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Notation

N

R

R™
Cla, 0]

C*la, b]

Lip(1)
Liploc (I)

set of all natural numbers

set of all real numbers

n-dimensional Euclidean space

Banach space of all continuous functions on [a, b] equipped with
the maximum norm ||g||cfe,s = max{|g(t)|: t € [a,b]}

Banach space of all functions k-times continuously differentiable
on [a, b] equipped with the norm ||gllck e = >-5— 199 [l cfa
set of all Lipschitz continuous functions on the interval I

set of all locally Lipschitz continuous functions on the interval 1



1 Introduction

In this thesis, we investigate the second order nonlinear ordinary differential
equations (ODEs) without ¢-Laplacian (Chapters 2-4)

(p(H)u'(t))" + q(t) f (u(t)) = 0 (1.1)
and with ¢-Laplacian (Chapters 5-7)
(p(t)o(u' (1)) + p(t) f((u(t))) = 0. (1.2)

The basic assumptions on functions p, ¢, f and ¢ are mentioned in Sections 2.1,
5.1 and 7.1. Both equations (1.1) and (1.2) are studied with the initial conditions

u(0) = up, u'(0) = 0. (1.3)
These initial value problems (IVPs) are investigated generally on the positive
half-line [0, 00).
Equations (1.1) and (1.2) can have a time singularity at the origin in the
following sense. Let us consider the system of ODEs

2(t) = f(t,x), tel, (1.4)

where f: I xR" — R", z € R", I C R. If the function f fulfils the Carathéodory
conditions, then the system (1.4) is called regular, otherwise it is called singular.
By the time singularity at 0 we understand that

/08|f(t,x)|dt=oo

for some x € R and for each sufficiently small ¢ > 0. If we put v = pu/, then
equation (1.1) can be expressed as a special case of system (1.4)

() = ——o(t),  o(t) = —q(t) [ (u(t).

p(t)
Similarly, for v = p¢(u), we can assume equation (1.2) as the system

/ _ 1 / _
u'(t) = mv(t% V() = =p(t)f(o(u(t)))-

One of our basic assumptions on the function p is that p(0) = 0. Hence, the
integral fol ﬁ ds can be divergent, which yields the time singularity at 0. Con-
sequently, our investigated equations (1.1) and (1.2) can have the time singularity.
This contrasts with the papers that study more general equations in the regular
setting, mentioned in Section 1.1. In addition, the nonlinearity f in our case
does not satisfy the sign condition zf(x) > 0 for all x # 0. Therefore, the glob-

ally monotonous behaviour of f, which is often required in the literature, is not
fulfilled here.



1.1 Recent state summary

Regular equations

A considerable amount of literature exists on the qualitative analysis of equations
(1.1), (1.2) and their generalizations in the regular setting, where p(t) > 0 for t €
[0,00). The monograph [31] provides a general overview of asymptotic properties
of solutions of nonautonomous ODEs. Research in the last decades has focused
significantly on asymptotic analysis of the second order Emden—Fowler equation

u’(t) + q(@)[u(t)["sgnu(t) =0, >0, v#1,

which is a special case of equations (1.1) and (1.2). For the historic overview, see
[71]. The oscilation and nonoscilation of the second order Emden-Fowler equation
is researched in [36, 11, 12, 55]. The Emden-Fowler equation of arbitrary order
is analysed in [71]. Further extensions of these results have been reached for
more general equations, as can be seen in, e.g. |9, 17, 18 206, 35, 43, 72, 73].
Nonlinearities in equations in the cited papers have similar globally monotonous
behaviour, characterized by the sign condition xf(z) > 0 for x € R\ {0}. We
would like to emphasize that, in contrast to these papers, the nonlinearity f in
our equations (1.1) and (1.2) does not have globally monotonous behaviour.

The second order Emden—Fowler equation can be generalized into the follow-
ing equation with p-Laplacian

(P()Pa(v/(1)) + q(t) P4 (u(t)) =0,  a>0, y>0,

where @, (u) := |u|*sgnu. This equation is called sub-half-linear, half-linear or
super-half-linear if & > 7, a = v or a < 7, respectively. The existence results of
the sub-half-linear case are mentioned in |28, 37, 39|, those of the half-linear case
in |15, 29, 38| and those of the super-half-linear case in |16, 15].

Another approach to the asymptotic analysis is provided by the theory of
regular variations |11, 17]. The asymptotic results for the related equations or
systems with regularly varying functions are mentioned in |22, 27, 40, 49, 50, 67,

|. Criteria for oscillation and nonoscillation of related two-dimensional linear
and nonlinear systems can be found in [21, 16, 52].

Singular equations

The journal articles [56, 57, 60, 61, 62, 63, 64, 65, 66] are the most significant for
this thesis. They contain a detailed study of the singular nonlinear equation
(p(t)u' (1)) + p(t) f (u(t)) = 0. (1.5)

Equation (1.5) is a special case of equation (1.1), where p = ¢ and also a special
case of equation (1.2), where ¢(x) = z. All types of possible solutions of IVP
(1.5), (1.3) with proofs of their existence and assymptotic properties are described
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in |60, 61, 6G4]. The existence of escape and homoclinic solutions is discussed in
[62, 63].

The damped oscillatory solutions of problem (1.5), (1.3) are studied in [56, 57,

|, where the conditions for their existence, convergence to zero and for another

asymptotic properties are given. For the results about damped nonoscillatory

solutions, we refer to [69]. The asymptotic formulas and conditions that guarantee
the existence of Kneser solutions are derived there. The variational methods for
p(t) = t*, k € Nor k € (1,00) are used in [10] or [12], respectively, where

problem (1.5), (1.3) is transformed into a problem to find positive solutions on
the half-line.

Many other problems for singular equations are described in |7, 8, 53, 58, 59|
and [541], where the existence theory of two-point boundary value problems on
finite and semi-infinite interval is introduced. For other close existence results,
see also Chapters 13 and 14 in [53], where the existence results for second order
ODEs on finite, semi-finite and infinite intervals are shown. Works [58, 59] are
focused on regularization and sequential techniques and contain the existence
theory for a variety of singular boundary value problems, especially those with
¢-Laplacian.

1.2 Thesis objectives

The solutions for our IVP (1.1), (1.3) without ¢-Laplacian as well as for prob-
lem (1.2), (1.3) with ¢-Laplacian are divided according to their supremum into
damped, homoclinic and escape solutions. Chapters 2 and 5 guarantee solvability
and uniqueness of our IVPs and consider all the previously mentioned types of
solutions indiscriminately. On the contrary, other chapters are focused on either
damped, homoclinic or escape solutions.

Equations without ¢-Laplacian

The following objectives are concerned with the IVP (1.1), (1.3) without ¢-
Laplacian.

e The first aim of the thesis is to prove the existence and uniqueness of the
damped solutions of problem (1.1), (1.3).

e Further, our effort is focussed on finding the conditions under which each
damped solution is oscillatory.

e Our next goal is to prove the existence and uniqueness of escape solutions
of the above-mentioned problem. Here we use the existence results of the
oscillatory solutions.

e The principal objective concerning the IVP without ¢-Laplacian is to prove
the existence of homoclinic solution, which is important in applications
described in Section 1.5.

11



Equations with ¢-Laplacian

e Our aim is to generalize our results for damped and escape solutions of
problem (1.1), (1.3) without ¢-Laplacian to problem (1.2), (1.3) with ¢-
Laplacian.

e Moreover, we want to find conditions which guarantee that each escape
solution of problem (1.2), (1.3) is unbounded and thus prove the existence
of unbounded solutions.

Finally, we intend to illustrate all these main results on various examples.
Open problems and other aims of research

e The thesis contains the existence result for a homoclinic solution of problem
(1.1), (1.3) without ¢-Laplacian. The existence of homoclinic solutions for
problem (1.2), (1.3) with ¢-Laplacian stays as an open problem.

e The next open problem is finding conditions leading to the existence of the
unique homoclinic solution of problem (1.1), (1.3) and problem (1.2), (1.3).

e Another interesting problem is to investigate the set of all solutions of
equation (1.1) and (1.2) depending on initial values. We know that — for
both of these equations — initial values in [B, L) give only damped solutions
(see Theorem 3.1, Remark 3.2, Theorem 6.1). However, a structure of
solutions for initial values in (LO, B) is still an open problem.

1.3 Theoretical framework and methods applied

The thesis is motivated by the research of second order singular equations initi-
ated by I. Rachinkova, J. Tomecek et al. in [56, 57, 60, 61, 62, 63, 64, 65, 66].
These papers investigate equation (1.5) and they are based on the following basic
assumptions. The function f is (locally) Lipschitz continuous on the domain,
where the solution is searched for. Further, f satisfies a certain sign condition, f
has either two zeros 0, L > 0 [56, 57, 60, 61, 65, 66] or three zeros 0, Ly < 0, L > 0
[62, 63, 64]. The function p is continuous on [0, 00), continously differentiable and
increasing on (0,00), p(0) = 0 and lim;_, ’% = 0. For more information about
contents of above cited papers, see Section 1.1.

Our effort is to generalize current results about existence and properties of
three types of solutions of equation (1.5) to the more general equations (1.1) and
(1.2). In this thesis, f has three zeros 0, Ly < 0, L > 0 and the basic assumptions
are mentioned in Section 2.1 for problem without ¢-Laplacian and in Sections 5.1
and 7.1 for problem with ¢-Laplacian.

Our results are based on the methods of differential equations and functional

analysis. The fixed point theory plays an important role in the proofs of existence
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of solutions of our IVPs. We reduce an IVP to an operator equation and search
for a fixed point of a corresponding operator. For the existence of solutions of
auxiliary IVPs with and without ¢-Laplacian, we use the Schauder fixed point
theorem. Here it is necessary to prove the compactness of the operator. To
prove this, we use the Arzela—Ascoli theorem. The uniqueness of a solution is
proved with the help of the Gronwall lemma. The existence and uniqueness of a
solution can be proved also by the Banach fixed point theorem, which we show
for the original IVP without ¢-Laplacian with a bounded nonlinearity and some
additional conditions.

Using the method of a priori estimates, we obtain estimates of solutions whose
existence is not guaranteed, which is useful to prove the general existence prin-
ciples. In the study of unbounded solutions of the IVP with ¢-Laplacian, the
difficulties arise in the case where the uniqueness of solution is not guaranteed.
The lower and upper functions method for auxiliary mixed problem helps us to
solve these difficulties in connection with the proof of existence of specific type
of the solution of the IVP. The lower and upper functions satisfy the differential
inequalities derived from our differential equation and fulfil the inequalities de-
rived from the mixed boundary conditions. Our lower and upper functions are
well-ordered, that is the upper function is greater or equal to the lower function
and the solution is located between these functions.

1.4 Original results

This thesis contains new results in the theory of singular nonlinear ODEs of
second order on the half-line [0,00). They are based on the results published in
multiple peer-reviewed journals [1, 2, 3, 1]. The author presented these results
at several international conferences (see page 150).

Here we summarize the main results of the individual chapters. Chapters 2—4
are devoted to the IVP

(P () +a(®) f(u®) =0, u(0) =up € [Lo, L], w'(0)=0  (1.6)

with different coefficient functions p and ¢. This problem is established on the
following basic assumptions on functions f, p and q.

e The function f has three zeros Ly < 0, 0 and L > 0. The function f is
continuous on [Lg, L], negative on (Lg, 0) and positive on (0, L).

e The functions p and ¢ are continuous on [0, 00), positive on (0,00) and
p(0) = 0. Moreover, we assume that

1 t
lim —/ q(s)ds =0,
0

t—0+ p(t)

13



which is the necessary condition for the existence of a solution of problem
(1.6) (see Theorem 2.21).

We also study the auxiliary IVP

(') +qt) f(ut)) =0,  u(0) =ug € [Lo, L], ' (0)=0, (L7

where

Fle) = {(])C(x) ior x € [Lo, L],
orx < Lg, x>1L,

which is easier due to its bounded nonlinearity f . The auxiliary nonlinearity f
is chosen in connection with our main classification of solutions into damped,
homoclinic and escape solutions defined in Definitions 2.5 and 2.6.

Chapter 2 investigates the existence and uniqueness of solutions of both (1.6)
and (1.7). The first main result is the existence of solutions of problem (1.7) under
the basic assumptions in Theorem 2.15. If f is Lipschitz continuous on [Lg, L],
then the uniqueness of a solution of problem (1.7) and a continuous dependence
of solutions on initial values is proved (Theorem 2.17). In all of the following
results for the problem without ¢-Laplacian, we consider the basic assumptions
and, moreover, the conditions

3B € (L, 0) : F(B) — F(L), where F(z) = /mf(z)dz, xr € R,
0
pq is nondecreasing on [0,00), f € Lipie ([Lo, L] \ {0}).

Additionally, Theorem 2.15 gives that the solution u of problem (1.7) with uy €
(Lo, L) satisfies u > Ly on [0,00). Consequently, for damped and homoclinic
solutions, the function f coincides with f and the auxiliary problem (1.7) becomes
the original problem (1.6). Theorem 2.19 gives the existence and uniqueness of
the original problem (1.6) provided that f is locally Lipschitz continuous on
(Lo, 00) and —C < f(x) <0 for x > L, for some Cf, € (0,00).

Chapter 3 deals with damped solutions of the original problem (1.6). Theo-
rem 3.1 gives an important result: each solution with a starting value in (B , L)
is damped. Furthermore, we have guaranteed the existence of these solutions.
Theorem 3.5 yields that if (3.2) and (3.4) hold, then every damped nonoscilla-
tory solution u(t) tends to 0 for ¢ — oco. This asymptotic behaviour is valid also
for «/'(t) provided that (3.6) holds. Significant attention is devoted to oscillatory
solutions. Theorem 3.7 shows that every oscillatory solution is the damped solu-
tion and it has nonincreasing amplitudes defined in Definition 3.6. Three types of
conditions which guarantee that each damped solution is oscillatory are presented
in Theorems 3.11, 3.12 and 3.14. The existence of oscillatory solutions for each
starting values in (B,O) U (0, L) is proved under these three different criteria.
The first existence result (Theorem 3.15) is proved under conditions (3.2), (3.8),

14



(3.19) and (3.24). Theorem 3.16 yields the existence of oscillatory solutions under
assumptions (3.2), (3.8)—(3.11) and (3.19), whereas Theorem 3.17 provides the
third existence result reached under conditions (3.3) and (3.29).

The main aim of problem (1.6), which is the existence of a homoclinic solution,
is studied in Chapter 4. According to three obtained criteria for the oscillation of
solutions in Chapter 3, we get three criteria for the existence of escape and homo-
clinic solutions. These criteria are given either by conditions (3.2), (3.8), (3.19)
and (3.24) or conditions (3.2), (3.8)—(3.11) and (3.19) or condition (3.3). More-
over, here we assume that (2.28) and (4.6)—(4.9) hold. Under these assumptions,
we first present the existence of escape and homoclinic solutions of the auxiliary
problem (1.7) in Theorems 4.6 and 4.7. The main results for the original problem
(1.6) are contained in Theorems 4.8 and 4.9. Theorem 4.8 guarantees the exis-
tence of infinitely many escape solutions of problem (1.6) on [0, ¢| with different
starting values, where ¢ can be different for different solutions. Using this, we are
able to prove the existence of at least one homoclinic solution of problem (1.6)
(Theorem 4.9). Finally, the homoclinic solution leads to the bubble-type solution
(Corollary 4.10) with the physical interpretation in hydrodynamics, mentioned
in Section 1.5.

Chapters 5-7 are dedicated to the IVP

(p()e(' (1)) + p) f(P(u(t) =0, u(0) =up, w'(0)=0 (1.8)

with ¢-Laplacian. This problem is based on the following basic assumptions on
functions ¢, f and p.

e ¢ is an increasing diffeomorphism with ¢(R) = R and ¢(0) = 0.

e The function f has three zeros ¢(Ly) < 0, 0 and ¢(L) > 0. The function
f is continuous on [¢(Lg), ¢(L)], negative on (¢(Lg),0) and positive on

(0, 9(L)).

e The function p is continuous on [0, 00), continuously differentiable and in-
creasing on (0, 00) and p(0) = 0.

We define also the auxiliary IVP

(P (1)) +p(t) f(d(u(t)) =0, u(0) =ug, «'(0)=0, (1.9)

where

. { fla) for o € [6(Lo), 6(1)
0 for x < ¢(Ly), x > ¢(L).

Chapter 5 is devoted to the existence and uniqueness of a solution of problem
(1.9) and the continuous dependence of solutions on initial values. The existence

15



of solutions of auxiliary problem (1.9) under the basic assumptions is quaran-
teed by Theorem 5.19. The uniqueness of solution of problem (1.9) is proved in
Theorem 5.21 under conditions

f € Lip[o(Lo), ¢(L)] (1.10)
¢~" € Lipioc(R). (1.11)

That is, both functions ¢ and ¢! have to be locally Lipschitz continuous on R,
which can be problematic to satisfy. In particular, for model example ¢(x) =
lz|*sgnz, o > 1, we have ¢~L(z) = |z|= sgnx, which is not locally Lipschitz
continuous function on R. Hence, we are forced to obtain crucial results also in
the more difficult case, where condition (1.11) is not considered. If we asume
that (1.10),

T

3B e (Ly,0): F (B) = F(L), where F(z)= [ f(¢(s))ds, zeR, (1.12)
: P'(t)
hiri}sogp o0 < 0 (1.13)

hold, then the continuous dependence of solutions on initial values in (0, L) or
(Lo, 0) without condition (1.11) is proved in Theorem 5.24 or 5.26, respectively,
under additional assumption (5.57) or (5.66), respectively.

Chapter 6 shows that conditions (1.12) and (1.13) are sufficient for the proof
that each solution of the original problem (1.8) with starting value in [B, L) is
damped (Theorem 6.1). Moreover, the existence of these solutions is guaranteed.

Final Chapter 7 deals with escape — especially unbounded — solutions. In this
chapter, we assume

/
feClop(Ly),), [f<0 on (¢(L),00), limsupp ®) =0

and that (1.12) holds. Theorem 7.10 yields the existence of infinitely many escape
solutions of the auxiliary problem (1.9) with different starting values in (LO, B)
under assumptions (1.10) and (1.11). If we exclude conditions (1.10) and (1.11),
then, by Theorem 7.16, we get the existence of infinitely many escape solutions
of problem (1.9) with not necessary different starting values in [LO, B) with no
additional condition. We provide three criteria — specified by (7.57) or (7.59) or
(7.63), (7.66), (7.67) — which guarantee that each escape solution of the original
problem (1.8) is unbounded (Theorem 7.19 or 7.20 or 7.22, respectively). If we
combine any of these criteria with assumptions of Theorem 7.10 or Theorem 7.16,
then we get the existence of unbounded solutions of problem (1.8) on [0,b) (see
Definition 7.1), where b can be different for different solutions. These results are
contained in Theorems 7.23, 7.25, 7.27, 7.29, 7.31 and 7.33.

The thesis presents the original results reached by the author during his PhD
studies of the Mathematical Analysis at Palacky University Olomouc in cooper-
ation with:
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e prof. RNDr. Irena Rachunkova, DrSc., Department of Mathematical Anal-
ysis and Applications of Mathematics, Faculty of Science, Palacky Univer-
sity Olomouc,

e Mgr. Jana Burkotovi, Ph.D., Department of Mathematical Analysis and
Applications of Mathematics, Faculty of Science, Palacky University Olo-
mouc,

e Mgr. Jakub Stryja, Ph.D., Department of Mathematics and Descriptive
Geometry, VSB — Technical University of Ostrava,

e Lucia Lopez-Somoza, Institute of Mathematics, University of Santiago de
Compostela, Spain.

Chapters 2-4 are based on the papers || and |2]. The results of Chapters 5
and 6 were proved in [3]. Chapter 7 contains the results from the paper [].

1.5 Motivation

We study the second order nonlinear ODEs arising in hydrodynamics. Reference
[25] shows that the study of the behaviour of nonhomogeneous fluids in the Cahn—
Hilliard theory can lead to the system of partial differential equations
P dv
o +div(ed) =0, — +V(u(e) —7A0) =0. (1.14)
Here o denotes the density, U is the velocity of the fluid, (o) is its chemical
potential, v is a constant. If we suppose that a motion of the fluid is zero, then
system (1.14) is reduced to the equation

vAp = p(o) — po, (1.15)

where v and p are suitable constants. Let us now introduce the polar system of
coordinates in R™ and search for the spherical symmetric solution, which depends
only on the radial variable r. Then, for n = 2,3, partial differential equation
(1.15) is reduced to the ODE

1("+70) = o)~ plen). 7€ (0.00), (1.16)

known as the density profile equation. This equation with the boundary condi-
tions
d(0)=0, lim o(r)=:0,>0 (1.17)
T—00

describes the formation of microscopic bubbles in a liquid, in particular, vapour
inside a fluid. The first condition in (1.17) follows from the spherical symmetry

17



and is also necessary for the smoothness of solution g at point r = 0. The second
condition means that the bubbles are surrounded by liquid with density g,. In
the simplest model for nonhomogenous fluid in R?, the chemical potential y is
considered as a three-degree polynomial with three distinct real roots. Then
problem (1.16), (1.17) is reduced to the form

(t*u') = N2t (u + Du(u — §), (1.18)
u'(0) =0, tlgglo u(t) = &. (1.19)

Here A € (0,00) and £ € (0,1) are parameters, which reflect different physical
situations. Note that problem (1.18), (1.19) has always the constant solution
o(r) = £, which physically corresponds to the fluid without bubbles (homogenous
fluid).

Many important physical properties of the bubbles depend on the strictly
increasing solution of problem (1.18), (1.19) with just one zero — so-called bubble-
type solution. In particular, the gas density inside the bubble, the bubble radius
and the surface tension. For more details, physical connections and numerical
investigation of the problem, see [25, 33, 44, 70].

Besides hydrodynamics, equation (1.18) arises in many other areas. For in-
stance, in the study of phase transition of Van der Waals fluids [20], in the
relativistic cosmology for description of particles that can be treated as domains
in the universe [15], in the homogeneous nucleation theory [5], in population
genetics, where it serves as a model for spatial distribution of the genetic com-
position of a population [23], or in the nonlinear field theory, in particular, when
describing bubbles generated by scalar fields of the Higgs type in the Minkowski
spaces [20]. For other problems close to problem (1.18), (1.19), we refer to
[ ) ) ) ) ) ) ]

In the thesis, we investigate equations generalizing the density profile equation
(1.18). Concretely, equations without ¢-Laplacian

(p()u' (1)) + q(t) f(u(t)) = 0
and with ¢-Laplacian
(p(t)e(u'(1)))" + p(t) f(d(u(t))) = 0,

both generally on the unbounded domain [0, c0). Especially for Ly < 0 < L, we
study these equations with the initial conditions

uw(0) =wug, u'(0)=0, wg€ [Lo,L]

For these initial value problems, we derive the existence and various properties
of different types of solutions and, as consequece, we obtain the existence of the
bubble-type solution satisfying the boundary conditions

/ _ 3 —
u'(0) =0, tlggo u(t) =1L
(see Corollary 4.10).
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2 Solvability of the problem with-
out ¢-Laplacian

2.1 Statement of the problem
We study the equation
(p(t)a' (1)) + () f(ult)) = 0 (2.1)
with the initial conditions
w(0) = ug, W'(0)=0, wup e [Lo,L] (2.2)

and assume the following basic assumptions:

Ly<0<L f(Lo)=f(0)=f(L) =0, 23)
fe€ClLy, L], zf(x)>0forxe (Lo L)\ {0}, (2.4)
p € C[0, 00), ( )=0, p(t)>0forte(0,00), (2.5)
q € C[0,00), ¢q(t)>0forte (0,00). (2.6)

A model example of (2.1), (2.2) is the following.

Example 2.1. Consider
p(t) =t*, q(t)=t°, te€[0,00), a>0, 3>0.

The functions p and ¢ are continuous on [0, 00), positive on (0, 00) and p(0) = 0.
Thus, (2.5) and (2.6) are fulfilled. Let us take

flx)=x(x — Lo)(L—x), z€R, Ly<0< L.

Then the function f is continuous on R, f(Lg) = f(0) = f(L) =0, zf(x) > 0 for
x € (Lo, L) \ {0}. Hence, (2.3) and (2.4) are satisfied.

Equation (2.1) can have various types of solutions which are defined as follows.

Definition 2.2. Let ¢ € (0,00). A function v € C'[0, ] with pu’ € C*[0, ]
which satisfies equation (2.1) for every t € [0, ] is called a solution of equation
(2.1) on [0, c]. If u is solution of equation (2.1) on [0, ¢] for every ¢ > 0, then u is
called a solution of equation (2.1).
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Definition 2.3. Let ¢ € (0,00). A solution u of equation (2.1) on [0, ¢] which
satisfies the initial conditions (2.2) is called a solution of problem (2.1), (2.2) on
[0, ¢]. If w is solution of problem (2.1), (2.2) on [0, for every ¢ > 0, then w is
called a solution of problem (2.1), (2.2).

Definition 2.4. A solution u of problem (2.1), (2.2) is said to be oscillatory if
u % 0 in any neighborhood of co and if u has a sequence of zeros tending to oc.
Otherwise, u is called nonoscillatory.

Definition 2.5. Let u be a solution of problem (2.1), (2.2) with ug € (Lo, L).
Denote
Usup = sup{u(t): t € [0,00)}.

If Ugyp < L, then w is called a damped solution of problem (2.1), (2.2).
If Ugyp = L, then u is called a homoclinic solution of problem (2.1), (2.2).

Definition 2.6. Assume that u is a solution of problem (2.1), (2.2) on [0, ¢],
where ¢ € (0,00) and ug € (Lo, L). If u satisfies

u(c) =L, u'(c) >0,
then u is called an escape solution of problem (2.1), (2.2) on [0, c].

Let us illustrate different types of solutions of problem (2.1), (2.2) with respect
to their asymptotic behaviour in relation to Definitions 2.5 and 2.6 in Figure 2.1.

u(t) / escape solution
L

homoclinic solution

/_\ 7, L\ damped solution
0 / \/ NSt

Figure 2.1: Types of solutions

One of the main goals of the thesis is to find additional conditions for func-
tions f, p and ¢ which guarantee that problem (2.1), (2.2) has all three types
of solutions from Definitions 2.5 and 2.6, that is damped, homoclinic and escape
solutions. To this aim, properties of these solutions are studied in more detail.
In particular, in Chapter 4, we prove that a homoclinic solution of problem (2.1),
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(2.2) satisfies the boundary conditions
u'(0) =0, lim u(t) = L

t—o00
motivated in Section 1.5.

Definition 2.7. Let u be a solution of problem (2.1), (2.2) with u(0) € (Lo, 0)
such that «/(t) > 0 for ¢t € (0, 00). If u satisfies in addition the boundary condition

lim u(t) = L, (2.7)

t—o00

then u is called a bubble-type solution of problem (2.1), (2.2).

Therefore, bubble-type solutions of problem (2.1), (2.2) are homoclinic solu-
tions of (2.1), (2.2).

Note that, according to p(0) = 0, the integral fol 1% may be divergent, which
means that equation (2.1) can have a singularity at t = 0.

In order to derive the existence of all three types (damped, homoclinic, escape)
of solutions of problem (2.1), (2.2), we introduce the auxiliary equation

(p(t)' (1)) + q(t) f(u(t)) =0, (2.8)
where

(2.9)

Fla) = {(])"(a:) ior x € [Lo, L],
orx < Lo, x> L.

Remark 2.8. By (2.3), equations (2.1) and (2.8) have the constant solutions
u(t) = L, u(t) = 0 and u(t) = L.

2.2 Properties of solutions

Before we state the existence and uniqueness results, we provide auxiliary lemmas.

Lemma 2.9. Assume that (2.3)-(2.6) hold and let u be a solution of equation
(2.8). Assume that there exists b > 0 such that uw(b) € (Lo,0) and u'(b) = 0.
Then u'(t) > 0 for t € (b,0], where 0 is the first zero of u on (b,00). If such 0
does not exist, then u'(t) > 0 fort € (b, 00).

Proof. Let b > 0 be such that u(b) € (Lo, 0) and «'(b) = 0. First, assume that
there exists 6 > b satisfying u(t) < 0 on (b,6) and u(f) = 0. Then, according to
(2.4), (2.6) and (2.9), q(t) f(u(t)) < 0 and hence,

(pu)' (t) >0, te(bh).

Since (pu') (b) = 0 and since pu’ is increasing on (b, ), we get pu’ > 0 on (b, )
and, by (2.5), v’ > 0 on (b,0). Furthermore, by integrating (2.8) over [b, 6], we
obtain
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() (0) = — / 4(s) F(u(s)) ds > 0.

Thus, pu’ > 0 on (b, 0] and, due to (2.5), v/ (t) > 0 for ¢t € (b,0]. If u is negative
on [b,00), we get as before pu’ > 0 on (b,00) and u/(t) > 0 for t € (b, 00). O

The next dual lemma can be proved analogously.

Lemma 2.10. Let (2.3)—(2.6) hold and let u be a solution of equation (2.8).
Assume that there exists a > 0 such that u(a) € (0,L) and v'(a) = 0. Then
u'(t) <0 fort € (a,0], where 0 is the first zero of u on (a,00). If such 6 does not
exist, then u'(t) <0 fort € (a,00).

In order to obtain further important properties of solutions, we assume that

3B € (Lo,0): F (B) = F(L), where F(a) ;:/ f(z)dz, TR (2.10)
0
By (2.4), we have F € C'(R), F(0) = 0, F is positive and increasing on [0, L]

and positive and decreasing on [Lg,0]. The geometric significance of condition
(2.10) is illustrated in Figure 2.2, where the both filled areas are equal.

—_— F(x)

f@x)

=
e~
(=]
os]
o
-~
=

Figure 2.2: Illustration of condition (2.10)

Lemma 2.11. Assume that conditions (2.3)—(2.6), (2.10) and
pq is nondecreasing on [0, 00) (2.11)

hold. Let u be a solution of equation (2.8) such that there exist b > 0, 6 > b
satisfying

u(b) € (B,0), '(b)=0, u(@) =0, u(t)<O0 fortelbb).
Then u fulfils either
u'(t) >0 fort € (b,00), tlgglo u(t) € (0,L) (2.12)
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dee (0,00): u(c) € (0,L), u'(c)=0, u(t)>0forte(bc). (2.13)

Furthermore, if
pq is increasing on [0,00), (2.14)
then the assertion holds also for u(b) = B, u/(b) = 0.

Proof. Due to Lemma 2.9, v/(t) > 0 for ¢t € (b,0]. Assume that there exists
¢ > 0 such that «/(¢) = 0 and «/(¢) > 0 for t € (b,c). Let u(c) > L. Then there
exists by € (6, c] such that u(b;) = L, v’ > 0 on (b, b;). By multiplying equation
(2.8) by pu/, integrating over [b, b;], we get

/b ()l (1)) plt)ed (1) dt = — / (pg) (£) F ()l () dt

By (2.11), we obtain

o< PO < uyo) [ Fatonu - o) [ Faonoa
= (pa) (0) (P (u(b)) = Flu(br))) = (pa)(6) (F(u(v) = F(L)))
Therefore,
F(u(b)) > F(L). (2.15)
On the other hand, since B < u(b) < 0, we obtain, by (2.10),
F(L)=F (B) > F(u(b)). (2.16)

This contradicts (2.15). Consequently, u(c) € (0, L) and (2.13) holds.

Let «/(t) > 0 on (b,00). Then w is increasing on (b, 00) and it has a limit
for t — oco. Assume that lim; ,,, u(t) > L. Then there exists b; > 6 such that
u(by) = L, u/(by) > 0, which yields a contradiction as before. Assume that
limy o u(t) = L. Then

lim F(u(t)) = F(L),

t—o0

and, according to (2.16), there exists T > b such that F(u(T)) > F(u(b)). Thus,
multiplying (2.8) by pu’ and integrating over [b, T, we get

COMEN < (q)8) (Fu(t) - Fu())) <o

This contradiction yields lim;_, u(t) € (0, L) and (2.12) holds.

0<
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Let us assume that (2.14) is fulfilled and u(b) = B, «/(b) = 0. We follow the
steps in the first part of this proof. If there exists b; such that u(b;) = L,u’ > 0
on (b, by), then, by multiplying equation (2.8) by pu’ and integrating over [b, b;],
we obtain the contradiction

p(by)u! (by))? S ~

0 < PO o) (£ (B) - F(L) =0
Consequently, if there exists ¢ € (0, 00) such that v'(c) = 0, u/(t) > 0 for t € (b, ¢),
then u(c) € (0, L).

Let u/(t) > 0 for t € (b,00). Due to the above arguments, lim; . u(t) < L.
Assume that limy_,o u(t) = L. Then

F(u(b)) =F (B) = F(L) = tliglo F(u(t)).

Multiplying equation (2.8) by pu/, integrating over [b, #] and over [0,¢] for t > 0,
we get, by Lemma 2.9,

(p(9)u'(0))"

0 < < (pa)(O)F (B),

Hence,
(b)(O)F (B) > OO

Letting t — oo, we get

() (0)F (B) > OO ]

a contradiction. O

By analogy, we get the dual lemma.

Lemma 2.12. Assume that (2.3)—(2.6), (2.10) and (2.11) hold. Let u be a
solution of equation (2.8) such that there exist a > 0, 6 > a satisfying

u(a) € (0,L), u'(a)=0, w@) =0, wu(t)>0fortéelab). (2.17)
Then u fulfils either

u'(t) <0 fort € (a,00), limu(t) € (B,0) (2.18)

t—00

or

3be (0,00): u(d) € (B,0), ' (b)=0, u(t)<O0 forte (a,b). (2.19)
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Remark 2.13. Assume that (2.3)-(2.6) hold. If u(0) = 0, then «’ cannot be
positive on (0, 0) for some § > 0, since then w is positive on (0, ) and integrating
equation (2.1) over [0,¢], t € (0,4), we get, due to (2.4),

Pty (1) = — / 4(s)  (u(s)) ds < 0,

a contradiction. Similarly, u' cannot be negative. Therefore, the solution u(t) =0
is the only solution of problem (2.1), (2.2) with uy = 0. Assume moreover

€ Lipioc ([Lo, L] \ {0}) - (2.20)

Then, by (2.9), (2.20), f € Lipi. (R \ {0}) and the solution u(t) = L or u(t) = Ly
is the only solution of problem (2.8), (2.2) satisfying for some ¢, > 0 conditions
u(ty) = L, u'(ty) = 0 or u(ty) = Lo, v (ty) = 0, respectively.

