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ABSTRACT 
This thesis focuses on the analysis of selected part of G P O N frame using machine learning 
algorithms implemented by using TensorFlow library. Considering that the G P O N pro
tocol is defined as a set of recommendations, implementation by various device vendors 
may be different to designed protocol. Therefore, an analysis by a push-down automaton 
is not sufficient. The main goal is to create a system of models using TensorFlow li
brary in Python3 capable of abnormality detection in the communication. These models 
use various architectures of neural networks (e.g. L S T M , autoencoder) and focus on 
different types of analysis. This system learns from baseline traffic and notifies about 
irregularities found in the newly captured traffic. As a result, the system estimates the 
similarity level of current traffic compared to the baseline. 

KEYWORDS 
Autoencoder, G P O N , L S T M , machine learning, neural network, passive optical network, 
Python3, TensorFlow 

ABSTRAKT 
Táto práca sa zameriava na analýzu vybraných častí G P O N rámca pomocou algoritmov 
strojového učenia implementovaných pomocou knižnice TensorFlow. Vzhľadom na to, 
že G P O N protokol je definovaný ako sada odporúčaní, implementácia naprieč spoloč
nosťami sa môže líšiť od navrhnutého protokolu. Preto analýza pomocou zásobníkového 
automatu nieje dostatočná. Hlavnou myšlienkou je vytvoriť systém modelov za použitia 
knižnice TensorFlow v Python3, ktoré sú schopné detekovat abnormality v komunikácií. 
Tieto modely používajú viaceré architektúry neuronových sietí (napr. L S T M , autoenco
der) a zameriavajú sa na rôzne typy analýzy. Tento systém sa naučí na vzorovej vzorke 
dát a upozorní na nájdené odlišnosti v novozachytenej komunikácií. Výstupom systému 
odhad podobnosti aktuálnej komunikácie v porovnaní so vzorovou komunikáciou. 
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učenie, TensorFlow 
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ROZŠÍRENÝ ABSTRAKT 

S ras túc im dopytom poskytovaných služieb r a s tú aj pož iadavky na dis t r ibučné 

siete, k toré musia podporovať rôzne typy služieb. K a ž d á z nich spotrebuje výraznú 

časť dostupnej šírky pásma . A b y poskytovatelia sieťových služieb a výrobcovia 

zar iadení udržal i krok s r a s túc im dopytom na trhu, musia napredovať vo vývoji 

d is t r ibučných sietí. 

Jeden z krokov v evolúcií je v ý m e n a prenosového média z metal ických (medených) 

káblov na optické. Ich výhodou je, že podporu jú dá tový prenos na veľké vzdialenosti, 

sú odolné voči e lekt romagnet ickému rušeniu a dosahujú oveľa väčšie prenosové rých

losti. Prenos cez optické m é d i u m s použ i t ím pasívnych opt ických prvkov sa upla tňuje 

aj v d is t r ibučných sieťach pre koncových užívateľov, kde sa využíva s t romová topoló-

gia. Taký to typ siete vyžaduje aj nový komunikačný p ro toko l / š t anda rd , k t o r ý m je 

napr ík lad G P O N . V p r ípade Medzinárodnej te lekomunikačnej únie (ITU) sú všetky 

protokoly definované ako odporúčan ia , t akže každý výrobca si ich môže prispôsobiť 

podľa vlas tných potrieb. Ana lýza t akého to protokolu vyžaduje pokročilé techniky. 

Strojové učenie, k toré je súčasťou umelej inteligencie, rozhodne pa t r í medzi 

pokročilejšie techniky dátovej analýzy. Tieto algoritmy sú schopné naučiť sa ro

zoznávať rôzne vzory v dá tach . Čas to sa používajú na klasifikáciu dá t do prís

lušnej množiny, rozlišovanie vzorov alebo spracovávanie pr i rodzeného jazyka. Práve 

pos ledná zo zmienených oblast í je veľmi p o d o b n á problému, ktorou sa t á t o p ráca 

zaoberá a to je ana lýza čiastočne známeho protokolu. 

Jazyk Python3 je veľmi popu lá rny medzi vedcami z oblasti dolovania dá t a stro

jového učenia aj kvôli svojej jednoduchosti a obratnosti. Existuje niekoľko knižníc 

pre strojové učenie, k toré ma jú jadro napísané v inom jazyku ako Python3 a posky

tu jú iba apl ikačné rozhranie. T ý m t o získame výhody oboch jazykov, t akže výsledná 

knižnica je rýchla a j ednoduchá na používanie s podporou hardvérovej akcelerácie. 

Medzi tieto knižnice pa t r í napr ík lad TensorFlow, k to rá tvor í jadro analyzujúcich 

modelov v tejto práci . 

Skôr než je vyhotovený náv rh ana lyzačného sys tému je dôležité overiť, či je t a k á t o 

ana lýza pomocou umelých neurónových sietí vôbec možná . Preto je vytvorených 

niekoľko experimentov s rôznymi modelmi strojového učenia, k toré overia schopnosti 

detekcie neš tandardne j komunikácie a slúžia ako vzor pre implementác iu modelov 

v konečnom analyzá tore . Ana lýza správ sa zameriava na dve oblasti kontroly. P rvá 

je syntakt ická kontrola, k to rá overí či d a n á správa vyhovuje š t anda rdu . Zameriava 

sa n a j m ä na hodnoty v jednot l ivých poliach PLOAMd správy. Za t ý m t o účelom boli 

otes tované a dva modely. P r v ý z nich je OneClassSVM, z knižnice scikit-learn. 

Tento model sa učí charakter is t ické rysy zo vzorovej komunikácie, a na jej základe 



vie určiť či nový analyzovaný vzor je, alebo nie je podobný vzorovej komunikácií . 

Proces učenia je len aproximácia n-rozmernej matematickej funkcie k učiacim dá

tam. So znižujúcou sa odchýlkou tejto funkcie sa zvyšuje citlivosť naučeného modelu 

na abnormá lnu komunikáciu. V experimentoch tento model správne odhalil väčšinu 

n á h o d n e generovaných správ a dokonca aj tých, k toré boli p o d o b n é vzorovým sprá

vam. 

Druhý model analyzujúci syntax správy je au toenkodér . Tento model sa skladá 

z dvoch menších modelov: kodér a dekodér. Kodér m á za úlohu zredukovať počet 

dimenzií vstupnej správy a zakódovať správu do komprimovanej formy. Dekóder 

m á komplemen tá rnu funkciu ku kodéru a to rekonštrukciu pôvodnej správy z kom

primovanej formy. A b y celý model správne pracoval, musí sa naučiť extrahovať 

dôležité informácie zo správy. Au toenkodér používa učenia bez učiteľa a t rén ingovú 

množinu tvoria prvky, k torých vstup a očakávaný výs tup majú rovnaké hodnoty. 

Autoenkodér naučený na vzorovej komunikáci í je použi tý na detekciu neš t anda rd 

ných správ tak, že analyzujúca správa je v y h o d n o t e n á a nás ledne je spoč í t aná chyba 

siete pomocou chybovej funkcie. Pokiaľ je chyba menšia ako prahová hodnota, an

alyzátor usúdi , že daný vstup je p o d o b n ý vzorovej komunikáci í . A k je chyba siete 

väčšia ako prahová hodnota, tak je správa považovaná za abnormálnu , t akže v tomto 

pr ípade za neš t anda rdnú . 

D r u h á oblasť je sémant ická analýza, k to rá kontroluje nadväznosť jednot l ivých 

správ a obsah jednot l ivých polí medzi správami. Inšpiráciou pre t ú t o analýzu sú 

neurónové siete spracovávajúce písanú ľudskú reč. Ich základ je tvorený z vrstiev 

L S T M buniek, k toré si dokážu udržať vnú to rný stav napr ieč spracovávanými dá

tami. Ana lýza G P O N š t a n d a r d u je tomu veľmi podobná , pre tože kontroluje správy 

v danej postupnosti. Vs tupné d á t a sú rozdelené do časových okien konš tan tne j d ĺžky 

aby bolo možné model učiť a nás ledne identifikovať kde sa chyba nachádza . Tento 

model je schopný správne rozpoznávať správne a chybné sekvencie správ, ale kvalita 

jeho predikcie je závislá na učiacich dá tach , k toré musia obsahovať vyvážený počet 

vzorových sekvencií z oboch klasifikovaných množín . 

Pre analýzu sémant iky bol t iež vyskúšaný au toenkodér , k to rý je v svojej podstate 

rovnaký ako au toekodér použi tý v syntaktickej kontrole. Jedinou odlišnosťou je 

počet vrstiev a počet neurónov v každej vrstve. Vs tupné d á t a sú tak t iež rozdelené 

do časových okien konš tan tne j dĺžky, ale naviac je každé okne ešte sploštené na 

jednorozmerný vektor. Tento model dokázal správne označiť väčšinu časových okien, 

k toré boli úmyselne poškodené, ako neš t anda rdné . 

N a v r h n u t ý G P O N ana lyzá tor sa skladá z niekoľkých komponentov. A k o prvý 

v po rad í je čitateľ dá t , k torý dokáže načí tať d á t a rôznych formátov. Ďalší v po

radí je dá tový filter, k to rý pred-spracuje d á t a do tvaru vyhovujúcemu pož iadavkám 

vstupu modelov. Nasleduje sada modelov pre syntak t ickú a sémant ickú analýzu, 



ktoré hľadajú odchýlky v komunikácií . A k o posledný v tomto návrhu je hodnotitel 

(Evaluator), k to rý analyzuje výsledky jednot l ivých modelov a vyhodnot í , na koľko 

je d a n á komunikácia p o d o b n á vzorovej. 

N a v r h n u t ý model je implementovaný v jazyku Python3 s využ i t ím objektovo-

orientovaného paradigma, takže každá časť z náv rhu predstavuje objekt a ana lyzá tor 

len riadi tok dá t a správ medzi komponentami. Hlavná funkčná časť analyzujúcich 

modelov je p revza tá z experimentov, ale je z jednotená na rovnaké rozhranie, aby 

na rában ie s modelmi bolo j edno tné . Všetky modeli sú implementované pomocou 

Tensorflow s použ i t ím z jednodušeného rozhrania, k toré definuje knižnica Keras. 

Tento projekt je podporuje dva spôsoby používania. P r v ý spôsob je spustenie 

programu priamo z pr íkazového riadku a pomocou argumentov meniť chovanie danej 

aplikácie. Druhý spôsob je používať ana lyzá tor ako knižnicu, čo umožňuje väčšiu 

interakciu s jednot l ivými modelmi, p r ípadne si definovať v las tné a zaradiť ich do 

analýzy. Súčasťou projektu je aj v i r tuá lně prostredie, v ktorom sú špecifikované 

vše tky ex te rné knižnice, aby bol projekt ľahko spust i te lný na rôznych systémoch. 

N a overenia kvality detekčných schopnost í sys tému pre analýzu G P O N rámcov 

je vytvorených niekoľko úmyselne poškodených vzoriek komunikácie, k toré obsahujú 

syntakt ické aj sémantické chyby. Tieto vzorky sú následne analyzované naučeným 

sys témom. Z výsledkov je jasne vidieť, že oba modely pre syntakt ickú analýzu 

sú funkčné a zachytili väčšinu syntakt ických chýb. Modely analyzujúce sémant iku 

tak t iež objavili väčšinu vložených chýb s podobnou presnosťou. Testy obsahujúce 

chyby v komunikáci í dokázali , že G P O N ana lyzá tor m á schopnosti na odhalenie 

chýb v komunikáci í a porovnať, ako veľmi sú dve sekvencie komunikácie podobné . 
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Introduction 
A s customers service demands grow through time, requirements on service distri

bution network grow too. They need to support various types of services and each 

consumes a significant part of bandwidth. To keep pace with customer needs, dis

tr ibution network has to evolve. 

One of the evolution steps is to substitute old copper cables with modern fiber 

optic cables. Organizations largely replaced old copper wi th fiber optic cables in 

point-to-point world area networks, because of their bandwidth capabilities, long 

range and resistance of electromagnetic and radio frequency interference. These 

days, they have been replacing last mile distribution network, especially because 

of higher bandwidth capabilities and longer range. W i t h new medium on phys

ical layer, which creates tree-like topology, it is necessary to create new commu

nication protocol. Several organizations take this opportunity and design various 

protocols and recommendation wi th support of diverse services. In case of Inter

national Telecommunication Union, all solutions are released as recommendations, 

which means device vendors may keep them in mind, but also can modify them 

a little according their special requirements. Considering these changes in recom

mended protocol, analysis and reliable verification process is much more difficult 

and requires more advanced techniques. 

Machine learning (part of artificial intelligence science field) certainly belongs 

into advanced techniques of data analysis. These algorithms are able to recognize 

and learn various patterns based on learning dataset. They are widely used for classi

fication, pattern recognition and natural language processing. The last of mentioned 

areas is very similar to our problem, which is analysis and classification of unknown 

language or protocol. 

The main goal is to create and learn model, which should be able to detect new 

or different characteristics inside captured communication compared to referenced 

baseline (learning dataset). Those different characteristics may be new internal 

message type, bad frame field usage or anything else what is distinct from referenced 

communication. 

In chapter 1, Gigabit-capable passive optical networks ( G P O N ) are described 

wi th physical topology, network components and communication principles. At ten

tion is focused on Physical line operations, administration and management down

stream ( P L O A M d ) messages used to control units in passive optical network. 

