in parallel and to validate results between them.

52

6 GPON analyzer implementation
This chapter contains high level implementation details of G P O N analyzer and its

subsystems. It also describes and indicates usage wi th illustrative examples. De

tailed implementation description can be found in the source code in docstrings of

each method and class.

The system architecture is described in section 4.2. Each box in this figure

represents an object of G P O N analyzing system. The only change in the design is

that the system does not use only two M L models (syntax, semantic), but a list of

./V models to generalize usage of these models. A s a result, adding a new analyzing

model is much easier.

6.1 Environment

The whole project is implemented in Python3.6 programming language due to its

cross-platform compatibility across operating systems (Linux and Windows). The

same idea applies on external libraries, which have to be cross-platform as well.

Consistent executing environment is achieved by pipenv program, which down

loads and installs specific libraries from Python Package Index (PyPI) using p i p pro

gram. These libraries and their versions are specified in special file called P i p f ile,

which is the source of information about packages and versions during environment

creation.

6.2 Analyzer

G P O N analyzer system is implemented according to principles of object-oriented

programming to gain code re-usability and to allow easier program enhancement in

the future.

Analyzer is implemented as a standalone and executable python module. It sup

ports two different ways of usage. The first one is running analyzer directly from

command line (CLI) by executing python module using python -m gpon_analyzer

command, which executes main . py script of this module, or by executing

gpon_analyzer .py script, which imports and executes the same script. Possible

arguments for this execution are described in section 6.8. The second way is to use

the analyzer as a library, which enables higher data interaction with models, or gives

ability to create and add a new M L model into analyzer. Example of library usage

is show in listing B.3 in appendixes.

The responsibility of G P O N analyzer object is to hold references to its objects

(DataReader, list of Models, Evaluator, etc.) and to distribute certain outer method

53

calls to correct object, especially learn, classify and evaluate. It also controls

data flow between objects. To be able to reuse learned analyzer models, it supports

methods for loading and persistently storing models into file. This specific process

and file format is described in section 6.7.

6.3 DataReader

DataReader object is responsible for data manipulation. It internally stores the data

in a pandas .Dataframe
1

 and provides A P I to data, especially to get data shape 2

and values. The data modification is accomplished by applying sequence of filter

objects (described in section 6.4), which are applied on the internal Dataframe.

DataReader can read two different file formats from file system using load class-

method, which accepts single argument containing path. If this path ends wi th

.parquet suffix, it assumes that the file is in parquet file format and uses pandas

library to read this file. Otherwise, it assumes the data are captured directly from

G P O N network and uses proper data read methods.

If the G P O N analyzer perform a data preprocesing, the DataReader object stores

result in a parquet format file to reduce data access time in the next execution phase

(e.g. learn, classify).

6.4 Filters

Filters are implemented as a component of DataReader object, therefore all filters

use Pandas library functions for data adjustment/modification and expect the input

and output data to be a pandas .Dataframe. Filters wi th ini t ial values used in

G P O N analyzer are described in subsection 6.4.1. A l l filters have to match the

same A P I to be able to stack filters in a row and create a filter pipeline.

6.4.1 Applied filters

During the classification, analyzer focuses on P L O A M d messages, but in captured

data there is stored the whole P C B d header. Therefore, DataReader object needs

to extract relevant information from P C B d header and prepare it for analysis. This

process is done using a list of filters described in table 6.1. These filters are applied

in this specific order to achieve expected behavior.

1 Pandas is a python library designated for easy and fast data manipulation.
2Data shape represents number of data dimensions and number of elements in each dimension.

54

Tab. 6.1: Appl ied data filters in G P O N analyzer

Fi l ter class Values Description

Extract Specific

ColumnFil ter

'PL OAM-

downstream1

ExpandColumn 'PL OAM-

downstream1

RowFil ter MessageW,

11

Base64Decoder 'Data'

From dataset drops all columns except

'PLOAMdownstream', because analyzer is

interested only in P L A O M d messages.

Assuming that in the 'PLOAMdownstream' field

is nested data structure (field contains dictio

nary), drops this column from the dataset, cre

ates a new dataframe from this column and

concatenates this new dataframe to the original

dataset.

Deletes all NoMessage
n
 type messages from the

dataset.

This filter loads values from 'Data' col

umn, drops this column, decodes values using

base64debode function and adds decoded val

ues into new data columns.

6.5 ML models

A l l models are implemented in ai_models .py submodule of gpon_analyzer mod

ule. A l l of them share the same interface by inheriting GenericModel class, which

guarantees and enforces expected behavior and usage of implemented models. Each

model implements abstract methods and overrides some methods to match special

requirements of each M L library. A s a result, G P O N analyzer handles all models

in the same manner without implementation details knowledge. A l l public methods

used by G P O N analyzer are described in table 6.2.

