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Abstrakt 
Elektrony v elektronovém mikroskopu jsou běžně řízeny statickými elektrickými a mag
netickými poli. Existuje však také možnost modifikovat dráhu elektronu skrze pondero-
motivní potenciál vytvořený laserovým pulsem. Tato práce se zabývá tvorbou speciálně 
tvarovaných laserových svazků pro potřeby tohoto zařízení. V první části je vysvětlen 
princip fungování elektronového mikroskopu řízeného světlem. Následuje přestavení pros
torového modulátoru světla, který bude k tvarování svazku využit. Poté je rozebráno 
hledání fázové masky pro prostorový modulátor, což zahrnuje komentář simulačních metod 
propagace světla, rešerši iterativních algoritmů pro problém hledání fáze a postup vývoje 
vlastního algoritmu. Na závěr je vyvinutý algoritmus otestován v experimentu. 

Summary 
Electrons in an electron microscope are commonly controlled by static electric and mag
netic fields. However, there is also the possibility to modify the electron trajectory through 
the ponderomotive potential created by a laser pulse. This work focuses on creating spe
cially shaped laser beams for this purpose. The first part explains the principle of op
eration of a light-controlled electron microscope. This is followed by an introduction to 
the spatial light modulator, which will be used for beam shaping. Then, the search for a 
phase mask for the spatial modulator is discussed, including commentary on simulation 
methods for light propagation, a review of iterative algorithms for phase retrieval, and the 
development process of a custom algorithm. Finally, the developed algorithm is tested in 
an experiment. 

Klíčová slova 
ponderomotivní síla, tvarování svazku, prostorový modulátor světla, Gerchbergův-Saxtonův 
algoritmus 
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1. Introduction 
The development of advanced imaging techniques has revolutionized the field of mi

croscopy, providing insights into the microscopic world. Among these advancements, 
electron microscopy has emerged as a powerful tool, enabling researchers to visualize 
structures at the atomic level with a remarkable precision. However, despite its capabili
ties, traditional electron microscopy faces limitations in manipulating and controlling the 
electron beam with a high enough precision. The integration of the laser into electron 
microscopy offers a new way to manipulate electron beams, leading to the concept of a 
light-controlled electron microscope. 

This bachelor thesis focuses on one specific problem in the development of a light-
controlled electron microscope, which is the delivery of an on-demand shaped laser beam 
for enhancing the functionality and precision of the electron beam. The shaping of the 
laser beam is achieved using a Spatial Light Modulator (SLM), a device capable of mod
ulating the phase of light to generate complex light patterns. By incorporating the SLM 
into the electron microscope setup, it becomes possible to manipulate the electron beam 
with unprecedented control, opening new avenues for advanced imaging and analysis. 

The integration of a shaped laser beam into electron microscopy offers several advan
tages. It allows for the precise control of the electron beam's trajectory, enabling targeted 
illumination of specific regions of a sample. Another application involves correction of 
abberations where we can take advantage of wide variety of reachable laser beam shapes 
which provide much more freedom than conventional correction techniques. As the use 
of an SLM introduces flexibility and adaptability, it opens a door to dynamical alter
ations of the beam profile to suit different experimental requirements such as imaging 
weak-contrast or beam-sensitive samples. 

This thesis is structured as follows: Chapter 1 provides an overview of the principles of 
electron microscopy and the challenges associated with beam control. Chapter 2 discusses 
the theoretical background of laser beam shaping and the role of Spatial Light Modulators. 
Chapter 3 details the experimental setup and methodology employed in the integration of 
the SLM into the electron microscope. Chapter 4 presents the results of the beam shaping 
experiments, highlighting the improvements in beam control and imaging capabilities. 
Finally, Chapter 5 concludes the thesis with a summary of the findings and potential 
future directions for research. 

The successful development of a light-controlled electron microscope represents a sig
nificant step forward in the field of microscopy. By harnessing the power of shaped laser 
beams, this innovative approach promises to enhance the precision, versatility, and ca
pabilities of electron microscopy, paving the way for new discoveries and applications in 
science and technology. 
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2. BEAM SHAPING 

2. Beam Shaping 
Laser light has various applications across many disciplines of science, each placing 

different requirements on laser beam properties. The choice of laser source determines 
the initial intensity distribution and beam size, but these parameters can be further 
manipulated by placing appropriate optical elements in the path of the beam. Many of 
these optical elements serve a single preset function. For example, an axicon (specialized 
type of lens which has a conical surface) can create Bessel beams. The focus of this work 
is not on these single-purpose elements. Instead, I will concentrate on a general-purpose 
device capable of generating arbitrary laser beams. This device is called Spatial Light 
Modulator (SLM) and its properties and functionality are discussed later in section 3.2. 

2.1. Examples of Shaped Beams Applications 
To demonstrate that there are many applications of shaped laser beams I will name a 

few examples from research and industry: 

• Ultrashort laser welding - typical Gaussian beam can be reshaped into a Bessel 
beam that is capable to meet the higher precision demands in advanced joining 
techniques. [ ] 

• Trapping Rydberg atoms - excitation and trapping Rydberg atoms is important in 
the field of quantum computation, sensing, imaging and others. [ ] 

• Parallelization of micromachining - laser can be divided into a grid of spots that 
can be used to manufacture repetitive structures in a shorter time. [3] 

• Optical tweezers - shaped laser beam can be used to manipulate small particles. By 
utilizing a Spatial Light Modulator, it is possible to smoothly move the particles 
across small areas without changing anything apart from the phase mask uploaded 
on the SLM from a computer. [ ] 

• Generating optical vortices - the Spatial Light Modulator has the capability to 
generate laser beams with a spiral phase that winds around a phase singularity [5]. 
These beams, known as optical vortices, possess angular momentum. They have 
numerous applications, including optical tweezers, optical encryption, and other 
advanced technologies. 

These applications and many more are the subject of intense research nowadays. 

2.2. Control and Correction of Electron Beams 
Another potential application could be preparing laser pulses with a custom spatial 

intensity distribution that can interact with electron beams in a predictable way. This 
is a potentially promising way to modulate electron beams in electron microscopes. This 
work will be focused on creating shaped laser beams for this particular application. 
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2.2. CONTROL AND CORRECTION OF ELECTRON BEAMS 

2.2.1. Interaction of Electrons with a Laser Pulse 
An intuitive description of what happens when an electron passes through a focused 

laser field is offered by the concept of ponderomotive force. 
Details about the ponderomotive force can be found in chapter V.§30. of [ ] or in 

chapter 21.1. of online source [7]. This force occurs in situations when an object is 
exposed to a potential that consists of a smoothly varying component and rapidly varying 
oscillations. Position of the object x can be written as a sum of a slower motion X and 
rapid oscillations £: 

x(t) = x(t)+at)- (2.i) 
Interestingly, X(t) is not independent of the oscillations. A good example that demon
strates how motion can be changed by a rapidly oscillating force is a pendulum in a 
gravitational field. Under normal conditions, the only stable position is when the pendu
lum points downward. However, when the pivot point of the pendulum starts to oscillate 
in the vertical direction, the pendulum becomes also stable when it points straight up. 

Ponderomotive force can also act on a particle with a charge q in an oscillating electric 
field Ecos(ut). The force on this particle is 

F = qE cos(ut). (2.2) 

Invoking the Newton's second law, the acceleration can be expressed as 

F qE . , . , 
a = — = — cosfcut), (2.3) 

m m 

where m is the mass of the particle. Position x can then be calculated by a two-fold 
integration over time: 

— o qE , . . A. x = — = ^— cos (out . (2.4) u2 mu2 

The particle experiencing a harmonic motion has a time-averaged energy 

U = \mu2(x2) = f^r. (2.5) 
2 x 1 Amu2 y 1 

Finally, force acting on the particle can be expressed as a negative gradient of the energy: 

F > = - £ ^ v < £ 2 ) - ( 2 - 6 ) 

Equation (2.6) shows that the charged particle moves towards areas of a weaker field 
strength (this applies to both positively and negatively charged particles). That means 
that if we made an electron beam interact with an electric field whose intensity increases 
with a radial distance, the electron beam would be focused because off-axis electrons 
would be pushed towards the axis. 

