
B R N O UNIVERSITY O F T E C H N O L O G Y
V Y S O K É U C E N I T E C H N I C K E V B R N E

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS
FAKULTA INFORMAČNÍCH TECHNOLOGI Í
ÚSTAV INTEL IGENTNÍCH S Y S T É M Ů

LIBVIRT ADMINISTRATION API
APLIKAČNÍ ROZHRANÍ PRO ADMINISTRACI

PROJEKTU LIBVIRT

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. ERIK ŠKULTÉTY
AUTOR PRÁCE

SUPERVISOR Ing. ALEŠ SMRČKA, Ph.D.
VEDOUCÍ PRÁCE

B R N O 2016

Zadaní diplomové práce/18064/2015/xskult00

Vysoké učení technické v Brně - F a k u l t a informačních technologi í

Ústav inteligentních systémů Akademický rok 2 0 1 5 / 2 0 1 6

Zadání diplomové práce
Řešitel: Šku l t é t y E r i k , B c .

Obo r : Počítačové sítě a k o m u n i k a c e

Téma: Ap l i k a čn í r o zh ran í p r o a d m i n i s t r a c i p r o j e k t u L i b v i r t

L i b v i r t A d m i n t r a t i o n A P I

Ka t ego r i e : Operační systémy

Pokyny :
1. Na s t udu j t e p ro j ek t L ibv i r t pro správu virtuálních počítaču.
2. A n a l y z u j t e požadavky k o m u n i t y na aplikační rozhraní (API) p ro j ek tu L ibv i r t pro j eho

vlastní správu. Navrhněte aplikační rozhraní a dm i n i s t r a c e L ibv i r t . Rozhraní bude
z a h r n o v a t správu připojených klientů, změnu počtu obslužných vláken a změnu
kon f i gu r a ce démona L ibv i r t včetně nastavení a f i l t race záznamu.

3. I m p l e m e n t u j t e aplikační rozhraní pro adm in i s t r a c i L ibv i r t v j a z y c e C. Aplikační
rozhraní z d o k u m e n t u j t e na úrovni přijatelné pro u p s t r e a m p ro j ek tu .

4. Aplikační rozhraní ověřte pomocí kombinačního testování. Tes t y pok ry j t e všechny
klíčové části AP I .

L i t e ra tu ra :
• Bo l te , M.; S i e v e r s , M.; et a l . Non - i n t r u s i v e V i r t ua l i z a t i on M a n a g e m e n t us ing L ibv ir t .

In Proc . of DATE 2 0 1 0 . do i : 1 0 . 1 1 0 9 / D A T E . 2 0 1 0 . 5 4 5 7 1 4 2
• Y a m a t o , Y.; N i s h i z awa , Y.; Nagao , S.; Sa t o , K.; Fast and re l iab le res to ra t i on me thod

of v i r tua l r e sou r ce s on O p e n S t a c k . IEEE T r an sa c t i o n s on C l oud C o m p u t i n g , I s sue: 9 9 .
2 0 1 5 . do i : 1 0 . 1 1 0 9 / T C C . 2 0 1 5 . 2 4 8 1 3 9 2

• D o k u m e n t a c e API L ibv i r t . URL: h t t p s : / / l i b v i r t . o r g /h tm l / i n dex . h tm l
Při obhajobě semestrální části p r o j ek tu j e požadováno:

• První bod bod zadání a část návrhu AP I .

Podrobné závazné p o k y n y pro vypracování diplomové práce na l e zne t e na ad re se

h t t p : / /www. f i t . v u t b r . c z / i n f o / s z z /

Technická zpráva diplomové práce musí o b s a h o v a t f o rmu l a c i cíle, c h a r a k t e r i s t i k u současného s t a v u ,
teoretická a odborná východiska řešených problémů a spec i f i kac i e tap , které by ly vyřešeny v rámci dřívějších
projektů (30 až 4 0 % celkového r o z s a h u technické zprávy).

S t u d e n t odevzdá v j e d n o m výtisku t e c h n i c k o u zprávu a v elektronické podobě zdrojový t ex t technické zprávy,
úplnou p r o g r a m o v o u d o k u m e n t a c i a zdrojové t e x t y programů. I n f o r m a c e v elektronické podobě budou uloženy
na standardním nepřepisovatelném paměťovém médiu (CD -R , D V D - R , a pod .) , které bude vloženo do písemné
zprávy t ak , a by n e m o h l o dojít k j e h o ztrátě při běžné m a n i p u l a c i .

Vedoucí: S m r č k a A l e š , I n g . , P h . D . , UITS FIT V U T

Konzu l t a n t : Prívozník M i cha l , I ng . , RHcz

D a t u m zadání: 1. l i s t opadu 2 0 1 5

D a t u m odevzdání: 2 5 . května 2 0 1 6

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

doc. Dr. I ng . Pet r Hanáček
vedoucí ústavu

https://libvirt.org/html/index.html
http://www.fit.vutbr.cz/info/szz/

Abstract
This thesis addresses the v i r tua l iza t ion topic, more specifically, it deals w i th l ibvir t v i r tu-
al izat ion management library, the goal of which is to provide a common and stable layer
to manage v i r tua l machines that deals w i th a l l the hypervisor or v i r tual iza t ion solution
specifics transparently to the user. Most of the functionality exposed by l ibvir t is imple
mented in form of services wi th in a daemon called l ibv i r td . One of the main reasons why
l ibvir t utilizes a daemon is to provide a remote management of v i r tua l machines running on
hypervisors which do not support remote management. However, the daemon lacks support
for managing itself dur ing runtime. A l though its configuration can be altered v i a a configu
rat ion file, the configuration is persistent only. Addi t ional ly , each t ime the configuration is
changed this way, the daemon needs to be restarted, which might not always be the opt imal
solution. Therefore, an idea of exposing an administrat ion interface through l ibvir t l ibrary
which would provide users w i t h l ibvir td 's runtime management arose. The main goal of
this thesis is to design and implement a set of administrat ion applicat ion interfaces which
would provide features including adjustment of number of workers i n a server's threadpool,
modifying logging levels, filters, and logging outputs, as well as remote client management.

Abstrakt
Tato p r á c e se zabývá problematikou virtualizace, k o n k r é t n ě v i r tua l i začn í knihovnou l ibvi r t ,
c í lem k t e r é je sp ráva v i r tuá ln í ch s t ro jů a podpora různých t y p ů h y p e r v i z o r ů a vir tual iza-
čních řešení j e d n o t n ý m z p ů s o b e m t r a n s p a r e n t n í m pro už iva te le . P o d s t a t n á čás t funkci
onality knihovny l ibvir t je na p o z a d í i m p l e m e n t o v á n a formou d é m o n a l ibv i r td . Ačkoliv
l ibv i r td d é m o n poskytuje s lužby pro s p r á v u v i r t uá ln í ch s t ro jů , n e u m o ž ň u j e s p r á v u sebe
s a m é h o , k r o m ě z m ě n hodnot p a r a m e t r ů v konf iguračn ím souboru. P r o z m ě n u na s t aven í
je pak s t a n d a r d n í m p ř í s t u p e m z m ě n a v konf iguračn ím souboru a ná s l edný restart d é m o n a .
Jel ikož uvedený z p ů s o b m ě n í pouze p e r z i s t e n t n í konfiguraci a restart d é m o n a n e m u s í bý t
vždy o p t i m á l n í řešení , vzn ik la idea a d m i n i s t r a t i v n í h o r o z h r a n í knihovny l ibvi r t , k t e r é by
umožn i lo s p r á v u d é m o n a za b ě h u . H l a v n í m p ř í n o s e m t é t o p r á c e je n á v r h a popis implemen
tace ap l ikačn ího r o z h r a n í pro administraci knihovny l ibvir t . K o n k r é t n ě pro tuto prác i byla
zvolena r o z h r a n í pro konfiguraci p o č t u obs lužných vláken, n a s t a v e n í ú r o v n ě a fil trovacích
p a r a m e t r ů pro žurná lovac í p o d s y s t é m a s p r á v u p ř ipo jených k l ien tů na s t r a n ě d é m o n a l ib
v i r td .

Keywords
vir tual izat ion, l ibvi r t , v i r tua l machine, hypervisor, l ibv i r td , admin A P I

Klíčová slova
virtualizace, l ibvi r t , v i r t u á l n í stroj, hypervizor, l ibv i r td , admin A P I

Reference
S K U L T É T Y , E r i k . Libvirt Administration API. Brno , 2016. Master 's thesis. Brno Univer
sity of Technology, Facul ty of Information Technology. Supervisor S m r č k a Aleš.

Libvirt Administration A P I

Declaration
I declare that this thesis and the work presented in it are my own and that it has been created
by me as the result of my own research under the supervision of Ing. Ales Smrcka, P h D .
and Ing. M i c h a l Pr ivoznik , consultant from R e d Hat Czech, s.r.o. A d d i t i o n a l information
and details about the l ibvir t l ibrary internals were provided by members of the R e d Hat ' s
l ibvir t v i r tua l iza t ion team. I confirm that I have acknowledged a l l main sources of help.

E r i k Skultety
M a y 24, 2016

Acknowledgements
I would like to express my sincere gratitude to my supervisor, Ing. Ales Smrcka, P h D . , for
his continuous insightful suggestions and comments on my writ ings. I am also grateful to
my co-advisor and consultant from R e d Hat Czech, Ing. M i c h a l P r ivozn ik for valuable dis
cussions which pointed me i n the right direction and helped me resolve the pract ical aspects
of my work. F ina l ly , I would like to thank a l l members of the R e d Hat ' s l ibvir t v i r tual iza t ion
team for providing details that helped me understand l ibvir t ' s internals better.

© E r i k Skultety, 2016.
This thesis was created as a school work at the Brno University of Technology, Faculty
of Information Technology. The thesis is protected by copyright law and its use without
author's explicit consent is illegal, except for cases defined by law.

Contents

1 Introduction 3

2 Virtual izat ion Fundamentals 5
2.1 Dua l -Mode Operat ion and Protect ion Rings 6
2.2 Classical Vi r tua l i za t ion 8

2.2.1 Problems w i t h V i r tua l i z ing x86 Architecture 8
2.3 Software V i r tua l i za t ion 9

2.3.1 B i n a r y Translat ion 9
2.3.2 Paravi r tual iza t ion 9
2.3.3 X e n 9

2.4 Hardware Assisted Vir tua l iza t ion—x86 Extensions 11
2.4.1 K V M 12
2.4.2 Q E M U 14
2.4.3 V i r t i o 15

2.5 Container-based Vi r tua l i za t ion 16

3 Libvir t Project: T h e Virtual izat ion L i b r a r y 17
3.1 L ibv i r t ' s Objective 17
3.2 L ibv i r t as a Middleware Layer 18
3.3 L ibv i r t ' s Archi tecture 19

3.3.1 Stateful and Stateless Drivers 20
3.3.2 Connect ion Establishment 21

3.4 L i b v i r t d Daemon 23
3.4.1 Communica t ion 23
3.4.2 Message Processing and Task-based M o d e l 24

4 Adminis trat ion Interface Specification 27
4.1 Objective 27

4.1.1 L o a d Balanc ing 27
4.1.2 Runt ime Introspection 28
4.1.3 Client Management 28

4.2 Interface Overview 28

5 Implementation Details of Selected Parts of the Adminis trat ion Interface 33
5.1 C o m m o n D a t a Types 33
5.2 L o a d Balancing: Manag ing a Threadpool 's At t r ibutes 35

5.2.1 P rob lem Details 36
5.2.2 Solut ion 37

1

5.3 Runt ime Introspection: Managing a Daemon's Logging Parameters 37
5.3.1 P rob lem Details 38
5.3.2 Solut ion 38

5.4 V i r t - a d m i n Command-l ine Interface 39

6 Testing of Selected Adminis trat ion Interfaces 41
6.1 Modi fy ing Daemon Logging Settings 42
6.2 Setting Threadpool Parameters 46

6.3 Testing Toolset Details 49

7 Conclusion 51

Bibl iography 52

Appendices 55

Lis t of Appendices 56

A Libvirt Adminis trat ion A P I Reference 57

B Libvir t Adminis trat ion A P I Usage Examples 71

B . l L i s t ing Available Servers on Daemon 71
B.2 L i s t ing A l l Clients Connected To a Given Server 72
B .3 Get t ing and Sett ing Logging Level 74
B.4 Get t ing and Sett ing Logging Fi l ters 76
B.5 Get t ing and Sett ing Logging Outputs 77
B.6 Get t ing and Setting Server Threadpool Parameters 78
B.7 Get t ing and Sett ing Cl ient L i m i t s on Server 79
B.8 Retr ieving a Cl ient ' s Identity Information 81
B .9 Clos ing a Cl ient ' s Connect ion Forcefully 84

C Contents of the C D 86

•2

Chapter 1

Introduction

Vir tua l i za t ion technology can be accounted a topic of a broad interest, receiving very close
attention these days. It managed to revolutionize and reshape the computer industry top
to bo t tom since its introduct ion. A l though it is often referred to as a "new" technology,
because of its immensely growing integration into corporate infrastructures throughout
the recent years, mainly due to different kinds of regulations, economic factors and more
competi t ion which forces companies to make use of the advantages of vir tual izat ion, the
idea itself is i n fact more than a half-century old, first remark being in the paper Processing
Time Sharing in Large Fast Computers by Christopher Strachey back i n 1959 [25]. The
basic idea was to improve man-machine interaction by providing the users concurrent,
interactive access to the computer. I B M later achieved this by giving each user a v i r tua l
machine, which transparently enabled time-sharing and resource-sharing on the (at that
time) expensive hardware.

There are several types of v i r tua l iza t ion wi th the most common ones being server vir
tual izat ion and storage vir tual izat ion. Regardless of v i r tual iza t ion type, the principle of
providing an abstraction from physical resources and their characteristics remains the same.
B y breaking the fixed "one owns a l l " relationship between the operating system and physical
assets s i t t ing below, it optimizes the physical resources for efficiency. To clarify the princi
ple i n simple terms, v i r tual iza t ion is a combinat ion of software and hardware engineering
that mainly creates

• several v i r tua l resources on top of one physical resource or

• one v i r tua l resource on top of several physical resources.

There are several benefits that come w i t h the v i r tua l iza t ion technology, w i th the most
notable ones being

• reduced expenses and energy saving - migrat ing physical servers to v i r tua l ones and
consolidating them to fewer physical machines reduces the costs related to power
consumption and air condit ioning needs,

• isolation, testing, and security - testing labs wi th in isolated networks that provide
separate controlled environments for a tested applicat ion to be deployed to, and

• reliability and availability - using migrat ion process to transfer a v i r tua l machine's
state or the underlying storage to a different host, i n order to d iminish downtime of
a service i n case of a failure of the original host.

3

Thesis Mot ivat ion

Despite a l l the benefits v i r tua l iza t ion provides us wi th , without any management of v i r tua l
resources, v i r tual iza t ion would only remain a concept rather than becoming a technology
put t ing the benefits into product ion use. There are countless vi r tual iza t ion management
tools available on the market today, intended to be used wi th specific v i r tual iza t ion type.
However, for the purpose of this thesis, the only relevant management too l discussed w i l l
be libvirt. In exact terms, l ibvir t is not only a management tool for platform vir tual izat ion,
it is rather a toolset encompassing three components wi th in itself—an open source library,
a daemon, and a management tool . The fundamental goal of l ibvir t is to provide users wi th
a uniform management interface for different kinds of v i r tual iza t ion solutions. A l though
l ibvir t offers means to configure a l l of its components, there is no way to do it during
runtime so far. Turn ing the focus towards libvirtd daemon, since it is the key part of
the whole toolset implementing most of l ibvir t ' s features, it lacks support for managing
itself despite the fact that it is accounted as being the management backend. The only
configuration available for l i bv i r td today is through a configuration file. However, this type
of configuration is persistent and only serves the in i t i a l setup.

Thesis Contr ibut ion

The idea of having a separate administrat ion interface that would allow runtime manage
ment of the l ibv i r td daemon to certain extent arose after a customer request was created 1

to expose l ibvird 's current state, so they could monitor the number of connected clients to
it proactively, thus being able to tweak the l imi t to the m a x i m u m number of allowed client
connections, therefore adapting it to the current load. Wi thou t any information about
l ibvir td 's current state, it was rather difficult to set the l imi t appropriately i n the config
urat ion file. Hav ing such a feature implemented would allow them to prevent the daemon
from suddenly stopping to accept any more connections wi th an error once the l imi t was
reached. This idea was later extended to also support reconfiguration of daemon's logging
settings to enhance runtime introspection of a potential ly malfunctioning v i r tua l machine,
reconfiguration of the current number of worker threads in the daemon, as well as forcefully
disconnecting ind iv idua l client connections. The goal of this thesis then is to design and
implement adminis t ra t ion interfaces for the aforementioned use cases i n l ibvir t l ibrary.

Th is chapter provided an introduct ion of v i r tual iza t ion technology, the base principle and
some benefits that it offers. The concept is further explored by Chapter 2 which immerses
deeper into the explanation of the principle, focusing on server v i r tua l iza t ion and major
approaches to it , as well as giving some credit to different hypervisors. Understanding the
vi r tual iza t ion fundamentals is crucial in order to fully comprehend l ibvir t ' s architecture
and the way it internally works, bo th of which are examined by Chapter 3. Chapters 4
and 5 address the key parts of the thesis—design and implementat ion of the administrat ion
interfaces. Selected applicat ion interfaces are then tested using the equivalence part i t ioning
methodology wi th the details covered by Chapter 6. Lastly, Chapter 7 then confronts the
results and presents possible follow-ups of the project.

1https://bugzilla.redhat.com/show_bug.cgi?id=735385

4

https://bugzilla.redhat.com/show_bug.cgi?id=735385

Chapter 2

Virtualization Fundamentals

Introduction mentioned the existence of server and storage types of vir tual izat ion, but the
list of the most common vir tual iza t ion types that can be encountered i n the computer
industry nowadays is a bit longer, starting wi th

• server vi r tual izat ion,

• storage vir tual izat ion,

• network vir tual izat ion,

• I / O vi r tual iza t ion, and

• client vir tual izat ion.

W h i l e this thesis covers the server v i r tual iza t ion of x86 architecture as one of the major
types of the vir tual izat ion, some credit to I / O vir tual iza t ion is also given later i n this
chapter. Descript ion of the remaining types of v i r tua l iza t ion mentioned above can be found
i n [12, 23, 32, 6]. Before engaging i n server v i r tual iza t ion approaches, describing different
types of hypervisors and concepts behind them, it is necessary to first establish some v i t a l
knowledge base as the information offered i n further sections bu i ld upon it . This includes
some vir tual iza t ion terminology, operation modes of an operating system as described in
[2], and protection rings mechanism. A l though it is not difficult to find more vi r tual iza t ion
related terms, following are the absolutely necessary ones to know.

G u e s t O p e r a t i n g S y s t e m

A n operating system running in a v i r tua l machine environment that would otherwise run
directly on the had ware as a separate system. It has no knowledge of the existence of another
guest operating system running on the same physical system nor has it any knowledge of
the host system itself (be it a hypervisor or a conventional operating system, see below).

H y p e r v i s o r

A s a term, most resources reference hypervisor also as a Virtual Machine Monitor (VMM),
which is in fact much older term, already used back i n 1960s. B u t this is not the case of
V M w a r e which str ict ly differentiates between a V M M and a hypervisor (more details can
be found in [29, 30]). Th is thesis however, is going to follow the definition used i n [13, 15],
which defines a hypervisor as a piece of software responsible for creation and management

5

of v i r tua l machines which share the underlying physical host's hardware. Phys ica l resources
are indiv idual ly divided into "slices" that are managed by the hypervisor i n amounts and
t ime durat ion as every vir tual ized operating system needs. In terms of classification, there
are officially two categories of hypervisors at the moment:

• type-1, also called a bare-metal hypervisor - which runs direct ly on top of host's hard
ware creating the hardware abstraction for guest operating systems running above,
and

• type-2, also called a hosted hypervisor - which runs as part of a conventional operating
system the same way as any other program does. These hypervisors support the
broadest range of hardware configurations.

This distinct, as it might seem, classification unfortunately cannot be applied to a l l
hypervisors currently available. A typica l example would be R e d Hat ' s KVM and FreeBSD's
Bhyve hypervisors which are kernel modules that supplement the kernel, thus effectively
allowing the host operating system to act as a type-1 hypervisor [8]. B u t since bo th are
part of a conventional operating system and are subject to context switching, they can also
be classified as type-2 hypervisors.

E m u l a t i o n

Emula t ion is a process that takes the properties of one system, t ry ing to reproduce it w i th
a different k ind of system. To put it i n v i r tual iza t ion context, it 's a process of making
an exact copy of the host's hardware resources and a l l of its functionalities. The advantage
is, that one can easily run software compiled for a certain architecture (typically some legacy
software) on a completely different architecture. The inherent drawback of this approach is
performance, compared to hypervisors conforming to the definition above. W h a t is worse,
is that it emulates the host's architecture even though the piece of software is native to the
host's architecture.

2.1 Dual-Mode Operation and Protection Rings

In order to ensure a proper execution of the operating system, it is necessary to dist inguish
between the execution of operating system code and user-defined code. The reason for this
is to improve protection of the operating system's integrity from malicious user applicat ion
that would t ry to exploit the system. However, it would be impossible without any hard
ware aid, since every applicat ion would execute its code on the C P U unrestricted. Thus,
a hardware support to differentiate among various modes of execution was needed. Every
operating system needs at least two modes of execution, namely kernel mode (also privileged
mode) and user mode. Typical ly , these two are also the only ones operating systems tend to
implement. The aforementioned hardware support then resides in the method how a C P U
keeps track of the current execution mode, or i n other terms, current privilege level. To
fully understand the method, one needs to be familiar w i t h v i r tua l memory management
and segment selectors, which is outside of the scope of this thesis, but can be further studied
in [22]. W h a t is important to mention however, is the code segment register. A n d that is
because this register contains a 2-bit field called Current Privilege Level, which is managed
by the C P U itself. The value this field holds is always equal to C P U ' s current privilege
level. Thus four different privilege levels are supported, but as it was already mentioned,

G

usually not a l l of them are ut i l ized by operating systems. These protection levels are orga
nized hierarchically into a r ing structure, depicted on Figure 2.1, w i th the inner most r ing
corresponding to highest pr ivi lege 1 .
Before the t ransi t ion between user mode and kernel mode is covered by the next para
graph, it is necessary to say, that in order to perform protection level switch, some hard
ware support in the C P U is needed. For this purpose, Intel's sysenter/sysexit and A M D ' s
syscall/sysret instructions enable fast entry to kernel mode, avoiding the interrupt overhead
caused by earlier approaches to protection level switching.