In addition to expected model methods as learn, predict and classify, the

interface defines another method called get_report used for data classification.

Compared to classify method, it does not return only the data label, but a tr iplet 3

consisting of model name, input samples and output classification of each sample.

Generic model also implements special property called context, which contains

all attributes of object except itself 4 and M L model 5 . It is used to store all attributes

into file. This property also defines its setter used for restoring object attributes after

load method is called.

3The report triplet is defined using dataclasses library to gain readability and reduce code.
4Python object has attribute called se l f , which is a pointer to this specific object
5 M L model is stored using library functions, wherein is model defined.

55

Tab. 6.2: Publ ic interface used by all implemented M L models.

Method name Description

create This classmethod is responsible for correct instance creation of its

class. In case of Keras models, it defines and creates the whole

model and passes it to the object constructor as an argument.

It is used to load M L model from file and create a new instance

of particular model class.

Each M L model has different implementation of storing mecha

nism and it is implemented in this method.

Used for learning/fitting model on a provided dataset.

Generic method used for dataset evaluation and classification .

This method classifies specific dataset and returns the evaluation

report with model name, input and output.

load

store

learn

classify

get_report

Implementation of all models is based on experiments from chapter 5, therefore

detailed code description is omitted. G P O N analyzer contains implementation of

these analyzing models:

• OneClassSVMSyntaxModel - This class is based on the model described

in section 5.2. It is used as an outlier detector inspecting message fields using

support vector machine.

• LSTMSequenceMode l - It is based on experiment described in section 5.3.

Model consists of two L S T M layers followed by two dense layers. It uses

supervised learning and requires samples of corrupted communication to learn.

• AutoEncoderSyntaxModel - This class uses autoencoder model described

in section 5.4. It uses unsupervised learning, therefore no additional learning

data has to be generated.

• AutoEncoderSequenceModel - It is similar to syntax verifying autoen

coder, but wi th different number of layers and neurons. The model is based

on the experiment described in section 5.5. Input data is a sequence of 30

messages collapsed into a single dimension.

The inheritance diagram of these models and generic models is shown in figure B . l

in appendixes. This figure shows methods and attributes defined or overridden by

each class. There is also generic KerasModel class, which defines load and store

methods for all TensorFlow models.

56

6.6 Evaluator

During classification process, G P O N analyzer forwards calculated reports from M L

models to Evaluator. After classification, Evaluator analyzes the results and evalu

ates similarity level calculated using equation 6.1.

Similarity = — —— (6.1)
Samples

A l l detected outliers are stored into the file using numpy. save for later analysis. In

the end, evaluator prints summary table 6 wi th statistics for each model. Table exam

ple of learning dataset classification is shown in listings 6.1. The output destination

directory for outlier vectors and summary table is specified using —output-path

argument.

Lis t ing 6.1: Evaluator output example

1 $./analyzer.py c l a s s i f y —m model.zip —d data.parquet

2 1 1

| Model |

i 1 -

i

S i m i l a r i t y [%] \

1 -

O u t l i e r s

i

[N] 1
1 -

Samples

i

[N] 1
1

r r -

| OneClassSVMSyntaxModel |

I I

r r -

100.0000 |
1

T -

o 1
1

55 |

i
I I

| LSTMSequenceModel |

I I

1

100.0000 |
1

1

o 1
1

i

25 |

1
I I

| AutoEncoderSyntaxModel

i i

1

100.0000 |
1

1

o 1
1

1

55 |

1
l l

| AutoEncoderSequenceModel |
i i

1

100.0000 |
1

1

o 1
1

1

25 |

6.7 Storing learned model

G P O N analyzer stores learned model data in single z i p archive consisting of files

wi th weights for each learned M L model and a file with analyzer information. Files

wi th weights are generated directly by M L libraries.

OneClas sSVM model from Scikit-learn library used for outlier detection stores

and loads learned model v ia p i c k l e library, which dumps Python executable code

into binary file.

Keras models use special Hierarchical data format (HDF5) to store weights and

M L model. This data format provides flexible and efficient access into stored data

especially for large data structures (e.g. multidimensional matrices). This is essen

t ial feature for model storing and loading process, because neural networks typically

consist of weight matrix [5].

6Summary table is generated using tabula te python library.

57

Metadata file is also created during storing process. It contains necessary in

formation needed to restore M L model object state. For each model it stores: a

class of this object, a path to stored M L model weights and a context, which holds

local variables of this object. A l l this data is stored in simple J S O N file inside zip

package.