2.2.2. Light-Controlled Electron Microscope 
Work presented in this thesis is a part of a larger project of the team Artemis from 

the Institute of Physical Engineering at the Faculty of Mechanical Engineering, Brno 
University of Technology. The project's goal is to design and assemble an experimental 

4 



2. BEAM SHAPING 

setup similar to one described in [8] (see also Figure 2.1). It is a scanning electron 
microscope equipped with an ultrafast laser producing a beam that is diverted into two 
branches. While the first branch is used to eject an electron pulse from the electron gun via 
fotoemission, the laser in the second branch is shaped and then interacts with the electron 
beam as it passes through the electron column. The objectives are to demonstrate lensing, 
beam scanning and abberation correction which is schematically depicted in Figure 2.1. 
Later, the focus will shift towards exploration of applications involving unconventionally 
shaped electron beams. 

a) Incident 
e-wave 

Laser 
pulse 

Focused / non-aberrated 
e-wave 

Figure 2.1: a) Scheme of electron microscope equipped with ultrafast laser (CCD -
Charged-Couple Devide - type of camera sensor, SLM - Spatial Light Modulator - details 
in Chapter 3), b) Correction of electron beam abberations by interaction with shaped 
laser pulse. Taken from the archive of Dr. Andrea Konečná, with her kind permission. 

This project brings many theoretical and practical problems and it requires coopera
tion among many members of our team. 

This thesis specifically concentrates on the laser beam shaping process before its inter
action with the electron beam. Both theoretical and practical aspects of this problem will 
be addressed. One of the outputs should be a simple experimental optical setup for beam 
shaping that would be able to tailor the Gaussian beam from the laser source to a chosen 
testing intensity distribution, e.g. one possessing a parabolic radial profile (Figure 2.2) 
that should have, considering the discussion accompanying Equation (2.6), a converging 
effect on the passing electron beam. 

Gaussian beam Cross-section 
T max 

w pj 
s 

min 

Paraboloid beam Cross-section 

Radial distance 0 
Radial distance 

Figure 2.2: Reshaping of a Gaussian laser beam into a beam with a parabolic radial 
profile. 
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3. Spatial Light Modulator (SLM) 
In this chapter, I will introduce a device that is commonly used for beam shaping. 

This device is called SLM, which stands for Spatial Light Modulator. In its essence, it is 
a liquid crystal display similar to a regular LCD monitor, but in this case, liquid crystals 
are used to spatially modify amplitude or phase of an incident beam. My focus will be on 
phase-only SLMs. Their main advantage is that they do not, in principle, dissipate any 
power from the initial beam, which makes them more energy efficient. 

I will first describe the physical principle behind the device. Then I will break down 
the design of the SLM. At the end of the chapter, a specific setup for beam shaping will 
be discussed. 

3.1. Physical Principle 
3.1.1. Phase Shift 

The fundamental principle behind the phase tunable alteration of light involves the use 
of materials with refractive index n that can be modified. When light propagates trough 
a medium with a higher n, its spatial frequency k increases, which results in a different 
output phase 0 compared to light travelling the same distance in air. This concept is 
illustrated in Figure 3.1, where two waves start with the same phase, but they end up 
with a mutual phase shift after travelling a distance d. 

Tlx 

ri2 = 1.5 rti 

Figure 3.1: Light waves travelling in media with different refraction indices. 

This phase shift can be expressed as 

27T 
A0 = — ( n 2 - m ) d . (3.1) 

3.1.2. Anisotropic Materials 
Now we need a material that can actively change its refractive index n. This can be 

achieved with some certain kinds of anisotropic materials (chapter 6.3. in [9]) which 
I will dive into now. First, fundamentals of the underlying theory will be outlined and 
next one specific approach for modifying refractive index will be described. 

A dielectric optical medium is called anisotropic if its optical macroscopic properties 
depend on the propagation direction and polarization of a passing light wave. The macro
scopic properties are determined by microscopical properties like shape and orientation 
of molecules and their organisation in space. 
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3. SPATIAL LIGHT MODULATOR (SLM) 

In crystals (anisotropic dielectric media), the electric displacement field D is a linear 
combination of the three components of the electric field E, with the vacuum permittivity 
EQ as the constant of proportionality. This relationship is given by D = EQSE, which can 
be mathematically expressed as a matrix multiplication: 

l / 
\=e0( 

£ 1 1 £12 £13 

£31 £32 £33 

(3.2) 

where the 3x3 electric permittivity tensor describes the material properties of the crystal. 
This tensor is symmetrical which means that it contains 6 independent elements. Due 
to the symmetry, we can find a coordinate system, in which off-diagonal elements vanish 
and the matrix is purely diagonal. That implies that E and D are parallel in these 
directions and the associated permittivity components are called principal permittivity 
indices. Therefore, the permittivity tensor reduces to 

(3.3) 

Every principal permittivity has its corresponding index of refraction: 

nx — \fsxi ny = yfE^-, nz = \[E~Z. (3-4) 

Here, e0 denotes the permittivity of free space. Phase velocity of light propagation can be 
calculated as v = c/n. Hence, it is obvious that phase velocity of light travelling through 
an anisotropic medium depends on the direction of propagation. 

3.1.3. Index Ellipsoid 
There is a convenient way to geometrically visualize the relationship between the 

direction of light propagation and the phase velocity. It comes from the fact that electric 
field energy density can be calculated as 

wE 
= -ED 

2 

1 
~ 2 

\Dl 

This can be rewritten as 

Dl Dl Dl 
2e0wEF 

nl 
2e0wEF 2e0wEF 

ni 

+ 
D2 

y + 
D 2 1 

e0n2

z 

(3.5) 

cr ß2 

71 
ri; 

(3.6) 

which can be recognized as the equation of an ellipsoid. 
Figure 4.1 a) shows an outline of the ellipsoid under consideration. Keeping in mind 

that every polarization state can be decomposed into two mutually orthogonal linear 
polarizations, one can determine the refractive indices perceived by an electromagnetic 
wave travelling in the direction of k using the following procedure. 

First, we need to draw vector k and a plane that is perpendicular to it and passes 
through the origin. The intersection of the plane and the ellipsoid forms an ellipse and 
its principal axes give us the index of refraction for the two polarizations. 
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3.1. PHYSICAL PRINCIPLE 

Figure 3.2: Index ellipsoid for a) a general case where nx ^ ny ^ nz b) an uniaxial crystal 
where nQ = nx = ny ^ ne = nz, c) a sectional view of the index ellipsoid of an uniaxial 
crystal showing geometry that is important for the derivation of a formula for n(9). 

3.1.4. Uniaxial Crystals 
We will be particularly interested in crystals with a certain kind of symmetry, where 

two out of the three principal refractive indices are equal. Crystals with this property are 
called uniaxial. Their refractive indices are usually denoted as ordinary nQ (= nx = nz) 
and extraordinary ne (= nz) which is indicated in figure 4.1 b). It turns out that for 
one polarization, refractive index is always n0, while for the other, the refractive index 
depends on the angle between the direction in which the light wave propagates and the 
optical axis of the uniaxial material (marked in figure 4.1 c)). Following formula can be 
derived 

1 cos2 9 sin2 9 
^ ) = ^ 2 _ + ^ T ' 

which gives us a very convenient way of designing a material with a tunable refractive 
index! More specifically, if we succeed in creating a material composed of aligned uniaxial 
crystals with a proper orientation with respect to the passing light wave, we can modify 
the refractive index (and consequently also the light wave) by rotating the crystals. 