Lemma 2.14. Assume that (2.3)—(2.6) and (2.20) hold. Let u be a solution of

problem (2.8), (2.2) with ug € (Lo, B]. Assume that there exist § > 0, a > 0 such
that

w(@) =0, wu(t) <0 fortel0,0), u'(a)=0, u'(t)>0forte(ba).

Then
u(a) € (0, L), u'(t) >0 forte (0,a). (2.21)

Proof. By virtue of Lemma 2.9, ' > 0 on (0, a). Hence,
pu'(t) >0, te(0,a). (2.22)

On contrary to (2.21), we assume that u(a) > L. Then, due to (2.20) and Remark
2.13, we have u(a) > L. Thus, there exists ap € (0,a) such that u(t) > L on
(ap, al. Integrating equation (2.8) over [ag, a], we obtain

pa0) — (@) = [ a(s)f(u(s)ds =0,

ao

According to (2.9), pu/(ag) = 0, contrary to (2.22). O

2.3 Existence and uniqueness of a solution

In this section, we provide the existence and uniqueness results, both for the
auxiliary problem (2.8), (2.2) and for the original problem (2.1), (2.2). For these

results, the assumption

lim L)/o q(s)ds =0 (2.23)

t—0+ p(t
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is essential. In connection with this condition, we introduce a function ¢ by

1 /t

—— [ q(s)ds, te(0,00), »(0) =0. 2.24
o0 ), (s) (0, 00) (0) (2.24)
The function ¢ is continuous on [0, c0) and, by (2.23), satisfies lim; o+ ¢(t) = 0.
Choose an arbitrary b > 0. Then there exists ¢, > 0 such that

p(t) ==

lo(t)] < ¢ fort e]0,b)]. (2.25)
The first two theorems deal with the auxiliary problem.

Theorem 2.15 (Existence of a solution of problem (2.8), (2.2)). Assume
that (2.3)~(2.6) and (2.23) hold. Then, for each ug € [Lg, L], problem (2.8), (2.2)
has a solution w.

If moreover conditions (2.10), (2.11) and (2.20) hold, then the solution u satisfies:

if ug € [B, L) . thenu(t) > B, te€(0,00), (2.26)
if up € (Lo, B), then u(t) > ug, t€ (0,00). (2.27)
Proof. Step 1. We prove the existence of a solution. According to Remark
2.8, for ug = Lo, up = 0 and uy = L there exists a solution of problem (2.8),

(2.2). Assume that uy € (Lg,0) U (0, L). By integrating equation (2.8), we get
the equivalent form of problem (2.8), (2.2)

t 1 s _
u(t):uo—/o @/0 q(7)f(u(r))drds, te[0,00).

By virtue of (2.4), (2.9), there exists M > 0 such that ‘f(m)‘ < M, x € R

Choose an arbitrary b > 0. Then (2.25) is valid. Consider the Banach space
C'[0,b] with the maximum norm and define an operator F: C'[0,b] — C'[0, b],

t 1 s 5
Fu)(t) :==u —/—/qTfUT drds.
(Fu)(t) := ug op(s)o()(())
Denote A := max{|Lg)|, L} and consider the ball
B(0,R) = {u € C0,0] : [Jullcpy < R} ,  where R := A + M.

We estimate the norm of operator F as follows

w- [ t 5 [Lamitatryaras

It means that 7 maps B (0, R) on itself. Choose a sequence {u,} C C'[0,b] such
that lim, o ||un — ul/cjoe = 0. Since the function f is continuous, we obtain

IFulleroy = max <A+ Mg, =R

te(0,b]

5 N t 1 S
lim || Fu, — Fu < lim H u,) — f(u H (/ —/ T des> =0,
Jim | letoa < Jimn £ = | ([ o5 | o)
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3]
Moy -

that is the operator F is continuous. Choose an arbitrary ¢ > 0 and put § :=
Then, for t1,t5 € [0,b] and for u € B (0, R), we get

[ [amituenaras

b —tal <3 = |(Fu) (0) - (Fu ()l = | |~

< M(,Ob|t2 —t1| < M(pb5:€.

Therefore, the functions in F(B (0, R)) are equicontinuous and, according to the
Arzela—Ascoli theorem, the set F(B (0, R)) is relatively compact. Hence, the
operator F is compact on B (0, R).

The Schauder fixed point theorem yields a fixed point u* of F in B (0, R).
Consequently,

w0 =i~ [ - [ i) i

p(s)

(PO (W) (1)) = —q(t)f (u*(t), t€0,0].

Since |(u*)'(t)| < Mp(t) and, due to (2.23), lim; o+ (u*)'(t) = 0 = (u*)'(0). By
(2.9), f(u*(t)) is bounded on [0, 00) and hence, by Theorem 11.5 in [31], u* can
be extended to interval [0,00) as a solution of equation (2.8).

Step 2. We prove the estimates of solutions. Assume that (2.10), (2.11) and
(2.20) hold.

Let ug € (0,L). Ifu > 0 on (0,00), then (2.26) holds. Assume that there exists
¢, > 0 such that u(f;) = 0, u(t) > 0 for t € [0,6;). Using Lemma 2.12, where
a = 0 and 6 = 0, we obtain that u satisfies either (2.18) or (2.19). Condition
(2.18) gives (2.26). Let condition (2.19) be valid, that is

3b € (61,00): u(b) € (B,0), u/(b)=0, u(t)<0 forte(0,b).

If w <0 on (byoo), then, by Lemma 2.9, u is increasing on (b,00) and (2.26)
is valid. Assume that there exists #s > b such that u(fy) = 0, u(t) < 0 for
t € [b,0s). Using Lemma 2.11, where 6 = 65, we get that u satisfies either (2.12)
or (2.13). Condition (2.12) gives (2.26). Let condition (2.13) be valid. Then we
use previous arguments.

Let ug = 0. Due to Remark 2.13, u(t) = 0 is the unique solution of problem
(2.8), (2.2) and so, (2.26) holds.

Let ug € (B,O). If u <0 on (0,00), then, by Lemma 2.9, u is increasing on
(0,00) and (2.26) is valid. Assume that there exists #3 > 0 such that u(f3) = 0,
u(t) < 0 for t € [0,05). Using Lemma 2.11, where b = 0 and 6 = 03, we
obtain that u satisfies either (2.12) or (2.13). Condition (2.12) gives (2.26). Let
condition(2.13) be valid, that is

Jde € (05,00): u(c) € (0,L), u'(c)=0, u'(t)>0 forte(0,c).
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If w> 0 on (¢,00), then (2.26) holds. Assume that there exists 6, > ¢ such that
u(@y) = 0, u(t) > 0 for t € [c,604). Using Lemma 2.12, where a = ¢ and 0 = 6,
we get that u satisfies either (2.18) or (2.19). Condition (2.18) gives (2.26). Let
condition (2.19) be valid. Then we use previous arguments.

Let ug = B. If u < 0 on (0, 00), then, by Lemma 2.9, u is increasing on (0, co)
and (2.26) is valid. Assume that there exists 65 > 0 such that u(65) = 0, u(t) <0
for t € [0,65). If u> 0 on (65,00), then (2.26) holds. Assume that there exists
d > 05 such that v/(d) = 0, v/(t) > 0 for t € (05,d). Using Lemma 2.14, where
0 = 05 and a = d, we have that (2.21) is valid. Now, we have analogous situation
as in the case ug € (0, L), so we argue similarly.

Let ug € (Lo, B). If u < 0 on (0,00), then u is increasing on (0,00) and
(2.27) is valid. Assume that there exists 6 > 0 such that u(fs) = 0, u(t) < 0
for t € [0,6p). If u > 0 on (6g,00), then (2.27) holds. Assume that there exists
d > 0 such that u/(d) = 0, v/(t) > 0 for t € (0g,d). According to Lemma 2.14,
where 6 = 0 and a = d, we have that (2.21) is valid. We obtain similar situation
as in the case ug € (0, L), thus we proceed analogously. 0

Remark 2.16. Under assumptions (2.3)—(2.6) and (2.23), each solution of prob-
lem (2.8), (2.2) is defined on the half-line [0, 00 ). Furthermore, the set of these so-
lutions with wy € (Lo, 0)U(0, L) is composed of three disjoint classes S; (damped
solutions), Sy, (homoclinic solutions), S, (escape solutions). Then

1. u € &y if and only if ug,, < L,
2. uw € Sy, if and only if ug,, = L,

3. ue S, if and only if ug,, > L.

Theorem 2.17 (Uniqueness and continuous dependence on initial val-
ues). Assume that (2.3)~(2.6) and (2.23) hold and let

f € Lip[Lo, L] (2.28)

hold. Then, for each uy € [Lo, L], problem (2.8), (2.2) has a unique solution.
Further, for each b > 0, there exists K > 0 such that

||U1 — Ug”cl[gﬂ S K|Bl — B2| (229)

Here u; is a solution of problem (2.8), (2.2) with ug = B;, i = 1, 2.

Proof. For i € {1,2}, choose B; € [Lg, L]. According to Theorem 2.15, there
exists a solution u; of problem (2.8), (2.2) with ug = B;. After integrating (2.8),
where u = u;, we obtain, by (2.2),

£ 5 5
ui(f):Bi—/o %/ﬁ o) F(us(r)) drds, €€ [0,00). (2.30)
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Denote
o(t) == max{[ui(§) —u2 (§) [: £ € [0,¢]}, ¢ €[0,00).

By virtue of (2.28), there exists a Lipschitz constant K; € (0, 00) for f on [Lg, L].
Then K is the Lipschitz constant for f on R and, due to (2.30), we get

ot = a8~ B = [ [ atr) (o) = Flus(r) dras

<iB- B+ [ [ oo |t = Fuatr)| aras

< |BI—BQ|—|—K1/O ]%/osq(T)Q(T)des’ te0,00).

Choose b > 0 and let ¢ be given by (2.24). Then (2.25) holds. Since p is nonde-
creasing on [0, b], we obtain

t
oft) < 1By~ Bl + Ky [ o0)e(s)ds e (0.0,
0
Using the Gronwall lemma, we get
o(t) < | By — By|ef1Jo#)ds < |B; — Bolefiber ¢ e [0,0]. (2.31)

Similarly, according to (2.30), we get, for ¢ € {1,2},

! - 1 ! 3 ! -
w;(t) = —M/O q(s)f (ui(s)) ds, te€(0,00), u;(0)=0.
Consequently,
/ / 1 K =~ ~ 1 ¢
i) = w0)] < 7= [ a(s) | () = Flaa(o))] ds < o [ at)ots) ds

< Kio(t)e(t),  te[0,00).
By applying (2.25) and (2.31), we obtain
01(b) := max{|u} (1) — uy(t)| : ¢ € [0,]} < | By — Ba| Kyppe™ %"
Therefore, by (2.31),
lur = wzllerpoy = 0(b) + 01(0) < |B1 = Bal(1 + Kygp)e ",

that is (2.29) holds for K := (1 + Kj¢,)ef10%v.

If By = By, then u;(t) = us(t) on each [0, b] C R, which implies the uniqueness
of solution of problem (2.8), (2.2). O
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Example 2.18. Assume that 0 < L < —Lg, « >0, >0, v > 0 and k > 0.

Consider the IVP -
(4 (1)) + ° f(u(t)) = 0. 25
u(0) = ug € [Lo, L], 4/(0)=0, '

where
Flo) = klx|Ysgna(x — Lo)(L — ) for x € [Lyg, L],
~]o forx < Ly, x> L.

We have the auxiliary equation (2.8) with
p(t) =t q(t)=t", te€[0,00).

Example 2.1 shows that the functions p and ¢ fulfil (2.5) and (2.6). In addition,
pq is increasing on [0, 00), which means that (2.14) and consequently, (2.11) hold.
Finally,

1 tﬂ+1 tﬁ—l—l—a
i =0 ifg>a—1.

1 t
lim —/ s?ds = lim — = lim
* Jo =0t t* B 4+1 ot 41

Hence, if f > a — 1, then (2.23) is valid.

Since, by (2.9), f = f on [Lo, L], then the function f is locally Lipschitz
continuous on [Lg, L]\ {0}, Lo < 0 < L, f(Ly) = f(0) = f(L) =0, zf(x) > 0 for
x € (Lo, L) \ {0}. Thus, (2.3), (2.4) and (2.20) are satisfied.

Let us check (2.10). Define the function g(x) := — f(—x) for > 0. Then

g(x) =k (—x — Lo)(L+z), f(x)=ka'(x—Lo)(L—2z), >0
and since |Lo| > L, we get

g(z) — f(x) = ka” (—Lx — 2% — LoyL — Lox — Lz + 2* + LyL — Lox)
= 2kx"™(|Lo| — L) >0, x € (0,|Lol].

Consequently, g(z) > f(z) for z € (0,|Lo|] and so,

B |Lol L B
F(Ly) = /0 g(z)dz > /0 f(z)dz = F(L).

Therefore, there exists B € (Lo, 0) such that F (B) = F(L), which yields (2.10).
To summarize, if
B>a—1,
then we have fulfilled all assumptions of Theorem 2.15. So, for each ug € [Ly, L],
problem (2.32) has a solution u and u satisfies (2.26), (2.27). If in addition v > 1,
then f is Lipschitz continuous on [Lg, L], which means that (2.28) holds. Then
Theorem 2.17 yields the uniqueness of such solution w.
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Now, let us discuss the original problem.

Theorem 2.19 (Existence and uniqueness of a solution of problem (2.1),
(2.2)). Assume that (2.3)~(2.6), (2.10), (2.11), (2.23),

[ € Lipioe[Lo, 00), (2.33)
3CL € (0,00): —CL < f(x) <0 forx>1L (2.34)

are satisfied. Then, for each ug € [Lo, L], problem (2.1), (2.2) has a unique
solution u. This solution u satisfies (2.26) and (2.27).

Proof. Let ug € [Lo, L]. Only for this proof we modify the auxiliary function f

as @) {f(g;) for x > Lo,

(2.35)
0 for x < L.

We see that this new function f satisfies conditions (2.3) and (2.4) and all results
from Section 2.2 can be proved the same way for this redefined function f .

Step 1. We prove the existence and uniqueness of a solution of problem (2.8),
(2.2). This problem has the equivalent form

t 1 s _
u(t) = ug —/O I@/o q(m)f(u(t))drds, te€[0,00).
According to (2.33)-(2.35),
IM > 0: ‘f(:p)’ﬁM, v €R. (2.36)

Put A := max{|Log|, L}. By (2.33), there exists K > 0 such that
[f(@) = f)l < Klz —yl, Voye[-A-1A+1] (2.37)
Due to (2.5), (2.6), (2.23) and (2.24), we get

0<p(t)<oo forte(0,00), lim ¢(t) = 0.

t—0t

Therefore, we can find 1 € (0,00) such that

/Ongo(t)dt < min{%, %} (2.38)

Consider the Banach space C[0,n] with the maximum norm and define an oper-
ator F: C[0,n] — C[0,n] by

(Fu)(t) = o — / 1% / () F(u(r)) dr ds.
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From (2.36) and (2.38), it follows that
"
[Fulogn <A+M [ (s)ds <A+1 Vue
0
hence F maps the ball B(0,A + 1) = {u € C[0,n]: |lullcpm < A+ 1} on itself.
Choose arbitrary uy, us € B(0, A+ 1). Then, by (2.37) and (2.38), we obtain
o1 s ~ .
1~ Fuallown < [ == [ atn)|Funo) - Fus(rp| aras
o p(s) Jo
K 1
< Kl ~ sl [ 9(s)ds < 5 s = wallto
0

thus F is a contraction on B(0, A + 1). The Banach fixed point theorem yields a
unique fixed point u of F in B(0, A + 1). Therefore

WO =m0 = [fu)an e @)
Since [v/(t)] < M(t), it holds lim; o+ u'(t) = 0. From (2.39), it follows
(p(t)u' (1)) = —q(t)f(u(t)), t € (0,n], thus the fixed point u is a solution of

problem (2.8), (2.2) on [0, 7).

According to (2.36), f(u(t)) is bounded on [0, 00) and hence, by Theorem
11.5 in [31], u can be extended to [0,00). Since f € Lipioe(R), this extension is
unique.

Step 2. We prove the estimates of solutions of problem (2.8), (2.2). Let
up = L or uyg = 0. According to Step 1 and Remark 2.13, problem (2.8), (2.2)
has a unique solution u(t) = L or u(t) = 0, respectively, and so, (2.26) holds.

Let ug € (Lo,0)U (0, L). Then we argue analogously as in Step 2 in the proof
of Theorem 2.15.

Step 3. We prove the existence and uniqueness of a solution of problem (2.1),
(2.2). We have proved that estimates (2.26) and (2.27) are valid. By virtue of
definition of f (see (2.35)), the solution u of problem (2.8), (2.2) satisfies equation
(2.1) on (0, 00).

Suppose that there exists another solution @ of problem (2.1), (2.2). We can
prove as in Step 2 that @ fulfils (2.26) and (2.27). It means that @ satisfies
equation (2.8) on (0, 00), too. Therefore, by Step 1, u = . O

Example 2.20. Assume that 0 < L < —Lg, « >0, >0,y > 0 and k& > 0.
Consider the IVP
(t%u' (1)) + 7 f(u(t)) = 0

u(0) = ug € [Lo, L], u'(0) _ 0, (2.40)

where

f() = {k|x!7 sgnx(x — Lo)(L —x) for z € [Ly, L],

L—x
o1 for x > L.
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Here
p(t)y =t q(t)=1t", t€[0,00).

According to Example 2.18, conditions (2.3)-(2.6), (2.10) and (2.11) are ful-
filled and also that (2.23) holds provided f > o — 1. If v > 1, then f is locally
Lipschitz continuous on [Lg, 00), which gives (2.33). Moreover, f is negative on
(L,00) and

L—x
s =e =t

that is (2.34) holds with Cf, = 1.
To sum up, if

B>a—1 and v >1,

then we have satisfied all assumptions of Theorem 2.19. Therefore, for each
ug € [Lo, L], problem (2.40) has a unique solution v and u satisfies (2.26), (2.27).

In the next theorem, we show that condition (2.23) used in the previous results
is necessary for the existence of a solution of problem (2.1), (2.2).

Theorem 2.21 (Necessity of condition (2.23)). Assume that (2.3)—(2.6) hold
and let u be a solution of problem (2.1), (2.2) with ug € (Ly,0) U (0,L). Then
(2.23) is valid.

Vice versa, assume that (2.23) is satisfied and let u be a solution of equation (2.1)
with u(0) € [Lg, L]. Then u/'(0) = 0 and u is the solution of problem (2.1), (2.2).

Proof. Step 1. We prove the first part of theorem. Let u be a solution of
problem (2.1), (2.2) with ug € (0,L). Due to Lemma 2.10 there exists ¢y > 0
such that u(t) > 0, v/(t) < 0 for t € (0,%o]. Since 0 < u(ty) < u(t) < wuy < L for
t € [0, 1], we have

f(u(t)) > min{f(x): x € [u(ty),uo)} =: My >0, te]l0,t.

Integrating equation (2.1) from 0 to ¢ € (0,ty] and using (2.2), we obtain

u'(t) = —1% /th(s)f(u(s)) ds < _MIZ% /th(s) ds <0, te(0,t.
Letting t — 07, we get, by (2.2),
1
0= (0) <—M, tlirg}r m/o q(s)ds <0,

which yields (2.23).

For wug € (Lo, 0), we proceed analogously.

Step 2. We prove the second part of theorem. Let u be a solution of equation
(2.1) with uy € [Lg, L] and assume that (2.23) holds. Choose ¢; > 0 and put
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M, := max{|f(u(s))|: s €[0,t1]} > 0. Integrating equation (2.1) from 0 to

t € (0,%;] and using (2.5), we get

L
p(t)

We let t — 0" and obtain, by (2.23),

1 t
SMz—/ q(s)ds, te€(0,t].
0

| st as) <

(o) -|

1 t
"0)] < My lim — ds = 0.
(0 < M Jim o [ a(s)ds

This gives u/(0) = 0 and so, u is the solution of problem (2.1), (2.2).
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3 Damped solutions of the problem
without ¢-Laplacian

3.1 Existence and uniqueness of damped solutions

Now, we specify an interval for starting values ug, where the existence of damped
solutions is guaranteed. Note that, by Definition 2.5 and the estimates (2.26),
(2.27), each damped solution u of the auxiliary problem (2.8), (2.2) satisfies
Lo < u(t) < L for t € [0,00). According to (2.9), the function f coincides with f
on [Lg, L] and hence, all results of Chapter 2 are valid also for damped solutions
of the original problem (2.1), (2.2). In particular,

Theorem 3.1 (Existence and uniqueness of damped solutions of problem
(2.1), (2.2)). Assume that assumptions (2.3)—(2.6), (2.10), (2.11), (2.20) and
(2.23) are fulfilled. Then, for eachug € (B, L), problem (2.1), (2.2) has a solution
u. The solution u is damped and satisfies (2.26).

If moreover f satisfies (2.28), then the solution u is unique.

Proof. Choose uy € (B,L). By Theorem 2.15, there exists a solution u of
problem (2.8), (2.2) satisfying (2.26).

(i) If ug = 0, then, due to Remark 2.13, u(t) = 0 is the only solution of problem
(2.8), (2.2). It is clear that u is damped.

(ii) Let up € (0,L). If u > 0 on (0,00), then Lemma 2.10 yields ' < 0 on
(0,00) and hence, u is damped. Let 6 > 0 be the first zero of u. By Lemma
2.10, v/ < 0 on (0,0]. If u < 0 on (A,00), then u is damped. Let & > 6
be the second zero of w. Then there is b € (6, €) such that u/(b) = 0. Due
0 (2.26), u(b) € (B,0). By Lemma 2.9, v’ > 0 on (b,&]. If ' > 0 on
(b, 00), then, according to Lemma 2.11, lim;_,o, u(t) € (0, L) and so, u is
damped. Let there exist ¢ > £ such that u/(¢) = 0. Then Lemma 2.11 gives
u(c) € (0,L) and we can continue as before working with wu(c) instead of
Uug-.

(ili) Letug € (B , 0). Working with wg in place of u(b), we can use the arguments
of part (ii) and prove that u is damped.

We proved that ug,, < L and so, u is damped. If moreover (2.28) holds, then
Theorem 2.17 gives that the solution u is unique. By (2.9), f(u(t)) = f(u(t)) for
t € [0,00) and then u is a solution of problem (2.1), (2.2).
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Remark 3.2. In addition, if (2.14) is fulfilled, then, by Lemma 2.11, the assertion
of Theorem 3.1 holds for uy = B, too.

Example 3.3. Consider equation (2.32) from Example 2.18, that is equation
(2.1) with

p(t) =t qt)=t’, a>0,8>0,>a—-1,te[0,00),
f(z) =klz|"sgnz(x — Lo)(L —xz), 0<L<—Lg, v>0, k>0, z€[LoL].

By Example 2.18, conditions (2.3)—(2.6), (2.10), (2.11), (2.20) and (2.23) hold.
So, Theorem 3.1 and Remark 3.2 give that, for each ug € [B, L), problem (2.32),
(2.2) has a solution u, u is damped and satisfies (2.26). If v > 1, then f fulfils in
addition (2.28) and the solution u is unique.

3.2 Properties of nonoscillatory and oscillatory
solutions

In the literature, the permanent attention has been devoted to oscillatory solu-
tions of second order nonlinear differential equations. In section 1.1, we mentioned
many references on papers, where oscillatory solutions for the regular equations
are studied. However, nonlinearities in equations in these cited papers have
globally monotonous behaviour, in contrast to the basic asuumptions in this the-
sis. Moreover, we deal with solutions of (2.1) starting at possible singular point
t = 0, and we provide an interval for starting values u giving oscillatory solu-
tions, see Theorems 3.15, 3.16 and 3.17. Therefore, theorems from these cited
papers cannot be applied to the singular problem (2.1), (2.2) satisfying assump-
tions (2.3)—(2.6). For example, the same equation (2.1) is studied in [18] but in
the regular setting, that is the function p in equation (2.1) must be a strictly
positive on [0,00). One of the basic assumptions in [18] is the convergence or
divergence of integral I, = fooo ﬁ dt. In this thesis, a typical choice in equation
(2.1) is p(t) = t*, a > 0. Then clearly, I, = oo and therefore, theorems in [15]
which require I, < oo, cannot be applied. Other important assumption in [15]
concerns the function f in equation (2.1) and has the form

1‘1r|n inf | f(x)| > 0. (3.1)
T|—00
In the thesis, the function f has three zeros Ly < 0 < L and an arbitrary

behaviour for x < Ly and > L. Consequently, (3.1) need not be fulfilled and
theorems of |18] requiring (3.1) cannot be applied here, as well.

Definition 3.4. A function w is called eventually positive (eventually negative),
if there exists to > 0 such that u(t) > 0 (u(t) < 0) for ¢ € (o, 00).
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Clearly, each nonoscillatory solution of problem (2.1), (2.2) is either even-
tually positive or eventually negative. Paper [09] provides an example which
demonstrates that equation (2.1) can have both oscillatory damped solutions
and nonoscillatory ones.

In order to obtain conditions under which every damped solution of problem
(2.1), (2.2) is oscillatory, we distinguish two cases according to the convergence

or divergence of the integral floo ﬁ ds.

CASE I: We assume that the function p fulfils

<1
/1 mds<oo. (3.2)

CASE II: We assume that the function p fulfils
1
/ ——ds = o0. (3.3)
1

p(s)

First, we describe an asymptotic behaviour of nonoscillatory damped solutions
of problem (2.1), (2.2) in Case L.

Theorem 3.5. Assume that conditions (2.3)—(2.6), (2.10), (2.11), (3.2) and

tlirgo/lt]%/lsq(T)des:m (3.4)

are fulfilled. If u is a damped nonoscillatory solution of problem (2.1), (2.2) with
ug € (Lo, 0) U (0, L), then

tliglo u(t) = 0. (3.5)
If moreover p satisfies
>~ 1
liminf p(t / ——ds > 0, 3.6
t=o0 ) ¢ p(s) (36)
then
lim «'(t) = 0.
t—00

Proof. Assume that u is a damped nonoscillatory solution of problem (2.1),
(2.2) with ug € (Lo,0)U (0, L). Then u is either eventually positive or eventually
negative.

Step 1. We prove that lim;_, ., u(t) = 0. Since u is nonoscillatory, Lemma 2.9
or Lemma 2.10 guarantees the existence of ¢y > 1 such that u is either increasing
or decreasing on [ty, 00). Therefore, there exists lim; . u(t) =: ¢. Since ug,, < L,
we have ¢ < L. Integrating equation (2.1) from ¢y to ¢ and dividing this by p(t),
we get
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u(t) = u(ty) +/ Mds —/t L/S q(7) f(u(r))dr ds. (3.7)

to p(s) p(s) to

Let u be eventually positive. Then ¢ € [0, L). Assume ¢ € (0, L). Then there
exists M > 0 such that f(u(t)) > M for t > ty. From (3.7), we obtain

u(t) < ult) + plto)ed (to) / IV / " () drds,

to p(s) to p<8) to
lim u(t) < u(ty) + p(to)u' (¢ )/00 L ds — M lim ol /sq( )drds
—ds — — 7)dr
t—00 - 0 0 0 to p(S) t=00 Ji, p<8) to

= —0Q,

which contradicts ¢ € (0, L). Hence, ¢ = 0.

Let u be eventually negative. If u is negative on [0, 00), then, by Lemma 2.9,
we get u/(t) > 0 for t € (0,00) and thus, ¢ € (Lg,0]. Now, assume that there
exist a > 0 and 6 > a satisfying (2.17) and u(t) < 0 for ¢ > §. By Lemma 2.12,
it occurs either (2.18) or (2.19). If (2.18) holds, then ¢ € (B,0). If (2.19) holds,
then, by Lemma 2.9, ¢ € (B,O]. Assume that ¢ € (Ly,0). Then there exists
M > 0 such that —f(u(t)) > M for t > t; and, similarly as in the eventually
positive case, we derive a contradiction. Therefore, ¢ = 0 and (3.5) is proved.

Step 2. Assume in addition that (3.6) is valid and prove that lim; . u/(t) =
0. Let u be eventually negative. Then, by (2.4)—(2.6) and (3.5), there exists
t; > 0 such that /(t) > 0 for t > ;. Due to (3.6), there exist ¢ > 0 and ¢, > #;
such that o 1

p(t)/t 05) ds>c>0, telt,0).
From (2.1), (2.3), (2.4) and (2.6), it follows

(p(t)u' (1)) = —q(t) f(u(t)) >0, ¢ € [z, 00).
So, the function pu’ is increasing on [t2,00) and we have

p(r)u'(7) < p(s)u'(s) < p()u'(t), t2 <7 <s<t.

Therefore,
u(t) —u(r) = / u'(s)ds = / % ds > p(T)u’(T)/ $d87
| e
Jim (utt) = u(r) > plr)(r) [ = s,
—u(r) > W ()p(7) / % ds > o/(7)e > 0,
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According to (3.5), we have lim;_,, v/(t) = 0.
For eventually positive solutions, we proceed analogously. O

In the investigation of oscillatory solutions of problem (2.1), (2.2), we use the
following definition.

Definition 3.6. Let u be an oscillatory solution of problem (2.1), (2.2). Denote
{an} ({bn}) sequences of local maxima (minima) of u. Assume that either a, <
by, < apy1 < bpy1, n € Norbd, <a, <byy1 < apr1, n € N. Then the numbers
u(a,) — u(b,), n € N are called amplitudes of w.

u(t)

0= aq ay / ag t

Figure 3.1: Amplitudes of oscillatory solution

Theorem 3.7. Assume that conditions (2.3)—(2.6), (2.10), (2.11) and (2.20)
hold. Let u be an oscillatory solution of problem (2.1), (2.2) with ug € (Lo, 0) U
(0,L). Then u is a damped solution and has nonincreasing amplitudes.
If moreover p and q satisfy (2.14), then amplitudes of u are decreasing.

Proof. Let u be an oscillatory solution of problem (2.8), (2.2). Then u is not a
monotonous and so, by Lemmas 4.2 and 4.3, u cannot be neither an escape solu-
tion nor a homoclinic solution. Remark 2.16 yields that u is a damped solution
of problem (2.8), (2.2).

(i) Let up € (0,L). Since u is oscillatory, then there exists #; > 0 such that
u(f1) = 0, u > 0 on [0,6;). Lemma 2.12 gives that there exists by > 0,
such that u(by) € (B,0), v/ (b)) =0, v/ (¢) < 0 for ¢ € (0,b1). Multiplying
equation (2.8) by pu/, integrating this over [0, b;] and using the Mean value
theorem, we get & € [0,6;] and & € [0y, by] such that

b1 01 N
/0 (p(s)u'(s))'p(s)u/(s) ds = —/0 p(s)q(s) f(u(s))u'(s) ds
01

~ [ bt Fuo) () ds = ~a)(€0) [ Fluls)u'(s)ds

01 0

- (pQ)(fz)/ lf(u(s))u/(s) ds.

01
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(i)

(iii)

Hence, due to (2.11),

0— (p (b1)1; (b1)) _ (p(o)lzy(o)) _ (pq)(&)(F(U(O)) — F(u(91))>

+ (pa) (&) (F(u(02) = F(u(b)) ) < (pa)(&2) (F(u(0) = F(u(br))).

Since (pq)(&;) > 0, we have F(u(0)) > F(u(by)). Since u is oscillatory, then
there exists 0 > by such that u(fs) = 0, u < 0 on [by,02). Due to Lemma
2.11, there exists as > 65 such that u(as) € (0,L), v/(az) = 0, u/(t) > 0
for t € (b1, as). By multiplying equation (2.8) by pu/, integrating this over
[b1, as] and using the Mean value theorem and (2.11), we get & € [by, 65
and & € [0, as] such that

(p(az)g(%)) _ (p(bl)?;,(bl)) (pq)(&,)( (u (bﬁ)—ﬁ(u(%)))

+ (pa) (€0) (P (u(82)) = Flu(az))) < (pa)(&) (F(u(b) = Flu(as)))

Therefore, F(u(0)) > F(u(by)) > F(u(as)) and since F' is increasing on
0, L], we get u(a;) := u(0) > u(az). Repeating this procedure, we get
the sequences {u(a,)} and {u(b,)} (cf. Definition 3.6) such that u(a;) >
u(air1), u(b;) < u(b;yq) for each i € N. So, the sequence {u(a,)} is nonin-
creasing and {u(b,)} is nondecreasing, that is the sequence of amplitudes
{u(ay,) — u(b,)} is nonincreasing,.

0=

Let ug € (B, O). Since u is oscillatory, then there exists #; > 0 such that
u(6h) =0, u <0 on [0,0;). According to Lemma 2.11, there exists a; > 6,
such that u(a;) € (0, L), v/(a;) =0, «'(t) > 0 for t € (0,a;). Now, we have
analogous situation as in part (i), so by similar arguments we derive that
the sequence of amplitudes {u(a,) — u(b,)} is nonincreasing.

Let uy € (LO,B]. Then there exist 6; > 0, a; > 6 such that u(6;) = 0,
u < 0on[0,60q), v(a) =0, ¥ (t) >0 for t € (A1,a;). Due to Lemma 2.14,
u(ay) € (0,L), w > 0on (0,a;). We have similar situation as in part (i), so
we argue analogously.

We have proved that amplitudes of u are nonincreasing.