6.8 Command line interface and usage

G P O N analyzer can be used as a standard program run from command line (CLI)

as well. Therefore, it has proper C L I A P I to influence program behavior imple

mented using argparse library, which is responsible for initializing arguments wi th

default values, parsing values from C L I and syntax verification of arguments in

puts. Accepted C L I arguments are defined in table 6.3. A l l of specified arguments

are optional, except the action argument. Other arguments have defined default

value, which varies from action to action, so default values are not specified in the

argument parser, but in specific objects.

6.8.1 Actions

Possible actions with G P O N analyzer using C L I A P I are described in following

sections. A l l actions have the same optional arguments described in table 6.3. There

are longer and shorter argument versions, but in following examples only long options

are used for easier usage understanding.

Preprocess

It is used to load captured data from *.txt files, apply data filters if — f i l t e r

argument is provided, and store parsed and filtered data in parquet format file

into destination provided by —output-path argument. A usage example is show

in listings 6.2.

List ing 6.2: Example of preprocess action.
r
$./gpon_analyzer.py — d a t a — p a t h data — o u t p u t — p a t h data5.parquet preprocess

Learn

This action creates a new G P O N analyzer and M L models. These models are learned

on training dataset provided by —data-path. Learned analyzer is stored as a zip

archive in destination provided by —model-path argument.

58

Tab. 6.3: G P O N analyzer command line arguments.

Argument Description

-h

-m/—model-path

PATH

-d/—data-path

PATH

-o /—output-path

PATH

-f, - f i l ter

-1, - l o g LEVEL

-a, —auto-encoder

ACTION

Shows program description, help message and argument de

scriptions.

This argument specifies a path to persistent data of learned

model. If a new model is created/learned, it is stored into this

location. If path contains existing model, data is rewritten.

Specifies a path to the source of captured and parsed G P O N

data (accepting a single file or directory of files wi th .txt

suffix) or path to pre-processed data in . parquet file.

During execution, G P O N analyzer may produce some outputs

and this arguments specifies their destination. For example,

pre-processing action parses and loads data from directory

provided by-data-path argument, applies filters and stores

filtered data in .parquet file into this path.

This argument adds default data filters into DataReader

object. Default filters are described in section 6.4.1.

Defines G P O N analyzer and other components logging level

during execution.

If set, auto-encoder models are appended to other analyzing

models in G P O N system.

This is the only positional argument in C L I A P I . It specifies

the type of action executed with current data or /and model.

Possible values are: preprocess,learn,classify,print.

A l l actions are described in section 6.8.1.

Classify

This action is used for traffic analysis by learned model. It loads analyzer wi th

models from archive defined by —model-path and runs inspection (classification)

on input data defined by —data-path. It is recommended to use — f i l t e r ar

gument, if this argument was provided on learning dataset during learning or pre

processing. In the final phase, it invokes the evaluator to analyze the classification

reports and stores detected outliers and a summary table into directory specified by

—output-path. Usage example is shown in listings 6.1.

59

List ing 6.3: Example of learn action
$./gpon_analyzer.py — d a t a — p a t h data.parquet — m o d e l — p a t h model.zip l e a r n

Print

Loads input data from destination defined by —data-path and prints it into C L I ,

which suggests data shape and form. It is also possible to apply data filter by

— f i l t e r argument. A n example of usage and output is shown in listings 6.4. A n

example output if this action is show in listings B . l in appendixes.

Lis t ing 6.4: Example of print action
$./gpon_analyzer.py — d a t a — p a t h data.parquet p r i n t

60

7 GPON analyzer detection test
In this chapter, G P O N analyzer is tested on knowingly corrupted datasets to verify,

whether the analyzer fulfills expectations in the detection of improper communica

tion. Datasets generation procedures are described in section 7.1. These corrupted

datasets are examined by learned G P O N analyzer models. G P O N test results are

described in section 7.2.

7.1 Data preparation

Three additional datasets are generated to test and verify G P O N analyzer required

features, which is anomaly and protocol differences detection. A l l of these datasets

contain corrupted messages or sequences. Corruptions are applied on a dataset cre

ated from captured traffic by applying preprocessing filters discussed in section 6.1.

Error per dataset summary is shown in table 7.1 and error description wi th gener

ating procedure is in following subsections.

Tab. 7.1: Error in testing datasets

^ ^ ^ ^ ^ Error Change random Drop important A d d similar

Dataset ^ ^ ^ ^ ^ field values messages messages

Syntax dataset • X X

Sequence dataset X • •

A l l errors dataset • • •

i / - applied X - not applied

7.1.1 Change random field value error

Dataset generating procedure runs in three cycles and in each cycle modifies random

10% frames. They vary in number of corrupted fields, which is two, four and six

respectively. These fields are modified according equation 7.1.

Valuenew = (Value0id + 128) mod 255 (7.1)

This procedure modifies fifteen messages in total. In other words, this dataset

contains fifteen outliers, which should be detected by G P O N analyzer.

