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Abstract 
Tato práce se zabývá vytvořením simulačního modelu dvojčinného pneumatického pístu 
s mechanickou sestavou, včetně modelů snímačů, s následujícím odhadem parametrů a 
aproximací chování demonstračního zařízení. Dalším cílem je prezentace různých přístupů 
prediktivní údržby na datové sadě měřené na demonstračním zařízení. Na měřený datový 
soubor se aplikovaly signal-based techniky bez použití simulačního modelu a model-based 
metody, které vyžadují použití simulačního modelu. 

Výsledkem této práce je ověření možnosti monitorování stavu zařízení pomocí nain­
stalovaných senzorů a vyhodnocení efektivity senzorů z hlediska přesnosti a finančních 
nákladů. 

Summary 
This thesis deals with creating a simulation model of a double-acting pneumatic piston 
with a mechanical assembly, including the sensors models, with the following parameter 
estimation and approximation to the behavior of a demonstration device. Another goal is 
the demonstration of various Predictive Maintenance approaches on a dataset measured 
on a demonstration device. Applying signal-based techniques to the measured dataset 
without using a simulation model and a model-based method that requires the use of a 
simulation model. 

The outcome of this work is the verification of the possibility of monitoring the de­
vice's condition state, using installed sensors, and evaluating the efficiency of the sensors 
in terms of accuracy/cost. 

Klíčová slova 
dvojčinný pneumatický válec, prediktivní údržba, identifikace a detekce poruch, zbývající 
doba použitelnosti, PdM, FDI, R U L 
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Rozšírený abstrakt 
Ú v o d 

Od začátku průmyslové revoluce, složitost výrobních strojů a sériových linek se postupně 
narůstala a tim vyžadovala neustálé monitorování stavu systémů, a to zejména z ekono­
mických důvodů. Na druhou stranu systémy vyžadující vysokou míru bezpečnosti jako 
letadla, kosmické lodě, automobilové systémy, jaderné reaktory a další vyžadují okamžité 
spuštění poplašného systému, lokalizování místa chyby a navíc možnost predikce poru­
chy. Tyto požadavky se staly předpokladem pro vznik identifikace a detekce poruch a 
prediktivní údržby. 

Výrobní proces vždy zahrnoval prvky kontroly chyb a online monitorování. Od prvních 
metod detekce poruch, například vizuální inspekce, dnešní továrny přecházejí na automa­
tizované systémy skládající se ze senzorů a výpočetní techniky k vyhodnocení poruch. Je 
potřeba monitorovat zařízení v reálném čase, aby nedošlo k poškození způsobené chybou 
nebo anomálií. Každá jednotlivá chyba může zapříčinit zpomalení výrobního procesu a 
tím i snížení zisku. 

Algoritmy monitorování zařízení v reálném čase vytvořily Fault Detection and Analysis 
(FDA). Metody F D A ve většině případech nevyžadují strojové učení a dokáží detekovat 
poruchy pomocí základních algoritmů jako Fourierova analýza a algoritmy pro kontrolu 
trendů apod. 

Vzhledem k množství údajů nahromaděných v posledních letech a rozšíření technologie 
ukládání dat jako cloudové služby a výpočetní efectivita, díky nim je možné používat 
pokročilejší algoritmy pro detekci poruch a analýzu. Pomocí technik klasifikace strojového 
učení je možné lokalizovat místo chyby. Další možnosti, které jsou k dispozici za použití 
velkého množství dat, je odhad zbývající doby použitelnosti (RUL) celého systému. 

Tyto techniky vedly k prediktivni údržbé jakou je snaha optimalizací údržby. 
Aktuální technický stav zařízení je vždy k dispozici podle informací extrahovaných z 

měřených signálů. Je možné použít aktuální stav systému pro odhad zbývající životnosti v 
jednotkách vzdálenosti nebo času. Odhadovaný zbytek životností dává možnost plánování 
údržby vhledem ke skutečnému stavu systému. 

Tyto algoritmy pro odhad životnosti, detekce poruch, techniky modelování a identifi­
kace systémů tvoří novou oblast prediktivní údržby. 

Modelování systému umožňuje provádět experimenty a vyvíjet řešení offline před fy­
zickou implementacemi v hardwaru. Nedostupné nebo náročné měření lze nahradit genero­
vanými daty ze simulačního modelu a nakonec simulační model pomáhá nasadit robustní 
algoritmus. 

Tato práce poskytuje krátký úvod do detekce poruch a predikce metodiky údržby 
a základní terminologie. Kapitola 2 popisuje hlavní cíl a problémy v těchto oblastech, 
zaměřuje se na podobnosti a rozdíly mezi těmito dvěma přístupy. 

Vývoj simulačního modelu dvojčinného pneumatického aktuátoru a porovnání s reálným 
vybavením pomocí různých přístupů je popsán v kapitolách 3, 4 a 5. 

Následující kapitola 6 ilustruje prediktivní údržbu založenou na signal-based metodách 
využívajících různé senzory dostupné v demonstračním zařízení. Aplikace předzpracování, 
extrakce features a trénování klasifikačního modelu, senzory byly hodnoceny z hlediska 
funkčnosti, přesnosti a ceny. 

Model-based techniky prediktivní údržby založené využiti simulačního modelu jsou 



popsány v kapitole 7. Pomocí simulační modelu lze určit zbytkové signály mezi naměřenými 
daty a simulacímí daty z výstupu modelu. Pomocí simulačního modelu lze vygenerovávat 
údaje o degradaci systemi a použit tyto data k odhadu zbývající životnosti. 

Závěr 

Cílem této práce bylo představit a ověřit metody detekcí poruch a techniky prediktivní 
údržby na dvojčinném pneumatickém pístu jako objekt případové studie. 

Simulační model 

Jedním z výstupů práce je simulační model dvojčinného pneumatického pístového systému 
postaveného na základě diferenciálních rovnic z pneumaticko-mechanické oblastí, mode­
lováno a vyvíjeno pomocí softwaru Matlab/Simulink. Parametry simulačního modelu byli 
odhadnuty v nominálním stavu systému. Existuje však možnost odhodou parametry po­
ruchového stavu a simulovat systém při poruše. 

Vzhledem k dostupným naměřeným údajům a výrazně nelineární dynamice systému, 
simulační model vykazuje dobrou shodu s naměřeným daty. Na rozdíl od modelu vy­
tvořeného pomocí knihovny Simulink/Simscape je výrazně méně výpočetně náročný při 
zachování numerické stability. Tato fakta jsou zásadní, pro odhad parametrů. 

Simulační model byl použit k experimentování s chováním systému za různých podmínek, 
modelování poruchových situací a generování data pro design a vývoj robustních algo­
ritmů prediktivní údržby. 

Signal-based P d M 

Dalším výstupem je ověření možnosti klasifikace a detekce poruchového stavu pomocí 
technik prediktivní údržby, na zaklade signal-based metod. 

Pokusy byly prováděny na datové sadě měřené na demonstračním zařízení pomocí 
osmi typů senzorů. 

Signal-based metoda je založena na extrakci užitečných informací přímo ze signálu v 
časově-frekvenčních doménách. Každý senzor vyžadoval individuální přístup k předzpracování, 
extrahování features, hodnocení vlastnosti a vytváření klasifikačních modelů. Ale obecně 
lze doporučit minimální předběžné zpracování potřebné k uchování možných užitečných 
informací. 

Tabulka 9.1 obsahuje srovnání senzorů ve dvou kategoriích, přesnost ověřená na tes­
tovacím datovém souboru a nákladech. Graf 9.1 vizualizuje tyto údaje. 

Překvapivě všechny senzory vykazovaly přesnost více než 75 %. Mikrofony nabízejí 
vynikající výkon z hlediska nákladů a přesnosti a jsou vhodné pro instalaci a údržbu. 

Sensor Acc Encoder Flow Mies Pressure Proximity Strain 
Accuracy [%] 91.6 96.1 97.2 95.8 76.6 80.5 95.0 

Cost [czk 2x 3500 25000 6000 3x 500 1000 2x 1000 15000 
Tabu: ka 1: Comparison of sensors from accuracy/cost perspective 



Obrázek 1: Comparison of sensors from accuracy/cost perspective 

P d M podle modelu 

Další částí této práce byla aplikace model-based metody a využití simulačního modelu 
pro algoritmy prediktivní údržby. Tyto algoritmy jsou vhodné, pokud je těžké extrahovat 
užitečné informace přímo ze měřených signálů. V některých případech, pokud rozumíme 
dynamice systému, umíme využívat některé systémové proměnné jako indikátory stavu. 

Extrakce features ve formě nelineárních koeficientu identifikačního modelu určeného 
z demonstračního zařízení, konkrétně s Hammerstein-Wiener modelem, nedal spolehlivé 
výsledky. Extrahované features nemají statistickou závislost a je nemožné předvídat typ 
poruchy použitím této metody na naměřených datech z pneumatického pístu. 

Na druhou stranu residual estimation methoda pomocí simulačního modelu ukázala 
vynikající výsledky. Měřený signál polohy byl porovnán se signálem ze nominálním si­
mulačním modelem. Tento zbytkový signál byl použit ke klasifikaci poruchového stavu a 
dosáhl 99 % na menší testovací datové sadě. Ale vzhledem k výsledkům získaným po­
mocí signal-based metody, použití residual estimation se může zdát zbytečná. V tomto 
konkrétním případe, z praktického hlediska, zlepšení výsledeku o několik procent nepřináší 
zásadní změny, ale doba výpočtu se významně zvyšuje. 

Také byla ověřena možnost modelováni a simulace poruch senzorů pomocí simulačního 
modelu. Ve většině případech je náročné sbírat chybová data způsobenými senzory vreálných 
podmínkách. Proto mohou být použity generovane data ze simulačního modelu a pří kom­
binaci s původní datovou sadou mohou vytvořit syntetický datový soubor. 