Let moreover (2.14) holds. Then we use the analogous arguments with dif-
ference that each mean value &;, i € N is located in open interval of integration.
For instance, let us show that in part (i), & € (0,6;). Since pq is increasing on
[0, 00) and — f(u(s))u/(s) > 0 for s € (0,6;), we get

(v9) (&) / " fu(s))(s) ds = / " p(s)q(s) F(u(s)) (s) ds

> (pq)(0) / ' flu(s))ed(s) ds,
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which yields & > 0. Similarly,
(v9) (&) / " fu(s))l(s) ds = / " p(s)q(s) F(u(s)) (s) ds
< (pq)(01) / ' Flu(s)d (s) ds,

that is & < ;. Therefore, { € (0,0;). By virtue of (2.14), we obtain

b)) OO _ () ) (Fuo)) - Flu(er))

+ (pa) (&) (F(u(8) = Flu(b))) < (pa)(&2) (F(u(0) — F(u(br))

and so, F(u(0)) > F(u(by)). By analogous procedure as in part (i), we dedive
that the sequence {u(a,)} is decreasing, {u(b,)} is increasing and hence, the
sequence of amplitudes {u(a,) — u(b,)} is decreasing.

Since g, < L, according to (2.9), we have f(u(t)) = f(u(t)) for t € [0,00).
It means that u is a solution of problem (2.1), (2.2) and u is damped. O

0=

The next lemmas are useful for the proof of oscillatory behaviour of solution
of problem (2.1), (2.2).

Lemma 3.8. Assume that (2.3), (2.4), (2.6), (2.10), (2.11), (3.2),

lim inf @) > 0, (3.8)

z—0t T
p € C[0,00) N C?(0,00), p(0) =0, (3.9)

, . p/(t) ) /!
t) >0 forte (0,00), lim =0, limsu < 00, 3.10
V() >0 forte (000, Jim Bl =0, tmaup P (3.10)
gt

liminf —= >0 3.11

hold. Let u be a solution of problem (2.1), (2.2) with ug € (0,L). Then there
exists 01 > 0 such that

U((51) = O, u/(t) <0 fO’I" t (O, (51] (312)
Proof. First, let us show that condition (3.11) implies that (3.4) holds. Condi-
tion (3.2) with p’ > 0 on (0, 00) give
1
lim —— = 0. (3.13)

According to (3.11), there exist ¢ > 0 and t; > 0 such that ¢(¢) > cp(t) for t > t;.
Consequently, by (3.10), (3.13) and the I’'Hospital’s rule,

1 1 . p(s)
lim — quTzchm—/pTdT:chm = 00,
B f 1Ozl f PO = Ly
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which implies (3.4).

Now, suppose that such §; satisfying (3.12) does not exist. Then u is positive
on [0,00). Due to Lemma 2.10, v/(t) < 0 for ¢ € (0,00). Therefore, u is damped
and, by Theorem 3.5, u satisfies (3.5).

We define the function v(t) = +/p(t) u(t), t € [0,00). Integrating equation
(2.1) from 0 to ¢t and using pu’ € C*[0,00) (cf. Definition 2.2), we obtain

t
p(00(0) = - [ a(s)s(us)) ds € €0, ) (3.14)
0
Since p € C?(0,00), we have % € C%*(0,00). Thus, using (3.14), we get

/ _ 1 ¢ 1
um——ﬁgzaﬁmm»@ecuwx

which yields u € C?(0,00) and v € C%(0,00). In addition,

2¢/p(t)

Since p € C[0,00) N C?(0, ), then we can write equation (2.1) in the equivalent
form

v PO ) N

u”(t) + p(t)u(t)+p(t)f( (t)) =0, t € (0,00). (3.15)
P v v fa)

P (t)  u'(t _q(t) flult ~

st Fu) e w0 LSO

2 o) P P 516)
o [0 1 (0N e fu) 7
‘<”[2mw H(50) 0 ]’te(a )

Due to (3.10), we obtain

e 1oV 1, e
3ﬁl2mw 4(mw)] sy ¢ G

Since u is positive on (0, 00), conditions (3.5) and (3.8) give

lim f(u(t)) = lim @ = a>0.
t—oo  u(t) 0t T
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Denote A := liminf, ab) Consequently, by (3.11) and (3.17), it follows that
p(t)

there exists R > 0 satisfying
t) flu(t a
q(?) f(u(?)) < f

—m u(t) —— fort >R,
1p'(t) 1 (P®)\" _ ar or
30 4(p<t>) <y fortz A
Thus,
W0 1OV a0 s s @
2 (1) 4(p<t>) (o) uty - v fort=fhowh 1

and, according to (3.16) and v > 0 on (0, 00), we get
V'(t) < —wo(t) <0 fort > R. (3.18)

Therefore, v is decreasing on [R,c0) and there exists limit lim;_,o, v/(t) =: V. If
V' < 0, then limy_,o, v(t) = —o0, contrary to v > 0 on (0,00). If V' > 0, then
v >0 on [R,00) and v(t) > v(R) > 0 for t € [R,00). Then (3.18) yields

0> —wu(R) > —wu(t) >"(t) fort € [R,oc0).

We get lim;_,o, v/'(t) = —o0, which contradicts V' > 0. Hence, u has at least one
zero on (0,00). Let 6; > 0 be the first zero of u. Then w > 0 on [0,0;) and
Lemma 2.10 gives v/ < 0 on (0, d1]. O

For negative starting values ug, we can prove a dual lemma by similar argu-
ments.

Lemma 3.9. Assume that (2.3), (2.4), (2.6), (2.10), (2.11), (3.2), (3.9)—(3.11)

and
lim inf @) >0 (3.19)

z—0~ xT

hold. Let u be a solution of problem (2.1), (2.2) with ug € (Lo,0). Then there
exists 01 > 0 such that

u(fh) =0, u'(t)>0 forte (0,6

If we argue as in the proofs of Lemma 3.8 and Lemma 3.9 working with aq,
Ay and by, By in place of 0, ug, we get the next lemma.

Lemma 3.10. Let (2.3), (2.4), (2.6), (2.10), (2.11), (3.2), (3.8)=(3.11) and
(3.19) be satisfied and let u be a solution of problem (2.1), (2.2) with ug € (Lo, 0)U
0, L).
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L. Assume that there exist by > 0 and By € (Lo, 0) such that
u(by) = By, /(b)) =0. (3.20)
Then there exists 8 > by such that
w(@) =0, u(t)>0 forte (b0 (3.21)
II.  Assume that there exist a; > 0 and Ay € (0, L) such that
u(ar) = Ay, ' (ar) = 0. (3.22)
Then there exists 6 > a; such that

w(d) =0, u(t)<0 forte (a,d]. (3.23)

3.3 Existence of oscillatory solutions

Here we provide criteria leading to oscillatory solutions of problem (2.1), (2.2).
First, we prove the results for CASE I (i.e.(3.2)) and then for CASE II (i.e. (3.3)).

Theorem 3.11 (Damped solution is oscillatory 1, CASE I). Assume that
(2.3)-(2.6), (2.10), (2.11), (3.2), (3.8), (3.19) and

oo o0 1
/ *(s)q(s)ds = 0o,  where ((t) = / ——ds (3.24)

1 ¢ p(s)

are fulfilled. Let u be a damped solution of problem (2.1), (2.2) with ug € (Lg,0)U
(0,L). Then u is oscillatory.

Proof. Step 1. We show that (3.24) implies (3.4). Let us put

ht) :/j}% (/:q(T)dT) ds.

We accomplish the proof indirectly. Let

lim h(t) = K < cc. (3.25)

t—o0

Then integration by parts yields for every 7 > 1

44



v(t) =) V() = —20(t) -

p(t)

w'(t) =q(t) w(t)= [l q(s)ds

() /qu(s) ds+2/j€(t)}% (/ltq(s) ds) dt

=) /mids/jq(f) d§+2/1T€(t)h’(t) dt “/tizf(t) V() = —-L

p(s)

~—
Il
=
~
—~
~
~
S
—~
~
~—
I
>
—~
~
~—

() /TOO]% (/1Tq<5> d§> ds 4 26(r)h(r) +2 | —oshir)dt
<o) / N 1% ( /1 () d§) ds + 20()h(r) + 2h(7)

Since (3.2) yields lim, . ¢(7) = 0, we get, by (3.25) for 7 — oo,

/100 P(t)g(t)dt < Tlggo 0(7) /OO ]ﬁ (/18q(§) dg) ds
+2 lim /(1)K +2K/((1) = 2K/{(1) < o0

T—00

and so, (3.24) is not fulfilled. Therefore, we proved that (3.24) gives (3.4).
Step 2. Let u be a damped solution which is nonoscillatory. By Step 1, (3.4)
holds and, by Lemma 3.5, we have lim; ,,, u(f) = 0. Thus, due to (3.8) and

(3.19), we get
lim inf —f(u(t))

> 0.
t—o0 u(t)

Consequently, there exist a > 0 and t; > 0 such that

flult))
o) =

Put p(t) = ’% for t > ¢;. By (2.1) and (3.26), we have

flu@) 1, N
u(t) p(t)p(t)ﬁ q(t) p(t)p t), t>t.

Multiplying this inequality by ¢? and integrating from t; to ¢, we obtain

ult) # 0, t € [t 00). (3.26)

1

[ eoneass—a [ Ceaaas- [ Lewpees zn

t1 t1 t1 p(s>
Integrating left side by parts, we get

| 66 ds = 200 - Pttt +2 [ ts)ols)ds

t1 t p(s)
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and hence,

2)p(t) - Ct)p(t) < —a / 2(s)q(s) ds

t

1

—/t — (P(s)p°(s) +20(s)p(s) + 1) ds +/ Lds, t € [ty,00).

p(s) n P(s)
Further,
L) (LE)p(t) + 1) — £(t) < C(ta)p(t) — ttKQ(S)Q(S) ds
t ) 00 1
_/t1 E(ﬁ(s)p(s) +1)°ds+ 5 mds t € [t1,00)
and finally,

- /tti(ﬁ(S)p(S) +1)%ds, €[t 00).

L p(s)

By (3.24), there exist ¢y > ¢; such that

/t *(s)q(s)ds > éf(tl)(ﬁ(tl)P(tl) +1), t€lt,00),

and hence, we get

0< /t t pi(e(s)p(s) +1)2ds < —L(E)(E)p(t) + 1), t € [to, 00).

(s)
Put .
x(t)—/tl ﬁ(ﬁ(sm@ﬂfds € [to, 00)
Then ]
2'(t) = m(g(t)f)(t) +1)%, € [ty,0)

and, according to (3.27),
() < C)(L(E)pt) +1)%, ¢ € [to, ).
Therefore, x fulfils the differential inequality
22 (t) < p()P(t)2'(t), t € [ty,00).
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Since

OO VA
1 1 1
@ @ iy el
Letting ¢t — oo and using (3.2), we get
oo = lim ! + ! < 00
tooo ((t) T x(ty)  (t)
This contradiction yields that « is oscillatory. 0]

If we replace assumptions (2.5) and (3.24) by assumptions (3.9)—(3.11), we
get a modification of Theorem 3.11.

Theorem 3.12 (Damped solution is oscillatory 2, CASE I). Assume that
(2.3), (2.4), (2.6), (2.10), (2.11), (3.2), (3.8)(3.11) and (3.19) hold. Let u be
a damped solution of problem (2.1), (2.2) with ug € (Lo,0) U (0,L). Then u is
oscillatory.

Proof. Let u be a damped solution of problem (2.1), (2.2) with uy € (0, L). By
(2.26), we can find L; € (0, L) such that B < u(t) < L; for t € [0,00). In the
proof of Lemma 3.8, it was shown that condition (3.11) implies (3.4).

Step 1. Lemma 3.8 yields §; > 0 satisfying (3.12). Therefore, there exists
a maximal interval (d1,b;) such that v < 0. If by = oo, then u is eventually
negative and decreasing. On the other hand, due to Theorem 3.5, u satisfies
(3.5), which is not possible. Hence, b; < co and there exists B; € (B,0) such
that (3.20) holds. Lemma 3.10 yields 6; > b, satisfying (3.21) with § = 6;. Thus,
u has just one negative local minimum B; = wu(b;) between its first zero d; and
second zero 6.

Step 2. By virtue of 3.21, there exists a maximal interval (6;,a;), where
u' > 0. If a; = oo, then u is eventually positive and increasing. On the other
hand, by Theorem 3.5, u satisfies (3.5), a contradiction. Therefore, a; < oo
and there exists A; € (0, L) such that (3.22) holds. Lemma 3.10 gives d2 > ay
satisfying (3.23) with § = d,. Hence, u has just one positive local maximum
Ay = u(ay) between its second zero #; and third zero Js.

Step 3. We can continue as in Step 1 and Step 2 and get the sequence

O<h<bhh<b<au<..<0,<b,<0,<a,<...,
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where B,, = u(b,) is a strict unique negative local minimum of « in (4,,6,) and
A, = u(ay,) is a strict unique positive local maximum of w in (0,,6,41), n € N.
Since {d,}5°, and {60,}°°, are unbounded sequences of zeros of wu, then w is
oscillatory.

For wug € (Lo, 0), we proceed analogously. O

Remark 3.13. Let us put p(t) = ¢(t) = t*. Then (2.5), (3.9) and (3.10) are
fulfilled. Check conditions (3.11) and (3.24).

liminfﬂ =liminf1 =1 >0,
t—o00 p(t) t—o00

< 1 o < ] 1
ﬁ(s):/s ﬁdTZQ, /Iﬁ(s)q(s)ds:/1 @ds:§<oo.

Thus, (3.11) is valid, while (3.24) is not valid.
Now, we put p(t) = t2, q(t) = t. Then (2.5), (3.9) and (3.10) hold. Check
(3.11) and (3.24) again.

lim inf @ = lim imfl =0,
t—o0 p(t) t—oo ¢

z(s):/ %dT:; /152(5)q(s)ds:/1 éds:oo.

So, (3.11) is not valid, while (3.24) is valid. Therefore, conditions (3.11) and
(3.24) leading to oscillatory solutions are in general different and incomparable.

Now, we provide a criterion for oscillatory solutions in CASE II (i.e. (3.3)).

Theorem 3.14 (Damped solution is oscillatory 3, CASE II). Assume that
(2.3)-(2.6), (2.10), (2.11), (3.3) and

/100 q(s)ds = o0 (3.29)

are fulfilled. Let u be a damped solution of problem (2.1), (2.2) with ug € (Lg,0)U
(0,L). Then u is oscillatory.

Proof. Step 1. Let u be damped solution of problem (2.1), (2.2) which is
eventually positive. Then there exist ¢y > 1 such that u(t) > 0 for ¢ € [ty, 00).
Assume that u' > 0 on [ty,00). Then w is increasing on [tg, c0) and there exists
a limit limy_,oo u(t) =: €y € (u(to), L). Put

mo = min{f(z): x € [u(ty), lo]} > 0.



Integrating this inequality over [to,t] and dividing by p(t), we get

/ p(tO)u,(tO> _ mo ! $)ds 0
() < PO [ a(s)as, v o),
0 < u(t) < ulte) + plto) (o) /t zﬁds

—mo/mt]% (/t:q(@dé) ds, 1€ [tg,0).

We divide this inequality by myg fti zﬁ ds and get

it (Ji at©) de) ds o ulto)  plto)(to)

t e [to OO)
T - ’ ’ 7
Lolﬁds mo ﬁfo;ﬁds mo
t s
. J;‘/o ﬁ (fto Q(g) df) ds ‘ ﬁ ft’; Q(é) df . .
thm T = thm = thm q(f) d¢ = 0.
—00 j‘t() m dS — 00 m oo "
On the other hand,
lim ut<t01) + p(to)u'(to) _ p(to)u'(to) -~
t—o00 mo '/;0 m dS myo mo

We have co < plto)u'(to) - oo, a contradiction. Therefore, there exists t; > tg

such that u(t;) € (6n,OL), u'(t1) < 0. Since u is eventually positive, equation (2.1)
together with (2.4), (2.6) yields that pu’ is decreasing and, by p(¢;)u'(t1) < 0, we
have that pu’ is negative on (¢;,00). Therefore, there exist K > 0 and ¢t > #;
such that

p?/(t) < _K7 le (tQ,OO),

1
W (t) < —K——, t € (ty,00).

p(t)’
By integrating this inequality from 5 to ¢, we obtain
t
ds
u(t) —u(ty) < —K | —.
to p(s)
Letting ¢t — oo and using (3.3), we get

lim u(t) < u(ty) — K/too ]% = —00,

t—o00

contrary to the assumption that u is eventually positive.
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Step 2. Let u be damped solution of problem (2.1), (2.2) which is eventually
negative. Then there exists ¢y > 1 such that u(t) < 0 for ¢t € [tg, 00). We show
that u(t) > Ly for t € [tg,00). If u(t) < 0 for t € [0,00), then, by Lemma 2.9,
u(t) € (Lo, 0), u'(t) > 0 for t € (0,00). Assume that there exist a > 0, 6 € (a, ty)
such that w fulfils (2.17), u(t) < 0 for t € (0,00). Due to Lemma 2.12, either
(2.18) or (2.19) holds. If (2.18) is valid, then u(t) € (B,0) for t € (6,00). If
(2.19) is fulfilled, then, by Lemma 2.9, u(t) € (B,0) for t € (f,00). We have
shown that u(t) € (Lo, 0) for t € [ty,00). Moreover, solution w is increasing in a
neighbourhood of co and that there exists lim;_,o, u(t) > Ly. Analogously as in
Step 1, we can derive that u cannot be eventually negative.

Consequently, u is oscillatory. ([l

If we combine assumptions from Theorem 3.1 and Theorem 3.7 with assump-
tions of Theorem 3.11 or Theorem 3.12 or Theorem 3.14, we get the main results
about existence of oscillatory solutions of problem (2.1), (2.2).

Theorem 3.15 (Existence of oscillatory solutions 1, CASE I). Assume
that (2.3)-(2.6), (2.10), (2.11), (2.20), (2.23), (3.2), (3.8), (3.19) and (3.24) are

fulfilled. Then, for each ug € (B,0) U (0,L), problem (2.1), (2.2) has a solution
u. This solution u is damped, oscillatory and has nonincreasing amplitudes.

Theorem 3.16 (Existence of oscillatory solutions 2, CASE I). Assume
that (2.3)~(2.6), (2.10), (2.11), (2.20), (2.23), (3.2), (3.8)~(3.11) and (3.19) are

fulfilled. Then, for each ug € (B,0) U (0,L), problem (2.1), (2.2) has a solution
w. This solution u is damped, oscillatory and has nonincreasing amplitudes.

Theorem 3.17 (Existence of oscillatory solutions 3, CASE II). Assume
that (2.3)-(2.6), (2.10), (2.11), (2.20), (2.23), (3.3) and (3.29) are fulfilled. Then,
for each ug € (B,0) U (0, L), problem (2.1), (2.2) has a solution u. This solution
u s damped, oscillatory and has nonincreasing amplitudes.

Remark 3.18. If moreover (2.14) is fulfilled, then, by Remark 3.2, the assertion
of Theorems 3.15, 3.16 and 3.17 holds also for ug = B and, due to Theorem 3.7,
the amplitudes of u are decreasing.

3.4 Examples

Here we show examples, where the functions p, ¢ and f guarantee the existence
of oscillatory solutions of problem (2.1), (2.2).
Example 3.19. Here we illustrate Theorem 3.15. Consider the IVP

(/' (1)) + 7 f (u(t)) = 0

) =0,
uw(0) =up € [-2,1], 4/(0) =0, (3.30)
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where
) —lz* (e +2), »e[-2,0],
fe) = {zb(l—x), xz e [0,1].

Here
p(t) =1t qt)=t" t€][0,00).

Assume that o > 0, § > 0 and 0 < a < b. By Example 2.18, conditions (2.5),
(2.6), (2.11) and (2.14) hold and (2.23) holds for 8 > a — 1. Since

<1
/ —ds < oo provided o > 1, (3.31)
I

condition (3.2) is valid for a > 1. So, we put o > 1 and check (3.24).

oo 1 o0
/ (s)q(s)ds = —2/ 2t ds =00 if2—2a4 > —1,
1 (a—=1)%

which yields the validity of (3.24) for 5 > 2a. — 3. We obtained the inequalities
a>1, >0, f>a—-1, >2a-3. (3.32)
Since the implications
ac(l,2]=20-3<a-—1, a>2=>a—-1<2a-3 (3.33)
are valid, according to (3.32), we have satisfied all previous conditions if
e(L,2],B>a—-1 or a>2, f>2a-3. (3.34)

The function f is locally Lipschitz continuous on [Lg, L|\{0}, Ly = =2, L =1,
f(Lo) = f(0) = f(L) =0, xf(x) >0 for x € (Lgy, L)\ {0}. Therefore, (2.3), (2.4)
and (2.20) are satisfied. Since 0 < L < —Lg and a < b, we obtain, similarly as in
Example 2.18, that F(L) < F(Lg) and thus, there exists B € (Lg,0) such that
F (B) = F(L), which yields (2.10). Further,

b
1 —
iminf 2= i 11— g >0 ifb< 1,
z—0t €T z—0t
_ a 2
liminf EFD o <)
z—0~ X

which means that (3.8) and (3.19) are valid for 0 <a < b < 1.
To summarize, if

0<a<b<1 and (3.34) is valid,
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then we have fulfilled all assumptions of Theorem 3.15 and Remark 3.18. There-
fore, for each ug € [B, O) U (0,1), the IVP (3.30) has a solution u, u is damped,
oscillatory, and has decreasing amplitudes. If moreover a = b = 1, then f is
Lipschitz continuous on [Lg, L] and then Theorem 2.17 yields the uniqueness of
such solution wu.

Example 3.20. We illustrate Theorem 3.16. Let us consider the [IVP

u”(t) + %u’(t) + tu(t)(1 — u(t))(u(t) +2) =0,
uw(0) =g € [-2,1], 4/(0) =0.

(3.35)

According to (3.15), we have
p(t)=1* qt)=1t* t€]0,00), flz)=z(1—-2)(z+2), ze€[-21].

By Example 2.18 (where now a = 2 and = 3), we know that (2.5), (2.6), (2.11),
(2.14) and (2.23) are satisfied. Condition (3.2) is valid too, because

>~ 1
/ —zds:1<oo.
. S

p € C[0,00) N C?*(0,00), p(0)=0, p'(t)>0forte(0,00),

In addition,

'(t 2t 2
im P i 2 2 2,

t—00 p(t) t—oo t2 t—oo ¢

/! t 2
limsupp( = lim — =0 < oo,
t—00 p'(t) t—o0 2t
t 3
liminfﬁz lim — = limt =00 >0,

t—o0 p(t) t—o0 2 t—o00

so we have fulfilled (3.9)—(3.11).

The function f is Lipschitz continuous on [Lg, L], Ly = =2, L =1, zf(z) > 0
for x € (Lo, L) \ {0}, f(Lo) = f(0) = f(L) = 0. Hence, (2.3), (2.4), (2.28) and
consequently, (2.20) are satisfied. We see that

liminfM =lim(l —z)(z+2)=2>0,

x—0 X x—0

that is (3.8) and (3.19) hold. Further, for x € [—2, 1], we have

_ @ x R
F(a:):/ z(l—z)(z—l—?)dz:/ (=2 =22 +22)dz = —= — = + 27,
0 0 4 3
~ 8 =~ 5
F(—2)=2, F(1)=—.



Since F/(Lg) > F(L), there exists B € (—2,0) such that F (B) = F(L), that is
(2.10) holds. Let us find such B.

F(x)—ﬁ’(B)_—w——§—l—m2—i_ 2 5z 5

(x—1)2 (x —1)2 46 12
:—i( \/1_(2))+5>(x—\/1_%_5>, e [-2,1]

So, the polynomial F(z) — F (B) has the roots

V1045 V10 -5
=1, 2= —TJF N 272 =~ 061 € (-2,0).

Therefore, B = @*5 :

To summarize, we have satisfied all assumptions of Theorems 2.17, 3.16 and
Remark 3.18. Thus, for each vy € [‘ﬁ 0> U (0, 1), problem (3.35) has a unique

solution u. This solution u is damped, oscillatory and has decreasing amplitudes.
Note that we can use Theorem 3.15 here, too, since according to Example
3.19, for « = 2 and § = 3, condition (3.24) is valid.

Example 3.21. Let us illustrate Theorems 3.15 and 3.16 once more. We show
that none of these two theorems is included in the second one. Consider the IVP

(t/ (1)) + t7 f(u(t)) = 0,

w(0) = up € [-2,1], «'(0) =0, (3.36)
where
Jrz(l—2)(z+2) forz <0,
flz) = {%x(l—x)(x—l-iﬂ for x > 0.
Here

p(t) =t q(t)=1t", te€]0,00).

Assume that a > 0 and § > 0. By Example 2.18, conditions (2.5), (2.6), (2.11)
and (2.14) hold and (2.23) is fulfilled for 5 > a — 1. Due to (3.31), condition

(3.2) is valid for o > 1. Further,
p € C0,00) N C?*(0,00), p(0)=0, p(t)>0forte(0,00),

i) . att o«

hm =1l = lim — =0,
t—00 p(t) t—oo ¢ t—oo ¢
— 1|t -1
limsup () oz|oz—|:h M:0<c>o,
{00 (t) oo ate—1 t—00

S (t) tﬂ B—a :
hmmf—:hm——hmt >0 if 8> aq,
t—o0 p(t) t—oo &
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which means that (3.9) and (3.10) hold and (3.11) is valid for 8 > «.

The function f is Lipschitz continuous on [Lg, L], Ly = =2, L =1, zf(x) > 0
for x € (Lo, L) \ {0}, f(Lo) = f(0) = f(L) = 0. Thus, (2.3), (2.4), (2.28) and
consequently, (2.20) are fulfilled. Moreover,

1 2
liminf LEDED w2 =20,
r—0~ x rz—0~
Sx(1— 3 1
fminf TS S e = 2,
z—0t xT z—0t 7

that is (3.8) and (3.19) hold. Since Ly, L and the function f on [Lg,0] are the
same as in Example 3.20, we obtain also the same B = @ satisfying (2.10) as
in Example 3.20.

To sum up, provided that

a>1 and (> a, (3.37)

we have fulfilled all assumptions of Theorems 2.17, 3.16 and Remark 3.18. There-
fore, for each ug € [@, 0) U (0,1), the IVP (3.36) has a unique solution wu.

The solution v is damped, oscillatory and has decreasing amplitudes. Further,
by Example 3.19, if (3.34) holds, then (3.24) is satisfied and Theorem 3.15 is
applicable here.

For example, if we choose a = 5, § = 6, then (3.37) holds, whereas (3.34)
falls. So, here we can use Theorem 3.16 unlike Theorem 3.15. On the other hand,
by choosing a = 2, 8 = 2 we have fulfilled (3.34), while (3.37) does not hold.
Hence, Theorem 3.15 is applicable here unlike Theorem 3.16.

Example 3.22. Now, we illustrate Theorem 3.17. Let us consider the IVP

(¢ (1)) + t7 f (u(t))

=0,
\ . (3.38)
u(0) =ug € [-2-2%2], /(0)=0,
where
—(z+2*+2) foraz < -2,
flz) =< |z sgnz for z € (—2,1),
2—x for x > 1.
Here

p(t) =t q(t)=1", t€]0,00).

Assume a > 0, § > 0 and A > 0. Example 2.18 shows that (2.5), (2.6), (2.11)
and (2.14) hold and (2.23) is valid for § > a — 1. Furthermore,

o 001
/ s7 ds = oo, / —ds=00 if a <1,
1 1

SO&

o4



which means that (3.29) holds and (3.3) is valid for a < 1.

The function f is continuous on R, locally Lipschitz continuous on R\ {0},
Lo = -2"-2< =3, L =2, f(ly) = f(0) = f(L) =0, zf(x) > 0 for z €
(Lo, L) \ {0}. Thus, (2.3), (2.4) and (2.20) are satisfied. Further,

F@@:iéﬂ_%—@+2N+ﬂdz:§2gzL, F@%zA%Q—@deZ

Since F(Ly) > F(L), there exists B € (—2* — 2, 0) such that F (B) = F(L),
that is (2.10) holds.
To summarize, if

€(0,1), >0, B>a—1 and X >0,

then we have satisfied all assumptions of Theorem 3.17 and Remark 3.18. There-
fore, for each ug € [B,0) U (0,2), the IVP (3.38) has a solution u. This solution
u is damped, oscillatory and has decreasing amplitudes. If in addition A > 1,
then f is Lipschitz continuous on [Ly, L], that is (2.28) is valid. Then Theorem
2.17 gives the uniqueness of such solution w.

In the following example, we illustrate Theorem 3.17 and show that the func-
tions p and ¢ can be bounded.

Example 3.23. Consider the IVP

7 Pl sgn(u(®)(u(t) — Lo)(L — u(t)) =0,

u(0) =wug € [—4,2], 4/'(0) =0,

(arctant o/ (t)) + (3.39)

We have equation (2.1) with

t2
= AT
f(z) =k|z|"sgnz(x — Lo)(L — z), x € [Lg, L]

p(t) = arctant, q(t) t €0, 00),

Assume that 0 < L < —Lg, 7 > 0 and k& > 0. The functions p and ¢ are continu-
ous on [0, 0c0), positive on (0,00) and p(0) = 0. So, (2.5) and (2.6) are satisfied.
Further, pq is increasing on [0, 00), which yields that (2.14) and consequently,
(2.11) hold. In addition,

_ 1 tos? , 1 ¢ 1
lim ds = lim 1-— ds
t—o+ arctant J, s?2+1 t—0+ arctant J, s2+1

—1=1-1=0,

1
= lim (t — arctant) = lim — 1= lim
t—0+ arctant t—0+ arctant t—0+

t2+1
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! s2+1d8: 1 1_32—1—1 ds:tlggo(t—arctant)—1+zzoo’
. 1 1 /00 1
lim =—>0 =
B | arctans

ds = o0,
s—oo arctan s

that is (2.23), (3.3) and (3.29) hold. Example 2.18 shows that the function f
fulfils (2.3), (2.4), (2.10) and (2.20).
To sum up, provided that

0<L<—Ly, v>0 and k>0,

we have satisfieded all assumptions of Theorem 3.17 and Remark 3.18. Therefore,
for each ug € [B,0) U (0, L), problem (3.39) has a solution u. This solution u is
damped, oscillatory and has decreasing amplitudes. If moreover v > 1, then f
is Lipschitz continuous on [Lg, L] which means that (2.28) holds. Then Theorem
2.17 yields the uniqueness of such solution w.

26



4 Escape and homoclinic solutions
of the problem without ¢-Laplac-
lan

4.1 Properties of escape and homoclinic solutions

In this section, we prove some important properties of escape and homoclinic
solutions. In order to obtain the existence results, the monotonicity of escape
and homoclinic solutions is needed, see Lemma 4.2 and Lemma 4.3. Moreover,
we specify asymptotic behaviour of homoclinic solutions in Lemma 4.4.

Remark 4.1. According to Theorem 3.1, a solution of problem (2.1), (2.2) is
damped if ug € (B , L). Hence, if u is escape or homoclinic solution of problem
(2.1), (2.2), then ug € (Lo, B]. If moreover (2.14) holds, then, by Remark 3.2,
each escape or homoclinic solution of problem (2.1), (2.2) satisfy ug € (Lo, B).
Therefore, we can restrict our consideration about escape and homoclinic solu-
tions on ug € (Lo, 0).

Lemma 4.2 (Escape solution is increasing). Let assumptions (2.3)—(2.6),
(2.10) and (2.11) hold. If a solution u of problem (2.8), (2.2) with ug € (Ly,0)
18 an escape solution, then

dee (0,00): u(e)=1L, u'(t) >0 forte (0,00). (4.1)

Proof. Let u be an escape solution of problem (2.8), (2.2) with uy € (Lg,0). By
Definition 2.6, there exists a constant ¢ € (0,00) such that u(c) = L, u/(c) > 0.
Let ¢; > ¢ be such that u'(¢;) =0, u(t) > L, v'(t) > 0 for t € (¢, ;). Integrating
equation (2.8) from ¢ to t € (¢, ¢;], dividing by p(t) and using (2.9), we obtain

:u>0f0rt€(c,cl]>

contrary to u'(c;) = 0. Therefore, u/(t) > 0 for ¢ > ¢. Now, we prove that
u'(t) > 0 for t € (0,6p]. Since ug € (Lg,0), Lemma 2.9 yields that there exists
6o > 0 such that u(6y) =0, u(t) <0 for ¢t € (0,60y), w'(t) > 0 for t € (0, 6.

It remains to prove that u'(t) > 0 for t € (6p,c¢). Assume on the contrary
that there exists a; € (6y, ) such that u(ay) € (0, L), v/ (a;) = 0, u/(t) > 0 for
t € (0,a1). Since u is an escape solution, there exists ¢, > a; such that u(6;) = 0,
u'(t) < 0 for t € (ay,6,]. Otherwise, by Lemma 2.10, u would be decreasing on
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(a,00). According to Lemma 2.12 and wus,, > L, there exists by > 6, such that
u(by) € (B,0), w'(b1) =0, w/(t) < 0 for t € (ar,b). Then there exists 65 > by
such that u(fy) = 0, v/(t) > 0 for t € (by,02]. By Lemma 2.11 and wug,, > L,
there exists ag > 65 such that u(as) € (0, L), v/(az) =0, v/ (t) > 0 for t € (by, as).
Repeating this procedure, we obtain that u(t) € (Lo, L) for ¢t € [0,00), which
contradicts that w is an escape solution. We have proved that /() > 0 for
t € (0, c) and, to summarize, u'(¢) > 0 for ¢ > 0. O

Lemma 4.3 (Homoclinic solution is increasing). Let assumptions (2.3)-
(2.6), (2.10), (2.11) and (2.20) hold. If a solution u of problem (2.8), (2.2) with
ug € (Lo, 0) is homoclinic, then

tlglolo u(t) =L, u'(t) >0 forte (0,00). (4.2)
Proof. Let u be a homoclinic solution of problem (2.8), (2.2) with uy € (Lg,0).
Then, by Lemma 2.9, there exists 6, > 0 such that u(fy) = 0, u(t) < 0 for
t € (0,6), u'(t) >0 for t € (0, 6.