61

7.1.2 Drop important messages

This dataset is generated by dropping important activation process messages 4 and

10, and critical informational frames used in communication 1 and 20. These mes

sages are described in section 1.5.1. Each message is dropped from separate instance

of source dataset and results are concatenated together creating the final dataset.

This dataset contains many abnormal sequences, which do not correspond wi th

G P O N recommendation.

7.1.3 Add similar messages

Concept of similar messages is firstly mentioned in experiments in section 5.2. These

messages are outliers, but differences in frame fields are very low compared to normal

traffic, which makes them difficult to find.

This dataset consists of four concatenated source datasets in a row and thirty

similar messages are inserted to random positions, which breaks the communications

rules of G P O N recommendation.

7.2 Results evaluation

G P O N analyzer classifies generated artificial communication, which contain several

various errors and mistakes. Classification results are shown and discussed in the

following sections.

7.2.1 Learning dataset

The first classified is the learning dataset to verify the correct classification of normal

traffic. The analyzer marks a l l results as normal. Considering the fact that this is

the learning set, other classification result than normal would mean error in the

learning process. The results are show in listings 7.1.

7.2.2 Syntax dataset

The second dataset contains only syntax errors and focuses on syntax outlier detec

tors. Bo th OneClas sSVM and autoencoder models find almost all abnormal mes

sages in the communication. Sequence autoencoder model also finds several outliers,

because it is learned on time windows of specific messages. Messages of this dataset

are corrupted, which means time windows of this dataset are corrupted as well.

L S T M model finds many outliers, because sequences contain unknown message and

62

List ing 7.1: Classification of learning dataset

1 1

1 Model 1
i 1 -

i

S i m i l a r i t y [%] \

1 -

O u t l i e r s

i

[N] 1
1 -

1

Samples [N] |

1
r r -

1 OneClassSVMSyntaxModel |

1 1

r r -

100.0000 1
1

T -

o 1
1

55 1
1

I l

1 LSTMSequenceModel |

1 1

1

84.0000 1
1

1

4 1
1

i

25 1
1

I l

1 AutoEncoderSyntaxModel

1 1

1

100.0000 1
1

1

0 1
1

1

55 1
1

l l

1 AutoEncoderSequenceModel |
i i

1

100.0000 1
1

1

o 1
1

1

25 1

the model does not know the usage. Therefore, the model classifies those sequences

as outliers. The results are show in listings 7.2.

Lis t ing 7.2: Classification of dataset wi th syntax errors

1 1

1 Model 1
i 1 -

i

S i m i l a r i t y [%] \

1 -

O u t l i e r s

i

[N] 1
1 -

1

Samples [N] |

1
r r -

1 OneClassSVMSyntaxModel |

1 1

r r -

80.0000 1
1

T -

11 1
1

55 1
1

I I

1 LSTMSequenceModel |

1 1

i

32.0000 1
1

1

17 1
1

i

25 1
1

I I

1 AutoEncoderSyntaxModel

1 1

1

80.0000 1
1

1

11 1
1

1

55 1
1

l l

1 AutoEncoderSequenceModel |

i i

1

84.0000 1
i

1

4 1
1

1

25 1

7.2.3 Sequence dataset

The third dataset contains errors in sequences, but message fields remain untouched.

Syntax models do not find any abnormal messages, because this dataset is syntacti

cally correct. Both sequence analyzing models find many outliers, which is expected

behavior when abnormal message sequences occur in the communication. The re

sults are shown in listings 7.3.

7.2.4 All errors dataset

The fourth dataset contains both syntax and sequence errors and creates communi

cation, which is almost completely out of G P O N recommendation. Syntax models

find similar percentage of abnormal messages as in the first dataset, which is correct,

because the ratio between syntactically corrupted messages and the normal ones is

the same. Sequence models classify almost the whole communication as abnormal,

63

List ing 7.3: Classification of dataset wi th errors in message sequences

1 1

| Model |

i 1 -

i

S i m i l a r i t y [%] \

1 -

i

O u t l i e r s [N] |

1 -

i

Samples [N] |

1
r r -

| OneClassSVMSyntaxModel |

I I

r r -

100.0000 |
1

T -

o 1
1

397 |
i

I I

| LSTMSequenceModel |

I I

1

34.3324 |
1

1

21 |
1

i

367 |
1

I I

| AutoEncoderSyntaxModel

i i

1

100.0000 |
1

1

0 1
1

1

397 |
1

l l

| AutoEncoderSequenceModel |
i i

1

39.7820 |
i

1

221 |
i

1

367 |

which makes sense, considering the number of errors in the communication. The

results are shown in listings 7.4.