Every t ime user appl icat ion requests a service from the operating system, it must tran
sit ion from user mode to kernel mode using a system cal l to fulfill the request. Figure
2.2 depicts this scenario. Whenever a trap or interrupt occurs, the hardware transitions
from user to kernel mode (setting the mode bit accordingly) and vice-versa before passing
the control back to the user program. B y designating some of the instructions from the
instruct ion set as privileged, hardware enforces execution of these instructions in kernel
mode only. If however, an attempt to execute a privileged instruct ion is performed i n user
mode, the hardware does not execute i t , it rather causes a general-protection exception,
t rapping to the operating system, which eventually results i n terminat ing the user process.

Figure 2.1: Protect ion rings on the x86 architecture.

User process

execut ing sys tem call invoked cont inue execut ing execut ing sys tem call invoked cont inue execut ing

Kernel trafK / return
mode blt = 0 / mode bit = 1

Kernel

execute sys tem call

User mode
(mode bit 1)

Kernel mode
(mode bit 0)

Figure 2.2: Transi t ion between kernel and user mode of execution [22].

l rThe ring comes from the Multics system where the hardware supported up to 64 modes and the access
rights changed even between ordinary user procedures stored in users' segments [7].

7

2.2 Classical Virtual izat ion

B y the term classical v i r tual iza t ion is according to [] understood any architecture, that can
be vir tual ized entirely by trap-and-emulate principle. Regarding this fact, x86 architecture
is not classically virtualizable, but it is s t i l l vir tual izable according to Popek and Goldberg 's
criteria which they published in their article [19]. They defined three essential features for
a system software to possess, i n order to be classified as a V M M :

• fidelity - a l l v i r tua l machine instructions running on a V M M execute identically to
their execution on hardware,

• performance - majority of guest instructions are executed by the hardware without
any intervention of the V M M , and

• safety - V M M manages a l l hardware resources.

In a classically vir tual izable architecture, a l l instructions that read or write privileged state
can be made to trap when executed in an unprivileged context. A classical V M M executes
guest operating systems directly, but at reduced privilege level. The V M M then intercepts
traps from the deprivileged guest and emulates the t rapping instruct ion against the v i r tua l
machine state. The base idea behind a V M M , according to [1] is to provide an execu
t ion environment which meets the guest's expectations about the state of the vir tual ized
hardware, which natural ly differs from that of the actual underlying hardware.

There are several special-purpose hardware-based data structures called primary struc
tures w i th typical ly only one copy in the system. Therefore, the V M M has to derive and
maintain copies of these structures called shadow structures for each guest. Some of these
structures (typically o n - C P U structures) can be handled by the V M M tr ivial ly, while others
like page tables can be challenging, since accesses to the page tables may not always pair
w i th t rapping instructions. The details about how coherency between shadow structures
and pr imary structures is achieved by the V M M , as well as how address translation is done
both i n memory management unit (M M U) software v i r tua l iza t ion and using Intel's and
A M D ' s hardware support called nested paging can be further explored i n [1].

2.2.1 P r o b l e m s w i t h V i r t u a l i z i n g x86 A r c h i t e c t u r e

Because x86 architecture was not designed baring a l l the vi r tual iza t ion aspects i n mind ,
there are some rather complicated issues that v i r tual iza t ion has to face as reported by [26],
w i th the most notable ones being:

• ring aliasing - a guest operating system is able to figure out the fact it is not running
at level 0,

• non-faulting privileged instructions - there are quite a few privileged instruct ions 2 in
the x86 instruct ion set that do not trap when executed i n user mode 3 , and

• address space compression - the V M M has to use a por t ion of guest's v i r tua l address
space to manage the transi t ion between guest operating system and itself.

2Adams et al. [] only mention popf instruction as an example.
3Remember the guest has been deprivileged, i.e. a V M M replaced it at ring 0, thus moving the guest

kernel one level up.

8

2.3 Software Virtualizat ion

This section is going to elaborate the approaches to tackle the x86 flaws as described in
previous section. One of them is emulation as defined and described in Chapter 2. The other
ones, that are going to be explained next, are binary translat ion and paravir tual izat ion.
The section concludes wi th description of X e n hypervisor as the major representative of
paravir tual izat ion.

2.3.1 B i n a r y T r a n s l a t i o n

The fundamental principle of binary translat ion stays the same for majority of solutions
wi th only slight differences. This paragraph is backed by [] that explains the principle on
V M w a r e ' s binary translator. The technique V M w a r e used is based on t radi t ional direct
execution w i t h runtime binary translation. Unl ike other translators which translate code
between different C P U s wi th different instruction sets, V M w a r e ' s translator works wi th
nearly identical instruct ion sets, which makes the translat ion much simpler. The translator
is capable of running privileged mode code, while patching guest's privileged x86 instruc
tions as it reads them from guest's memory. Instructions are filled into a translat ion unit
which produces translated blocks ready to be executed, leaving a l l the non-privileged in
structions unmodified. More details about improving the performance and maximiz ing the
overall efficiency are provided by [1, 20].

2.3.2 P a r a v i r t u a l i z a t i o n

Paravir tual iza t ion tackled the performance challenges of having to translate each system
cal l i n binary translation. B u t for this approach to vi r tual izat ion, it is inevitable that the
kernel of the guest operating system is modified. Accord ing to [], the modification in
paravir tual izat ion is accomplished by replacing a l l the cr i t ical instructions wi th hypercalls.
Hypercalls enable the guest operating system to communicate directly w i th the hypervisor
layer, in other words, the guest operating system knows it is running i n a vir tual ized
environment. In that case for instance, most of the memory management is done by the
guest operating system itself and the hypervisor would be invoked for a page table update
or D M A access.

The essential benefit from using paravir tual izat ion therefore lies i n lower vi r tual iza t ion
overhead, significant performance gain and simpler V M M design. The sacrifice, however,
is the inabi l i ty to run legacy software and proprietary operating systems. The latter is
definitely the biggest drawback of this approach, enforcing anyone who is determined to
make use of paravir tual izat ion, to deploy open source operating systems to a l l v i r tua l
machines. Figure 2.3 shows the general principle of paravir tual izat ion. The most interesting
th ing is that the general concept puts the modified guest O S into privilege level 0, like a non-
vir tual ized operating system would require, without assigning any explicit privilege level
to the hypervisor. The actual implementat ion used i n practice may however vary among
companies providing paravir tual ized solutions.

2.3.3 X e n

This section focuses on X e n hypervisor and some interesting details about its paravirtu
al izat ion solution. Information provided here are mainly backed by the article [2]. Before

9

Ring 3

Ring 2

Ring 1

Ring 0

Applications

Direct execution of
user and OS requests

Hypercalls to
Paravitual izedh-^the hypervisor
guest OS

Hyperv isor
i
i

Hardware

Figure 2.3: Paravi r tual iza t ion concept.

immersing into the details, it is worth not ing that X e n developers adopted a different term
for a v i r tua l machine - a domain.

Architecture

The authors of [2] state that the main goal of the X e n hypervisor design was to make it
as simple as possible, providing only basic control which is available to authorized domains
through an exported interface. The interface is called control interface and provides the
abil i ty to create and to destroy other non-authorized domains, as well as the abi l i ty to
control the scheduling parameters and physical memory allocations, network interfaces and
both creation and deletion of block devices. B y default, there is one single authorized
domain created at the boot t ime called DomainO. Figure 2.4 depicts both authorized and
standard user domains, as part of Xen ' s architecture.

DomO D o m U

Management
software

modified guest
OS kernel

Native device Back-end device
drivers drivers A L.

Application

modified guest
OS kernel

Front-end device
drivers

Control
interface

Virtual CPU
Xen hyperv i sor

Virtual MMU Event channel

Hardware (SMP, M M U , SCSI, IDE, Ethernet , phys ica l memory, . . .)

Figure 2.4: X e n architecture (modified original of [2]).

This domain is responsible for hosting the application-level management software which
is connected to the control interface and enables DomainO to provide higher-level services
(besides those mentioned above) like domain network act ivi ty monitoring, creating network
filters and network traffic control (thrott l ing included).

10

Interesting thing about domain-hypervisor communicat ion is, that domains always com
municate by executing hypercalls which is a synchronous type of communicat ion. After
a request completion, X e n returns control to the cal l ing domain. X e n also implements
a neat opt imizat ion to guest kernels to d iminish the amount of hypercalls issued by queu
ing them and executing them i n a batch. O n the other hand however, X e n talks to the
domains through an asynchronous mechanism which is meant to replace the usual delivery
mechanisms for device interrupts. These events can stack i n a per-domain b i tmap and the
guest operating system specifies an event handler which is also responsible for resetting the
bi tmap of pending events.

This was one of the first images what X e n looked like couple of years ago, according
to [2]. Though the concept stayed the same, many new features have been introduced and
besides paravir tual izat ion, X e n also made use of the C P U extensions Intel and A M D added
to their processors. Not only does X e n support full v i r tua l iza t ion wi th unmodified guests
at the moment, it can also combine both approaches.

I/O Virtual izat ion

Following the information from [1], instead of providing physical devices, DomainO provides
only vir tual ized views of them to other user domains. Since DomainO is privileged and does
have full access to a l l the hardware below, it can export a specific subset of devices to each
user domain depending on each domain configuration. A s it was mentioned above, the user
domain has only a vir tual ized view of the device. X e n calls this mechanism class devices,
because each device falls to a certain category, being a block device, character device,
network device, etc. A s Figure 2.4 shows, the communicat ion is conducted between frontend
of the device located on the user domain and the backend which is located on DomainO. The
communicat ion itself takes place in memory, and X e n actually provides several mechanisms
to accomplish this including shared memory, interrupts or event channels. DomainO then
handles the I / O request, performs the operation on the actual hardware and propagates
the results back to the user domain.

2.4 Hardware Assisted Virtualization—x86 Extensions

The main goal of the hardware assisted vi r tual iza t ion is to eliminate the need for C P U
paravir tual izat ion and binary translat ion techniques and to finally support the concept of
classical v i r tual izat ion. B o t h leading C P U manufacturers, Intel and A M D , provide hard
ware support for x86 C P U V M M s . B o t h are similar, but because most resources (including
[1, 26, 31, 20]) turned their attention to Intel, this section further describes Intel's V T
technology as presented in [26]. Intel's V T introduced two new modes of operation:

• VMX root - s imilar to original supervisor mode originally intended for the host, this
one is intended for the V M M , and

• VMX non-root - which provides an alternative x86 environment, including most of
the privileged and sensitive instructions, controlled by the V M M .

B o t h of these operation modes fully support a l l four protection levels, al lowing the guest
operating system to run at its intended level, and the V M M to make use of mult iple privilege
levels. In other words, the guest operating system executes almost natively without V M M ' s
intervention, including kernel services, as long as the system cal l itself would not lead to

11

cr i t ical instruction execution. The instruct ion set further distinguishes between instructions
which would result into a v i r tua l machine exit unconditionally, and those that can be
configured to trigger v i r tua l machine exit conditionally. T h i s enhances the flexibil i ty of
a V M M that is able to specify instructions and events which result in a v i r tua l machine
exit using various control bi tmaps. A n example would be setting the VMCS to exit from
non-root mode on guest operating system page faults, T L B flushes or address space switches
i n order to main ta in the shadow page tables. Figure 2.5 depicts transitions between these
two operation modes which starts by executing VMXON, thus put t ing the processor into v m x
root operation mode. The transi t ion to non-root operation mode is i l lustrated by two
different instructions:

• VMLAUNCH - used only on in i t i a l entry, and

• VMRESUME - used on a l l subsequent entries

VMX non-root
mode Ring 3

Ring 0

•VMEXITi

Ring 3

Ring 0

•VMLAUNCHi

VMCS 1

Ring 3

Ring 0

VMRESUME

VMCS 2 VMCS N

VMX root
mode (VMM)

VMXON

Ring 3

Ring 0

Figure 2.5: Intel V T : Transi t ion between root and non-root operation modes [].

The smal l blocks labeled as VMCS represent new in-memory data structure called
virtual machine control structure which is logically divided into guest-state area and host-
state area, each containing fields corresponding to different components of the processor
state. V i r t u a l machine entries (either V M L A U N C H or V M R E S U M E) load the C P U state
from the guest-state area, whereas v i r tua l machine exits save the C P U state along wi th
detailed information specifying the reason of the exit to the guest-state area (using dedicated
diagnostic fields) and load the C P U state from host-state area instead.

2.4.1 K V M

Kerne l V i r t u a l Machine (K V M) is a feature of L i n u x allowing the host L i n u x system to act
as a type-1 hypervisor itself (according to definition i n Chapter 2). A s a result of integration
of the hypervisor into the host L i n u x kernel as a loadable module, massive management
simplification and performance gain can be achieved. Rather than taking the other path
that involves creation of a new small featured kernel, the approach the K V M developers
took, brought a number of benefits. Being represented cts ct rc gular L i n u x process, being
scheduled by a conventional L i n u x scheduler, each v i r tua l machine is thus able to profit
from a l l new features L i n u x kernel provides. F r o m the implementat ion point of view, K V M
currently supports a l l main architectures including x86, I B M ' s P o w e r P C and A R M v 8 (also
called A A r c h 6 4) . A s wi th the X e n hypervisor, the goal of this section is to provide a light
insight to the hypervisor concept, so the reader can put the hypervisors into an overall

12

architecture comparison. The section relies mainly on information delivered by [14], [10],
and [9].

Architecture

A s section 2.2 stated, x86 architecture was not designed wi th vi r tual iza t ion support i n mind .
K V M , as a full v i r tual iza t ion and both type-1 and type-2 hypervisor representative, relies
completely on the hardware support provided by Intel V T and A M D ' s S V M technology.

A t the center of the architecture, there is a character device named /dev/kvm. The
operations which this device exposes to the user-space include:

• v i r tua l machine creation,

• v i r tua l machine memory allocation,

• v i r tua l C P U register reading/wri t ing,

• injecting an interrupt into a v i r tua l C P U , and

• running a v i r tua l C P U .

Runn ing a guest operating system (including its own user and kernel execution modes) is not
entirely possible wi th in user-space process. Therefore K V M introduced a new execution
mode - guest mode in which the v i r tua l machine, unless an I / O request or an external
event 4 occurs, runs uninterrupted. Figure 2.6 depicts the overall architecture. K V M does
not provide any hardware emulation, thus it is always used i n conjunction w i t h a hardware
emulator such as Q E M U for instance. W h e n Q E M U is preparing to start a guest, it sends
various requests for hypervisor-specific functions through /dev/kvm to K V M . Once the
preparation phase is finished, Q E M U instructs K V M to start executing the guest system.

Use r mode K e r n e l mode Guest mode

Issue guest
execution ioctl Enter guest

mode

Execute natively

Y e s / s i g n a l
Handle I/O <•

Figure 2.6: K V M architecture [14].

4Such event might be shadow page table fault, network activity or a timeout.

13

K V M Paravirtualization

The need for paravir tual ized devices comes from the slow nature of I / O access, because it
requires the guest to exit the native execution and let t ing the emulator handle the request.
The standard approach i n K V M is to handle the I / O requests i n user-space where the
emulation takes place. Most often, this is achieved by employing Q E M U to simulate the
behaviour of I / O . For these purposes, Q E M U adopted a v i r tua l I / O interface called virtio.
Section 2.4.3 delivers an overview about the vi r t io v i r tual iza t ion driver.
The base concept could be compared to Xen ' s approach - a l l the guests need to support
v i r t i o 5 . Since the host implementat ion of vir t io is i n Q E M U , the host itself does not need
any vi r t io driver. It is worth noting, that v i r t io does not eliminate the need for emulation
(like DomainO touching the hardware directly does), it provides a significant performance
improvement of network and disk operations.

2.4.2 Q E M U

Q E M U (Quick Emulator) is a machine emulator capable of emulating several C P U archi
tectures, for instance x86, A R M , P o w e r P C , and S P A R C . It operates in two modes - full
system emulation and user process emulation. W h e n used wi th the former, full system
emulation, Q E M U emulates a l l aspects of the machine, including a C P U , M M U , graphical
adapter and peripherals. In the latter, user mode emulation which is only supported on
L i n u x powered hosts, Q E M U launches L i n u x processes executing binaries for C P U archi
tectures that are not native to the host. The emulation follows principle already mentioned
in section 2.3.1 - interpreting each guest instruction, translating it to the host's architec
ture and producing translated block of code which is then executed. L ike [] describes for
V M w a r e , to overcome the performance overhead to the full extent possible, Q E M U uti l ized
a translat ion cache for the most recently used translated block in the same way.

The concept of the translator, which is the most crucial part of the whole emulation
process, was different to what Q E M U uses nowadays. Accord ing to [], Q E M U favored the
idea of lightweight por tabi l i ty to new architectures and general maintenance since the very
beginning and presented it as an advantage over the competi t ion. Rather than having mul
tiple translators for a l l known guest-host pairs, Q E M U based its design on micro-operations.
Each guest instruction was then split into one or more micro-operations represented by small
C functions [3, 27, 16]. Q E M U then ut i l ized host's G C C compiler to produce object files
holding native code for each micro-operation. O m i t t i n g details about the complex internal
process of translation, Q E M U translated each guest block to a string sequence of micro-
operations, the native binaries of which were then l inked together to produce a translated
b lock 6 .

Later versions of G C C turned out to be problematic to comply wi th the design, so
Q E M U replaced its translat ion engine wi th Tiny Code Generator (T C G) which is used
to date. T C G is a just i n t ime compiler working over a smal l set of operations coded in
an intermediate representation. Accord ing to [11], when a block of guest code is fetched,
a translator, conforming to guest architecture, translates it into T C G intermediate code.

5 A s for Windows OS, there are available virtio drivers to install; all Linux kernels newer than 2.6.25
support virtio.

6Micro-operations used to appear in many translations, thus they existed in several places across the
memory. Since micro-operations were generic enough, issues related to relocation of external code and
variables occurred. For this purpose, Q E M U used a tool called dyngen to analyze the relocation records
and resolve the issues.

14

T C G then proceeds w i t h some simple optimizations of the code and eventually translates
the intermediate representation into native code. T C G is host specific (the architecture
Q E M U runs on top of) which is quite the opposite to the original concept, since for every
target host architecture that should be supported, a dedicated piece of code has to be
added.

Application

File system

I/O scheduler

Sorting

Merging

Device driver

Application

File system

I/O scheduler

Device driver

Emulator

File system

I/O scheduler

Device driver

Application

virtqueue

Emulator

File system

I/O scheduler

Device driver

Block device Block device

a) Linux I/O
Stack

b) Standard
v ir tual izat ion

Block device

c) V ir tual izat ion with
virt io

Figure 2.7: Compar ison of v i r t io w i t h standard L i n u x I / O stack and duplicated I / O stack
in v i r tual iza t ion [331.

2.4.3 V i r t i o

Section 2.4.1 already prefaced the performance issue caused by I / O requests. W i t h v i r tu
al izat ion however, the performance degradation is even easier to observe. This is due to
dupl icat ion of so-called L i n u x I / O stack which, i n broad overview, consists of a file system
controlling the data, an I / O scheduler sorting and merging I / O requests 7 , and a device
driver accessing the hardware device itself as depicted by Figure 2.7a. In vi r tual iza t ion
environment, an I / O stack exists i n both the host and the guest (Figure 2.7b), thus every
I / O request generated by a process i n the guest causes a trap to the emulator, and is further
propagated to the I / O stack of the host. Since a guest system is nothing else than a user-
space process, I / O requests generated by this process are handled the same way as requests
from other processes i n the host - gathered and rescheduled by host's I / O scheduler. It is
therefore clear that I / O requests coming from the guest are scheduled twice.

V i r t i o on the other hand, is exploited by the v i r tua l machine as a separate device driver.
It is generic enough to support various drivers such as network driver, block device driver,
and memory ballooning. A s i l lustrated by Figure 2.7c, the I / O stack i n the guest is replaced
by virtqueue. The virtqueue is shared between host and guest and each t ime an I / O request
is placed into the queue, the execution is returned back to the host (C P U mode is changed

TSorting reorders I/O requests to reduce the seek time of physical disks, while merging reduces the
number of requests by combining the adjacent ones. [33]

15

from guest mode back to host mode) which then handles the I / O request. Once the request
is complete, host inserts a reply into the virtqueue and switches the C P U mode back to
guest mode. Fol lowing this principle, the overhead of I / O stack dupl icat ion can be reduced
significantly.
Th is section was backed by [33]. The article also provides details about the actual perfor
mance of vir t io , since number of experiments and benchmarks using various I / O schedulers
have been made.

2.5 Container-based Virtualizat ion

Compared to the other types of v i r tua l iza t ion described earlier in this chapter, there is
a significant difference wi th containers - there is no hypervisor v i r tua l iz ing a l l the underlying
hardware for a guest operating system. Instead, they run on top of the same shared
operating system kernel, running one or more processes wi th in themselves. B u t what is
a container? There is actually no rigorous definition, but from the interpretation of [8, 17],
one can understand that a container is a conventional L i n u x user-space process. Because
running a set of processes over shared kernel avoids the hardware abstracting overhead,
this k ind of v i r tual iza t ion is often denoted as lightweight approach. Cont inuing wi th the
lightweight essence of containers, they also enable higher density of vir tual ized instances
which became the keystone of most Platform as a Service - PaaS c loud solutions available
today. The shared host kernel is also one of the disadvantages of the containers, because
the kernel is exposed to the containers which might pose an issue for multi-tenant security.