Assume on the contradiction that there exists ¢; > 6y such that «/(¢;) = 0,
uw'(t) > 0 for t € (0,¢1). Since u is homoclinic and (2.20) holds, u(t;) € (0, L).
By Lemma 2.10 and ug,, = L, there exists ¢y > ¢; such that u(f;) =0, v/(t) <0
for t € (t1,61]. According to Lemma 2.12, there exists to > 61 such that u(ts) €
(B,0), w/(t2) = 0, W (t) < 0 for t € [61,12). Repeating this procedure, we obtain
a sequence of zeros {6,}°°, of u and a sequence of local maxima {u(te,11)}22,
of u. Therefore, u is oscillatory.

We prove that the sequence {u(tan 1)}, is nonincreasing. Choose j = 2n+1,
n € Ny. Multiplying equation (2.8) by pu/, integrating this from ¢; to t;5 and
using (2.11) and the Mean value theorem, we get & € [t;,0;], & € [6;,t11],
63 € [tj+1, 9j+1]7 64 S [0j+l>tj+2] such that

0= /t H?(p(t)u’(t))'p(t)u’(t) dt = (pg)(&1) (ﬁ(u(tj)) - F@@.)))

+ (p) &) (F(u(0)) = Flultin) ) + (pa) (&) (F(ultisn)) = Flu(®:)))
+ (pa) (€0) (F(u(B341)) = F(ultjs2))) < 0a)(&n) (Flulty) = Flultjs2))

Hence, F(u(t;)) > F(u(t;;s)). Since the function F is increasing on [0, L], we
get u(t;) > wu(tjs2). The sequence {u(ta,11)}5, is nonincreasing, because j
is chosen arbitrarily. Thus, us, < L, which cannot be fulfilled, because u is
homoclinic. We have proved that «'(t) > 0 for ¢t € (0,00). Since us,, = L, then
limy o u(t) = L. O

In order to prove further asymptotic properties of homoclinic solutions, we
use the condition
liminf p(t) > 0. (4.3)

t—o00
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Lemma 4.4. Assume that (2.3)—(2.6), (2.10), (2.11) and (2.20) hold. Further,
assume that either condition (3.2) is valid or conditions (3.3) and (4.3) are ful-
filled. If a solution u of problem (2.8), (2.2) with ug € (Lo, 0) is homoclinic, then
u fulfils

. ! .

tliglou (t)=0. (4.4)
Proof. According to Lemma 4.3, u fulfils (4.2). Hence, there exists ¢y > 0 such
that u(ty) = 0, u > 0 and f(u) > 0 on (ty,00). We have (pu’)’ < 0 and the
function pu’ is decreasing on (ty,00). Since p > 0 and « > 0 on (0, 00), there
exists

tlim p(t)u'(t) =: K > 0. (4.5)
—00
Assume that (3.2) holds. Then we have lim;_,, z% = 0 and so, limy_,, p(t) =

oo. Therefore, using (4.5) and that pu’ is decreasing, we obtain

0< lim p(t)u'(t) < p(to)u'(to) < oo,
—00
which implies (4.4).
Now, assume that (3.3) and (4.3) hold. Let K > 0. Then p(t)u'(t) > K for
t >ty and hence,

as

u(t) —u(ty) > K . 205)

. t> .

Letting ¢ — oo, we get, by (3.3) and (4.2), that L > K - oo, a contradiction.
Therefore, K = 0 and, due to (4.3), we have (4.4). O

4.2 Existence of escape and homoclinic solutions

The goal of this section is to give sufficient conditions for the existence of escape
and homoclinic solutions of problem (2.1), (2.2). First, we analyse the auxiliary
problem (2.8), (2.2) and we proceed by generalizing these results to the original
problem (2.1), (2.2) provided that each damped solution is oscillatory.

The following lemma — which is illustrated in Figure 4.1 — is essential for the
existence of escape solutions and so, we denote this lemma as basic lemma.

Lemma 4.5 (Basic lemma). Assume that (2.3)—(2.6), (2.10), (2.20) and either
assumptions (3.2), (3.8), (3.19), (3.24) or assumptions (3.2), (3.8)=(3.11), (3.19)
or assumption (3.3) are fulfilled. Further, we assume that

(pq)’ > 0 on (0, 00), (4.6)
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(p®)a(®)" _ (4.7)

t—ro00 q2 (t) S
lim inf]ﬂ > 0, (4.8)
liminf ¢(¢t) >0 (4.9)
t—o0

hold. Choose C' € (Lo, B) and {B,}3, C (Lo,C). Let for each n € N, u, be
a solution of problem (2.8), (2.2) with ug = B, and let (0,b,) be the maximal
interval such that

un(t) < L, wu,(t) >0, te(0,b,). (4.10)
Finally, assume that for n € N there exist v, € (0,b,) such that
Un(vm) = C and {y,}2, is unbounded. (4.11)

Then the sequence {u, 52, contains an escape solution of problem (2.8), (2.2).
n=1

Un(t)

Figure 4.1: Tllustration of Lemma 4.5

Proof. Since the sequence {v,}22, is unbounded, there exists a subsequence
going to oo as n — oo. For simplicity, let us denote it by {7,}52,. Then we have

lim v, =00, v, <b,, neN. (4.12)

n—oo

Assume on the contrary that for any n € N, u, is not an escape solution of

problem (2.8), (2.2).
Step 1. Choose n € N. Then we have two possibilities:

1. w, is a damped solution. Then, if (3.2), (3.8), (3.19) and (3.24) hold, we
get, by Theorem 3.11, that w, is oscillatory. If it is satisfied (3.2), (3.8)—
(3.11) and (3.19), then Theorem 3.12 yields that w,, is oscillatory. If (3.3)
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and (4.3) hold, we can use Theorem 3.14, because (4.9) yields (3.29), and
we get again that u, is oscillatory.

2. u, is a homoclinic solution, which yields b, = oo (cf. Lemma 4.3) and we
write u, (b,) = limy_y00 uy,(t) = L. By Lemma 4.4, u,, fulfils (4.4) and hence,

ul, (by) = 0.
Therefore, we have
un(by) € (0, L], (b, =0, (4.13)
for both b, < oo and b,, = co. In addition,
375, € [V, bn): w,(7,) = max{u, (t): t € [V, bn)}- (4.14)
Due to (2.8), u, fulfils
; r iy POu () (p(t)uy, ()
fun(0)ul (t) = ORD) . t€(0,b,). (4.15)
Further, we put
A R
E,.(t) 5 OO + F(u,(t)), te(0,b,) (4.16)

50 _ QOGO G0 | GOROF (LY,

dt p(t)a( 2 )q(t)
_ e@un @) (1 N (e (1)” (pt)a(t)’
N 2 (p(t)Q(t)) N 2 (p(t)q(t))? £ (0.5)
Due to (2.6), (4.6) and (4.10), we get
dEa(t) = t, (1) (p(t)q(t)) <0, te(0,by). (4.17)

dt T 2¢2(1)
Integrating (4.17) over [y, b,| and using (4.10), (4.14), we obtain

be o (1) (p(H)q(t)) s [T un () (p(t)g(t))
() dt < u, (7,) /% 0 d

Yn 2 q
bn,
smmm/uww,
Tn

Euon) ~ Ealb) = |

where

K, :=sup { (p22;2(t))) te (’yn,bn)} € (0, 00).



Consequently,
En(vn) < En(by) + ug, (7)) Kn(L = O). (4.18)

Having in mind (2.5), (2.6), (4.10) and (4.11), we get from (4.16)

E(vn) > F(un(va)) =

BSE

(©). (4.19)

Since F is increasing on [0, L], (4.13) and (4.16) give for b, < 0o

En(bn> = F(“ﬂ(bn)) <

Bl

(L). (4.20)

Let b, = 0o, which means that w,, is homoclinic and lim;_,o, u,(t) = L. Then
there exists ty > 0 such that u,(t) > 0 and f(u,(t)) > 0 for t € [ty,00). Thus,
according to (2.8), (pul,)’ < 0 on [ty, 00) and so, pu/, is decreasing on [ty, 00). Due
to (2.5) and (4.10), p > 0,u], > 0 on (0, 00) and hence,

0 < lim p(t)u(t) < p(to)uy(to) < oco.
—00
Therefore, using (4.9), (4.13), we get
(t)

. p /
0 <limsup —u, (t) < o0
< syt

and

Consequently, (4.20) is valid also for b, = co.
Using (4.18)—(4.20), we derive

F(C) < En(w) < F(L) + 1, (7,) Kn(L = O), (4.21)
and hence, . .
rO)-F(L) 1

Step 2. Now, consider the sequence {u,}5° . Assumptions (4.7) and (4.12)
imply

lim K, =0, (4.23)
n—oo
which, by (4.22), yields
lim u), (7,) = oo. (4.24)
n—oo

Since £ > 0 on [Lg, L], we get from (4.16)

(¥, )ul (7,)
29(%,)
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Further, since F,, is decreasing on (0,b,) according to (4.17), we derive from
(4.21)

PR < B,(7,) < Balon) < PO+, GIEAL-C). neN
Consequently,
! (= p(in) P =\ o n 00 n
u, (7,,) (2(](771)””(7”) K,(L C)) < F(L) < o0, eN. (4.25)

Due to (4.8), (4.23) and (4.24),

(PO )
lim (| —%u,,(7,,) — K.(L —C) | = o0. 4.26
fim ()~ Kl = O) (4:20)
Conditions (4.24)—(4.26) yield a contradiction.  Therefore, the sequence
{u,}22 | contains an escape solution of problem (2.8), (2.2). O

Now, we are ready to prove our main results about the existence of escape
and homoclinic solutions. All next existence theorems have the following common
assumptions

(2.3)-(2.6), (2.10), (2.23), (2.28) and (4.6)—(4.9). (4.27)

We provide the existence results for two cases which are characterized by condi-
tions (3.2) and (3.3). Therefore, we use in addition either assumptions

(3.2), (3.8), (3.19) and (3.24) (4.28)

or assumptions

(3.2), (3.8)~(3.11) and (3.19) (4.29)

or assumption (3.3). Under these assumptions, we prove that problem (2.8), (2.2)
with different starting values has infinitely many escape solutions. Here let us note
that condition (4.6) implies (2.11), condition (2.20) follows from (2.28), condition
(4.9) gives (3.29) and condition (4.3) follows from (4.8) and (4.9). Therefore, in
this section we can omit conditions (2.11), (2.20), (3.29) and (4.3).

Theorem 4.6 (Existence of escape solutions of problem (2.8), (2.2)).
Assume that (4.27) and either (4.28) or (4.29) or (3.3) hold. Then there exist
a sequence {u,}2 | of escape solutions of problem (2.8), (2.2) with ug = B, €
(Lo, B).

Proof. Choose n € N, C € (LO,B) and B, € (Lg,C). By Theorem 2.17,
there exists a unique solution w, of problem (2.8), (2.2) with uy = B,. Due to
Lemma 2.9, there exists a maximal a, > 0 such that u), > 0 on (0,a,). Since
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u,(0) < 0, there exists a maximal a, > 0 such that u, < L on [0,a,). If we put
b, = min{a,, a,}, then (4.10) holds.

If u,, is damped, then, by Theorem 3.11 or Theorem 3.12 or Theorem 3.14,
we get that u, is oscillatory (cf. Step 1 in the proof of Lemma 4.5). Hence, there
exists v, € (0,b,) such that u,(y,) = C. If u, is not damped, then it is either
a homoclinic or an escape solution (cf. Remark 2.16) and clearly, there exists
T € (0,b,,) satistying u,(y,) = C.

Consider a sequence {B,}>°, C (Lo, C). Then we get the sequence {u,}5°,
of solutions of problem (2.8), (2.2) with uy = B, and the corresponding sequence
of {7,}2° ;. Assume that lim,_,, B, = Lo. Then, by Theorem 2.17, the sequence
{u,}22, converges locally uniformly on [0,00) to the constant function u =
L. Therefore, lim,, o 7, = oo and (4.11) is valid. Consequently, according to
Lemma 4.5, there exists ny € N such that u,, is an escape solution of problem
(2.8), (2.2). We have u,,(0) = B, > Lo. Now, consider the unbounded sequence
{mtpin,s1- By Lemma 4.5, there exists n; € N such that wu,, is an escape
solution of problem (2.8), (2.2) such that u,,(0) = B,, > Ly. Repeating this
procedure, we obtain the sequence {u,, }?°, of escape solutions of problem (2.8),
(2.2). O

The following theorem provides the existence of a homoclinic solution of prob-
lem (2.8), (2.2). The proof is based on a description of sets of initial values of
damped and escape solutions.

Theorem 4.7 (Existence of a homoclinic solution of problem (2.8), (2.2)).
Assume that (4.27) and either (4.28) or (4.29) or (3.3) hold. Then there exists
a homoclinic solution of problem (2.8), (2.2).

Proof. Step 1. Let My C (Lo, 0) be the set of all ug € (Lg,0) such that the
corresponding solutions of problem (2.8), (2.2) are damped. By Theorem 3.1,
M is nonempty.

Let us choose uy € M, and let u be the corresponding solution of problem
(2.8), (2.2). Then, according to Theorem 3.11 or Theorem 3.12 or Theorem 3.14,
we have that u is oscillatory. Therefore, there exist 0 < a; < b; such that

u(al) = A1 > O, U(bl) =B, <. (430)
Choose € > 0 satisfying
1
€< 3 min{ A, |By|}. (4.31)

Let v be the solution of equation (2.8) satisfying v(0) =: vy € (Lo, 0). By Theorem
2.17, there exists K > 0 such that

|l — vl crjop) < Klve — uol,
which gives § = & > 0 such that
|U0 — U0| <6 = ||U — UHCl[O,bl] < €. (432)
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Consequently,
u(t) —e <w(t) <u(t)+e fort €0,b]

and, using (4.30) and (4.31), we get

A B
v(ay) > 71 >0, v(b)< 71 < 0.

Therefore, if |vg — ug| < §, then v is not an increasing function and so, v is
damped (¢f. Lemma 4.2, Lemma 4.3 and Remark 2.16) . We have proved that if
uy € My, then (ug — 6, ug + ) C My, that is My is open in (L, 0).

Step 2. Let M. C (Lg,0) be the set of all ug € (Lg,0) such that the cor-
responding solutions of problem (2.8), (2.2) are escape solutions. According to
Theorem 4.6, M, is nonempty.

Choose uy € M, and let u be the corresponding escape solution of problem
(2.8), (2.2). Then w fulfils (4.1). Hence, there exists ¢; > ¢ such that

Let us choose € > 0 satisfying
1
€< 3 (Li—L). (4.34)

Assume that v is the solution of equation (2.8) satisfying v(0) = vy € (Lo, 0).
Due to Theorem 2.17, there exists ¢ > 0 such that (4.32) holds. Therefore,

u(t) —e <wu(t) <u(t)+e forte|0,¢]
and, by (4.33) and (4.34),

1
’U(Cl) > E(L + Ll) > L.
Hence, due to Remark 2.16, if |ug — up| < 0, then v is an escape solution. We
proved that if ug € M., then (ug — 0, ug + ) C M., that is M, is open in (Lo, 0).
Step 3. Let M, C (Lo, 0) be defined by

My, = (Lo, 0) \ (MgUM,).

Since My U M, is nonempty and open set in (Lg,0), M} has to be nonempty
and closed in (Lg,0). In addition, if we choose ug € My, then the corresponding
solution of problem (2.8), (2.2) fulfils us,, = L and, due to Remark 2.16, u is a
homoclinic solution of problem (2.8), (2.2). O

Finally, we extend the existence results from Theorem 4.6 and Theorem 4.7
to the original problem (2.1), (2.2) and reach the main aim of this chapter.
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Theorem 4.8 (Existence of escape solutions of problem (2.1), (2.2)).
Assume that (4.27) and either (4.28) or (4.29) or (3.3) hold. Then, for each
n € N, there exist constant ¢, € (0,00) and function u,, such that u, is an escape
solution of problem (2.1), (2.2) on [0,¢,] with uo = B,, € (Lo, B).

Proof. By Theorem 4.6, there exists a sequence {u,}>, of escape solutions
of problem (2.8), (2.2) with ug = B, € (Lo, B). By Lemma 4.2, for each u €
{u,}5°, there exists ¢ € (0, 00) such that (4.1) holds. Due to (2.9), u is an escape
solution of problem (2.1), (2.2) on [0, ¢|. O

Theorem 4.9 (Existence of a homoclinic solution of problem (2.1), (2.2)).
Assume that (4.27) and either (4.28) or (4.29) or (3.3) hold. Then there exists
a homoclinic solution of problem (2.1), (2.2).

Proof. According to Theorem 4.7, there exists a homoclinic solution u of problem
(2.8), (2.2). Due to (2.9), u is a homoclinic solution of problem (2.1), (2.2), as
well. 0

As we mentioned in Section 1.5, the significant solutions for applications are
bubble-type solutions. If u is a homoclinic solution of IVP (2.1), (2.2), then,
by Lemma 4.3, u satisfies (4.2) and so, u is increasing and fulfils the boundary
condition (2.7). Therefore, according to Definition 2.7, the homoclinic solution
of problem (2.1), (2.2) is also the bubble-type solution of (2.1), (2.2).

Corollary 4.10 (Existence of a bubble-type solution of problem (2.1),
(2.2)). Assume that (4.27) and either (4.28) or (4.29) or (3.3) hold. Then there
exists a bubble-type solution of problem (2.1), (2.2).

4.3 Examples

We conclude this chapter with examples, where the functions p, ¢ and f are
chosen in such a way that problem (2.1), (2.2) with different starting values has
infinitely many escape solutions and at least one homoclinic solution.

Example 4.11. Here we illustrate conditions (4.27) and (4.28). Consider the
IVP

(' (1) + 7 f (u(t)),Z 0 (4.35)

u(0) =uo € [-2,1], u'(0) ’: 0,

where

Here



Ly = —2, L = 1. Assume that (3.34) holds, that is
e(L,2], B>a—-1 or a>2, f>2a-3.

Example 3.19 shows that conditions (2.3)-(2.6), (2.23), (2.28), (4.28) hold
and that there exists B € (—2,0) satisfying (2.10). In addition, the function pq
is continuously differentiable on (0, 00), increasing on [0, c0),

lim M— lim M: lim (o + F)t* P 1 =0 if >a—1,

t—00 q2(t) et t28 t—00
t
lim infm =1limt*? >0 if B <a, liminf ¢(t) = lim ¢* > 0.
t—o0 q(t) t—o0 t—00 t—o00

It means that (4.6)—(4.9) are valid for
a—1<p<a.
To summarize, by (3.33), if
ae(1,2],a—1<p<a or a€(2,3],22a—-3<F<aq, (4.36)

then (4.27) and (4.28) hold. According to Theorem 4.8, for each n € N, there
exist constant ¢, € (0,00) and function u, such that w, is an escape solution
of problem (4.35) on [0, ¢,| with uy = B,, € (—Q,B). Theorem 4.9 yields the
existence of a homoclinic solution of problem (4.35).

Example 4.12. Let us show another illustration of conditions (4.27) and (4.28),
where, in addition, we compute B satisfying (2.10). Consider the IVP

(' (1)) + VB u(t)(1 — u(t)

)(u(t) +4) =0,
u(0) =ug € [-4,1],

0) =0, (4.37)

p(t) =12, qt) =V, tel0,00), flz)=z(l—2z)(z+4), ze|-41]

Ly =—4, L = 1. According to Example 4.11, the functions p and ¢ satisfy (2.5),
(2.6), (2.23), (3.2), (3.24) and (4.6)—(4.9).
Example 3.23 shows that the function f fulfils (2.3), (2.4), (2.10) and (2.28).
Moreover,
f(x)

liminf — = lim(1 —z)(x +4) =4 > 0,

x—0 X x—0

that is (3.8) and (3.19) hold. Let us find B satisfying (2.10). For z € [—4, 1], we
compute
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F(ZL‘):/ Z(l—z)(z+4)dz:/ (—23—322+4z)dz:—%—x3+2x2,
0 0

F(—4) = 32, ﬁ(B):F(l):Z,
F(x)—F(B)_—%—ﬁ%—ZxQ—%_ x> 3x 3
(x—1)2 (x —1)? T4 2 4

4
1
= 1 <x+\/6+3> (x—\/é—i-?)).
Thus, polynomial F(z) — F (B) has roots

t1=1, zo=—-6—-3~—545 x3=+6—-3~ —0.55¢ (—4,0).

Therefore, B = /6 — 3.

To sum up, we have satisfied (4.27) and (4.28). Therefore, by Theorem 4.8,
there exist infinitely many escape solutions u of problem (4.37) on [0,c| with
different ug € (—4, V6 — 3) and generally different ¢ for different solutions. Due

to Theorem 4.9, for some uy € (—4, V6 — 3), problem (4.37) has a homoclinic
solution.

In the following example, we illustrate conditions (4.27) and (4.28) provided
the function ¢ is composed of power function and bounded function.

Example 4.13. Let us consider the IVP

( VT u’(t))/ + (\“/ﬁ + arctan t) flu(t)) =0,
w(0) =ug € [-2,1], 4'(0) =0,

(4.38)

where
a1 =) (@ +3) for z > 0,
f(@_{%x(l—x)(erZ) for z < 0.

Here
4

p(t) = V7, q(t) = V5 +arctant, te[0,00).

The functions p and ¢ are continuous on [0,00), positive on (0,00) and
p(0) = 0. Therefore, (2.5) and (2.6) are satisfied. Moreover, pq is continuously
differentiable on (0, c0) and increasing on [0, c0), which means that (4.6) holds.

Since,
L, At
/ Vsdds = = ,
0 9
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t / 1
g t = —
/arctansds u/ aretan s = e = [sarctan s}
0 v =1 v=-=s
r=s5>+1 ,
t 241
= 1 1
—/ %ds dv = 2sds :tarctant——/ —dx
0 s2+1 s=0:z=1 2/,

s=t:x=1"+1
1 1
= tarctant — §[ln |z|]+! = tarctant — 5 In(t* + 1),

we get

1 [/,
lim — (\/ 5 arctans)
o /0 o

451 1
= | -5 +tarct t—=—In(t*+1
t—>o+ ( + tarctan 5 n(t* + ))

4/t tant 1 In(#? + 1
g Wy, Arctan ——limn(—j—):()—l—()—():O,
t—0t 9 t—0+  t1 2 t—0+ ti
that is (2.23) holds. Further,
<1 4 <1 4
< oo, (t)= ,

! \/_ ~3 ’ ¢ \/_7 T
~ 16 (\‘l/g—l-arctans 00 16
/ €2 ds—/ 3 ds—/
1 2

9s
16 t
4 20 > arctan s ds >/ ds
9 Sy s3 1 951
ity _ , § (Y actant) + V7 (%m ¥ taﬂ)
lim 5 = lim
tmoo  q2(1) t—00 3 4 215 + arctan t + arctan? ¢
+ T arctant 5 + 1
~ lim \/ Wt R et _0
- 1+ 2arcgant + arctgth )
t4 t2
t V17 t
lim inf —= p(t) =l = li L =00 > 0,

t4

liminf¢(t) = lim (\4/75_5—1— arctant) =00 > 0.
t—o00 t—00

Thus, we checked that (3.2), (3.24) and (4.7)—(4.9) hold, respectively.

The function f is continuous on R, Lipschitz continuous on [Lyg, L], Ly = —2,
L=1,zf(x) >0 for x € (Lo, L)\ {0}, f(Lo) = f(0) = f(L) = 0. Thus, (2.3),
(2.4) and (2.28) are satisfied. Furthermore,

La(l—x)(z+2) 7 14

13 — 1im — (1 — = —
et S =g -0+ =53 >0

1 —
limint 2EZ D@D 1 @3 =30,

z—0+ T z—0
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which means that (3.8) and (3.19) hold. Since 0 < L < — L, we get, similarly as
in Example 2.18, that F'(L) < F(Lg). Therefore, there exists B € (Lo, 0) such
that ' (B) = F(L), which gives (2.10). Let us find such B.

ﬁ(x):/ozlz(l—z)(z—i—Q)dz:/O:El—?z))(—z?’—z2+2z)dz

13
7 4 3
:—(—%—%—l—x?), ze[-2,1],

13
~ o6 - ~ 35
F(-2)=2 F(B)=FQ1)= 2
- Nar Tt 2 2 5
F(x)—F(B)_m( r 3 te 12)_ 7 (2 b5 5
(x —1)2 (v —1)2 13\ 4 6 12
7 1045 10 -5
T (T () Ly
156 3 3
Hence, polynomial F(z) — F (B) has roots
1045 10 -5
=1, x9= _\/_T+ ~ =272, x3= \/_T ~ —0.61 € (—2,0).

Therefore, B = @ :
To summarize, (4.27) and (4.28) hold. Thus, by virtue of Theorem 4.8, there
exist infinitely many escape solutions u of problem (4.38) on [0, ¢| with different

uy € (—2, @ . Here ¢ can be different for different solutions. Theorem

4.9 yields the existence of a homoclinic solution of problem (4.38) with wu, €

V10-5
(—2, 0 )

Example 4.14. Now, we illustrate conditions (4.27) and (3.3). Let us consider
the IVP
(' (1)) + kt’Ju(t)| sgnu(t) (u(t) — Lo)(L — u(t)) = 0,

w(0) = up € [Lo, L], /(0) = 0. (4.39)

We have equation (2.1) with

p(t) =t q(t) =17, t€[0,00),
f(z) = klz|"sgna(x — Lo)(L — x), « € [Lo, L].

According to Example 3.22, if o« € (0,1), 8 > 0, 8 > a— 1, then the functions
p and ¢ satisfy (2.5), (2.6), (2.11), (2.14), (2.23) and (3.3). Example 4.11 shows
that (4.6)—(4.9) are valid for 5 > o — 1, f < «. Example 3.23 yields that, for
0 <L < —Lyp,v>1and k > 0, the function f fulfils (2.3), (2.4), (2.10) and
(2.28).
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To sum up, if
O0<L<—-Lyp, a€(0,1], >0, a—1<p<a, y>1 and k>0,

then (3.3) and (4.27) hold. So, the assertions of Theorems 4.8 and 4.9 for problem
(4.39) are valid.

The following example illustrates the fulfilment of conditions (4.27) and (3.3)
provided the function ¢ is bounded and p is unbounded.

Example 4.15. Consider the IVP
/
(\/i u’(t)) +tanht f(u(t)) = 0,

(4.40)
w(0) =up € [-2-2%2], «/(0)=0,

where

—(x+2"+2) foraz < -2,

f(x) =< |z sgnx for v € (—2,1),

2—x for x > 1.

Here
et — ot
p(t) :\/¥7 Q(t) = tanht = ma te [0,00),

Ly = —2—27, L = 2. The functions p and ¢ are continuous on [0, c0), positive

on (0,00) and p(0) = 0. Therefore, (2.5) and (2.6) are satisfied. Further, pq is
continuously differentiable on (0, 00) and increasing on [0, 00), which gives that
(4.6) holds. Since

x = cosh s

t t . h o coshtl
/ tanhsds:/ sinh s ds dx = sinh sds :/ L
0 o coshs s=0:x=1 L T

s=1:x =cosht
= [In|2[];°"* = In(cosh ),

we obtain, using the I’'Hospital’s rule,

1 [ In(cosh t) sinh ¢

lim —/ tanhsds = lim ————= = lim %ht — lim 2v/¢ tanht = 0,

t—0t \/¥ 0 t—0t+ \/z t—0t Wi t—0t+
which yields (2.23). Moreover,

tanht Vit
. (p®a®) S T et 1 . vVt cosh®t
lim ——— = lim ———— = lim ——— + lim ——— ———
t—oo  q%(t) t—oo  tanh®t t—o0 24/t tanht  t—oo cosh®t sinh”¢
1
p— O 1' pr— 2—\/2 pu—
e sinh2¢  t0 2sinh ¢ cosh £ ’
t t <1
liminf& = lim Vi =00 >0, liminftanht=1 >0, / —ds = oo,
t—o00 q(t) t—oco tanh t t—o00 1 \/E
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that is (3.3) and (4.7)—(4.9) hold. Example 3.22 shows that, for v > 1, the
function f satisfies (2.3), (2.4), (2.10) and (2.28).
To summarize, if
7= 1

then (3.3) and (4.27) hold. Hence, the assertions of Theorems 4.8 and 4.9 for
problem (4.40) are valid.

In the next example, we illustrate conditions (4.27) and (3.3) provided that
both functions p and ¢ are bounded.

Example 4.16. Let us consider the IVP

) (1 () () +2) =0,

w(0) =ug € [-2,1], 4'(0) =0,

(arctant u/(t)) + (4.41)

Here

2
“ET
fl@)=z(l-—2)(x+2), zel[-21]

p(t) = arctant, q(¢) t € [0, 00),

Ly = —2, L = 1. Example 3.23 shows that the functions p and ¢ satisfy (2.5),
(2.6), (2.23) and (3.3). In addition, pq is continuously differentiable on (0, c0)
and increasing on [0, c0), which yields that (4.6) holds. Further,

/
t2 arctant
t2+1

lim = lim <
t—oo (t) t—o0 (t211)2
(% + 2t arctan t) (t* + 1) — 2t arctant
- tlg& t4
_ t* 4 2tarctant y 1 N 2arctant) 0
e 14 i\ 2 3 -
t tan t 2 +1
lim inf]ﬂ = lim m = lim arctant lim T >0,
t—o00 q(t) t—00 2t t—00 t—ooo 12 2
211
t?
lim inf = 1li =1
mpta) =l ey =20

that is (4.7)—(4.9) hold. Example 3.20 gives that the function f fulfils (2.3), (2.4),
(2.10), (2.28) and that B = Y10=2

To sum up, we have satisfied (3.3) and (4.27). According to Theorem 4.8, there
exist infinitely many escape solutions u of problem (4.41) on [0, ¢] with different
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173
4.9 yields the existence of a homoclinic solution of problem (4.41) with wu, €

V10-5
(2 ¥5=2).
Example 4.17. We illustrate conditions (4.27) and (4.29). Consider the IVP
(atu'(t))" + bt" f (u(t)) = 0,

uy € (—2 \/ﬁ—5>’ where ¢ can be different for different solutions. Theorem

w(0) = up € [-2,1], /(0) =0, (4.42)
where
s = {5 e e
Here

p(t) = at®, q(t) = bt®,

Lo= -2, L =1. Assume that a > 0 and a,b > 0. Then p and ¢ are continuous
on [0, 00), positive on (0,00) and p(0) = 0. Hence, (2.5) and (2.6) are satisfied.
Moreover, pq is continuously differentiable on (0,00) and increasing on [0, 00),
which means that (4.6) holds. Further,

1 [t 1 bttt b
lim —/ bs*ds = lim — —— = lim ———t =0,
0

im
=0+ at® =0t at*a+1  t=ot ala+ 1)
p € C[0,00)NC?*(0,00), p'(t) >0 for t € (0, 00),

! t tcx—l
fim P g T @,
t—o00 p(t) t—oo qt™ t—oo t
"t — 1t ? —1
limsupp—():'mwzh i |—0<oo,
oo | P'(1) tooo  aat® ! t—00
t bt* b
liminfﬁ = lim — = - > 0,
tooo p(t) toooat®  a
/ 2 2a—1 2
lig PHa0) (tgq“)) i 200y 20
t—o00 q (t) t—o0 b2t2e t—oo bt
.. Lplt)y . at*  a .. . N
liminf —= = lim — = — >0, liminfq(¢) = lim bt* = 0o > 0,
t—00 q(t) t—oo bt b t—o00 t—o00

<1
/ —ds < oo provided a > 1.
1 as®

Therefore, we checked that (2.23), (3.9)—(3.11), (4.7)—(4.9) hold and (3.2) holds
for a > 1. Example 3.21 shows that the function f fulfils (2.3), (2.4), (2.10),
(2.28), (3.8), (3.19) and that B = ¥10=5

To summarize, if
a>1 and a,b> 0,
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then (4.27) and (4.29) hold. Due to Theorem 4.8, there exist infinitely many
escape solutions u of problem (4.42) on [0, c] with different uy € <—2, @_5»

where ¢ can be different for different solutions. Theorem 4.9 gives the existence
of a homoclinic solution of problem (4.42) with ug € <—2, @)

In the final example, we show that the density profile equation (1.18) from
our motivation has a bubble-type solution.

Example 4.18. We illustrate conditions (4.27), (4.28) and (4.29) on the density
profile equation. Let us consider the boundary value problem (1.18), (1.19), that
is

(P (1)) = NL(u(t) + u(t) (u(t) - ©).
d(0) =0, limu(t) = ¢,

where A € (0,00) and £ € (0,1). We have the special case of equation (2.1) with
) =q(t) =2, te0,00),  fx) = Na(e + D)(E—1), 1€ R

Here Ly = —1, L = £. By Example 4.11, for « = = 2, condition (4.36) holds
and so, the functions p and ¢ satisfy (2.5), (2.6), (2.23), (3.2), (3.24) and (4.6)—
(4.9). According to Example 3.20, the function p fulfils (3.9) and (3.10), too.
Furthermore,
2
liminfﬁ = lim = =1>0,
t—o0 p(t) t—o0 12
that is (3.11) holds.
Example 3.23 (where now k& = A? and v = 1) shows that the function f
satisfies (2.3), (2.4), (2.10) and (2.28). In addition,
@) —\2
llanjglfT —ilg(l))\ (x+1)(§—2)=XE>0,
which yields (3.8) and (3.19).
To sum up, conditions (4.27)—(4.29) are fulfilled and, by Corollary 4.10, the
IVP (1.18), (2.2) has the bubble-type solution, which is also a solution of bundary
value problem (1.18), (1.19).
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5 Solvability of the problem with
¢-Laplacian

5.1 Statement of the problem

We investigate the equation
(p)e(u' (1)) + p(t) f(S(u(t)) =0 (5.1)
with the initial conditions
u(0) =wug, u'(0)=0, wg € [Lo,L] (5.2)

and assume these basic assumptions:
¢ € CY(R), ¢(z)>0forxe (R\{0}), (5.3)
6(R) =R, 6(0) =0, (5.4)
Lo <0< L, [f(¢(Lo)) = f(0) = f(o(L)) =0, (5.5)
f € Clo(Lo), o(L)],  xf(x) >0 for z € ((¢(Lo), ¢(L)) \ {0}), (5.6)
p € C[0,00) N CH0,00), p'(t) >0 forte (0,00), p(0)=0. (5.7)

A model example of (5.1), (5.2) is a problem with the a-Laplacian described
below.