R U L 

Jedním z hlavních cílů prediktivní údržby je odhadnout zbývající životnost. Původní 
datová sada neobsahuje záznam o historických datech, které ukazují degradační chování 
demonstračního zařízení. 

Běžným problémem při údržbě pneumatických pístů je netěsnost vzduchu z komory, 
kde je umístěn píst. Tato situace byla modelovaná na simulačním modelu a generovaná 



data byla použita pro R U L odhad. 
Vygenerovaná datová sada obsahuje 25 simulací s různou dynamikou poruch. Každá 

simulace zahrnuje jiný počet cyklů v závislosti na dynamice selhání. Každý cyklus obsa­
huje 10-sekundové měření odezvy systému. V experimentu byl jako předmět zájmu vybrán 
signál průtoku. Z signálu průtoku, byl vypočítán parametr shape factor, který byl použit 
jako indikátor stavu. 

Výsledkem je možnost odhadnuti zbývající životnosti na generovaném degradačním 
datovém souboru pomocí residual similarity, pairwise similarity a linear degradation mo­
delu. Předpovídané výsledky jsou uspokojivé (obr. 2). 

RUL estimation using Linear Degradation Model 
3.85 r 

3.55 1 1 1 1 1 1 1 1 1 1 

0 20 40 60 80 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 

Cycles 
Obrázek 2: Linear degradation model performance 

Další vývoj 

Pro další vývoj a zlepšení výsledků by bylo vhodné odhadnout parametry systému po 
částech. S důrazem na pracovní charakteristiku škrticích ventilů a tlumičů s příspůsobením. 

Vhodným rozvojem by mohlo byt provedení měření poruchy úniku vzduchu a sběr 
historické údaje o degradaci skutečného pneumatického pístu. Následně vyhodnocení dy­
namiku poruchy způsobené únikem vzduchu, ověření možností odhadu zbývající životnosti 
pomocí snímače průtoku. 

Mohla by to být zajímavá případová studie k ověření možnosti odhadu R U L pomocí 
mikrofonů. Pokud jsou signály z dostupných senzorů nedostačující lze provádět měření 
tlaku v komoře. Tlak v komoře je přímo závislý na úniku vzduchu z komory, jako uvedené 
v rovnici 8.2. Příklad změn tlaku způsobených únikem vzduchu ze simulačního modelu je 
znázorněn na obrázku 8.8. 
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1 Introduction 

Since the beginning of the industrial revolution, the complexity of production machines 
and serial lines has gradually increased and requires constant monitoring of the conditions 
of the systems for economic reasons. On the other hand, critical systems such as aircraft, 
spacecraft, automotive systems, nuclear reactors, and others require immediate alarm 
on fault, localize occurred fault, and even more predict possible future faults. These 
requirements have become prerequisites for Fault Detection and Analysis and Predictive 
Maintenance fields. 

The production process always included elements of fault control and online monitor­
ing. From the first methods of fault detection, such as visual inspection, today's factories 
move to automated systems consisting of sensors and computing units to evaluate the 
faults. Sometimes it is critical to monitor processing equipment in real-time to prevent 
damage caused by fault or anomaly. Every single fault can cause a slowing down of the 
production process and thus reducing the profit [6]. 

Device real-time monitoring algorithms have formed the Fault Detection and Analysis 
(FDA) field. F D A methods, in most cases, do not require machine learning techniques 
and can detect failures, using fundamental algorithms from Fourier analysis and trend 
checking algorithms to more complex techniques such as Gaussian Mixture Models [9]. 

Due to the amount of data collected in recent years and the expansion of data storage 
technology as cloud services and computation efficiency, it has become possible to use 
more advanced algorithms for fault detection and analysis. Using classification machine 
learning techniques, it is possible to isolate where does the fault occur. Another option 
that becomes available with a large amount of data is to estimate the remaining useful 
life (RUL) of the entire system. These techniques have led to predictive maintenance 
as an effort for optimal maintenance solutions. The current technical condition of the 
equipment is always available by information extracted from measured signals. It is 
possible to use current system conditions to estimate remaining useful life in time or 
distance measurements such as days, kilometers, or cycles. Estimated residual lifetime 
gives an option to plan maintenance concerning actual system conditions [10]. 

These remaining useful life estimation algorithms, the fault detection methods and 
system modeling and identification techniques form a new predictive maintenance field. 

System modeling allows providing experiments and developing solutions offline before 
physical hardware implementations. Unavailable or challenging to implement measure­
ments can be replaced by generated data from the simulation model and finally helps to 
deploy a robust algorithm. 

This thesis provides a brief introduction to fault detection and predictive mainte­
nance methodologies and a basic terminology. The 2 chapter describes the main goal 
and problems in these areas and focuses on similarities and differences between these two 
approaches. 

Developing the simulation model of the double-acting pneumatic actuator and com-

10 



paring it with the real-life equipment using different approaches is described in chapter 
3, 4, 5 and 6. 

The following chapter 7 illustrates signal-based predictive maintenance methods us­
ing different sensors available in a demonstration device. Appling preprocessing, feature 
extraction, and classification model, sensors were evaluated in terms of functionality, ac­
curacy, and price. 

The model-based predictive maintenance techniques and simulation model exploitation 
are demonstrated in chapter 8. The simulation model is used to determine the residual 
signals between the measured data and the simulation model's output. Also, using a 
simulation model, degradation data are generated and used in the remaining useful life 
estimation. 

11 



2 Theoretical Survey 

This chapter contains a short introduction to the main goals and problems presented 
in fault detection and analysis and predictive maintenance techniques. A brief review 
of methodologies used in these fields and general approaches. Section 2.4 digital twin 
describes scenarios where a simulation model is used in predictive maintenance and helps 
develop robust, efficient algorithms. 

In practice many types of machinery require some calibration and monitoring for adequate 
working. A n anomaly or fault detection in time can prevent machinery from damage that 
causes loss of money due to non-working or destroyed equipment. Predicting where the 
fault appears reduces the cost of diagnosis and replacement operations. The possibility of 
estimating the remaining useful life allows to optimize a maintenance process and reduce 
maintenance costs [2]. 

Smart manufacturing, the combination of sensors, the possibility of preprocessing and 
extracting useful information from measurements and decision algorithms based on this in­
formation, allows increasing production efficiency and significantly reducing maintenance 
operations. 

Types of Maintenance There are three main types of maintenances (fig. 2.1). Each 
following type of maintenance requires increasing complexity of monitoring and decision 
algorithms [7]: 

• Reactive maintenance, where maintenance coming after the life of the system is 

• Preventive maintenance is driven item by schedules that may keep the system safe 
but not optimal from an efficiency/cost perspective. 

• Predictive maintenance is an effort to optimize a maintenance strategy. 

2.1 Problem Definition 

excess. 

Machine 
health 

Machine 

Still usable 
1 condition 

Machine 
health 

Optimum time to 
' schedule maintenance 

Predicted failure 

Time Tine Time 

Figure 2.1: Reactive, preventive and predictive types of maintenance [7] 
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Fault Types A fault is not an acceptable deviation of at least one characteristic or 
parameter of the system from the standard condition. There are different faults by their 
sources. 

• Plant faults appear in system behavior and cause manufacturing performance. 

• Component fault 

• Sensor faults occurred in the sensor during measurements. 

• Combination of faults 

In many cases, faults lead to a system failure and the system is no longer able to perform 
required functions. There may also be a malfunction after which the system returns to 
normal operation. 

Faults can be classified by the location where they appear, by a fault form, or based 
on the form in which the fault is added to the system [2]. 

2.2 Fault Detection and Analysis (FDA) 
Fault Detection and Analysis, F D A (Fault Detection and Isolation, FDI) is a subfield 
of control engineering focused on detecting the fault and identifying where this fault is 
located [5]. The main goals of FDI are 

• Fault detection, detect anomalies in real-time 

• Fault isolation, find the root cause 

• Fault identification, estimation of the magnitude, type, or nature of the fault 

Several methods are partly overlapped but divided into two main categories. 

Signal-Based methods Signal-Based methods (SB), explore measured data and ex­
tract useful information in the form of features 2.2. The following methods belong to the 
SB approach: 

• Limit and trend checking 

• Spectral analysis 

• Data analysis (PCA) 

• Pattern recognition 

u(t) 
Plant 

y(t) 
Feature 

extaction 

Classification 

Figure 2.2: Signal-Based Method 
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Model-Based methods Model-Based methods exploit models identified from real-life 
systems 2.3. The model-based approach is suitable when it is difficult to gain useful 
information using only measured signals. If the system structure is known, it is possible 
to extract features such as state variables or some system parameters. Another option is 
to compare real system behavior with nominal healthy model and use residuals as inputs 
to decision algorithms [12]. Typical model-based techniques include 

• Residual estimation (compare measurements with "healthy" model) 

• Polynomial coefficients 

• State variables estimated using state observers 

• Parameter estimation 

u(t) r 
Plant 

s 

j 

r 
Model 

\ 

j 

e(t) 
Decision 

) > algorithm 

Figure 2.3: Model-Based Method 

Automated fault detection depends on input from sensors and postprocessing algo­
rithms. In many manufacturing applications, sensor failures are the most common equip­
ment failure. 

The result of FDI is the detection and identification of faults that occur during the 
operation of the device. Subsequently, predicted faults are processed using fault tolerance 
and predictive maintenance algorithms. 

Fault Tolerance: Provide the system with the hardware architecture and software 
mechanisms that will allow, if possible, to achieve a given objective in normal operation 
and given fault situations [5]. 

2.3 Predictive Maintenance (PdM) 
Predictive maintenance (PdM) is cost-effective maintenance strategy that predicts 
time to failure and warns of an anticipated location where this could occur. 