3.1.5. Liquid Crystals 
Now we need to find a material that is composed of uniaxial crystals that can be 

controllably rotated. Liquid crystals meet this requirement. 
Matter in a liquid-crystal state consists of elongated (typically ellipsoidal) molecules 

that possess an orientation order (like crystals) but lack positional order (like liquid). For 
more details see Section 6.5 in [9]. 

There are three types of liquid crystal arrangements. SLMs typically use nematic liquid 
crystals where molecules tend to be parallel but their positions are random (illustrated in 
Figure 3.3). Their orientation can be changed by applying external electric field. After 
the field is removed, they return to their original positions. Therefore, liquid crystals 
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3. SPATIAL LIGHT MODULATOR (SLM) 

Figure 3.3: Nematic crystals [10]. 

represent a controllable anisotropic environment. This property is widely used in LCD 
displays. Their rapid development ensured that many practical issues of liquid crystals 
were addressed and resolved which makes their usage for other applications much easier. 

3.2. Design of SLM 

3.2.1. Display Structure 
To take advantage of the properties of liquid crystals, we need to come up with a 

design of a pixel that contains these crystals and has electrodes to which voltage can be 
applied. One pixel then serves as a building block for a whole display that can contain 
millions of them. 

Figure 3.4 shows the different layers of a pixel. Depending on the type of SLM, pixel 
can be transparent or reflective. Our laboratory is equipped with the reflective one, where 
light travels back and forth which means that it passes twice through the layer of liquid 
crystals. The whole display has a glass cover. Underneath it, there is a transparent 
electrode that facilitates the generation of a homogeneous electric field across the liquid 
crystal layer and alignment layers that surround it. These layers determine orientation of 
crystals when no electric field is present. At the very bottom, there is a sillicon layer with 
electrodes. That is why this type of devices is called LCoS (Liquid Crystals on Sillicon). 

Glass coverplate 
Transparent electrode 
Alignment layer 

Liquid crystal layer 

Alignment layer 
Silicon layer with electrodes 

Figure 3.4: The schematic structure of an Liquid Crystal on Silicon device (taken over 
and modified from [11]). 
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3.2. DESIGN OF SLM 

One pixel can cause phase delay that is controlled by a locally applied voltage. Display 
consisting of many pixels can imprint a spatially varying phase mask to the incident beam 
and in this way, it is possible to mimic the function of a number of optical elements. For 
example, we can choose a phase mask that causes a larger phase shift on pixels that are 
further from the centre. This situation is depicted in figure 3.5. After being reflected from 
the SLM, an incident plane wave is transformed into a converging spherical wave, which 
means that the display acts as a converging lens. 

incident wave reflected wave 

Figure 3.5: The schematic structure of an Liquid Crystal on Silicon device (taken over 
and modified from [11]). 

The phase mask can not be perfectly continuous due to the finite number of pixels. 
However, a sufficiently large number of pixels can yield good enough results. Parameters 
of the SLM display will be discussed in the next subsection. 

3.2.2. P L U T O - 2 . 1 L C O S Spatial Light Modulator 
There are many manufacturers of phase-only SLMs on the market, each with slight 

variations in their device design. I will focus on the design of the PLUTO-2.1 LCOS 
Spatial Light Modulator (Figure 3.6) because I used it in my experiment. However, other 
models are similar in principle. 

Figure 3.6: PLUTO-2.1 LCOS Spatial Light Modulator. 
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3. SPATIAL LIGHT MODULATOR (SLM) 

The device consists of a driver unit that has data and power inputs. The driver unit is 
connected to the SLM display by a flex cable. Many different displays can be connected 
to the driver unit. Because of the intended application, a display that can handle high 
energy laser pulses is needed. This requirement is fulfilled by the PLUTO-2.1-NIR-149 
model. 

I will list some specifications of the device in the table for a better picture of the SLM's 
capabilities (tab: 3.1). 

display area 15,36 X 8,64 mm2 (0,7" diagonal) 
resulution 1920 X 1080 
pixel pitch 8,0 jum 
fill factor 93 % 
wavelength range 1000 - 1100 nm 
max. phase shift 2, 9TT Rad at 1064 nm 
reflectivity 93 % 
signal formats HDMI - HDTV resolution 
frame rate 60 Hz 
adressing 8 Bit (256 grayscale levels) 

Table 3.1: Selected specifications of the PLUTO-2.1 LCOS Spatial Light Modulator with 
PLUTO-2.1-NIR-149 display [12]. 

When the light field interacts with the display, each pixel has the capability to induce 
unique modifications. It is crucial that the maximum phase shift is no less than 2-rr. This 
requirement guarantees the ability to imprint arbitrary phase masks onto the incident 
optical field, as complex exponentials are periodic functions with a period of 2n. 

3.2.3. Experimental Setup with S L M 
In order to create spatial laser intensity distribution determined by the phase mask 

loaded on the SLM, a setup shown in Fig. 3.7 was employed. It consists of a laser source, a 
beam expander, the previously indtroduced SLM, a lens, a CCD camera, and a computer. 

SLM 

LASER 

Camera 

Figure 3.7: Experimental setup for SLM utilization. 
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3.2. DESIGN OF SLM 

The laser source produces quasi-monochromatic light with a linear polarization that 
is parallel to the long axis of the liquid crystals in the SLM, which ensures that the 
incident laser beam will experience a change in the refractive index as we rotate the 
crystal according to (3.7). The other polarization would not be modified by the SLM 
because its refractive index is always nQ regardless of the tilt of the crystal. In practice, 
this is achieved with the help of an adjustable polarization filter. The Beam expander 
ensures that a larger part of SLM display is covered by the laser. Without it, we would 
suffer a loss in resolution. The SLM fulfills the task of imprinting a phase mask to the 
laser. After the reflection from the SLM, the laser reaches the lens. The final shaped 
beam is then observed by camera in the focal plane of the lens. It turns out that the 
field at the SLM display and the field in the focal plane of the lens are linked together via 
two-dimensional Fourier transform. This relation is derived in detail in Chapter 4. 
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4. Light Propagation from the S L M 
to the Image Plane 

In order to calculate the propagation of light, a solid mathematical foundation is nec
essary. Given that this thesis relies on computer simulations, it is necessary that these 
mathematical expressions can be computed efficiently on a personal computer. Fortu
nately, diffraction theory offers tools that meet all these requirements. 

4.1. Diffraction Integrals 
The propagation of light can be effectively described using diffraction integrals. These 

integrals are derived in accordance with the Huygens-Fresnel principle. First, it is essential 
to establish the geometrical context of the problem. 

The coordinate system is set up in such a way that light propagates along the z-axis. 
The object plane is situated at z — 0, and each point A in the initial plane is defined by 
coordinates x' and y'. Point B represents the observation point in the image plane where 
the wavefunction will be computed. The distance between the points A and B is denoted 
as s. 

Figure 4.1: Geometry involved in solving the diffraction integral. 

The incident wave ip(x,y,0) = ipo(x',y') interacts with the initial plane, which is 
bounded by an aperture. Later, this plane will serve as the surface of a Spatial Light 
Modulator (SLM). A wave is fully characterized by its electric field E and phase <f> at each 
point on a plane perpendicular to the propagation axis. The propagated wavefunction 
ip(x,y,z > 0) can be represented through double integrals, referred to as diffraction 
integrals, as detailed in the foundational source for this chapter [ ]. 