Chapter 2 describes several machine learning models, which are considered as 

a possible solution of this problem. Special attention is dedicated to definition of 

neural networks and learning algorithms used in this thesis. 

In chapter 3, various Python3 machine learning libraries are described with spe-

15 



cial focus on TensorFlow and Keras, because the final machine learning model is 

written using these libraries. 

Chapter 4 consists of system architecture for G P O N protocol analysis using ma

chine learning techniques implemented in TensorFlow and Keras libraries. This 

system is designed to focus on frame structure analysis and relations between fol

lowing messages. The output of this system is traffic similarity level compared to 

baseline (learning) traffic. 

In chapter 5, several experiments made during the design process are described. 

Algorithms and models in this chapter are not considered as a final solution, but they 

are sufficient as a proof of concept demonstration and the final implementation may 

vary, but ideas and core of models are reused. Especially, the idea of time windows 

of specific length, which are helpful during learning and classification process. Time 

windows allow finding abnormal sequence in long communication. 

Implementation details are described in chapter 6. It focuses mostly on an in

terface definition of various classes and a usage description. G P O N analyzer is 

implemented as a python module and supports execution directly from command 

line or it can be used as a library used for further development of analyzing models. 

Chapter 7 verifies G P O N analyzer potential and discuss its detection capabilities. 

It also describes dataset generation process wi th corrupted messages and message 

sequences followed by their classification using learned analyzer. 
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1 Gigabit-capable passive optical networks 
Gigabit-capable passive optical networks ( G P O N ) is technology, which provides 

telecommunication and internet services over passive optical network ( P O N ) . It 

is considered as a great replacement for older technologies (e.g. digital subscriber 

line (DSL)) , because it achieves much higher transmission speed for various types 

of traffic. A s its name already suggested, fiber-optic cables are used as a transmis

sion medium, which makes G P O N capable of providing services for longer distance 

wi th higher transmission speed. Recommendation defines l imit at 20 km, but it is 

possible to extend the range much farther. 

G P O N uses wavelength division multiplexing to separate upstream and down

stream communication. Transmission speed supported by G P O N in each direction 

is defined in table 1.1. 

Tab. 1.1: Transmission rates supported by G P O N systems. 

Upsteam Downstream 

1.24416 G b i t / s 2.48832 G b i t / s 

2.48832 G b i t / s 2.48832 G b i t / s 

G P O N is defined by several G.984.x recommendations defined by International 

Telecommunication Union - Telecommunication Standardization sector ( ITU-T) . 

This standard is designed to be backward compatible with previous I T U - T P O N 

standard: asynchronous transfer mode passive optical network ( A P O N ) , Brodband 

passive optical network ( B P O N ) . 

1.1 Elements of PON 

Passive optical networks consist of these basics elements: optical network unit 

( O N U ) , optical line termination (OLT) and optical distribution network (ODN) . 

Logical topology of these components is shown in figure 1.1. 

1.1.1 Optical distribution network (ODN) 

O D N mostly uses passive network components, which provide transmission medium 

for G P O N technology. These components connect single O L T and multiple O N U s 

or O N T s using optical cables and splitters creating a tree like topology, which can 

be also called point-to-multipoint. P O N splitters have various splitting ratio 1 : N. 

where N is usually multiple of 2. M a x i m u m splitting ration in G P O N is 1:128 [9]. 
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1.1.2 Optical line termination (OLT) 

O L T is the root of network tree and implements P O N protocol (defined by I T U -

T ) . It is also responsible for communication and administration of network leaves 

( O N U / O N T ) according to I T U - T recommendations. It provides a bridge between 

G P O N network and providing services as internet, video, voice and cable television. 

It is also responsible for registration/activation (described in section 1.6) of new 

O N U s into network, which includes bandwidth assignment (described in section 1.4) 

as well. 

1.1.3 Optical network unit (ONU) 

O N U 1 is a leaf of O D N nearing customer premises capable of communication us

ing P O N protocol and process P O N P D U s . It provides bridge between P O N and 

customer services by converting signal from optical medium into metal cable us

ing different physical layer protocol and vice versa. It actively communicates wi th 

O L T to gain time slot for upstream data transmission (this process is described in 

section 1.4). 

ODN 

OLT 

Fig . 1.1: Logical topology of passive optical network. 

1In GPON recommendation, ONU mostly stands for both ONU and ONT in TC layer, except 
special cases. ONT is considered as a single-user ONU. 
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1.2 GPON time division multiplexing 

O D N consists of a single optical cable, therefore G P O N uses wavelength division 

multiplexing to separate upstream (from O N U s to O L T ) and downstream (from 

O L T to ONUs) communication. In case O D N uses two optical cables, the second 

one is used only backup. 

The process of gaining the access to the medium for downstream communication 

(generated by O L T ) is centralized, because O L T is the only one who gets access 

to that media. It labels outgoing G P O N encapsulation method ( G E M ) frames by 

G E M Port-ID, which identifies receiver's logical port. O N U filters the incoming 

G E M frame designated to itself based on G E M Port-ID. 

In the upstream direction, there may be several O N U s communicating wi th O L T , 

therefore the process of gaining the access is decentralized. O L T assigns time based 

windows to O N U s during bandwidth allocation process. O N U uses G E M Port-ID 

to select specific logical connection to O L T . 

1.3 GTC downstream frame structure 

Frames sent by G P O N transmission convergence ( G T C ) layer in downstream direc

tion have constant time duration of 125 fj,s. A t transmission speed 2.48832 Gbi t / s , 

it represents 38880 bytes long frames [9]. Structure of this frame is graphically 

represented in figure 1.2. 

Physical control block downstream ( P C B d ) contains information necessary for 

control and management of certain O N U . The most important are Upstream BWmap 

and PLOAMd. Upstream BWmap field gives O N U time slots for upstream communica

tion bursts. PLOAMd field contains management message and it is more described in 

section 1.5. 

GTC payload field contains list of variable length GEM frames. Generic encapsu

lation method ( G E M ) provides connection-oriented transport mechanism supporting 

variable payload length of various data services over P O N . G E M encapsulation is 

analogy to asynchronous transfer mode ( A T M ) circuits. A T M was even supported 

as a transport mechanism in previous version of G P O N recommendation, but today 

it is deprecated [9]. 

O L T and O N U ports (part of transmission container ( T - C O N T ) ) create vir tual 

connection and label it wi th unique PORT-ID for proper identification. During trans

mission, PORT-ID in G E M header is set accordingly to identify receiving P O R T . 
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125fJS 

Psync Ident P L O A M d BIP Plend Plend Upstream BWmap 
4 bytes 4 bytes 13 bytes 1 byte 4 bytes 4 bytes N * 8 bytes 

G E M frame G E M frame G E M frame G E M frame 

" 
G E M header 

5 bytes 
G E M payload 

L bytes 

PLI Port-ID PTI HEC 
12 bits 12 bits 3 bits 13 bits 

Fig . 1.2: Structure of downstream G T C frame. 

1.4 Bandwidth allocation 

From description of P O N (in section 1.1), it is obvious that the P O N is multiple 

access network, where transmission collisions may occur. To avoid this situation, 

O L T controls access of O N U s to transmission media. When O N U is wil l ing to 

communicate over P O N in upstream direction, it needs to have assigned communi

cation time window. O L T assigns these time windows for each T - C O N T of O N U via 

bandwidth allocation algorithm. Therefore, it sends Bandwidth Mapping message 

( B W M A P ) , which consists of several bandwidth allocations for specific O N T / O N U 

or its T - C O N T [10]. 

1.4.1 Static bandwidth assignment 

Bandwidth allocation process is approached by static or dynamic method. Static 

method assigns time windows to O N U s regardless of what they need. This may 

be beneficial for some technologies/services as VoIP, because of constant uplink 

bandwidth and stable delay 2 . However, for other IP services, which send data in 

2The delay is low, because VoIP packets are usually small enough to fit into one transmission 
window. 
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bursts, it is not beneficial at all . After packet burst is sent and no more services are 

wil l ing to transmit the data, the time window is still allocated for specific O N U . This 

prevents others to use this idle time window. Static allocation method is sufficient, 

if network is not congested or upstream bandwidth required by all O N U s is less than 

1.244Gps 3 and is not fully utilized [10]. 

1.4.2 Dynamic bandwidth allocation 

O n the other hand, dynamic bandwidth allocation ( D B A ) method only assigns time 

windows to O N U s , which want to send upstream data. That means big packet bursts 

can be sent quicker by this method, because O N U might get longer time window 

for sending data. This method also cuts off O N U s , which do not have any data to 

send. O L T gets notification from O N U s indirectly by G E M idle frames or directly 

through buffer status reporting [11]. Dynamic allocation obviously utilizes trans

mission medium more effectively than static process, but level efficiency depends 

on D B A algorithm. G P O N recommendation defines tools for D B A , but does not 

specify the whole allocation algorithm, which might be modified according to service 

providers needs. D B A enables them to oversubscribe P O N , resulting in providing 

more bandwidth than they really have. This manner relies on customers, who do 

not use the whole provided bandwidth at the same moment. 

1.5 PLOAM downstream message format 

Physical layer operations, administrations and maintenance is one of three methods 

used by O L T to directly control O N U s in P O N . It is widely used during O N U activa-

Octets 

M S B 

O N U ID 

M e s s a g e ID 

Data 

C R C 

1 

10 

F ig . 1.3: P L O A M downstream message format. 

31.244Gpbs is maximal upstream bandwidth defined by GPON recommendation by ITU-T. 
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t ion process, configuration of encryption, management of keys and alarm signalling 

[9]. For communication, it uses P L O A M downstream message ( P L O A M d ) , which is 

part of Physical control block ( P C B d ) . 

P L O A M d message is 13 bytes long and message format is shown in figure 1.3. 

Description of each field of P L O A M d message can be found in table 1.2. 

Tab. 1.2: P loam downstream message fields description. 

F ie ld name 

O N U - I D 

Message ID 

Message Data 

C R C 

Description 

This field represents receiving O N U . This number was as

signed to specific O N U during its activation process. This 

field can cover values from range 0-253 for O L T -> O N U 

communication or 255 for broadcast. 

Type of P L O A M message is represented by this field. Mes

sage IDs are not in direct sequence (1..N), but randomly 

assigned in one byte value space (0 — 255). 

Each message can transport additional data and this field 

is allocated for this purpose. Format of data field may vary 

wi th respect to Message ID, but it has constant length. 

Frame check sequence verifies data integrity of P L O A M d 

message. It contains remainder of division of the this 

message (with C R C set to 0) by generator polynomial 

X8 + x2 + X + 1. 

1.5.1 PLOAMd messages 

This subsection briefly describes P L O A M d messages defined in I T U - T G.984.3 

G P O N recommendation. Definition refers to several states of O N U activation pro

cess defined later in section 1.6. Types of P L O A M d messages wi th MessagelD used 

in G P O N are defined in table 1.3. 

Tab. 1.3: P L O A M d messages definition. 

ID Message name Message description 

1 Upstream 

Overhead 

3 Assign 

ONI-ID 

When activation process starts, O L T instructs O N U with 

pre-assigned delay settings and number of preamble bytes 

for upstream communication. It also may set optical power 

of O N U ' s laser. 

O L T assigns unique O N U - I D to specific O N U based on 

serial number and inform O N U via this message type. 
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Tab. 1.3: P L O A M d messages definition. 

4 Ranging time 

5 Deactivate 

O N U - I D 

6 Disable Serial 

Number 

8 Encrypted 

Port-ID 

9 Request 

Password 

10 Assign 

Alloc-ID 

11 No message 

12 P O P U P 

13 Request key 

14 Configure 

Port-ID 

15 Physical 

Equipment 

Error ( P E E ) 

16 Change Power 

Level 

17 P S T message 

18 B E R Interval 

During Ranging state (04) O N U measures equalization 

delay to synchronize itself for upstream communication. 

O N U sets this delay based on this message sent by O L T . 

O L T by this message forces O N U to stop transmitting data 

in upstream direction, reset itself and start activation pro

cess from the beginning. O L T may broadcast this message 

to all O N U s . 

This message wi th disable option forces O N U to stop send

ing data, turn off the laser and move to Emergency state 

(07). To enable O N U , O L T needs to send Disable Serial 

Number wi th enable parameter, which moves O N U to the 

state Standby state (02). 

O N U is informed about channel encryption v ia this mes

sage. 

It is an optional message used for authentication of O N U 

against local password table stored in O L T . 

O L T uses this message to assign additional Al loc - ID to 

O N U , which has multiple T - C O N T s . 

It is used when no P L O A M message is wil l ing to be sent 

wi th transitioned G T C frame. 

After L o S / L o F alarm O N U moves to the P O P U P state 

(06). O L T can rescue O N U from this state by sending 

directed/broadcsated P O P U P message. 

If this message is sent by O L T , O N U needs to generate new 

encryption key and sent it to O L T . 

O L T assigns 12-bit G E M Port-ID to the individual logi

cal connections via O N U management and control channel 

( O M C C ) , but O M C C needs this ID too. Therefore, O L T 

assigns Port-ID to O M C C via this message. 

O L T informs O N U about inability to send G E M and 

O M C C frames. 

O L T sets/tunes laser power of O N U by sending this mes

sage. 

It verifies status of O N U O L T connection v ia P O N . 

It is used for evaluation of bit error rate. 
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Tab. 1.3: P L O A M d messages definition. 