There have been quite a few container-based solutions on the market for several years,
including Linux-VServer, OpenVZ, Solaris Zones, BSD Jails, etc., but this section focuses
on the most recent approach taken i n this field, based on kernel support for namespaces
and cgroups. L i n u x manual page 8 provides an exact definition of what a namespace is.
It says, it is a mechanism wrapping a global system resource in an abstraction creating
an i l lusion for a l l processes wi th in the namespace of having an exclusive isolated instance of
the global resource, which is why containers have no vis ib i l i ty or access to objects outside
the container. Namespaces is a large topic worth an independent article, so description of
its internals is out of scope of this thesis.

The other mechanism mentioned, cgroups, is a subsystem used to l imi t and isolate
resources usage for a group of processes, thus for instance, al lowing a container to be
resized just by changing the l imits of its corresponding cgroup.

In terms of security, considering isolation as mentioned above, the container is prohibited
to interact w i th the outside of its isolated environment. However, there is a subset of
system calls which are not aware of the namespaces and thus potential ly posing a security
vulnerabil i ty. B y using seccomp l ibrary, the significance of this threat can be diminished.
W h a t it does, is that it allows a process to specify a list of system calls it is allowed to
perform. Should the process t ry to make a system cal l it is not allowed to make after entering
this "secure state", S IGKILL signal w i l l be delivered to i t . Th is system cal l blacklis t ing is
done at an early stage of starting a container, so that any applicat ion that is supposed to
run i n the container is affected by this change.

http://man7.org/linvrx/man-pages/man7/namespaces. 7.html

16

http://man7.org/linvrx/man-pages/man7/namespaces

Chapter 3

Libvirt Project: The Virtualization
Library

This chapter w i l l discuss l ibvir t v i r tual iza t ion toolki t , its fundamental goal, its purpose in
the vi r tual iza t ion world, l ibvir t ' s driver-based architecture, and the difference between client
and server side drivers. A s part of description of l ibvir t ' s internals, l ibv i r td daemon and
aspects regarding l ibv i r td , including l ibvir td 's purpose, communicat ion w i t h the daemon,
client request handling, task-based model, and data serialization/deserialization w i l l be
addressed. The contents of this chapter is backed by information obtained from l ibvir t ' s
documentation [28], as well as from article [5].

3.1 Libvir t 's Objective

M o t i v a t i o n

Disregarding vi r tual iza t ion types, as described i n Chapter 2, every v i r tua l iza t ion solution
offers a set of programming interfaces to corresponding operations to be used wi th their
v i r tua l machines. Lack of such management programming interfaces would render any
solution useless. A l though there was an effort to create a standard for managing v i r tua l
environment, eventually resulting i n Virtualization Management (V M A N) s tandard 1 which
was published by Amer ican Na t iona l Standard Institute, it has not been adopted by the
vi r tual iza t ion market yet. Thus, bui ld ing universal compatible v i r tua l iza t ion management
solutions support ing arbi trary vi r tual iza t ion environments is a rather complicated task. A s
authors of [5] state, this eventually resulted i n different management solutions, especially
commercial ones like V M w a r e and C i t r i x , tailored and opt imized to specific hypervisors.
Some open source projects t ry ing to stay hypervisor-independent like o V i r t and OpenNeb-
ula came up as well , but they needed to find a way to overcome the problem of management
programming interfaces incompatibi l i ty . To make it even harder, some vir tual iza t ion solu
tions tend to change applicat ion interface between releases, breaking any backwards com
pat ibi l i ty completely. Even kernel might change the structure of some of its entities, like
cgroups, w i th newer versions. A l l of these aspects needed to be taken into consideration.

xhttp: / / www.dmtf.org/standards/vman

17

http://www.dmtf.org/

G o a l

To fulfill the aspects mentioned i n the previous paragraph, a management tool would either
require complex internal modifications or make use of a middleware layer which would take
care of these inconsistencies and provide a stable abstract interface. Fol lowing the latter,
the goal of l ibvir t v i r tual iza t ion toolki t is then to provide such an abstraction middleware
layer that deals w i th a l l underlying hypervisor specifics transparently and is sufficient to
securely manage v i r tua l machines, or in terms of libvirt — domains on a host node. In
terms of stability, it is worth not ing that a l l applicat ion interfaces l ibvir t l ibrary exposes
str ict ly follow a philosophy of a long-term stabil i ty which also can be accounted a crucial
benefit i n favor of the management solutions using l ibvir t .

3.2 Libvir t as a Middleware Layer

The information from previous Section 3.1 s t i l l does not clarify l ibvir t ' s place i n the appli
cation hierarchy though, therefore Figures 3.1 and 3.2 are both meant as an aid to better
understand it . The former, depicting the basic concept of l ibvir t being an intermediary for
some userspace management tools to communicate to various hypervisors or v i r tual iza t ion
solutions only serves as an introduct ion to the latter which is more complex, so the following
paragraphs divide Figure 3.2 into ind iv idua l scenarios and describe each one separately.

Management Tools and L i b v i r t d Daemon

Figure 3.2 depicts communicat ion wi th three different v i r tual iza t ion types as per infor
mat ion provided by Chapter 2. Consider a management tool , like virsh or OpenStack,
that, given the specific use case, invokes an applicat ion interface designed to achieve the
requested operation. The l ibrary needs to know what k ind of hypervisor, emulator, or con
tainer solution it should communicate wi th . Th is is because not a l l hypervisors support
remote management, so a daemon that implements remote communication, among other
functionality, is needed at the remote side. Th is daemon is called l ibv i r td and i n most
cases, the l ibrary w i l l direct the communicat ion through i t . B y further analyzing Figure
3.2, it can be seen that l ibv i r td (top left) then uses the same l ibrary i n order to achieve
the requested effect of the operation. In fact, when l ibv i r td uses the library, it invokes
the very same l ibrary method as the original caller on the client side d id . This is possible
due to l ibvir t ' s driver-based architecture that allows the daemon to associate a different
driver w i th accomplishing the operation than the client is allowed to use. The driver-based
architecture and details regarding the communicat ion wi th l i bv i r td daemon are further ad
dressed by Sections 3.3 and 3.4 respectively, and in context of this section and Figure 3.2
are irrelevant.

Managing X e n

Depending on the nature of the operation and vi r tual iza t ion type involved, l ibv i r td then
uses l ibvir t l ibrary in variety of scenarios. The first scenario, as Figure 3.2 depicts (top
right), involves a bare-metal hypervisor - X e n in this case - which is then responsible
for contacting the privileged domain (refer to 2.3.3 for Xen ' s architectural details) and
performing the operation.

18

Managing Containers

The second scenario involves operating system level containers (bot tom right) . Recal l ing
Chapter 2, a l l containers, independent of any specific solution, share the host's kernel. Since
many configurations on containers are achieved v ia cgroups editing, l ibv i r td can then use
l ibvir t l ibrary to edit cgroups, or even talk to various kernel modules or drivers, which might
include S E L i n u x , network drivers, device drivers, etc. The other, more straight-forward and
expected way to use i t , is to invoke a method of the container engine.

Q E M U - K V M

In the last scenario (bot tom left), l ibvir t can s t i l l be used to manipulate various kernel
entities, but the focus should be directed to Q E M U emulator. A l though the hypervisor used
in this scenario is K V M and Q E M U is only responsible for I / O emulation, the philosophy
of K V M is to keep the module as simplest and smallest as possible and either let the guest
run uninterrupted or hand the control over to Q E M U (red arrows originating from K V M) .
So besides scanning for presence of /dev/kvm device and querying for K V M ' s capabilities,
only to later format them as Q E M U command line options, l ibvir t never talks to K V M . So
whenever a client requests an operation over a domain to be carried out, l ibvir t talks to
Q E M U v i a a monitor Q E M U exposes.

u s e r s p a c e m a n a g e m e n t too l s

virsh virt-manager OpenStack oVirt other

i _
Libvirt

Xen KVM OpenVZ LXC UML E S X

Figure 3.1: L ibv i r t connecting management tools to various vi r tual iza t ion solutions.

3.3 Libvir t 's Architecture

Originally, l ibvir t project started as a X e n wrapper 2 rather than a unified management
l ibrary for different hypervisors. B u t its architecture allowed other hypervisors to be added
later on, thus shaping it to its present form.

The architecture is conceptually divided into a hypervisor agnostic and several hyper
visor specific parts, called drivers. The implementat ion of these drivers is exposed by
a generic public A P I for the applications to use, which then maps to appropriate internal
driver functions.

However, high diversity of hypervisors that l ibvir t supports inherently caused some
issues that complicated the overall design, e.g. lack of remote management support and

2 Xen, as an open source project, used to be very popular regarding its paravirtualization implementation.
Since hardware-assisted virtualization and K V M introduction, the situation has slightly changed, though
Xen still remains one of the major virtualization solutions available on the market.

19

Management Tools

v i rsh

L l ibv ir t ->

v i r t -manage r

l ibvirt

O p e n S t a c k

l ibvirt

l ibv ir td
1 — l ibv i r t — 1

H y p e r v i s o r

D o m 0

Gues t OS

D o m U

Gues t OS

XEN

H a r d w a r e

H o s t O S

KVM
(kerne l modu le)

QEMU

Gue s t OS

1

-5v

Dr ivers

SEL i nux l |Namespa ce s | I cg roups l

QEMU

Gue s t OS

Q E M U

Gues t OS

Userspace

QEMU-KVM

H a r d w a r e

H o s t O S 1
Dr ivers

|SEI_inux| |Namespa ce s | |cgroups|

Kernel

Userspace

Host 's kerne l

B inar ies/L ib rar ies

App l i ca t i on

Container

Conta iner solution

Host 's kerne l

B inar ies/L ib rar ies

App l i c a t i on

Container

Figure 3.2: More complex view of l ibvir t connecting to different v i r tual iza t ion solutions.

an architecture which does not preserve the state of a domain, which means that al though
there might be an internal representation of a state available, it is volatile only and not
preserved between restarts or in case of a crash. A s Section 3.2 already prefaced, l ibvir t
tackled this issue by implementing a client-server model where l ibv i r td daemon implements
the server side (Section 3.4 provides more details about l i bv i r td daemon).

3.3.1 Stateful a n d Stateless D r i v e r s

Not a l l hypervisors however, are compatible w i t h this remote management daemon concept.
These are mostly proprietary, closed source solutions which do expose their own remote
management interface. Because of this, l ibvir t drivers are divided into two disjoint sets,
the first one comprising of client-side only drivers and the second one containing server-
side (daemon-side) drivers. A s it was mentioned, since most proprietary solutions do not
need a daemon to tunnel remote connection and the hypervisor is capable of restoring
a running domain's state after a crash, it is understandable that the client-side group of
drivers consists of such dr ivers 3 . L i b v i r t often addresses this set of drivers as stateless,
because it is the vi r tual iza t ion solution itself who is responsible for restoring a domain that
crashed to its last known state prior to the crash. Conversely, daemon-side only set of
drivers consist of drivers that represent hypervisors or v i r tual iza t ion solutions which need
an intermediary to tunnel a remote connection, as well as to preserve the domain's state —

3 At the moment, the current set of client-side only drivers, excluding remote driver and Xen, corresponds
to following proprietary hypervisors: Microsoft's HyperV, VMware's ESX, IBM's phyp and Parallels.

20

for this reason l ibvir t refers to these as stateful drivers. The last driver to cover is the
hypervisor-agnostic remote driver which extends the client-side set of drivers. The purpose
of the remote driver is to offer the client a mechanism to establish a remote connection to
a l ibvir td-managed hypervisor and provide an encapsulation of the communicat ion between
both sides for the whole lifetime of the connection. It is clear that a l l the other client-side
drivers need to implement communicat ion wi th the hypervisor on their own, according to
specifications provided by the hypervisor. The si tuation regarding both types of connection,
using stateless drivers and tunneling through remote driver, are depicted on Figure 3.3.

Client side

c l i e n t I l ibvirt [remote driver

Stateless drivers

HyperV

ESX

PHYP

VZ

Server side

connec t i on
' ^ l i b v i r t d I l ibvirt

I connec t i on

h y p e r v i s o r

Stateful drivers

QEMU

LXC

UML

Bhyve

>

h y p e r v i s o r

Figure 3.3: Hypervisor connection difference using stateless drivers and remote driver

3.3.2 C o n n e c t i o n E s t a b l i s h m e n t

Before any communicat ion wi th a hypervisor takes place, a connection must be established
first. Th i s was already prefaced by section 3.3.1 and Figure 3.3. The choice of driver
used for connection and further management is transparent to the client and l ibvir t does it
automatically. Client however needs to instruct l ibvir t in which driver should be probed for
connection establishment. Th is is achieved v ia a connection U R I which follows the pattern
below.

driver[+transport]://[usernameO][hostname][:port]/[path][?extraparameters]

The decisive part for l ibvir t to choose a driver to open a connection wi th is the U R I
scheme 4 . Should the scheme be not recognized by any stateless driver, remote driver is
selected. F r o m implementat ion point of view, a client establishes a connection to hypervisor
by in i t ia t ing virConnectOpen cal l , specifying a fully qualified U R I 5 to the hypervisor.
Figure 3.4 illustrates a communicat ion between virsh client and l ibv i r td daemon. In this
case, virsh specifies qemu://host/ as the fully qualified U R I . Since Q E M U is managed by
l ibv i r td , as explained in previous section, no stateless driver w i l l be able to recognize the
U R I schema, thus, remote driver w i l l be used. Recal l ing Figures 3.2 and 3.3, it should
be noted that the l ibrary used by a client and the one used by l ibv i r td daemon may only
differ in their version number which has an impact only on the number of features both
sides support, but has no pract ical impact on the communicat ion itself. Tha t means when

4https: / / en.wikipedia.org/ wiki/Uniform Resource Identifier
5 l i b v i r t . conf allows setting up URI aliases for frequently used URIs.

21

http://en.wikipedia.org/

a request to establish a connection arrives to l ibv i r td , an identical ca l l to virConnectOpen
is issued, but this t ime using one of the stateful drivers. In this case Q E M U driver is used.
L i b v i r t d returns the response from Q E M U driver and the in i t i a l handshake between virsh
and Q E M U emulator is then complete.

A p p l i c a t i o n
URI

qemu: / /hos t /

l i b v i r t

q e m u

o p e n v z

Ixc

t e s t

r e m o t e

l i b v i r t

^ l i bv i r t d

-o O

q e m u

o p e n v z

Ixc

t e s t

r e m o t e

Figure 3.4: Connect ing to Q E M U emulator using the remote driver [28].

This driver-based architecture proved to be very flexible, so several other drivers, includ
ing storage handling and network management have been added, as Figure 3.5 demonstrates.
Focus should be moved towards storage driver, because this part icular driver is, to some
extent, different from other drivers. A n d that is because it is further divided into a number
of sub-entities, called backends, each responsible for different storage implementation. This
way, l ibv i r td is able to manage both local and remote storage technologies, including S C S I ,
iSCSI , Ceph , Sheepdog, L V M based storage, etc.

Client PC

Management Tool

libvirt

Remote Driver <

iSCSI Server

Remote Storage

Ceph Server

Remote Storage

libvirtd

QEMU Driver

Network Driver

Storage Driver
j i SCSI b a c k e n d |

SCSI backe

rbd b a c k e n d

Host Server

QEMU Emulator

Network Interface

Local Storage

Figure 3.5: Dr iver based l ibvir t architecture

22

3.4 Libvi r td Daemon

This section focuses on l ibvir t ' s daemon - l ibv i r td - it 's purpose, communicat ion details
w i t h a client, and task-based model used to handle client requests.

A s Section 3.3 prefaced, there are two main reasons for having a daemon as part of
l ibvir t l ibrary. F i rs t one, not every hypervisor supported by l ibvir t provides mechanisms
(application interfaces) for remote management. Secondly, some hypervisors (vir tual izat ion
solutions) do not provide users w i t h mechanisms to safely store v i r tua l machines states.
Tha t way, i n case of a crash, not only the v i r tua l machine is not restarted automatically,
a l l configurations related to such a v i r tua l machine are lost. L ibv i r t ' s daemon implements
features to address both of these issues and following paragraphs are dedicated to explaining
the details.

3.4.1 C o m m u n i c a t i o n

Based on previous sections, it can be easily noticed that l ibvir t utilizes client-server model
of communication, using request-response message-passing system. L ibv i r t made a decision
to use R P C as communicat ion technique. This fact, however, is completely transparent
to the client. W h a t each client has to do when establishing a connection to l ibv i r td , is
to specify whether the desired connection is supposed to be local only or remote, using
a transport layer. B u t this is only a basic bisection, i n fact, l ibvir t does support a range of
transports, including:

• Unix sockets - since these are available on local machine only, the communicat ion is
not encrypted and l ibv i r td uses U n i x permissions and S E L i n u x for access control,

• TLS - daemon uses an authenticated and encrypted socket, l istening on a public port
number,

• ssh - communicat ion is conveyed over ssh connection using O p e n S S H binary,

• Ubssh2 - like the classic ssh protocol transport, but uses Ubssh2 l ibrary instead of
O p e n S S H binary, and

• TCP - i n this case, daemon would use an unencrypted T C P / I P socket, thus, this
type of transport is not advised for product ion use.

Enab l ing a specific transport for a connection is only a matter of changing schema part of
the connection U R L

Recal l ing Figure 3.4, v i rsh client does not specify any addi t ional transport details in
the connection U R I ' s schema, thus, local connection is requested. Should a client request
a T L S transport for instance, the schema would need to be changed i n accordance wi th
L i s t ing 3.1, where <driver> is the name of hypervisor requested. However, it should be
noted, that in order to use T L S transport, client and server authentication certificates have
to be generated first.

<driver>+tls://host

Lis t ing 3.1: L ibv i r t ' s generic connection U R I format

23

So far, previous sections described how clients connect to hypervisors managed by l ib-
v i r t d daemon v ia l ibvir t ' s driver mechanism. Natural ly, the process of connection estab
lishment is more complex and some internal details about daemon's architecture have been
purposely neglected. For most clients connecting to l ibv i r td , i n order to perform some do
main management tasks, this sort of information is transparent and unnecessary to know.
However, the daemon's architecture needs to be further explored to a degree necessary to
understand how the administrat ion interface, explained by Chapters 4 and 5, is designed.

Al though l ibv i r td does represent the server i n the client-server model used by l ibvir t ,
the architectural detai l is that l i bv i r td implements a server object, the only responsibility
of which is to accept clients' connections. In fact, l ibvir td 's architecture is flexible and
modular enough to implement mult iple servers contained wi th in itself 6 . However, only
one server is currently enabled wi th in l ibv i r td daemon at the moment, w i th another one
- administrat ion server - wai t ing to be enabled once the administrat ion interface is ready
to be released. E a c h server then implements mult iple service objects that basically can be
divided into two groups, services that accept local connections (i.e. connections to U N I X
sockets) and services that accept remote connections. It is actually the service, that operates
the socket which clients connect to, only to then pass the client to the server for further
processing, e.g. to determine whether the client is t ry ing to connect to a val id hypervisor.
A service can also be responsible for a client's authentication, if an authentication method is
allowed in l ibvir td 's configuration file. Figure 3.6 summarizes the details mentioned in this
paragraph, w i th two servers contained wi th in l ibv i r td , the original one - now called libvirtd
- and the second one called admin. A s confusing as naming a server exactly the same as
the daemon itself might seem, this decision was made to reflect the fact that this is the
server clients were connecting to the whole t ime transparently. Figure 3.6 also illustrates
different types of services, remote ones that may or may not support traffic encryption,
possibly authentication as well, and local ones that operate on sockets w i th different access
permissions.

W h e n a client is then t ry ing to establish a connection, depending on the service,
a new server-side client representation is created, along wi th some identity information
l ibvir t was able to gather.
Next section w i l l provide information regarding the whole process from receiving a request,
through extracting data from R P C , to actually performing the task.

3.4.2 Message P r o c e s s i n g a n d T a s k - b a s e d M o d e l

Every client request that arrives to l i bv i r td is subject to several stages of processing which
include mult iple levels of dispatching the raw data received on a socket, through creating
a l ibvir t job and placing it into a queue, deserializing the data and finally invoking the
hypervisor-specific driver to accomplish the task. A l t h o u g h important , a detailed descrip
t ion of l ibvir td 's internal message processing implementat ion is out of scope of this thesis,
but information found l ibvir t ' s documentat ion [28], as wel l as code introspection may be
helpful resources to acquire a l l the necessary details. However, it is s t i l l important to pro
vide a general insight on the mechanism used to execute a task.
It is obvious that w i th growing number of connected clients, serializing tasks and executing
them sequentially may have a significant impact on performance. L ibv i r t therefore supports

6Although libvirtd lias been the only daemon mentioned so far, libvirt distinguishes and supports two
other daemons compatible with this design, namely virtlockd and virtlogd. Both however, are out of scope
of this thesis and will not be further addressed.

24

Client 1

Client 2

Client 3

Client 4

Client 5

Serve r l ibvirtd

Service UNIX
read-only

UNIX socket

TCP/IP
socket

Service TCP
with TLS
encryption

TCP/IP
socket

Service TCP
without
encryption

Daemon libvirtd

Hyperv i so r s

Server a d m i n

Service UNIX

Figure 3.6: Another view of how client is connected to l ibv i r td daemon

concurrent task execution. Because of the nature of operations performed, some tasks are
not allowed to be executed at once over the same resource, i.e. operations modifying inter
nal state of a domain w i l l queue on a domain's lock. B u t i n context of message processing,
this fact is irrelevant. T h e concurrent execution is achieved by u t i l iz ing a threadpool, or as
l ibvir t refers to it - a workerpool which is signalized each t ime a task, which holds the pro
cedure identification to be invoked and the data to be passed to the procedure, was placed
into the queue. B u t since the data the task holds are s t i l l raw the last stage of processing
needs to be performed. F i rs t available worker that removes the task from the queue invokes
a procedure-specific dispatcher which is responsible for deserializing the X D R format used
for the data and finally executes the task, passing the deserialized data as an argument.
A s is was mentioned above, by neglecting the fact that not a l l tasks can be executed con
currently, a theoretical hypothesis, that the only l imi t ing factor to the performance besides
hardware is the actual number of workers in a threadpool, can be formed.