2.3.1 Goals 

There are two main goals of predictive maintenance, remaining useful life (RUL) esti­
mation and identification where the future failure can appear or what is the reason for 
decreasing RUL. As a result of P d M is R U L representing the number of cycles, days or 
time before the fault occurred. And the probability of when or where this fault can appear 
[12]. 

2.3.2 Overview of the P d M development workflow 

Figure 2.4 represents the recommended P d M development workflow. The development 
of predictive maintenance algorithms starts with raw measured signals from sensors. For 
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Figure 2.4: Predictive maintenance development sequence 

further working with data, it is a good manner to combine measurements to a dataset 
with a logical structure of elements. In this thesis, a common data ensemble structure was 
used. Each measurement has its own data file with all measured signals at a particular 
time. 

If collected data require some preprocessing techniques as data cleaning, smoothing 
or filter the signal, detrend, normalizing, etc., it can be done at this step. 

The next step is to extract condition indicators using predictive maintenance methods 
described in 2.3.3. As long as the optimal solution is not found, try to figure out the best 
combination of condition indicators described in 2.3.4 and train different classification 
models iteratively. After the efficient solution is found, deploy the algorithm to work 
recursively with the study-case system. 

2 . 3 . 3 Cond i t i on Indicators 

In the prediction maintenance field, features extracted from measured signals are called 
Cond i t i on Indicators, C I . 

Condition Indicators represent some system behavior and hide information about sys­
tem operation conditions. Generally, CI is represented by three main domains. There is 
a time domain, frequency domain, time-frequency domain. But in fact, CI can be any 
system parameter or value corresponding with the system's current condition [12]. 

The methods of extracting condition indicators from the signal are defined in the same 
way as in FDI 2.2. 

The signal-based approach is suitable when we have measurements from the system 
in different operating conditions. But there is a problem that signal-based approach 
enables classifying and learning just the patterns observed in the training dataset. On 
the other hand, the model-based approach uses physical failure models and does not 
require a large dataset of failure data. And they may work in situations never observed 
in data before. Moreover, the model-based method is helpful in case the measured signal 
has a more complex relationship with the input signal. 

Between common signal-based CI belongs: 

• Time-domain: mean, standard deviation, RMS, skewness, etc. 

• Frequency-domain: mean frequency, peak values/frequencies, power bandwidth, etc. 

• Time-frequency domain: Spectral entropy/kurtosis, moments, etc. 

Model-based approach use model properties such as: 

• poles and zeros location 

• damping coefficient 

• state variables values 
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• modal analysis 

• residual values 

2.3.4 Condition Indicators Ranking 

Multiple condition indicators can be extracted from each sensor signal. A good practice 
to reduce the number of CI and keep only those which provide essential information. 

One of the possibilities is applying Principle Component Analysis (PCA) to transform 
features from one coordinate system to a new orthogonal basis. Data reduced by using the 
first n principal components that optimally describe the variance of the dataset. Applying 
the P C A algorithm still requires the extraction of all condition indicators from the signal. 

Another option is to rank the futures using the Analysis of Variance (ANOVA) al­
gorithm. This algorithm describes relations among CI in the form of their mean values. 
The result gives information about how much particular CI represents data. Using the 
first n CI, we reduce the number of CI and reduce the number of extracted features from 
measured signals. This fact means that using A N O V A reduced the time and complexity 
of calculations [12]. 

2.3.5 Fault Classification 

Classification models are used to recognize faults from a set of CI. The set of CI must 
contain labels that determine the current condition of the device in the form of fault code, 
string, etc. The correlation between different CI can be explored using a 2D or 3D scatter 
plot. The model performance is usually represented by total accuracy and confusion 
matrix, where on one axis there are true labels and on the other there are predicted from 
the model. The common types of classification models are: 

• Decision Trees 

• Supported Vector Machines (SVM) 

• Neigherest Neighbors (KNN) 

• Ensemble Classifiers 

• Neural Networks (ANN) 

A good practice is to divide an original dataset of CI into train, validation and test 
sub-datasets to prevent model overfitting. Choosing the best classification model depends 
on training data and requires experiments with different models. 

2.3.6 Remaining useful life 

The remaining useful life (RUL) is the expected time remaining before the machine re­
quires repairment or replacement, and it is a central goal of P d M . 

The problem of estimating the remaining useful life is connected with evaluating con­
dition indicators associated with the system's degradation process. These condition in­
dicators must satisfy the requirements for monotonicity, trendability, and prognosability 
[12]. 

The models used to estimate the remaining useful life depend on the historical data 
which are available. There are three types of possible models. 
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Survival model The survival model is considered when we have only failure data avail­
able, but the whole degradation history is not recorded. The probability density function 
can be obtained from failure data and used to estimate RUL. 

Degradation model The degradation model gives an option to estimate R U L based 
on data without failure moment captured but only recorded degradation process. In this 
situation, it is necessary to determine a safety threshold that CI must not cross. 

Similarity model In case we have the whole history of the degradation process of 
similar systems, including failure, the similarity model can be used. The upcoming CI is 
compared with historical degradation paths obtained from the training dataset and the 
best similarity trend is evaluated as R U L value. 

2.4 Digital Twin 
A digital twin is a digital representation of the real-life system. It can be represented as 
a component, a system of components, or as a system of systems. 

A digital twin can be updated with incoming data from sensors. Fitting the model 
to new data, the digital twin represents the current condition state of the real-world 
object. There are many advantages of using models in P d M . A digital twin can hold 
historical data about system behavior. Apart from this, it can be used for simulation 
system operation in different conditions, designing control and simulating future behavior 
(RUL, "What-if"). The dataset extended by data from the simulation model represents 
synthetic dataset. This dataset type can contain different measured fault and healthy 
data of the system and hard to realizable in real-world fault situations [3]. 

A mathematical model of the real-world system can be created using different ap­
proaches. 

• First-principles modeling requires an understanding of the fundamental process of 
the system. 

• Physical modeling (Simscape). 

• Data-driven modeling where the system is represented as a Blackbox. 

• Combination of multiply approaches. 

2.5 Comparison P d M and F D A approaches 
Figure 2.5 presents a relative arrangement of Predictive Maintenance (PdM) and Fault 
Detection and Identification (FDI or FDA) algorithms. From the figure, it is clear that 
Predictive Maintenance is an extension of the FDI approach, with recommended workflow 
techniques suitable for optimizing system maintenance. 

Both methods are closely overlapped and use quite similar techniques. However, pre­
dictive maintenance over the F D A is extended by R U L estimation. And it leads not only 
to fault detection and monitoring at a given moment but also to the possible prediction 
of a fault in the near future. 
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Figure 2.5: Relative arrangement of PdM and FDI algorithm [5] 

2.6 Applications 
The most significant interest in P d M is the manufacturing sector that requires efficiency 
maintenance strategies to increase productivity and reduce money-lost [6]. The P d M is 
used in the field that is highly dependent on safety types of machinery such as aircraft or 
rail industry. Using the P d M condition monitoring, it is possible to prevent unexpected 
fails. The oil and gas industry supports the P d M field; due to the amount of data collected 
in these industries, the P d M techniques are beneficial. 
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3 Demonstration Device Overview 

3.1 Double-Acting Pneumatic Actuator 

(a) 3D render of the demonstra- ' ' 
tion device (b) Schematically representation of the demonstration device 

Figure 3.1: Demonstration device 

The case study of this thesis is the double-acting pneumatic piston, with a pneu­
matic circuit and mechanical assembly driven by a piston. Figure 3.1b is a schematical 
representation of the system. Figure 3.1a is a 3D render of the system. 

Pneumatic systems use air to transmit power between components in the circuit. The 
air is a compressible gas, and we have to consider this when designing a model. Pneumatic 
actuators are highly efficient and fast drives. Using compressed air pneumatic actuator 
can move with high velocities and supply nominal force in the kN range. One of the 
advantages of a pneumatic system with a piston is that only one supply line is necessary, 
giving many opportunities to design and maintain the system. The basic pneumatic 
system includes an air reservoir with supplied air, pressure lines connection, pneumatic 
actuator and control valve to connect the supply pressure and actuator. Resistance to 
movement places a mass that acts on the piston. 

In this thesis, a double-acting pneumatic actuator, as shown in figure 3.1b was used. 
Throttling valves A and B regulate the air mass flow to the piston's chambers. Proportion 
valve connects supply and ambient pressure lines to achieve piston control. There are two 
pairs of dampers installed to prevent possible destruction impact and simulate different 
material penetration resistance. 

The demonstration device can be used in stamping, drilling, moving applications. A l l 
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system parameters concerning datasheets and measurements are described in attachment 
models/params. m. 

3.2 Sensors 
There are eight types of sensors located on the system. Table 3.1 describes a sensor 
purpose, signal name in the datastore, and the signal unit. 

Sensor Unit Description Name 
Encoder m displacement Lever Posit ion 
Encoder m/s velocity LeverVelocity 

Accelerometer g accelerometer on moving part AccelerometerMovin.axisZ / Y 
Accelerometer g accelerometer on static part AccelerometerStatic.axisZ/Y 

Flow Sensor 1/min air flow extrusion to A chamber FlowExtrusion 
Flow Sensor 1/min air flow contraction from A chamber FlowContraction 

Pressure bar pressure measurement in reservoir AirPressure 
Microphone V microphone on upper bumper MIC.uBumper 
Microphone V microphone on bottom bumper MIC.bBumper 
Microphone V ambient microphone MIC_Ambient 
Temperature ° c cylinder temperature measurement Temp Cylinder 
Temperature ° c ambient temperature measurement Temp Ambient 
Strain Gauge Pa strain measurements StrainGauge 

Proximity - upper bound detection ProximitySensor_upper 
Proximity - bottom bound detection ProximitySensor .bottom 

Table 3.1: Sensors overview 

The dataset measured on the system contains almost five thousand measurements 
in different operating conditions. Each measurement includes a 10-second recording of 
moving the pistol up and down. This data was given in the format of massive files with 
the ".mat" extension, which was divided into files contains only one measurement. The 
divided dataset is easier to maintain, and Matlab recommends this type of datastores 
called Data Ensemble [1]. 