19 K e y Switching 

Time 

20 Extended 

Burst Length 

21 P O N - I D 

22 Swift Popup 

23 Ranging 

Adjustment 

This message contains specific time, when O N U should use 

new encryption key. 

O L T forces O N U to use type 3 preamble. 

This message contains mean optical launch power and 

P O N - I D tag assigned by operator to specific interface of 

P O N . 

O L T can force O N U s to move straightly to Operational 

state (05) and clear L o S / L o F alarms wi th this message. 

This message modifies equalization delay to correct syn

chronization drift. It can be sent to specific O N U or broad

casted to al l . 

1.6 ONU activation process 

When O N U powers on, it cannot instantly communicate in P O N network, otherwise 

it would cause carrier collision due to multiaccess nature of transmission media. 

Firstly, it needs to synchronize with O L T , get necessary IDs and activate itself, but 

most importantly, it acquires time slot for sending upstream data [8]. The thole life 

cycle of O N U in P O N is defined by finite state machine, which is shown in figure 

1.4. It also contains O N U activation process defined by the first four states of state 

machine. This process is responsible for ini t ial communication wi th O L T , request 

of IDs and media access. A l l states of finite state machine are listed in table 1.4. 

Tab. 1.4: O N U operational states. 

O N U operational states of finite state machine 

ID State name 

0 1 Initial state 

0 2 Standby state 

0 3 S e r i a l N u m b e r state 

0 4 Ranging state 

0 5 Operation State 

0 6 P O P U P state 

0 7 Emergency stop state 

In O N U finite state machine several timers are used to prevent getting stumbled 
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in specific state during activation process or loss of signal/frame error. These timers 

are described in table 1.5. Besides, it uses loss of signal (LoS) and loss of frame 

(LoF) flags to indicate transmission failure. 

Tab. 1.5: Timers supporting activation process. 

Timers used in activation process 

T O l This timer is used to avoid getting state machine stuck in 0 3 or 0 4 

state during unsuccessful activation process. It is also called serial 

number acquisition and ranging timer. Recommenced init ial value is 

10s [9]. 

T 0 2 Timer T 0 2 also called P O P U P timer, avoids getting state machine 

stuck while waiting on P O P U P message from O L T in state 06 . Rec

ommended value for this timer is 100ms [9]. 

Initial state (01) is the first state coming after O N U powers on. In this 

state, O N U passively listens to communication in the P O N and tries to detect M 

following PSYNC fields and then tries to detect M — 1 whole frames. If this detec

tion is successful, O N U moves to the next state 0 2 and clears L o F and LoS flags. 

Otherwise, it remains in this state unti l it receives necessary following uncorrupted 

data. 

O N U in Standby state (02) synchronizes itself in upstream direction. It waits 

for global network parameters e.g. delimiter value, power level mode and pre-

assigned delay. A l l of these parameters are in Upstream Overhead message. When 

O N U receives this message, configures these parameters and moves to the next state 

0 3 Serial Number state. 

During Serial Number state (03) O N U lets O L T know about its existence by 

sharing its serial number by responding on O L T request. To avoid collisions in the 

P O N , O L T sends P L O A M messages wi th empty bandwidth map field, what creates 

quite time window for 250 /xs [7]. Through this quite window O N U replies to O L T S N 

request with its own serial number. After this step, O N U waits to receive Assign 

ONU-ID message, which contains O N U - I D for this specific O N U . W i t h successful 

assignment of O N U - I D it moves to the next state, the Ranging state (04). O L T can 

use Extended Burst Length message and force O N U to configure received extended 

parameters and use the type 3 preamble lengths [9]. 

Ranging state (04) is crucial for synchronization of upstream communication. 

A l l O N U s appear to be in equal distance from O L T even if they are not, in that 

case propagation delays are not equal as well. A s a consequence of this situation, 
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Initial state (Ol) 
ONU is switched on 

ONU receives downstream 
frames clears 

LOS/LOF 

ONL' receives disable request 
Standby state (02) 

ONU waits for network parameters 

ONU detects LOS/LOF , 

ONU receives 
Upstream overhead 

parameters 

TO I timer expires 

ONU receives disable request 
Serial number state (03) ONU detects LOS/LOF\ 

ONU waits for serial number request | 

ONU receives 
ONU-1D 

TOl timer expires 

ONU receives disable request 
Ranging state (04) 

ONU waits for ranging request 

\ ONU detects LOS/LOF 

ONU receives deactivation request 

ONU receives 
equalization delay 

ONU receives disable request 
Operation state (OS) 

ONU receives and transmits data 

ONU receives deactivation request 

ONU detects LOS/LOF 

ONU receives directed 
POPUP message 

ONU receives broadcast 
POPUP message 

ONU receives disable request 
POPUP state (06) 

ONU asserts LOS/LOF 
ONU receives deactivation request 
TO2 timer expires 

Emergency stop state (07) 
ONU stops transmitting data in U/S 

until enabled by OLT 

ONU receives enable request 

Fig . 1.4: Finite state machine describing O N U life cycle [9]. 

equalization delay is measured in this state. O N U waits for receiving Ranging time 

message and moves to the next state 0 5 . 

In Operation state (05) upstream communication is synchronized between all 

O N U s . Thanks to equalization delay each message is received by O L T in correct 

upstream G T C frame and collisions in P O N are avoided. O N U s are able to commu

nicate with O L T via P L O A M message and send data in upstream direction. O N U 
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remains in this state unti l errors ( L o S / L o F ) occur or O N U is being disabled/deac

tivated. 

When LoS or L o F alarm is activated, O N U moves to the POPUP state (06) and 

stops sending upstream data. Transmission silence informs O L T that O N U is in this 

state. A s the first step, O N U tries to recover from the error state by reacquiring 

signal or bring the frame synchronization back, which clears L o S / L o F alarm. When 

synchronization is achieved again, O N U waits on P L O A M message from O L T . If 

directed POPUP message is received, O N U moves to the state 0 5 . Or if broadcast 

POPUP is received, O N U moves to the state 0 4 and measures equalization delay. If 

O N U is unable to recover signal and frame synchronization it moves to the state 01 

and starts activation process from the beginning. 

When O N U receives Disable Serial Number message wi th option disable, which 

means some malfunction of O N U occurs, O N U instantly appears in Emergency 

state (07). O L T tries to send this message three times and if O N U still does not 

move to 0 7 state O L T sustains receiving upstream messages of O N U and asserts 

D F i alarm. In this state, laser has to be turned off and all upstream communica

tion is prohibited. When malfunction is fixed, O L T sends Disable Serial Number 

message wi th option enable and O N U moves to the state 0 2 and negotiates all 

parameters from the beginning. 
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2 Machine Learning 
Artif icial intelligence is a scientific study, which research learning and data process

ing systems capable of individual decision. Machine learning, as a subset of artificial 

intelligence, studies system learning algorithms [4]. It is used in various cases, where 

conventional system designing (writing a computer program) is extremely hard to 

achieve. Examples of machine learning application are: image processing, voice 

recognition, suspicious task execution analysis and many others. 

These days there are many algorithms oriented to machine learning (e.g. neural 

networks, decision trees, support vector, machines). Each algorithm has benefits 

and disadvantages depending on use-case of project. There are also many frame

works and libraries in various programming languages, where optimized versions of 

algorithms can be found. 

2.1 Neural Networks 

Neural networks (NN) are one of many implementation methods of machine learning 

systems. Inspiration was taken from discovered principles of human brain and the 

motivation was to create an artificial version of this complex system. The first 

designed system was perceptron and was able to learn classification of input space 

into two separate categories. W i t h adding more perceptrons into single layer and 

stacking more of these layers, neural networks became to the world. 

2.1.1 Perceptron 

A core of these networks is an artificial neuron, a very simplified abstract replica 

of natural neuron. Graphical representation of perceptron is shown in figure 2.1. 

The principle is straightforward. Neuron calculates sum of all inputs signals 

according to equation 2.1, where Xj is input signal, Wi is weight, 9 represents bias 

and z is sum of all signals. This part is the same for across all neurons. Then the 

result is passed to the activation function, which evaluates the result of this specific 

neuron. 
n 

z = -e + Y,Xi*Wi (2.i) 

i=l 

Each input signal is multiplied by specific weight, which represents its importance 

to the neuron [6]. If the sum of signals reaches certain level, the neuron is considered 

as activated. The bigger the weight is, the higher the impact of signal to activation 

function result wi l l be. Weights are defined by the real number, so it also can be 

positive or negative number. 
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Fig . 2.1: A n artificial neuron. 

Definition of activation function is specified by type of neural network and posi

t ion of neuron in this network (neurons in different layers may use other functions). 

It adds necessary non-linearity into N N model. Even though, each project using 

N N claims extra attention of model designer, who experiments wi th various combi

nations of activation function and chooses the best one. The most used activation 

functions are shown in figure 2.2. 

2.1.2 Feed forward neural network 

Huge number of artificial neurons separated into layers are connected together into 

neural network. These networks differ wi th connection scheme of neurons and their 

activation function. Inside feed forward neural networks, output of each neuron is 

connected into input of all neurons in the next layer (except output layer). Neurons 

in single layer are not connected together at all . In mathematical point of view, 

it creates an acyclic oriented graph with perceptron as a vertex and connections 

in between as edges. These neuron connections are called synapses and scale the 

value by weight. For better understanding see figure 2.3, where x is input vector, 

Wi, W2, W3 are weight matrices and Y is output vector. This network accepts vector 

of four components as an input and transforms it into vector of two (e.g. classifi

cation of vectors into two sets). The weight matrices have specific weight value for 

each synapse and each neuron. The dimension of current matrix in specific layer is 

given by number of neurons in previous and following layer. 

Input and output layers create an exception in upper connection definition of 

N N . The main role of N N input layer is to distribute all parts of input vector to 

following perceptron in inner layer, therefore activation function might be linear. 
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Fig . 2.2: Examples of neuron activation functions. 

A t the end of N N , there is output layer, which is not connected to anything, but 

provides aggregated output. 

2.1.3 Backpropagation 

The N N handling process is obvious compared to learning process. A l l calculations 

related to handling are performed by simple equations and the whole system remains 

persistent after handle. 

Difficult task is to find weight matrices, that calculate output vector from input 

vector wi th the highest precision. This had been the biggest problem and source 

of negative opinions about N N , unti l backpropagation algorithm was found out. 

A s the title of this algorithm indicates, it evaluates error of N N model and back 

propagate error from output layer to previous layers. Error is calculated using loss 

function (also called objective function), which can be defined by mean square error, 

30 



Input 
layer 

cross entropy or function wi th similar use case. It basically evaluates the difference 

between computed and expected output of N N . 

Backpropagation algorithm is based on searching gradient of the weight wi th 

respect to loss function. Calculated gradient is used to modify weights in order to 

gain higher precision of N N model (minimizing loss) by applying one of the iterative 

learning method as a stochastic gradient descent or other alternative [15]. 

Example of error backpropagation 

First of all , suitable learning and testing data are necessary to learn/train N N model 

by backpropagation algorithm. Bo th data sets (training, testing) need to be labeled 

wi th expected output for each input vector, which means these sets should contain 

pairs (x, d), where x is input vector and d is output vector. 

Assume that N N described in figure 2.3 uses sigmoid as activation in all neurons. 

Sigmoid function is defined in equation 2.2. 

/ (* ) = ^ (2.2) 

For this example of backpropaation algorithms we use mean square loss function 

defined in equation 2.3, where y is calculated output, d is expected output and N 

is dimension of y, d vectors. 

1 N 
L(y,d) = -j:(yl-dlf (2.3) 

J V i=i 
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Finding gradient wi th respect to z-th weight to k-ih output neuron is shown in 

equation 2.4. B y design of N N , evaluation of y from x, w and 9 is accomplished 

by using several nested function, therefore we can use the chain rule when partial 

derivative is being searched. 

dL dL dyk dzk 

dwik dyk dzk dw. 
{Vk ~ dk)yk{l - yk)xi (2.4) 

Ik 

The weights are changed based on gradients of error function calculated for the whole 

training dataset. Hence, gradients for each learning sample are summed together. 

If stochastic gradient descent method is used, aggregated gradient is firstly scaled 

by learning rate a and then added to original weight [15]. F ina l weight adjustment 

is demonstrated in equation 2.5. 

wi:j = Wij + aAwij, where Awrf = ^ ^L(yt, d f) ^ ^ 

Another neuron parameter which needs to be learned is 9 (the bias). Evaluation of 

9 difference is similar to weights. The only change is in partial gradient derivation 

of loss function, because it is derived wi th respect to 9 not w. The rest of procedure 

is exactly the same. 

2.2 RNN - recurrent neural network 

Feed forward neural networks find their purpose in many areas, but they are not even 

close to be considered as a universal tool for data classification or categorization. 

Various patterns can be found and learned by N N in single sample, but patterns 

occurring across several samples are omitted. This causes difficulties during im

plementation of model for language analysis. Recurrent neural network might be 

a simple solution of this problem. R N N neuron does not calculate output based 

purely on input vector, but it considers its inner state as well. 

2.2.1 RNN topology 

To achieve connection wi th its previous state R N N creates cyclic graph by connecting 

output of neuron back to the input of the same neuron and passes state h through 

this connection. This adds extra matrix of weights Whh for state vector h. Scheme 

of R N N neuron is shown in left part of figure 2.4, where all inputs and outputs are 

defined as vectors, and weights are defined as matrices, because the whole neural 

network is represented by this scheme. In the right part, there is the same neuron, 

but rolled through time (through state vector h). This visualization shows that 
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each new input is handled by neuron as if it was a different one, because of the state 

vector. 