Workerpool Limits

Libv i r t does not use a constant number of workers, it is rather dynamical ly increased,
which means that when a task occurs and a l l workers are currently busy w i t h some time-
consuming operations, a new worker is created wi th in the threadpool, so that the task can
be carried out. Spawning too many threads can however pose a significant performance
drop for the whole host system, so each threadpool implements l i m i t s 7 to m a x i m u m and
min imum number of threads that can be active i n a threadpool. W h a t this does is, that
before a worker can be created, first the current number of workers is confronted w i t h the
allowed l imi ts . If no other worker can be created, the task stays in the queue unt i l the first
available worker takes it out. However, it may happen that the m a x i m u m l imi t of workers
has been reached and a l l workers are occupied wi th a task requiring communicat ion wi th
a hypervisor. After instruct ing the hypervisor to accomplish an operation, l ibvir t waits for
a response. B u t because l ibvir t cannot guarantee that such a response w i l l always arrive,
typical ly i f something goes wrong wi th in the hypervisor, the task may hang, possibly making
a domain unresponsive, i n which case the domain needs an intervention by performing
a hard reset. B u t since a l l workers might be occupied w i t h executing a task or by wait ing
for a lock to access the very same domain, there would not be any available workers to

7These limits can be configured in libvirtd's configuration file l i b v i r t d . c o n f

25

perform such a cr i t ica l operation. For these purposes, the threadpool is d ivided into a set
of ordinary workers, as described above, and a set of workers dedicated to operations which
do not rely on communicat ion wi th a hypervisor, making l ibvir t able to guarantee that
such a task would always finish. L ibv i r t refers to these workers as pr ior i ty workers and the
amount of them is constant, i.e. does not adjust i n any way during l ibvir td 's execution.
It is obvious that i n order to uti l ize this model, each procedure available through l ibv i r td
must be tagged w i t h high or low prior i ty w i th a further constraint that a high prior i ty
operation is guaranteed to always finish. Tha t way, an ordinary worker is s t i l l able to
perform a cr i t ica l operation, but a pr ior i ty worker is only allowed to perform high prior i ty
operations.

26

Chapter 4

Administration Interface
Specification

This chapter describes the specification and design of administrat ion interface. Before
examining the specification to various programming interfaces which are part of the ad
minis t ra t ion interface itself, the chapter first justifies the need for such an administrat ion
interface. It then continues w i t h a broad overview of the interfaces an their typica l use
cases, including some pract ical examples.

4.1 Objective

This section is going to present the motivat ion behind the adminis t ra t ion interface. A l l
l ibvir td 's configurations are achieved through a configuration file dedicated to this purpose 1 .
L ibv i r t refers to such a configuration as persistent, which means that whenever l i bv i r td is
restarted, its configuration is loaded from the configuration file and remains the same for
the daemon's lifetime wi th no current mechanism to change its runtime configuration. The
idea of an administrat ion interface originated from the following aspects in product ion
environment:

• load balancing,

• runtime introspection (using dynamic logging settings), and

• client management.

4.1.1 L o a d B a l a n c i n g

Having a l l workers occupied during a server load causes a delay in delivering a service
to customer. B y having the abi l i ty to control the number of active workers on a server
dynamically, without having to restart l ibv i r td each t ime the configuration needs to be
changed, system administrat ion becomes more convenient as the configuration change can
be automated.

V e t c / l i b v i r t / l i b v i r t d . conf

27

4.1.2 R u n t i m e Introspect ion

Occasionally, domains experience failures and a troubleshoot is necessary. B y allowing
the administrator to tweak debugging settings on demand, certain anomalies in daemon's
behaviour can be inspected i n current session as there are rare occasions where problems
disappear w i th daemon restart.

4.1.3 C l i e n t M a n a g e m e n t

A l l o w i n g the administrator to access information regarding connection details of currently
connected clients, possibly logging their act ivi ty may further result i n integration of a policy
mechanism. Depending on the pol icy itself, certain clients may be restricted from the
access to l ibv i r td or certain domains it is managing, including the abi l i ty to force close
an existing connection of a malicious or long inactive client. The problem wi th inactive
clients is caused by the m a x i m u m l imi t to the number of clients connected to the daemon.
So either the l imi t is increased o r / and these inactive clients are disconnected forcefully,
while the decision for disconnecting a specific client s t i l l being a third-party management
application's responsibility.

4.2 Interface Overview

The goal of this section is to provide an overview of the interfaces being designed and their
typica l use cases. Examples shown in this section uti l ize l ibvir t ' s console administrat ion
program virt-admin. App l i ca t i on source code examples demonstrating the sequence of
calls necessary to issue are shown in the Append ix B .

The major components of the adminis t ra t ion interface that are going to be covered by
this section include:

• load balancing - tweaking the number of available workers on a daemon's server,

• runtime introspection - changing parameters of a daemon's logging subsystem, and

• client management - l is t ing clients connected to the daemon, setting l imits to number
of clients allowed, and disconnecting a specific client from the daemon.

L o a d B a l a n c i n g

A s Section 4.1.1 already prefaced, server load can cause delay i n service delivery. Th is can
especially be the case if the daemon's configuration is left unchanged (on default), rather
than modified and tailored to the specific usecase. If such a si tuat ion occurs, chance is
that the m a x i m u m number of active workers is too low. Increasing the value w i l l allow
more tasks to be accepted and accomplished. Note however, that increasing the number
of threads too much can have rather opposite effect to the desired one, since the hardware
might not be able to manage and switch between threads without affecting the overall
performance of the system.

Workers are always modified on per-server basis, therefore the administrator first needs
to know which server suffers from the load the most. To find out what servers are available
on the daemon, the command depicted on L i s t i ng 4.1 is issued.

The administrator can then inspect the current state of a workerpool and later increase
its l imits by issuing the commands shown on List ings 4.2 and 4.3

28

$ virt-admin s r v - l i s t
Id Name

0 admin
1 l i b v i r t d

Lis t ing 4.1: Ret r ieving the list of servers

virt-admin srv-threadpool-info l i b v i r t d
minWorkers 5
maxWorkers 20
nWorkers 5
freeWorkers 5
prioWorkers 5
j obQueueDepth 0

L i s t i n g 4.2: Ret r ieving workerpool attributes from l ibv i r td server

virt-admin srv-threadpool-set l i b v i r t d —max-workers 40 —prio-workers 10
Lis t ing 4.3: Modi fy ing workerpool attributes on l ibv i r td server

R u n t i m e Introspect ion

For the next paragraph, consider a domain that is misbehaving and only errors are being
logged. L i b v i r t recognizes four levels of logging i n the following order: debug, info, warning,
and error. The order i n the list is important , because the levels compose an inclusive
hierarchy - each level also includes levels ordered further i n the list, w i th debug including
al l the other levels, e.g. setting the logging level to warning means that both warnings and
errors w i l l be logged. To inspect the domain's behaviour thoroughly, the daemon needs
to be configured to log a l l debugging information. Fol lowing v i r t -admin commands show
current logging setting retrieval, as well as changing the current global logging level to the
desired value.

virt-admin dmn-log-info
Logging l e v e l : error
Logging f i l t e r s : 4:event 3:json 3:udev 3:util.object
Logging outputs: 1 : f i l e : / v a r / l o g / l i b v i r t / l i b v i r t d . l o g 3:stderr

Lis t ing 4.4: Ret r ieving a l l logging settings from l ibv i r td daemon

$ virt-admin long-define — l e v e l 1

Lis t ing 4.5: Changing global logging level to debug

Debug information is definitely useful for troubleshooting, some modules (like R P C or
virobject.c for instance) however, can be extremely verbose and produce fair amount of
log output which, i n turn, can be overwhelming when investigating an issue. For these
purposes, l ibvir t supports logging filters which are specified i n per-module manner and

29

override the global logging level. L i s t ing 4.6 shows the format of a filter, w i th l e v e l being
the m a x i m u m logging level for a module (overrides the global setting) and module_name
being related to l ibvir t ' s source tree hierarchy, e.g. i f a source module is located i n directory
u t i l and its name is virobject. c, then to define a filter discarding a l l messages other than
warnings or errors from this module, L i s t i ng 4.7 shows the appropriate v i r t -admin command
to be issued (note the " v i r " prefix is omitted, which is a common l ibvir t practice wi th a l l
modules):

level:module_ _name

List ing 4.6: Format of a logging filter

virt-admin dmn-log-define — f i l t e r s "3:util.object 4:rpc"

Lis t ing 4.7: Defining a new set of filters to log only warnings and errors originating from
virobject.c module and only errors from R P C

The default output for daemon to log to is stderr, but there are three addi t ional
different types of outputs l ibv i r td can log to: regular file, system log, and systemd's journal .
Syntax of a logging output is demonstrated by L i s t ing 4.8. A s it can be clearly seen, it is
very similar to filters, w i th the only difference being the pattern to define a new output—
an addi t ional field for file and syslog-based outputs is appended. Examples below show
the addi t ional bit of data to either be an absolute path to a file for file-based logging or
an identifier prepended to every l ibvir t ' s message for syslog-based logging.

level:(file|syslogljournald|stderr):additional_data

Lis t ing 4.8: Format of a logging output

virt-admin dmn-log-define l i b v i r t d —outputs " 1 : f i l e : / v a r / l o g / l i b v i r t d . l o g \
> 3:syslog:libvirtd"

Lis t ing 4.9: Defining a set of outputs to log a l l messages to a file but only warnings and
errors to the system log

C l i e n t M a n a g e m e n t

The last essential part of the administrat ion interface is client access restriction, i.e. altering
the number of connected clients. A s wi th modifying the number of workers i n a workerpool,
the default number for m a x i m u m allowed connected clients might not suit every possible use
case. Therefore, the administrat ion interface provides a way how to change the l imi t during
runtime, either to allow more clients or quite the opposite, to refuse any more connections.

virt-admin srv-clients-info l i b v i r t d
nclients_max
nclients_current
nclients_unauth_max
nclients unauth current

100
10
15
2

Lis t ing 4.10: Retr ieving the current m a x i m u m number of connected clients to l ibv i r td server

30

virt-admin srv-clients-set l i b v i r t d —max-clients 150

Lis t ing 4.11: Resett ing the m a x i m u m number of clients connected

A si tuation may occur where the administrator has to restrict access to l ibv i r td daemon
for some clients. Adminis t ra tor then needs to know what clients are currently connected,
then choose the desired one and close the connection to it forcefully. The problem though
is that the client can reconnect the the daemon almost instantly and l ibvir t cannot prevent
it from doing so, since l ibvir t does not have enough information about a client to put it
on a blacklist . In fact, two clients connected to l i bv i r td are only distinguishable from each
other i n the way they are connected, i.e. either locally, using a U N I X socket or remotely,
using a T C P / I P network socket. A l though l ibvir t is able to inspect which user the client
process belongs to, each user may uti l ize a number of clients, possibly a l l of them being
connected i n the same way (either remotely or local ly) . Thus, the decision of selecting
a v i c t i m to disconnect cannot be made in l ibvir t ; it is administrator 's (or a management
application) responsibility to implement a pol icy and take a l l necessary countermeasures
to prevent a client (or a set of clients) from reconnecting to l ibv i r td daemon. It is worth
noting that l ibvir t is only a tool to achieve a certain goal, not to analyze the conditions
under which an operation should be accomplished. L i s t ing 4.12 demonstrates how a list of
currently connected clients can be retrieved.

v i r t -admin cli e n t - l i s t l i b v i r t d
Id Transport Connected since

1 unix 2016-04-15 17:12 06+0200
2 tcp 2016-04-15 17:11 16+0200
4 unix 2016-04-15 17:11 47+0200

Lis t ing 4.12: Ret r ieving list of currently connected clients from l ibv i r td server

The output may be sufficient for a summary of how many and what k ind of clients are
connected to the server, however, a management applicat ion would typical ly require more
detailed information about a part icular client, for instance, what k ind of authentication
was used for this client, which username the client provided when authenticating, network
socket address of the remote endpoint, and several other transport-dependent attributes.
For this purpose, virAdmClientlnf o interface has been designed which can be ut i l ized from
wi th in the v i r t -admin client i n the following way:

virt-admin cl i e n t -info 1 —server l i b v i r t d
Id: 1
Connected since: 2016-04-15 17:12:06+0200
Transport: unix
User Id: 1000
User Name: eskultety
Group Id: 1000
Group Name: eskultety
Process Id: 12653

Lis t ing 4.13: Retr ieving identity information about a client connected through a U N I X
socket

31

virt-admin cl i e n t -info 2 —server l i b v i r t d
Id: 1
Connected since: 2016-04-15 17:11:16+0200
Transport: tcp
Socket Address: 192.168.10.1:16234
SASL Username: eskultety

Lis t ing 4.14: Retr ieving identity information about a client connected through an unen
crypted T C P / I P socket and S A S L authentication

Now that the administrator has a l l the information l ibvir t has about a client, a v i c t i m to
be disconnected can be then picked, and the connection can be closed forcefully by issuing
client-disconnect command from wi th in v i r t -admin, specifying the v ic t im.

virt-admin client-disconnect 2 — s e r v e r l i b v i r t d

Lis t ing 4.15: Disconnecting client 2 from server l ibv i r td

This section provided a brief overview of the key components of l ibvir t ' s administrat ion
interface, how v i r t -admin can be used to accomplish a certain task, as wel l as mentioning
typica l use cases for them. For C language-based examples, these are both available on the
attached opt ical medium, as well as i n Append ix B .

32

Chapter 5

Implementation Details of Selected
Parts of the Administration
Interface

This chapter covers details and problems faced when implementing the following parts of
the adminis t ra t ion interface:

• the choice of data types,

• load balancing - managing a threadpool's attributes, and

• runtime introspection - management of a daemon's logging parameters.

Th is selection reflects the fact that al though interfaces which implement l is t ing available
servers on a daemon, l is t ing clients connected to a specific daemon, and getting identity
information about those clients are also part of the administrat ion interface and were imple
mented as part of the thesis, there were not any part icular ly troublesome issues that needed
to be solved dur ing implementat ion and therefore these are not covered by this chapter.
Th is chapter also does not cover description of ind iv idua l interfaces, since the complete
A P I reference i n Append ix A already provides description of a l l functions, as well as the
exported macros.

5.1 Common Data Types

Before stepping into sections dealing wi th load balancing and runtime instrospection, the
common data types that were designed to be exposed through the l ibrary should be ad
dressed first, since as Append ix A shows, those are used throughout the whole administra
t ion interface. There are essentially only three data types exposed by the l ibrary so far,
more specifically virAdmConnect, virAdmServer, and virAdmClient. W h a t these have in
common is that they are a l l client-side representations and essential for a l l accessors of
larger server-side objects. A virAdmConnect object 1 represents an active connection to the
l ibv i r td daemon and is obtained through invocation of virAdmConnect Open method, which

1 Although libvirt is a C library, it does employ object oriented programming model by implementing
means that allow it to do so. Therefore libvirt refers to majority of its heterogeneous data types as classes,
while referring to variables declared as these types as objects

33

is a crucial part of the whole administrat ion interface, and its existence is a prerequisite to
al l programming interfaces listed in Append ix A . A l t h o u g h the virAdmConnect data type
already existed prior to wr i t ing this thesis, other important data types are based on this
type and thus should serve merely as an introduct ion to this chapter.

Server O b j e c t

B o t h client management and threadpool configuration take place wi th in attributes of a dae
mon's server object. Despite having an active connection to the adminis t ra t ion server, the
client also needs a way of identifying which server it would like to work wi th . However,
l ibv i r td treats a l l its servers as anonymous, so a form of identification had to be added first.
F rom l ibvir t ' s perspective, several approaches to unique identification could be taken:

• a numeric ID ,

• a 128-bit U U I D string i n canonical format, or

• a string name.

B u t since the major aspect of any programming interface should be convenience, a unique 2

name is the best choice, which unlike both the numeric ID and U U I D provides users wi th
the abi l i ty to dist inguish two servers and their purpose from each other. virAdmServer type
then pairs the server identification wi th the connection object just to provide a different
level of abstraction.

struct _virAdmServer {
virObject object
virAdmConnectPtr conn;
char *srvname;

>;

Listing 5 5.1: A private client-side server representation

C l i e n t O b j e c t

Analogical ly, for programming interfaces that, to some extent, manage client applications
connected to the server, a client-side representation (a datatype) of a client object is nec
essary. Since a client object needs to be looked up wi th in a server first i n order to be
used, this client-side representation also needs a server reference. A s wi th server objects,
clients need a unique identification as well (for the durat ion of a connection). B u t unlike
servers, which are static and their purpose can be expressed wi th a single name, a client
can be classified as a transient entity, i.e. it requests the daemon to accomplish a set of
tasks and then disconnects. Hence, naming ind iv idua l clients would render pointless, es
pecially when two clients connected to the daemon from the same remote host, using the
same connection transport method are, as Section 4.2 mentioned, from l ibvir td 's perspec
tive indistinguishable. Therefore, using a 64-bit wide numeric ID turned out to be the only
option.

B u t l is t ing solely client IDs would not be much of a help to any user, thus more infor
mat ion like connection transport method (T C P , T L S , or a U N I X socket) and connection

2Libvirt internally exposes a mechanism to decline attempts to use a duplicate names

34

struct _virAdmClient {
virObj ect object;
virAdmServerPtr conn;
unsigned long long i d ;
long long timestamp;
unsigned int transport;

>;

Lis t ing 5.2: A private client-side client representation

t imestamp were added. There is more static data that a server stores about a connected
client, but since the nature of that data depends mostly on the connection transport used
by the client, a separate method virAdmClientGetlnf o was implemented for this purpose.
The final client-side virAdmClient data type is then defined according to L i s t ing 5.2.

T y p e d P a r a m e t e r s

Apar t from employing the data types described above for server and client throughout a l l
application programming interfaces, an appropriate way of both sending and receiving a set
of arguments had to be chosen as well . Since l ibvir t is a l ibrary guaranteeing its stability,
a public function signature cannot change, so arguments should be packed in a structure.
B u t defining public structure is tricky, since introducing a new attribute and then adding
it to such a structure would most probably either change the size of the structure or its
padding, thus inherently breaking backwards binary compatibil i ty. M a k i n g such a structure
completely private would usually help, but because l ibvir t utilizes R P C which does not
support communicat ion protocol versions, adding a new attr ibute to a private structure
would only work if a reasonably large array would be added to X D R data structures, just
as a place holder for the private structure to be able to support more attributes la ter 3 .
A n d that is exactly how l ibvir t tackled this issue, by placing a reasonably large array filled
w i th a universal data type called virTypedParameter shown on L i s t i ng 5.3, capable of
holding any scalar types, at the end of specific X D R data structures. Thus, administrat ion
interfaces that are l ikely to send a number of parameters to the remote host made use of this
existing data type l ibvir t exports. A list of typed parameters is then taken as an argument
by majority of functions exposed by adminstrat ion interface.

5.2 Load Balancing: Managing a Threadpool's Attributes

Recal l ing Workerpool Limits from Section 3.4.2, each of l ibvir td 's servers utilizes a thread-
pool to achieve concurrent execution. It also described two types of workers that are
contained wi th in the threadpool: workers responsible for non-privileged tasks, and prior i ty
workers that perform tasks which are under l ibvir t ' s full control and are guaranteed to
always (high-priority tasks) finish. It also mentioned that, while the count of the former is
constrained by the upper and bot tom l imits and the actual number of threads is managed

3Withouth this approach, data growth by even a small fraction would cause compatibility problems
during data R P C deserialization on the remote host. Consider a scenario when the deserializer could
actually understand the procedure number but the daemon is linked with a version of libvirt library that
is several releases behind the one used on the client, the deserializer would then fail to deserialize the data
received from the client, due to the extra portion of data.

35

struct _virTypedParameter {
char field[VIR_TYPED_PARAM_FIELD_LENGTH];
int type;
union {

int i ;
unsigned int u i ;
long long int 1;
unsigned long long int u l ;
double d;
char b;
char *s;

} value;

Lis t ing 5.3: L ibv i r t ' s universal data type that is capable of holding any scalar type

automatically, the count of the latter is constant. It is then clear that unlike pr ior i ty work
ers, which use their "count" at tr ibute available for both reading and wri t ing , non-priority
workers use it for reading only and a l l configurations are done v i a its l imi ts . Fol lowing is
then the complete list of supported attributes (read-only attributes are marked):

• minWorkers - the bo t tom l imi t to number of active workers,

• maxWorkers - the upper l imi t to number of active workers,

• freeWorkers - the number of currently unoccupied workers (read-only attribute),

• nWorkers - the current number of active workers, bo th occupied and free workers
(read-only attr ibute),

• prioWorkers - the current number of pr ior i ty workers, and

• j obQueueLength - the number of tasks wait ing i n queue to be processed (readonly
attribute).

5.2.1 P r o b l e m Deta i l s

The only issue wi th daemon-side logic was thread termination. A s opposed to thread
creation which is done in a generic and expected manner - cal l ing pthread_create -
terminat ion was not a straight forward action. The question was which thread was the
most suitable one to be terminated. Preferably, the v i c t i m should be one of the threads
wait ing for a task to perform. Since there is no way for l ibvir t to address a specific thread,
nor does l ibvir t track the current state of a thread, the original idea of how to tackle this
issue was to exploit the nature of threadpool's task-based model, i.e. creating a task that
would force a thread to ca l l pthread_exit and terminate immedia te ly 1 . A typica l scenario
would then result in following actions:

1. Create as many terminat ion tasks, as there are threads to be terminated.

4Libvirt's threadpools are composed of detached threads, thus it is unnecessary to wait for the exit status
of a thread.

36

2. Insert a l l terminat ion tasks into the task queue.

3. Signal the threadpool's condit ion to wake up workers.

4. Final ize the A P I .

However, this design suffered from a flaw. The problem were l ibvir t ' s lockable structures
(or objects i n l ibvir t ' s terminology). E a c h t ime such an object needs to be modified, it needs
to be locked first. Threadpool is one of such objects, therefore any modification to it requires
a lock to be acquired. So the administrat ion interface acquires a lock to make adjustments
to the threadpool and then tries to invoke another method (to insert into threadpool's task
queue) which also requires a lock on the threadpool object. It is obvious, that such an
execution would lead to an instant deadlock. A l though a solution to this problem exists, it
was rather a complex one, involving code replication which definitely cannot be counted as
an op t imal solution for upstream.