Lis t ing 7.4: Datasets classification wi th all errors

1 1

| Model |

i 1 -

i

S i m i l a r i t y [%] \

1 -

i

O u t l i e r s [N] |

1 -

i

Samples [N] |

1
r r -

| OneClassSVMSyntaxModel |

I I

r r -

79.5970 |
i

T -

81 |
1

397 |
i

I I

| LSTMSequenceModel |

I I

i

13.0790 |
1

1

319 |
1

i

367 |
1

I I

| AutoEncoderSyntaxModel

i i

1

83.1234 |
1

1

67 |
1

1

397 |
1

l l

| AutoEncoderSequenceModel |

i i

1

17.7112 |
i

1

302 |
i

1

367 |

64

Conclusion
The main goal of this thesis was to create a G P O N analyzing system consisting

of machine learning models defined using TensorFlow library. These models should

have been able to analyze the syntax and the semantic of G P O N protocol. The term

syntax referred to verification of each field content in G P O N header, whether it was

similar to patterns from baseline traffic or not. The second term semantic referred

to the analysis of patterns found in message sequences, which verified whether the

analyzed traffic used the same messages in the same order and wi th similar content

as the baseline traffic.

Four experimental models were created and learned on the baseline data to prove

the possibility of analysis using machine learning techniques. The syntax analyzing

model was based on one class support vector machine from scikit library, which ap

proximated n-dimensional mathematical function to baseline traffic messages. This

model had a high accuracy in detecting abnormalities, even when messages were

very similar to the baseline data.

The model used for the semantic analysis was a neural network based on layers

wi th L S T M cells capable of recognition patterns in long sequences. This model was

able to learn recognizing correct and corrupted P L O A M d message sequences wi th

relatively high accuracy, which is shown in figure 5.1. The disadvantage of model

based on the L S T M cells was that it used supervised learning and required samples

of corrupted/abnormal traffic.

Experiments also contained autoencoder neural network models for syntax and

semantic analysis, which compressed input vector into the latent space and tried to

reconstruct original vector from the compressed form. Similarity was evaluated by

using mean squared error function. The key estimated value was outlier threshold,

which separated the data into normal and abnormal traffic. In these experiments, the

threshold was set to the maximal mean squared error of learning dataset in the last

learning epoch. The autoencoder for syntax analysis accepted messages as an input

data, but the sequence analysis autoencoder accepted message windows of constant

length. Bo th models showed well the outlier detection capabilities. Their biggest

advantage was that they used unsupervised learning and learned only from captured

traffic, so they did not require any dataset wi th corrupted message sequences. Bo th

autoencoder models and model wi th L S T M cells were implemented using Keras

A P I from TensorFlow library, which allowed to offload demanding calculations into

hardware accelerator (e.g. graphics processing unit).

The G P O N analyzer implementation was based on the design described in sec

tion 4. Each component was represented as an object and the system only routed

the dataflow between these objects. The system did not distinguish between syntax

65

and semantic models, but worked with a list of models matching the same interface,

which allowed adding more models with various parameters. A l l four experimental

models from chapter 5 were implemented in the G P O N analyzer using scikit and

TensorFlow libraries. The G P O N analyzer implemented two different ways of us

age. The first one was executing the program directly from the command line and

controlled it by using arguments. The second way was to use G P O N analyzer as a

library, which allowed interaction wi th objects at higher level. Learned system was

stored into a zip package containing attributes of all objects in a JSON file. This

package also contained stored M L models in a library dependent file formats.

The final implementation was tested using synthetically corrupted dataset by

various procedures. Classification of datasets with abnormal messages or message

sequences by learned G P O N analyzer confirmed its anomaly detection capabilities.

Both syntax and semantic (sequence) errors were found by designated models wi th

high accuracy. The similarity value was evaluated as a ratio of normal traffic samples

to all samples, where the sample was a message in case of syntax analyzing models

and a time window (sequence of messages) in case of semantic analyzing models.

This thesis accomplished the assignment in all points. The theoretical part

contained description of several abnormal traffic detection techniques based on su

pervised and unsupervised learning using neural networks defined in TensorFlow

library. The practical part contained the implementation of G P O N analyzing sys

tem capable of similarity estimation compared to the baseline traffic. This system

used several machine learning models to identify various potential abnormalities in

the communication.

66

Bibliography
[1] Abad i , M . ; Agarwal, A . ; Barham, P.; aj.: TensorFlow: Large-Scale Machine

Learning on Heterogeneous Systems. 2015, software available from tensor-

flow.org.

U R L http://tensorflow.org/

[2] Chen, C : A Gentle Tutorial of Recurrent Neural Network wi th Error Back-

propagation. CoRR, ročník abs/1610.02583, 2016, 1610.02583.

U R L http: //arxiv.org/abs/1610.02583

[3] Chollet, F . ; aj.: Keras. https://keras.io, 2015.