To compute the next state vector at time step t, R N N uses equation 2.6, where 

Whh is weight matrix of state vector, h 4_i is previous state vector, Wxh is weight 

matrix of input, xt is input and b )̂ is bias. 

ht = tanh(Whhht-i + Wxhxt + bh) (2.6) 

Prediction zt based on current state ht is evaluated by equation 2.7, where Whz is 

weight matrix of preditcion and bz is bias. 

zt = softmax(Whzht + bz) (2.7) 

2.2.2 Back propagation through time 

Proper weight matrices used for input filtering, prediction and next state compu

tation need also wi th their biases are necessary for achieving reasonable results. 

Similar approach can be used as in regular N N to find these matrices. It is back-

propagation algorithm. Slight difference is that the gradient is searched through 

time (i.e. through sequence of samples). 

Let L be a loss function. Considering Whz is shared through time, gradient 

wi th respect to Whz is calculated by sum of differences for each time step shown in 

equation 2.8 [2]. 

dL = ^ d L dzt 

dWhz ^dztdWhz 1 ' ) 

Gradient with respect to Whh is evaluated by sum of fractional gradients for each 

time step from 0 to t + 1, which also depends on several changes in state vector 
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ht. Therefore chain rule is applied on differentiation of state vector in time. This 

propagation back in time is demonstrated wi th red line in figure 2.4. Mathematical 

definition of mentioned gradient is shown in equation 2.9 [2]. 

d_L = j+* dL(t + 1) dzt+1 dht+1 dhk 

dWhh V f e = i 9zt+1 dht+1 dhk dWhh

 [ ' ' 

The gradients of remaining weight matrices or bias vectors can be deduced from 

equations: 2.8 and 2.9. 

2.3 LSTM - long short term memory 

R N N s are the first type of N N , which tried to find patterns in sequences, but they 

have several imperfections. The first problem is called the vanishing gradient, which 

refers to a situation, when a sum of partial derivations is nearing to zero and as a 

consequence R N N does not learn anything. This problem might be a direct opposite 

and it is called the exploding gradient. Gradient becomes very big and unstable, 

resulting into situation, when R N N does not learn anything as well. 

F ig . 2.5: Scheme of L S T M cell wi th gates [2]. 

Because of these situations, R N N has problem to find and learn patterns in a 

long sequences. L S T M cell tries to provide solution of this problem. It inherits the 

design of R N N and add several important features. The topology of L S T M cell is 
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shown in figure 2.5, where x
4
 is input vector, h t _ i is previous state vector, W are 

weight matrices and bias vectors are omitted. 

The first new feature is an internal memory used for storing necessary information 

important to patterns of farther distance. Hence, it is called long short, because 

it has long memory defined by ct state, and short memory defined by ht vector 

inherited from the R N N . 

The second one is gate mechanism providing control of information flow of the 

cell. These gates are defined in table 2.1. 

Tab. 2.1: Description of L S T M gates. 

Gate name Description 

Input and Input These gates are used to scale input vector x
4
 and previous 

modulation gate state h 4 _ i into specific range of values using sigmoid and 

tanh activation function. 

Forget gate It is responsible for controlling what kind of information 

should be stored in or erased from the memory. 

Output gate It decides which information is inside state vector ht and 

which information leaks from the memory. 

Backpropagation algorithm of L S T M cell is very long, because it has much more 

weight matrices and bias vectors, but principle is exactly the same. Mathematical 

evaluation is omitted, because it would be out of scope of this thesis. 

2.4 Autoencoder 

Autoencoder is a type of symmetrical neural network, which uses unsupervised learn

ing method. It tries to learn sparse (less dimensional) approximation of the input 

vector x in hidden layer to be able to reconstruct in the output layer [14]. The 

reduction of dimensions allows the model to not just copy input vector to the out

put, but extract and find features describing characteristic of this vector and then 

reconstruct the output vector. 

Autoencoder consists of two sub-models. The first one is called encoder and its 

main responsibility is to compress input vector x to less dimensional vector space 

called latent space. The second sub-model is decoder, which tries to reconstruct 

vector x from latent space vector containing compressed original vector x. Ex 

ample of autoencoder wi th highlighted sub-models is shown in figure 2.6. 
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There are many usages of autoencoders, such as anomaly detection (described in 

section 2.4.1), noise reduction, dimensionality reduction, information retrieval and 

many others. 

Encoder Decoder 
I 

Fig . 2.6: Autoencoder neural network scheme. 

2.4.1 Anomaly detection 

One autonencoder neural network usage is anomaly detection. A n autoencoder is 

learned using normal data, because anomalies are yet to be found. Considering the 

fact that autoencoder uses unsupervised learning method, an expected output y is 

the same as an input of x [13]. The goal of learning process is to minimize a value 

of a loss function. After all learning iteration a anomaly threshold carefully is set 

to correctly divide normal samples and possible anomalies. 

To classify given vector sample x, it is necessary to predict output y and evaluate 

prediction error using loss function. If the error is lower than threshold, the sample 

x is considered as normal. Otherwise, it is classified as an anomaly. 

36 



3 Tensorflow and Keras 
This chapter contains description of several machine learning libraries in Python3 

language. Focus is mostly concentrated on TensorFlow and Keras, because it is used 

as a core for M L models designed in the following chapters. Those projects are being 

developed, well-supported and documented. TensorFlow also supports export and 

deploy model on remote machine. 

3.1 Machine learning libraries in Python3 

Machine learning algorithms and techniques are developed and shared by open 

source communities founded by universities or data analyzing companies. The main 

idea is to avoid inventing of solution already known. Taking into consideration all 

difficulties during derivation of loss function gradient, it makes sense to share and 

reuse the solutions, so data analytic may focus on M L model improvement instead 

of mathematical derivation. 

Libraries used for machine learning do not only provide easy way to create, 

learn and experiment wi th model, but they are also capable of efficient computation 

method. Models based on N N s calculates thousands, even millions of numbers 

wi th simple mathematical operators: [+,->*]• To improve computational speed, 

libraries support hardware offload, which moves calculation into peripheral device 

(e.g. graphics processing unit ( G P U ) ) . 

3.1.1 Scikit-learn 

Scikit is a community driven open source project focused on many machine learning 

algorithms (e.g. random forest, k-Means, nearest neighbors, support vector ma

chines, etc.). It is easy to use, therefore more concentration can be targeted on 

quality of training data. O n the other hand, support G P U offload is missing , which 

means it does not scale well on large neural networks [12]. 

3.1.2 Pytorch 

Pytorch is machine a learning library in Python3 language developed by Facebook 

research group in 2017 and is based on Torch library written in C. It is mostly 

used for natural language processing and computer vision. The main advantage 

is capability of tensor operation acceleration on G P U , which allows creating and 

training N N with several hidden layers. 
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3.2 TensorFlow 

TensorFlow library is being developed by artificial intelligence (AI) research com

munity from Google. Model or program development in TensorFlow consists of two 

stages: static computation graph definition and running a computational session of 

this graph. Thanks to this model representation, it is easy to evaluate data parallelly 

in pipelines especially on G P U s allowing creating and learning deep N N . 

3.2.1 Computational graph 

The core of TensorFlow calculations creates directed graphs structure used for com

putation, where node can be for example value or math function, and edges are 

tensors (defined in following section 3.2.2). Each node has zero to TV inputs and 

outputs. TensorFlow assigns kernels to node representing math function, which 

contain implementation of that function on particular device (e.g. G P U , C P U ) [1]. 

Example of a simple quadratic equation evaluation by computational graph is 

shown in listing 3.1. There is only definition of static computational graph, the 

second part wi th session execution is omitted, because TensorFlow runs it implici t ly 

from version 2.0.0. 

Lis t ing 3.1: Simple quadratic equation in TensorFlow. 
» > import tensorflow as t f 

•2 » > a s s e r t t f . _ _ v e r s i o n _ _ >= '2.0.0' 

3 » > a = t f . constant (2) 

4 » > b = t f . constant (-3) 

r, » > c = t f . constant (5) 

(i » > x = t f . const ant (1 i s t (range (- 5 ,5 ,1) ) ) 

7 » > y = a*x**2 + b*x + c 

8 » > p r i n t (y) 

9 t f . Tensor ([70 49 32 19 10 5 4 7 14 25], shape = (10,) , dtype=int32) 

3.2.2 Tensor 

This library is designed to work with tensors, to be able to design generic mathemat

ical structures or functions using computational dataflow graph. Tensor is generic 

mathematical structure representing linear mapping from one set to another. From 

library perspective, it is generic data structure unifying scalar, vector, matrix and 

n-dimensional array. Thanks to tensors, definition of single dense N N layer can be 

as easy as y = sigmoid(Wx * x + b) and it can be used as a generic definition of N N 

layer, but dimensions (shapes) of certain vectors have to match. 
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3.2.3 TensorFlow parallelism 

TensorFlow is designed to execute graph session on distributed system. Therefore, 

scheduling algorithm is a necessary part of this library. Each computing system has 

abstract representation used by scheduling algorithm describing available system 

resources. Special process called worker runs in this system and executes subgraphs, 

which are assigned from master process. To share data between worker processes, 

remote direct memory access ( R D M A ) and transmission control protocol are used. 

3.2.4 Gradient evaluation 

Considering the fact that the TensorFlow is designed especially for machine learning 

using deep neural networks, it directly supports evaluation of gradient for current 

graph. When TensorFlow searches gradient for specific tensors with respect to other 

tensor, it backtracks to the other tensor and add partial gradients to each node on 

the path. F ina l gradient is found by applying chain rule on this partial gradients 

together [1]. 

3.3 Keras 

This library provides an easy to use high-level application programming interface 

(API) for designing, learning and evaluation N N models. Today it is a part of 

TensorFlow library and makes model definition as a computational graph (needed by 

TensorFlow) much easier by abstracting several M L components. Whole M L model 

is composed of abstract objects compiled into TensorFlow computational graph to 

gain benefits of G P U acceleration. These abstract objects can represent: layers, 

model, optimizer, loss functions, activation functions of neurons and many others. 

The major part of these objects contains methods used for model serialization and 

deserialization. Several abstract objects are briefly described in sections below. 

3.3.1 Model 

Project Keras contains two main model definitions. The first is model .Sequential, 

which is also used in our models. It is capable of stacking abstract N N layers (defined 

in section 3.3.2) and creates fully functional N N model. 

The second one is model.Model providing A P I for customized model definition 

using inheritance or functional description. One of the use cases is definition of two 

M L models with several layers, but one of these layers is shared across models [3]. 
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Both mentioned model classes share basic A P I used for model initialization, 

training and prediction. Description of several model methods used in thesis can be 

found in the following subsections. 

Compile 

This method specifies necessary information needed for learning process. The most 

important parameters are optimizer specifying iterative algorithm used for up

dating weights based on gradient during learning (e.g. Stochastic gradient descent 

(SGD) , Adadelta, Adam, etc.) and loss (or objective) function (e.g. mean square 

error, crossentropy, etc.) defining prediction error of model. Also, various model 

variables can be evaluated during learning process and can be defined by metrics 

parameter. Method declaration can be seen in listing 3.2. 

Lis t ing 3.2: Desclaration of model.compile method [3]. 
c o m p i l e ( o p t i m i z e r , loss=None, metrics=None, loss_weights=None, sample_weight_mode= 

None, weighted_metrics=None, target_tensors=None) 

Fit 

Each model needs to learn on training data and for this purpose f i t method exists, 

accepting enormous number of arguments, but most importantly it accepts learning 

set x, expected results y, number of learning iterations epochs. This method returns 

special object History .history containing gathered data learning process, which 

can be used to plot accuracy and loss evolution during epochs. Declaration of f i t 

method is shown in listing 3.3. 

Lis t ing 3.3: Desclaration of model.fit method [3]. 
fit(x=None, y=None , batch_size=None , epochs=l, verbose = l , callbacks=None, 

v a l i d a t i o n _ s p l i t = 0 . 0 , validation_data=None , s h u f f l e = T r u e , class_weight=None. 

sample_weight=None, i n i t i a l _ e p o c h = 0 , steps_per_epoch=None, v a l i d a t i o n _ s t e p s = 

None, v a l i d a t i o n _ f r e q = l , max_queue_size = 10, workers = l , u s e _ m u l t i p r o c e s s i n g = 

False ) 

Predict 

Learned models are usually used for classification or prediction based on current 

input. This is achieved using predict method accepting parameter x as input 

tensor. Declaration of this method can be seen in listing 3.4. 
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List ing 3.4: Desclaration of model.predict method [3]. 
1 p r e d i c t ( x , batch_size=None, verbose=0, steps=None, callbacks=None, max_queue_size 

=10, workers=l, u s e _ m u l t i p r o c e s s i n g = F a l s e ) 

3.3.2 Layers 

To make model definition a bit easier, Keras contains huge number of abstract 

N N layers definitions in keras. layers submodule. A l l of them share the same 

basic A P I , which is extended for specific layers requiring different parameters. The 

major part of layers requires only single parameter during initialization, which is 

units specifying number of neurons in that layer. It is also common to set specific 

activation function different to default 1 using activation parameter. Dimension of 

inner layer tensors is derived from number of neurons in adjacent layers. Therefore, 

layer input shape can be assigned automatically. Exceptions are the first model 

layers, where automatic evaluation may not be possible and tensor dimension has 

to be set using shape parameter. Layers used in this thesis are defined in table 3.1. 