Example 5.1. Consider
o(z) = |z|*sgnz, xR, a>1.

Then ¢ is continuously differentiable and increasing on R, ¢(0) = 0, ¢ maps R
onto R and ¢'(z) = alz[*t > 0 for z € (R \ {0}), that is conditions (5.3) and
(5.4) are fulfilled. If we take

pt)=t’, te€[0,00), B>0,
then
p € C0,00)NCH0,00), p(0)=0, p'(t)=pt""1>0fortec(0,00),

which means that p fulfils (5.7). As an example of f satisfying conditions (5.5)
and (5.6) we can take

fl@)=a(x—¢(Lo)) (¢(L) —z), z€R, Ly<0<L,
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because [ is continuous on R, f(¢(Lg)) = f(0) = f(#(L)) =0 and zf(x) > 0 for
z € ((¢(Lo), (L)) \ {0}).

The both Chapters 5 and 6 are devoted to bounded solutions defined on
[0,00). Therefore, we use the next definitions.

Definition 5.2. A function u € C'[0,00) with ¢(u’) € C' (0, 00) which satisfies
equation (5.1) for every t € (0,00) is called a solution of equation (5.1). If
moreover u satisfies the initial conditions (5.2), then w is called a solution of
problem (5.1), (5.2).

Definition 5.3. Consider a solution u of problem (5.1), (5.2) with ug € [Lo, L)
and denote
Usup := sup{u(t): t € [0,00)}.

If Ugyp < L, then w is called a damped solution of problem (5.1), (5.2).
If Ugyp = L, then u is called a homoclinic solution of problem (5.1), (5.2).
The homoclinic solution is called a regular homoclinic solution, if u(t) < L for

t € [0,00) and a singular homoclinic solution, if there exists ¢y > 0 such that

Remark 5.4. Equation (5.1) has the constant solutions u(t) = L, u(t) = 0 and
u(t) = Lo. Moreover, the solution u(t) = 0 is the only solution of problem (5.1),
(5.2) with ug = 0. Really, v’ cannot be positive on (0,0) for some § > 0, since
then u is positive on (0,0) and integrating equation (5.1) from 0 to t € (0,6), we
get, by (5.6),

p(t)o(ed (1)) = — / p(5)(6(u(s))) ds < 0.

a contradiction. Similarly, v’ cannot be negative.

Our goal in this chapter is to prove new existence and uniqueness results
for the IVP (5.1), (5.2). The presence of ¢-Laplacian in equation (5.1) brings
difficulties in the study of the uniqueness. For example, if ¢(z) = |z|*sgnzx
and « > 1, then ¢ fulfils the Lipschitz condition on R. On the other hand,
¢' = |z|asgna and (¢71) (x) = L|z[«~". Thus, we get lim, o (¢~!) () = oo
and the function ¢! does not fulfil the Lipschitz condition in the neighbourhood
of zero. Since both ¢ and ¢! have to be present in the operator form of problem
(5.1), (5.2), (cf. (5.45)), we cannot use the standard approach with a Lipschitz
constant to prove the uniqueness near zero. Therefore, we develop a different
approach near zero and show the conditions which guarantee the uniqueness of
damped and regular homoclinic solutions of problem (5.1), (5.2).

For these aims, we introduce the auxiliary equation

(p()o(u'(1)))" + p(t) f (d(u(t))) = 0, (5:8)

where
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i f(z) for z € [¢(Lo), (L)),
0 for x < ¢(Ly), x > ¢(L).

5.2 Properties of solutions

In this section, we describe the properties of solutions of the auxiliary equation
(5.8), where the nonlinearity f is bounded and obtained from f by (5.9). By
means of these results, we proceed to a priori estimates of solutions, existence
and continuous dependence of solutions on initial values in next sections.

Lemma 5.5. Assume that (5.3)—(5.7)hold and let u be a solution of equation
(5.8). Assume that there exists b > 0 such that u(b) € (Lo,0) and u'(b) = 0.
Then u/'(t) > 0 fort € (b,0], where 0 is the first zero of u on (b, 00). If such 0
does not exist, then u'(t) > 0 fort € (b, 00).

Proof. Let b > 0 be such that u(b) € (Lg,0) and «'(b) = 0. First, assume that
there exists 6 > b satisfying u(t) < 0 on (b,0) and u(f) = 0. Suppose that there
exists 7 € (b,0) such that /(1) < 0, u(t) € (Lo, u(b)] for t € (b, 7]. Integrate
(5.8) from b to 7 and obtain

p(r)o( (7)) = — / " () F6(u(s))) s > 0.

Hence, by (5.3) and (5.7), v/(7) > 0, a contradiction. Therefore, v’ > 0 on (b, ).
Moreover, integrating (5.8) over [b, ], we get

p(0)6((6)) = — / p() F($(u(s))) ds > 0.

Thus, by (5.3) and (5.7), «/(6) > 0 and we have u' > 0 on (b,6]. If u is positive
on [b, 00), we obtain as before that v’ > 0 on (b, 00). O

By analogy, we get the dual lemma.

Lemma 5.6. Let (5.3)—(5.7) hold and let u be a solution of equation (5.8).
Assume that there exists a > 0 such that u(a) € (0,L) and v'(a) = 0. Then
u'(t) <0 fort € (a,0], where 8 is the first zero of u on (a,00). If such 6 does not
exist, then u'(t) < 0 fort € (a,00).

Lemma 5.7. Let (5.3)—(5.7) hold and let u be a solution of equation (5.8).
Assume that there exists a > 0 such that u(a) = L and u'(a) = 0.

a) Let 0 > a be the first zero of u on (a,00). Then there exists a; € [a, ) such
that

u(ar) =L, u'(a;)=0, 0<wu(t)<L, u(t)<0, teab.
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b) Let u > 0 on [a,00) and uw Z L on [a,00). Then there exists a; € [a,o0)
such that

uwla) =L, u'(a1)=0, 0<u(t)<L, u(t)<0,te (ar,oc0).

In the both cases, u(t) = L fort € [a,a4].
Proof.

a) Assume that there exists t* > a such that u(¢*) > L. Then we can find
T € [a,t*) fulfilling

u(t) > L, t € (1,t], u(r) = L. (5.10)
Hence, u/(7) > 0. Integrating (5.8) over [r,#*], we get, by (5.9),

p(t)o(u' (1)) = p(1)p(u'(7)) = 0.

Hence, by (5.3) and (5.7), «/(t*) > 0. Therefore, v > L on [t*,00) and u
cannot have the zero 6, a contradiction. We have proved 0 < u < L on
la,8) and, according to (5.8),

(p(D)p(u'(1)))" = —p(t) f(d(u(t))) <0, t € [a,6].

Consequently, «' < 0 and u is nonincreasing on [a, §]. Hence, there exists
a; = [a,#) such that

wlay) =L, '(a;)=0, 0<u(t)<L,te (a,b).

Since w is monotonous on [a, a;], then u = L on [a, a;]. Suppose that there
exists 71 € (a1, 0) such that /(1) = 0. Integrate (5.8) from a; to 7, and
obtain

p(m)o(u' (1)) = — /T1 p(s)f(¢(u(s))) ds <0,

ai

which yields «/(m1) < 0, a contradiction. Therefore, v’ < 0 on (ay,6). In
addition, by integrating (5.8) over [ay, 0], we get

6 ~
P(O)6 (' (6)) = — / p(s) (6 (u(s))) ds < 0.

Thus, u/(#) < 0 and we have u' < 0 on (a4, ].

b) Assume as in part a) that there exists t* > a such that u(t*) > L. Then
we can find 7 € [a,t*) satisfying (5.10). Hence, u/(7) > 0. By Integrating
(5.8) from 7 to t € (7,t*] and using (5.9), we get

p(t)o(u'(t) = p(r)e(u'(7)),  te(r,t].
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If /() = 0, then «/(t) = 0 for t € (7,t*], which contradicts u(t) = L,
u(t*) > L. Therefore, v'(1) > 0. Let £ € [a,7) be the minimal number
fulfilling 0 < w(t) < L, v/(t) > 0, t € (£, 7). Since u(§) < L and v/(§) > 0,
we obtain £ > a. Integrating (5.8) over [a, £], we get

3 .
P(E)o( (€)) = — / p(s) F(6(u(s))) ds < 0.

Consequently, u'(£) < 0, a contradiction. We have proved that 0 < u < L
on [a,00), and that u is nonincreasing on (a,00). If u # L on [a, 00), we
can find a; > a such that the assertion b) holds using the arguments in
part a). Since u is monotonous on [a, a;], we have u = L on [a, a4]. O

In order to derive further important properties of solutions of (5.8), we assume
that

3B € (Ly,0): F (B) = F(L), where F(x) = /090 f(é(s))ds, zeR (5.11)

and

/
t
limsupp( ) < 0. (5.12)
Remark 5.8. According to (5.6), we have F' € C*(R), F(0) = 0, F is positive
and increasing on [0, L] and positive and decreasing on [Lg, 0].

Example 5.9. Let p, ¢ and f be from Example 5.1 and, in addition, L < —L,.
Since ¢ is odd and increasing on R and 0 < L < —Lj, we get, similarly as in
Example 2.18, that F'(L) < F(Lo). Therefore, there exists B € (Lo, 0) such that
F (B) = F(L), which yields (5.11). Further,

/ t tﬁ—l
limsupp()zlimﬁ zlimé:O<oo,
tsoo  P(t)  tooo 18 t—oo t

that is (5.12) holds.
Remark 5.10. From (5.3) and (5.4), we get

vp(z) >0 for z € (R\ {0}), (5.13)

and there exists an inverse function ¢! which is continuous and increasing on
R. By (5.7), the function p is positive and increasing on (0, o).

Lemma 5.11. Assume that (5.3)—(5.7), (5.11) and (5.12) hold. Let u be a
solution of equation (5.8) and let there exist b > 0 and 6 > b such that

u(b) € [B,0), u'(b)=0, wu(f)=0, wu(t)<0,te[bh). (5.14)
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Then there ezists a € (0, 00) such that
u'(a) =0, u'(t)>0,te(ba), ula)e(0,L).
Proof. Let u be a solution of equation (5.8) satisfying (5.14). Then

P'(t)
p(t)

By Lemma 5.5 and (5.14), we have /(t) > 0 for ¢ € (b,0].
Step 1. We assume that a > 6 satisfying u/(a) = 0 does not exist. Then we
get

¢ (u' ()" (1) + =20 (1) + f((ult) =0, T € (0,00). (5.15)

u'(t) >0, te (b oo) (5.16)
and hence, u is increasing on (b, 00). Since u(6) = 0, the inequality

u(t) >0, te (0 00) (5.17)
holds. Let (0, A) C (#,00) be a maximal interval with the property

u(t) < L, te(6,A). (5.18)

Using (5.5), (5.6) and (5.13), we obtain f(¢(u(t))) > 0 for t € (A, A). Conse-
quently, equation (5.15) yields

u'(t) <0, te(0, A (5.19)
and thus, u’ is decreasing on (6, A).

(i) Let A < oo. Then (5.18) implies u(A) = L. Multiplying (5.15) by «’ and
integrating from b to A, we get

'(s)

p(s)

T / F(é(u(s)))e(s) ds = 0.

3

/b ¢’(U’(8))U’(S)U”(S)ds+/b ¢ (u'(s)) u'(s) ds

After substitutions x = /() in the first integral and y = u(s) in the third
integral, we obtain

u’(A) , A p/(s) , , u(A) -
/j(b) x (x)dm+/b 05) o(u'(s))u'(s) ds+/u(b) f(o(y))dy = 0. (5.20)

Due to (5.14) and (5.16), we have u/(b) = 0 and «/(A) > 0. Therefore,
conditions (5.7), (5.13) and (5.16) imply

u’(A) ) A p/(s) / /
/u,(b) z¢' (x)dx > 0, /b 05) o(u'(s))u/(s) ds > 0.
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(i)

Consequently, (5.20) yields

u(A)
/ ) dy = / Fo(y)) dy < 0
u(b)

and hence, F(L) — F(u(b)) < 0. By (5.11), (5.14) and Remark 5.8, we
obtain

F(L) < Fu®) < F (B) = F(L),
a contradiction.
Now, we assume that A = oco. Inequalities (5.17) and (5.18) give 0 < u(t) <
L for t € (0,00). Due to (5.16), u is increasing on (,00), so there exists
lim; oo u(t) =: £ € (0, L]. By virtue of (5.16) and (5.19), ' is decreasing
and positive on (6, 00) and so, lim;_,, v'(¢) > 0. Since ¢ is finite, we have

lim /() = 0. (5.21)

t—o00

Let ¢ = L. Similarly as in part (i), we derive

u/(t) t /(s
/ xd' () dx—i—/ ];( )gb(u'(s))u'(s) ds

'(b)

Since the first integral is positive, we have

/ f(o / j Nu'(s)ds, te (b,00).

Letting ¢ — oo here, we get
Jim (F(u(t)) = Fu(b))) = F(L) ~ F(u(b))
_ (TP u'(s))u'(s)ds
| S et s as <o

Using Remark 5.8 and conditions (5.11), (5.14), we deduce

IN

(L) < Pu(bv) < F (B) = F(D),
which is a contradiction.
Let ¢ € (0,L). For t — oo in (5.15), we get, by (5.4) and (5.12),

#(0) lim o (t) = — F(6(0). (5.22)
Since —f(¢(£)) € (—00,0), we have lim,_, u”(t) < 0, contrary to (5.21).
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We have proved that there exists a > 6 such that u'(a) = 0.

Step 2. Let ' > 0 on [#,a). Then u(a) > 0. It remains to prove that
u(a) < L. Multiplying (5.15) by »" and integrating from b to a, we get similarly
as in part (i) of Step 1 that

u(a) _

) f(o(y))dy <0, te(ba)

u(b
and . . o .
F(u(a)) < F(u(b)) < F (B) = F(L).
According to Remark 5.8, we have u(a) < L. O

Lemma 5.12. Assume that (5.3)-(5.7), (5.11) and (5.12) hold. Let u be a
solution of equation (5.8) and let there exist a > 0 and 6 > a such that

u(a) € (0,L], '(a)=0, u@) =0, wu(t)>0,t€]ab). (5.23)
Then there exists b € (0, 00) such that
u'(b)=0, u(t)<0, te(ab), ulb)e(B0).

Proof. We argue similarly as in the proof of Lemma 5.11. Let u be a solution
of equation (5.8) satisfying (5.23). By Lemma 5.6, Lemma 5.7 a) and (5.23), we
have /(t) < 0, for t € (a,0].
Step 1. We assume that b > 0 satisfying u/(b) = 0 does not exist. Then we
get
u(t) <0, te(f,00), u'(t) <0, t € (a,00) (5.24)
and hence, u is decreasing on (a, c0). Let (6, A) C (6, 00) be the maximal interval
with the property B
u(t) > B, te(0,A). (5.25)
Then, from (5.15), we derive
u'(t) >0, te(h, A (5.26)
and thus, ' is increasing on (6, A).

(i) Let A < co. Then (5.24) and (5.25) imply u(A) = B. Similarly as in the
proof of Lemma 5.11 (Step 1, part (i)), we get the contradiction

F(B) < F(u(a)) < F(L) = F (B).

(ii) Now, we assume that A = oco. By (5.24) and (5.25), u is decreasing on
(0,00) and lim; o u(t) = ¢ € [B,0). Due to (5.24) and (5.26), v’ is
increasing and negative on (,00) and lim;_, u/(t) < 0. Since ¢ is finite,
we have limy_,o, v/(t) = 0. Similarly as in the proof of Lemma 5.11 (Step 1,
part (ii)), we obtain a contradiction for £ = B and for ¢ € (B,0).
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We have shown that there exists b > 6 such that /(b) = 0.

Step 2. Let v’ < 0on [0,b). Then u(b) < 0 and we proceed similarly as in
Step 2 of the proof of Lemma 5.11 and get F(u(b)) <F (B) Remark 5.8 yields
u(b) > B. O

Lemma 5.13. Assume that (5.3)~(5.7) and (5.12) hold. Let u be a solution of
equation (5.8) and let there exist b > 0 such that

u(b) € (Lo,0), u'(b) =0, wu(t) <0, te b o0).

Then
lim u(t) =0, lim u'(¢) =0.

t—o0 t—o0

Proof. By Lemma 5.5, v/(t) > 0 for t € (b,00). Hence, u is increasing on (b, 00),
Ly <u(t) <0, te(boo) (5.27)

and there exists
lim wu(t) =: ¢ € (u(b),0].

t—o0
Multiplying equation (5.15) by «’, integrating it from b to ¢ and using substitu-
tions, we obtain

¢1 <t> + w2(t) + %(t) = 07 te (b’ OO), (528)

where

u/(t) t (s

o= [ es@an 0= [ B8 ds
u(t)

i) = [ o) de

We have 95(t) = F(u(t)) — F(u(b)), where F is defined by (5.11). Since F(x) is
decreasing for x € (Lo,0) and w is increasing on (b, 00), then (5.27) yields that
F(u(t)) is decreasing for t € (b, 00) and lim;_,o F'(u(t)) = F(¢). Therefore,

lim vis(t) = Qs € (—F(Lo),o) .

The positivity of 11 on (b, 00) yields the inequality ¥,(t) < —3(t) for t € (b, 00).
Since 15 is continuous, increasing and positive on (b, 00), we have

Hm ¥y(t) =: Q2 € (0, —Qs].
Consequently, (5.28) gives
lim (1) = Q1 € [0, F(Ly) ).

83



Hence,

t—o00

lim ®(u'(t)) = Q1, where ®(z):= /Z z¢'(z)dz, 2z > 0.
0

The function ® is positive, continuous and increasing on (0,00), so its inverse
d~! is positive, continuous and increasing, as well. Thus,

lim & (P (v = i "(t) =t > 0.

lim & (@(u/(1))) = Jim o/ (1) = $7(Q1) > 0

According to (5.27),
lim u'(t) = 0.

t—o00

Finally, assume that ¢ € (u(b),0). Letting ¢ — oo in (5.15), we get, by (5.4),

(5.12), that (5.22) holds. Since —f(¢(¢)) € (0,00), we get limy o u”(t) > 0,
contrary to lim;_,o, v'(t) = 0. Therefore, ¢ = 0. O

Lemma 5.14. Assume that (5.3)~(5.7) and (5.12) hold. Let u be a solution of
equation (5.8) and let there exist a > 0 such that

u(a) € (0,L], '(a)=0, wu(t)>0,tea,oc0).

Then either

u(t) =L, té€la,00) (5.29)
or
. o . / o
tllglo u(t) =0, tli)rglou (t)=0. (5.30)

Proof. Step 1. Let u(a) € (0,L). We continue analogously as in the proof of
Lemma 5.13. According to Lemma 5.6, «/(t) < 0 for ¢ € (a,00). Hence,

0<u(t)<L, te(a,00) (5.31)

and
lim u(t) =: ¢ € [0,u(a)).

t—o00
By multiplying equation (5.15) by v’ and integrating it over [a, t], we obtain (5.28)
with b replaced by a. Since F'(z) is increasing for x € (0, L) and u is decreasing on
(a,00), then (5.31) gives that F'(u(t)) is decreasing for ¢ € (a,00). Consequently,

limg o F(u(t)) = F(£). Let 91, ¥y and 13 be defined as in the proof of Lemma
5.13, where b is replaced by a. Then

lim (1) = Jim F(u(t)) ~ F(u(a)) = Qs € (~F(L),0).

t—o00

The positivity of ¢, on (a, 00) yields the inequality 19 (t) < —15(t) for t € (a, 00).
Since 1, is continuous, increasing and positive on (a, c0), we get

lim (1) = Q2 € (0,-Qy] and lim (1) = Qy € [0, F(L)).
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Hence,

t—o00

lim ®(u'(t)) = Q1, where ®(z):= /Z z¢'(z)dx, 2z <0.
0

The function & is positive, continuous and decreasing on (—o0,0) and so, its
inverse ®~! is positive, continuous and decreasing, as well. Therefore,

: -1 / : / -1
lim 7 (@(/(1)) = lim /(1) = 91(Q1) = 0.
By virtue of (5.31), we have lim; o, /() = 0.

Assume that ¢ € (0,u(a)). Letting ¢ — oo in (5.15), we obtain (5.22). Since
—f(o(0)) € (—00,0), we get limy_,oo u”(t) < 0, contrary to lim,_. u/(t) = 0.
Hence, ¢ = 0.

Step 2. Let u(a) = L. Assume that u does not fulfil (5.29). Due to Lemma
5.7 b), there exists a; > a such that 0 < u(t) < L, v/(t) <0, t € (a1,00) and we
can use the arguments from Step 1 to prove (5.30). O

5.3 A priori estimates of solutions

In order to prove the existence and uniqueness of solutions of the auxiliary prob-
lem (5.8), (5.2) and of the original problem (5.1), (5.2), a priori estimates derived
in this section are needed.

Lemma 5.15. Assume that (5.3)~(5.7) hold. Let u be a solution of problem
(5.8), (5.2) with ug € (Lo, B). Let there exist § >0, a > 6 such that

w(@) =0, wu(t)<0,tel0,0), u(a)=0, u(t)>0,te(f,a) (532

Then
u(a) € (0,L], u'(t) >0, t € (0,a). (5.33)

Proof. According to Lemma 5.5 and (5.32), we have v’ > 0 on (0, a). Therefore,
u(a) > 0. Now, assume that u(a) > L. Hence, there exists ag € (0, a) such that
u(t) > L on (ag, a]. Integrating equation (5.8) over (ag,a) and using (5.9), we get

plan)olu (@) ~ p@o(u! (@) = [ p(s)(o(u(s))) ds =0
and so, p(ao)¢(u'(ag)) = 0. Thus, uv/(ap) = 0, contrary to «’ > 0 on (0,a). We
have proved that u(a) < L. O

Lemma 5.16. Let assumptions (5.3)—(5.7), (5.11) and (5.12) hold. Let u be a
solution of problem (5.8), (5.2) with ug € (Lo, L). Then

up € [B,L) = B<u(t)<L, te(0,00), (5.34)
up € (Lo, B) = wo <uf(t), te(0,00). (5.35)
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Proof. Let u(0) = uy = 0. According to Remark 5.4, u(t) = 0 is a unique
solution of problem (5.8), (5.2), that is (5.34) holds.

Let u(0) = up € (0,L). If w > 0 on (0,00), then, by Lemma 5.6, u’' < 0 on
(0,00) and (5.34) holds. Assume that there exists #; > 0 such that u(6;) = 0,
u(t) > 0 for t € [0,0;). In view of Lemma 5.12,

b€ (1,00): W (b) =0, '(t) <0, te(0,b), ub)=(B0).

)
If u <0 on (b,00), then, by Lemma 5.5, u is increasing on (b,00) and (5.34) is
valid. Assume that there exists o > b such that u(fy) = 0, u(t) < 0 for t € [b, 05).
Due to Lemma 5.11,

Ja € (02,00): u'(a) =0, u'(t) >0, te(ba), ula)=(0,L).

Now, we use the previous arguments replacing 0 by a.

Let u(0) = uy € [B,O). We have the same situation as before, where b is
replaced by 0. So, we argue similarly.

Let u(0) = ug € (LO,B). If u<0on (0,00), then, by Lemma 5.5, ' > 0 on
(0,00) and (5.35) is valid. Assume that there exists #; > 0 such that u(6,) = 0,
u(t) < 0 for t € [0,60;). Due to Lemma 5.5, v > 0 on (0,6,]. If «/ > 0 on (6;, 00),
then (5.35) holds. Assume that there exists a > 6 such that «/(a) =0, u/(t) > 0
for t € (01,a). According to Lemma 5.15, (5.33) holds. If u > 0 on [a, 00), (5.35)
is valid. Let there exist 6, > a such that u(fy) = 0, v > 0 on [a, ;). We can
apply Lemma 5.12 and argue as before. O

Remark 5.17. According to (5.9), (5.34), (5.35) and Definition 5.3, u is a
damped or a homoclinic solution of the auxiliary problem (5.8), (5.2) if and only
if u is a damped or a homoclinic solution of the original problem (5.1), (5.2).

Note that the auxiliary nonlinearity f is bounded due to (5.9). Therefore,
there exists M > 0 such that

f@)| <1, ser (5.36)

For the following investigation, we introduce a function ¢

1 t
gat:——/psds, t € (0,00), »(0) =0.
(t) o0 s (s) (0,00) (0)
This function is continuous on [0, c0) and satisfies
0<pt)<t, te(0,00), lim ¢(t) = 0. (5.37)
t—0+t

Lemma 5.18. Assume that (5.3)~(5.7), (5.11) and (5.12) hold. Then there
exists ¢ > 0 such that
W) <é tel0 o) (5.33)
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Jor every solution u of problem (5.8), (5.2) with uy € (L, L).

Proof. Denote

Uy (2) := /OZ xd' (x)dz, Wy(z) := /OZ z¢'(—z)dz, z€[0,00).

Clearly, Wy, ¥y are positive, continuous and increasing on (0, 00). Put

G:= max{\lll_l (F(LO)) R (F(L))}, (5.39)

where F is defined in (5.11).

Let w(0) = up = 0. Due to Remark 5.4, u(t) = 0 is a unique solution of
problem (5.8), (5.2). Thus, ' = 0 on [0, 00) and (5.38) is satisfied.

Let w(0) = up € (Lo, 0), v/(0) = 0 and let u be a solution of equation (5.8).
Then (5.15) holds.

(1)

(i)

Assume that u < 0 on [0,00). By Lemma 5.5, ' > 0 on (0, 00) and Lemma
5.13 gives limy_,o, v/ (t) = 0. Thus, there exists £ € (0, 00) such that

max |[uv'(t)] =u'(§) >0, wu(&) € (up,0). (5.40)

te[0,00)

Multiplying (5.15) by «’ and integrating over [0, &], we get

we Spt) . u(€) B
/u ) P / Che e [ i) =0

Since the second integral is positive, by using (5.40), we obtain
Uy (') < Fluo) = F (u(€)) < F(uo) < F(Lo),
which yields
0 </(€) < U7 (F(L0)> . (5.41)
Due to (5.39) and (5.40), we get (5.38).

Assume that 6 € (0, 00) is such that u < 0 on [0,60), u(f) = 0. Then, by
Lemma 5.5, ' > 0 on (0,0]. Let a > 6 be such that «' > 0 on (0, a),
uw'(a) = 0. We have u > 0, v/ > 0 on (0,a). Using (5.3), (5.6), (5.7) and
(5.13), we get from (5.15) that u” < 0 on [#,a). Hence, v’ is decreasing on
[0,a) and there exists & € (0,0) such that

max |u'(t)] =u'(§) >0, wu() € (uo,0). (5.42)

te[0,a)

Analogously as in part (i), we get (5.41) and if a = oo, then estimate (5.38)
is proved.
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(iii)

(iv)

(v)

Assume that a < oo in (5.42). We have «/(a) = 0 and, by Lemma 5.11 and
Lemma 5.15, we deduce that u(a) € (0,L]. Let u > 0 on [a,00). Then
Lemma 5.14 gives lim;_,o, ¢/(t) = 0 and hence, there exists 7 € (a,00) such
that

max |u'(t)| = —u'(n) >0, wu(n) € (0,u(a)). (5.43)

tela,00)

Multiplying (5.15) by «’ and integrating it over [a, 7], we obtain

|u' ()] n u(n) _
/ ' (—x)dz + / u (t>¢ (W' (t)) u'(t) dt + / [ (¢(z)) dz = 0.

'(a) o D) u(a)

Since the second integral is positive, by using (5.43), we get

Uy (Ju'(n)]) < F(u(a)) = F (u(n)) < F(L),

which gives

0 < [u/(n)| < U5 (F(L)) . (5.44)
Using (5.39) and (5.41)—(5.44), we obtain (5.38).

Assume that there exists x € (a,00), which is the next zero of u. Summa-
rized, we have u(a) € (0, L], v'(a) =0, u(x) =0, w > 0 on [a, ). In view
of Lemma 5.12, there exists b € (x, 0o) such that «'(b) =0, v’ < 0 on (a,b),
u(b) € (B,0). Due to (5.15), we have u” > 0 on [x,b). Consequently, there
exists 1 € (a, x) such that

max [u(t)] = —u'(n) > 0, u(n) € (0,u(a)).

Similarly as in part (iii), we derive (5.44).

Since u(b) < 0, we continue repeating the argument of parts (i)-(iii) with
b on place of 0 and the arguments of part (iv) writing b instead of b. After
finite or infinite number of steps, we obtain (5.38).

If ug € (0, L), we can argue similarly. 0

5.4 Existence of a solution

This section is devoted to the existence of solutions of the auxiliary problem (5.8),

(5.2),

which is proved by means of the Schauder fixed point theorem.

Theorem 5.19 (Existence of solutions of problem (5.8), (5.2)). Assume
that (5.3)~(5.7) hold. Then, for each uy € [Lg, L], there exists a solution u of
problem (5.8), (5.2).
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Proof. Clearly, for uyg = Lo, up = 0 and ug = L there exists a solution of problem
(5.8), (5.2) by Remark 5.4. Assume that uy € (Lo, 0)U(0, L). Integrating equation
(5.8), we get the equivalent form of problem (5.8), (5.2)

u(t) :u0+/0t¢1 (—ﬁ /Osp(T)f(qﬁ(u(T)))dT) ds, te[0,00). (5.45)

Choose a > 0, consider the Banach space C'[0, f] with the maximum norm and
define an operator F: C'[0, 5] — C'[0, ],

(Fu)(t) := uo + /O t ¢t (—L /0 S p(7) f(¢(u(7’)))d7) ds.

p(s)
Put A := max{|Ly|, L}, consider the ball

B(0,R)={ucC[0,8]: |lulcos < R}, where R:=A+ 3¢~ (Mﬁ)

and M is from (5.36). Since ¢ is increasing on R, ¢! is also increasing on R
and, by (5.37), ¢! <Mg0(t)> < ¢! (Z\Zfﬁ), t € [0,5]. The norm of Fu can be
estimated as follows

uo+1£t¢+l(—5%5>48pv1ﬂ¢047»>d7)<m
ot (Wp(s)) | ds < A+ /0 5 (318) ds < A+ o~ (118) = R

<A

| Fullcpo,p = max
t€|0,

+/

which yields that F maps B (0, R) on itself.
Let us prove that F is compact on B (0, R). Choose a sequence {u,} C C'[0, 5]
such that lim, . [[u, — ul|cp,g = 0. We have

Fu)t) - (Fuo = [ (¢-1(—iiégjﬁsp@vfk¢ahmT»>dT)
-1 —L ) T f u(T T S
67 (-5 | pnfetuar) ) as
Since f(¢) is continuous on R, we get
tim |[f(ow) ~ fow) =0
Denote
1 ¢ -
fMﬂZ—REAp@ﬂM%WDM7
1 t -
mwz—ﬁglpwvwwm»w,temm,Aamzmmza neN



Then, for a fixed n € N,

42(0) = 40| = | ["3t0) (Feotu(r) - Ftotun(r) ar) .

t € (0,8

and, by (5.37) and (5.36), lim; o+ |An(t) — A(t)| = 0. Therefore, A, — A € C[0, 5]
and, using (5.37), we obtain for each n € N

4, = Allop < || F6 () = (o)

clo,A]

This implies that lim,,_,« [|A, — Allcjo,5 = 0. Using the continuity of ¢! on R,
we have
-1
lim [l¢7'(A,) — ¢ (A>HC[O,,8] =0.

n—0o0

Consequently,

/0 (67 (Au(s)) — 67 (A(s))) ds

< B lim |67 (A4n) = 67 (A)]| 5o 5 =0,

Tim | oo, = Him C[0,4]

that is the operator F is continuous.
Choose an arbitrary € > 0 and put 0 := ——F=— . Then, for ¢, € [0, ] and

¢=1(MB) "
u € B(0, R), we obtain

[ty — o] <6 = |(Fu) (ta) — (Fu) (t2)]

/: o <_%/0 pl7 >>dT> ds| <
[ o (15)

2

/t Tt (Jtp(s)) ds

2

=¢! (M5> |ty —to] < o7 (Mﬁ) §=e.

<

Hence, the functions in F(B (0, R)) are equicontinuous and, by the Arzela—Ascoli
theorem, the set F(B (0, R)) is relatively compact. Consequently, the operator
F is compact on B (0, R).

The Schauder fixed point theorem yields a fixed point u* of F in B (0, R).
Therefore,

w0 =+ [ o (- [ it ar) as

p(s)

Hence, u*(0) = uy,

(p(o((w*)' (1)) = —p(t)f (p(u*(1))), t€[0,5].
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Further,

wyol= o (- [ tp<s>f<¢<u*<s>>>ds)

Thus, due to (5.37),

lim ¢! (Mep(t)) = ¢7(0) = 0

and therefore,
lim (u*)'(t) = 0 = (u*)'(0).

t—0t

According to (5.9), f(¢(u*(t))) is bounded on [0,00) and hence, u* can be ex-
tended to interval [0, 00) as a solution of equation (5.8). This classical extension
result follows from more general Theorem 11.5 in [31]. U

Example 5.20. Consider ¢: R — R given by one of the next formulas

8(z) = |z[*sgnz, a> 1, (5.46)
o(x) = (z* + 22%) sgnz, (5.47)
6(x) = sinha = & _Qe_x , (5.48)
é(z) = argsinhz = In (x + m) , (5.49)
é(z) = In(|z| + 1) sgn . (5.50)

Let us consider that

p(t)y=1°, t€[0,00), B>0,
f(x) = klz["sgna(z — ¢(Lo))(A(L) — x), =« € [¢(Lo), ¢(L)], v >0, k>0,

where Ly < 0 < L. Example 5.1 shows that the function p fulfils (5.7). The
function f is continuous on [¢(Lg), d(L)], f(#(Lo)) = f(0) = f(¢(L)) = 0 and
xzf(x) >0 for z € ((¢(Lo), ¢(L)) \ {0}), that is (5.5) and (5.6) hold.