[4] doc. Ing. Václav Jirsík, C S c : Umělá inteligence - Definice, [online], 09 2019.

U R L https://www.vutbr.cz/www_base/priloha.php?dpid=180947

[5] Folk, M . ; Heber, G . ; Kozio l , Q.; aj.: A n Overview of the H D F 5 Technology Suite

and Its Applications. In Proceedings of the EDBT/ICDT 2011 Workshop on Ar

ray Databases, A D '11, New York, N Y , U S A : Association for Computing M a

chinery, 2011, I S B N 9781450306140, str. 36-47, doi:10.1145/1966895.1966900.

U R L https : //doi.org/10.1145/1966895.1966900

[6] Gershenson, C : Art i f ic ia l Neural Networks for Beginners. CoRR, ročník

cs.NE/0308031, 2003.

U R L http: //arxiv.org/abs/cs.NE/0308031

[7] Horvath, T.; Munster, P.; Oujezsky, V . ; aj.: Act ivat ion Process of O N U in

E P O N / G P O N Networks. 07 2018, s. 1-5, doi:10.1109/TSP.2018.8441216.

[8] Ing. M a r t i n Holík: GPON frame detection system. Diplomová práce , Brno Un i

versity of Technology, Czech Republic, 2018.

[9] I T U - T : Gigabit-capable passive optical networks (G - P O N) : Transmission con

vergence layer specification, [online], 01 2014.

U R L https://www.itu.int/rec/T-REC-G.984.3-201401-I/en

[10] Onn Haran, F . ; Sheffer, A . : The Importance of Dynamic Bandwidth Allocat ion

in G P O N Networks, [online], 01 2008.

U R L https://pmcs.com/cgi-bin/document.pl?docnum=2072146

[11] Ozimkiewicz, J . ; Ruepp, S.; Di t tmann, L . ; aj.: Dynamic bandwidth allocation

in G P O N networks. In Recent advances in electrical engineering., 01 2010, s.

182-187.

67

http://tensorflow.org/
https://keras.io
https://www.vutbr.cz/www_base/priloha.php?dpid=180947
https://www.itu.int/rec/T-REC-G.984.3-201401-I/en
https://pmcs.com/cgi-bin/document.pl?docnum=2072146

[12] Pedregosa, F . ; Varoquaux, G . ; Gramfort, A . ; aj.: Scikit-learn: Machine Learn

ing in Python. Journal of Machine Learning Research, ročník 12, 2011: s. 2825-

2830.

[13] Sakurada, M . ; Ya i r i , T. : Anomaly Detection Using Autoencoders wi th Nonlin

ear Dimensionality Reduction. In Proceedings of the MLSDA 2014 2nd Work

shop on Machine Learning for Sensory Data Analysis, M L S D A ' 1 4 , New York,

N Y , U S A : Association for Computing Machinery, 2014, I S B N 9781450331593,

str. 4-11, doi: 10.1145/2689746.2689747.

U R L https : //doi.org/10.1145/2689746.2689747

[14] Sun, W. ; Shao, S.; Zhao, R.; aj.: A sparse auto-encoder-based deep

neural network approach for induction motor faults classification.

Measurement, ročník 89, 2016: s. 171 178, ISSN 0263-2241, doi:

https://doi.Org/10.1016/j.measurement.2016.04.007.

U R L http: //www.sciencedirect.com/science/article/pii/

S0263224116300641

[15] Wythoff, B . J . : Backpropagation neural networks: A tutorial. Chemometrics

and Intelligent Laboratory Systems, ročník 18, č. 2, 1993: s. 115 - 155, ISSN

0169-7439, doi:https://doi.org/10.1016/0169-7439(93)80052-J.

U R L http: //www.sciencedirect.com/science/article/pii/

016974399380052J

68

https://doi.Org/10.1016/j.measurement.2016.04.007
http://www.sciencedirect.com/science/article/pii/
https://doi.org/10.1016/0169-7439(93)80052-J
http://www.sciencedirect.com/science/article/pii/

List of symbols, physical constants and abbre
viations
A I Art i f ic ia l intelligence

A P I Appl icat ion programming interface

C L I Command line interface

E L U Exponential linear unit

G E M Gigabit-capable passive optical network encapsulation method

G P O N Gigabit-capable passive optical network

G P U Graphics processing unit

G T C Gigabit-capable passive optical network Transmission Convergence

H D F hierarchical data format

I T U International Telecommunication Union

J S O N JavaScript Object Notation

L S T M Long short term memory

M L Machine learning

N N Neural network

O N U Optical network unit

O D N Opt ical distribution network

O L T Opt ical line termination

O A M Operations, administration and management

P C B d Physical control block downstream

PIP Package installer for Python

P L O A M Physical line operations, administration and management

P L O A M d Physical line operations, administration and management

downstream

P O N Passive optical networks

P y P I Py thon package index

R N N Recurrent neural network

S V M Support vector machine

T - C O N T Transmission container

69

List of appendices

A C D content 71

B Extra data and figures 72

B . l M L models of G P O N analyzer 72

B.2 A l l captured P L O A M d messages 73

B.3 Library usage example 74

B.4 Syntax autoencoder histogram 75

B.5 Sequence autoencoder histogram 76

70

A CD content
Included C D contains source codes of this thesis and source codes of the G P O N

analyzer. A structure of important files in the C D is shown below. Several files are

omitted to reduce size and complexity of the shown tree.