The general diffraction integral, in accordance with the Huygens-Fresnel theory, can 
be expressed as follows: 

HP) = ~ [[ MW^^coBtdSo, (4.1) 
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4.1. DIFFRACTION INTEGRALS 

Here, k represents the wavenumber of light, SQ is the surface of the initial plane where 
the light intensity is non-zero, and d is the angle between a line perpendicular to the 
wavefront at the point B and the line connecting the points A and B. 

Diffraction integral from equation (4.1) can be rewritten using the coordinates intro
duced introduced above: 

i cc zexpl iky/ (x — x')2 + (y — y')2 + z2) 
rKx,y,z) = - i>(x',y',0) ) — — — — Ux'dy'- (4-2) 

iX J J (x — x'Y + (y — y')1 + zl 

While (4.2) is the most accurate formula for calculating scalar diffraction, its practical 
application is limited. In the most general case, it must be evaluated for every pair of 
points from the object and image planes, causing the computation time to increase with 
the number of pixels N as TV4 leading to unreasonable computation times. It can be 
reduced by using the same discretization for both planes and by adopting the paraxial 
Fresnel approximation leading to a computational complexity that increases only as TV2. 

4.1.1. Fresnel Diffraction Integral 
The problematic part of Formula (4.2) is the spherical term, since it ties together the 

two different sets of coordinates. These sets can be decoupled by assuming that the radial 
distance p2 = (x — x')2 + (y — y')2 is much smaller than the distance z between the object 
plane and the image plane. This condition is known as the paraxial approximation and 
it allows us to replace the distance s by only few leading terms of its Taylor expansion, 
namely: 

2 r r? r£ 1 r? 
*z + 7T- (4-3) VP 2T^ = ^ / I + ^ 

z 2 
, P2 P 4 

1 + — h 
2z2 8z3 2z 

The distance s appears in several places of Equation (4.2) that are, from the mathe
matical standpoint, not equivalent. While the term 1/s can be replaced by 1/z without 
introducing any substantial error, the rapidly oscillating exponential elks requires a more 
careful approach. Provided the radial distance p satisfies the condition 

k{- « 2TT, (4.4) 
az6 

it is sufficient to retain the first two terms of the Taylor series in the argument of the 
exponential and the spherical wave then acquires the following simplified form: 

^1 ~ leikz e S [(x-x')H(y-y')2] _ (4_5) 
s z 

If we substitute spherical wave in the Rayleigh-Sommerfeld integral by this approximate 
expression, we obtain a formula known in the literature as the Fresnel diffraction integral 

iP(x,y,z) = j ~ / / i;(x',y',0)ei-^-z')2+(y-y')2} ^ d y , 

This expression can be recast into a more convenient form by expanding the argument 
of the exponential into individual terms and taking out those terms that do not depend 
on the integration variables in front of the integral. 
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^{x, y , z ) = 1^! S(-2+y2) jj y\ 0) e s ^ ^ ' e-T(-'+™') dV dy' (4.7) 

One can recognize the core of the 2D Fourier transform and one additional term that, 
as we will learn in the next section, cancels out with the phase transformation introduced 
by a thin lens. But first, we need to derive the phase transformation effect of the lens. 

4.2. Thin Lens as a Phase Transformation 
A lens inserted into an optical system modifies the phase of a passing electromagnetic 

wave. It is caused by the fact that optical paths and the phase delay of the optical ray 
depend on the position, namely thickness of the lens at the point of entry. We will consider 
a thin lens which means the points at which the light ray enters and exits the lens have 
the same distance from the optical axis. 

In the following paragraphs, phase transformation will be calculated. For simplicity, 
we will consider a thin lens with only one curved surface. The result can be generalized 
to a lens with both sides curved which is shown in section 3.1 of [9]. 

Optical path A over a curve C can be computed as this integral 

A = / nds. (4.8) 
Jc 

max 

Figure 4.2: Thin lens. 

In our case (see Figure 4.2), the above integral becomes a sum with two contributions. 
Light first travels trough glass with a refractive index n and then trough air with a 
refractive index UQ = 1. Considering the simple geometry of the problem, the distance 
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travelled by a ray in the glass depends only on the thickness function L(r), which can be 
analytically expressed as 

L(r) = R - (Lmax - z) 

R — (yLmax — \/ R2 x2 — y2 

R I -nr\ x + y 

2R2 

Phase delay A<ft = kA, where k stands for the wavenumber, can be, in our case, 
computed as follows: 

A 0 = knL(r) + k [Lmax - L(r)]. (4.10) 

Finally, we can introduce a phase function fiens = e*A<^ that fully captures the deformation 
of the wavefront due to the lens. 

fi /ens 
gjfcnL(z)H -ik[Lmax-L(r)\ 

ikn< R— 
e l 

l^max rill 1 

econst e 
2,2 2,2 

~h„x +v ~ux +y lKn 2R e 2 R 

econst e - i k ^ ( n - l ) 

econst e 
2 i 2 
+y 

IK 2 f 

JUT -iH R- -Ri 

(4.11) 

where any contributions that do not depend on r can be dropped. Also note that in the 
last step, we used the well known relation between focal length and parameters of the 
lens that is known from basic optics: 

where R\ and i?2 are radii of the lens surfaces and n is its index of refraction. 

4.3. Fourier Transforming Property of a Lens 
General formula for computing 2D Fourier transform of function f(x,y) is 

oo 

F(fx,fy) = ^jl f(x,y)e-i2^x+^dxdy, (4.13) 
—oo 

where fx and fy are spatial frequencies in x and y directions, respectively. This operation 
and its counterpart, the inverse Fourier transform 
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CO 

f(x,y) = ^jl F(fx,fy)ei2^x+^dfxdfy, 
(4.14) 

allow us to switch between spatial and frequency domains. 
Let us now consider an optical system that is schematically drawn in Figure 4.3. 

Figure 4.3: Setup with one thin lens. 

If we assume that the distance d from the object plane to the lens is very small 
(d —> 0), we can imprint the effect of the lens on the passing electromagnetic wave 
directly into the initial field, namely 

tp(x',y',0) = tpo(x',y',0)fiens = ipo(x',y',0) e~lk 2f . 

Substitution of ip(x',y',0) into the Fresnel diffraction integral (4.7) yields 

(4.15) 

ip(x,y, z) = — ea--
iX z 

'dx'dy'. 

(4.16) 
If we identify the focal length / as the propagation distance (z = / ) , then the two 
exponentials in the expression cancel out, leaving only an integral corresponding to a 
Fourier transform of the initial field distribution (4.13). It is also convenient to express 
the angular wavenumber as k = 2n/\ so that the form and meaning of spatial frequncies 
becomes clearer. 

i;(x,y,z) = ^ - S { x 2 + y 2 ) I/ Mx',y',0) e-12^^dx'dy1 (4.17) 

By comparing (4.17) with (4.13), we obtain 

fx = x/Xf, 

fy = y/xf. 
(4.18) 

The Fourier transform relation between the field distribution in the object plane and 
the image plane (which in our case coincides with the focal plane of the lens) is not a 
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complete one, due to the presence of the quadratic phase factor before the integral. In 
the context of the electron beam shaping, however, the quantity of interest is only the 
intensity (J oc \ip\2) of the field in the image plane and this quadratic phase factor is 
rendered irrelevant. 

There is an useful intuition behind the Fourier transforming property of a thin lens. 
Initial field can be expressed in the form of an angular spectrum. That means that it is 
a superposition of plane waves travelling at different angles from the image plane. If a 
plane wave goes through an ideal lens, it is focused to a single point in the focal plane 
(see Figure 4.4). Spatial coordinates within the image plane are therefore linked to the 
angular coordinates of the object plane. 