The measured examples are shown in figures 3.2, 3.4, 3.4, and 3.5 . 
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Figure 3.3: Example of measured signal 

3.3 Fault Conditions 
The demonstration device contains various settings that were used to change the system's 
behavior; these settings are presented in Table 3.2. 

Different loads and material resistance is acting on the pneumatic piston during various 
work operations. Setting parameters can be set for each working operation to run in the so-
called health condition. In which the parameters for effective functionality and extension 
of component life are optimally set. However, occasionally there is an undesirable change 
of the parameter, which can then cause a fault or inefficient functionality. These situations 
need to be corrected and the possible cause pointed out. 
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Figure 3.5: Example of measured signal 

The measured dataset observes almost 250 different condition situations where setting 
parameters were changed to simulate the fault behavior of the system. Each case has a 
unique fault code for orientation in the dataset. Nevertheless, for further development, 
these fault codes were combined according to where the fault occurs. Thus combined fault 
codes were added to the dataset as labels. 

These 20 labels were further used for P d M algorithms: 

• Healthy 

• Throttle valve 1 

• Throttle valve 2 

• Small damper bottom 

• Small damper upper 
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equipment values 
Throttle valve 1 
Throttle valve 2 

Small damper upper 
Small damper bottom 

Large dampers 
Load mass 

Supply pressure 

adjustment in range 1 to 10 [-] 
adjustment in range 1 to 10 [-] 
adjustment in range 1 to 10 [-] 
adjustment in range 1 to 10 [-] 

without adjustment, static value 
0, 1.25, 5, 6.25 [kg] 

5, 6 [bar] 
Table 3.2: Demonstration device settings equipment 

• Large dampers 

• And combinations of these faults 
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4 First Principle Modeling 

First-principle modeling is a common engineering modeling approach. Models developed 
using physical laws such as energy and mass balance, heat transfer, and so on. First-
principle modeling requires knowledge of the system and the physical processes that take 
place in this system. 

First principle models (FPMs) are usually designed in the form of a system of differ­
ential equations, algebraic differential equations, transfer functions, state-space systems, 
etc. In designing FPMs, it is necessary to determine the assumptions and simplifications 
that correspond to the level of technical resolution in a particular problem. 

This chapter introduces the design of a double-acting pneumatic piston assembly 
model, including sensors using a first-principle modeling approach. 

4.1 General physical principles 
Assumptions 

1. The effect of accelerated air mass is neglected. 

2. The gas is ideal. 

3. A l l the thermal processes are adiabatic. 

Simplifications Throttle modeling and adjustment dampers require measurements that 
were unfortunately not available. In the case of throttle valves, the parameters of the 
throttle valves were combined with the parameters of the control solenoid valve. 

Equation of state Equation of state for an ideal gas 4.1, describe the relationships 
between temperature T, mass m, pressure p and V volume of the gas, where R = 
287.1[Jkg _ 1 K _ 1 ] is an ideal gas constant [13]. 

pV = mRT (4.1) 

Adiabatic process A l l processes take place without heat exchange with the environ­
ment by given equation 4.2, where K = cp/cv is a heat capacity ratio [13]. 

PlV? = p2V2

K = const (4.2) 

Relation between heat capacities and an ideal gas constant is given by Mayer's equation 
as Cp = cv + R. Where heat capacities at constant pressure, volume. 
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Bernouilli's principle Bernouilli's equation 4.3 describes flow dynamics as a sum of 
kinetic, potential and internal energies. 

2 2 
71111/ 71111/ 

# 1 + ~y~ + mgzi + Q = H2 + + mgzw + WT (4.3) 

Transition to specific values: 

h1-h2 = -£vdp = CpCTx - T 2) = C p T \ A - ^) (4.4) 

where 

z m height 
w m s _ 1 flow speed 
H J enthalpy 
V m 3 k g _ 1 specific volume 
Q J heat shared with environment 

WT 
J work shared with environment 

Tab e 4.1: List of Symbols 

Continuity equation Continuity equation 4.5 describes a mass flow through a control 
volume. Where S is cross-section and p air density. 

fn = SiWipi = S2W2P2 = const (4.5) 

4.2 A i r Expansion 
Air expansion from the reservoir, one of the fundamental sets of equations used in pneu­
matic elements [81. 

Pi,pi,Ti,tüi 
P2,P2,T2,W2 

> 

V J 
Figure 4.1: Air expansion from tank 

Assuming that WT = 0, Q = 0 there is no work and heat shared with the the environ­
ment, there is no difference in height z\ = Z2 and the velocity difference is vast W2 « w\. 
applying equation 4.3, get 4.7. 
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w2 = \/2(hi- h2) (4.6) 

W-2 '2c pT! 1 - (4.7) 

where 

Pi 
Rpi 

R 
K — 1 

Combine equations 4.7, 4.8 to get air expansion velocity 4.9. 

W-2 
« Pi 

\ " K - 1 P I 
(4.9) 

From equations 4.8 express air density 4.10. 

f>2 
Pl [Pi (4.10) 

Using continuity equation 4.5 and 4.9 describe mass flow as 4.11: 

fn = Spi K pi 
RTi ^ K, — 1 pi 

(4.11) 

where 4.12 is the outflow function. 

,Pi 
K Pi 

^ K - 1 Pi Pi 
(4.12) 

Finally mass flow expansion from the reservoir is given by equation 4.13: 
'P2 

.Pi. 
fn = Ap (4.13) 

Critical flow velocity The outflow function depends on the pressure ratio Pijpi- This 
function has a maximum value when the critical pressure is reached; the mass flow becomes 
chocked. Critical pressure is presented by 4.14. For the overcritical pressure ratio, the 
mass flow depends only on p\ and T\ [8]. 
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cril K+ 1 
0k (4.14) 

Critical pressure for air is (3k = 0.528 and critical velocity is give by outflow function 
4.15. Combine equations for overcritical and undercritical pressure ratio using equations 
4.14, 4.15 we get the final equation for outflow function 4.16. 

K+ 1 K+ 1 
0.484 (4.15) 

\K+lJ V K + +1 

0.528 < < 1 
PI — 

0 < £f < 0.528 — Pi — 

(4.16) 

A detailed derivation of the equation 4.16 can be found in [8],[13]. 

4.3 Pneumatic Piston Pressure Model 
A construction principle of the double-acting pneumatic piston is shown in the figure 4.2. 
There are two chambers connected to the control valve. If the control valve is connected 
to chamber A, the supply pressure drives mass flow into chamber A. At the same time, the 
port at chamber B is connected to the ambient. Due to the pressure difference between 
chambers, pneumatic piston stroke start moving in a positive direction. After the bound 
is reached and the pressure in the chamber equalizes to supply pressure, there is no longer 
any mass flow coming inside. 

-XQ-

PA,VA, 

SA , VQA 

mA 

Figure 4.2: Piston chamber 

Assuming an isothermal process, derivation of the equation of state m = pV get the 
equation 4.17. 

fn = pV + pV (4.17) 
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where 

p=— P=— (4.18) 
H RT RT K J 

Equation 4.19 describe pressure difference in chamber due mass flow. 

p = -^V + —m (4.19) 

For the adiabatic model of the pressure difference in the chamber, moreover, heat 
capacity ratio added 4.20. 

K>T) • KRT 
p=-yV + - ^ r m (4.20) 

Volumes of the chambers can be represented concerning figure 4.2 as volumes equations 
4.24. 

VA = SAX + VQA (4.21) 

VB = SB(L-X) + VQB (4.22) 

VA = SAx (4.23) 

VB = S B x (4.24) 

The pneumatic piston with chambers A , B is described by the system of differential 
equations 4.25, 4.26. These equations describe a pneumatic cylinder entirely. Further­
more, all the parameters can be directly measured or found in the datasheet [14]. 

PA = o r~r7— (~PASAX + RTAmA) (4.25) 
SAx + V0A 

P'B = c~77 \ i T / (PBSBX + RTBrriB) (4.26) 
SB{L - x) + V0B 

4.4 Control Valve Model 
The pneumatic control valve manipulates air mass flow to connect piston chambers with 
supply and ambient pressure lines. There are different approaches to model pneumatic 
control valve describes [8], [15]. Demonstration device includes 5/2 bistable solenoid valve 
3.1b. The movable part, valve spool driven by a magnetic field, can be in the two positions, 
where one of the chambers connects to the supply pressure line, another to ambient. A 
digital input signal switches between up and down positions. Equation 4.27, describe the 
input signal u G (—1,1), which regulates the spool movement to acquire one of the states. 

. -1 discharge the chamber 
u = { 6 (4.27) 

1 filling the chamber 
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Spool dynamic and pressure lines transport delay can be modeled as a ldof system 
with the time constant T and delay r (eq. 4.28) [8]. For more precise control and modeling 
of the valve system, valve dead zones can be considered 4.29. 

G(s) = j^e~™ (4.28) 

, if u < un 

if un < u < up (4.29) 
, if U > Up 

To parametrize the pneumatic valve discharge coefficient (coefficient of contraction) 
can be used. This parameter must be determined experimentally. The discharge co­
efficient 4.30 is the ratio between the equivalent area of the opened flow path and the 
maximum area of this path. The equivalent area limits the maximum mass flow value 
[15]. But commonly, this parameter estimates from measurements and also known as 
valve coefficient [13]. 

Cd = (4.30) 

With respect to outflow function 4.16 and mass flow function 4.13 derived in section 
4.2, control valve equation is given 4.31. 