Each of ¢ given by (5.46)—(5.50) is continuously differentiable and increasing
on R, ¢(0) = 0 and ¢ maps R onto R. Since moreover, for x € (R\ {0}),

é(x) = |z|*sgnz, a > 1 = ¢'(2) = alz|* >0,
¢(z) = (z* + 22%) sgnz = ¢'(z) =4(2 + x)sgnz > 0,
¢(z) =sinhz = ‘ _26_ = ¢/(x) = coshz > 0,
1
¢(r) = argsinhz = In (:c + Va2 + 1) = ¢(z) = > 0,
x2+1
1
6(z) = (| + 1) sgn o = =

91



we have satisfied (5.3) and (5.4).

We obtained that the functions p, ¢ and f fulfil all assumptions of Theorem
5.19. In particular, ¢ € Lipi,.(R) for each ¢ given by (5.46)—(5.50). Therefore,
the auxiliary problem (5.8), (5.2) has a solution for every ug € [Lo, L].

5.5 Continuous dependence of solutions on initial
values

Here we examine the uniqueness of solutions of the auxiliary problem (5.8), (5.2).
Our arguments are based on a continuous dependence on initial values expressed
in Theorem 5.21, Theorem 5.24 and Theorem 5.26. Assumption (5.3) implies
that ¢ € Lipiee(R). This need not be true for ¢~! as we have shown in Section
5.1 for ¢(z) = |x|*sgnz, a > 1. The special case when both ¢ and ¢! are locally
Lipschitz continuous is discussed in the next theorem.

Theorem 5.21 (Uniqueness and continuous dependence on initial values
I). Assume that (5.3)—(5.7) and
¢! € Lipioc(R) (5.52)

are satisfied. Let u; be a solution of problem (5.8), (5.2) with ug = B; € [Ly, L],
1 =1,2. Then, for each f > 0, there exists K > 0 such that

[ur = usllcrpo,g) < KBy — Bal. (5.53)
Furthermore, any solution of problem (5.8), (5.2) with uy € [Lo, L] is unique on
[0, 00).

Proof. Let i € 1,2 and let u; be a solution of problem (5.8), (5.2) with uy = B;.
By integrating (5.8) over [0, ¢], we obtain

() = Ai(t), ui(t) = B+ / o7l (Ails) ds, te0,00),  (554)
where

AGs) = | P F (Gui(r) dr, s € [0,00).

s
Choose 8 > 0. Since u;, (Zf)(( )) EOC[ 0, 5], there exist m, M € R such that
m<u(t) <M, m<ou(t) <M, tel0,8],i=1,2.
According to (5.3), (5.51) and (5.52), there exist positive constants Ay, Ag, Ay
satisfying
|f(z1) = f22)| < Mgl —za|, 21,22 € [¢(Lo), #(L)],
|o(x ) P(x2)| < Aglay —aaf, 21,22 € [m, M],
|07 (1) — ¢ M (@2)| < Apr|zy — 2|, 1,22 € [m, M].



Denote
p(t) := max{|ui(s) —ua(s)|: s € [0,t]}, t € [0, 5].
Then, by (5.37),
1 " .
4406) — 9] = = [ 9(r) | 6us(r)) - Flotuar)))] ar
1

< Ao [ o) = )l dr < Apap(s)

and, by virtue of (5.54),

p(t) < | By — Byt / 6 (Au(s)) — 6~ (Ag(s)) ds

<|Bi— Bl + / 1671 (Ax(s)) — 67 (As(s))| ds
< |B1—BQ|+A¢1/O Ay (s) — Ay(s)] ds

t
< |By — By +AfA¢,A¢,_15/ p(s)ds, tel0,p].
0

The Gronwall lemma yields
p(t) < |By — Bo|e™, te]0,8], (5.55)
where L := AjAyAy-1. Similarly, from (5.54), it follows
[ (1) — up(t)] = [671(Au(1)) — &7 (A2(t))| < Ag1|As(t) — Ax()]
< Lp(t)8, te€l0,f].
Applying (5.55), we get
max {[u} (1) — uy(t)|: ¢ € [0, 8]} < By — By| L™

Consequently, using (5.55), we obtain

[ur — usl oz < |Br — Bal(1 + LB)er, (5.56)

that is (5.53) holds for
K := (1+ LB)e™”.
Clearly, if By = By, we have u; = uy on each [0, 5] C R and the uniqueness
for problem (5.8), (5.2) on [0, c0) follows. O

If also (5.11) and (5.12) are fulfilled, we can use (5.38) and get universal
estimates for ¢(u}) and w;. This is the case that K in (5.53) does not depend on
a choice of uy, us. Let us show it in the next theorem.
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Theorem 5.22 (Continuous dependence on initial values II). Assume that
(5.3)-(5.7), (5.11), (5.12), (5.51) and (5.52) hold. Then, for each 8 > 0, there
exists K > 0 such that

lur — ug||crp,5 < K| By — By,

where u; s a solution of problem (5.8), (5.2) with ug = B; € [Lo, L], i = 1,2.

Proof. Let i € 1,2 and let u; be a solution of problem (5.8), (5.2) with ug = B;.
Then we have (5.54). Choose 3 > 0. By (5.38),

|6(wi(t)] < @(6),  |ui(t)] < Bé+ max{|Lo|, L} =: M, t€[0,f], i=12

According to (5.3), (5.51) and (5.52), there exist positive constants Ay, Ag, Ay
satisfying

|f(z1) = fz2)| < Aplzy — 2], 21,72 € [¢(Lo), 9(L)],
|¢(l’1) o(x2)| < Aglzy — 22|, @1, 72 € [-M, M],
‘925 e | < Agr|zy — 29|, 21,20 € [—0(C), 9(C)].

Denote

p(t) := max{|ui(s) —us(s)|: s € [0,t]}, t € [0, 5].
Using the same procedure as in the proof of Theorem 5.21, we obtain the inequal-
ity (5.56) again. O

Example 5.23. In order to apply Theorem 5.21, we need both ¢ and ¢! from
Lipioc(R). Let us check the functions ¢ in Example 5.20 from this point of view.
First, we find the inverse functions ¢! for the functions ¢ given by (5.46)—(5.50).

o Let ¢1(z) = (2* + 22%) sgnz. Then

x> 0: z <0:
y=di(x) =2 + 227 y=¢i(r) = —a' — 227
y+1l=2"422"+1=(2+1? —y+l=2"+222+1=(2*+1)?
\/y?:xQ—i—l M:x2+1
2 =\y+1-1 xQZM—l

oty =r=\Vy+1l-1Ly>20 ¢y =z=1/V1-y-1 y<0.
Hence,
o7 (x) =/ V]|z]+1-1, z€R.
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o Let ¢o(z) = In(|z| 4+ 1)sgnx. Then

z>0: r <0:

Y= dala) = In(ar + 1) y=ala) = —In(l ) =T ——

ey =x+1 eV = 1 i .

byt (y)=z=¢"—1,4y>0 1—x:ely:e_y
Gt (y)=x=1—¢cY y<0.
Thus,
oyt (z) = (e"”| — 1) senz, x€R.
Now, we can create the following summary.

o(z) = |z|*sgnz, a>1 = ¢ '(z)= |x|é sgn x ¢ Lipioc(R),
o(z) = (x4 + 227) sgn = ¢ () =\/VI|r| +1 -1 ¢ Lipi.(R),
¢(z) =sinhz = # = ¢ '(z) = argsinhx € Lipic(R),
¢(z) = argsinhx = ¢ (z) =sinhz € Lipic(R),

=In (x + \/3527—1—1)
o(z) =In(|z| + 1) sgnx = ¢ (z) = (e'wl —1)sgnz € Lip.(R).
Consider
p(t)=t%, t€[0,00), B>0,
f(x) = klz["sgnz(x — ¢(Lo))(H(L) — x),  x € [¢(Lo), ¢(L)], v =1, k>0,

where Ly < 0 < L. Let ¢ be given by one of the formulas (5.48)-(5.50). For
these ¢, as we showed, (5.52) is valid. Example 5.20 shows that the functions
¢ and f satisfy conditions (5.3)-(5.6). In addition, f is Lipschitz continuous
on [¢(Lg), #(L)], that is (5.51) holds. According to Example 5.1, the function p
fulfils (5.7).

Therefore, all assumptions of Theorem 5.21 are fulfilled and problem (5.8),
(5.2) has a unique solution for each uy € [Ly, L].

Note that if v € (0, 1), then f is not Lipschitz continuous on a neighbourhood
of zero, that is (5.51) is not valid. Similarly, in the case that ¢ is given by (5.46)
or (5.47), then ¢! is not Lipschitz continuous on a neighbourhood of zero and
hence, (5.52) falls.

In the next two theorems, we show the assumptions under which solutions of
problem (5.8), (5.2) continuously depend on their initial values in the case that
¢~ is not locally Lipschitz continuous.
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Theorem 5.24 (Continuous dependence on initial values III). Assume
that (5.3)—(5.7), (5.11), (5.12), (5.51) and

lim sup <—ac (qzﬁ_l), (x)) < o0, ¢ is nonincreasing on (—oo,0) (5.57)

z—0~
are fulfilled. Let By, By satisfy
B; € (2€,L—2€), |Bl—BQ| <é€

for some e > 0. Let u; be a solution of problem (5.8), (5.2) with ug = B;, i = 1, 2.
Then, for each > 0, where

w, <0 on (0,8], i=1,2,
there exists K € (0,00) such that
[ur — uzl[crpo,o < K[By — B.
Proof. Let u; be a solution of problem (5.8), (5.2) with ug = B;, i = 1,2. Then
by integrating (5.8) over [0,t], we obtain
¢
o) =~ [ s ds = A0, tebo) 659

u;i(t) = B; + /t ¢ 1 (Ai(s))ds, te[0,00), i=1,2.

Therefore,

ur () —ua ()] < |B1—le+/0 671 (A1(5)) — 97" (A2(s))| ds, t € [0,00). (5.59)

In order to reach the required estimate, we restrict our consideration on a small
interval [0, 6] for a suitably chosen § > 0 in Step 1. Then we prolongate the result
on [0, 4] in Step 2.

Step 1. Assumptions (5.3)—(5.6), (5.51), (5.57) yield the existence of positive
constants Ay, Ay, K, Ky such that

|f(y1) - f(y2)| < Af|yl — |, Y,y € [¢(L0)7 ¢(L)],
[9(x1) — d(22)| < Aglar — za|, 21,22 € [Lo, L],
Ky =min{f(¢(x)): © € [By — 2¢, By + 2¢|}, (5.60)

0<—2(¢p") (2) < Koy x€[-1,0). (5.61)

By Lemma 5.18, there exists ¢ > 0 such that |u}| < ¢ on [0,00), i = 1,2. Let us
choose 9 such that

. 3 1 Kl
5§ < - = %, .62
0< _mln{é’Kl’QKzAfA¢} (5.62)
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Then we get

¢ 5
| By —uyi(t)] = |ui(0) —uq (t)] = ‘/0 uj(s)ds| < /0 luj(s)|ds <& <e, tel0,d],

which yields u;(t) € [B; — ¢, By + ¢] for t € [0,0]. Moreover,

|By — ua(t)| = [B1 — By + By — us(t)| < | By — Ba| + |uz(0) — ua(2)|

[ heoras

thus uy(t) € [By —2¢, By +2¢] holds for ¢t € [0, §]. Consequently, f(o(u;)(t)) > K
for t € [0,6], i = 1, 2. Therefore,

5
<e+ §5+/ lug(s)|ds < e+cd <2, tel0,d],
0

Ay(s) = — /0 P 2 s(ua(r)) dr < — K, /0 PT) 4 seo,),

p(s) p(s)
|A1(s) — Ag(s)| < /O %Iﬁ(qb(ul(f))) — f(d(uz(r)))|dr

*p(7)
< AfAgllug —u / —=dr, s€]0,9].
f ¢H 1 2”0[0’5] o p(S) [ ]

Let s € (0,0] be fixed. By the Mean Value Theorem, there exists A*(s) between
A (s) and As(s) such that

|71 (Aw(s)) = 7' (Ax(s))] < (67)" (A"(5)) [Au(s) — Aa(s)]:
Since (¢~!')’ is a nondecreasing function on (—oo,0), we get
-1 — ¢! s (= S@ T s) — S
o7 (e — 9 (o] < (07 (0 [ BT ar ) ) — Aate)

< (¢7) (—K1 /0 7;8 dT) AfA@f’”“lK_l tallewal g /OS%CH.

Using the monotonicity of p and (5.62), we have

“p(7) "pls)
0<K1/0 deSKl/O de—Klégl

and hence, due to (5.61), we get
K *p(r
67 () = 67 (o) < Al —wltoas [ 2 ar
K o D
K
< FjAqub”ul — uz||cpo.4-
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Consequently, by (5.62), we derive from (5.59) for ¢t € [0, ¢]

t
K
[ur(t) — ux(t)| < [By — Bof +/ FzAqusHUl — Uzl|c0,6) s
0 1
K5 1
< |B1 — Bs| + 5?AfA¢HU1 — Usl|co,) < |Br — Ba| + §HU1 — Us|lcpo,5)-
1

This yields
||U1 — Ug”c[oﬁ] S 2|Bl — BQ| (563)

Furthermore, by virtue of (5.58),

K.
Wi (1) = up(t)] = [671(Au(1)) — o7 (Aa(t))| < ?jAfA¢||U1 — uzllcpg), € 10,0].

Hence,
[uy — ol .5 < K3l By — Do (5.64)

with K3 := Q%AfA¢. Finally,
|1 — usl|crjo.0) < Ks1|Bi — Ba,

where Kg1 := K3 + 2.

Step 2. 1In this step, we extend the continuous dependence on initial values
from [0, 0] to [0, 8], where u(t) < 0 for t € (0,0], i = 1,2. To this aim, choose
i € {1,2} and denote

vi = max{u;(t): t € [§,0]} <0, my:=max{ry,1n}, m:=min{—¢, Ly}

Moreover, (5.3) yields the existence of positive Lipschitz constants A,,, A,-1 such
that

|p(21) — d(x2)] < Al — 22|, 21,22 € M, L],
107 (1) — & (o) | < Mgty — wol,  y1 2 € [B(—0), d(m1))].

By integrating (5.8) over [, ], t € [6, 8], we get

Let us denote

A = — t @ f U;\ S S
A== [ B i) s, telbs)
) = B0 0) + A0 = olul(0), t€ 0]



Then

ui(t) = ¢~ (zi(t), tesh]. (5.65)
Since —¢ < wj(t) < my, then z;(t) € [p(—¢), p(my)], for t € [§, F]. Integrating
(5.65) from 0 to t € [0, (], we get

ui(t) = u;(9) +/5 ¢ (zi(s))ds, tels ]

Due to (5.63), we obtain
Jur (8) = ua(1)] < fur(6) — uz(9)] +/5 |67 (21(s)) — ¢ (wa(s))] ds

t
§2|B1—BQ]+A¢_1/ 1(s) — wa(s)|ds, ¢ €[5, 4],
4

Further, by (5.7) and (5.64), we get
[21(s) — xa(s)] < %W(US@)) — ¢(uy(9))| + | Ai(s) — As(s)

SAmlu’l(é)—u’Q(é)|+/6
< M Ks| By — Byl +AfAm/ s (7) — un(r)| dr, s €[5, 8].
d

Therefore,

t

s (£) — us(t)] < 2|B1 — Byl +A¢,_1/ A Ks| By — B| ds
5
t s
—|— A¢1AfAm/ / |U1(T) — UQ(’T)|d7'dS S K4|Bl — Bgl
s Js

t
K [ () - w(n)ldn e (50
5
where Ky := 24+ A1 A, K38, K5 := Ay-1AyA,, 3. Next, we set

p(t) :== max{|ui(s) — ua(s)|: s € [0,t]}, t€]o,p].

Then t
ot) < KBy — Byl +K5/ p(r)dr, te s 4.
1)

The Gronwall Lemma yields that

p(t) S K4’B1 — BQ|€K5’B, t e [5, ﬁ]
g — usl|c5,8 < K| By — Ba|

99



with Kg := K,e%5%. By (5.65),

Wi (1) — ua(t)] = [0 (21 (1)) — 67 (@2(t))] < Agor]aa(t) — @a(t)]
S A¢—1AmK3‘Bl — Bg’ + A¢>—1AfAm6HU1 — u2||c[575] S K7‘Bl — Bg’,

where K7 := A1 A, K3 + Ay-1Ap Ay, K. Hence,

|u)y — uh|lop,s < Kq|Br — By,
|ur — usl|cris 5 < K| By — Byl

with Kgo := K¢ + K. Finally, there exists K := Kg; + Kgo such that
[ur = usllcrpo,p < K|Bi — Bal.
This completes the proof. O

Remark 5.25. The approach developed in the proof of Theorem 5.24 cannot be
used for By = L, because then the positive constant K in (5.60) which is crucial
in the proof, does not exist.

Theorem 5.26 (Continuous dependence on initial values IV). Assume
that (5.3)-(5.7), (5.11), (5.12), (5.51) and

lim sup (x (gb_l)l (x)) <00, ¢ is nondecreasing on (0,00) (5.66)

z—0t

hold. Let By, By satisfy
B; € (L0+2€,—2€), |B1_B2| <e€

for some e > 0. Let u; be a solution of problem (5.8), (5.2) with ug = B;, i = 1, 2.
Then, for each B > 0, where

w, >0 on (0,8], i=1,2,
there exists K € (0,00) such that

HU1 — u2|]01[075] S K‘Bl — BQ|

Proof. We proceed similarly as in the proof of Theorem 5.24. In Step 1, we
replace f(¢(x)) by |f(¢(x))] in (5.60), and condition (5.61) by

0<z (qb_l)/(x) < K,, z€(0,1].

Then we derive the inequalities

~fe(u)®) = |fow)®)| = K1, tel0,d, i=12,
Ay(s) = — 051;(—3f(¢(ui(7)))d7 > K, /Os%d Cse[0,0).
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Since (¢!)" is nonincreasing on (0, 00), we obtain for fixed s € (0, J]

071 (Aw(s) = 7! (Aa(s))] < (671 (K1 /OS%dT) [A1(s) — Az(s)|

0 0

p(s) K p(s)

and follow Step 1 in the proof of Theorem 5.24. In Step 2, having u}(t) > 0 for
t€(0,8],i=1,2, we denote

vi = min{u(t): t € [0, 0]} >0, mg:=min{vy,1n}, M :=max{é L}.
By (5.3) there exists positive Lipschitz constants A,,, Agy-1 such that

|p(11) — p(22)| < App|y — 22|, @1, 22 € [Lo, M],
|07 (1) — 07 (w2)| < Agrln — 12l w12 € [D(mo), 9(0)] .

We derive (5.65) and since my < wj(t) < & we get z;(t) € [p(mo),p(¢)] for
t € [0,0], i =1,2. Further, we argue as in the proof of Theorem 5.24. O
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6 Damped and homoclinic solu-
tions of the problem with ¢-La-
placian

6.1 Existence and uniqueness of damped solutions

The existence of damped solutions of the original problem (5.1), (5.2) is proved in
Theorem 6.1. Moreover, this theorem yields the uniqueness of damped solutions
provided that ¢! is Lipschitz continuous, while Theorem 6.4 gives the uniqueness
of damped solutions without the Lipschitz continuity of ¢~!. Note that the
results which concern damped solutions can be formulated directly for the original
problem (5.1), (5.2) due to Remark 5.17.

Theorem 6.1 (Existence and uniqueness of damped solutions of problem
(5.1), (5.2)). Assume that (5.3)~(5.7), (5.11) and (5.12) hold. Then, for each
Ug € [B, L), problem (5.1), (5.2) has a solution. Every solution of problem (5.1),
(5.2) with ug € [B, L) is damped.

If moreover (5.51) and (5.52) hold, then the solution is unique.

Proof. By Theorem 5.19, for each ug € [B,L) there exists a solution u of
problem (5.8), (5.2). Lemma 5.16 gives that solution u is a damped. If conditions
(5.51) and (5.52) are satisfied, then, according to Theorem 5.21, the solution u
is unique. By virtue of Remark 5.17, u is solution of problem (5.1), (5.2). O

Example 6.2. Let us consider the functions p, f and ¢ from Example 5.20,
where 0 < L < —Ly. According to Example 5.20, conditions (5.3)—(5.7) are
valid. Example 5.9 shows that (5.12) holds. Since these functions ¢ are odd and
increasing on R and 0 < L < —Lg, we get, similarly as in Example 2.18, that
F(L) < F(Ly). Hence, there exists B € (Lg,0) such that F(B) = F(L), which
gives (5.11).
By Theorem 6.1, if
0< L < —Ly,

then problem (5.1), (5.2) with p, f and ¢ from Example 5.20 has for each ug €
[B , L) a solution u and u is damped. If ¢ is given by one of the formulas (5.48)—
(5.50) and v > 1 in the formula for f, we see that also (5.51) and (5.52) hold and
the solution u is unique.
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Remark 6.3. By Theorem 6.1, we can get homoclinic solutions only if ug €
(Lo, B).
If =1 ¢ Lipjoc(R), we derive the results about uniqueness by means of Theo-

rems 5.24 and 5.26.

Theorem 6.4 (Uniqueness of damped solutions). Assume that (5.3)—(5.7),
(5.11), (5.12), (5.51), (5.57) and (5.66) are fulfilled. Let u be a damped solution
of problem (5.1), (5.2) with ug € (Lo, L). Then u is a unique solution of this
problem.

Proof. Assume that u is a damped solution of the auxiliary problem (5.8), (5.2)
and that there exists another solution v of problem (5.8), (5.2). Definition 5.3
yields

u(t) < L, t € [0,00). (6.1)

By Lemma 5.16, we have
Lo <u(t), Loy<wv(t), tel0,00). (6.2)
Step 1. Let ug € (Lo, 0).

(i) According to Lemma 5.5, there exists § > 0 such that «/(t) > 0, v/(t) > 0
for t € (0, 8]. Put
a:=sup{f > 0:u'(t) >0, v'(t) >0, t € (0,5]},
p(t) == u(t) —v(t),  tel0,00).

Since ' > 0, v > 0 on (0,a) and By := ug = v(0) =: By, Theorem 5.26

yields
p(t) =0, t €10,a). (6.3)
If @ = oo, then
u(t) = v(t), t €0, 00). (6.4)
Consequently, by (6.1) and (6.2), u is a unique solution of problem (5.8),

(5.2).
Let a < oo. Since u, v € C'[0, 00), we get, by (6.3),

)

Lim p(t) = p(a) = u(a) —v(a) =0
—a N (6.5)

Jim p(t) = p'(a) = u'(a) = v'(a)
Therefore, u'(a) = v'(a).

(ii) According to the definition of number a, we have u'(a) = v'(a) = 0. By
(6.1) and Lemma 5.11 or Lemma 5.15, u(a) = v(a) € (0, L). Due to Lemma
5.6, there exists v > a such that u/(t) < 0, v'(t) <0 for t € (a,7]. Put

b:=sup{y >a:u(t) <0, V'(t) <0, t e (a,7]}
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Since v’ < 0, v < 0 on (a,b) and u(a) = v(a) € (0, L), by Theorem 5.24
(working with a, v, u(a) and v(a) instead of 0, 5, By and By, respectively),
we get

p(t) =0, t €la,b). (6.6)

If b = oo, then (6.4) holds and, according to (6.1), (6.2), u is a unique
solution of problem (5.8), (5.2).
Let b < oo. Since u,v € C'(0,0), (6.6) yields

lim p(t) = p(b) = u(b) —v(b) =0, lim p'(t) = p'(b) = ' (b) — v'(b) = 0.
t—b— t—b—

Hence, v/(b) = ¢'(b) and, due to the definition of b, u/(b) = v'(b) = 0.
Lemma 5.12 implies u(b) = v(b) € (B,0). Repeating the arguments in
parts (i) and (ii), we get that u is a unique solution of problem (5.8), (5.2).
According to Remark 5.17, u is solution of problem (5.1), (5.2).

Step 2. Let ugp = 0. Due to Remark 5.4, u(t) = 0 is a unique solution of
problem (5.1), (5.2).

Let ug € (0, L). We have the same situation as in part (ii) of Step 1, where a
is replaced by 0 and so, we argue similarly. 0

6.2 Uniqueness and properties of regular homo-
clinic solutions
In this section, we discuss homoclinic solutions and hence, by Remark 6.3, we

take ug € (Lo, B). Note that the results concerning homoclinic solutions can be
formulated directly for the original problem (5.1), (5.2) due to Remark 5.17.

Theorem 6.5 (Nonexistence of singular homoclinic solutions). Assume
that (5.3)~(5.7), (5.51) and (5.52) hold. Then each homoclinic solution of problem

(5.1), (5.2) with ug € (Lo, B) is regular.

Proof. Let u be a singular homoclinic solution of problem (5.8), (5.2) with
Uy € (Lo, B) . Then, by Definition 5.3, there exists ty > 0 such that

ult)) =L, u(ty) =0 (6.7)

and
u(t) < L, t €10,t0). (6.8)

[
Using the substitution s = ty — ¢, q(s) = p(t), v(s) = u(t) for t € [%, o], we
transform the terminal value problem (5.8), (6.7) on [£ ] to the IVP

(q()$(=())) + () F(6(u(s))) = O, se[o,“], w(0) =L, v/(0)=0.



By the proof of Theorem 5.21, the only possible function satisfying this problem is
the constant function v(s) = L for s € [0, 2]. Therefore, u(t) = L for t € [2 ],
which contradicts (6.8). Hence, using Remark 5.17, if u is homoclinic solution of
problem (5.1), (5.2) with ug € (Lo, B), then u is regular. O

Theorem 6.5 discusses the case, where ¢! € Lipjo(R). Now, we study the
case, where condition (5.52) falls, that is ¢! ¢ Lipjo.(R). Then both regular and
singular homoclinic solutions may exist and, according to Remark 5.25, we are
able to prove the uniqueness just for regular ones.

Lemma 6.6 (Regular homoclinic solution is increasing). Assume that
(5.3)(5.7), (5.11), (5.12) hold. Let u be a regular homoclinic solution of problem
(5.1), (5.2) with ug € (Lo, B). Then

lim u(t) = L, u'(t) >0, t € (0,00). (6.9)

t—o00

Moreover,
lim /() = 0. (6.10)

t—o00

Proof. Let u be a regular homoclinic solution of problem (5.8), (5.2) with

ug € (Lo, B). Thus, by Definition 5.3, ug,, = L.

Step 1. By Lemma 5.5, there exists 6, > 0 such that u(fy) = 0, u(t) <0
for t € (0,6y) and «/(t) > 0 for t € (0,6p]. Assume on contrary with (6.9) that
a; > 6 is the first zero of «’. Since u is regular homoclinic solution, u(a;) € (0, L).
If w> 0 on [ay,00), then, by Lemma 5.6, u is decreasing, which contradicts
Usyp = L. Therefore, there exists #; > a; such that u(6,) = 0, v/(t) < 0 for
t € (a1, 6,]. Hence, we have

u(ay) € (0,L), '(ay) =0, o'(t)>0,te(0,a). (6.11)
By Lemma 5.12, there exists b; > 6; such that
U(b1> - (B,O), U,(b1> = 0, Ul(t) < O, t e [91,[)1).

Since, ugy, = L, there exists 6, > by such that u(f2) = 0, v/(t) > 0 for ¢t € (by, ).
By Lemma 5.11, there exists as > 65 such that

u(az) € (0,L), u'(ay) =0, '(t) >0, te (b,as).

Repeating this procedure, we obtain a sequence of zeros {6,}>°, of u and a
sequence of local maxima {u(a,)}?®, of u. Now, we prove that the sequence
{u(ay,)}22, is nonincreasing. Choose n € N. Equation (5.8) yields

p(O)¢' (/ (t))u" () + p' (1) (1)) + p(t) f(9(u(1))) = 0.
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Multiplying this equation by u'/p and integrating from a,, to a,.1, we obtain

/(1)

[ s oo [T
[ oo @ =

o(u'(t))u'(t) dt

Using the substitution s = «/(¢) in the first integral, we get

u’(ant1)

/+ ¢ (u' ()" (t)u' (t) dt = / ¢ (s)sds = /0 ' ¢'(s)sds = 0.

w'(an)
The second integral is nonnegative due to (5.7) and (5.13). Therefore, after the
substitution y = u(t), we obtain

u(@ny1) _ -

An+1 - -
0 2/ f(o(u(®)))u' () dt = /( ) f(@(y) dy = F(u(ans1)) — F(u(an)).
Since F' is increasing on [0, L] (cf. Remark 5.8), we get u(a,) > t(any1). Since n
is chosen arbitrarily, the sequence {u(ay)}°, is nonincreasing. Thus, ug, < L,
which cannot be fulfilled, because u is a homoclinic solution. This contradiction
yields that
u'(t) >0, te(0,00).

Since gy, = L, then lim; o u(t) = L.

Step 2. Since u > 0 on (6, 00), we have f(¢(u)) > 0 on (6y, 00). From (5.8),
we obtain that

0> (p(t)o(u' () = p/()o(u'(£)) +p(t) (6(u' (1)), t € (o, 00).

Since p, p/, v’ and ¢(u') are positive on (0, 00), we get that ¢(u') is decreasing on
(6y,0). On the other hand, ¢ is increasing on R. Therefore, v is decreasing on
(0, 00). Since v’ > 0 on (0, 00), there exists a limit

lim u/(t) =: K > 0.

t—o00

Assume that K > 0. Then
¢
K(t—6y) < / u'(s)ds = u(t) —u(fy) = u(t), t € (hy,0).
0o

Letting ¢ — oo, we have

L = lim u(t) > tlim K(t —6) = oo,
—00

t—o00

a contradiction. Therefore, (6.10) holds. Remark 5.17 yields that u is solution of
problem (5.1), (5.2). O
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We are ready to prove the uniqueness result for regular homoclinic solutions
in the case, where ¢! does not have to be Lipschitz continuous.

Theorem 6.7 (Uniqueness of regular homoclinic solutions). Assume that
(5.3)=(5.7), (5.11), (5.12), (5.51) and (5.66) are satisfied. Let u be a regular
homoclinic solution of problem (5.1), (5.2) with ug € (LO, B). Then u is a unique
solution of this problem.

Proof. Let u be a regular homoclinic solution of problem (5.8), (5.2). According
to Lemma 6.6, «' > 0 on (0, 00). Consider that v is another solution of problem
(5.8), (5.2). Assume that there exists ¢y € (0, 00) such that v'(ts) = 0. By Lemma
5.5, there exists @ > 0 such that v(0) = 0, v'(t) > 0 for t € (0,0]. Therefore,
to > 0 and there exists a € (0, ty] such that v'(a) =0, v'(t) > 0 for t € (0,a). Put

p(t) :==u(t) —v(t), te€]|0,00).

Since v/ > 0 and v" > 0 on (0,a), Using Theorem 5.26 with uy = B; = By, we

obtain
p(t)=0, p'(t)=0,te€][0,a). (6.12)

Since u,v € C[0,00), we get that (6.5) holds. Thus, u/(a) = v'(a). According
to the definition of number a, we have v/(a) = v'(a) = 0, which contradicts the
inequality " > 0 on (0,00). Therefore, a = oo and, by (6.12), u is a unique
solution of problem (5.8), (5.2). Due to Remark 5.17, u is solution of problem
(5.1), (5.2). O

6.3 Examples

Here we show examples, where the functions ¢, p, and f satisfy assumptions
of Theorems 5.19, 6.4 and 6.7.
Example 6.8. Let us consider the IVP

(70w’ (£)))" + °k|(u(t))[" sgn u(t) ($(u(t)) — #(Lo))(&(L) — d(u(t))) = 0,

w(0) =wug, u'(0)=0, wugé€ [Lg,L] (6.13)

where
o(z) = |z|*sgnz, x€R.
We have equation (5.1) with
p(t)=t°, t€[0,00),
f(x) = klz["sgna(r — ¢(Lo))(6(L) — ), = € [¢(Lo), o(L)].

Assume that 0 < L < —Lg, a > 1, § > 0, v > 1 and £ > 0. According to
Example 5.23, conditions (5.3)—(5.7) and (5.51) are fulfilled. Example 5.9 shows
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that (5.12) holds. Since ¢ is odd and increasing on R and 0 < L < —Lg, we
obtain, similarly as in Example 2.18, that F'(L) < F(Lg). Hence, there exists
B € (L, 0) such that F' (B) = F(L), which yields (5.11). Furthermore,

o7 (@) = [alsgne, (671) (@) = o,

1
li N () = lim —zlzla—! =
Hiljélpx(czﬁ ) (@) = lim —zla]

¢(x) =alz|*!,  ¢'(x) =

ala — 1)zt {S 0 forz <0,

T >0 forxz>0.

Hence, ¢’ is nonincreasing on (—oo, 0), nondecreasing on (0, c0) and so, conditions
(5.57) and (5.66) hold.
To sum up, if

O<L<—-Ly,a>1, >0, vy>1 and k>0,

then we have satisfied all assumptions of Theorems 5.19, 6.4 and 6.7. Hence, the
auxiliary problem (6.13) with f = f has for each ug € [Lo, L] a solution u. If
up > Lo and u < L on [0,00), then u is a solution of the original problem (6.13)
and it is a unique solution of this problem.

Example 6.9. Now, we consider the IVP

(arctant <u’4 (t) + 2u” (t)) sgn u’(t))l +arctant f ((u'(t) + 2u*(t)) sgnu(t)) =0,
u(O) = U, U/(O) = 0, Uy € [Lo, L],
where

_Jr(l—2)(x+2) forz <0,
flo) = {%x(l —z)(z+3) forz>0.

We have equation (5.1) with

o(x) = (:v4 + 2x2) sgnzr, x€R,
p(t) = arctant, t € [0,00).

The function p is continuously differentiable and increasing on [0, 00) and
p(0) = 0, which yields (5.7). In addition,

/ t L
limsupp( ) = lim — &2 =
tsoo  p(t)  t—oo arctant

that is (5.12) holds.
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Here ¢(Lo) = —L3 — 2L = -2, ¢(L) = L* + 2L* = 1, which together with
Ly < 0 < L yields

Lo=—-\V3—1~-086, L=1v2—-1~0.64.