Figure 4.4: Lens focusing plane waves into points within the focal plane. 
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5. Iterative Algorithms for Phase 
Retrieval 

So far, we have an active optical element for phase modulation called SLM (3.2.2), 
a setup in which the SLM can be effectively used to shape laser beams (3.2.3), and a 
mathematical tool for computation of the light propagation from the SLM to the camera 
in this setup (4.3). We know what is the initial intensity distribution of the laser beam 
because it depends only on our source and we can easily measure it. The target intensity 
distribution on the camera is then an user input that can be arbitrarily chosen. 

The last missing ingredient is a phase mask that is uploaded on the SLM to shape 
the beam in accordance with the user input. For a limited number of cases, the phase 
mask can be derived analytically, but there is no general approach that would achieve the 
same for an arbitrary intensity distribution. Therefore, iterative computer algorithms are 
a common approach to this problem. 

The algorithms are divided into two categories, each allowing for further modifications. 
The Gerchberg-Saxton algorithm and its extensions fall into the first category, while the 
other one comprises the gradient descent method and its derivatives. I decided to examine 
and employ the first option. In the next sections, basic principles of both approaches will 
be described. 

5.1. Gerchberg-Saxton Algorithm 
The Gerchberg-Saxton (GS) algorithm is a computational method used in the field 

of optics and signal processing for solving the phase retrieval problem. Phase retrieval is 
the process of determination of the phase of a complex-valued signal from its magnitude 
(intensity) measurements alone. This is a crucial problem in various applications such as 
X-ray imaging, astronomical imaging, adaptive optics, and binary optical design [ ]. 

The GS algorithm was introduced independently by R. W. Gerchberg and W. O. 
Saxton in the late 1970s [ ]. It is particularly useful in situations where the phase 
information of a signal is not accessible, and only the intensity (magnitude) of the signal 
is available. The algorithm iteratively refines an estimate of the phase by alternating 
between the real and Fourier domains. 

Individual steps of the GS algorithm are described in the following list and illustrated 
by the diagram in Figure 5.1: 

1. Initialization: begin with an initial estimate of the phase. This could be a random 
guess or be based on some prior knowledge, if available. 

2. Fourier Transform: take the Fourier transform of the initial laser field ® with the 
imprinted estimated phase to obtain an estimate of the complex-valued signal (2) in 
the Fourier domain. 

3. Target Magnitude Constraint: replace the magnitude of this complex-valued signal 
with the magnitude that is required to obtain (3)-

4. Inverse Fourier Transform: perform an inverse Fourier transform to obtain an updated 
estimate of the object in the real space. Phase (4) can be separated from this field. 
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5.2. GRADIENT DESCENT METHOD 

Initial Magnitude Constraint: Replace the magnitude with the known intensity of 
initial laser beam ®. 

Iteration: Repeat steps 2-5 until convergence criteria are met. This could be a pre
defined number of iterations, a tolerance level for change between iterations, or other 
convergence criteria. 

Figure 5.1: Diagram of the Gerchberg-Saxton algorithm - computing the phase mask @ 
for shaping laser (T) into the instensity distribution (3) on the output (2). 

The key idea behind the GS algorithm is the alternating update between the real and 
Fourier domains while maintaining consistency with fields amplitudes in both domains. 
Through iterative refinement, the algorithm aims to converge to a solution where the 
estimated phase accurately reconstructs the target field intensity. 

5.2. Gradient Descent Method 
Gradient descent is a fundamental optimization algorithm widely used in various fields 

such as machine learning, deep learning, and numerical optimization. Its primary goal is 
to minimize a given objective function, often referred to as the cost or loss function, by 
iteratively adjusting the parameters in the direction of the steepest descent, as defined by 
the negative of the gradient. 

In the context of optics, gradient descent is a general optimization technique that can 
be applied to a wide range of problems, including the phase retrieval. It can incorporate 
various modifications and constraints by defining an appropriate cost function [16]. 

5.3. Development of the GS Algorithm 
I chose to code and further develop the GS algorithm because of its simplicity, low 

computational time, and high number of available information sources. Gradient descent 
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1 import numpy as np 
2 import matplotlib.pyplot as pit 
3 
4 size = (512,512) # number of pixels of the complex optical f i e l d 

5 

fi # function for creating i n t i a l Gaussian beam 

7 def Gaussian_beam(size): 

8 R = size[0]/7 # 7 controls beams width 

9 x, y = np.indices(size) - (size[0] - 1) / 2 

gaussian_array = np.exp(-0.5 * ((x / R)**2 + (y / R)**2)) 

n return gaussian_array 

12 

13 # example of the target f i e l d - paraboloid beam 
14 def paraboloid_beam(size): 
15 R = size[0]/6 # 6 controls beams width 

16 x, y = np.indices(size) - (size[0] - 1) / 2 

17 r = np.sqrt(x**2 + y**2) 

is paraboloid_beam = np.where(r<R, (r/R)**2+0.2, 0) 

19 return paraboloid_beam 

20 

21 E_SLM = Gaussian_beam(size) # electric f i e l d of the laser 

22 I_goal = paraboloid_beam(size) # target intensity of the electric f i e l d 

23 phase = np.random.randint(0,2*np.pi,size) # i n i t i a l phase guess 

24 
25 # algorithm core 
26 iterations = 35 
27 for i in range(iterations): 
28 # f i e l d at SLM plane 

29 SLM_field = np.abs(E_SLM) * np.exp(lj*phase) 

30 # FFT propagation from the SLM to the camera 

31 camera_field = np.fft.fftshift(np.fft.fft2(np.fft.fftshift(SLM_field))) 

32 phase = np.angle(camera_field) 

33 # replacing f i e l d amplitude with targer amplitude 

34 G = np.sqrt(I_goal) * np.exp(lj*phase) 

35 # IFFT propagation from the camera to the SLM 

36 SLM_field = np.fft.ifftshift(np.fft.ifft2(np.fft.ifftshift(G))) 

37 # storing current phase in the SLM plane 

38 phase = np.angle(SLM_field) 

39 

40 # propagating i n i t i a l f i e l d with imprinted computed phase from SLM to camera 

41 camera_field = np.fft.fftshift(np.fft.fft2(np.fft.fftshift(E_SLM * np.exp(lj*phase)))) 
42 
43 # plotting results 

44 pit.rcParams['font.size'] = 15 
45 f i g , axs = pit.subplots(1, 3, figsize=(12,4)) 
46 axs[0].imshow(E_SLM**2) 
47 axs[0].set_title("Initial laser beam intensity") 

48 axs[1].imshow(phase, cmap="gray") 
49 axs[1].set_title("Computed phase mask") 
so axs[2].imshow(np.abs(camera_field)**2) 

51 axs[2].set_title("Intensity at camera") 
52 pit.tight_layout() 
53 pit.show() 

Listing 5.1: Example of a simple Python code for running the GS algorithm - used versions 
of software and packages: Python 3.11.5, numpy 1.24.3, matplotlib 3.7.2. 
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Figure 5.2: Plotted results of the simple GS algorithm from Listing 5.1 (it would be 
appropriate to add axes labels but the intention was to keep the code as short as possible). 

methods would offer more degrees of freedom thanks to the possibility of tailoring the cost 
function but the GS algorithm can also be modified and upgraded which was demonstrated 
in [17] and other studies. 

The first step was to code the conventional version of the GS algorithm. Listing 5.1 
provides an example of a simple Python code, the purpose of which is to demonstrate 
an implementation of the algorithm and also offer a clear and accessible code for anyone 
interested in exploring the GS algorithm themselves. The algorithm has 2 main inputs. 
The variable E_SLM on line 21 contains the optical field represented by 2D numpy ndarray 
of complex numbers and the variable I_goal on line 22 contains the desired intensity 
distribution on the output represented by a 2D numpy ndarray of positive real numbers. 