But commonly, all parameters approximate to one coefficient estimated from measure­
ments and also known as valve coefficient C = SmaxCd [13]. 

Using the notation introduced on the schemes 3.1b, 4.2 we compile a complete set of 
equations for the description of the behavior of a pneumatic solenoid valve 4.32, 4.33. 

For filling the chamber: 

• Pi = Ps 

• P2 = PA or pB 

• T1 = TS 

For discharge the chamber: 

• Pi = PA or pB 

• P2=P0 

• T1 = TA,TB 
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where ps is supply pressure. p0 atmospheric pressure, TA — TB — T0 ambient temper­
ature. 

MA = < v i—— v / J \ (4.32) 
{ u ( t ) C A , o u t P A ^ ^ [ ^ ) ,ue(-l,0) 

. Ut)CB^ay/£ • (g) , «G(0 ,1> 

^ ( t ) C B , o u < p B ^ - ^ ( S ) , « G ( - 1 , 0 ) 

4.5 Mechanical assembly 
4.5.1 Equation of motion 

The motion of the pneumatic piston mechanism describes in terms of the general ldof 
dynamical equation 4.34. 

mx + bx + kx = u (4.34) 

In the case of the pneumatic piston, equation 4.34 transforms into and equation 4.35 
[8]. 

( M + ML)x + Fd + Fg + Fhs + Ff = Fp (4.35) 

Where M represents a mass of the all moveable part of the piston, Mi is load mass, Fg 

gravity force acting to mechanical moving assembly, - models endpoints (hard stop), 
Fd represents dampers (shock absorbers) acted at endpoints, Ff describe Coulomb and 
viscous friction, Fp is a force produced by the pneumatic piston and given by equation 
4.36. 

Fp = PASA - PBSB - P0S0 (4.36) 

Friction Friction force was modeled as a Coulomb and viscous friction4.37. 

Ff = Fc • sign(x) + Bvx (4.37) 

4.5.2 Hard Stop 

The endpoint's material resistance can be represented as springs and dampers acting as 
one-way bound 4.5.3 The parameters K, D have a significant impact on the numerical 
stability of the simulation system; therefore, they were tuned concerning stable perfor­
mances. 
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( Kp(x - gp) + Dpx • ge(x, 0) for x > gp 

0 for gn < x < gp (4.38) 

Kn(x - gn) + Dnx • le(x, 0) for x < g„ 

where ge(), le() greater or equal and less or equal functions. 

4.5.3 Endpoint dampers 

There are two types of dampers installed in demonstration device. One pair is adjustable, 
and other stable. Endpoint dampers were modeled in the same way as a hard stop . 
emphasizing damping coefficient D. 

4.6 Sensors Modeling 

Input signal 
Convert to electical 

signal O Convert back to a 
physical quantity 

Output signal 

> 

Figure 4.3: Sensors Modeling Diagram 

Modeling sensors include converting the measured physical signals to an analog or 
digital signal, adding noise and offset parameters to have an option to model faults con­
ditions, and after converting back to the sensor's measured units (fig. 4.3). A l l sensors 
parameters are available in attachment models/sensors, pdf 

Flow sensors Flow sensors are a typical representative of a comfortable sensor to im­
plement by converting the units used in the model [kg/s] into a voltage [V] concerning the 
datasheet. Then added measurement noise and the possibility to add offset for further 
experiments and finally, converting back to physical quantity with respect to the sensor 
measuring in [1/min]. 

Strain Gauge Strain Gauge was modeled similarly as a flow sensor with the possibility 
of experimentation with the magnitude of noise and offset. 

Accelerometer The accelerometer attached to the moving part of the system was mod­
eled using a transfer function concerning the datasheet and estimated magnitude of the 
measurement noise. It's also the ability to add optionally offset or off the sensor itself. 

Proximity sensors In the case of digital signals such as proximity sensors, it is sufficient 
to control the boundaries at which the sensor is switched on. 

Encoder The demonstration device includes a very precise linear magnetic encoder with 
a resolution pa 7/xm. This sensor provides an almost clean signal that gives an option to 
extract velocity signal by numerical derivation. However, to model this type of encoder 
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with parameters of real encoder requires a minimum sample time in the range of /xs. Due 
to this fact model of the encoder was embedded, but the output is taken directly from 
the model. 

Not implemented Sensors that are difficult to implement or have not been included 
in the model have not been implemented. These sensors include microphones, a static 
accelerometer mounted on a construction pad, an air pressure sensor because the air 
reservoir was not modeled in this work, temperature sensors. 

4.7 Parameter Estimation 
To achieve closer behavior to the real system, it is necessary to determine all the pa­
rameters of the model. There are parameters given as physical constants, or they can 
be directly measured or determined in the datasheet. Parameters that do not fall under 
these kinds must be deducted from the measurement. 

According to the simplification estimation process, throttle valves and solenoid valve 
parameters were combined into two valve coefficients Cijin, CijOUt in both input and output 
directions 4.39. 

rrii u(t) • Ci,inp! • $ {^\ ™>i,out = u(t) • Ci,outp! y j • ip (^\ (4.39) 

where % are ports to chambers A, B. 
Solenoid valve spool dynamic was estimated with respect to equation 4.28 in different 

displacement measurements. 
Pneumatic piston parameters were taken from the datasheet, and the remaining such 

as dead volumes VQA and VQB estimated approximately. 
Hard stop endpoints were determined from the construction design of a particular 

pneumatic piston. The values of the damping and spring were estimated to perform their 
functions and at the same time maintain numerical stability. 

Adjustment dampers were estimated from displacement measurement as bbot, bup pa­
rameters. The bounding range was directly measured from the displacement measure­
ments. 

parameter description 
CA,in valve coefficient connected to input path to A chamber 
CA,out valve coefficient connected to output path from A chamber 
Cß,in valve coefficient connected to input path to B chamber 
Cß,out valve coefficient connected to output path from B chamber 

bup upper damper value 
bbot bottom damper value 

Table 4.2: Parameters to reestimate for different fault conditions 
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4.8 Model performance 

Figure 4.4: First Principle model implementation in Simulink 

The model was implemented using the Matlab/Simulink software using basic Simulink 
operations and the Matlab-Function block. The model shows good numerical stability and 
allows to perform simulations with a fix step solver with a sampling time of 1 • 10~3 s. 
Which significantly speeds up the simulations and the process of parameter estimation. 
Figure 4.4 shows the central part of the model in the Simulink environment. 

Figure 4.5: Comparison between measurement and model response 

The resulting behavior of the system after parameter estimation on health conditions 
data is shown in Figure 4.5. However, it is possible to reestimate the basic parameters 
4.2 and thus realize the behavior of the system closer to the fault state. 
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Figure 4.6 shows the simulation system response with different estimated parameters 
for the fault states caused by the Throttle valve 2. In the case of position, the measured 
and simulation signals practically overlap. 
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5 Alternative Modeling Techniques 

This chapter deals with other possibilities of modeling the technical system, particularly 
the double-acting pneumatic piston. Physical modeling and data-driven modeling meth­
ods were examined in terms of suitability for applying FDI and P d M strategies. 

5.1 Physical Modeling 
Physical modeling operates with models with a compiled layout that matches the structure 
of the different physical domains. In this type of software, it is possible to combine different 
domains to create a complex system model. 

Matlab/Simulink provides a physical modeling library, Simscape [16], that meets the 
above specifications. Using Simscape software, the user combines a model from different 
blocks representing different physical functions (spring, resistance, hydraulic valve), and 
connection links represent some types of energy flow. 

5.1.1 The double-acting pneumatic piston modeling in Simscape 

In this part, the same assumption applies as in section 4.1. A l l the processes take place 
adiabatically, i.e., without heat exchange with the environment. 

The resulting model was compiled using gas and mechanical domains 5.1. 

Figure 5.1: The double-acting pneumatic piston developed using Simscape software 

5.1.2 Limitations 

It is necessary to know well the parameters of the system. 
For example, we need to have a precision-measured characteristic of flow control valve 
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adjustment in the form of a lookup table to use a throttle valve block. 
Providing simplification and reduce the model to the only control valve, there are still 

a few parameters that are not available such as valve and dampers coefficients mentioned 
before. 

The main problem is the computational complexity of the model compared with the 
first principle model. During the parameter estimation, the first principle model is much 
faster than the Simscape model and gives an option to experiment with different fault 
states analysis. 

However, both models showed quite close behavior during testing with the same pa­
rameters. 

5.2 Data-Driven Models 
Data-Driven modeling explores collected measured signals to identify the system structure 
or learn the system behavior from data [17]. 

Between data-driven common models belongs parametric and non-parametric models. 
Parametric models take part in the system identification field. A collection of different 
generalized mathematical models can be fitted to the input-output signals pair, such as 
transfer functions, polynomial models, non-linear A R X models, etc. A typical represen­
tative of non-parametric models are neural networks of various structures. In this thesis, 
experiments on test datasets were performed with both types of models. 

5.2.1 Hammerstein-Wiener Model 

f \ 
Input nonliniarity 

Linear block 

) 
Output nonlinearity 

) 

f \ 
Input nonliniarity 

Linear block 

) 
Output nonlinearity 

) 
Figure 5.2: Hammerstein-Wiener model structure 

The best results between parametric models using System Identification Toolbox, 
shown Hammerstein-Wiener Model. The model consists of three blocks 5.2, input nonlin­
earity, linear block and output nonlinearity. The nonlinearities are represented by different 
functions such as dead-zone, polynomial estimator, saturation, wavelet network function, 
etc. 

However, using the identified model, adequate behavior to the measured data was 
achieved only for the position signal 5.3. The model identified for velocity signal did not 
show acceptable behavior 5.4. The reason is the significant nonlinearity and complexity 
of the system, which the simplified models cannot take into account. 