5.2.2 So lu t ion

Natural ly, a different approach was taken. Each thread executes i n an infinite loop, taking
out, executing, and wait ing for new incoming tasks. W h e n a thread starts, it receives
a reference to the threadpool it belongs to from the main thread, just to be able to work
wi th threadpool's task queue. Hav ing a threadpool reference, the thread has everything it
needs to determine whether it should or should not terminate. For this purpose a helper
function virThreadPoolWorkerQuitHelper comparing the current number of threads wi th
the upper l imi t was created. Since some threads may be busy wi th a certain task during the
t ime the upper l imi t decreases, while some are wai t ing on a condit ion, this helper method
has to be invoked:

• after a thread stops wai t ing for a condit ion, but before inspecting the queue for new
tasks, and

• after a thread just finished execution of a task, but before it becomes passive to wait
for a new task to arrive.

5.3 Runtime Introspection: Managing a Daemon's Logging
Parameters

Like w i th threadpool management, concurrency was the major issue during logging man
agement implementation. This section first clarifies the functionality of a daemon's logging
subsystem, how it worked prior to implementat ion changes addressed in this section, then
the specifics of the concurrency problem as well as the steps towards a working solution are
described.

The logging subsystem comprises of three parts:

• global log level,

• logging filters, conforming to format 4.6, and

• logging outputs, conforming to format 4.8.

37

For more information about log level, its hierarchy, and different kinds of log outputs,
refer to Section 4.2. The purpose of logging filters is then to implement behaviour similar
to a blacklist or a whitelist, depending on what the global log level setting i s — i n case of the
former the global level equals to DEBUG, which implies that every single module becomes as
verbose as possible, which is is not op t imal and therefore filters to suppress some modules
need to be defined; for the latter, bo th the global level setting, as well as the filters work in
the opposite way. Logging outputs then restrict which messages (according to their level)
are allowed to be forwarded to certain output.

5.3.1 P r o b l e m Deta i l s

Each worker might want to log some information about its act ivi ty during a task execution.
Once the worker enters the logging subsystem, filters are applied first to decide whether
the message should be logged or d ropped 0 . O n l y after then the thread acquires a lock on
the logging subsystem to forward the message to a l l defined log outputs. Final ly , it releases
the lock for other potential threads wait ing to log their messages.

L i b v i r t d uses a configuration file to modify its logging settings. These settings are
static, applied dur ing daemon start-up and stay the same throughout the daemon's lifetime.
However, the way new filters and outputs are defined had to be changed significantly, in
order to be exposed by administrat ion interface. The problem was the string form of
both logging filters and logging outputs. Once read, the str ing is d ivided into ind iv idua l
filters/outputs which are then passed to a parser. It is the parser who is responsible not only
for parsing but for defining the filter/output as well . Eventually, this means that to define a
filter/output, cr i t ica l section has to be acquired, the filter/output is appended to a list and
the cr i t ica l section is then released. For one-time ini t ia l izat ion, this approach works well,
but the lack of a tomici ty in the defining operation poses a problem when doing this during
runtime. T h i s si tuation is depicted by Figure 5.1. Consider thread 1 and 2 being actors
where thread 1 is t ry ing to define a new set of logging filters. B u t the operation as a whole
is not atomic, it is rather divided into several sub-actions - clearing an existing set of filters
and defining a new one gradually, i.e. one filter at a t ime - that might be interrupted by
thread 2 t ry ing to log its actions that are part of its task execution (creating a domain
for instance). Since thread 1 d id not apply a l l its changes to the logging subsystem before
thread 2 interrupted it , thread 2 breaks the log consistency. It is clear that any changes
to the logging subsystem must be done atomical ly to prevent such scenarios. Once the
operation of defining a new set of filters/outputs is made atomic, thread 2's action would
inherently happen before or after adjustments to logging settings have been made (green
arrows) and the problem would be then solved.

5.3.2 So lu t ion

B o t h filter and output parser were refactored so that the defining logic could be stripped
away to a separate method. Naive solution would be to enclose both the parser and the
defining method i n a cr i t ica l section, but since the parser itself can generate errors that are
being logged, an instant deadlock would occur. The approach taken to tackle this problem
was read-copy-update me thod 6 . Instead of changing the setting gradually, thread 1 would

5For historical reasons related to a long critical section and significant performance drop, checking whether
filters for that specific module the message comes from are up-to-date, as well as applying the filter is not
done in a mutual exclusive manner.

6https://en. wikipedia.org/wiki/Read-copy-update

38

https://en
http://wikipedia.org/wiki/Read-copy-update

Thread 1
I

logging
subsystem

virAdmLogSetFi lters 1 virLogResetFilters

Thread 2

I

this shou ld be
one a tomic
operat ion

VirLogParseAndDefineFilter 1

return 0

VirLogParseAndDefineFilter 2

return 0

virDomainCreate
execu te before
the a t om i c b lock

virLogMessage

log i ncons i s tency

return 0 _

OR
execu te after
the a tomic
b lock

Figure 5.1: Non-atomic definition of a new set of logging filters

parse its input, create a copy of the existing settings, apply the changes to its private copy
and only then proceed wi th defining new settings. This concept works well for logging
filters, it also works well for creating or dropping an output, but has to be further tweaked
to work wi th syslog i f the identifier that syslog prepends to every message needs to be
changed. Syslog keeps its file descriptor to system daemon private, thus for every identifier
change, syslog needs to be reopened, which needed to be deferred to the very last moment
of updat ing the logging settings. If it were reopened any earlier, where an error can s t i l l
occur, the logging settings would remain unchanged, except for the syslog which at this
point would cause inconsistency in the log file.

5.4 Vir t -admin Command-line Interface

Chapter 1 mentioned that al though l ibvir t is mainly recognized as a v i r tua l iza t ion manage
ment library, it is a a v i r tua l iza t ion toolki t . A p a r t from the library, this toolkit is composed
of l ibv i r td , v i r t lockd, v i r logd daemons, and a console client called virsh as well . V i r s h client
is an interactive shell, a tool , for performing management tasks on l ibvirt-managed do
mains, storage, and networks. F r o m average user's perspective, it is merely a convenience
tool , which is scriptable, to accomplish various management tasks without having to write
their own applications l inked wi th l ibvir t l ibrary.

For the very same purpose—to provide a tool to demonstrate l ibvi r t -admin capabilities—
virt-admin client has been created as part of this thesis. The client itself is based on virsh
client but unlike virsh, which can be run both as user root and other users, v i r t -admin can
be run w i t h user root's privileges only. The reason for this is that administrat ion interface

39

essentially grants the user full control of l i bv i r td daemon. W h e n the idea of managing
l ibv i r td itself arose, a decision that only user root should have the privilege to manage
l ibvir t daemon was made. Therefore, the U N I X socket which v i r t -admin connects to has
its permissions set i n a way that only user root can connect to it.

Since the key functionality of the adminis t ra t ion interface has been demonstrated using
v i r t -admin client i n Section 4.2, to conclude this chapter, a list of a l l supported commands
in v i r t -admin is provided:

virt-admin help
Grouped commands:
Virt-admin i t s e l f (help keyword 'virt-admin'):

cd change the current directory
echo echo arguments
exit quit this interactive terminal
help print help
pwd print the current directory
quit quit this interactive terminal
u r i print the admin server URI
version show version
connect connect to daemon's admin server

Monitoring commands (help keyword 'monitor'):
s r v - l i s t l i s t available servers on a daemon
srv-threadpool-info get server workerpool parameters
srv-clients-inf o get server c l i e n t ' s processing controls
s r v - c l i e n t s - l i s t l i s t c l i e n t s connected to <server>
dmn-log-info view daemon's current logging settings
c l i e n t - i n f o retrieve c l i e n t ' s identity from server

Management commands (help keyword 'management'):
srv-threadpool-set set server workerpool parameters
srv-clients-set set server's c l i e n t processing controls
dmn-log-define change daemon's logging settings
client-disconnect disconnect c l i e n t from server

Lis t ing 5.4: v i r t -admin client commands

40

Chapter 6

Testing of Selected Administration
Interfaces

This chapter focuses on testing of the proposed applicat ion programming interfaces. The
test suite that w i l l be further explored in this chapter covers the following test subjects:

• setting global logging level on l ibv i r td daemon,

• setting a new set of logging filters on l ibv i r td daemon,

• setting a new set of logging outputs on l ibv i r td daemon, and

• setting a server's threadpool attributes.

The reason for choosing such a l imi ted set of subjects to test is because the corresponding
interfaces are the most interesting ones in terms of number of parameters, as well as the
nature of the parameters to test. In other words, those are functions that take arguments
which are necessary to modify the current state of l ibv i r td (setters), while the rest of the
administrat ion interface being composed of functions that only retrieve values (getters)
from remote host and return it to the caller either by value or by reference, w i th arguments
passed by reference being allocated by l ibvir t l ibrary automatically, and functions that take
only one parameter 1 - connection object, server object or client object - that is checked
the same way as w i th the other interfaces.

T h e technique used for testing of the aforementioned subjects was black-box testing
and its equivalence partitioning methodology which is used to divide a set of test conditions
into groups or sets that are considered equal. These equivalence classes are usually derived
from the specification of input parameters that w i l l directly influence the way an object
w i l l be processed. In equivalence-partitioning technique, there is a need to test just one
condit ion from each par t i t ion (class, or block as referred to by testing literature). Accord ing
to Myers [18], this is because one can reasonably assume that testing a representative value
for each class is equivalent to testing any other value from that class. Myers also says,
that each test case should consider different combinations of inputs thoroughly i n order to
reduce the to ta l number of test cases necessary, as opposed to exhausting testing where
a test case for every possible combination of inputs would exist.

technically, the minimal number of arguments accepted by any of the designed interfaces is two, but
f l ags argument is explicitly documented not be used yet, otherwise the call will fail. Therefore, this
argument is not subject to testing of any of the above mentioned interfaces.

41

There are definitely some risks coming wi th the selected subjects. The first one, also
addressed by Section 6.2, is related to nparams argument which represents the number of
elements i n a container. W h i l e it is perfectly val id to pass an empty container to a specific
method, t ry ing to allocate zero elements during data serialization i n order to send them over
the network might also fail, depending on the platform. For this reason, a characteristic of
nparams equal to zero has been omit ted. So there is a chance that while t ry ing to send an
empty container to the server and expecting success, it could i n fact return failure if certain
conditions are met.

Another risk worth mentioning would be a possibil i ty of a hidden flaw i n one of the
daemon-side internal functions. Since a fair amount of logic had to be added in order to
be able to wire up the administrat ion interface to the daemon, such a flaw might not get
exposed by just testing various combinations of input arguments to applicat ion interfaces
on the client side, rather than being triggered by a specific sequence of internal calls on the
daemon side. Because of this, unit testing would make a good candidate to supplement the
actual method used and test some of the daemon-side internal functions as well .

6.1 Modifying Daemon Logging Settings

This section covers an analysis of the following interfaces:

• virAdmConnectSetLoggingLevel,

• virAdmConnectSetLoggingFilters, and

• virAdmConne ct SetLoggingOutput s.

Before d iv ing into each one individual ly, it is worth realizing that they only differ in one ar
gument and have two arguments in common, being the connection object conn and flags.
The flags arguments is expl ic i t ly documented not to be used yet, since besides future
extensibility of a l l l ibvir t interfaces, it is of no purpose at the moment. Because the con
nection object argument is common to a l l above mentioned functions, its complete analysis
is going to be carried out globally.

The conn object of type virAdmConnectPtr is used to specify an active connection
a client is maintaining wi th the daemon and there is only one val id way how such an object
can be created (besides doing a typecast from a different object)—calling virAdmConnectOpen,
which w i l l return a newly created connection object. The implementat ion of the object is
private and l ibvir t only supplies the callers w i th accessors to retrieve some of its attributes,
thus once such an object is created there is no way for the caller to change it besides t ry ing
to mangle the binary data in memory forcefully. Fol lowing these facts, there is only a single
characteristic of conn object w i th three classes (A , B , and C) , see the Table 6.1.

Characteristic Va l id Equivalence Classes Invalid Equivalence
Classes

Connect ion status active connection (A) closed/timed-out connection
(B) , object is NULL (C)

Table 6.1: Input characteristic of v i r AdmConne ct object.

42

Set t ing G l o b a l L o g g i n g L e v e l

The first function to examine is virAdmConnectSetLoggingLevel (signature below), which
sets the global logging level for a daemon.

int
virAdmConnectSetLoggingLevel(virAdmConnectPtr conn,

unsigned int l e v e l ,
unsigned int fl a g s) ;

Lis t ing 6.1: v i rAdmConnec tSe tLoggingLevel function prototype.

The l e v e l at tr ibute is a numeric representation of one of four supported logging levels -
debug, info, warning, error - described in Chapter 4 and is thus l imi ted to hold only values
from range 1-4. Par t i t ion ing to equivalence classes is shown i n Table 6.2.

Characteristic Va l id Equivalence Classes Invalid Equivalence
Classes

Value range 1 - 4 (1) < 1 (2), > 4 (3)

Table 6.2: Input characteristic of l e v e l argument.

Recal l ing Table 6.1 of the virAdmConnect object analysis, Rela t ion 6.1 then denotes T[as
being Cartesian product of the first two input arguments to the function.

T[= Connection status x Value range = {(A, 1), (A, 2), (A,3),

(B,l), (B,2), (B,3), (6.1)

(C , 1) , (C , 2) , (C , 3) }

Following the rules stated by Myers i n [18], each test case should cover one, and only one
invalid equivalence class. Myers claims the reason for this to be erroneous-input checks
masking each other. Therefore, a l l pairs, such that both elements are inval id equivalence
class representatives, need to be removed from the set T[to produce the final set of test
cases T i , denoted by Rela t ion 6.2.

T i = {(A, 1), (A, 2), (A, 3), (B, 1), (C, 1)} (6.2)

Set t ing L o g g i n g F i l t er s

Next function to examine is virAdmConnectSetLoggingFilters (signature below), which
allows to set one or mult iple logging filters that are applied before sending each message to
output.

int
virAdmConnectSetLoggingFilters(virAdmConnectPtr conn,

char * f i l t e r s ,
unsigned int fl a g s) ;

Lis t ing 6.2: v i rAdmConnectSetLoggingFi l te rs function prototype.

43

The f i l t e r s at tr ibute conforms to the format described in Section 4.6, w i th an identical
constraint for level, as discussed in previous section. Recal l ing L i s t i ng 4.6, the contents of
module_name part of the match str ing is not further specified by l ibvir t , since there are lots
of modules wi th in l ibvir t l ibrary (with new ones being added) and module_name works only
as a match str ing that is compared to every message's source module before the message
can be sent to the output. In other words, l ibvir t does not care about contents of the
module_name str ing and the worst that can happen is it w i l l be silently ignored.

Next constraint, other than format, on the f i l t e r s argument is that if mult iple filters
need be defined, they have to be del imited by spaces. Table 6.3 reflects ind iv idua l character
istics and corresponding equivalence classes. Before proceeding wi th the Cartesian product

Characteristic Va l id Equivalence Classes Invalid Equivalence
Classes

Str ing pointer content one filter (1), N filters (2),
empty str ing (3)

NULL (4)

Str ing starts w i th a yes (5) no (6)
number
Number value 1 - 4 (7) < 1 (8), > 4 (9)
Level and match string yes (10) no (11)
are del imited by a colon
M a t c h string is empty no (12) yes (13)
More filters del imited yes (14) no (15)
by spaces

Table 6.3: Input characteristic of f i l t e r s argument.

of inputs, Table 6.3 should be examined thoroughly. W h a t it can be seen from the table
is that while it is perfectly achievable (and desirable as well) to produce a dedicated test
case for every inval id equivalence class, only two test cases can be produced to test a valid
input—one for a single filter conforming to the specified format and one for mult iple filters
delimited by spaces. This is because the majori ty of characteristics presented by Table 6.3
are related to the logging filter format and therefore they do form a hierarchy (more specific
constraints put on ind iv idua l parts of the format). For this reason, classes 12 and 14 cover
al l va l id inputs for argument f i l t e r s .

It is also worth noting that a case where there are mult iple filters contained wi th in the
f i l t e r s argument w i th some of them being val id an some inval id is not considered. This
is because of the principle of how the parser on the daemon-side works. W h e n it starts
parsing the string, it first divides it into ind iv idua l filters according to the delimiter. Each
filter is then parsed separately, possibly triggering an error i f a format mismatch has been
detected. Therefore, the final set of necessary test cases T<i can be then denoted by Rela t ion
6 3

T2 = {(A, 3), (A,4), (A, 6), (A, 8), (A, 9),

(A, 11), (A, 12), (A, 13), (A, 14), (A, 15), (6.3)

{B, 12), (B, 14), (C , 12), (C , 14)}

Set t ing L o g g i n g O u t p u t s

This section covers analysis of the outputs at tr ibute to function virAdmConnectSet-
LoggingOutputs (signature below).

44

int
virAdmConnectSetLoggingOutputs(virAdmConnectPtr conn,

char *outputs,
unsigned int f l a g s) ;

Lis t ing 6.3: v i rAdmConnectSe tLoggingOutputs function prototype.

Recal l ing the format for an output string from Section 4.8, the si tuation wi th setting log
ging outputs is quite s imilar to setting filters. Unl ike filters though, the match str ing which
follows the logging level number now matters, because only the following strings are sup
ported: stderr, journald, syslog, and file. There is another constraint put on the format,
which is completely output dependent, w i th the constraint being that file-based and syslog-
based outputs require one more str ing to denote some addi t ional data—an identifier, which
is prepended to every message for syslog-based output and a val id absolute path to a file
for file-based outputs. The content of the addi t ional data passed to syslog-based output
does not matter to l ibvir t at a l l , since that is passed to openlog ca l l untouched. W i t h the
file pa th for file-based output however, it can only be a val id absolute path to a file.

Taking a l l facts into account, Table 6.4 can be constructed analogically to Table 6.3
from previous section. A s wi th filters, the very specific format of an output caused most

Characteristic Va l id Equivalence Classes Invalid Equivalence
Classes

Str ing pointer content one output (1), N outputs (2),
empty str ing (3)

NULL (4)

Str ing starts w i th a yes (5) no (6)
number
Number value 1 - 4 (7) < 1 (8), > 4 (9)
Level and output yes (10) no (11)
defining str ing are
del imited by a colon
Output string's content [stderr, journald, syslog, file]

(12)
random string (13)

Output requires
addi t ional data

[syslog, file] (14) [stderr, journald] (15)

Data-requir ing outputs yes (16) no (17)
and data are separated
by a colon
P a t h to a file for yes (18) no (19)
file-based output is val id
More outputs are yes (20) no (21)
del imited by spaces

Table 6.4: Input characteristic of outputs argument.

characteristics to form a hierarchy. Also , a test case for having mult iple outputs w i th some
of them being val id, while some of them being inval id has been omit ted for the very same
reasons discussed i n previous section. Therefore, regarding a l l the val id equivalence classes,
ind iv idua l test cases for classes 12, 18, and 20 also satisfy a l l the remaining val id equivalence
classes i n the table. The complete set of pairs of inputs, excluding a l l pairs such that both

45

elements are representatives of inval id equivalence classes, for ind iv idua l test cases T3 is
then denoted by Rela t ion 6.4.

T 3 = { (A , 3), (A , 4), (A, 6), (A , 8), (A, 9), (A , 11), (A , 12), (A, 13),

(A, 15), (A 17), (A, 18), (A , 19), (A , 20), (A, 21),

(5 ,12) , (5 , 1 8) , (5 , 2 0) ,

(C, 12), (C, 18), (C , 20)}

6.2 Setting Threadpool Parameters

This section is going to cover virAdmServerSetThreadPoolParameters function (signature
below). It is obvious from the signature that the data types required for the input arguments
differ from a l l functions examined so far, so w i th the exception of flags, a l l of them w i l l
be addressed and analyzed properly.

int
virAdmServerSetThreadPoolParameters(virAdmServerPtr srv,

virTypedParameterPtr params,
int params,
unsigned int fla g s) ;

Lis t ing 6.4: v i rAdmServerSetThreadPoolParameters function prototype.

Fi rs t to examine is the server object at tr ibute srv. L ike w i th the connection object, the
server object, declared by L i s t i ng 5.1, also does have its implementat ion kept private by
l ibvir t , thus is created automatical ly by the l ibrary whenever a cal l to virAdmConnect-
LookupServer or virAdmConnectListServers is issued. Disregarding the structure in
ternals, caller has only a pointer to such an object available, therefore the pointer can
reference a val id server object (an existing one) or it is NULL2. However, the function s t i l l
relies on an active connection, thus the connection object being an external dependency
of the function. To simplify the analysis, rules of the black-box testing need to crippled
to some degree, i.e. knowing the internal implementat ion of the virAdmServer object,
the state of a connection (active, closed/timed-out) can be tracked from wi th in the server
object itself and therefore can be accounted as one of possible values for the server object
function argument. Th is fact is the reflected by Table 6.5.

Characteristic Va l id Equivalence Classes Invalid Equivalence
Classes

Object is val id val id reference (J) connection is closed/timed-out
(K) , object is NULL (L)

Table 6.5: Input characteristic of virAdmServer object.

Cont inuing wi th nparams and params arguments. A l though they could be considered
a single input sub-domain due to being strongly connected, a simple constraint - the value
for nparams can be either negative or positive, reflecting the actual number of parameters in

2Technically, there also could be a non-NULL invalid object reference, but only if the remote server could
be shut down, which is an unsupported operation at the moment.