This particular example takes a Gaussian beam created by the function Gaussian_beam 
as input and its goal is to find a phase mask that can shape this beam into the intensity 
distribition given by the function paraboloid_beam. After given number of iterations, 
algorithm will stop and the phase distribution from the SLMs plane will be stored in the 
variable phase. Phase <j) can be added to the original field E0 by the following operation: 
Ei = E^e1^, where i is the imaginary unit. It is clear that |e*̂ | = 1, which means that 
this operation does not change the intensity I of the complex field since I oc \E\2. At the 
end, this code shows a figure similar to the Figure 5.2 with the initial field intensity (left), 
the computed phase mask (middle) and the shaped beam after the simulated propagation 
by the FFT (right). 

By defining an alternative form of variables E_SLM and I_goal, it is possible to com
pute phase masks for various cases of beam shaping. 

5.3.1. Improvement of the GS Algor i thm 
The conventional Gerchberg-Saxton algorithm (described in Section 5.1 and imple

mented utilizing the code from Listing 5.1) often converges to some local optimum which 
results in an intensity distribution that is similar in shape to the desired one, but it also 
contains some additional noise, as shown in Figure 5.3. Hence, there is still a lot of room 
for improvements. 

The next step is to make adjustments to the algorithm that would reduce noise and 
improve the overall performance. This raises the need for a metric that would evaluate 
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Figure 5.3: Results of the conventional GS algorithm with a random initial phase distri
bution. 

how well does the result match the expectation. Root mean square deviation is a suitable 
option. It can be mathematically written down as 

RMSD 
N-l 

N ' t a r ,n j j (5.1) 
n=0 

where the sum is taken over the area of interest (i.e. only the area covered by the beam 
without a background), TV is the number of pixels in the area of interest and n is the 
index of a pixel in this area, ISim denotes the intensity of the beam that is computed by 
the numerical propagation of the initial beam with the imprinted phase mask, and J t a r is 
the target intensity. 

Initial Phase Guess 

The initial phase guess can play a role in algorithm's convergence and it would be 
advantageous to set it based on some prior knowledge instead of setting it randomly. It 
turns out that a good choice of the initial phase guess is 

ifi = mxx + myy + AR [7a;2 + (1 - j)y2] , (5.2) 

where mxx and myy are linear terms that diffract the laser away from the optical axis, R 
determines the curvature of the quadratic part and 7 is related to the aspect ratio [18]. 
Figure 5.4 shows results of the algorithm from Listing 5.1 for 2 different initial phase 
guesses. The first row is for a random initial phase distribution which results in a very 
chaotic computed phase mask that contains a lot of phase singularities (points where 
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the exact value of the phase is not defined beacause all values in a range from 0 to 2n 
can be found in the immediate neighbourhood of the singularity). Introduction of the 
phase singularities to the field creates unwanted optical vortices that are characteristic by 
having zero intensity in the center and they manifest themselves as a little dark spots in 
the resulting intensity. Book [19] provides many interesting information about vortices, 
including a proof that the overall topological charge is conserved troughout the propaga
tion. That means that the number of vortices in the object plane will differ only slightly 
from the image plane (slight variation may be caused by annihilation of oppositely ori
ented vortices). It is not always possible to make a good enough phase guess to eliminate 
majority of vortices and further improvements are needed, which is described in [18]. 

Phase Guess Computed Phase Resulting intensity 

Figure 5.4: Impact of a phase guess on the final results, the first row - the algorithm starts 
with a randomly generated phase, the second row - the algorithm starts with a phase 
generated according to (5.2) - the phase guess is shown after the modulo 2n operation 
which causes moire patterns. 

Adaptive Weighting 

The next possible improvement is to allow the target intensity to be adaptively ad
justed to enforce larger changes in areas that are far from the desired result [20]. In the 
conventional GS algorithm, the field amplitude in the camera plane is replaced with the 
target amplitude ((3) in Figure 5.1). In the weighted GS algorithm (WGS), the same 
procedure is done in the first iteration but in the following iterations, weights W are used 
instead. These weights are computed in the following way: 

Wt+1=Wt(^-J, (5.3) 
where % is the index of the current iteration, T is the target field amplitude, J7 is the 
current field amplitude ((2) in Figure 5.1), and p is a parameter that controls the speed 
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of change of W. For p — 0, the WGS becomes GS again, because W will never change 
and it will remain identical to the target amplitude. It is crucial to find the optimal value 
of the parameter p to ensure that the algorithm converges to a state with a low RMSD 
(5.1). A numerical experiment was set up, where algorithms with different values of p 
were compared. In each iteration, RMSD was computed. Results of this experiment are 
plotted in Figure 5.5. 

20 30 
iterations 

Figure 5.5: Numerical experiment aimed at finding the optimum valie of the parameter p 
in the WGS algorithm. 

The optimal value of p was found to be approximately 2. Algorithms with a higher 
p were unstable and sometimes did not even converge to a better result than the one 
calculated by the pure GS. Lower values of p cause the algorithm to converge to a local 
optimum which is far from the global optimum. The conventional GS algorithm has a 
property, that the error decreases with each iteration, which can be proven [15]. The 
WGS does not possess this property but it is still better in the long run. 

Mixed Region Amplitude Freedom 

Considering that the electron beams in the light-controlled electron microscope (de
scribed in section 2.2.2) will interact only within a small area covered by the reshaped 
laser beam, it might be beneficial not to enforce the intensity distribution in the entire 
image plane. In other words, the intensity in regions near borders could be left to develop 
randomly which would provide more freedom for the algorithm to adjust the phase mask. 
An algorithm with this modification is often referred to as Mixed Region Amplitude Free
dom (MRAF). A way to transfer this principle into the algorithm is to replace the step 3 
step in the GS algorithm described in 5.1, where the field amplitude is normally replaced 
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by the target amplitude while the phase is kept the same. Modification from GS to MRAF 
is done by this transition: 

target {\ME target | g R + | ( l - M ) £ a c t u a l | N R ) e* (5.4) 

where M is a mixing parameter (0 < M < 1), SR means signal region (the area that we 
are interested in), NR represents the noise region (area of an uncontrolled development), 
and factual | is a n amplitude of the field that was created by propagation from the SLM 
plane [17]. 

The MRAF algorithm did not show significant improvements in conducted numerical 
tests. In most cases, the change was almost imperceptible. Some effects were achieved 
only with a very attenuated weighting (p = 0.1) in an experiment whose results are 
shown in Figure 5.6. The goal was to shape a Gaussian beam into a logo of the Institute 
of Physical Engineering. A very low noise level was achieved in the area around the logo 
at the cost of losing a large part of the laser power in the noise region around the borders 
of the evaluated area. This could be useful for applications like parallel micromachining 
or atom trapping where it is desirable to have some areas with zero laser intensity. 
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Figure 5.6: Results of the MRAF algorithm - creating logo of the Institute of Physical 
Engineering. 

The MRAF algorithm is often used to create atom traps (for example in [ ]). How
ever, for the light-controlled electron microscope (section 2.2.2), which is the principal 
motivation for this work, MRAF does not bring any significant improvement. 

Conclusion from the Algorithm's Development 

Three major potential upgrades of the GS algorithm were tested. It was shown that 
an appropriate choice of the initial phase guess can the reduce the number of optical 
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vortices resulting in fewer unwanted dark spots in the obtained intensity distribution. 
The most significant improvement was attained by introducing adaptive weighting which 
allows the algorithm to converge to a much better local optimum. Example of a WGS's 
performance is in Figure 5.7, where the obtained intensity profile is almost identical to 
the target intensity distribution. 
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Figure 5.7: Results of the WGS algorithm with a parabolic initial phase guess. 