ai_models.py

analyzer.py

data.py

evaluator.py

filter.py

init .py

1 main . py

gpon_analyzer .py Executable of G P O N analyzer
model.zip Learned M L models
Pipfile Defines all used packages
preproccessed_data/ Direcotry wi th learning and corrupted data

data.parquet

syntax.parquet

seuence.parquet

J all_err.parqute

1 scratches/ Various python scripts (e.g. model experiments)
dp. pdf This thesis in electronical format pdf

/ C D root directory
. . . . Latex source code for of this thesis
Python source code used in this theses

Raw captured data
G P O N analyzer python module

latex/ .

python/

data/

gpon_analyzer/

71

B Extra data and figures
B.l ML models of GPON analyzer

M L models inheritance diagram of G P O N analyzer is shown in figure B . l .

c gpon_anal_yzer. ai_modets. Modellnterf ace

m init (self, model)

m str (self)

m create(cls,vector_shape= None)

m load(cls, path)

m store(self, path)

m learnfself, learning _dataset: np.array)

I predict(self, k: np.array)

m prepare_data(self, data: np.array)

m get_report(self, data: np.array)

p* contexts elf)

f context(self, context: diet)

m default_path(fl

f model

f default .path

f MODEL_SUFF IX

f C O U N T E R

c gpon_analyzer.ai_modet5.KerasModel

m loadfcls, path)

m store(self, path)

prepare_data(self, data: np.array)

f MODEL_SUFFIX

c gpon_anaT_yzer. ai_mpdels. OneCT_assSVMSyntaxModel

m createfds, vector_shape = None)

m load(ds, path)

™ store(self, path)

.earniself, learn nc|_da;5se; ::d D o ; ; F - ; n e :

I prepare_learning_data(self, data: np.array)

f MODEL_SUFFIX

c gpon_analyzer.ai_models.AutoEncoderSyntaxModel

m createfcls, vector_shape = None)

m init (self, model, outlier_threshold = None)

m learn(self, learning_dataset: np.array, epochs = 200)

I predict(self, x: np.array)

f outlier_threshold

c gpon_anal_yzer. aijodels. LSTMSequenceModet

m create(cls, vector_shape= None)

™ init (self, model, w indow=WINDOW_LENGTH)

m learn(self, learning_dataset: pd.DataFrame)

m predictfself, x: np.array)

m prepare_data(self, data: np.array)

I prepare_learning_data(self, data: pd.DataFrame)

f w in

f W I N D O W _ L E N G T H

I gpon_ana'Lyzer.ai_mpdels.AutpEncoderSequenceModel

m createfcls,vector_shape = None, wind ow_len=WIN DOW_LEN)

• init (self, model, window=WIN DOW_LEN)

m learn(self, learning_dataset: np.array, epochs = 30)

I prepare_data(self, data)

f win
f WIIMDOW_LEN

Powered Dy yh ies

Fig . B . l : Inheritance diagram of M L models in G P O N analyzer.

72

B.2 All captured PLOAMd messages

A l l messages extracted from captured G P O N communication are shown in two list

ings B . l and B.2 due to number of messages. G P O N analyzer print function is

used to generate this output.

Lis t ing B . l : A l l extracted P L O A M d messages (part i) .
$./gpon_analyzer.py —d preprocessed_data/data.parquet print

Package contains 55 vectors.