The function f is Lipschitz continuous on [¢(Lg), #(L)], f(P(Lg)) = f(0) =
f(o(L)) =0and zf(x) >0 for x € ((¢(Lo), (L)) \ {0}), that is conditions (5.5),
(5.6) and (5.51) are valid. Moreover,

—v/V3-1
F(Ly) = / (—s' —25%) (14 s* +25%) (—s* — 25 +2) ds =~ 2.56,

- VVElg
F(L) = / - (s*+25%) (1 —s'—25%) (s* +25° + 3) ds ~ 0.20.
0

Since F(L) < F(Lg), then there exists B € (Lg,0) such that F (B) = F(L),
which yields (5.11).
Example 5.20 shows that we have satisfied conditions (5.3) and (5.4). Further,

¢ (x) =\ V]zl+1 -1,

sgn
2,/ |z|+1 sgn x
2,/ |xy+1—1 A le+ 1 =1 /|a[ +1
limsup x (gb (z) = lim ‘ =0€eR,

2]
20 S 1= 1 /[ + 1

<0 forz<0
(z) =4(2° + , "(z) =4 (32* +1 ’
¢ () (x a:) sgn x ¢"(x) ( T )sgn:p 20 fors>0.

Therefore, ¢’ is decreasing on (—o0,0) and increasing on (0, 00) and thus, (5.57)
and (5.66) hold.

To summarize, all assumptions of Theorems 5.19, 6.4 and 6.7 are fulfilled.

Example 6.10. We consider the IVP

(tanht o/ (t)|*sgnu/(t))" + tanht f (Ju(t)|*sgnu(t)) = 0,

6.14
U(O) = U, UI(O) = O, Uo - [Lo, L], ( )
where
—(z+2*+2) forz < -2,
flz) =< |z sgnz for x € (—2,1),
2—x for x > 1.
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Here

¢(r) = |z|*sgnz, =z €R,
ot — ot

t) =tanht = ———
p() an et+e_t7

te[0,00).
Assume that a > 1 and A > 1. The function p is continuously differentiable and
increasing on [0,00) and p(0) = 0, that is (5.7) holds. Furthermore,

/ t —1
lim supp( ) = Jim <osh’t —
tso0o  P(t)  t—ootanht

yields (5.12).

Here ¢(Lg) = —2 — 2* < —4, ¢(L) = 2. The function f is Lipschitz con-
tinuous on [¢(Lo), p(L)], f(o(Ly)) = f(0) = f(¢(L)) = 0 and zf(x) > 0 for
z € ((¢(Lo), (L)) \ {0}) and so, conditions (5.5), (5.6) and (5.51) hold. Since
¢ is odd and increasing on R and 0 < ¢(L) < —¢(Ly), we get 0 < L < —L
and, similarly as in Example 2.18, F(L) < F(Ly). Thus, there exists B € (L, 0)
fulfilling (5.11).

According to Example 6.8, the function ¢ satisfies (5.3), (5.4), (5.57) and
(5.66).

To sum up, if

a>1 and \>1,

then Theorems 5.19, 6.4 and 6.7 are applicable on problem (6.14).
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7 Escape and unbounded solutions
of the problem with ¢-Laplacian

7.1 Statement of the problem
We study the same IVP with ¢-Laplacian as before, that is

(p)o(u' (1)) + p(t) f(d(u(t))) = 0, (7.1)
uw(0) =wup, u'(0)=0, wg€ [Lo,L] (7.2)

Now, we assume the following basic assumptions:

¢ € C'R), ¢(x )>0forx€(R\{O}) (7.3)

oR) =R, ¢(0)= (7.4)

Ly <0<L, f(¢(Lo))=f(0)= ((L>> (7.5)

f€Clo(Lo).00),  af( >> for z € ((6(Lo). 6(L >)\{0}> 76)
f(z) < for x > ¢(L), ‘

p € C[0,00) N C*(0, 00), p( ) >0 for t € (0,00), p(0)=0. (7.7)

We see that the only difference between these basic assumptions and those in
Section 5.1 is in condition (7.6), where we consider f also on (¢(L),00). This is
essential for the investigation of escape solutions, that is solutions whose supre-
mum is greater than L (cf. Lemma 7.4). Since these basic assumptions contain
basic assumptions from Section 5.1, all results in Chapters 5 and 6 are valid also
for this chapter. A model example shows Example 5.1 again.

Definition 7.1. Let [0,b) C [0,00) be a maximal interval such that a function
u e C'[0,b) with ¢(u') € C* (0,b) satisfies equation (7.1) for every ¢ € (0,b) and
let u satisfy the initial conditions (7.2). Then w is called a solution of problem
(7.1), (7.2) on [0,b). If u is solution of problem (7.1), (7.2) on [0,00), then w is
called a solution of problem (7.1), (7.2).

Assumption (7.5) yields that the constant functions u(t) = Ly, u(t) = 0 and
u(t) = L are solutions of problem (7.1), (7.2) on [0, co) with uy = Ly, up = 0 and
ug = L, respectively.

Definition 7.2. Consider a solution of problem (7.1), (7.2) with ug € [Lo, L)
and denote

Usup = sup{u(t): t € [0,00)}.
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If usyp < L, then u is called a damped solution of problem (7.1), (7.2).
If Ugyp = L, then u is called a homoclinic solution of problem (7.1), (7.2).

Definition 7.3. Let u be a solution of problem (7.1), (7.2) on [0,b), where
b € (0,00]. If there exists ¢ € (0,b) such that

u(c) =1L, u'(c) >0, (7.8)
then u is called an escape solution of problem (7.1), (7.2) on [0,b).

D

Figure 7.1: Types of escape solutions of problem (7.1), (7.2)

Lo

The goal of this chapter is to find conditions which guarantee the existence
of escape solutions of problem (7.1), (7.2), which are unbounded. The analysis
of problem (7.1), (7.2) with a general ¢-Laplacian includes also ¢(x) = |z|*sgn
for @ > 1. Let us emphasis that in this case, ¢ () = |z|= sgnz is not locally
Lipschitz continuous. Since ¢! is present in the operator form of (7.1), (7.2)

)=+ [ o (- [ @ ar) as, e

p(s)
the standard technique based on the Lipschitz property is not applicable here

and an another approach needs to be developed. Therefore, we distinguish two
cases:

e In the first case, where the functions ¢~! and f are Lipschitz continuous,
the uniqueness of solution of problem (7.1), (7.2) is guaranteed. This con-
siderably helps to derive conditions when a sequence of solutions contains
an escape solution.

e In the second case, functions ¢! and f do not have to be Lipschitz con-
tinuous. The lack of uniqueness causes difficulties and therefore is more
challenging. The problems are overcome by means of the lower and upper
function method. Also here sufficient conditions for the existence of escape
solutions are derived.
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Since in general an escape solution need not be unbounded, criteria for an escape
solution to tend to infinity are derived. In this manner, we obtain new existence
results for unbounded solution of problem (7.1), (7.2).

In order to derive the main existence results about unbounded solutions of
problem (7.1), (7.2), we first introduce the auxiliary equation with a bounded
nonlinearity

(p(t)p(u' (1)) + p(t) f(D(u(t))) = 0, (7.9)
where
2o ) f(x) forz e [p(Lo), ¢(L)],
f2) = {o for # < &(Lo), > &(L). (7.10)

Since ]E is bounded on R, the maximal interval [0,b) for each solution of
problem (7.9), (7.2) is [0, 00).

7.2 Properties of solutions

In this section, we provide auxiliary lemmas, which are used in Section 7.3 for
proofs of the existence and uniqueness of escape solutions of the auxiliary problem
(7.9), (7.2). Note that all soutions of problem (7.9), (7.2) with uy € [B, L) are
damped solutions, see Lemma 5.16. Therefore, we consider only ug € [Lg, B) for
investigation of escape solutions of problem (7.9), (7.2). Such solutions can be

equivalently characterized as follows.

Lemma 7.4. Assume that (7.3)—(7.7) and

: p'(t)
lim su < 00 7.11
t—>oop p(t) ( )

hold and let u be a solution of problem (7.9), (7.2). Then u is an escape solution
iof and only of
Usup = sup{u(t): t € [0,00)} > L. (7.12)

Proof. Let u fulfil (7.12). According to Definition 7.2, u is not a damped
solution and hence, due to Lemma 5.16, u(0) < B < 0. Consequently, there
exists a maximal ¢ > 0 such that u(¢) < L for t € [0,¢) and

We exclude the case u/(c¢) = 0. Lemma 5.7 yields that if u/(c) = 0 then either u
has a zero point u(f) = 0, u(t) < L, t € [¢,0] or u is positive and nonincreasing
on [c,00). The later case is in contradiction with (7.12). Therefore, such zero
point # > ¢ has to exist. We use Lemma 5.12 and repeating the arguments as in
Step 1 in the proof of Lemma 6.6, we get that u has a nonincreasing sequence
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{u(an)}ee, of its local maxima. Hence, ug,, = u(c) = L, contrary to (7.12).
Therefore, u fulfils (7.8). On the other hand, if u is an escape solution of problem
(7.9), (7.2), then (7.12) follows immediately from Definition 7.3. O

Lemma 7.5 (Escape solution is increasing). Assume that (7.3)—(7.7), (7.11)
and

B € (Ly,0): F'(B) = F(L), where F(z) := /Om f(é(s))ds, zeR (7.13)

hold. Let u be an escape solution of problem (7.9), (7.2) with ug € (Lo, B). Then

W(t) >0, te(0,00).

Proof. Let u be an escape solution of problem (7.9), (7.2) with ug € (Lo, B).
Thus, by Lemma 7.4, ug,, > L. Then there exists ¢ € (0, 00) such that u(c) = L,
u'(c) > 0and u(t) < L for t € [0,¢).

We can exclude the case u/(¢c) = 0 as in the proof of Lemma 7.4. Hence,
u'(c) > 0. Let ¢ > ¢ be such that u/(¢;) = 0 and u(t) > L, u/(t) > 0 for
t € (¢,c1). Integrating (7.9) over [c, ¢;], dividing by p(c;) and using (7.3), (7.4),
(7.7) and (7.10), we get

p(e)¢(u'(c))

> 0,
P(Cl)

¢(u'(c1)) =

contrary to u/(c¢;) = 0. We have proved «'(¢) > 0 for ¢t > ¢. Since ug € (Lo, 0),

Lemma 5.5 yields that there exists 6y > 0 such that u(6y) = 0, u(t) < 0 for
t € (0,6), u'(t) >0 for t € (0, 6.

It remains to prove that «/(t) > 0 for t € (6p, c). Assume on the contrary that

there exists a; € (6, ¢) such that (6.11) holds. We derive a contradiction as in

Step 1 in the proof of Lemma 6.6. To summarize, u/(t) > 0 for ¢ > 0. O

The proofs of the existence of escape solutions are based on Lemmas 7.6 and
7.9. These lemmas are denoted here as basic lemmas (cf. Lemma 4.5) because
they are essential for the proof of existence of escape solutions.

Lemma 7.6 (Basic lemma 1). Let (7.3)«(7.7), (7.13) and

lim P(t)
t—oo p(t)

-0 (7.14)

hold. Choose C' € (Lg, B) and a sequence {B,}>2; C (Lo,C). Let for each
n € N, u, be a solution of problem (7.9), (7.2) with ug = B, and let (0,b,) be
the mazimal interval such that

un(t) < L, u,(t) >0, te(0,b). (7.15)
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Finally, let v, € (0,b,) be such that
un(vm) =C, VneN. (7.16)

If the sequence {7v,}5°, is unbounded, then the sequence {u,}, contains an
escape solution of problem (7.9), (7.2).

Proof. Since the sequence {v,}52, is unbounded, there exists a subsequence
going to oo as n — oo. For simplicity, let us denote it by {7, }52,. Then we have

lim v, =00, 7,<b,, néeN.

n—oo

Assume on the contrary that for any n € N, w, is not an escape solution of
problem (7.9), (7.2). By Lemma 7.4,

sup{uy,(t): t € [0,00)} <L, neN. (7.17)

Step 1. Choose fixed n € N and consider a solution u, of problem (7.9),
(7.2) with ug = B,,.

First, assume that u, < 0 on [0,00). Then, by Lemma 5.5, we get u/, > 0 on

(0,00) and for b, = co we obtain (7.15). In addition, Lemma 5.13 yields

lim u,(t) =0, lim u, (¢)=0.

t—o00 t—o00
If we put
. . . ! . !
tlggo un(t) =: un(bn), tliglo Uy (t) =2 1y, (b),
we have

un(by,) =0, u, (b,) = 0. (7.18)

Now, we assume that 6 > 0 is the first zero of u,,. By Lemma 5.5, u/, > 0 on
(0, 6].

(i) Let u!, > 0 on (0, 00). Then, according to (7.17), 0 < u,, < L on (#, 00) and
(7.15) is valid for b, = co. We prove that

. . . ’ _
tliglo un(t) =L, tllglo u,,(t) = 0.
Since u,, is increasing on (0, c0), then according to (7.17), 0 < u, < L on
(0,00). We denote
lim u,(t) =: ¢ € (0, L].

t—o00

Since u,, is a solution of equation (7.9), then

PO ot (0) + Fo(un(t))) =0, 1€ (0,00). (7.19)
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If we restrict the previous equation to the interval (6, 00) then, by (7.3)—
(7.7), we have

P bt (1) >0, F(o(un(t) >0, G0 (6) >0, ¢ € (6,00)

and we deduce that u!/(t) < 0, t € (0,00). Consequently, u/, is decreasing
on (#,00) and so, there has to exist lim; o ul,(t) > 0. If lim; o ul, (t) > 0,
then lim; ., u,(t) = 0o, a contradiction. Therefore,

lim u, (t) = 0.

t—o0

Assume that ¢ € (0,L). Letting t — oo in (7.19), we get, by (7.4) and
(7.14),

#(0) - im (1) = ~ F(6(0)).
Since f(4(¢)) € (0,00), we get

lim w) (t) < 0,

t—o00

contrary to lim;_,, u,(t) = 0. Consequently, ¢ = L and so,

un(by) =L, ul(b,) =0. (7.20)

Let a > 6 be the first zero of u),. According to (7.17), we have u,(a) < L.
For b, = a, we get (7.15) and

un(bn) € (0, L], ul,(b,) = 0. (7.21)

To summarize (7.18), (7.20) and (7.21), we see that u, fulfils

Uun(by) € [0, L], !, (by) = 0. (7.22)

n

Step 2. Let n be fixed. We define

and

Eo(t) == /0 2 () de + F(un(t))), t € (0,by)

p'(t)
p(t)

K, = sup{ it e [%,bn)}.

Due to (7.14), lim,,_,~ K, = 0. In addition,

375, € [V, bn): w,(7,,) = max{u, (t): t € [v,,b,)} (7.23)
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Then, by (7.19), we obtain

EE) 1) 0/l 01 w0) + F0Ln0)) (1)
_ PO g )y
— L L) () <0, tE (0.
Integrating the above equality over (v,,b,) and using (7.15), (7.23), we get
Eu) ~ Baltn) = [ Pt o0t < ot [ L 0

< Gl (7)) K, / "l (1) dt < Gl (7)) Kn(L — ©).

Hence,
En(n) < En(ba) + ¢(uy (7)) Kn(L — O). (7.24)

Moreover, from (7.22), we have
En(yn) > F(un(ym)) = F(C),  En(bn) = F(un(bn)) < F(L).

Therefore, using (7.24), we obtain

F(C) < Bu(1n) < F(L) + ¢(u;,(7,) En(L — O), (7.25)
which gives o "
F(C)—F(L) 1 o
— 1 ¢ & <o) (7.26)

Step 3. We consider a sequence {u,}> ;. Since lim,,_,,, K, = 0, we derive,
from (7.26),

lim_(u;, (7)) = oo. (7.27)
Using (7.4), we get
Tim u,(7,) = lm 67 (6(u,(7,) = . (7.2

Since F > 0 on R and E,, is decreasing on (0,b,), we obtain, by (7.25),

up, (V) 5
/0 18 (2) dx < Bo(7,) < Eal) < F(L) + ¢(y(7,))Kn(L — C), neN

and so,

up, (V) .
lim (/0 z¢/(z) do — o(u,(7,)) Kn(L — C’)) < F(L) < o0. (7.29)

n—oo
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According to (7.28), there exists ny € N such that u/(7,) > 1 for n > no.
Therefore, we derive for all natural n > nq that

up, (V) ul, (V) ul, (V)
/ (z) de > / ' (z) dz > / &) de = S, (7)) — d(1)
0 1 1

and, by (7.27) and lim,,_,, K,, = 0,

U ()
i ( | e e = o, )

> T 6(u,(7,)) (1 = KoL = C)) = 6(1) =

contrary to (7.29). Consequently, the sequence {u,}°, contains an escape solu-
tion of problem (7.9), (7.2). O

If ~! and f are not Lipschitz continuous, then problem (7.9), (7.2) with
ug € [Lo, L] \ {0} can have more solutions. These solutions may belong among
escape solutions. In particular, more solutions can start at Ly, not only the
constant solution u(t) = L. Therefore, we need to extend the assertion of Lemma
7.6 which deal with values greater than Lg into ug = L. For this purpose, the
next two lemmas are helpful.

Lemma 7.7. Let (7.3)~(7.7) hold and let u be a solution of problem (7.9), (7.2)
such that

Uy = Lo, U(t) 7_é Lo, U(t) > Lo, t e [0, OO) (730)
Then there exists a > 0 such that
u(t) = Lo, t€]0,d] (7.31)

and
u'(t) >0, te(a,b],

where 0 is the first zero of u on (a,00). If such 0 does not exist, then u'(t) > 0
fort € (a,00).
Let 6 € (a,00) and let there exist a; > 6 such that

w(a1) =0, 4'(t)>0,te (0 a). (7.32)
Then u(ay) € (0, L].
Proof. By (7.30), there exists 7 > 0 such that
Ly < u(r) <0. (7.33)

Define a := inf{7 > 0: (7.33) holds}. Then w fulfils (7.31) and u/(a) = 0. Let us
put 6 := sup{7 > a: (7.33) holds}. Then

p(t) f(@(u(t)) <0, € (a,0). (7.34)
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Integrating equation (7.9) from a to t € (a, ), we get, by (7.34),

p(t) ¢ (u'(t)) = —/ p(s) f(#(u(s))) ds >0, t€ (a,6).

Since p(t) > 0, necessarily «'(t) > 0 for ¢t € (a,0). If 6 = oo, then the proof is
finished. On the other hand, if § < oo, then 6 is the first zero of u on (a, c0) and
from

o ~
p(8) ¢ (u'(0)) = —/ p(s) f(d(uls))) ds >0,

we have u/(6) > 0.

Let 6 € (a,00) and (7.32) hold. Then u(a;) > 0. Assume that u(a;) > L.
Then there exists ag € (6, ay) such that u > L on (ag, a;]. Integrating equation
(7.9) over (ag,a;) and using (7.10), we obtain

plan)olu (@) — plano(u'(ar)) = [ p(s)F(@lu(s)) ds =0

and so, p(ag)p(u'(ap)) = 0. Consequently, u'(ag) = 0, contrary to u' > 0 on
(a,a). We have proved that u(a;) < L, which completes the proof. O

Lemma 7.8. Let (7.3)—(7.7) and (7.11) hold and let u be a solution of (7.9),
(7.2) satisfying (7.30). Assume that

u(t) <0, tel0,00).
Then
lim u(t) =0, lim «/(t) = 0.

t—o00 t—o00

Proof. The proof is the same as the proof of Lemma 5.13, but using Lemma 7.7
instead of Lemma 5.5. 0

Lemma 7.9 (Basic lemma 2). Let (7.3)~(7.7), (7.13) and (7.14) hold. Choose

C € (Lo, B). Let for each n € N, u,, be a solution of problem (7.9), (7.2) with

ug = Lo and let (an,b,) be the maximal interval such that

Lo <u,(t) <L, wu,(t)>0, t€ (an,by).

n

Finally, let v, € (an,b,) be such that
Uun(vm) =C, VneN.

If the sequence {v,}32, is unbounded, then the sequence {u,},>, contains an
escape solution of problem (7.9), (7.2) with uy = Lyg.

Proof. The proof is analogous to the proof of Lemma 7.6, but using in Step 1
Lemmas 7.7 and 7.8 instead of Lemmas 5.5 and 5.13, respectively. U
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7.3 Existence and uniqueness of escape solutions

This section is devoted to the existence of escape solutions of problem (7.9),
(7.2). First, we discuss the existence of escape solutions provided the Lipschitz
continuity of ¢! and f.

Theorem 7.10 (Existence of escape solutions of problem (7.9), (7.2) I).
Let (7.3)(7.7), (7.13), (7.14),

f € Lip[p(Lo), (L)], (7.35)
¢~" € Lip.(R) (7.36)

hold. Then there exist infinitely many escape solutions of problem (7.9), (7.2)
with different starting values in (Lo, B) converging to Ly.

Proof. Choose n € N, C € (Lo, B) and B, € (Lo,C). By Theorems 5.19 and
5.21, there exists a unique solution u, of problem (7.9), (7.2) with vy = B,,. By
Lemma 5.5, there exists a maximal a,, > 0 such that u/, > 0 on (0,a,). Since
un(0) < 0, there exists a maximal a, > 0 such that u, < L on [0,a,). If we
put b, := min{a,, a,}, then (7.15) holds. Further, either lim; ., u,(t) = 0 or u,
has a zero 6, € (0,b,) due to Lemmas 5.5 and 5.13. Consequently, there exists
T € (0,b,,) satisfying u,(v,) = C and so, (7.16) is fulfilled.

Consider a sequence {B,}22, C (Ly,C). Then we get the sequence {u,}>°
of solutions of problem (7.9), (7.2) with uy = B,, and the corresponding sequence
of {71, }2,. Assume that lim,,_,., B,, = Lo. Then, by Theorem 5.21, the sequence
{un}5°, converges locally uniformly on [0,00) to the constant function u = Ly.
Therefore, lim,,_, 7, = 00 and the sequence {v,}22, is unbounded. By Lemma
7.6 there exists ny € N such that w,, is an escape solution of problem (7.9), (7.2).
We have u,,(0) = By, > Lo. Now, consider the unbounded sequence {7, }52,, . -
According to Lemma 7.6, there exists ny € N, n; > ng + 1 such that u,, is an
escape solution of problem (7.9), (7.2) with w,, (0) = B,, > L. Repeating this
procedure, we obtain the sequence {u,, }7°, of escape solutions of problem (7.9),
(7.2). O

Now, we investigate the existence of escape solutions in the case, where ¢!
and f do not have to be Lipschitz continuous. In order to prove this existence
result, we consider the lower and upper functions method for an auxiliary mixed
problem on [0,7]. In particular, we use this method to find solutions of (7.9)
which satisfy

W'(0)=0, w(T)=C, Ce€lLylL] (7.37)
Definition 7.11. A function u € C'[0,T] with ¢(v') € C'(0,T] is a solution of
problem (7.9), (7.37) if u fulfils (7.9) for t € (0, 7] and satisfies (7.37).

Definition 7.12. A function oy € C[0,T] is a lower function of problem (7.9),
(7.37) if there exists a finite (possibly empty) set ¥; C (0,7) such that o, €
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C%((0,T])\ ;) and

(p(t) (a1 (1)) + (1) f(¢(er(t)) 20, € (0,T]\ 5y, (7.38)
—oo < oy (77) < oy(tT) < oo, TEZI, (7.39)
a(07) >0, oy(T) < C. (7.40)
Analogously,

Definition 7.13. A function oy € C[0,T] is an upper function of problem (7.9),
(7.37) if there exists a finite (possibly empty) set Yo C (0,7) such that oy €
C%((0,T] \ X2) and

(p(t) @(o3(t)))" +p(t) f(@(oa(t) <0, t€(0,T]\ Xs, (7.41)
—00 < ah(7T) < oh(77) < oo, TE D, (7.42)
ay(01) <0, 0o(T) > C. (7.43)

For the following results, we define a function ¢

o(t) := _/o p(s)ds, te(0,t], ©(0) = 0. (7.44)

The function ¢ is continuous on [0, 7] and fulfils

0<p(t)<t, te(0,T], lim o(t) = 0. (7.45)

t—0t

Theorem 7.14 (Lower and upper functions method). Let (7.3)—(7.7) hold
and let o1 and o9 be lower and upper functions of problem (7.9), (7.37) such that

Ul(t) SO‘g(t), t e [O,T]
Then problem (7.9), (7.37) has a solution u such that

O'l(t) < U(t) < O'Q(t), t e [O,T]

Proof. Step 1. For t € [0,7] and x € R, we define the following auxiliary
nonlinearity

Foo) + 282 o <o)
f*(t,l’> = Ji(¢<x>>7 0'1<t) <z < 02(t)’ (746>
Floloalt)) — 2220 > o).

Since f* is bounded, then there exists M* > 0 such that

|f*(t,2)] < M*, (t,z) €[0,T] x R. (7.47)
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Consider the auxiliary equation

(p(t) (' ()" + p(#) f*(t,u(t) =0, te (0,T]. (7.48)

We prove that problem (7.48), (7.37) has a solution. We follow the procedure
from the proof of Theorem 5.19. By integrating (7.48), we obtain the equivalent
form of problem (7.48), (7.37)

u(t):C—/tTgb_l (—2%8)/08]9(7‘) F4(r,u(r)) dr) ds, telo,T].

Now, consider the Banach space C'[0,7] with the maximum norm and define
an operator F: C'[0,T] — C[0,T],

(Fu)(t) :=C — /T ¢! (—L/sp(T) A, u(r)) dT) ds.
t p(s) Jo
Let us put A := max{|Log|, L} and consider the ball
B(0,R) ={uecC[0,T]: |lullcor <R}, where R:=A+T¢ " (M*T)
and M* is from (7.47). Since ¢ is increasing on R, then ¢! is also increasing on

R. Thus, due to (7.45), ¢=1 (M*p(t)) < ¢~ (M*T), t € [0,T], where ¢ is defined
in (7.44). The norm of Fu can be estimated as follows

c—/tT¢1 (-}% /Osp(T) £ u(r)) dT> ds

T T
< A+/ o™ (M*p(s))| ds < A+/ ¢t (M*T) ds
<A+T¢ ' (MT) =R,

H.Fu”c[o’ﬂ = max
t€[0,T]

which gives that F maps B (0, R) on itself.
Now, we prove that F is compact on B (0, R). Choose a sequence {u,} C
C'[0,T] such that lim, . ||un, — u[/cor) = 0. We have

Fu)t) - Fue = - | ' (o (=555 [ oy ar)

p(s)

+¢7! <—$/Osp(7)f*(7,u(7'))d7'>) ds.

Since f* is continuous on [0, 7] x R, we obtain

T () = £ ul) gy =0
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Let us put

Then, for a fixed n € N, we get

1%/0 p(7) (f* (1, u(r)) — f*(1,u,(7))d7)|, t€(0,T]

and, by virtue of (7.45) and (7.47), limy;_,o+ |An(t) — A(t)| = 0. Hence, 4, — A €
C10,T) and

[An = Allcory < [1F7Coun() = £ Cul)) e T, n €N,

This yields that lim, . ||A, — Al|com = 0. Using the continuity of ¢~! on R,
we have

A,(8) — A(t)] = \

lim |67 (An) — ¢_1(A)HC[O,T} =0.

n—o0

Thus,

[ 6 uten =07 a) as

< T lim [|67(4,) = 674(4)

lim || Fu, — Full g7 = hm

HC[O,T] =0,

that is the operator F is continuous.
Let us choose an arbitrary € > 0 and put ¢ := W Then, for t1,t, €

[0,7] and u € B(0, R), we get

|ty — taof < 0= [(Fu) (ta) — (Fu) (2)]

2(/ Dar) afz|[ o oo a

=¢  (M*T) |ty —to] < o' (M*T) 0 =e.

ngMT

Consequently, functions in F(B (0, R)) are equicontinuous, and, by the Arzela—
Ascoli theorem, the set F(B (0, R)) is relatively compact. Therefore, the operator
F is compact on B (0, R).

The Schauder fixed point theorem yields a fixed point u* of F in B (0, R).

Hence,
o | e (<0 [ o) a
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is a solution of problem (7.48), (7.37).
Step 2. We prove that any solution u of problem (7.48), (7.37) satisfies

o1(t) < u(t) < oot), te[0,T]

and therefore, u is a solution of problem (7.1), (7.37).
Put v(t) := u(t) — o2(t) for t € [0,7] and assume that

max{v(t): t € [0,T]} =: v(ty) > 0. (7.49)

By (7.42), v'(77) < V/(77) for each 7 € X5 and so, tg ¢ Xy. Moreover, 05(T) > C
and u(T) = C. Thus, v(T) <0, that is tg # T. Therefore, to € [0,T) \ Xs.

Let to = 0. Then (7.37) and (7.43) yield v/(0%) = «/(07) — 04(0%) =
—04(0%) > 0. Furthermore, v/(07) = 0, since v/(07) > 0 give a contradiction
with (7.49). If ¢ty € (0,7) \ Xo, (7.49) also implies that v'(tg) = 0.

Since tg € [0,T) \ o, there exists § > 0 such that (to,to + ) C (0,7) \ X
and v(t) > 0 for t € (to,to + 0). Due to (7.41), (7.46) and (7.48), we obtain

(p(t) 6(u'(1)))" = (p(t) 6(03(t)))" = p(t) (—f*(t, u(t) + (¢ (@(ﬂ)))

v(t)
v(t) +1 >0,

:p(t) t e (to,to—i—é).
Integrating the previous expression and using u/(tg) — o5(tg) = v'(to) = 0, we
obtain for t € (tg,ty + 6)

/ ((p(s) ¢(u'(5)))" = (p(s) $lo3(s)))) ds = p(t) (6(u'(2)) — b(05(2))) > 0.

to

Therefore, since ¢ is increasing, we have that u/(t) — o4(t) = v/'(t) > 0 for t €
(to, o + 9), contrary to (7.49). Consequently,

u(t) < oot), te€][0,T].

Analogously, it can be proved that

ult) > on(t), 1€ 0,T]
According to (7.46), f*(t,x) = f(¢(x)) for t € [0,T], x € R and hence, the
solution u of problem (7.48), (7.37) is a solution of problem (7.9), (7.37). O

The main result of this section is contained in Theorem 7.16. Its proof is based
on Lemmas 7.6 and 7.9, where a suitable sequence {u,} of solutions of problem
(7.9), (7.2) is used. In order to get such sequence with the starting values equal
to Lo (see part (ii) in the proof of Theorem 7.16), we need the next lemma.
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Lemma 7.15. Let (7.3)—(7.7), (7.13) and (7.14) hold. Choose C' € (Ly, B) and
assume that there ezists at least one solution u of problem (7.9), (7.2) satisfying

(7.30), that is

Uy = LOv U(t) 7_é LOa U’(t) Z L0> S [07 OO)
Then there exists v > 0 such that for each T > =, problem (7.9), (7.2) with
ug = Lo has a solution ur satisfying

U,T(T) = C, U,T(t) > Lo, te [07 OO) (750)

Proof. As a consequence of Lemmas 7.7 and 7.8 we know that either there exists
0 > 0 such that u(6) =0 or tlim u(t) = 0. Because of this, we can take
—00

v :=min{t € [0,00); u(t) =C} > 0. (7.51)

Now, fix T' > 7.
Step 1. We construct a lower function of problem (7.9), (7.37). We prove
that o1 (t) = L satisfies conditions (7.38)—(7.40). First,

(p()p(a1 (1)) + p(t) f(d(o1(t))) = (p(t)(0))" + p(t) f($(Lo)) =0 >0, t € [0, T].

Moreover, in this case, o; € C*[0,T], so ¥; = (. Finally, ¢;(07) = 0 > 0 and
01(T) = Ly < C. Therefore, o is a lower function of (7.9), (7.37).

Step 2. We construct an upper function of problem (7.9), (7.37). We distin-
guish two different cases.

(i) Let w < 0 on [0,00). Then we choose oo = u. We show that oo fulfils
conditions (7.41)—(7.43). First,

(p(1)p(05(1)))" + p(t) f(d(o2(t))) =0 <0, t € (0,T].

In addition, oy € C?(0,T)], which yields ¥y = ). Finally, 05(07) =0 <0
and oo(T") > oa(y) = C. The last inequality 02(7") > C is a consequence of
the fact that from Lemma 7.7 we know that o9 is increasing on [a, o00) for
some a € [0,7). Hence, o9 satisfies conditions (7.41)—(7.43).

(ii) Let there exist # > 0 such that u(d) = 0. Then v € (0, 6) and we choose

u(t), te 0,0,
o2(t) = {0, te(6,00).

We have
(p(t)d(a5(t))) + p(t) f(B(oa(t)) =0 <0, t € (0,7 \ {6}

In this case, ¥ = {#}. By Lemma 7.7, ' > 0 on (a, #] for some a € [0,7)
and hence, o4(0~) > 0. It is clear that o4(67) = 0 and so, 05(07) < a4(67).
Analogously to part (i), we get d4(07) = 0 < 0 and 09(T) > 09(y) =
u(y) = C. Therefore, o9 satisfies conditions (7.41)—(7.43).
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Consequently, o9 is an upper function of (7.9), (7.37).

Step 3. We prove the existence of a solution uy. We have found a pair of
lower and upper functions which clearly satisfy for each T' > ~ that o1 (t) < o5(t),
t € [0,T]. As a consequence, Theorem 7.14 ensures the existence of a solution ur
of problem (7.9), (7.37) such that

Lo <ur(t) <oo(t), tel0,T]
Since 05(0) = ur(0) = Lo, then u fulfils (7.2) with ug = L. Since f(¢) is bounded
on R, ur can be extended to interval [0, 00) as a solution of equation (7.9). This
classical extension result follows from more general Theorem 11.5 in [31].