46

params3- could s t i l l be considered. St r ic t ly speaking, the value could also be equal to zero
and could be tested as well, but such a test case's behaviour would be non-deterministic,
since data serialization and deserialization make a cal l to calloc, the return value of which
in case of cal l ing it w i th size equal to zero is implementat ion dependent—it can either return
NULL, making the test fail or it can return a val id address' 1, which i n turn would make the
test case pass. Another th ing is that t ry ing to pass a combination of nparams equal to zero
and a non-empty container eventually results i n sending no data to the server, which, again
depending on the implementat ion of al location functions, might return success although
a failure due to an inval id content of the container was expected. Therefore, a case when
nparams is equal to zero w i l l not be included i n the final set of test cases.

Characteristic Va l id Equivalence Classes Invalid Equivalence
Classes

Numer ic value > 0 and reflecting the actual
number of parameters i n
params (a)

< 0 (b)

Table 6.6: Input characteristic of nparams argument.

Lastly, params is a either a NULL pointer or points to a val id container of typed pa
rameters. The container is constrained to hold at least one element and i n case of multiple
elements, these have to be distinctive, i.e. no duplicate elements are allowed w i t h i n the
container. For the internal structure of an element, as declared by L i s t ing 5.3, l ibvir t ex
ports type-specific methods, virTypedParamsAddlnt and virTypedParamsAddString for
instance, to add an element into a list. Because they are type-specific, callers only specify
a string-based field identifier. The type for the field identifier is selected automatical ly de
pending on the function called. Moreover, each element to be set on the remote host does
have its unique str ing identifier that the remote host w i l l expect to find. For this part icular
method, the supported identifiers are defined as shown by L i s t ing 6.5.

define VIR. .THREADPOOL. .WORKERS. .MIN "minWorkers"
define VIR. .THREADPOOL. .WORKERS. .MAX "maxWorkers"
define VIR. .THREADPOOL. .WORKERS. .PRIORITY "prioWorkers"

Lis t ing 6.5: F i e l d identifiers supported for vi rAdmServerSetThreadPoolParameters params
argument.

The documentation (refer to Append ix A for details) also specifies the expected types for
al l field identifiers. P u t t i n g a l l the facts together, Table 6.7 specifies a l l characteristics used
to par t i t ion the input sub-domain params.

A s wi th the other examinations performed so far, because of an existing hierarchy of
characteristics for an argument, creating test cases for the right val id equivalence classes
would also make these test cases cover most of the remaining val id equivalence classes as
well . More specifically, classes 6 and 10 do satisfy conditions of the remaining val id classes
as well . Therefore, these w i l l be the only val id classes taken into consideration.

3This simple division of the input sub-domain is due to the fact that since libvirt only receives a pointer
to the list of typed parameters, it cannot possibly verify without triggering segmentation violation, whether
size of the list of parameters truly corresponds to the value determined by nparams.

4Section Memory management functions in ISO/IEC 9899 states that in case a valid pointer is returned,
it shall not be dereferenced, which is not the case with libvirt.

47

Characteristic Va l id Equivalence Classes Invalid Equivalence
Classes

Pointer content a single element (1), a list of
elements (2)

NULL (3)

F i e l d identifier [minWorkers, max Workers,
prioWorkers] (4)

random string (5)

Element 's data type unsigned integer (6) other (7)
Duplicates i n the list no (8) yes (9)
max Workers and
minWorkers relation

max Workers > = minWorkers
(10)

maxWorkers < minWorkers

(11)

Table 6.7: Input characteristic of params argument.

Since there are now three input sub-domains to be combined, the final set of test cases
necessary T4 is going to be constructed step-by-step. Let q\ denote the block of parti t ions
for virAdmServer object, q2 the block of partit ions for params argument, and q3 the block
of partit ions for nparams argument.

q i = { J , K, L}, q2 = {3, 5, 6, 7, 9,10,11}, q3 = {a, b} (6.5)

Next the Cartesian product of each pair of blocks qi, q2, and q3 needs to be produced.
The resulting sets Tqiq2, Tqiq%, and Tq2q3 are denoted by Rela t ion 6.6. A s it can be seen,
pairs such that both elements in the pair are representatives of inval id equivalence classes
were omit ted from the sets.

T q i q 2 = q i x q 2 = { (J , 3), (J , 5), (J , 6), (J , 7), (J , 9), (J , 10),

(J , 11), (i f , 6), (K, 10), (L, 6), (L, 10)}

Tqm = qixq3 = { (J , a), (J , 6), (K, a), (L , a)} (6.6)

Tqm = Q2 x q3 = {(3, a), (5, a), (6, a), (6, 6), (7, a),

(9, a), (10, a), (10, 6), (11, a)}

Rela t ion 6.7 puts a l l sets denoted by 6.6 together into a complete set of triplets T 4 . Aga in ,
triplets such that mult iple elements i n the triplet are representatives of inval id equivalence
classes were omit ted from the set.

T 4 = { (J , 3, a), (J , 5, a), (J , 6, a), (J , 6, b), (J, 7, a),

(J, 9, a), (J , 10, a), (J , 10, 6), (J , 11, a) (6.7)

(i f , 6,a) , (K, 10,a), (L,6,a), (L, 10, a)}

The T4 set could be further opt imized according to the horizontal and vert ical growth
algorithms described i n [24], which ensures that the final set of test cases contains each
pair, opt imiz ing out test cases that comprise of pairs which are already covered by other
test cases. The opt imized set of test cases T'A would then be denoted by Rela t ion 6.8.

T[= {(J, 3, a), (J , 5, a), (J , 6, 6), (J , 7, a),

(J, 9, a), (J , 10, 6), (J , 11, a), (K, 6, a), (6.8)

(K, 10, a), (L , 6, a), (L , 10, a)}

A s it can be seen, after the opt imizat ion, the T4 set contains two test cases less than the
full set T4. There is a drawback however, without further context about the nature of

18

the test cases i n T4, case (J , 6, a), comprising of pairs (J , 6), (J, a), and (6, a), is pairwise
already covered by cases (J , 6, 6), (J , 3, a), and one of cases (L , 6, a) and (i f , 6, a). Therefore,
according to [24] it could be opt imized out. The same approach was taken wi th case (J , 10, a)
which consists of pairs (J , 10), (J , a), and (10, a). It is already covered by cases (J , 10, 6),
(J , 3, a), and one of cases (L , 10, a) and (K, 10, a). However, unlike a l l the test cases in
T4 which only test erroneous paths (one member of the triplet is always an inval id class
representative), the two test cases mentioned above do test successful paths of the execution.

6.3 Testing Toolset Details

Joining a l l the test cases from sets T\ to T4 together, the number of test cases is rather
large to be tested manually, therefore an automated approach was taken. The implemented
toolset for the test suite comprises of the following three parts:

• admin_test_run.sh script - prepares the environment, possibly running admin_test.py
afterwards,

• admin_test.py script - batch execution of test cases, and

• admin_test.c program - ind iv idua l test case execution.

admin test run.sh

A t the t ime of the wr i t ing of this thesis, administrat ion A P I is s t i l l not enabled i n the code
by default yet. Therefore, l ibvir t needs to be bu i ld from sources 5 (from a specific branch)
wi th the administrat ion A P I support enabled. Once l ibvir t is buil t successfully, this script
then compiles the admin_test program and links it against the libvirt-admin.so l ibrary that
was created in the first step. If not run w i t h option - n , admin_test.py is automatical ly
executed once the preparation phase is finished.

admin test.py

This script represents the test automation part of the test suite, rather than specifying each
test case v i a a combinat ion of command-line arguments to admin_test program manual ly
for each test case, this script is able to run test cases specified i n a batch. After the script
is done wi th parsing the test cases from a file, it executes a l ibv i r td process on background
and then executes the admin_test program, formatting the test case parameters on the
command-line. Once the test case has finished, the daemon process is restarted to provide
a fresh instance for the next test case in the list.

The format that is accepted for a test case is described i n admin_test.txt file which also
serves as a working example of how a test batch file can look like. L i s t ing 6.6 demonstrates
how a test batch file can be specified to the script. Th is example also includes usage
of variables LIBVIRT_GIT and LD_LIBRARY_PATH. W h i l e the former is only necessary i f
a custom git repository locat ion was provided to the admin_test_run.sh script, the latter
is absolutely crucial for the admin_test b inary to run, otherwise the program loader w i l l
have no information where the l ibv i r t -admin l ibrary necessary for l ink ing against should be
located, thus causing the program to fail.

To build libvirt from git repository, a significant amount of dependencies have to be installed first.
R E A D M E file which describes the test suite also provides all the necessary information about libvirt's
dependencies

49

LIBVIRT_GIT=/tmp/libvirt.git LD_LIBRARY_PATH=$LIBVIRT_GIT/src/.libs \
> ./admin_test.py - f admin_test.txt

Lis t ing 6.6: Running admin_tes t .py script.

Recal l ing section Virt-admin Command-line Interface i n Chapter 5 which described the
reason why any client connecting to l ibvir t daemon v i a administrat ion interface is required
to run wi th root privileges, the admin_test.py script executing both the daemon that is
supposed to run as root and the admin_test binary, being effectively a client connecting to
the daemon, needs to be run w i t h root privileges as well.

admin test.c

This is the most crucial part of the whole toolset. The program exposes several command-
line options to manual ly specify a test case that should be executed. The test cases are
divided into groups according to the interface tested, i.e. the supported test groups include
logging level, logging filters, and logging outputs modification, as well as altering a server's
threadpool parameters. A n example of how an output from the test suite looks like is
i l lustrated by L i s t ing 6.7.

20) logging-outputs@empty-string: PASSED
21) logging-outputs@output-NULL: PASSED Got expected error: ...
22) logging-outputs@level-not-numeric: FAILED Error: ...

Lis t ing 6.7: admin_tes t program's output fragment.

To conclude this chapter, after running the test suite on the selected administrat ion
interfaces which were discussed throughout the course of this chapter, the results show that
al l of the test cases that were designed through sections 6.1 and 6.2 passed successfully.
Thus, from that perspective, the input domains for the selected administrat ion interfaces
can be considered as tested for various combinations. Source codes of the implemented
testing toolset are available on the opt ical medium i n /tests.

50

Chapter 7

Conclusion

The goal of this thesis was to design and implement a set of administrat ion applicat ion pro
gramming interfaces for l ibv i r td daemon's runtime management. These interfaces would
be implemented i n C language and would cover features including adjustment of the num
ber of workers in a server's threadpool, modification of logging levels, filters, and logging
outputs i n l ibv i r td daemon, as well as remote client management. The complete review
of a l l applicat ion interfaces that were implemented as part of this work can be found in
Append ix A . A l o n g wi th the administrat ion interfaces, a command-line client v i r t -admin
has been created to preview the adminis t ra t ion A P I s ' functionality. Selected interfaces
were subject to black-box testing using the equivalence par t i t ioning method. A s the results
showed, the whole test suite passed successfully.

F rom the upstream's point of view, a l l interfaces (including vir t -admin) , except for the
logging interfaces that are s t i l l i n a review process 1 , were merged into the master branch of
l ibvir t ' s git reposi tory 2 . A l l commits, including refactors, as wel l as minor bug fixes related
to the administrat ion interface are available on the attached opt ical media i n /commits.
Addi t ional ly , since the adminis t ra t ion interface for l ibv i r td daemon is a brand new feature
that the upstream community might be interested in , the work of this thesis became a topic
for a developer presentation that has been proposed for K V M Forum 2016 event 3 .

Future improvements usually depend on ind iv idua l customer's requirements, but there
are several ideas that could be incorporated irregardless of any request. O n of such would
be sending an event to a third-party management applicat ion whenever a client connects or
disconnects, providing a l l information about that client l ibvir t is able to gather. Another
improvement would be to provide an A P I to tel l l ibv i r td that the host is shutt ing down,
thus a l l v i r tua l machines' states should be saved i n order to be resumed after the system is
running again. The current approach utilizes a script which appears as a conventional client,
which can be t r icky if polki t authentication is turned on because the polki t service might be
already off, which i n the end causes a v i r tua l machine to loose its last known state 4 . Since
l ibv i r td runs as user root and adminis t ra t ion interface therefore requires root privileges to
manage i t , there is no dependency on polki t , so a v i r tua l machine would essentially resume
to its last known state before the host's reboot successfully.

1commits available at https://github.com/eskultety/libvirt/tree/logging
2http://libvirt.org/git/?p=libvirt.git;a=shortlog;h=refs/heads/master
3http: / / events.linuxfoundation.org/cfp / proposals/11119/9664
4https://bugzilla.redhat.com/show_bug.cgi?id=1235522

51

https://github.com/eskultety/libvirt/tree/logging
http://libvirt.org/git/?p=libvirt.git;a=shortlog;h=refs/heads/master
http://events.linuxfoundation.org/
https://bugzilla.redhat.com/show_bug.cgi?id=1235522

Bibliography

[1] K e i t h Adams and Ole Agesen. A comparison of software and hardware techniques for
x86 vir tual izat ion. SIGARCH Comput. Archit. News, 34(5):2-13, October 2006.

[2] P a u l Barham, Boris Dragovic, K e i r Fraser, Steven Hand , T i m Harr is , A l e x Ho , R o l f
Neugebauer, Ian Pra t t , and A n d r e w Warfield. X e n and the art of vi r tual izat ion.
SIGOPS Oper. Syst. Rev., 37(5): 164-177, October 2003.

[3] Fabrice Bel la rd . Qemu, a fast and portable dynamic translator. In Proceedings of the
Annual Conference on USENIX Annual Technical Conference, A T E C '05, pages
41-41, Berkeley, C A , U S A , 2005. U S E N I X Associat ion.

[4] M . Ben-Yehuda and J . D . Mason . The xen hypervisor and its io subsystem,
h t t p ://www . m u l i x . o r g / l e c t u r e s / x e n - i o m m u / x e n - i o . p d f , December 2005.
[Online], [Accessed: 2015-12-29].

[5] Mat th ias Bolte , Michae l Sievers, Georg Birkenheuer, Oliver Niehörs te r , and A n d r é
B r i n k m a n n . Non-intrusive vi r tual iza t ion management using l ibvir t . In Proceedings of
the Conference on Design, Automation and Test in Europe, D A T E '10, pages
574-579, 3001 Leuven, Belg ium, Belg ium, 2010. European Design and Automat ion
Associat ion.

[6] N . M . Mosharaf K a b i r Chowdhury and Raouf Boutaba . A survey of network
vi r tual iza t ion. Computer Networks, 54(5) :862 - 876, 2010.

[7] Prasun Dewan. Mul t i c s rings.
h t t p ://www.es .unc . edu /~dewan /242 / f96 /no t e s /p ro t / node l l . h tml , Nov 1996.
[Online], [Accessed: 2016-01-07].

[8] W . Felter, A . Ferreira, R . Rajamony, and J . Rubio . A n updated performance
comparison of v i r tua l machines and l inux containers. In Performance Analysis of
Systems and Software (ISPASS), 2015 IEEE International Symposium on, pages
171-172, M a r c h 2015.

[9] Yasunor i Goto . Kernel-based v i r tua l machine technology. FUJITSU Scientific and
Technical Journal, 47(3) :362—369, Ju ly 2011.

[10] Irfan Hab ib . V i r tua l i za t ion wi th k v m . Linux J., 2008(166), February 2008.

[11] D ing-Yong Hong, Chun-Chen Hsu , Pen-Chung Yew, Jan-Jan W u , Wei -Chung Hsu ,
Pangfeng L i u , C h i e n - M i n Wang, and Yeh-Ch ing Chung . Hqemu: A multi-threaded
and retargetable dynamic binary translator on multicores. In Proceedings of the
Tenth International Symposium on Code Generation and Optimization, C G O '12,
pages 104-113, New York , N Y , U S A , 2012. A C M .

52

http://www.mulix.org/lectures/xen-iommu/xen-io.pdf
http://www.es.unc.edu/~dewan/242/f96/notes/prot/nodell.html

[12] L a n Huang, Gang Peng, and Tzi-cker Chiueh . Mul t i -d imensional storage
vir tual iza t ion. SIGMETRICS Performance Evaluation Review, 32(l) :14-24, June
2004.

[13] R . J i t h in and P r i y a Chandran . V i r t u a l machine isolation. In Recent Trends in
Computer Networks and Distributed Systems Security, volume 420 of
Communications in Computer and Information Science, pages 91-102. Springer
Be r l i n Heidelberg, 2014.

[14] A v i K i v i t y , Y a n i v Kamay , D o r Laor , U r i L u b l i n , and An thony L iguor i . K v m : the
l inux v i r tua l machine monitor. In In Proceedings of the 2001 Ottawa Linux
Symposium, O L S ' 07, J u n 2007.

[15] Joseph M i g g a K i z z a . Guide to Computer Network Security. Springer-Verlag, London ,
U K , U K , 2015.

[16] Hidenar i Koshimae, Y u k i Kinebuch i , Shuichi Oikawa, and Tatsuo Nakaj ima. Us ing a
processor emulator on a microkernel-based operating system. In RTCSA 2006 Work
In Progress Session, N I C T Aust ra l ia , pages 31-37, Kensington, Aus t ra l ia , 2006.

[17] R . Morabi to , J . K ja l lman , and M . K o m u . Hypervisors vs. lightweight vir tual izat ion:
A performance comparison. In Cloud Engineering (IC2E), 2015 IEEE International
Conference on, pages 386-393, M a r c h 2015.

[18] Glenford J . Myers , T o m Badgett , and Corey Sandler. The Art of Software Testing,
Third Edition. John W i l e y & Sons, 2012.

[19] Gera ld J . Popek and Robert P . Goldberg. Formal requirements for vir tual izable th i rd
generation architectures. Commun. ACM, 17(7):412-421, Ju ly 1974.

[20] M . Rosenblum and T . Garfinkel . V i r t u a l machine monitors: current technology and
future trends. Computer, 38(5):39-47, M a y 2005.

[21] N . B . Sahgal and D . Rogers. Understanding intel v i r tual iza t ion technology,
h t t p : / / d o w n l o a d . m i c r o s o f t . c o m / d o w n l o a d / 9 / 8 / f /
98 f3 fe47 -d fc3 -4e74 -92a3 -088782200fe7 / twa r05015_winhec05 .pp t . [Online],
[Accessed: 2015-12-29].

[22] A b r a h a m Silberschatz, Peter Baer G a l v i n , and Greg Gagne. Operating System
Concepts. W i l e y Publ i sh ing , 8th edition, 2008.

[23] Aameek Singh, Madhukar Korupo lu , and Dushmanta Mohapa t ra . Server-storage
vir tual izat ion: Integration and load balancing in data centers. In Proceedings of the
2008 ACM/IEEE Conference on Supercomputing, S C '08, pages 1-12, Piscataway,
N J , U S A , 2008. I E E E Press.

[24] K u o - C h u n g Ta i and Y u L e i . A test generation strategy for pairwise testing. IEEE
Transactions on Software Engineering, 28(1):109-111, Jan 2002.

[25] V i l m a r Travassos. Vi r tua l i za t ion trends trace their origins back to the mainframe,
h t t p : / / w w w . i b m s y s t e m s m a g . c o m / m a i n f r a m e / a d m i n i s t r a t o r / V i r t u a l i z a t i o n /
h i s t o r y _ v i r t u a l i z a t i o n / , August 2012. [Online], [Accessed: 2015-12-27].

53

http://download.microsoft.com/download/9/8/f/
http://www.ibmsystemsmag.com/mainframe/administrator/Virtualization/

[26] R i c h U h l i g , G i l Neiger, D i o n Rodgers, A m y L . Santoni, Fernando C . M . Mar t ins ,
Andrew V . Anderson, Steven M . Bennett, A l a i n K a g i , Fel ix H . Leung, and L a r r y
Smi th . Intel v i r tual iza t ion technology. Computer, 38(5):48-56, M a y 2005.

[27] Geoffroy Vallee, Thomas Naughton, and Stephen L . Scott. System management
software for v i r tua l environments. In Proceedings of the 4th International Conference
on Computing Frontiers, C F '07, pages 153-160, New York , N Y , U S A , 2007. A C M .

[28] Dan ie l Vei l la rd . L ibv i r t the vi r tual iza t ion A P I . h t t p s://www . l i bv i r t . o rg / .
[Online], [Accessed: 2016-01-10].

[29] V M w a r e . Understanding full v i r tual izat ion, paravir tual izat ion, and hardware assist.
h t t p s://www . vmware . com/pdf /v i r t ua l i za t i on .pd f , November 2007. [Online],
[Accessed: 2015-12-26].

[30] V M w a r e . Vi r tua l i za t ion overview.
h t t p ://www.v m w a r e . c o m / f i l e s / p d f / V M w a r e _ p a r a v i r t u a l i z a t i o n . p d f , 2007.
[Online], [Accessed: 2015-12-26].

[31] Chwan-Hwa (John) W u and J . D a v i d I rwin. Introduction to Computer Networks and
Cybersecurity. C R C Press, Inc., B o c a Ra ton , F L , U S A , 1st edition, 2013.

[32] L . Y a n . Development and applicat ion of desktop vi r tual iza t ion technology. In
Communication Software and Networks (ICCSN), 2011 IEEE 3rd International
Conference on, pages 326-329, M a y 2011.

[33] M i n h o o n Y i , Dong H y u n K a n g , M i n h o Lee, Inhyeok K i m , and Young Ik E o m .
Performance analyses of duplicated I / O stack i n vi r tual iza t ion environment. In
Proceedings of the 10th International Conference on Ubiquitous Information
Management and Communication, I M C O M '16, pages 1-6, New York , N Y , U S A ,
2016. A C M .