The MRAF version of the GS algorithm was also tested, but no improvements relevant 
to our project of shaping electron beams, were observed. 

The development of the algorithm was inspired by sources cited in this section and 
also by [ ], where an open Python code is provided. 

The next step was to verify the results of the developed algorithm. The first approach 
involved simulating the laser propagation using the angular spectrum method, while the 
second approach was conducting an actual experiment in a laboratory. 

5.3.2. Propagation with the A S M 
Propagation of the laser was simulated using a single Fourier transform in the algo

rithm so far. The validity of this propagation method was derived in chapter 4. This 
method is based on the Fresnel diffraction integral 4.7, which is only valid under the 
paraxial approximation. Another numerical method for simulating light propagation is 
the Angular Spectrum Method (ASM). This general-purpose method can be used for free 
propagation between any two planes. 

The core idea behind ASM is the fact that the complex field in a plane can be Fourier-
analyzed and the spatial Fourier components can be recognized as plane waves travelling 
in different directions away from the plane (chapter 3.10. in [ ]). The field amplitude at 
any other point can be calculated by summing up the contributions from all these plane 
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waves, taking taking into account their phase accumulated during their propagation. From 
a complex field represented by U(x, y,0), a field in another plane can be calculated as 

U(x, y, z) « J 7 " 1 [f {U(x, y, 0)}eik*z}, (5.5) 

where J7 denotes the Fourier transform, J 7 - 1 denotes the inverse Fourier transform, kz is 
the component of the wave vector along the optical axis, and z marks the position of the 
plane where the field is computed. Notably, z can be negative, indicating backpropagation. 
The ASM allows for the inclusion of properties of a real optical system, such as a finite 
aperture size. 

Results of a simulation corresponding to the setup are depicted in Figure 3.7. In the 
first step, a computed phase mask was imprinted to a Gaussian beam which was then 
propagated to the lens. The effect of the lens on the wavefront was included by another 
phase change according to (4.11). In the last step, the beam was propagated to the focal 
plane of the lens. Results of this numerical experiment are shown in Figure 5.8. 

Propagation by ASM Cross Section 

-5.0 -2.5 0.0 2.5 5.0 
x [mm] 

-5.0 -2.5 0.0 2.5 5.0 
x [mm] 

Figure 5.8: Results of the ASM propagation - the electric field intensity in the focal plane 
of the lens. 

Propagation with the ASM showed that the the phase mask calculated by the WGS 
algorithm indeed produces in the focal plane of the lens a beam with a parabolic radial 
profile, but it contains a very high level of noise. That means that the functionality of 
the WGS algorithm should be tested in a laboratory with a real equipment before making 
any conclusions about its performance. 

Note about ASM and FFT Propagation 

So far, two methods of a light propagation have been employed. One challenge I have 
encountered is the size of the evaluated field represented by a data matrix. While the 
ASM uses the same set of spatial coordinates for both the input and output plane, the 
propagation based on the Fresnel diffraction utilizing Fast Fourier Transform does not: the 
field distribution created in the focal plane of a lens corresponds to the angular spectrum 
of plane waves that travel at different angles relative to the optical axis. Therefore, to 
transform the set of angles into a set of real space coordinates in the focal plane of the 
lens, parameters like the focal distance, light wavelength, and discretization step within 
the SLM plane must be taken into account. 
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The highest value of a spatial frequency present in a Fourier representation of an 
optical field is 

2TT 2TT7V u — 
a D 

(5.6) 

where D is the width of the field, TV denotes a number of pixels along one side of the field 
and d is the size of one pixel of the field. 

From Figure 5.9, it is clear that we can calculate the maximal spatial position as 

\f 2ir\f \f XfN 
d 2TT 2TT (I D 

(5.7) 

Thus, we can see that the FFT propagation produces fields of different sizes depending 
on wavelength A and focal length / . Therefore, with the same phase mask on the SLM, 
the size of the image can be changed by choosing a lens with a different focal length. 

Figure 5.9: A sketch of a plane wave attributable to the highest spatial frequency present 
in the field formed within the focal plane of a lens. 

5.4. Experimental Verification of Algorithm's Perfor
mance 

The main results presented so far involve the algorithm developed for the purpose 
of beam shaping employing the experimental setup detailed in section 3.2.3. Potential 
shortcomings of the algorithm include inaccurate modeling of light propagation, neglecting 
the actual properties of the setup that affect the output, or other unforeseen factors. To 
evaluate its performance in real conditions, we decided to test it also experimentally. 

5.4.1. Setup Realization 
The ultimate goal of this work is to deliver shaped beams for a light-controlled electron 

microscope described in 2.1 where an ultrafast high-power laser is used. However, for the 
sake of practicality and safety this experiment was carried out with a conventional green 
laboratory laser. A photo of the actual realisation of this setup is in Figure 5.10. 

The 515 nm laser was operated at approximately 50 mW power. The choice of laser 
affected also the requirements placed on the SLM display, so the PLUTO-2.1-NIR-149 was 
replaced with PLUTO-2.1-NIR-015 model while keeping the original driver unit. Results 
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beam 

SLM 

— camera 

lens 

Figure 5.10: Experimental setup with the SLM from two different angles of view. 

were captured on the C1+12000A CMOS camera by Moravian Instruments equipped with 
the Sony IMX304 chip. 

It is important to keep the incident angle of the laser hitting the SLM small because 
higher incident angles may cause unexpected behaviour of the SLM. Study [23] shows 
that incident angle deviations less than 10° do not modify substantially its modulation 
properties. 

5.4.2. Measurement 
First results of the experiment are shown in Figure 5.11. 

GS 

i J n i 

WGS GS WGS 

0 0 

ST\ I /TS 

5 0 
x [mm] 

Figure 5.11: Measured data - the first row shows grayscale images directly from the 
camera, the second row shows intensity cross sections along lines marked in the camera 
images. 
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The logo of the Institute of Physical Engineering and a beam with a parabolic radial 
profile were created. Phase masks were computed using both the conventional GS algo
rithm and the WGS algorithm. Intended shapes were indeed formed with a noise level 
higher than predicted by the algorithm that uses the FFT propagation method (example 
in Figure 5.7). Neither the results match the prediction made by the ASM propagation 
method (Figure. 5.8). 

There is also an unwanted bright intensity peak right at the center of the image, which 
can be attributed to the reflection from the the outer glass coverplate of the SLM display. 
This reflected wave is not modified by the liquid crystals and therefore remains as a plane 
wave that is subsequently focused by the lens into a point in the observed focal plane. A 
possible solution for this problem is to deflect the image away from the optical axis by 
adding a phase wedge to the phase mask (Figure 5.12). 

SLM pixels SLM pixels 

Figure 5.12: Left plot - a wedge shaped phase delay function for an image deflection, right 
plot - the same function after a modulo 2-rr operation that can be displayed with the SLM 
while preserving the effect of the original function (often referred to as a phase grating). 

Results of the experiment with the applied phase grating are in Figure 5.13. Images 
were spatially separated from the bright central spots which are now easily removable by 
a conveniently placed screen. 

GS WGS GS WGS 

0 5 0 5 0 5 0 5 
x [mm] 

Figure 5.13: Images captured by the camera after a phase grating was added to the phase 
mask to spatially separate the engineered image from the parasitic bright spot. 
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However, the successful filtration of the bright spot was accompanied by another 
undesirable effect, namely gradual fading of the intensity as we get further and further 
away from the optical axis. This is clearly visible in Figure 5.13 where the intensity peaks 
in the vicinity of the bright spot. This could be compensated by intentionally creating 
a reverse defect in the target intensity profile that is given as input to the algorithm. 
Results of the measurement with with the incorporated compensation are shown in in 
Figure 5.14. In this case, the initial phase guess impacts the result more than the choice 
of algorithm. 