Tab. 3.1: Definition of Keras layers used in this thesis. 

Layer name Description 

Dense This is the most used layer representing fully-connected N N 

accepting vectors as an input and transform them into output 

of desired shape. 

Dropout To avoid overfitting during learning and to gain more accured 

N N , several randomly chosen neurons may be "turned off" 

using this layer. 

L S T M This layer is abstract implemetation of L S T M cell (described 

in section 2.3) requiring sequences as an input. 

TimeDistr ibuted To add Dense layer (or similar accepting vectors instead of 

sequences) before L S T M layer, Dense layer needs to be deco

rated by TimeDistr ibuted decorator, which allows Dense layer 

to handle each vector in sequence as single input. 

Default activation function of Keras layer is linear. 
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4 Designing learning model 
This chapter contains a design of M L system responsible for traffic verification based 

on baseline communication, which follows G P O N recommendations. Input data 

structure and format are discussed together with preprocessing of learning data and 

the whole system component by component. Models in each component are chosen 

wi th respect to TensorFlow. 

4.1 Data characteristic 

Considering the fact that this is a communication protocol, similar approach may 

be used as for natural language processing. Bo th contain a sequence of related 

information in specific order, which means different order may results in a distinct 

or even misinterpreted context. 

4.1.1 Input data format 

Model definition is based on TensorFlow library, which well collaborates wi th numpy
1 

library. Thus, it is reasonable to use numpy.array as data structure, where input 

vectors are stored. This array has three dimensions defined in table 4.1. 

Tab. 4.1: Dimensions of input numpy.array 

No. Dimension name Description 

1 sequence Model can classify several sequences and by using this 

dimension is able to separate them. 

2 message Sequence consists of several following messages. 

3 feature/field Each P C B d message has several fields and this dimension 

divides them. 

Single input vector has the same structure as P C B d field of G T C downstream 

frame and it is shown in figure 1.2. Fie ld representing length are aggregated to a 

single number, but fields representing data (e.g. P L O A M d data field) are divided 

into separate features. 

1 Numpy is Python3 library supporting various mathematical operations with complex multidi
mensional structures (e.g. vectors, matrices, etc.) and much more. 
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4.1.2 Preprocessing data 

P C B from captured communication are stored in Microsoft SQL database [8]. This 

data cannot be directly injected into analyzing system. During normalization pro

cess of database design, several changes are applied to achieve certain normal form 

resulting in effective data storing and removal of duplicated data. Unfortunately 

this format is suitable for M L model, which requires correctly formatted tensors 

and data duplication in some field is not considered. Therefore, data is grouped 2 

together and then extracted in JavaScript Object Notation (JSON) format from 

the database. This extract needs to be loaded, all nested arrays expanded to a flat 

structure and a result modified into a suitable format described in section 4.1.1. 

4.2 System design 

G P O N verification system consist of several components due to the fact that the 

single N N should be primarily focused on a narrow purpose to gain optimal results. 

Otherwise, we would have complex N N model, which is hard to train, test and 

enhance. This can be sorted out by decomposition into smaller narrowly aimed parts, 

which positively influences learning and evaluation speed, because each models has 

to learn dependencies between fewer weights. Scheme of this model system is shown 

in figure 4.1. Each component of this system is discussed in following subsections. 

4.2.1 Data reader 

This is the first component in the system and it is mainly responsible for: 

• reading data wi th specific format and load them into memory 

• preprocessing R A W data from database and storing in the specific file format 

Based on the fact that G P O N network can produce thousands of messages per 

second, the data reader object should use suitable format for huge numbers of small 

vectors. Data are loaded into n-dimensional arrays and passed to model for learning 

or classification sequentially, so the performance random data access can be ignored. 

4.2.2 Input filter 

Input data may contains some mistakes or have different length 3 . This component is 

responsible for filtering such messages and for normalizing rest messages into suitable 

format for M L model input. It also helps during learning process by filtering or 

reducing long sequences of the same messages, which would prevent correct learning. 

2Applying group by operation on certain tables. 
3Length of BW Map field is not constant. 
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Fig . 4.1: Analyz ing models system scheme. 

4.2.3 Syntax verification model 

Content of each message field has specific rules, which should be considered during 

analysis. This component is responsible for this verification, which can be achieved 

by several proposed models. 

The first proposed model is a deep neural network consisting of several dense 

layers. The model would be trained by supervised learning algorithm requiring 

correct and faulty input data to learn. The advantage of this approach is that the 

model is able to learn more complex relations. O n the other side, it is necessary to 

generate synthetic faulty data needed by learning process. 

The second option is to use one of outlier detection models capable of classifi

cation similar and different data compared to learning dataset. This technique uses 

unsupervised learning and no additional data has to be generated, but it may not 

learn complex relations compare to deep neural network. 

4.2.4 Semantic verification model 

This model verifies message relations in time. Proposed model may use LSTM cells 

(described in section 2.3) to achieve this time based sequence check. L S T M based 

networks prove their capabilities in various similar use cases. For example language 

translator uses these cells and the whole sentences are processed to a single state and 
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then this same state is used to generate similar sentence in a different language. The 

first part of mentioned system solves a similar problem, which is finding patterns in 

time. This part can be used for message sequence analysis and provided state is not 

used for translation to different language, but for a prediction whether it satisfies 

G P O N recommendation or not. Keras A P I in TensorFlow has support of LSTM 

layers, so the proposed model is possible to create. If combination of dense layers 

and L S T M is necessary, each previous layer has to be TimeDistributed, because 

L S T M layer input shape has more dimensions. 

4.2.5 Evaluator 

Evaluator is the final component, which creates human-readable output from pre

vious classifications. Its responsibility is to create statistics about classification or 

prediction of machine learning models used in this system. Based on this informa

tion it creates aggregated output, which represents similarity to baseline traffic and 

highlights strange messages and non-standard message sequences. 
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5 PLOAMd analysis experiments 
This chapter describes ideas and experiments made during design process of learn

ing model for analysis of unknown protocol, which should keep definition G P O N 

recommendation. In the first experiment, the effort is focused on P L O A M d (defined 

in section 1.5) message analysis. The goal is to create model used for inspection of 

each message field and search for possible abnormalities. 

The second experiment is focused on analysis of the whole protocol, which is a 

difficult task. Inspiration is taken from natural language processing models based 

on R N N s ( R N N are defined in section 2.2.) or N N derived from R N N s . Analysis of 

network protocol is very similar, because there is sequential data with given syntax. 

The thi rd and the fourth experiment use autoencoders based models (described 

in section 2.4) for syntax and sequence analysis respectively. These models are very 

similar. The only difference is the number of layers, number of neurons in each layer 

and the data shape. The model used for sequence analysis accepts input as flatten 

message windows of constant length, instead of pure messages. 

5.1 PLOAMd data mining 

Downstream network traffic in P O N was monitored and captured to obtain real 

data. Learning data is a building stone for a precision of each artificial intelligence 

model. Capturing system do not store the whole G T C frame due to the size of 

frames and transmission speed in G P O N , but only the P C B d headers. This is not a 

problem, because important protocol messages used by G P O N are in these headers 

and stored in the database. 

For the following experiments, models need information from PLOAM field of down

stream P C B header. During the preprocessing phase, messages are grouped by 

MessagelD column and counted. Sorted P L O A M d messages wi th number of occur

rence are shown in table 5.1. 

From filtered data it is obvious that the most used P L O A M d message is NoMessagen 

used when no managing instruction is being sent by O L T , which is standard oper

ating state when no O N U is executing the activation process. 

There are four different values in ONU-ID field, which represent three distinct 

O N U addresses and the broadcast address. Based on the occurrence of various 

AssignONU-IDs and RangingTime^ messages it is clear that activation processes of 

these units are captured. 

Among others there is one message, which is not specified or described in G P O N 

recommendation: 24- This and similar unknown message are the main reason of 

protocol analysis wi th A I / M L . 
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Tab. 5.1: Fil tered P L O A M d messages from captured data traffic. 

O N U i d MessagelD Data C R C Count 

0 4 A A A E u U g A A A A A A A = = 196 1 

0 8 A v n w A A A A A A A A A A = = 12 1 

0 10 Q A A B A A A A A A A A A A = = 147 1 

0 18 A A E 4 g A A A A A A A A A = = 251 1 

1 4 A A A E u U I A A A A A A A = = 132 1 

1 8 A g A Q A A A A A A A A A A = = 66 2 

1 8 Avng A A A A A A A A A A = = 102 1 

1 10 Q B A B A A A A A A A A A A = = 75 1 

1 18 A A E 4 g A A A A A A A A A = = 166 1 

2 10 Q C A B A A A A A A A A A A = = 36 1 

2 14 A Q A g A A A A A A A A A A = = 6 1 

255 1 IA A Aqqt ZgyA A A A = = 41 26 

255 3 A E h X V E M qi Y h p A A = = 253 1 

255 3 A U h X V E N d V d F 7 A A = = 100 1 

255 3 A k h X V E N d W u F 7 A A = = 239 1 

255 11 A A A A A A A A A A A A A A = = 158 299945 

255 20 H h I A A A A A A A A A A A = = 23 12 

255 21 I A A A A A A A A A D / / w = = 212 1 

255 24 B + M L F B M b 6 h O B A A = = 66 1 

5.2 Syntax analysis experiment 

A model in this experiment should detect anomalies in the G P O N communication. 

Message is considered as an anomaly, when it is not similar to messages in the 

training dataset. The model capable of this function choosed for this experiment 

is OneClassSVM from scikit library, which approximates mathematical function to 

create an envelope, which decides whether classifying vector is normal or outlier. 

Lis t ing 5.1: P L O A M d syntax analysis model used in experiment. 
1 from s k l e a r n import svm 

2 model = svm.OneClassSVM(kernel='rbf', nu=0.03, degree=13, 

3 gamma = 0.00001, verbose=True, max_iter=-l) 

m o d e l . f i t ( n p . c o n c a t e n a t e ( [ i _ t r a i n , x _ t r a i n + 0.5, x _ t r a i n - 0.5])) 

The model used in this experiment is shown in listings 5.1. Approximat ion 

function of model uses radial basis function as a kernel. The gamma coefficient of 
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this model is very low to wrap the envelope around normal vectors more t ight ly 

which raises the sensitivity of this model. 

Captured messages shown in table 5.1 are split to learning and testing dataset. 

Both these datasets represents standard traffic. The model is learned only learning 

datasets with a variation of ± 0.5, because OneClassSVM expects outliers to be in 

learning dataset and this guarantees the normal traffic is classified correctly. Testing 

datasets verifies whether the model classifies unknown standard traffic correctly. 

Outlier detection capabilities are tested wi th two datasets. The first dataset is 

randomly generated within range < 0; 255 > for each field, but the second one 

is generated within range < 25; 35 > in MessagelD and O N U i d fields and range 

< 0; 255 > in remaining files, which simulates possible outliers. Classification results 

of this model for each dataset is shown in table 5.2. 

Tab. 5.2: OneClas sSVM outlier detection model classification results. 

Dataset Accuracy Elements Errors 

train 100% 14 0 

test 100% 5 0 

similar outliers 100% 50 0 

random 100% 50 0 

5.3 Sequence analysis experiment 

Model with two L S T M layers suitable for sequence analysis is created to learn system 

relations between message type and content using Keras and TensorFlow library. 

This model is shown in listings 5.2. 

List ing 5.2: Sequence analysis model used for experiment 
i from tensorflow import keras 

model = keras . Sequent i a l ([ 

3 keras.layers.LSTM(16,input _shape=data[0].shape, 

4 return_sequences=True, a c t i v a t i o n = ' t a n h ' ) , 

5 keras.layers.LSTM(16, a c t i v a t i on='t anh') , 

keras.layers.Dense(64, act i v a t ion='relu') , 

keras.layers.Dense(64, act i v a t ion='relu') , 

8 k e r a s . l a y e r s . D e n s e ( 2 , a c t i v a t i on='softmax') , 

]) 
10 model.compile(optimizer='adam' , 

l o s s = ' s p a r s e _ c a t e g o r i c a l _ c r o s s e n t r o p y ' , 

12 metrics = [' accuracy ' ] , 

13 ) 
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Experiments with this model are focused on a detection of correct message order. 

This model uses supervised learning, which means it needs data samples from both 

classified groups. The dataset wi th correct samples is created by message sequences 

from the captured communication and all samples are labeled as good. The dataset 

wi th corrupted message sequences has to be generated using several procedures. 

The first one takes the correct dataset and flips the order of messages. The second 

procedure drops certain message important for the G P O N protocol (e.g. message id 

4 or 10 used in activation process). The last procedure duplicates certain messages to 

create non-standard sequences as well. A l l corrupted message sequences are labeled 

as bad and simulates possible outliers. 

These two datasets are source for generating a learning time window of constant 

length by sampling these subsequences. This process uses sliding window of length 

30 and shifts this windows by 1 messages after each sample. 

- i 1 1 1 r - ^ ^ 1 1 1 r - ^ 

0 50 100 150 200 0 50 100 150 2 00 
Epochs Epochs 

Fig . 5.1: Accuracy and loos during learning process. 