54

https://www.libvirt.org/
https://www.vmware.com/pdf/virtualization.pdf
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf

Appendices

55

List of Appendices

A Libvirt Adminis trat ion A P I Reference 57

B Libvir t Adminis trat ion A P I Usage Examples 71
B . l L i s t ing Available Servers on Daemon 71
B .2 L i s t ing A l l Clients Connected To a Given Server 72
B .3 Get t ing and Sett ing Logging Level 74
B.4 Get t ing and Sett ing Logging Fi l ters 76
B.5 Get t ing and Sett ing Logging Outputs 77
B.6 Get t ing and Sett ing Server Threadpool Parameters 78
B .7 Get t ing and Setting Client L i m i t s on Server 79
B.8 Retr ieving a Cl ient ' s Identity Information 81
B .9 Clos ing a Cl ient ' s Connect ion Forcefully 84

C Contents of the C D 86

56

Appendix A

Libvirt Administration A P I
Reference

To uti l ize l ibvir t administrat ion library, i.e. to include a l l administrat ion definitions, fol
lowing directive shall be used i n the module:

include <libvirt/libvirt-admin.h>

Type Documentation

This section provides a list of data types created as part of the thesis, as well as a brief
description for each.

typedef enum {
VIR_LOG_DEBUG = 1,
VIR_L0G_INF0,
VIR_LOG_WARN,
VIR_L0G_ERR0R,

} virLogPriority;

These levels are recognized by daemon's logger and can also be stat ically configured in
daemon's configuration file (e.g. l ibvirtd.conf) w i t h option log_level. For runtime level
retrieval and modification use virAdmConnectGetLoggingLevel and virAdmConnectSet-
LoggingLevel methods which set the global logging level that can be further altered by
ut i l iz ing a set of logging filters.

typedef enum {
VIR. .CLIENT. .TRANS .UNIX = 0 ,
VIR. .CLIENT. .TRANS .TCP,
VIR. .CLIENT. .TRANS _TLS,

ifdef VIR_ENUM_SENTINELS
VIR. .CLIENT. .TRANS .LAST

endif
} virClientTransport;

57

These constants represent the transport type a client is connected wi th and are returned
int transport at tr ibute i n client object which can be obtained either by doing a client
lookup virAdmServerLookupClient or by l is t ing a l l clients connected to a server w i th
virAdmServerListClients.

typedef _struct _virAdmServer virAdmServer;
typedef virAdmServer virAdmServerPtr;

typedef _struct _virAdmClient virAdmClient;
typedef virAdmClient virAdmClientPtr;

These are private structures posing a client-side representation of client and server ob
jects w i th their respective pointer types which are the actual types used throughout a l l
administrat ion interfaces.

Macros

This section lists a l l macros created as part of this thesis and which are the only ones
exported by l ibvir t adminis t ra t ion l ibrary so far. The intended use of a l l macros listed in
this section is to use them for str ing attr ibute f i e l d of the virTypedParameter structure
(Lis t ing 5.3) when inserting elements into a list of parameters. Basically, these string
constants can be imagined as distinctive names for each element inside a typed parameters
container that are recognized by the remote server.

Macros are divided into logical groups according to the interface they are supposed to
be used wi th . E a c h macro is accompanied by a commentary explaining it 's meaning and,
most importantly, the expected type identifier it should be paired wi th .

T h r e a d p o o l A t t r i b u t e s M a n a g i n g M a c r o s

/**
* VIR_THREADPOOL_WORKERS_MIN:
* Macro for the threadpool minWorkers l i m i t : represents the bottom l i m i t tc
* number of active workers i n threadpool, as VIR_TYPED_PARAM_UINT.
*/

define VIR_THREADPOOL_WORKERS_MIN "minWorkers"

/**
* VIR_THREADPOOL_WORKERS_MIN:
* Macro for the threadpool maxWorkers l i m i t : represents the upper l i m i t to
* number of active workers i n threadpool, as VIR_TYPED_PARAM_UINT.
* The value of this l i m i t has to be greater than VIR_THREADPOOL_WORKERS_Mn
* at a l l times.
*/

define VIR_THREADPOOL_WORKERS_MAX "maxWorkers"

/**
* VIR_THREADPOOL_WORKERS_PRIORITY:
* Macro for the threadpool nPrioWorkers attribute: represents the current

58

* number of active p r i o r i t y workers i n threadpool, as VIR_TYPED_PARAM_UINT.
*/

define VIR_THREADPOOL_WORKERS_PRIORITY "prioWorkers"

/**
* VIR_THREADPOOL_WORKERS_FREE:
* Macro for the threadpool freeWorkers attribute: represents the current
* number of free workers available to accomplish a job,
* as VIR_TYPED_PARAM_UINT.
* NOTE: This attribute i s read-only and any attempt to set i t w i l l be
* denied by daemon.
*/

define VIR_THREADPOOL_WORKERS_FREE "freeWorkers"

/**
* VIR_THREADPOOL_WORKERS_CURRENT:
* Macro for the threadpool nWorkers attribute: represents the current
* number of ordinary workers i n threadpool, as VIR_TYPED_PARAM_UINT.
* NOTE: This attribute i s read-only and any attempt to set i t w i l l be
* denied by daemon.
*/

define VIR_THREADPOOL_WORKERS_CURRENT "nWorkers"

/**
* VIR_THREADPOOL_JOB_QUEUE_DEPTH:
* Macro for the threadpool jobQueueDepth attribute: represents the current
* number of jobs waiting i n a queue to be processed,
* as VIR_TYPED_PARAM_UINT.
* NOTE: This attribute i s read-only and any attempt to set i t w i l l be
* denied by daemon.
*/

define VIR_THREADPOOL_JOB_QUEUE_DEPTH "jobQueueDepth" Per-server C l i e n t L i m i t s

/**
* VIR_SERVER_CLIENTS_MAX:
* Macro for per-server nclients_max l i m i t : represents the upper l i m i t to
* number of clie n t s connected to the server, as VIR_TYPED_PARAM_UINT.
*/

define VIR_SERVER_CLIENTS_MAX "nclients_max"

/**
* VIR_SERVER_CLIENTS_CURRENT:
* Macro for per-server nclients attribute: represents the upper l i m i t to
* number of clie n t s connected to the server, as VIR_TYPED_PARAM_UINT.
* NOTE: This attribute i s read-only and any attempt to set i t w i l l be

59

* denied by daemon.
*/

define VIR_SERVER_CLIENTS_CURRENT "nclients"

/**
* VIR_SERVER_CLIENTS_UNAUTH_MAX:
* Macro for per-server nclients_unauth_max l i m i t : represents the upper
* l i m i t to number of clie n t s connected to the server, but not
* authenticated yet, as VIR_TYPED_PARAM_UINT.
*/

define VIR_SERVER_CLIENTS_UNAUTH_MAX "nclients_unauth_max"

/**
* VIR_SERVER_CLIENTS _UNAUTH_CURRENT:
* Macro for per-server nclients_unauth attribute: represents the current
* number of clie n t s connected to the server, but not authenticated yet,
* as VIR_TYPED_PARAM_UINT.
* NOTE: This attribute i s read-only and any attempt to set i t w i l l be
* denied by daemon.
*/

define VIR_SERVER_CLIENTS_UNAUTH_CURRENT "nclients_unauth"

C l i e n t Ident i ty M a n a g e m e n t M a c r o s

/**
* VIR_CLIENT_INFO_READONLY:
* Macro represents c l i e n t ' s connection permission, whether the cli e n t i s
* connected i n read-only mode or just the opposite - read-write,
* as VIR_TYPED_PARAM_BOOLEAN.
* NOTE: This attribute i s read-only and any attempt to set i t w i l l be
* denied by daemon.
*/

define VIR_CLIENT_INFO_READONLY "readonly"

/**
* VIR_CLIENT_INFO_SOCKET_ADDR:
* Macro represents cl i e n t s network socket address i n a standard URI format:
* (IPv4| [IPv6]):port, as VIR_TYPED_PARAM_STRING.
* NOTE: This attribute i s read-only and any attempt to set i t w i l l be
* denied by daemon.
*/

define VIR_CLIENT_INFO_SOCKET_ADDR "sock_addr"

/**
* VIR_CLIENT_INFO_SASL_USER_NAME:
* Macro represents c l i e n t ' s SASL user name, i f SASL authentication i s
* enabled on the remote host, as VIR_TYPED_PARAM_STRING.

60

* NOTE: This attribute i s read-only and any attempt to set i t w i l l be
* denied by daemon.
*/

define VIR_CLIENT_INFO_SASL_USER_NAME "sasl_user_name"

/**
* VIR_CLIENT_INF0_X509_DISTINGUISHED_NAME:
* Macro represents the 'distinguished name' f i e l d i n X509 c e r t i f i c a t e the
* cli e n t used to establish a TLS session with remote host, as
* VIR_TYPED_PARAM_STRING.
* NOTE: This attribute i s read-only and any attempt to set i t w i l l be
* denied by daemon.
*/

define VIR_CLIENT_INF0_X509_DISTINGUISHED_NAME "x509_dname"

/**
* VIR_CLIENT_INFO_UNIX_USER_ID:
* Macro represents UNIX UID the cli e n t process i s running with. Only
* relevant for cli e n t s connected l o c a l l y , i .e. v i a a UNIX socket,
* as VIR_TYPED_PARAM_INT.
* NOTE: This attribute i s read-only and any attempt to set i t w i l l be
* denied by daemon.
*/

define VIR_CLIENT_INFO_UNIX_USER_ID "unix_user_id"

/**
* VIR_CLIENT_INFO_UNIX_USER_NAME:
* Macro represents the user name that i s bound to the cli e n t process's UID
* i t i s running with. Only relevant for cli e n t s connected l o c a l l y ,
* i.e. v i a a UNIX socket, as VIR_TYPED_PARAM_STRING.
* NOTE: This attribute i s read-only and any attempt to set i t w i l l be
* denied by daemon
*/

define VIR_CLIENT_INFO_UNIX_USER_NAME "unix_user_name"

/**
* VIR_CLIENT_INFO_UNIX_GROUP_ID:
* Macro represents UNIX GID the cli e n t process i s running with. Only
* relevant for cli e n t s connected l o c a l l y , i .e. v i a a UNIX socket,
* as VIR_TYPED_PARAM_INT.
* NOTE: This attribute i s read-only and any attempt to set i t w i l l be
* denied by daemon.
*/

define VIR_CLIENT_INFO_UNIX_GROUP_ID "unix_group_id"

/**
* VIR_CLIENT_INFO_UNIX_GROUP_NAME:
* Macro represents the group name that i s bound to the cli e n t process's GIE

61

* i t i s running with. Only relevant for cli e n t s connected l o c a l l y ,
* i.e. v i a a UNIX socket, as VIR_TYPED_PARAM_STRING.
* NOTE: This attribute i s read-only and any attempt to set i t w i l l be
* denied by daemon.
*/

define VIR_CLIENT_INFO_UNIX_GROUP_NAME "unix_group_name"

/**
* VIR_CLIENT_INFO_UNIX_PROCESS_ID:
* Macro represents the cli e n t process's pid i t i s running with. Only
* relevant for cli e n t s connected l o c a l l y , i .e. v i a a UNIX socket,
* as VIR_TYPED_PARAM_INT.
* NOTE: This attribute i s read-only and any attempt to set i t w i l l be
* denied by daemon.
*/

define VIR_CLIENT_INFO_UNIX_PROCESS_ID "unix_process_id"

/**
* VIR_CLIENT_INFO_SELINUX_CONTEXT:
* Macro represents the clien t ' s (peer's) SELinux context and this can
* either be at socket layer or at transport layer, depending on the
* connection type, as VIR_TYPED_PARAM_STRING.
* NOTE: This attribute i s read-only and any attempt to set i t w i l l be
* denied by daemon.
*/

define VIR_CLIENT_INFO_SELINUX_CONTEXT "selinux_context"

Function Documentation

int virAdmServerFree(virAdmServerPtr srv);

Release the server object. L i b v i r t uses reference counting on objects, thus any running
instance is kept alive. However the data structure is considered freed and should not be
used thereafter.

• Parameters:

o srv - a client-side server object.

• Return value - returns 0 or -1 i n case of an error.

int virAdmServerGetName(virAdmServerPtr srv);

Get the public name for the specified server.

62

• Parameters:

o srv - a val id server object reference.

• Return value - returns a pointer to the name or N U L L . The str ing does not need to
be deallocated, since its lifetime w i l l be the same as the lifetime of the server object.

int virAdmConnectListServers(virAdmConnectPtr conn,
virAdmServerPtr **servers,
unsigned int fl a g s) ;

Collect list of a l l servers provided by daemon the client is connected to.

• Parameters:

o conn - a val id daemon connection reference,

o servers - pointer to a list to store an array containing objects or N U L L if the
list is not required (only number of servers is required),

o flags - extra flags which are currently unused and caller should thus pass 0.

• Return value - returns the number of servers available on daemon side or -1 in case
of a failure, setting servers to N U L L . There is a guaranteed extra element set to
N U L L in the servers list returned to make i teration easier, excluding this extra el
ement from the final count. Cal ler is responsible for cal l ing virAdmServerFree on
each element of the list, followed by freeing servers.

int
virAdmServerGetThreadPoolParameters(virAdmServerPtr srv,

virTypedParameterPtr *params
int *params,
unsigned int fl a g s) ;

Retrieve threadpool parameters from server srv. U p o n successfull completion, params w i l l
be allocated automatical ly to hold a l l returned data and nparams w i l l be set accordingly.
Section Macros A describes a l l supported keys for data extraction from params.

• Parameters:

o srv - a val id server object reference,

o params - pointer to a list of typed parameters which w i l l be allocated to store
al l returned parameters,

o nparams - pointer which w i l l hold the number of parameters returned in params,
o flags - extra flags which are currently unused and caller should thus pass 0.

• Return value - returns 0 on success or -1 i n case of an error.

63

int
virAdmServerSetThreadPoolParameters(virAdmServerPtr srv,

virTypedParameterPtr params,
int params,
unsigned int fl a g s) ;

Change server threadpool parameters according to params. Note that some tunables are
read-only, thus attempt to set them w i l l result i n a failure. Section Macros A describes a l l
supported keys to achieve this task.

• Parameters:

o srv - a val id server object reference,

o params - pointer to threadpool typed parameter objects,

o nparams - number of parameters i n params,
o flags - extra flags which are currently unused and caller should thus pass 0.

• Return value - returns 0 on success or -1 i n case of an error.

int
virAdmConnectGetLoggingLevel(virAdmConnectPtr conn,

unsigned int fl a g s) ;

Retrieve current global logging level from daemon. Current ly the supported values for
logging level are (numbered from the first) DEBUG, INFO, WARNING, and ERROR. Inclusion
hierarchy is applied, meaning that each level also includes a l l levels, such that they are
ranked wi th a higher number than the original level.

• Parameters:

o conn - pointer to an active administrat ion connection,

o flags - extra flags which are currently unused and caller should thus pass 0.

• Return value - returns the numeric logging level representation or -1 i n case of an
error.

int
virAdmConnectSetLoggingLevel(virAdmConnectPtr conn,

unsigned int l e v e l ,
unsigned int fl a g s) ;

Set daemon's current global logging level to level. See virLogPriority constants i n Type
Documentation A for supported values.

64

• Parameters:

o conn - pointer to an active administrat ion connection,

o l e v e l - desired logging level, v i rLogPr io r i t y defines a l l supported constants,

o flags - extra flags which are currently unused and caller should thus pass 0.

• Return value - returns 0 on success or -1 i n case of an error.

int
virAdmConnectGetLoggingFilters(virAdmConnectPtr conn,

char * * l o g F i l t e r s ,
unsigned i n t fla g s) ;

Retrieve a list of currently installed logging filter on daemon. Fi l ters returned are contained
wi th in an automatical ly allocated string and del imited by spaces. The format of each filter
conforms to the format described in daemon's configuration file (e.g. libvird.conf) . To
retrieve ind iv idua l filters, addi t ional parsing needs to be done by the caller. Cal ler is also
responsible for freeing f i l t e r s correctly.

• Parameters:

o conn - pointer to an active administrat ion connection,

o f i l t e r s - pointer to a variable to store a str ing containing a l l currently defined
logging filters on daemon (allocated automatical ly) ,

o flags - extra flags which are currently unused and caller should thus pass 0.

• Return value - returns the number of filters returned in f i l t e r s , or -1 in case of an
error.

int
virAdmConnectSetLoggingFilters(virAdmConnectPtr conn,

char * f i l t e r s ,
unsigned i n t fla g s) ;

Redefine the existing filter or a set of filters w i th a new one specified i n f i l t e r s . If multiple
filters are specified, they need to be del imited by spaces. The format of each filter must
conform to the format described i n daemon's configuration file (e.g. libvirtd.conf).

• Parameters:

o conn - pointer to an active administrat ion connection,

o f i l t e r s - pointer to a string containing a list of filters to be defined,

o flags - extra flags which are currently unused and caller should thus pass 0.

65

• Return value - returns 0 i f the new filter or the set of filters has been defined success
fully, or -1 i n case of an error.

int
virAdmConnectGetLoggingOutputs(virAdmConnectPtr conn,

char **outputs,
unsigned i n t fla g s) ;

Retrieve a list of currently installed logging outputs on daemon. Outputs returned are
contained wi th in an automatical ly allocated string and del imited by spaces. The for
mat of each output conforms to the format described in daemon's configuration file (e.g.
libvird.conf) . To retrieve ind iv idua l outputs, addi t ional parsing needs to be done by the
caller. Cal ler is also responsible for freeing outputs correctly.

• Parameters:

o conn - pointer to an active administrat ion connection,

o f i l t e r s - pointer to a variable to store a str ing containing a l l currently defined
logging outputs on daemon (allocated automatical ly) ,

o flags - extra flags which are currently unused and caller should thus pass 0.

• Return value - returns the number of outputs returned in outputs, or -1 i n case of
an error.

int
virAdmConnectSetLoggingOutputs(virAdmConnectPtr conn,

char *outputs,
unsigned i n t fla g s) ;

Redefine the existing output or a set of outputs w i t h a new one specified i n outputs.
If mult iple outputs are specified, they need to be del imited by spaces. The format of
each output must conform to the format described i n daemon's configuration file (e.g.
libvirtd.conf).

• Parameters:

o conn - pointer to an active administrat ion connection,

o f i l t e r s - pointer to a string containing a list of outputs to be defined,

o flags - extra flags which are currently unused and caller should thus pass 0.

• Return value - returns 0 if the new output or the set of outputs has been defined
successfully, or -1 i n case of an error.

66

int
virAdmServerGetClientLimits(virAdmServerPtr srv,

virTypedParameterPtr *params,
int *nparams,
unsigned int fl a g s) ;

Retrieve client l imits from server srv. These include the current and m a x i m u m number of
clients connected to server srv, as well as the current and m a x i m u m number of clients con
nected to server srv s t i l l wai t ing for authentication. Keys to params objects are mentioned
in Section Macros A.

• Parameters:

o srv - a val id server object reference,

o params - pointer to list of typed parameters which w i l l be allocated to store a l l
returned l imits ,

o nparams - pointer which w i l l hold the number of parameters returned in params,
o flags - extra flags which are currently unused and caller should thus pass 0.

• Return value - returns 0 on success, al locating params to size returned i n nparams,
or -1 i n case of an error.

int
virAdmServerSetClientLimits(virAdmServerPtr srv,

virTypedParameterPtr params,
int *nparams,
unsigned int fl a g s) ;

Change client l imits on server srv. Cal ler is responsible for al locating params prior to
call ing this method. Note that some attributes are read-only, so consult Section Macros A
to see which keys are supported for params.

• Parameters:

o srv - a val id server object reference,

o params - pointer to client l imits object,

o nparams - number of parameters i n params,
o flags - extra flags which are currently unused and caller should thus pass 0.

• Return value - returns 0 i f the l imits have been changed successfully or -1 in case of
an error.

int virAdmServerLookupClient(virAdmServerPtr srv,
unsigned long long i d ,
unsigned int fl a g s) ;

67

Try to lookup a client on the given server based on an I D . Once the object is no longer
needed, virAdmClientFree should be used to free the resources.

• Parameters

o srv - a val id server object reference,

o i d - ID of the client to lookup on server srv,
o flags - extra flags which are currently unused and caller should thus pass 0.

• Return value - returns the requested client object or N U L L in case of a failure. If the
client could not be found, VIR_ERR_NO_CLIENT error is raised.

int virAdmClientFree(virAdmClientPtr c l i e n t) ;

Release the client object. The running instance is kept alive. The data structure is freed
and should not be used thereafter.

• Parameters:

o c l i e n t - a val id client object reference,

• Return value - returns 0 on success, -1 on failure.

int virAdmClientGetID(virAdmClientPtr c l i e n t) ;

Get client's unique numeric ID .

• Parameters:

o c l i e n t - a val id client object reference,

• Return value - returns the numeric value of client's I D or -1 i n case of an error.

int virAdmClientGetTimestamp(virAdmClientPtr c l i e n t) ;

Get client's connection time. A si tuat iom may happen, that some clients had connected
prior to the update to admin A P I , thus, l ibvir t assigns these clients epoch t ime to express
that it does not know when the client connected.

• Parameters:

o c l i e n t - a val id client object reference,

• Return value - returns client's connection t imestamp (seconds from epoch i n U T C)
or 0 (epoch time) if l ibvir t does not have any information about client's connection
time, or -1 i n case of an error.

68

int virAdmClientGetTransport(virAdmClientPtr c l i e n t) ;

Get client's connection transport type. This information can be helpful to differentiate
between clients connected locally or remotely. A n exception to this would be S S H which
is one of l ibvir t ' s supported transports. A l t h o u g h S S H creates a channel between two
(preferably) remote endpoints, the client process which l ibvir t spawns automatical ly on the
remote side w i l l s t i l l connect to a U N I X socket, thus becoming indistinguishable from any
other local ly connected clients.

• Parameters:

o c l i e n t - a val id client object reference,

• Return value - returns an integer representation of the connection transport used by
client (this w i l l be one of virClientTransport) or -1 i n case of an error.

int virAdmServerListClients(virAdmServerPtr srv,
virAdmClientPtr * * c l i e n t s ,
unsigned int fl a g s) ;

Collect list of a l l clients connected to daemon on server srv.

• Parameters:

o srv - a val id server object reference,

o c l i e n t s - pointer to a list to store an array containing objects or N U L L if the
list is not required (only number of clients is required),

o flags - extra flags which are currently unused and caller should thus pass 0.