ONUid MessagelD CRC DO Dl D2 D3 D4 D5 D6 D7 D8 D9

0 255 1 41 32 0 0 170 171 89 131 32 0 0

1 255 20 23 30 18 0 0 0 0 0 0 0 0

2 255 1 41 32 0 0 170 171 89 131 32 0 0

3 255 20 23 30 18 0 0 0 0 0 0 0 0

4 255 20 23 30 18 0 0 0 0 0 0 0 0

5 255 1 41 32 0 0 170 171 89 131 32 0 0

6 255 1 41 32 0 0 170 171 89 131 32 0 0

7 255 20 23 30 18 0 0 0 0 0 0 0 0

8 255 1 41 32 0 0 170 171 89 131 32 0 0

9 255 1 41 32 0 0 170 171 89 131 32 0 0

10 255 24 66 7 227 11 20 19 27 234 29 1 0

11 255 20 23 30 18 0 0 0 0 0 0 0 0

12 255 1 41 32 0 0 170 171 89 131 32 0 0

13 255 1 41 32 0 0 170 171 89 131 32 0 0

14 255 1 41 32 0 0 170 171 89 131 32 0 0

15 255 1 41 32 0 0 170 171 89 131 32 0 0

16 255 1 41 32 0 0 170 171 89 131 32 0 0

17 255 20 23 30 18 0 0 0 0 0 0 0 0

18 255 1 41 32 0 0 170 171 89 131 32 0 0

19 255 1 41 32 0 0 170 171 89 131 32 0 0

20 255 1 41 32 0 0 170 171 89 131 32 0 0

21 255 20 23 30 18 0 0 0 0 0 0 0 0

22 255 20 23 30 18 0 0 0 0 0 0 0 0

23 255 1 41 32 0 0 170 171 89 131 32 0 0

24 255 1 41 32 0 0 170 171 89 131 32 0 0

25 255 3 239 2 72 87 84 67 93 90 225 123 0

26 255 3 100 1 72 87 84 67 93 85 209 123 0

27 255 3 253 0 72 87 84 67 42 137 136 105 0

28 0 4 196 0 0 4 185 72 0 0 0 0 0

29 1 4 132 0 0 4 185 66 0 0 0 0 0

30 0 18 251 0 1 56 128 0 0 0 0 0 0

31 0 10 147 64 0 1 0 0 0 0 0 0 0

73

List ing B.2: A l l extracted P L O A M d messages (part2).
32 1 8 66 2 0 16 0 0 0 0 0 0 0
33 1 8 66 2 0 16 0 0 0 0 0 0 0
34 1 18 166 0 1 56 128 0 0 0 0 0 0
35 0 8 12 2 249 240 0 0 0 0 0 0 0
36 1 10 75 64 16 1 0 0 0 0 0 0 0
37 1 8 102 2 249 224 0 0 0 0 0 0 0
38 2 14 6 1 0 32 0 0 0 0 0 0 0
39 2 10 36 64 32 1 0 0 0 0 0 0 0
40 255 21 212 32 0 0 0 0 0 0 0 255 255
41 255 1 41 32 0 0 170 171 89 131 32 0 0
42 255 1 41 32 0 0 170 171 89 131 32 0 0
43 255 20 23 30 18 0 0 0 0 0 0 0 0
44 255 1 41 32 0 0 170 171 89 131 32 0 0
45 255 20 23 30 18 0 0 0 0 0 0 0 0
46 255 1 41 32 0 0 170 171 89 131 32 0 0
47 255 1 41 32 0 0 170 171 89 131 32 0 0
48 255 1 41 32 0 0 170 171 89 131 32 0 0
49 255 1 41 32 0 0 170 171 89 131 32 0 0
50 255 20 23 30 18 0 0 0 0 0 0 0 0
51 255 1 41 32 0 0 170 171 89 131 32 0 0
52 255 20 23 30 18 0 0 0 0 0 0 0 0
53 255 1 41 32 0 0 170 171 89 131 32 0 0
54 255 1 41 32 0 0 170 171 89 131 32 0 0

B.3 Library usage example

G P O N analyzer is written as a python module and all components can be enhanced.

Example of basic read and learn procedures are shown in listing B .3 .

List ing B.3: G P O N analyzer library usage
1 from gpon_analyzer.analyzer import GPONAnalyzer

2 from gpon_analyzer.ai_models import AutoEncoderSequenceModel

3 from gpon_analyzer.data import Reader

4

5 data_reader = Reader.read_parquet('preprocessed_data/data.parquet')

(i analyzer = GPONAnalyzer (

data_reader,

[AutoEncoderSequenceModel.create(data_reader.shape)]

9)
10 analyzer . l e a r n ()

11 analyzer . store ()

74

DO
•

16

14

12

oi 10

I I
\ v s
II l l \ I \ I
^ V ^

train
test
imilar outliers

0.00 0.01 0.02 0.03
Mean squared error

0.04 0.05

70

60

50

P. 40

30

20

10

train
test
similar outliers
outliers

I I I I
0.0 0.1 0.2 0.3

Mean squared error
0.4

i n

Fig . B.2: Loss values histogram of various datasets evaluated by autoencoder for syntax analysis.

CO
CJ1

40

30

20

10

V
V

1 I I ^ ^ * § $
I I

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Mean squared error

0.08

100

80

v 60

E 40

20

train
test
bad
outliers

5000 10000 15000
Mean squared error

20000 25000

Fig . B .3 : Loss values histogram of various datasets evaluated by autoencoder for sequence analysis.