Several sequences are popped from learning dataset to create a disjunctive val

idation set and the learning process can start. Accuracy and loss history of both 

learning and validation datasets captured during learning is shown in figure 5.1. 

Considering the size of dataset,it is hard to say whether it learns input data exactly 
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or finds generalized principles, but it is clear that the model is able to distinguish 

time sequences. 

These results prove that the sequence analysis of G P O N is possible with L S T M 

cells, but learning generalized rules relies on proper dataset. The biggest disadvan

tage is that the model needs to be learned wi th corrupted or improper communica

tion samples, which are not available. 

5.4 Autoencoder syntax experiments 

In this experiment, autoencoder is used for anomaly detection in each field of 

P L O A M d message. Autoencoder principles are described in section 2.4. Several 

model configurations are tried with different number of layers and neurons in each 

layer and also wi th different activation functions. A model wi th the best performance 

is shown in listing 5.3. The model uses exponential linear unit ( E L U ) function in 

the input and hidden layers and sigmoid function in the output layer. In this con

figuration, model is able to compress and reconstruct input vector into the latent 

space wi th dimension of two with very low error. 

Lis t ing 5.3: Syntax verification autoencoder 
i from tensorflow import keras 

model = keras . Sequent i a l ([ 

3 k e r a s . l a y e r s . D e n s e ( x _ t r a i n . s h a p e [ 1 ] , a c t i v a t i on='elu') , 

4 k e r a s . l a y e r s . D e n s e ( 8 , a c t i v a t i on='elu') , 

5 k e r a s . l a y e r s . D e n s e ( 4 , a c t i v a t i on='elu') , 

keras.layers.Dense(2 , a c t i v a t i o n = ' e l u ' ) , 

keras. layers.Dense (4 , a c t i v a t i o n = ' e l u ' ) , 

8 k e r a s . l a y e r s . D e n s e ( 8 , a c t i v a t i on='elu') , 

ke r a s . l a y e r s . D e n s e ( x _ t r a i n . s h a p e [ 1 ] , a c t i v a t i on=out _act) , 

]) 
11 model . compile ( 

optimizer=keras . optimizers .Adam(learning_rate=0.01) , 

13 loss='mean_squared_error ' , 

14 ) 

15 m o d e l . f i t ( x _ t r a i n . v a l u e s , x _ t r a i n . v a l u e s , s h u f f l e = T r u e , b a t c h _ s i z e =3, epochs = 200) 

This model is learned on captured vectors listed in table 5.1, which define normal 

traffic. Several vectors are dropped to create a testing dataset. To test anomaly 

detection capabilities, two additional datasets are made. The first one contains 

randomly generated vectors of proper dimension with maximum number 255 1 . The 

second generated dataset simulates possible real outliers and contains vectors similar 

to standard ones (e.g. similar message ID with low values in the other fields, etc.). 

xEach PLOAMd field is 1 byte long, so maximal generated number is 255. 
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The threshold for outlier detection is set by maximal loss function evaluation of 

learning dataset by learned model. 

Tab. 5.3: Syntax detection autoencoder classification results for each dataset. 

Dataset Accuracy Elements Errors 

training 100% 14 0 

testing 100% 5 0 

similar outliers 93.33% 150 10 

outliers 100% 500 0 

Classification results for each dataset by learned model are visible in table 5.3. 

Mean squared error loss function result histogram for each dataset is shown in figure 

B.2, where red doted line represents outlier threshold. 

5.5 Autoencoder sequence experiments 

Sequence analysis autoencoder searches for differences in time windows of specific 

length. B y its design, it focuses on different message sequence or usage. It is also 

capable to find a missing/additional message or a bad message usage. 

In this experiment, the time window has length of 30 messages. This autoencoder 

is very similar to the syntax analysis model. The only difference is the input vector 

shape, which is 390 (30 messages by 13 features) for this time window, and number of 

neurons in each layer, which is [390, 256, 128, 64, 32,64, 128, 256, 390] respectively. 

A l l activation functions are exponential linear unit, except of the activation function 

in the output layer, which is sigmoid function. 

Tab. 5.4: Sequence detection autoencoder classification results for each dataset. 

Dataset Accuracy Elements Errors 

training 100% 25 0 

testing 100% 3 0 

corrupted 51.54% 97 47 

random 100% 97 0 

The model is learned by training dataset consisting of normal traffic as syntax 

autoencoder. This dataset is created from captured frames wi th omitted message 

NoMessagen, but without dropping duplicates. A sliding window of specific length 

(30 in this case) travels though frames and generates new data samples, which are 
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divided into learning and training dataset. Detection capabilities are tested by two 

datasets. The first one contains data windows generated from captured frames, but 

some message types (4 and 20) are dropped, which clearly create corrupted message 

sequences. The second outlier dataset contains randomly generated data. 

This anomaly detector correctly classifies training, testing and random datasets 

wi th 100% accuracy. The results are shown in table 5.4, The dataset containing 

corrupted frame windows is classified wi th accuracy below 50%, which means the 

autoencoder correctly classifies some corrupted windows, but there are many win

dows classified as normal. The reason for this is that some windows are still very 

similar to standard traffic and are not changed by dropping messages 4 and 20. Loss 

function results histogram is shown in figure B .3 , where red dashed lines represent 

outlier threshold. 

5.6 Experiments conclusion 

Outlier detection using OneClas sSVM is able to correctly classify normal and abnor

mal G P O N frames, but it uses approximate function unable to learn the importance 

of frame field usage. 

L S T M model is powerful system capable to extract useful information from each 

message and use it in the next frame analysis during the sequence classification pro

cess. This requires correctly labeled sequences of normal and invalid traffic to learn, 

which may be difficult if undocumented message appears within the communication. 

Both autoencoder models prove their outlier detection capabilities and make 

a great alternative to L S T M model, especially because of unsupervised learning. 

These models can learn usage and syntax of undocumented messages. L S T M model 

uses supervised learning and for higher classification accuracy it requires samples 

of normal and abnormal traffic. Abnormal traffic dataset is generated by adding or 

dropping certain messages, which creates sequences that does not meet the standard. 

This requires adding additional information into learning process, but in case of 

unknown messages this information is not available. 

A l l models have relatively good outlier classification accuracy and it is worth 

considering these models in G P O N analyzing system and to evaluate model capa

bilities wi th much bigger dataset. Each of these models has pros and cons, which 

makes them individually special. Suggested solution is to use all models in the 

G P O N analyzing system in parallel and to validate results between them. 
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6 GPON analyzer implementation 
This chapter contains high level implementation details of G P O N analyzer and its 

subsystems. It also describes and indicates usage wi th illustrative examples. De

tailed implementation description can be found in the source code in docstrings of 

each method and class. 

The system architecture is described in section 4.2. Each box in this figure 

represents an object of G P O N analyzing system. The only change in the design is 

that the system does not use only two M L models (syntax, semantic), but a list of 

./V models to generalize usage of these models. A s a result, adding a new analyzing 

model is much easier. 

6.1 Environment 

The whole project is implemented in Python3.6 programming language due to its 

cross-platform compatibility across operating systems (Linux and Windows). The 

same idea applies on external libraries, which have to be cross-platform as well. 

Consistent executing environment is achieved by pipenv program, which down

loads and installs specific libraries from Python Package Index (PyPI) using p i p pro

gram. These libraries and their versions are specified in special file called P i p f ile, 

which is the source of information about packages and versions during environment 

creation. 

6.2 Analyzer 

G P O N analyzer system is implemented according to principles of object-oriented 

programming to gain code re-usability and to allow easier program enhancement in 

the future. 

Analyzer is implemented as a standalone and executable python module. It sup

ports two different ways of usage. The first one is running analyzer directly from 

command line (CLI) by executing python module using python -m gpon_analyzer 

command, which executes main . py script of this module, or by executing 

gpon_analyzer .py script, which imports and executes the same script. Possible 

arguments for this execution are described in section 6.8. The second way is to use 

the analyzer as a library, which enables higher data interaction with models, or gives 

ability to create and add a new M L model into analyzer. Example of library usage 

is show in listing B.3 in appendixes. 

The responsibility of G P O N analyzer object is to hold references to its objects 

(DataReader, list of Models, Evaluator, etc.) and to distribute certain outer method 
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calls to correct object, especially learn, classify and evaluate. It also controls 

data flow between objects. To be able to reuse learned analyzer models, it supports 

methods for loading and persistently storing models into file. This specific process 

and file format is described in section 6.7. 

6.3 DataReader 

DataReader object is responsible for data manipulation. It internally stores the data 

in a pandas .Dataframe
1

 and provides A P I to data, especially to get data shape 2 

and values. The data modification is accomplished by applying sequence of filter 

objects (described in section 6.4), which are applied on the internal Dataframe. 

DataReader can read two different file formats from file system using load class-

method, which accepts single argument containing path. If this path ends wi th 

.parquet suffix, it assumes that the file is in parquet file format and uses pandas 

library to read this file. Otherwise, it assumes the data are captured directly from 

G P O N network and uses proper data read methods. 

If the G P O N analyzer perform a data preprocesing, the DataReader object stores 

result in a parquet format file to reduce data access time in the next execution phase 

(e.g. learn, classify). 

6.4 Filters 

Filters are implemented as a component of DataReader object, therefore all filters 

use Pandas library functions for data adjustment/modification and expect the input 

and output data to be a pandas .Dataframe. Filters wi th ini t ial values used in 

G P O N analyzer are described in subsection 6.4.1. A l l filters have to match the 

same A P I to be able to stack filters in a row and create a filter pipeline. 

6.4.1 Applied filters 

During the classification, analyzer focuses on P L O A M d messages, but in captured 

data there is stored the whole P C B d header. Therefore, DataReader object needs 

to extract relevant information from P C B d header and prepare it for analysis. This 

process is done using a list of filters described in table 6.1. These filters are applied 

in this specific order to achieve expected behavior. 

1 Pandas is a python library designated for easy and fast data manipulation. 
2Data shape represents number of data dimensions and number of elements in each dimension. 
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Tab. 6.1: Appl ied data filters in G P O N analyzer 

Fi l ter class Values Description 

Extract Specific 

ColumnFil ter 

'PL OAM-

downstream1 

ExpandColumn 'PL OAM-

downstream1 

RowFil ter MessageW, 

11 

Base64Decoder 'Data' 

From dataset drops all columns except 

'PLOAMdownstream', because analyzer is 

interested only in P L A O M d messages. 

Assuming that in the 'PLOAMdownstream' field 

is nested data structure (field contains dictio

nary), drops this column from the dataset, cre

ates a new dataframe from this column and 

concatenates this new dataframe to the original 

dataset. 

Deletes all NoMessage
n
 type messages from the 

dataset. 

This filter loads values from 'Data' col

umn, drops this column, decodes values using 

base64debode function and adds decoded val

ues into new data columns. 

6.5 ML models 

A l l models are implemented in ai_models .py submodule of gpon_analyzer mod

ule. A l l of them share the same interface by inheriting GenericModel class, which 

guarantees and enforces expected behavior and usage of implemented models. Each 

model implements abstract methods and overrides some methods to match special 

requirements of each M L library. A s a result, G P O N analyzer handles all models 

in the same manner without implementation details knowledge. A l l public methods 

used by G P O N analyzer are described in table 6.2. 

In addition to expected model methods as learn, predict and classify, the 

interface defines another method called get_report used for data classification. 

Compared to classify method, it does not return only the data label, but a tr iplet 3 

consisting of model name, input samples and output classification of each sample. 

Generic model also implements special property called context, which contains 

all attributes of object except itself 4 and M L model 5 . It is used to store all attributes 

into file. This property also defines its setter used for restoring object attributes after 

load method is called. 

3The report triplet is defined using dataclasses library to gain readability and reduce code. 
4Python object has attribute called se l f , which is a pointer to this specific object 
5 M L model is stored using library functions, wherein is model defined. 
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Tab. 6.2: Publ ic interface used by all implemented M L models. 

Method name Description 

create This classmethod is responsible for correct instance creation of its 

class. In case of Keras models, it defines and creates the whole 

model and passes it to the object constructor as an argument. 

It is used to load M L model from file and create a new instance 

of particular model class. 

Each M L model has different implementation of storing mecha

nism and it is implemented in this method. 

Used for learning/fitting model on a provided dataset. 

Generic method used for dataset evaluation and classification . 

This method classifies specific dataset and returns the evaluation 

report with model name, input and output. 

load 

store 

learn 

classify 

get_report 

Implementation of all models is based on experiments from chapter 5, therefore 

detailed code description is omitted. G P O N analyzer contains implementation of 

these analyzing models: 

• OneClassSVMSyntaxModel - This class is based on the model described 

in section 5.2. It is used as an outlier detector inspecting message fields using 

support vector machine. 

• LSTMSequenceMode l - It is based on experiment described in section 5.3. 

Model consists of two L S T M layers followed by two dense layers. It uses 

supervised learning and requires samples of corrupted communication to learn. 

• AutoEncoderSyntaxModel - This class uses autoencoder model described 

in section 5.4. It uses unsupervised learning, therefore no additional learning 

data has to be generated. 

• AutoEncoderSequenceModel - It is similar to syntax verifying autoen

coder, but wi th different number of layers and neurons. The model is based 

on the experiment described in section 5.5. Input data is a sequence of 30 

messages collapsed into a single dimension. 