36 



S i m u l a t e d R e s p o n s e C o m p a r i s o n 

clata_x_verif (yl) 

Time (seconds) 

Figure 5.3: Simulated Response for Position Signal Comparison 

S i m u l a t e d R e s p o n s e C o m p a r i s o n 

Time (seconds) 

Figure 5.4: Simulated Response for Velocity Signal Comparison 

5.2.2 NARX Model 

Different structures can be used to train the neural network to predict system behavior. 
The most common way is using the nonlinear autoregressive with the external input 
model (NARX) [17]. This model predicts time-series data by using different numbers of 
time-delayed values of input and output signals 5.5. 

u(t — n) 

y(t - n) 

Figure 5.5: Schematical representation of N A R X model 
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During the development of the model, it is necessary to pay attention to overfitting, 
which can significantly impair the performance of the model and its generalization capa­
bilities. 

Some experiments have been performed with this modeling approach. The Neural 
Network can predict the behavior of the system based on input. 
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6 Models Comparison 

As mentioned earlier 2.4, the simulation model can be used in several situations. Models 
of the normal condition can simulate system output to a given input in normal operating 
conditions. This type of model can be used to provide, for example, residual estimation. 
Compare normal condition model with measured signals from sensors decision algorithm 
can evaluate possible faults. 

Suppose the model can simulate the system in different conditions. In that case, it 
gives an option to implement "What-If" simulations and prevent fault situations that are 
not captured in the measured dataset. 

No best solution would apply in all situations, but for a specific example of the double-
acting pneumatic actuator with the measured dataset, the more efficient model can be 
evaluated. Table 6.1 represents the comparison simulation models in 4 categories, simu­
lation speed, accuracy concerning the actual model, the difficulty of deploying the model, 
the behavior under normal conditions and the possibility of simulating abnormal "What-
I f situations. 

The speed of the simulation or calculation complexity performs a more prominent 
role in the model's design, especially during the estimation of the parameters, where the 
simulations are performed hundreds of times in a row. 

model speed accuracy normal cond. abnormal 
F P M 

Simscape 
H W model 

N A R X 

fast 
low 
fast 
fast 

normal 
normal 

very low 
high 

yes 
yes 

yes 

yes 
yes 

Table 6.1: Models developed by c ifferent approach comparison 

Due to the above facts, further work was continued with the help of the first principles 
model, and the development of the other models was suspended. The first principle sim­
ulation model will be used in the next chapter 8, P d M using Simulation Model. A l l models 
can be found in the attachment models; using scripts first-principle-modeLperfomance.mlx, 
data-driven-modeLperfomance.mlx, models can be explored interactively. 
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7 Signal-Based PdM 

This chapter introduces the signal-based method applied to a measured dataset. The 
whole solution procedure will be presented on the example of the development solution on 
the flow sensor 7.3. Most of the methods used in this chapter are closely related between 
FDI and P d M approaches. These methods work directly with the measured signal by 
extracting condition indicators and training the classification model. It is possible to do 
fault detection and classification using this model. 

7.1 F D I methods 
There are simple solutions that offer themselves. For example, the proximity sensor can 
be used to monitoring whether the actuator has reached the position in the expected 
interval or not. Based on these data, it can be concluded whether the device performs its 
function or a fault has occurred. Similarly, we can monitor the flow course, and if this 
course exceeds any given threshold, then a fault has occurred [9]. Using more complex 
methods, we can not only show the occurrence of faults but also classify the cause. The 
implementation of these algorithms will be further discussed in this chapter. 

7.2 Data Management and Preprocessing 
Before the final solution was developed in the whole dataset, the smaller dataset was used 
for experiments and planning algorithms. 

7.2.1 Data Storage 

Manage Data First, a folder structure was created to collect all measured and cal­
culated data. The measured signals were given in 6 large files with a ".mat" extension 
and divided into smaller files with only one measurement each. Data files have been 
reshaped to Data Ensembles [1] format used for Condition monitoring purposes. This 
format allows processing data without copying the whole dataset to memory at once but 
processes them one by one. In large datasets it gives an option to manipulate with data 
without problems with allocated memory. The full dataset contains 4840 measurements. 
Each measurement includes a 10-second recording of all signals collected from moving the 
piston up and down. 

Labels The whole dataset was divided into 20 Labels by place of fault accumulate: 

• Healthy 

• Throttle valve 1 

• Throttle valve 2 

• Small damper bottom 
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Small damper upper 

• Large dampers 

• And combinations of these faults 

7.2.2 Data Exploration 

Data from each of the eight sensors 3.1 were explored in an attempt to find measurement 
errors or anomalies in data. Figure 7.1 shown an example of the flow signal in different 
operation conditions. 

7.2.3 Preprocessing 

After the data has been processed and organized in one datastore, the possibility arises 
to perform signal preprocessing. Preprocessing includes smoothing, filtering, detrend the 
signal, and missing value removal [12]. 

The datastore contains some signals, such as an encoder, that is very accurate. There 
is no preprocessing needed to apply. Signals noisier (pressure signal or strain) have to be 
preprocessed and applied algorithms to noise reduction such as smoothing and filtering 
concerning the preservation of the information base. However, during experiments turned 
out that non preprocessed signals have better performance. For example, the preprocessed 
pressure classification model gives 78 % accuracy; model trained on CI from the raw 
pressure signal offers approximately 82 %. 

7.3 SB Methods and Flow Sensor as an Example 
In this section, signal-based methods were applying to the flow sensor as a case study 
example. The rest of the sensors was processed in the same way; however, each required 
an individual approach. 
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7.3.1 F low Sensor D a t a 

There are two flow signals in the datastore. Both are connected to port A in scheme 
3.1. Signals were sampled in 1kHz frequency; thus, in 10 seconds, there are 10000 points 
measured. 

• Flow Extrusion 

• Flow Contraction 

7.3.2 Cond i t i on Indicators Ex t rac t ion 
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Figure 7.2: Diagnostic Features Designer App Interface 

One of the reasons to use Matlab Data Ensemble format to manage the data instead 
of others is to use the Diagnostic Feature Designer App (fig. 7.2) [4]. This app provides 
an intuitive environment for extracting both statistical condition indicators and power 
spectral density calculations with the following extraction of frequency condition indica­
tors. It is also possible to generate Matlab functions to deploy the algorithms on a bigger 
scale. 

Stat is t ical Cond i t ion Indicators For every flow signal in the dataset, statistical con­
dition indicators were calculated [7]: 

• Mean 

• Standard deviation 

• RMS 

• Peak value 

• Kurtosis 
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• Clearance factor 

• Crest factor 

• Impulse factor 

• etc. 

PDS of Flow Signal in Different Operation Condtions 

1 0 ° 1 0 1 1 0 2 

F r e q u e n c y ( H z ) 

Figure 7.3: Welch's Power Spectral Density of the Flow Signal 

Frequency Domain Condition Indicators Using Welch's power spectral density es­
timation 7.3, frequency CI were calculated [12]: 

• First five peaks amplitude 

• Peaks frequencies 

• Spectrum band power 

Extracted condition indicators were written to files with signals and easily acceptable. 
After each data file contains complete information about one measurement: 

• Measured signals 

• Setting parameters (valves, dampers, load) 

• Power spectrum calculated from measured signals 

• Statistical and Frequency features extracted from signals 

Moreover, a table was created, which contains all condition indicators extracted, to 
prepare the train and test dataset for the classification model. 
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7.3.3 Condition Indicators Ranking 

The table of calculated condition indicators contains 25 statistical and frequency CI. 
To train a classification model, it is good practice to reduce the number of features or 
transform them with P C A algorithm and use only first n principal components, to remove 
linearly dependent condition indicators. According to section 2 Analysis of Variance 
(ANOVA), specifically in our case Kruskal - Wallis one-way A N O V A algorithm was used. 

The result is a sorted table 7.1 of condition indicators depending on how much variance 
a particular condition indicator can describe in the dataset. 

Features Kruskal-Wallis 
1 FlowContraction_ps_spec/PeakAmpl 1.4815e+03 
2 FlowContractiomstats/CrestFactor 967.6028 
3 FlowContraction_ps_spec/PeakAmp3 865.7571 
4 FlowContraction_stats/Mean 567.6620 
5 FlowContraction_ps_spec/PeakAmp4 460.0924 

Tab! e 7.1: First Five Ranked Condition Indicators using ANOVA 

Figure 7.4 shows the scatter plot of the first three condition indicators for normal 
behavior and fault condition caused by the change of throttle valve 1. The first five 
condition indicators ranked by the A N O V A algorithm were used for training the final 
model on all 20 labels. 
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Figure 7.4: Example of Scatter Plot with different CI 

7.3.4 Train Classification Model 

The main goal of the classification task is to train a model that can predict the fault code 
or label signalized about pneumatic actuator behavior by calculated condition indicators. 
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There are many classification models, but it is best to try different variants and be 
satisfied with the best result from a practical point of view. The Classification Learner 
App from the Machine Learning Toolbox [18] tool can be used for experiments and itera­
tive tuning of different condition indicators and classification models. It is possible to try 
several models, apply the P C A algorithm, interactively draw Scatter plot and Confusion 
Matrix, and generate functions for practical applications. 

Train, Test Datasets By splitting data to train and test datasets, we can ensure that 
the training model outcomes are valid. The cross-validation resampling procedure to 
prevent model overfitting was used during the model fitting. 

Classification Model Performance Trained classification models show excellent re­
sults on the test dataset for all three situations: using all CI, after applying the P C A 
algorithm and using the first five CIs recommended by the A N O V A algorithm. The 
accuracy evaluations of the models are shown in Table 7.2. 

approach model accuracy [%] 
all features 

P C A 
A N O V A 

Bagged Trees 
Bagged Trees 

Fine K N N 

99.45 
95.18 
97.52 

Table 7.2: Al l Features vs PCA vs ANOVA perfomance 

Figure 7.5 shows the confusion matrix from the Fine K N N classification model by 
training on data using the A N O V A algorithm. From the confusion matrix, it is clear 
that combined faults in the dataset were not observed much. However, the model can 
successfully resolve these fault conditions too. 