GS - p.p.g. GS - r.p.g. GS - p.p.g. WGS - p.p.g. 

0 5 0 5 0 5 0 5 
x [mm] 

Figure 5.14: Measured data captured on the camera, a phase grating was added to the 
phase mask to spatially separate the image from the bright spot and the target intensity 
profile was adjusted to improve overall uniformity, p.p.g. - parabolic phase guess, r.p.g. 
- random phase guess. 

5.4.3. Data analysis 
The quality of the experimental results has been qualitatively discussed in the previous 

sections but has not been quantified yet. To fill this gap, we decided to use two metrics: 
the first metric will evaluate noise (local deviations from a smooth shape), and the second 
metric will assess the difference between the underlying smooth shape and the intended 
profile (e.g., a parabola). 

Noise evaluation can be achieved by smoothing the measured data and computing 
the difference between the measured data and the smoothed data. To obtain a single 
comparable value, the variance (denoted as a\) of the noise is calculated. This calculation 
is performed only within a specific region of interest (Rol) to avoid bias near sharp edges 
caused by the smoothing process. An example of this metric's application is shown in 
Figure 5.15, where data from Figure 5.14 are evaluated, comparing the GS and WGS 
algorithms. The smoothing bias near edges is also notable in sectional plots. The WGS 
algorithm performed slightly better in terms of the noise level, having <j\ = 0.0019 while 
the GS achieved a\ = 0.0028. 
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camera image - GS (72=0.0019 

O 50 100 O 25 50 75 100 
px px 

Figure 5.15: Noise quantification - comparison of the GS and the WGS algorithms, green 
areas in the camera images indicate the Region of Interest (Rol) where the noise is eval
uated, dashed lines in cross sections on the right mark the borders of Rol. 

The second metric requires data fitting which can be easily done for a simple shape 
like paraboloid with its analytical prescription 

z = a[(x- x0f + (y- y0f] + b. (5.8) 

An example of this fit is shown in Figure 5.16. The beam shaping accuracy was 
evaluated by examining the value of the fitting parameter a from Equation (5.8) and its 
standard deviation 0 2 , which can be retrieved from the covariance matrix of the fit. We 
express a as ± a2- The data visualized in Figure 5.14 were analyzed. 

The GS algorithm with a random phase guess achieved a = (1.21 ± 0.0060) x 10~4 

m - 1 , the GS with a parabolic initial phase guess had a = (1.86 ±0.0089) x 10~4 m - 1 , and 
the WGS with a parabolic initial phase guess resulted in a = (1.86 ± 0.0075) x 10~4 m - 1 . 
It is evident that the initial phase guess significantly affects the value of a, more than the 
choice of algorithm. 

Surprisingly, the GS with a random phase guess exhibited the lowest standard de
viation, but for a smaller value of a, i.e. the parameter that controls the steepness of 
the created parabola. The steepness of the parabola determines the strength of the force 
acting on electrons, a crucial factor for our intended application (light-controlled electron 
microscope). So, in this situation, a higher value of a is more important than a low 
standard variation. 
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• Original Data 

Figure 5.16: Fit of the measured data. 

It is important to note that the statistical evaluation of the algorithm's performance 
was conducted on a very limited dataset. Due to time constraints, it was not possible 
to conduct a more extensive set of measurements which would be needed to obtain more 
reliable results. 

5.4.4. Imperfections of the Setup 
The developed algorithm can find a phase mask that can be imprinted on the incoming 

beam to produce an almost perfectly shaped beam with the desired intensity distribution 
at the computed output. However, the experimental results do not achieve this high qual
ity, likely due to the physical model of the laser propagation derived under the assumption 
of a perfect setup, which may differ from the reality in the following characteristics: 

• Lenses in the real setup have one-inch round aperutures, which is not reflected in 
the FFT propagation. 

• Fill factor of the SLM display is 93% in reality (see parameters of the used SLM in 
Table 3.1) because there are walls separating individual pixels, while the simulation 
considers an idealized situation where pixels cover the whole display continuously 
and the phase mask is therefore imprinted perfectly. 

• The simulation models each pixel as an independent unit capable of uniformly im
printing the required phase across its area. However, in practical applications, each 
pixel is affected by the electric fields of adjacent pixels, leading to field leakage into 
the surrounding area. This interaction can cause variations in the phase shift across 
a pixel, depending on the differences between it and its neighboring pixels. 

• As study [ ] shows, phase shift of a pixel suffesr from flickering, which means that 
the phase mask changes a little as time passes. The used physical model, however, 
considers it being stationary. 
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• The laser beam incident on the SLM is neither purely Gaussian nor a perfect plane 
wave. These deviations from ideality are omitted in the simulation. 

• The coherence of the laser is also a variable that may be hard to include in the 
simulation because it is also dependent on the actually used power of the laser. 

Given the numerous phenomena that are challenging to simulate, incorporating feed
back from a camera might be beneficial. This feedback could help in compensating for 
the aforementioned sources of inaccuracy. Implementing this feedback mechanism is a 
planned step for future work. 
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6. Conclusion 
Beam shaping plays a crucial role in various fields of physics, offering the ability 

to manipulate light in ways that enhance experimental precision and versatility. In the 
context of this thesis, the main focus was on delivering on-demand laser beams for a light-
controlled electron microscope. This objective guided my choice of laser shapes, focusing 
on those with smoothly varying spatial intensity distributions. The use of a Spatial Light 
Modulator (SLM) for beam shaping introduces significant improvements in the control 
and functionality of the electron beam. 

Throughout this thesis, the fundamental theories of beam shaping have been explored, 
providing a solid theoretical background for understanding the principles behind this 
technology. In addition to the theoretical aspects, a review of existing algorithms for phase 
retrieval has been provided. Two groups of frequently used algorithm were identified. The 
GS algorithm was selected over the family of gradient descent algorithms because of its 
simplicity, low computational time and availability of research papers about GS algorithm 
and its modifications. 

This was followed by the development of my own weighted algorithm, which included 
modifications found in available research papers. The performance of the algorithm was 
tested and compared against the conventional GS algorithm. The first test was based 
on the Fresnel diffraction and propagation via Fourier transform and it predicted that 
the new algorithm should give almost perfect results. Propagation employing the angular 
spectrum method (ASM) resulted, on the other hand, in a very noisy image, even though 
the same phase mask was used. A laboratory experiment was set up in order to decide 
what is the real performance of the algorithm. The results obtained from this experiment 
indicate that the weighted GS algorithm is effective, although there is a room for an 
improvement. A noise was present but it was lower than predicted by the ASM. It is 
difficult to capture all the aspects of the real setup in the simulation of laser propagation, 
which is the reason why results of the experiment differ from the measured data. 

The GS algorithm is frequently used in the field of atom trapping, where binary 
intensity profiles are required instead of smoothly varying ones. This may explain why 
some of the algorithms proposed in available research papers do not meet the requirements 
for our intended application. The algorithm developed in the framework of this work was 
also tested for shaping a beam into the logo of the Institute of Physical Engineering, which 
is a binary mask, and the results were reasonably good. 

Consequently, further development is planned, particularly integration of a camera 
feedback into the iterative algorithm. This upgrade is expected to refine the beam shap
ing process by providing real-time adjustments based on the feedback, leading to more 
accurate and reliable results. The feedback may be able to address all imperfections in 
the setup at once instead of resolving every individual cause of inaccuracy one by one. A 
switch to a gradient descent algorithms will also be considered. Phase vortices and their 
elimination is also an interesting topic that should be further explored. 
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