The inheritance diagram of these models and generic models is shown in figure B . l 

in appendixes. This figure shows methods and attributes defined or overridden by 

each class. There is also generic KerasModel class, which defines load and store 

methods for all TensorFlow models. 
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6.6 Evaluator 

During classification process, G P O N analyzer forwards calculated reports from M L 

models to Evaluator. After classification, Evaluator analyzes the results and evalu

ates similarity level calculated using equation 6.1. 

Similarity = — —— (6.1) 
Samples 

A l l detected outliers are stored into the file using numpy. save for later analysis. In 

the end, evaluator prints summary table 6 wi th statistics for each model. Table exam

ple of learning dataset classification is shown in listings 6.1. The output destination 

directory for outlier vectors and summary table is specified using —output-path 

argument. 

Lis t ing 6.1: Evaluator output example 

1 $ ./analyzer.py c l a s s i f y —m model.zip —d data.parquet 

2 1 1 

| Model | 

i 1 -

i 

S i m i l a r i t y [%] \ 

1 -

O u t l i e r s 

i 

[N] 1 
1 -

Samples 

i 

[N] 1 
1 

r r -

| OneClassSVMSyntaxModel | 

I I 

r r -

100.0000 | 
1 

T -

o 1 
1 

55 | 

i 
I I 

| LSTMSequenceModel | 

I I 

1 

100.0000 | 
1 

1 

o 1 
1 

i 

25 | 

1 
I I 

| AutoEncoderSyntaxModel 

i i 

1 

100.0000 | 
1 

1 

o 1 
1 

1 

55 | 

1 
l l 

| AutoEncoderSequenceModel | 
i i 

1 

100.0000 | 
1 

1 

o 1 
1 

1 

25 | 

6.7 Storing learned model 

G P O N analyzer stores learned model data in single z i p archive consisting of files 

wi th weights for each learned M L model and a file with analyzer information. Files 

wi th weights are generated directly by M L libraries. 

OneClas sSVM model from Scikit-learn library used for outlier detection stores 

and loads learned model v ia p i c k l e library, which dumps Python executable code 

into binary file. 

Keras models use special Hierarchical data format (HDF5) to store weights and 

M L model. This data format provides flexible and efficient access into stored data 

especially for large data structures (e.g. multidimensional matrices). This is essen

t ial feature for model storing and loading process, because neural networks typically 

consist of weight matrix [5]. 

6Summary table is generated using tabula te python library. 
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Metadata file is also created during storing process. It contains necessary in

formation needed to restore M L model object state. For each model it stores: a 

class of this object, a path to stored M L model weights and a context, which holds 

local variables of this object. A l l this data is stored in simple J S O N file inside zip 

package. 

6.8 Command line interface and usage 

G P O N analyzer can be used as a standard program run from command line (CLI) 

as well. Therefore, it has proper C L I A P I to influence program behavior imple

mented using argparse library, which is responsible for initializing arguments wi th 

default values, parsing values from C L I and syntax verification of arguments in

puts. Accepted C L I arguments are defined in table 6.3. A l l of specified arguments 

are optional, except the action argument. Other arguments have defined default 

value, which varies from action to action, so default values are not specified in the 

argument parser, but in specific objects. 

6.8.1 Actions 

Possible actions with G P O N analyzer using C L I A P I are described in following 

sections. A l l actions have the same optional arguments described in table 6.3. There 

are longer and shorter argument versions, but in following examples only long options 

are used for easier usage understanding. 

Preprocess 

It is used to load captured data from *.txt files, apply data filters if — f i l t e r 

argument is provided, and store parsed and filtered data in parquet format file 

into destination provided by —output-path argument. A usage example is show 

in listings 6.2. 

List ing 6.2: Example of preprocess action. 
r 
$ ./gpon_analyzer.py — d a t a — p a t h data — o u t p u t — p a t h data5.parquet preprocess 

Learn 

This action creates a new G P O N analyzer and M L models. These models are learned 

on training dataset provided by —data-path. Learned analyzer is stored as a zip 

archive in destination provided by —model-path argument. 
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Tab. 6.3: G P O N analyzer command line arguments. 

Argument Description 

-h 

-m/—model-path 

PATH 

-d/—data-path 

PATH 

-o /—output-path 

PATH 

-f, - f i l ter 

-1, - l o g LEVEL 

-a, —auto-encoder 

ACTION 

Shows program description, help message and argument de

scriptions. 

This argument specifies a path to persistent data of learned 

model. If a new model is created/learned, it is stored into this 

location. If path contains existing model, data is rewritten. 

Specifies a path to the source of captured and parsed G P O N 

data (accepting a single file or directory of files wi th .txt 

suffix) or path to pre-processed data in . parquet file. 

During execution, G P O N analyzer may produce some outputs 

and this arguments specifies their destination. For example, 

pre-processing action parses and loads data from directory 

provided by-data-path argument, applies filters and stores 

filtered data in .parquet file into this path. 

This argument adds default data filters into DataReader 

object. Default filters are described in section 6.4.1. 

Defines G P O N analyzer and other components logging level 

during execution. 

If set, auto-encoder models are appended to other analyzing 

models in G P O N system. 

This is the only positional argument in C L I A P I . It specifies 

the type of action executed with current data or /and model. 

Possible values are: preprocess,learn,classify,print. 

A l l actions are described in section 6.8.1. 

Classify 

This action is used for traffic analysis by learned model. It loads analyzer wi th 

models from archive defined by —model-path and runs inspection (classification) 

on input data defined by —data-path. It is recommended to use — f i l t e r ar

gument, if this argument was provided on learning dataset during learning or pre

processing. In the final phase, it invokes the evaluator to analyze the classification 

reports and stores detected outliers and a summary table into directory specified by 

—output-path. Usage example is shown in listings 6.1. 
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List ing 6.3: Example of learn action 
$ ./gpon_analyzer.py — d a t a — p a t h data.parquet — m o d e l — p a t h model.zip l e a r n 

Print 

Loads input data from destination defined by —data-path and prints it into C L I , 

which suggests data shape and form. It is also possible to apply data filter by 

— f i l t e r argument. A n example of usage and output is shown in listings 6.4. A n 

example output if this action is show in listings B . l in appendixes. 

Lis t ing 6.4: Example of print action 
$ ./gpon_analyzer.py — d a t a — p a t h data.parquet p r i n t 
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7 GPON analyzer detection test 
In this chapter, G P O N analyzer is tested on knowingly corrupted datasets to verify, 

whether the analyzer fulfills expectations in the detection of improper communica

tion. Datasets generation procedures are described in section 7.1. These corrupted 

datasets are examined by learned G P O N analyzer models. G P O N test results are 

described in section 7.2. 

7.1 Data preparation 

Three additional datasets are generated to test and verify G P O N analyzer required 

features, which is anomaly and protocol differences detection. A l l of these datasets 

contain corrupted messages or sequences. Corruptions are applied on a dataset cre

ated from captured traffic by applying preprocessing filters discussed in section 6.1. 

Error per dataset summary is shown in table 7.1 and error description wi th gener

ating procedure is in following subsections. 

Tab. 7.1: Error in testing datasets 

^ ^ ^ ^ ^ Error Change random Drop important A d d similar 

Dataset ^ ^ ^ ^ ^ field values messages messages 

Syntax dataset • X X 

Sequence dataset X • • 

A l l errors dataset • • • 

i / - applied X - not applied 

7.1.1 Change random field value error 

Dataset generating procedure runs in three cycles and in each cycle modifies random 

10% frames. They vary in number of corrupted fields, which is two, four and six 

respectively. These fields are modified according equation 7.1. 

Valuenew = (Value0id + 128) mod 255 (7.1) 

This procedure modifies fifteen messages in total. In other words, this dataset 

contains fifteen outliers, which should be detected by G P O N analyzer. 

61 



7.1.2 Drop important messages 

This dataset is generated by dropping important activation process messages 4 and 

10, and critical informational frames used in communication 1 and 20. These mes

sages are described in section 1.5.1. Each message is dropped from separate instance 

of source dataset and results are concatenated together creating the final dataset. 

This dataset contains many abnormal sequences, which do not correspond wi th 

G P O N recommendation. 

7.1.3 Add similar messages 

Concept of similar messages is firstly mentioned in experiments in section 5.2. These 

messages are outliers, but differences in frame fields are very low compared to normal 

traffic, which makes them difficult to find. 

This dataset consists of four concatenated source datasets in a row and thirty 

similar messages are inserted to random positions, which breaks the communications 

rules of G P O N recommendation. 

7.2 Results evaluation 

G P O N analyzer classifies generated artificial communication, which contain several 

various errors and mistakes. Classification results are shown and discussed in the 

following sections. 

7.2.1 Learning dataset 

The first classified is the learning dataset to verify the correct classification of normal 

traffic. The analyzer marks a l l results as normal. Considering the fact that this is 

the learning set, other classification result than normal would mean error in the 

learning process. The results are show in listings 7.1. 

7.2.2 Syntax dataset 

The second dataset contains only syntax errors and focuses on syntax outlier detec

tors. Bo th OneClas sSVM and autoencoder models find almost all abnormal mes

sages in the communication. Sequence autoencoder model also finds several outliers, 

because it is learned on time windows of specific messages. Messages of this dataset 

are corrupted, which means time windows of this dataset are corrupted as well. 

L S T M model finds many outliers, because sequences contain unknown message and 
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List ing 7.1: Classification of learning dataset 

1 1 

1 Model 1 
i 1 -

i 

S i m i l a r i t y [%] \  

1 -

O u t l i e r s 

i 

[N] 1 
1 -

1 

Samples [N] |  

1 
r r -

1 OneClassSVMSyntaxModel | 

1 1 

r r -

100.0000 1 
1 

T -

o 1 
1 

55 1 
1 

I l 

1 LSTMSequenceModel | 

1 1 

1 

84.0000 1 
1 

1 

4 1 
1 

i 

25 1 
1 

I l 

1 AutoEncoderSyntaxModel 

1 1 

1 

100.0000 1 
1 

1 

0 1 
1 

1 

55 1 
1 

l l 

1 AutoEncoderSequenceModel | 
i i 

1 

100.0000 1 
1 

1 

o 1 
1 

1 

25 1 

the model does not know the usage. Therefore, the model classifies those sequences 

as outliers. The results are show in listings 7.2. 

Lis t ing 7.2: Classification of dataset wi th syntax errors 

1 1 

1 Model 1 
i 1 -

i 

S i m i l a r i t y [%] \ 

1 -

O u t l i e r s 

i 

[N] 1 
1 -

1 

Samples [N] | 

1 
r r -

1 OneClassSVMSyntaxModel | 

1 1 

r r -

80.0000 1 
1 

T -

11 1 
1 

55 1 
1 

I I 

1 LSTMSequenceModel | 

1 1 

i 

32.0000 1 
1 

1 

17 1 
1 

i 

25 1 
1 

I I 

1 AutoEncoderSyntaxModel 

1 1 

1 

80.0000 1 
1 

1 

11 1 
1 

1 

55 1 
1 

l l 

1 AutoEncoderSequenceModel | 

i i 

1 

84.0000 1 
i 

1 

4 1 
1 

1 

25 1 

7.2.3 Sequence dataset 

The third dataset contains errors in sequences, but message fields remain untouched. 

Syntax models do not find any abnormal messages, because this dataset is syntacti

cally correct. Both sequence analyzing models find many outliers, which is expected 

behavior when abnormal message sequences occur in the communication. The re

sults are shown in listings 7.3. 

7.2.4 All errors dataset 

The fourth dataset contains both syntax and sequence errors and creates communi

cation, which is almost completely out of G P O N recommendation. Syntax models 

find similar percentage of abnormal messages as in the first dataset, which is correct, 

because the ratio between syntactically corrupted messages and the normal ones is 

the same. Sequence models classify almost the whole communication as abnormal, 
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List ing 7.3: Classification of dataset wi th errors in message sequences 

1 1 

| Model | 

i 1 -

i 

S i m i l a r i t y [%] \ 

1 -

i 

O u t l i e r s [N] | 

1 -

i 

Samples [N] | 

1 
r r -

| OneClassSVMSyntaxModel | 

I I 

r r -

100.0000 | 
1 

T -

o 1 
1 

397 | 
i 

I I 

| LSTMSequenceModel | 

I I 

1 

34.3324 | 
1 

1 

21 | 
1 

i 

367 | 
1 

I I 

| AutoEncoderSyntaxModel 

i i 

1 

100.0000 | 
1 

1 

0 1 
1 

1 

397 | 
1 

l l 

| AutoEncoderSequenceModel | 
i i 

1 

39.7820 | 
i 

1 

221 | 
i 

1 

367 | 

which makes sense, considering the number of errors in the communication. The 

results are shown in listings 7.4. 

Lis t ing 7.4: Datasets classification wi th all errors 

1 1 

| Model | 

i 1 -

i 

S i m i l a r i t y [%] \ 

1 -

i 

O u t l i e r s [N] | 

1 -

i 

Samples [N] | 

1 
r r -

| OneClassSVMSyntaxModel | 

I I 

r r -

79.5970 | 
i 

T -

81 | 
1 

397 | 
i 

I I 

| LSTMSequenceModel | 

I I 

i 

13.0790 | 
1 

1 

319 | 
1 

i 

367 | 
1 

I I 

| AutoEncoderSyntaxModel 

i i 

1 

83.1234 | 
1 

1 

67 | 
1 

1 

397 | 
1 

l l 

| AutoEncoderSequenceModel | 

i i 

1 

17.7112 | 
i 

1 

302 | 
i 

1 

367 | 
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Conclusion 
The main goal of this thesis was to create a G P O N analyzing system consisting 

of machine learning models defined using TensorFlow library. These models should 

have been able to analyze the syntax and the semantic of G P O N protocol. The term 

syntax referred to verification of each field content in G P O N header, whether it was 

similar to patterns from baseline traffic or not. The second term semantic referred 

to the analysis of patterns found in message sequences, which verified whether the 

analyzed traffic used the same messages in the same order and wi th similar content 

as the baseline traffic. 