From a practical point of view, in this particular case, the use of the A N O V A algorithm 
allows not only to reduce the number of CIs for prediction on the model but also to 
calculate from the signal, not 25 CIs but only 5. 

Considering this fact, deploy this algorithm on a bigger scale on many devices, where 
the calculation complexity plays a role, using the A N O V A algorithm is justified. 
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Figure 7.5: Fine K N N trained on ANOVA Dataset Confusion Matrix 

7.4 Summary A l l Sensors Comparison 
Surprisingly, all sensors showed satisfactory results on the measured dataset. Processing 
the entire dataset is a very demanding operation in terms of calculation. Therefore, only 
the final solutions were added to the attachments. The results for all sensors can be 
verifying by running matlabdive-script sb/'signal-based-live.mix. 

Table 9.1 compares all the sensors used in terms of the accuracy achieved on the test 
datasets and the approximate prices of the sensor itself taken from open sources. Graph 
9.1 visualizes these data. Here are some notes on each of the sensors. 

Sensor Acc Encoder Flow Mies Pressure Proximity Strain 
Accuracy [%] 91.6 96.1 97.2 95.8 76.6 80.5 95.0 

Cost [czk 2x 3500 25000 6000 3x 500 1000 2x 1000 15000 
Table 7.3: Comparison of sensors from accuracy/cost perspective 

7.4.1 Temperature sensor 

Temperature sensors do only one measurement during the experiment. These values can 
be represented as condition indicators without any manipulations. Plotting data from 
the dataset 7.7 shows that they correlated to an ambient temperature that is different in 
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Figure 7.6: Comparison of sensors from accuracy/cost perspective 

various measurement days. These data are sensitive to ambient conditions and measured 
data, not representative. The classification model trained on this data not robust in real 
life. 
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Figure 7.7: Scatter plot of temperature measured data 
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7.4.2 Encoder 

A linear magnetic encoder is a perfect development sensor-tool for understanding system 
behavior and algorithm design. Up to three signals, displacement, speed, acceleration, can 
be available from one sensor. The trained classification model shows perfect results. From 
a practical point of view, the financial cost of purchasing, installing, and maintaining the 
sensor is unsuitable compared to cheaper sensors with similar prediction accuracy. 

7.4.3 Microphones 

Cheap, good results, but maybe problems with real life integration (noise from another 
machines). Another problem cannot be modeled in simulation system. For predictive 
purposes require data from real model. 

7.4.4 Accelerometers 

There are two accelerometer sensors. Each sensor contains two signals on the x, y-axis. 
One sensor is placed on the movable part of the stand device; the second is on the 
statical part without movement and measure only vibrations. Sensors show good accuracy; 
choosing one of the two accelerometers, the static one, is preferable. 

7.4.5 Proximity Sensors 

As mentioned before, proximity sensors can be used for simple inspection purposes 7.1. 
Proximity sensors are digital and provide only statistical condition indicators; from sta­
tistical CI offers valuable information, only a few CPs due to signal shape. 

7.4.6 Flow Sensors 

Flow sensors achieve the best results. It is possible to achieve ~ 97 % accuracy using 
only one sensor. If the practical application requires maximum accuracy, the flow sensor 
is the best candidate. Nothing less in terms of price is an expensive sensor. 

7.4.7 Air Pressure 

The pressure sensor measures the pressure in the reservoir. Data from this sensor is not 
fully informative for the possibilities of predicting and identifying a fault condition. This 
sensor showed low accuracy compared to the others. From an economic view, combining 
a pressure sensor with another sensor does not make sense due to existing sensors such as 
microphones that are better from an accuracy/cost perspective. 

7.4.8 Strain Gauge 

Strain Gauge showed excellent results, but in general, it is similar to an encoder because 
it is an expensive sensor that requires maintenance. From a practical point of view, there 
are better candidates for industrial applications. 
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8 PdM using a Simulation Model 

This chapter deals with model-based methods and the possibilities of using a simulation 
model to design and develop a P d M algorithm. A demonstration of the possibility of gen­
erating sensor fault conditions is presented in section 8.1. Using identified Hammerstein-
Weiner model to extract condition indicators in the form of a dynamic system parameter 
shown in section 8.2.1. In section 8.3, the simulation model is used as a nominal, and 
residual estimation is performed with the following training of the classification model. 
The left sections 8.4 deal with the use of a simulation model to generate degradation data. 
And the use of a newly generated dataset to estimate the remaining useful life. 

8.1 Using Simulation Model to Generate Fault Data 
In this section, the simulation model will play the role of a digital twin for experimenting. 
Digital Twin can be used to model situations that did not capture in the original dataset 
or if it is hard to model some cases with real-world hardware. 

As an example, we can model sensors fault such as sensor drift or complete signal loss. 
Suppose the simulation model signal is in good agreement with the real-world system. In 
that case, the generated data can complement the primary dataset, introducing a more 
significant number of observed fault situations. 

8.1.1 Sensor Fault Modeling 

Three basic situations measuring the nominal behavior of the system were simulated. By 
adding measurement noise to the system, a "noise" fault situation was created. Another 
modeled case was made using the offset. In Figure 8.1, flow sensor fault condition signals 
are generated. This straightforward situation illustrates the possibility and simplicity of 
performing experiments with a simulation model to develop robust P d M algorithms. 

The matrix of Scatter plots grouping by faults 8.2a shows how condition indicators are 
distributed. The data are well separable, which means that these condition indicators are 
suitable for use in classification. The confusion matrix 8.2b provides 100 % accuracy on 
test data. Which in this simplified situation is possible. In more complex cases, achieving 
100 % is practically impossible, but it is possible to get close. 

8.2 Model-Based Condition Indicators 
The model-Based approach is suitable when it's challenging to identify condition indica­
tors using only signals. In some cases, it's useful to fit some models from data and extract 
condition indicators as some system parameter [12], [5]. 

Static models If the system behavior can be identified from the data as a static model, 
we can extract condition variables from this model as model parameters. For example, if 
the model is fitted to a polynomial model, polynomial coefficients can be used as condition 
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Generated data: Sensor Faults (noise, offset) 

60 

bU 

heal th 
— noise 

60 

bU 
11 

40 

JU 

I i i 40 

JU • 
2i] 

10 

• M i J . , j L t i i J - J l t- .faJkj .U^l i . j . i . ^ i . L . J I I I I U L L J . I I I _ , . , J i l i i u i J l , l . , U l . . , ^ . j i 

10 1 1 1 1 1  i i 
0 1 2 3 4 5 6 7 8 9 10 

Time 

Figure 8.1: Sensor response in different fault conditions 
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indicators. 

Dynamic models Signals showing dynamic behavior can be identified as dynamic mod­
els such as State-Space or A R , A R X , N L A R X (Nonlinear auto recursive model), and so 
on. Then condition indicators can be extracted as poles, zeros damping coefficients from 
the identified model. 

State obesrvers Another possibility is to use the Kalman filter and other state ob­
servers to estimate all state variables from the measured signal. It is suitable if the sys­
tem's condition is directly dependent on some state variable that is difficult to measure 
directly [12], [9]. 
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8.2.1 Using Hammerstein-Wiener Model 

In this demonstration, the Hammerstein-Wiener Model was used to identify the system 
using position measurement 8.3. A smaller data set was used for the experiment, which 
contains 660 measurements, six primary fault states. A n H W model was identified for each 
signal position. Condition indicators were extracted in the form of a system coefficient, 
both a linear block and an input/output layer. 

The training of the classification model was unsuccessful, and the resulting accuracy 
did not exceed 40 %. Therefore, I consider this approach inappropriate in this particular 
case. 
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Figure 8.3: Using identification model for PdM workflow 

8.3 Using Simulation Model for Residuals Estimation 
The residual Estimation approach is another option to use a simulation model to achieve 
fault detection. The residual is a subtraction of two signals in the form e(t) = y(t) — y(t) 
as shown in 8.4. 

u(t) f 

Plant Plant 

) 

y(t) e(t) / 
Feature 

extaction P 

Classification 

Figure 8.4: Residual estimation diagram 

Residual estimation can be helpful when the system response is highly dependent on 
the input signal, and the measured dataset does not observe all possible faults. Residuals 
are very sensitive detectors of problems. In some cases where the system changes operation 
conditions but still operates in a healthy state and this change does not reflect the nominal 
simulation model, the decision algorithm may signalize a fault. This type of fault, also 
known as false positive, indicates problems that do not exist [11]. Generally, this approach 
requires a smaller amount of data for training the classification model. It is very suitable 
for system monitoring, where if the residual of two signals outreaches any given threshold, 
a fault state has occurred [11], [12], [9]. 

To demonstrate residual estimation and save calculation time, a smaller dataset was 
used. Since the signals represent the same 10-second intervals, the simulation was per­
formed only once and then used as the nominal reference behavior for all calculations of all 
residuals. However, for deploying this algorithm, the simulation model runs in real-time 
and continuously generates residuals. 

A linear encoder was used as an example. Figure 8.5 shows the residual for the 
measured and reference signal. These residual signals were then combined to the dataset 
from which condition indicators were extracted as statistical parameters. Using the same 
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Figure 8.5: Residual signal of measured and simulated position 

steps described in the signal-based example 7.3, condition indicators were ranked 8.1, 
and the classification model was trained. The trained classification model shows excellent 
accuracy of 99.49 %. Predictions are shown in confusion matrix 8.6. 