• Return value - returns the number of clients connected to daemon on server srv side or
-1 i n case of a failure, setting c l i e n t s to N U L L . There is a guaranteed extra element
set to N U L L i n the c l i e n t s list returned to make i teration easier, excluding this extra
element from the final count. Cal ler is responsible for cal l ing virAdmClientFree on
each element of the list, followed by freeing clients.

int virAdmClientGetlnfo(virAdmClientPtr c l i e n t ,
virAdmClientlnfoPtr *info,
unsigned int fl a g s) ;

Extrac t identity information about a client. At t r ibutes returned i n params are mostly
transport-dependent, i.e. some attributes including client process's p id , gid, u id , or remote
side's socket address are only available for a specific connection type—local or remote.
Other identity attributes like authentication method used (if authentication is enabled on
the remote host) or S E L i n u x context are independent of the connection transport.

69

• Parameters:

o c l i e n t - a val id client object reference,

o info - pointer to an info structure to store the returned identity information
(allocated automatical ly) ,

o flags - extra flags which are currently unused and caller should thus pass 0.

• Return value - returns 0 i f the information has been successfully retrieved or -1 in
case of an error.

int virAdmClientClose(virAdmClientPtr c l i e n t ,
unsigned int fl a g s) ;

Close client ' s connection to daemon forcefully.

• Parameters:

o c l i e n t - a val id client object reference,

o flags - extra flags which are currently unused and caller should thus pass 0.

• Return value - returns 0 i f the daemon's connection wi th c l i e n t was closed success
fully or -1 in case of an error.

70

Appendix B

Libvirt Administration A P I Usage
Examples

This section consists of pract ical examples (written i n C language) of usage of the key
administrat ion interfaces.

B . l List ing Available Servers on Daemon

#include<stdio.h>
#include<stdlib.h>
#include<libvirt/libvirt-admin.h>

int main(void)
{

int ret = -1;
virAdmConnectPtr conn = NULL;
virAdmServerPtr *servers = NULL; /* where to store the servers */
virAdmServerPtr *tmp = NULL;
size_t i = 0;
int count = 0;

/* f i r s t , open a connection to the daemon */
i f (!(conn = virAdmConnectOpen(NULL, 0)))

goto cleanup;

/* get the available servers on the default daemon - l i b v i r t d */
i f ((count = virAdmConnectListServers(conn, feservers, 0)) < 0)

goto cleanup;

/* l e t ' s print the available servers, we have 2 options how to interate
* over the returned l i s t , use count as the boundary or use the fact
* that servers are guaranteed to contain 1 extra element NULL;
* t h i s example uses the second option
*/

p r i n t f (" °/0-15s\n", "Server name");

71

p r i n t f (" \n");
for (tmp = servers; *tmp; tmp++)

printf (" 0/„-15s\n", virAdmServerGetName(*tmp));

ret = 0;
cleanup:

/* Once finished, free the l i s t of servers and close the connection
* properly, Oconn w i l l be deallocated automatically
*/

for (i = 0; i < count; i++)
virAdmServerFree(servers[i]);

free(servers);
virAdmConnectClose(conn);
return ret;

}

examples/list_servers.c

B.2 Listing A l l Clients Connected To a Given Server

#include<stdio.h>
#include<stdlib.h>
#include<time.h>

#include<libvirt/libvirt-admin.h>

s t a t i c const char *
exampleTransportToString(int transport)
{

const char * s t r = NULL;
switch ((virClientTransport) transport) {
case VIR_CLIENT_TRANS_UNIX:

str = "unix";
break;

case VIR_CLIENT_TRANS_TCP:
str = "tcp";
break;

case VIR_CLIENT_TRANS_TLS:
str = " t l s " ;
break;

}

return s t r ? str : "unknown";
}

s t a t i c char *
exampleGetTimeStr(time_t then)

72

{
char *ret = NULL;
struct tm timeinfo;

i f (!localtime_r(fethen, fetimeinfo))
return NULL;

i f (!(ret = calloc(64, sizeof(char))))
return NULL;

i f (strf time (ret, 64, "70Y-%m-7„d 7.H: 7.M: 7.S7.Z",
fetimeinfo) == 0) {

free(r e t) ;
return NULL;

}

return ret;
}

int main(int arge, char **argv)
{

int ret = -1;
virAdmConnectPtr conn = NULL;
virAdmServerPtr srv = NULL; /* which server l i s t the cli e n t s from */
virAdmClientPtr * c l i e n t s = NULL; /* where to store the servers */
size_t i = 0;
int count = 0;

i f (arge != 2) {
fp r i n t f (s t d e r r , "One argument, specifying the server to l i s t "

"connected cl i e n t s for, i s expected\n");
return -1;

}

/* f i r s t , open a connection to the daemon */
i f (!(conn = virAdmConnectOpen(NULL,0)))

return -1;

/* f i r s t a virAdmServerPtr handle i s necessary to obtain, that i s done
* by doing a lookup for sp e c i f i c server, argv[l] holds the server name
*/

i f (!(srv = virAdmConnectLookupServer(conn, argv[l], 0)))
goto cleanup;

/* now get the currently connected cl i e n t s to server srv */
i f ((count = virAdmServerListClients(srv, feclients, 0)) < 0)

goto cleanup;

73

/* l e t ' s print the currently connected cl i e n t s and some basic info about
* them, we have 2 options how to interate over the returned l i s t ,
* use count as the boundary or use the fact that c l i e n t s are guaranteed
* to contain 1 extra element NULL;
* t h i s example uses the f i r s t option
*/

printfC" °/„-5s °/„-15s 0/0-15s\n0/0s\n", "Id", "Transport", "Connected since",

for (i = 0; i < count; i++) {
virAdmClientPtr c l i e n t = c l i e n t s [i] ;
unsigned long long i d = virAdmClientGetID(client);
int transport = virAdmClientGetTransport(client);
char * timestr = NULL;
i f (!(timestr =

exampleGetTimeStr(virAdmClientGetTimestamp(client))))
goto cleanup;

p r i n t f C °/„-511u %-15s °/„-15s\n", i d ,
exampleTransportToString(transport), timestr);

free(timestr);
}

ret = 0;
cleanup:

/* Once finished, free the l i s t of c l i e n t s , free the server handle and
* close the connection properly, Oconn w i l l be deallocated
* automatically
*/

for (i = 0; i < count; i++)
virAdmClientFree(clients[i]);

f r e e (c l i e n t s) ;
virAdmServerFree(srv);
virAdmConnectClose(conn);
return ret;

>

examples/ l is t_cl ients .c

B.3 Getting and Setting Logging Level

#include<stdio.h>
#include<libvirt/libvirt-admin.h>

int main(void)
{

int ret = -1;

74

virAdmConnectPtr conn = NULL;
int l e v e l ;
char * l e v e l s t r = NULL;

/* f i r s t , open a connection to the daemon */
i f (!(conn = virAdmConnectOpen(NULL,0)))

return -1;

/* get the current global logging l e v e l */
i f ((level = virAdmConnectGetLoggingLevel(conn, 0)) < 0)

goto cleanup;

/* l e t ' s print the level */
switch ((virLogPriority) level) {
case VIR_L0G_DEBUG:

le v e l s t r = "DEBUG";
break;

case VIR_L0G_INF0:
le v e l s t r = "INFO";
break;

case VIR_L0G_WARN:
le v e l s t r = "WARNING";
break;

case VIR_L0G_ERR0R:
le v e l s t r = "ERROR";
break;

default:
f p r i n t f (s t d e r r , "Unrecognized logging l e v e l '°/0d'\n", l e v e l) ;
goto cleanup;

}

p r i n t f ("Current logging l e v e l : °/0d\n", l e v e l) ;

/* now, change the level to some other value, INFO for instance */
i f (virAdmConnectSetLoggingLevel(conn, VIR_L0G_INF0, 0) < 0)

goto cleanup;

ret = 0;
cleanup:

/* Once finished close the connection properly, @conn w i l l be deallocate
* automatically
*/

virAdmConnectClose(conn);
return ret;

}

examples/log_level .c

75

B.4 Getting and Setting Logging Filters

#include<stdio.h>
#include<stdlib.h>
#include<libvirt/libvirt.h>
#include<libvirt/libvirt-admin.h>
#include<libvirt/virterror.h>

int main(int arge, char **argv)
{

int ret = -1;
virAdmConnectPtr conn = NULL;
char * f i i t e r s = NULL;

i f (arge != 2) {
fp r i n t f (s t d e r r , "One argument specifying f i l t e r s i s required\n");
return -1;

}

/* f i r s t , open a connection to the daemon */
i f (!(conn = virAdmConnectOpen(NULL,0)))

return -1;

/* get the current logging f i l t e r s */
i f (virAdmConnectGetLoggingFilters(conn, M i l t e r s , 0) < 0)

goto cleanup;

pri n t f ("Current logging f i l t e r s : °/0s\n", f i l t e r s) ;

/* now, change the f i l t e r s to some other value */
i f (virAdmConnectSetLoggingFilters(conn, argv[l], 0) < 0)

goto cleanup;

ret = 0;
cleanup:

/* Once finished close the connection properly, @conn w i l l be deallocate
* automatically
*/

virAdmConnectClose(conn);
f r e e (f i l t e r s) ;
return ret;

}

examples/log_fHters.c

76

B.5 Getting and Setting Logging Outputs

#include<stdio.h>
#include<stdlib.h>
#include<libvirt/libvirt.h>
#include<libvirt/libvirt-admin.h>
#include<libvirt/virterror.h>

int main(int arge, char **argv)
{

int ret = -1;
virAdmConnectPtr conn = NULL;
char *outputs = NULL;

i f (arge != 2) {
f p r i n t f (s t d e r r , "One argument specifying outputs i s required\n");
return -1;

}

/* f i r s t , open a connection to the daemon */
i f (!(conn = virAdmConnectOpen(NULL,0)))

return -1;

/* get the current logging f i l t e r s */
i f (virAdmConnectGetLoggingOutputs(conn, feoutputs, 0) < 0)

goto cleanup;

pri n t f ("Current logging outputs: °/0s\n", outputs);

/* now, change the f i l t e r s to some other value */
i f (virAdmConnectSetLoggingOutputs(conn, argv[l], 0) < 0)

goto cleanup;

ret = 0;
cleanup:

/* Once finished close the connection properly, @conn w i l l be deallocate
* automatically
*/

virAdmConnectClose(conn);

/* we're responsible for freeing the result once we don't need i t */
free(outputs);
return ret;

}

examples/ log_outputs .c

77

B.6 Getting and Setting Server Threadpool Parameters

#include<stdio.h>
#include<stdlib.h>
#include<libvirt/libvirt-admin.h>

int main(int argc, char **argv)
{

int ret = -1;
virAdmConnectPtr conn = NULL;
virAdmServerPtr srv = NULL; /* which server to work with */
virTypedParameterPtr params = NULL;
int nparams = 0;
size_t i ;

i f (argc != 2) {
fp r i n t f (s t d e r r , "One argument specifying the server which to work "

"with i s expected\n");
return -1;

}

/* f i r s t , open a connection to the daemon */
i f (!(conn = virAdmConnectOpen(NULL,0)))

goto cleanup;

/* a server handle i s necessary before any API regarding threadpool
* parameters can be issued
*/

i f (!(srv = virAdmConnectLookupServer(conn, argv[l], 0)))
goto cleanup;

/* get the current threadpool parameters */
i f (virAdmServerGetThreadPoolParameters(srv, feparams, fenparams, 0) < 0)

goto cleanup;

for (i = 0; i < nparams; i++)
printf ("°/0-15s: °/0d\n", params [i] . f i e l d , params [i] .value .ui);

virTypedParamsFree(params, nparams);
params = NULL;
nparams = 0;

/* set minWorkers to 10, maxWorkers to 15 and prioWorkers to 10 */
int maxparams = 0;
i f (virTypedParamsAddUInt(feparams, fenparams, femaxparams,

VIR_THREADP00L_W0RKERS_MIN, 10) < 0 I I
virTypedParamsAddUInt(feparams, fenparams, femaxparams,

VIR_THREADP00L_W0RKERS_MAX, 15) < 0 I I

78

virTypedParamsAddUInt(feparams, fenparams, femaxparams,
VIR_THREADP00L_W0RKERS_PRI0RITY, 10) < 0)

goto cleanup;

/* now, change the threadpool settings to some different values */
i f (virAdmServerSetThreadPoolParameters(srv, params, nparams, 0) < 0)

goto cleanup;

ret = 0;
cleanup:

virTypedParamsFree(params, nparams);

/* Once finished deallocate the server handle and close the connection
* properly, @conn w i l l be deallocated automatically
*/

virAdmServerFree(srv);
virAdmConnectClose(conn);
return ret;

>

examples / threadpool_params.c

B.7 Getting and Setting Client Limits on Server

#include<stdio.h>
#include<stdlib.h>
#include<libvirt/libvirt-admin.h>

int main(int arge, char **argv)
{

int ret = -1;
virAdmConnectPtr conn = NULL;
virAdmServerPtr srv = NULL; /* which server to work with */
virTypedParameterPtr params = NULL;
int nparams = 0;
size_t i ;

i f (arge != 2) {
fp r i n t f (s t d e r r , "One argument specifying the server which to work

"with i s expected\n");
return -1;

}

/* f i r s t , open a connection to the daemon */
i f (!(conn = virAdmConnect0pen(NULL,0)))

goto cleanup;

79

/* a server handle i s necessary before any API regarding threadpool
* parameters can be issued
*/

i f (!(srv = virAdmConnectLookupServer(conn, argv[l], 0)))
goto cleanup;

/* get the current c l i e n t l i m i t s */
i f (virAdmServerGetClientLimits(srv, feparams, fenparams, 0) < 0)

goto cleanup;

for (i = 0; i < nparams; i++)
printf ("°/0-15s: °/0d\n", params [i] . f i e l d , params [i] .value .ui);

virTypedParamsFree(params, nparams);
params = NULL;
nparams = 0;

/* set nclients_max to 100 and nclients_unauth_max to 20
int maxparams = 0;
i f (virTypedParamsAddUInt(feparams, fenparams, femaxparams,

VIR_SERVER_CLIENTS_MAX, 100) <
virTypedParamsAddUInt(feparams, fenparams, femaxparams,

VIR_SERVER_CLIENTS_UNAUTH_MAX,
goto cleanup;

/* now, change the cli e n t l i m i t s on the server */
i f (virAdmServerSetClientLimits(srv, params, nparams, 0) < 0)

goto cleanup;

ret = 0;
cleanup:

virTypedParamsFree(params, nparams);

/* Once finished deallocate the server handle and close the connection
* properly, @conn w i l l be deallocated automatically
*/

virAdmServerFree(srv);
virAdmConnectClose(conn);
return ret;

examples / c l ien t_ l imi ts .c

*/

0 II

20) < 0)

80

B.8 Retrieving a Client's Identity Information

#define _GNU_SOURCE
#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#include<string.h>
#include<libvirt/libvirt-admin.h>

s t a t i c const char *
exampleTransportToString(int transport)
{

const char * s t r = NULL;

switch ((virClientTransport) transport) {
case VIR_CLIENT_TRANS_UNIX:

str = "unix";
break;

case VIR_CLIENT_TRANS_TCP:
str = "tcp";
break;

case VIR_CLIENT_TRANS_TLS:
str = " t l s " ;
break;

}

return s t r ? str : "unknown";
}

s t a t i c char *
exampleGetTimeStr(time_t then)
{

char *ret = NULL;
struct tm timeinfo;

i f (!localtime_r(fethen, fetimeinfo))
return NULL;

i f (!(ret = calloc(64, sizeof(char))))
return NULL;

i f (strf time (ret, 64, "0/„Y-y„m-0/„d °/„H: °/„M: 0/0S0/„z",
fetimeinfo) == 0) {

free(r e t) ;
return NULL;

}

return ret;

81

}

s t a t i c char *
exampleGetTypedParamValue(virTypedParameterPtr item)
{

int ret = 0;
char * s t r = NULL;

switch (item->type) {
case VIR_TYPED_PARAM_INT:

ret = asprintf(&str, "°/0d", item->value. i) ;
break;

case VIR_TYPED_PARAM_UINT:
ret = asprintf(&str, "°/0u", item->value .ui);
break;

case VIR_TYPED_PARAM_LLONG:
ret = asprintf(&str, "°/0lld", item->value. 1) ;
break;

case VIR_TYPED_PARAM_ULLONG:
ret = asprintf(&str, "°/0llu", item->value .ul);
break;

case VIR_TYPED_PARAM_DOUBLE:
ret = asprintf(&str, " / i f " , item->value. d);
break;

case VIR_TYPED_PARAM_B00LEAN:
str = strdup(item->value.b ? "yes" : "no");
break;

case VIR_TYPED_PARAM_STRING:
str = strdup(item->value.s);
break;

default:
f p r i n t f (stderr, "unimplemented parameter type °/0d\n", item->type);
return NULL;

}

return s t r ;
}

int main(int arge, char **argv)
{

int ret = -1;

82

virAdmConnectPtr conn = NULL;
virAdmServerPtr srv = NULL; /* server the c l i e n t i s connected to */
virAdmClientPtr clnt = NULL; /* which cl i e n t get identity info for */
virTypedParameterPtr params = NULL; /* where to store identity info */
int nparams = 0;
size_t i = 0;
char *timestr = NULL;

i f (argc != 3) {
f p r i n t f (s t d e r r , "Two arguments, f i r s t specifying the server the "

"client i s connected to and second, specifying the "
"client's ID for which identity information should be "
"retrieved, are expected\n");

return -1;
}

/* f i r s t , open a connection to the daemon */
i f (!(conn = virAdmConnectOpen(NULL, 0)))

return -1;

/* f i r s t a virAdmServerPtr handle i s necessary to obtain, that i s done "
* by doing a lookup for s p e c i f i c server, argv[l] holds the server name
*/

i f (!(srv = virAdmConnectLookupServer(conn, argv[l], 0)))
goto cleanup;

/* next, virAdmClientPtr handle i s necessary to obtain, that i s done by
* doing a lookup on a s p e c i f i c server, argv[2] holds the c l i e n t ' s ID
*/

i f (!(clnt = virAdmServerLookupClient(srv,
s t r t o l l (a r g v [2] , NULL, 10), 0)))

goto cleanup;

/* f i n a l l y , retrieve clnt's identity information */
i f (virAdmClientGetlnfo(clnt, feparams, fenparams, 0) < 0)

goto cleanup;

/* t h i s information i s provided by the cl i e n t object i t s e l f , not by
* typed params container; i t i s unnecessary to c a l l virAdmClientGetlnfc
* i f only ID, transport method, and timestamp are requested
*/

i f (!(timestr = exampleGetTimeStr(virAdmClientGetTimestamp(clnt))))
goto cleanup;

pri n t f ('7„-15s: °/„llu\n", " i d " , virAdmClientGetlD(clnt));
pri n t f ("°/0-15s: °/0s\n", "connection_time", timestr);
pr i n t f ("°/„-15s: °/„s\n", "transport",

exampleTransportToString(virAdmClientGetTransport(clnt)));

83

/* t h i s i s the actual identity information retrieved i n typed params
* container
*/

for (i = 0; i < nparams; i++) {
char * s t r = NULL;
i f (!(str = exampleGetTypedParamValue(feparams[i])))

goto cleanup;
printf ("°/0-15s: °/0s\n", params [i] . f i e l d , s t r) ;
f r e e (s t r) ;

}

ret = 0;
cleanup:

/* Once finished, free the typed params container, server and c l i e n t
* handles and close the connection properly, Oconn w i l l be deallocated
* automatically
*/

virTypedParamsFree(params, nparams);
virAdmClientFree(clnt);
virAdmServerFree(srv);
virAdmConnectClose(conn);
free(timestr);
return ret;

}

examples / cl ient_info.c

B.9 Closing a Client's Connection Forcefully

#include<stdio.h>
#include<stdlib.h>
#include<libvirt/libvirt.h>
#include<libvirt/libvirt-admin.h>

int main(void)
{

int ret = -1;
virAdmConnectPtr connl = NULL; /* admin connection */
virConnectPtr conn2 = NULL; /* l i b v i r t standard connection */
virAdmServerPtr srv = NULL; /* server the cli e n t connected to */
virAdmClientPtr clnt = NULL; /* which cli e n t to disconnect */

/* f i r s t , open a standard l i b v i r t connection to the daemon */
i f (!(conn2 = virConnectOpen(NULL)))

return -1;

81

/* next, open an admin connection that w i l l be used to disconnect the
* standard l i b v i r t c l i e n t
*/

i f (!(connl = virAdmConnectOpen(NULL,0)))
goto cleanup;

/* a virAdmServerPtr handle i s needed, therefore server lookup i s
* performed
*/

i f (!(srv = virAdmConnectLookupServer(connl, " l i b v i r t d " , 0)))
goto cleanup;

/* a virAdmClientPtr handle i s also necessary, so lookup for cl i e n t i s
* performed as well
*/

i f (!(clnt = virAdmServerLookupClient(srv, 1, 0)))
goto cleanup;

/* f i n a l l y , use the cli e n t handle to disconnect the standard l i b v i r t
* c l i e n t from l i b v i r t d daemon
*/

i f (virAdmClientClose(clnt, 0) < 0)
goto cleanup;

ret = 0;
cleanup:

/* Once finished, both server and cl i e n t handles need to be freed and
* both connections Oconnl and @conn2 should be closed to free the
* memory.
* NOTE: Although @conn2 has been disconnected, unlike disconnecting by
* c a l l i n g virConnectClose which closes the connection voluntarily and
* frees the object automatically, virAdmClientClose i s a forceful
* disconnect of another cl i e n t (client can use i t on i t s e l f as well).
* Therefore no automatic deallocation of the object takes place and i s
* the c a l l e r s r e s p o n s i b i l i t y to do so.
*/

virAdmClientFree(clnt);
virAdmServerFree(srv);
virAdmConnectClose(connl);
virConnectClose(conn2);
return ret;

examples / client_close.c

85

Appendix C

Contents of the C D

• /tests - testing toolset including the test suite itself,

• /commits - a l l the important commits that were made, including the applicat ion
interfaces themselves, some necessary refactors, as well as minor bug fixes,

• /examples - C language examples demonstrating the usage of a l l the implemented
A P I s ,

• /src - cloned github repository including the ' logging' branch which has the logging
interfaces applied, and

• /doc - electronic version of the thesis.

86