Four experimental models were created and learned on the baseline data to prove 

the possibility of analysis using machine learning techniques. The syntax analyzing 

model was based on one class support vector machine from scikit library, which ap

proximated n-dimensional mathematical function to baseline traffic messages. This 

model had a high accuracy in detecting abnormalities, even when messages were 

very similar to the baseline data. 

The model used for the semantic analysis was a neural network based on layers 

wi th L S T M cells capable of recognition patterns in long sequences. This model was 

able to learn recognizing correct and corrupted P L O A M d message sequences wi th 

relatively high accuracy, which is shown in figure 5.1. The disadvantage of model 

based on the L S T M cells was that it used supervised learning and required samples 

of corrupted/abnormal traffic. 

Experiments also contained autoencoder neural network models for syntax and 

semantic analysis, which compressed input vector into the latent space and tried to 

reconstruct original vector from the compressed form. Similarity was evaluated by 

using mean squared error function. The key estimated value was outlier threshold, 

which separated the data into normal and abnormal traffic. In these experiments, the 

threshold was set to the maximal mean squared error of learning dataset in the last 

learning epoch. The autoencoder for syntax analysis accepted messages as an input 

data, but the sequence analysis autoencoder accepted message windows of constant 

length. Bo th models showed well the outlier detection capabilities. Their biggest 

advantage was that they used unsupervised learning and learned only from captured 

traffic, so they did not require any dataset wi th corrupted message sequences. Bo th 

autoencoder models and model wi th L S T M cells were implemented using Keras 

A P I from TensorFlow library, which allowed to offload demanding calculations into 

hardware accelerator (e.g. graphics processing unit). 

The G P O N analyzer implementation was based on the design described in sec

tion 4. Each component was represented as an object and the system only routed 

the dataflow between these objects. The system did not distinguish between syntax 
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and semantic models, but worked with a list of models matching the same interface, 

which allowed adding more models with various parameters. A l l four experimental 

models from chapter 5 were implemented in the G P O N analyzer using scikit and 

TensorFlow libraries. The G P O N analyzer implemented two different ways of us

age. The first one was executing the program directly from the command line and 

controlled it by using arguments. The second way was to use G P O N analyzer as a 

library, which allowed interaction wi th objects at higher level. Learned system was 

stored into a zip package containing attributes of all objects in a JSON file. This 

package also contained stored M L models in a library dependent file formats. 

The final implementation was tested using synthetically corrupted dataset by 

various procedures. Classification of datasets with abnormal messages or message 

sequences by learned G P O N analyzer confirmed its anomaly detection capabilities. 

Both syntax and semantic (sequence) errors were found by designated models wi th 

high accuracy. The similarity value was evaluated as a ratio of normal traffic samples 

to all samples, where the sample was a message in case of syntax analyzing models 

and a time window (sequence of messages) in case of semantic analyzing models. 

This thesis accomplished the assignment in all points. The theoretical part 

contained description of several abnormal traffic detection techniques based on su

pervised and unsupervised learning using neural networks defined in TensorFlow 

library. The practical part contained the implementation of G P O N analyzing sys

tem capable of similarity estimation compared to the baseline traffic. This system 

used several machine learning models to identify various potential abnormalities in 

the communication. 
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List of symbols, physical constants and abbre
viations 
A I Art i f ic ia l intelligence 

A P I Appl icat ion programming interface 

C L I Command line interface 

E L U Exponential linear unit 

G E M Gigabit-capable passive optical network encapsulation method 

G P O N Gigabit-capable passive optical network 

G P U Graphics processing unit 

G T C Gigabit-capable passive optical network Transmission Convergence 

H D F hierarchical data format 

I T U International Telecommunication Union 

J S O N JavaScript Object Notation 

L S T M Long short term memory 

M L Machine learning 

N N Neural network 

O N U Optical network unit 

O D N Opt ical distribution network 

O L T Opt ical line termination 

O A M Operations, administration and management 

P C B d Physical control block downstream 

PIP Package installer for Python 

P L O A M Physical line operations, administration and management 

P L O A M d Physical line operations, administration and management 

downstream 

P O N Passive optical networks 

P y P I Py thon package index 

R N N Recurrent neural network 

S V M Support vector machine 

T - C O N T Transmission container 
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A CD content 
Included C D contains source codes of this thesis and source codes of the G P O N 

analyzer. A structure of important files in the C D is shown below. Several files are 

omitted to reduce size and complexity of the shown tree. 

ai_models.py 

analyzer.py 

data.py 

evaluator.py 

filter.py 

init .py 

1 main . py 

gpon_analyzer .py Executable of G P O N analyzer 
model.zip Learned M L models 
Pipfile Defines all used packages 
preproccessed_data/ Direcotry wi th learning and corrupted data 

data.parquet 

syntax.parquet 

seuence.parquet 

J all_err.parqute 

1 scratches/ Various python scripts (e.g. model experiments) 
dp. pdf This thesis in electronical format pdf 

/ C D root directory 
. . . . Latex source code for of this thesis 
Python source code used in this theses 

Raw captured data 
G P O N analyzer python module 

latex/ . 

python/ 

data/ 

gpon_analyzer/ 
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B Extra data and figures 
B.l ML models of GPON analyzer 

M L models inheritance diagram of G P O N analyzer is shown in figure B . l . 

c gpon_anal_yzer. ai_modets. Modellnterf ace 

m init (self, model) 

m str (self) 

m create(cls,vector_shape= None) 

m load(cls, path) 

m store(self, path) 

m learnfself, learning _dataset: np.array) 

I predict(self, k: np.array) 

m prepare_data(self, data: np.array) 

m get_report(self, data: np.array) 

p* contexts elf) 

f context(self, context: diet) 

m default_path(fl 

f model 

f default .path 

f MODEL_SUFF IX 

f C O U N T E R 

c gpon_analyzer.ai_modet5.KerasModel 

m loadfcls, path) 

m store(self, path) 

prepare_data(self, data: np.array) 

f MODEL_SUFFIX 

c gpon_anaT_yzer. ai_mpdels. OneCT_assSVMSyntaxModel 

m createfds, vector_shape = None) 

m load(ds, path) 

™ store(self, path) 

.earniself, learn nc|_da;5se; ::d D o ; ; F - ; n e : 

I prepare_learning_data(self, data: np.array) 

f MODEL_SUFFIX 

c gpon_analyzer.ai_models.AutoEncoderSyntaxModel 

m createfcls, vector_shape = None) 

m init (self, model, outlier_threshold = None) 

m learn(self, learning_dataset: np.array, epochs = 200) 

I predict(self, x: np.array) 

f outlier_threshold 

c gpon_anal_yzer. aijodels. LSTMSequenceModet 

m create(cls, vector_shape= None) 

™ init (self, model, w indow=WINDOW_LENGTH) 

m learn(self, learning_dataset: pd.DataFrame) 

m predictfself, x: np.array) 

m prepare_data(self, data: np.array) 

I prepare_learning_data(self, data: pd.DataFrame) 

f w in 

f W I N D O W _ L E N G T H 

I gpon_ana'Lyzer.ai_mpdels.AutpEncoderSequenceModel 

m createfcls,vector_shape = None, wind ow_len=WIN DOW_LEN) 

• init (self, model, window=WIN DOW_LEN) 

m learn(self, learning_dataset: np.array, epochs = 30) 

I prepare_data(self, data) 

f win 
f WIIMDOW_LEN 

Powered Dy yh ies 

Fig . B . l : Inheritance diagram of M L models in G P O N analyzer. 
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B.2 All captured PLOAMd messages 

A l l messages extracted from captured G P O N communication are shown in two list

ings B . l and B.2 due to number of messages. G P O N analyzer print function is 

used to generate this output. 

Lis t ing B . l : A l l extracted P L O A M d messages (part i) . 
$ ./gpon_analyzer.py —d preprocessed_data/data.parquet print 

Package contains 55 vectors. 

ONUid MessagelD CRC DO Dl D2 D3 D4 D5 D6 D7 D8 D9 

0 255 1 41 32 0 0 170 171 89 131 32 0 0 

1 255 20 23 30 18 0 0 0 0 0 0 0 0 

2 255 1 41 32 0 0 170 171 89 131 32 0 0 

3 255 20 23 30 18 0 0 0 0 0 0 0 0 

4 255 20 23 30 18 0 0 0 0 0 0 0 0 

5 255 1 41 32 0 0 170 171 89 131 32 0 0 

6 255 1 41 32 0 0 170 171 89 131 32 0 0 

7 255 20 23 30 18 0 0 0 0 0 0 0 0 

8 255 1 41 32 0 0 170 171 89 131 32 0 0 

9 255 1 41 32 0 0 170 171 89 131 32 0 0 

10 255 24 66 7 227 11 20 19 27 234 29 1 0 

11 255 20 23 30 18 0 0 0 0 0 0 0 0 

12 255 1 41 32 0 0 170 171 89 131 32 0 0 

13 255 1 41 32 0 0 170 171 89 131 32 0 0 

14 255 1 41 32 0 0 170 171 89 131 32 0 0 

15 255 1 41 32 0 0 170 171 89 131 32 0 0 

16 255 1 41 32 0 0 170 171 89 131 32 0 0 

17 255 20 23 30 18 0 0 0 0 0 0 0 0 

18 255 1 41 32 0 0 170 171 89 131 32 0 0 

19 255 1 41 32 0 0 170 171 89 131 32 0 0 

20 255 1 41 32 0 0 170 171 89 131 32 0 0 

21 255 20 23 30 18 0 0 0 0 0 0 0 0 

22 255 20 23 30 18 0 0 0 0 0 0 0 0 

23 255 1 41 32 0 0 170 171 89 131 32 0 0 

24 255 1 41 32 0 0 170 171 89 131 32 0 0 

25 255 3 239 2 72 87 84 67 93 90 225 123 0 

26 255 3 100 1 72 87 84 67 93 85 209 123 0 

27 255 3 253 0 72 87 84 67 42 137 136 105 0 

28 0 4 196 0 0 4 185 72 0 0 0 0 0 

29 1 4 132 0 0 4 185 66 0 0 0 0 0 

30 0 18 251 0 1 56 128 0 0 0 0 0 0 

31 0 10 147 64 0 1 0 0 0 0 0 0 0 
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List ing B.2: A l l extracted P L O A M d messages (part2). 
32 1 8 66 2 0 16 0 0 0 0 0 0 0 
33 1 8 66 2 0 16 0 0 0 0 0 0 0 
34 1 18 166 0 1 56 128 0 0 0 0 0 0 
35 0 8 12 2 249 240 0 0 0 0 0 0 0 
36 1 10 75 64 16 1 0 0 0 0 0 0 0 
37 1 8 102 2 249 224 0 0 0 0 0 0 0 
38 2 14 6 1 0 32 0 0 0 0 0 0 0 
39 2 10 36 64 32 1 0 0 0 0 0 0 0 
40 255 21 212 32 0 0 0 0 0 0 0 255 255 
41 255 1 41 32 0 0 170 171 89 131 32 0 0 
42 255 1 41 32 0 0 170 171 89 131 32 0 0 
43 255 20 23 30 18 0 0 0 0 0 0 0 0 
44 255 1 41 32 0 0 170 171 89 131 32 0 0 
45 255 20 23 30 18 0 0 0 0 0 0 0 0 
46 255 1 41 32 0 0 170 171 89 131 32 0 0 
47 255 1 41 32 0 0 170 171 89 131 32 0 0 
48 255 1 41 32 0 0 170 171 89 131 32 0 0 
49 255 1 41 32 0 0 170 171 89 131 32 0 0 
50 255 20 23 30 18 0 0 0 0 0 0 0 0 
51 255 1 41 32 0 0 170 171 89 131 32 0 0 
52 255 20 23 30 18 0 0 0 0 0 0 0 0 
53 255 1 41 32 0 0 170 171 89 131 32 0 0 
54 255 1 41 32 0 0 170 171 89 131 32 0 0 

B.3 Library usage example 

G P O N analyzer is written as a python module and all components can be enhanced. 

Example of basic read and learn procedures are shown in listing B .3 . 

List ing B.3: G P O N analyzer library usage 
1 from gpon_analyzer.analyzer import GPONAnalyzer 

2 from gpon_analyzer.ai_models import AutoEncoderSequenceModel 

3 from gpon_analyzer.data import Reader 

4 

5 data_reader = Reader.read_parquet('preprocessed_data/data.parquet') 

(i analyzer = GPONAnalyzer ( 

data_reader, 

[AutoEncoderSequenceModel.create(data_reader.shape)] 

9 ) 
10 analyzer . l e a r n () 

11 analyzer . store () 
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Fig . B.2: Loss values histogram of various datasets evaluated by autoencoder for syntax analysis. 
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Fig . B .3 : Loss values histogram of various datasets evaluated by autoencoder for sequence analysis. 