Features Kruskal-Wallis 
1 Lever Posit ion_res_st at s/ R M S 543.82 
2 LeverPosition_res_stats/Peak Value 271.94 
3 LeverPosition_res_stats/Std 222.89 
4 LeverPosition_res_stats/THD 215.34 
5 LeverPosition_res_stats/Kurtosis 129.66 

Table 8.1: First Five Ranked Condition Indicators using A N OVA 

For comparison using the signal-based method applying to the same dataset, classifi­
cation results are similar 99.49 %. By given the results, the residual estimation method 
may seem unnecessary. In this particular case, from a practical point of view, there is no 
improvement of the result, but the calculation time increases significantly. 

8.4 Using Simulation Model to Generate Prognostic 
Data 

Another option is to use a simulation model to simulate a system degradation process. 
We can evaluate CI from sensor signal by changing a system's mechanical properties as 
friction or mass flow leakage. Another advantage is that we can design experiments on 
the model to evaluate what type of data we require from a real-world system to develop 
a robust algorithm [12]. 

8.4.1 Air Leak Modeling 

One of the common failures in pneumatic actuators operation is air leakage from the 
chamber where the piston is located. Dust and other contaminants can damage the 
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Figure 8.7: Schematic representation of the air leak process 

connection between the cylinder and the piston, causing air leakage. This problem is 
schematically illustrated in Figure 8.7. 

In this example, air leakage from the chamber was modeled the same as air expansion 
from the reservoir, described in section 4.2. Due to the notation in Figure 8.7, the air 
leakage process describes equation 8.1. 

mai = CaiPB 3. 
PB 

Air leakage is reflected in the pressure in chamber B according to the equation 8.2. 

PB = 77-77 \ 1 T/ (PBSBX + RTB[mB - mai\) (8.2) 
oB{L — x) + VQB 

Figure 8.8 shows the development of pressure in the chamber without air leakage and 
with a very significant leakage value. 
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Figure 8.8: Development of pressure in the chamber with air leakage 

This fault was modeled on a simulation model with different dynamics of coefficient 
C development in the range Cai £ (10~ 1 0,10~ 6). The following sections describe how this 
data can be used to design R U L estimation. 

8.4.2 R U L 

The dataset contains 25 simulations, each with a various number of cycles and different 
dynamics of air leakage development. After CI extraction in the form of shape factor 
figure, 8.9 represents the development of each simulation. 
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Figure 8.9: Development of condition indicator 

LJ'.i 

Prognostic CI For R U L algorithm development, prognostic CI is used. The prognostic 
CI can be any parameter that represents the degradation behavior of the system over 
time. The monotonicity test can be used for ranking prognostic CI. The shape factor was 
selected during the design, but more CIs showed promising results in this particular case. 

R U L Models Residual similarity, pairwise similarity and linear degradation models 
were used for data experiments. 

Figure 8.10 presents results of the residual similarity model, results of R U L estimation 
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satisfying. Pairwise similarity model finding degradation path that is the most correlated 
to test data. The residual similarity model fits an A R M A (Autoregressive Moving Average 
Model) model on the train data and then computes the residuals between predicted data 
from the A R M A model and the test data [12]. The pairwise similarity model on the 
generated dataset shows similar results as the residual similarity model. 

Due to figure 8.9, we can determine a safe threshold that we do not want to exceed 
and then use the degradation model. In this case, a linear degradation model was used. 
This model creates a linear degradation profile to evaluate the R U L [12]. The results 
of the linear degradation model are pretty good 8.11. Predicted R U L shows a deviation 
from the true R U L of about 10 %, which is more than sufficient in this case. 

RUL estimation using Linear Degradation Model 
3.85 r 

3 . 5 5 1 1 1 1 1 1 1 1 1 1 

0 20 40 60 80 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 
C y c l e s 

Figure 8.11: Linear degradation model performance 

8.5 Summary 
A simulation model is a powerful tool for the development of the P d M algorithm. The pos­
sibility of generating unavailable or difficult to collect data gives an advantage for imple­
menting robust and efficient algorithms. Since the signal-based method has shown perfect 
results on the pneumatic pistol application, using model-based methods such as a residual 
estimation seems unnecessary. A l l results are available in mb/mb-.mlx, mb/rul.mlx 
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9 Conclusion 

The goal of this thesis was to demonstrate and verify fault detection and predictive mainte­
nance techniques on the double-acting pneumatic piston assembly study object. 

9.1 Simulation Model 
One of the outcomes from the thesis is a simulation model of the double-acting pneu­
matic piston system built based on differential equations from the pneumatic-mechanical 
domain, modeled and developed using Matlab/Simulink software. The simulation model 
was estimated with parameters of healthy system behavior. However, there is an option 
to reestimate parameters to fault state and simulate the system in a fault condition. 

Due to the available measured data and significantly nonlinear dynamics of the system, 
the simulation model shows good agreement with the measured data. In contrast to the 
model built using Simulink/Simscape library, it is distinctly less computationally expen­
sive while maintaining numerical stability. These facts are fundamental when parameter 
estimation is in progress. 

The simulation model was used to experiment with the system's behavior in differ­
ent conditions, model fault situations and generate data to design and develop robust 
predictive maintenance algorithms. 

9.2 Signal-Based P d M 
Another outcome is verifying the possibility of classification and detection of a fault con­
dition applying predictive maintenance techniques, using signal-based and model-based 
methods. 

The experiments were performed on a dataset measured on a demonstration device 
using seven types of sensors. 

A signal-based method is based on the extraction of useful information directly from 
the signal in time-frequency domains. Each sensor required an individual approach for 
preprocessing, extracting features, ranking features and building the classification mod­
els. But generally, there is minimal preprocessing needed to keep the possible helpful 
information. 

The table 9.1 contains the comparison of sensors in 2 categories, accuracy performed 
in the test dataset and sensor cost. The graph 9.1 visualizes these data. 

Surprisingly, all sensors showed an accuracy of more than 75 %. Microphones offer 
excellent performance from a cost/accuracy perspective, and they are suitable for instal­
lation and maintenance. 
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Figure 9.1: Comparison of sensors from accuracy/cost perspective 

Sensor Acc Encoder Flow Mies Pressure Proximity Strain 
Accuracy [%] 91.6 96.1 97.2 95.8 76.6 80.5 95.0 

Cost [czk 2x 3500 25000 6000 3x 500 1000 2x 1000 15000 
Table 9.1: Comparison of sensors from accuracy/cost perspective 

9.3 Model-Based P d M 
The next part of this thesis was to apply model-based methods and using a simulation 
model for predictive maintenance algorithms. These algorithms are practical when it is 
hard to extract useful information using a signal-based method. Or it is suitable in some 
cases where we understand the system dynamics and know how to exploit some system 
variables as condition indicators. 

The use of the method of extraction features in the form of a Nonlinear system identi­
fication model coefficient, specifically with the Hammerstein-Wiener model, did not give 
reliable results. Extracted features have no statistical dependence, and it is impossible to 
predict fault type using this method on the measured data from the pneumatic piston as 
a case study. 

On the other hand, the residual estimation using the simulation model showed excellent 
results. The measured position signal was compared with the signal from the simulation 
model in normal behavior. This residual signal was used to classify the fault condition and 
achieve 99 % on a smaller dataset. But given the results obtained using the signal-based 
method, the residual estimation method may seem unnecessary. In this particular case, 
from a practical point of view, the improvement of the result by a few percent does not 
bring fundamental changes, but the calculation time increases significantly. 

The possibility of modeling and simulation sensor faults was also verified using the 
simulation model. Although it is challenging to collect fault data from the sensor in real-
life conditions, fault data can be generated from the simulation model and even combined 
with the primary dataset to create a synthetical dataset. 
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9.3.1 R U L 

One of the main goals of predictive maintenance is to estimate the remaining useful life. 
The original dataset does not contain a record of historical data that shows degradation 
behavior. 

A common problem in the maintenance of pneumatic actuators is the leakage of air 
from the chamber where the piston is located. This situation was modeled on the simu­
lation model and generated data were used for R U L estimation. 

The generated dataset contains 25 simulations with different failure dynamics. Each 
simulation includes a different number of cycles depending on the failure dynamic before 
the system failure occurs. Each cycle contains a 10-second measurement of the system's 
response. In the experiment, a flow signal was chosen as an object of interest. From the 
flow signal, the shape factor parameter was calculated and used as a condition indicator. 

The outcome is that it is possible to estimate the remaining useful life on generated 
degradation dataset by using the residual similarity model, pairwise similarity model and 
linear degradation model. The prediction results are satisfying; figure 9.2 shows the linear 
degradation model R U L estimation on the test data. 
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Figure 9.2: RUL estimation results using linear degradation model 

9.4 Further Development 
As a further development, it would be appropriate to estimate the modeled system param­
eters piecewise to improve the results, emphasizing the characteristics of throttle valves 
and dampers with adjustments. 

Perform air leak fault condition measurements and collect historical degradation data 
from a real pneumatic piston. Subsequently, evaluate the dynamics of the failure caused 
by the air leak. Verify the possibility of estimating the remaining useful life using a flow 
sensor. It could be an interesting case study to verify a possibility of R U L estimation 
using microphones. If the performance of the available sensors is deficient, the pressure 
measurements in the chamber can be performed. The pressure in the chamber is directly 
dependent on the air leakage from the chamber, as presented in equation 8.2. A n example 
of pressure changes from the simulation model is shown in figure 8.8. 
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List of Abbreviations 

F D A Fault Detection and Analysis 

FDI Fault Detection and Isolation 

P d M Predictive Maintenance 

R U L Remaining Useful Life 

F P M First Principle Model 

H W Hammerstein-Wiener Model 

N A R X Nonlinear Autoregressive with External Input Model 

A R X Autoregressive with External Input Model 

CI Condition Indicator 

A N OVA Analysis of Variance 

P C A Principal Component Analysis 
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