Step 4. We prove the estimate

up(t) > Ly for t € [0, 00). (7.52)

We follow the proof of Lemma 5.16. If uy < 0 on [0, 00), then Lemma 7.7 yields
a > 0 such that ur = Lo on [0,a], u} > 0 on (a,00) and so, (7.52) is valid.
Assume that there exists ; > 0 such that ur(6,) = 0, up(t) < 0 for t € [0,6,).
By Lemma 7.7, there exists a > 0 such that ur = Ly on [0,a] and u}. > 0 on
(a,6]. If u} > 0 on (01, 00), then (7.52) holds. Let there exist a; > 6y such that
up(ay) = 0, u/p(t) > 0 for t € (61,a1). According to Lemma 7.7, ur(ay) € (0, L]
and v}, > 0 on (a,ay). If ur > 0 on [ay,00), then (7.52) is valid. Assume that
there exists 0 > a; such that up(fy) = 0, ur > 0 on [a1,0). Lemma 5.12 gives
b > 65 such that u/,(b) = 0, uf < 0 on (a1, b), u(b) € (B,0). If ur <0 on (b,0),
then, by Lemma 5.5, u/» > 0 on (b, 00) and (7.52) holds. Let there exist 63 > b
such that up(f3) = 0, ur < 0 on [b,65). Then we can apply Lemma 5.11 and
argue as before.

We have proved that ur is a solution of problem (7.9), (7.2) with ug = Ly and
satisfies (7.50). O

Theorem 7.16 (Existence of escape solutions of problem (7.9), (7.2) II).
Let (7.3)(7.7), (7.13) and (7.14) hold. Then there exist infinitely many escape
solutions of problem (7.9), (7.2) with not necessary different starting values in
[Lo,B).

Proof. Choose n € N, C € (LO, B) and B,, € (Lg,C). By Theorem 5.19, there
exists a solution u, of problem (7.9), (7.2) with ugp = B,. By Lemma 5.5, there
exists a maximal a,, > 0 such that u/, > 0 on (0, a,). Since u,(0) < 0, there exists
a maximal @, > 0 such that u,, < L on [0, a, ). If we put b,, := min{a,, a,}, then
(7.15) holds. Due to Lemmas 5.5 and 5.13, there exists v, € (0,b,) such that
un(%t) =C.

Consider a sequence {B,}5°, C (Lo, C). Then we get a sequence {u,}>, of
solutions of problem (7.9), (7.2) with ug = B,, and the corresponding sequence of
{7 }22 ;. Assume that lim, ,,, B, = Lo. Integrating equation (7.9), we get the
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equivalent form of problem (7.9), (7.2) for u,

un(t) = B, + /Ot ¢! (—L /Osp(T) f(¢(un(7)))d7) ds, te[0,00). (7.53)

p(s)
According to (7.10), f is bounded. Hence, there exists M > 0 such that

’f(x)‘ <M, z€R. (7.54)

Let us choose > 0. Using (7.44), (7.45) and (7.54), we obtain from (7.53)

0] < I2al + [ |6 (=5 [ v Fotuntmar)| as
s [

0
< |Lol+ 807 (M 8) = Ky, te 0,4,

t

ot (M p(s))| ds < Lol + [ 67 (315) ds

0

Since [ is chosen arbitrarily, we have that the sequence {u,}5%, is uniformly
bounded on [0, 5] for all § > 0. Moreover, as a consequence of Lemma 5.18, the
sequence of derivatives {u/,}>°; is uniformly bounded by number ¢.

Choose an arbitrary € > 0, put 0 := £ and let 1, € [0, 3]. The Mean value
theorem gives £ € (t,t3) such that

’tl — tg‘ <d= ]un(tl) — Un<t2)‘ = ]u;(f)| |t1 — t2’ < o = g,

which yields that the sequence {u,}°, is equicontinuous on [0, 5] for all 5 > 0.
Therefore, by Arzela—Ascoli theorem, there exists a subsequence of {u, }>° ; which
converges locally uniformly on [0,00) to a continuous function u. For the sake
of simplicity, we denote this subsequence also as {u,}° . Since the convergence
of {u,} is locally uniform, by letting t — oo in (7.53), we obtain

t 1 s ~
wt) = Lo+ [ o7 (—o5 [ o0 floturyar) as, e .00
0 p(s) Jo
and hence, u is a solution of problem (7.9), (7.2) for ug = Lo.
Now, we distinguish three different cases.

(i) Let u = Ly.

Then lim,, o 7, = o0 and the sequence {v,}>2; is unbounded. By virtue
of Lemma 7.6, there exists ny € N such that u,, is an escape solution
of problem (7.9), (7.2). We have u,,(0) = B,, > Ly. Now consider the
unbounded sequence {7, }7%,,,+;- By Lemma 7.6 there exists n; € N, n; >
no + 1 such that w,, is an escape solution of problem (7.9), (7.2) with
U, (0) = By, > Lo. We repeat this procedure and we obtain the sequence
{un, }32, of escape solutions of problem (7.9), (7.2) with starting values in
(Lo, B).
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(ii) Let u # Lo is not the escape solution.

In this case, we take B, = L for all n € N and consider y defined in (7.51).
Now, we can take an unbounded sequence {%,}5°, such that 4, > ~ for
all n € N. Due to Lemma 7.15, for all n € N there exists a solution u,, of

problem (7.9), (7.2) with uy = B,, such that
U (n) = C,  Uy(t) > Ly, te€]0,00).

Therefore, we have a sequence of solutions {u,}>, in the conditions of
Lemma 7.9 and so, this sequence contains the escape solution ,, of (7.9),
(7.2) with uwy = Lg. As in the previous case, we could consider now the
unbounded sequence {7,}72, ,; and repeat the procedure from (i). This
way we obtain a sequence {i,, }72, of escape solutions of problem (7.9),
(7.2) with ug = L.

(iii) Let u # Ly is the escape solution.

Then we can argue as in the case (ii) and we also obtain the sequence
{1y, }32, of escape solutions of problem (7.9), (7.2) with uy = Ly.

Moreover, in this case, since the sequence {u,}32, converges locally uni-
formly to the escape solution of (7.9), (7.2), there exists some ng such that
u, is also the escape solution for all n > ng. As a consequence, we also
obtain a sequence {u, };, ~of escape solutions of problem (7.9), (7.2) with
starting values in (LO, B). ([l

In the case, where ¢! does not have to be Lipschitz continuous, the unique-
ness of damped and regular homoclinic solutions is guaranteed by Theorems 6.4
and 6.7, respectively. Similarly, we can obtain also the uniqueness of escape
solutions.

Theorem 7.17 (Uniqueness of escape solutions). Assume that (7.3)—(7.7),
(7.11), (7.13), (7.35) and

lim sup (J; (gf)_l)/ (x)) < oo, ¢ is nondecreasing on (0, 00)

z—0t

hold. Let u be an escape solution of problem (7.9), (7.2) with ug € (Lo, B). Then
u s a unique solution of this problem.

Proof. Let u be an escape solution of problem (7.9), (7.2) with uy € (Lo, B).
By Lemma 7.5, v/ > 0 on (0,00) and we can argue as in the proof of Theorem
6.7. [
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7.4 Existence of unbounded solutions

In this section, we discuss the original problem (7.1), (7.2) and provide conditions
which guarantee that an escape solution of (7.1), (7.2) is unbounded.

Note that solutions of the original problem (7.1), (7.2) and solutions of the
auxiliary problem (7.9), (7.2) are related in the following way, when (7.3)—(7.7),
(7.14) and (7.13) are assumed. Each solution of (7.9), (7.2) which is not an escape
solution, is a bounded solution of the original problem (7.1), (7.2) in [0, c0). This
result follows from Lemma 5.16 and Lemma 7.4, where such solutions of (7.9),
(7.2) satisfy

Lo<u(t) <L, te]|0,00)

and, due to (7.10),
F(o(u(t) = f(g(u(t)), t e [0,00).

If u is an escape solution of the auxiliary problem (7.9), (7.2), i.e.
de € (0,00): u(t) € [Lo, L), t €[0,¢), u(c)=L, u'(c)>0, (7.55)

then u fulfils at once the auxiliary equation (7.9) and the original equation (7.1)
on [0,¢]. The restriction of u on [0,c] can be extended as an escape solution
of problem (7.1), (7.2) on some maximal interval [0,b). Therefore, we search
unbounded solutions of (7.1), (7.2) in the class of escape solutions of (7.1), (7.2)
on [0, b).

Since in general, an escape solution u of (7.1), (7.2) on [0,b) need not to
be unbounded, we derive criteria for u to tend to infinity. First, we show that
b < oo implies the unboundedness of solution of problem (7.1), (7.2) on [0,b).
To do that, we prove the partial monotonicity of escape solutions under weaker
assumptions compared with Lemma 7.5.

Lemma 7.18. Assume that (7.3)=(7.7) hold. Let u be an escape solution of
problem (7.1), (7.2) on [0,b). Then

w(t) > L, u'(t)>0, te/(cbd), (7.56)
where ¢ is from (7.55). If b < 0o, then

lim wu(t) = oc.
t—b—
Proof. Let u be an escape solution of problem (7.1), (7.2) on [0,b). Then (7.55)
holds. Assume that there exists ¢; > ¢ such that «/(¢;) = 0, u(t) > L, u/(t) > 0
for t € (¢, ¢1). Integrating equation (7.1) over [c, ¢1], dividing by p(c;) and using
(7.3), (7.4), (7.6), (7.7), we get
ple)o(u(c)) 1

oo (en)) = O - [0 ofus)) s > 0.
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contrary to u'(c;) = 0. Hence, u(t) > L and u/(t) > 0 for t € (¢,b) which yields
(7.56).

Let b < oo. Since [0, b) is the maximal interval, where the solution u is defined,
u cannot be extended behind b. Therefore, (7.56) gives lim; ;- u(t) = oo and
thus, the solution v is unbounded. ([l

Since all escape solution of (7.9), (7.2) on [0,b) that cannot be extended on
the half-line [0, c0) are naturally unbounded, we continue our investigation about
unboundedness of escape solutions defined on [0, co).

Theorem 7.19. Assume that (7.3)—~(7.7) hold and let

lim p(t) < co. (7.57)

t—o00

Let u be an escape solution of problem (7.1), (7.2). Then

lim u(t) = oo. (7.58)

t—o00

Proof. Let u be an escape solution of problem (7.1), (7.2). Lemma 7.18 gives
(7.56) with b = oo and so, there exists lim;_, u(t) € (L, o0]. Due to (7.3), (7.4),
(7.7) and (7.55), p(c)p(u'(c)) =: ¢ € (0,00). Integrate equation (7.1) from ¢ to
t > ¢ and get, by (7.6), (7.7), for t € (¢, 00) that

w =2+ [ o7 (o [msteurar) as> [(o () as

Conditions (7.7) and (7.57) give

. Co
lim — € (0,00
s—00 p(s) ( )

[

) oo B CO
m > O —
tlimu(t) _/C o) (p(s ) ds = o0,
which gives (7.58). O

and, by (7.3), (7.4),

Therefore,

Theorem 7.20. Assume that (7.3)—(7.7), (7.14) and
f(x) <0 forz>¢(L) (7.59)

hold. Let u be an escape solution of problem (7.1), (7.2). Then (7.58) holds.
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Proof. Let u be an escape solution of problem (7.1), (7.2). According to Lemma
7.18, v > 0 on (¢, 00) and hence, there exists lim; ,, u(t) € (L, 00]. Assume on
the contrary that

lim u(t) =: A € (L, 00). (7.60)

t—o00

Step 1. We prove that v’ is bounded. Assume that u' is unbounded. Then
there exists a sequence {t,}>2, such that

lim ¢, =00, lim ¥/(¢,) = oco.
n—oo n—oo

The next approach is similar as in the proof of Lemma 5.13. Equation (7.1) has
the equivalent form

P(t)
p(t)

Choose n € N. Multiplying this equation by " and integrating it from ¢ to ¢t > ¢,
we obtain for ¢ = t,, that

¢ (u'()u" (1) +

o(u'(t) + f(P(u(t))) =0, t€(0,00). (7.61)

¢1 (tn) + wZ(tn) + wi&(tn) = 07 tn € [Cv OO), (762>
where
u/(tn) tn o/ s
ot = [ ao@an )= [T ES o5 as
u(tn)
balta) = / F(é(a)) dz
Then

Us(t) = Fu(ty)) — F(L), Wmmpmyzéﬁw@»ﬁ,mem

Due to (7.3), (7.4) and (7.59), F'(z) is decreasing for x > ¢(L). Since u is increas-
ing on (¢, 00), F'(u(t,)) is decreasing for t,, € (¢, 00) and lim,, o F(u(t,)) = F(A).
According to (7.60),

lim 3(t,) € (—00,0).

By (7.3), (7.4) and (7.7),

lim ¢1<tn) = 00, h_)m ¢2(tn> > 0.

n—oo

Hence, letting n — oo in (7.62), we obtain
0= Tim (31(t,) + ta(t) + a(ta)) = oc.
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a contradiction. So, u' is bounded.
Step 2. We prove (7.58). Since u’ is bounded, letting ¢ — oo in (7.61) and
using (7.14), (7.59), (7.60), we get

lim ¢/ (' (£))u" () = —f($(A)) > 0.

t—o00

Since ¢'(u'(t)) > 0 fot t > ¢, so there exists 7 > ¢ such that u”(t) > 0 for t > 7.
Therefore, v’ is increasing on [7,00) and there exists lim;_, v/(t) > 0, which
contradicts limy_,o u(t) = A < co. Thus, (7.58) is valid. O

Remark 7.21. The proof of Theorem 7.20 yields that if a solution u of problem
(7.1), (7.2) satisfies lim; oo u(t) =@ A € (L,00), then f(¢(A)) = 0, which is
equivalent with the fact that u(t) = A is a solution of equation (7.1).

For f =0 on (¢(L),00), we are able to find necessary and sufficient condition
for the unboundedness of escape solutions of problem (7.1), (7.2).

Theorem 7.22. Assume that (7.3)—(7.7),

flz)=0  forax > ¢(L), (7.63)
o(ab) = ¢p(a)p(b), a,be (0,00) (7.64)

are satisfied. Let u be an escape solution of problem (7.1), (7.2). Then

tlgglo u(t) =00 <= /100 ¢t (2%) ds = oc. (7.65)
If we replace condition (7.64) by
¢(ab) < ¢(a)p(b), a,b € (0,00), (7.66)

/loo ot (ﬁ) ds = oco. (7.67)

Proof. Let u be an escape solution of problem (7.1), (7.2). According to Lemma
7.18, v/ > 0 on (¢,00). Then there exists ¢, > ¢ such that u(ty) > L, v/(t) > 0
for t € [tg,00). Therefore, there exists limy o u(t) € (L,00]. Using (7.64), we
obtain

¢ Ha)p~ ' (b) = o~ (d(0 " (a)o ' ()
= ¢ ' (ab), a,b e (

then (7.58) holds if

~—
I
\_/Q\
L
—~
BSS
—~
SN
L
—~
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~—
~—
-
—~
-
L
—~
~—
~—
~—

2

Due to (7.3), (7.4), (7.7) and (7.63),

p(to)d(u'(to)) =: co € (0,00),  f(P(u(t))) =0 for ¢ € [to, 00).
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Thus, integrating equation (7.1) from ¢, to ¢t > t and using (7.68), we get

u(t) = ulty) + /t e (%) ds = u(to)

o[ ([ () ). vete

Letting ¢t — oo here, we get (7.65).
Let us consider (7.66) instead of (7.64) and assume that (7.67) holds. Then
we continue analogously and obtain

¢ (a)g ' (b) = ¢~ (B0 (@)™ (D)) < ¢ Do (a)b(¢™ (D))
= ¢~ (ab), a,b € (0,00),

u(t) = ulto) + / o7t () ds= ule

(o) [ () ). et

We let t — oo here and obtain, by (7.67), that (7.58) holds. O

Now, we present the existence results about unbounded solutions of the orig-
inal problem (7.1), (7.2) in the case, where ¢! and f are Lipschitz continuous,
see Theorems 7.23, 7.25 and 7.27. Each of these theorems is aferwards illustrated
by an example which is chosen in such a way that only this theorem is applicable,
while none of the remaining two theorems can be used for this example.

Then, in Theorems 7.29, 7.31 and 7.33, we present the main existence results
about unbounded solutions of the original problem (7.1), (7.2) provided ¢! and
f need not be Lipschitz continuous. The illustration by examples is done as in
the previous case and shows that none of these theorems is included in any of
remaining two ones.

In the rest of this section, we assume that (due to Definition 7.1) for each
n € N, [0,b,) C [0,00) is a maximal interval such that a function w, satisfies
equation (7.1) for every t € (0,by,).

Theorem 7.23. Assume that (7.3)—(7.7), (7.13), (7.14), (7.35), (7.36) and
(7.57) hold. Then there exist infinitely many unbounded solutions w, of prob-
lem (7.1), (7.2) on [0,b,) with different starting values in (Lo, B), n € N.

Proof. By Theorem 7.10, there exist infinitely many escape solutions u, of
problem (7.9), (7.2) with starting values in (Lg, B). Let us choose n € N. Then

Jen € (0,00): uy(t) € (Lo, L), t €[0,¢,), un(cy) =1L, up,(c,) > 0.

Consider a restriction of u, on [0, ¢,]. Then there exists b, > ¢, such that u, can
be extended as a solution of problem (7.1), (7.2) on [0,b,). If b, < oo, then, due
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to Lemma 7.18,

lim w,(t)
t—by,

o0,
S0 u, is unbounded. If b,, = 0o, then Theorem 7.19 yields

lim u,(t) = oo,
t—r00

that is u,, is unbounded, as well. O
Example 7.24. We consider the IVP

(p(t) sinh(u/(£)))" + p(t) f (sinh(u(t))) = 0,

w(0) = uo,  w(0) =0, up € [Lo, ), (7.69)

£ {:z:(:l: +sinh4)(sinh 1 — ) for # € [—sinh4,sinh 1],
xTr) =

cos(x —sinh 1) — 1 for x > sinh 1,
el —et
p(t) = arctant or  p(t) =tanht = e t € [0, 00).
We have equation (7.1) with
¢(x) = sinhz = %, reR

Here Ly = —4, L = 1. Examples 6.9 and 6.10 shows that these functions p fulfil
(7.7) and (7.14). Since

lim arctant = — < 00, lim tanht =1 < oo,
t—o0 2 t—o0
(7.57) holds, as well.

The function f is continuous on [¢(Lg),o0), Lipschitz continuous on
6(Lo), (L)), £(8(Lo)) = F(0) = F(&(L)) = 0, 2 (x) > O for z & ((6(Lo), 6(L)) \
{0}) and f is nonpositive on (¢(L), 00). Hence, conditions (7.5), (7.6) and (7.35)
are valid. Moreover, 0 < L < —Lg and ¢ is odd and increasing function. Thus,
we get, similarly as in Example 2.18, that F(L) < F(Ly). Consequently, there
exists B € (Lo, 0) such that F (B) = F(L), which yields (7.13).

Example 5.20 gives that ¢ satisfies (7.3) and (7.4). By Example 5.23, ¢~ !(z) =
argsinhz = In (z + /2 4+ 1) and (7.36) holds.

To summarize, we have fulfilled all assumptions of Theorem 7.23. Therefore,
problem (7.69) has infinitely many unbounded solutions on [0, ) with different
starting values in (LO, B) and with in general different b for different solutions.
Since f has isolated zeros on (sinh 1, 00), we cannot use Theorems 7.25 and 7.27
here.
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In the same way as in the proof of Theorem 7.23, we can prove the following
Theorem 7.25 or 7.27, if we use in the proof Theorem 7.20 or 7.22, respectively,
instead of Theorem 7.19.

Theorem 7.25. Let (7.3)—(7.7), (7.13), (7.14), (7.35), (7.36) and (7.59) hold.
Then there exist infinitely many unbounded solutions u, of problem (7.1), (7.2)
on [0,b,) with different starting values in (LO, B), n € N.

Example 7.26. Let us consider the IVP

(6w (1)) + () ($(u(t) +In4)(In2 = g(u(t))) = 0,
U(O) = Uo, U/<O) = O, Uy € [L(),L],

where
o(z) =In(|z] +1)sgnz, zeR.

We have equation (7.1) with
f@)=z(x+In4)(In2 —z), z€[—1In4, 00), p(t)=t°, te€[0,00).

Assume that § > 0. The function p satisfy (7.7) and (7.14) according to Examples
5.1 and 5.9.

We have Ly = —3, L = 1. The function f is continuous on [¢(Lg), o),
Lipschitz continuous on [¢(Ly), #(L)], f(d(Lo)) = f(0) = f(¢(L)) =0, zf(z) >0
for v € ((¢(Lo),o(L)) \ {0}) and f is negative on (¢(L),00). Thus, we have
fulfilled (7.5), (7.6), (7.35) and (7.59). In addition, 0 < L < —Lo and ¢ is odd
and increasing function. Hence, we obtain, similarly as in Example 2.18, that
F(L) < F(Ly). Consequently, there exists B € (Lg,0) such that F (B) = F(L),
which gives (7.13).

Example 5.20 yields that ¢ satisfies (7.3) and (7.4). Due to Example 5.23,
¢~'(z) = (el*! — 1) sgnz and (7.36) is valid.

To sum up, if

g >0,

then we can apply Theorem 7.25 on problem (7.70). Since lim; , t° = oo and
f(z) <0 for z > In2, we cannot use Theorem 7.23 as well as Theorem 7.27.

Theorem 7.27. Assume that (7.3)-(7.7), (7.13), (7.14), (7.35), (7.36), (7.63),
(7.66) and (7.67) hold. Then there exist infinitely many unbounded solutions u,
of problem (7.1), (7.2) on [0,b,) with different starting values in (Lo, B), n € N.

Example 7.28. We consider the IVP

(Vi ®) + Vi fu() =0,
U<O> = Uy, 'U/(O) = 0, Uy € [Lo, L],
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O0<L<—Lyg.

Fa) = {m = (Lo)(0(L) = 2) for x € [6(Lo), 6(L),
0 for x > ¢(L),

Here
o(r) =z, xR, p(t) =Vt, te|0,00).

Due to Examples 5.1 and 5.9 (Where now [ = %), the function p satisfies (7.7)
and (7.14). The function f is continuous on [¢(Ly), 00), Lipschitz continuous on
6(Lo), (L)), £(8(Lo)) = £(0) = F(&(L)) = 0, 2(x) > 0 for z & ((6(Lo), 6(L)) \
{0}) and f =0 on (¢(L), ). Therefore, conditions (7.5), (7.6), (7.35) and (7.63)
hold. Since f(¢(x)) = f(z) and L < —Lg, we have F(L) < F(Ly) and hence,
there exists B € (L, 0) such that F (B) = F(L), which yields (7.13).

Example 5.1 (where now a = 1) shows that ¢ fulfils (7.3) and (7.4). Since
¢(ab) = ¢(a)p(b) for each a,b € (0,00), (7.64) and consequently, (7.66) hold.
Further, ¢~'(z) = x and (7.36) is valid. Since

[ o Gia) e[ o=
(7.67) holds.

To summarize, we have satisfied all assumptions of Theorem 7.27. Since
limy_,oo vVt = 00 and f(z) <0 for x > In2, neither Theorem 7.23 nor Theorem
7.25 can be used.

Now, applying Theorem 7.16 instead of Theorem 7.10, we get as before the
existence results about unbounded solutions in the case, where ¢~! and f do not
have to be Lipschitz continuous.

Theorem 7.29. Let (7.3)(7.7), (7.13), (7.14) and (7.57) hold. Then there exist
infinitely many unbounded solutions u,, of problem (7.1), (7.2) on [0,b,) with not
necessary different starting values in [LO, B), n € N.

Example 7.30. Let us consider the IVP

(p()]d (£)|* sgna/ (1)) + p(t) f (lu(t)]* sgnu(t)) =0,

w(0) =y, W(0) =0, up € (Lo, L], (7.71)
where
Viz] senz(z — ¢(Lo))(6(L) — ) for z € [6(Lo), ¢(L)],
fla) = { (B(L) — 2)(6(2L) — 2) for & € (6(L), 6(2L)), 0 < L < —Lo,
0 for x > ¢(2L),

p(t) = arctant or  p(t) =tanht = t €10,00).

et +et’
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We have equation (7.1) with
o(z) = |z|*sgnz, x€R.

Assume that a > 1. According to Example 7.24, these functions p satisfy (7.7),
(7.14) and (7.57).

The function f is continuous on [¢(Lg),o0), f(p(Lg)) = f(0) = f(o(L)) =0,
xf(z) >0 for x € ((¢(Lo), #(L))\ {0}) and f is nonpositive on (¢(L), c0). Thus,
we have fulfilled (7.5) and (7.6). Since 0 < L < —Lg and ¢ is odd and increasing
on R, we obtain, similarly as in Example 2.18, that F'(L) < F(Lg). Hence, there
exists B € (Lg,0) such that F (B) = F(L), which gives (7.13). Example 5.20
yields that ¢ satisfies (7.3) and (7.4).

To sum up, provided that

a>1,

we have satisfied all assumptions of Theorem 7.29. Therefore, problem (7.71) has
infinitely many unbounded solutions on [0, b) with not necessary different starting
values in [Lo, E’) and with generally different b for different solutions. The form
of f implies that neither Theorem 7.31 nor Theorem 7.33 can be applied.

Theorem 7.31. Assume that (7.3)—(7.7), (7.13), (7.14) and (7.59) hold. Then
there exist infinitely many unbounded solutions u, of problem (7.1), (7.2) on
0, b,,) with not necessary different starting values in [Lo, B), n € N.

Example 7.32. Consider the IVP
/
(tﬁu’B (t)) +tPu(t) (u¥(t) + 8) (1 — ud(t)) =0,
u(O) = Uy, U/(O) = 0, Uy € [Lo, L]

(7.72)

We have equation (7.1) with

¢p(x) =2, v eR,  fl)=Vr(@+8)(1~=z), z€[-800),

p(t) =t t€[0,00).
Here Ly = =2, L=1, ¢ *(z) = ¥/x. Assume that 8 > 0. By Example 7.26, the
function p satisfies (7.7) and (7.14). Since f is negative on (¢(L), o), according

to Example 5.20 (where now 7y = § and k = 1), conditions (7.5), (7.6) and (7.59)
hold. Further,

F(LO):/O_ s(s+8)(1—5%) ds=—,

F(L):/O s(s°+8) (1—s") ds:%.

So, F(Ly) > F(L), which yields (7.13). Example 5.20 gives that ¢ fulfils (7.3)
and (7.4).
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To summarize, if

B8 >0,

then we can apply Theorem 7.31 on problem (7.72). Since lim,_,, t° = oo and
f(z) <0 for x > 1, we cannot use Theorem 7.29 as well as Theorem 7.33.

Theorem 7.33. Let (7.3)~(7.7), (7.13), (7.14), (7.63), (7.66) and (7.67) hold.
Then there exist infinitely many unbounded solutions u, of problem (7.1), (7.2)
on [0, b,) with not necessary different starting values in [Lo, B), n € N.

Example 7.34. Let us consider the IVP

(£7)0 (8)|" sgn o (£)) + ¢ f (u(t)| sgnu(t)) = 0,

(7.73)
U(O) = U, UI(O) = O, Uy € [Lo, L],
where
ﬂ@:{yax—wm»wwwﬂ»fmxeww@¢@» N
0 for x > ¢(L),
Here

o(x) = |z|*sgnz, € R, p(t) =17, t€0,00).

Assume that o > 1 and § > 0. According to Example 7.26, the function p fulfils
(7.7) and (7.14). The function f is continuous on [¢(Lg), 00), f(d(Lg)) = f(0) =
f(@(L)) =0, zf(x) > 0 for z € ((¢(Lo), #(L)) \ {0}) and f = 0 on (¢(L),0).
Hence, (7.5), (7.6) and (7.63) hold. Since 0 < L < —Ly and ¢ is odd and
increasing function, we get, similarly as in Example 2.18, that F(L) < F(Ly).
Thus, there exists B € (Lo, 0) such that F (B) = F(L), which yields (7.13).

Example 5.20 gives that ¢ satisfies (7.3) and (7.4). Since ¢(ab) = ¢(a)p(b)
for each a,b € (0,00), (7.64) and consequently, (7.66) hold. Further,

gb_l(as) = |$|é sgnz, r € R, ¢_1(x) = mé, x>0,

oo_1 1 B ooi B ‘ é
/lgb (m)dS—/l SgdS—oo 1fa§1,

that is (7.67) holds for 2 < 1.
To sum up, provided that

a>1, >0 and ﬁgl,
Q

we have satisfied all assumptions of Theorem 7.33 for problem (7.73). Since
lim; o t¥ = 00 and f(z) = 0 for z > ¢(L), neither Theorem 7.29 nor Theorem
7.31 is applicable.
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It si clear that every unbounded solution of problem (7.1), (7.2) is an escape

solution. According to the proofs of above theorems, we can formulate also the
reverse assertion.

Corollary 7.35. Assume all assumptions of Theorem 7.23 or 7.25 or 7.27 or 7.29
or 7.31 or 7.33. Then each escape solution of problem (7.1), (7.2) is unbounded.
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Conclusion

This thesis presented new contributions to the theory of singular nonlinear ordi-
nary differential equations on an unbounded interval. We managed to generalize
current results about existence and properties of three types of solutions of the
singular equation

(p(t)u' ()" + p(t) f(u(t)) = 0
to the equation with different coefficient functions p and ¢ and to the equation
with ¢-Laplacian.
The first part of the thesis dealt with the initial value problem

(' (1)) +a(®) f(u®) =0, u(0) =up € [Lo, L], w'(0)=0  (7.74)

and with an auxiliary initial value problem, where the nonlinearity f is replaced
by a bounded nonlinearity f. We proved the existence (Theorem 2.15) and
uniqueness of a solution of this auxiliary problem for every considered starting
value as well as a continuous dependence of solutions on initial values (Theorem
2.17).

A significant attention was dedicated to the damped solutions of the original
problem (7.74). Their existence was proved in Theorem 3.1 together with a
starting interval giving only damped solutions. Theorem 3.7 gave that every
oscillatory solution is the damped solution and has nonincreasing amplitudes. In
addition, three types of conditions which guarantee that each damped solution
is oscillatory were shown in Theorems 3.11, 3.12 and 3.14. The existence of
oscillatory solutions was proved under these three different criteria in Theorems
3.15-3.17.

In connection with three obtained criteria for the oscillation of solutions, we
reached three criteria (with additional conditions) leading to the existence of
escape (Theorem 4.8) and homoclinic solutions of problem (7.74) (Theorem 4.9).
The homoclinic solution is, furthermore, a bubble-type solution (Corollary 4.10),
that is a solution of the boundary value problem in hydrorodynamics from our
motivation.

The second part of the thesis investigated the initial value problem

(p() (' (1)) + p) f(P(u(t))) =0, u(0) =wuo € [Lo, L], '(0) =0 (7.75)

and an auxiliary initial value problem with a bounded nonlinearity f instead of
f- Theorem 5.19 guaranteed the existence of a solution of this auxiliary problem
for each considered starting value. The uniqueness of the solution of this problem
was proved in Theorem 5.21 provided that ¢! is locally Lipschitz continuous on
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R. In the case that this condition falls, we proved the continuous dependence of
solutions on positive initial values in Theorem 5.24 and for negative initial values
in Theorem 5.26.

The existence of damped solutions of problem (7.75) was guaranteed by The-
orem 6.1 for the same starting values as for problem (7.74). We proved the exis-
tence of escape solutions of auxiliary problem in the case, where both functions
¢! and f are Lipschitz continuous (Theorem 7.10) and also in the more difficult
opposite case (Theorem 7.16). Further, we derived three criteria guaranteeing
that each escape solution of problem (7.75) is unbounded (Theorems 7.19, 7.20,
7.22). Finally, by combinations of these criteria with theorems guaranteeing the
existence of escape solutions, we obtained the criteria of existence of unbounded
solutions of problem (7.75) (Theorems 7.23, 7.25, 7.27, 7.29, 7.31 and 7.33).

For a better idea, we illustrated these main results on diverse examples. The
existence of a homoclinic solution of problem (7.75) with ¢-Laplacian still remains
as an open problem. This is our aim for the future research as well as to find

conditions leading to the existence of the unique homoclinic solution of problem
(7.74) and (7.75).
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Notation

N

R

R™
Cla, 0]

C*la, b]

Lip(1)
Liploc (I)

set of all natural numbers

set of all real numbers

n-dimensional Euclidean space

Banach space of all continuous functions on [a, b] equipped with
the maximum norm ||g||cfe,s = max{|g(t)|: t € [a,b]}

Banach space of all functions k-times continuously differentiable
on [a, b] equipped with the norm ||gllck e = >-5— 199 [l cfa
set of all Lipschitz continuous functions on the interval I

set of all locally Lipschitz continuous functions on the interval 1



1 Abstract

This dissertation deals with the second order ordinary differential equations with
possible time singularity at the origin, which are studied in general on the un-
bounded interval [0, 00). These investigated equations are the generalization of
the singular differential equations, which are found in many sciencies, especially
in hydrodynamics. This study investigates two types of generalizations of these
model equations — equations without ¢-Laplacian and with ¢-Laplacian — to-
gether with the boundary conditions at 0 and co. These conditions as well as
conditions for the data functions of our problem are chosen with respect to the
original hydrodynamic model and with respect to a specific type of searched so-
lution — so-called bubble-type solution. The study of boundary value problem is
transformed into investigation of initial value problems.

The thesis investigates especially the existence and uniqueness of solutions of
these initial value problems and their asymptotic properties. The essential part
of the thesis is dedicated to the study of specific types of solutions depending
on their supremum — damped, homoclinic and escape solutions. We study the
existence of these individual types of solutions and their asymptotic properties.
In the case of equations without ¢-Laplacian, considerable attention is devoted to
the damped solutions and conditions guaranteeing their oscillatory behaviour. In
the case of equations with ¢-Laplacian, we study especially the escape solutions
and criteria for their unboundedness.

Key words: second order ordinary differential equations, time singularity,
¢-Laplacian, asymptotic properties, existence and uniqueness of a solution,
damped solution, homoclinic solution, escape solution, unbounded solution, os-
cillatory solution, unbounded interval



2 Abstrakt v ¢eském jazyce

Diserta¢ni prace se zabyva problematikou obycejnych diferencialnich rovnic dru-
hého Fadu s moznou casovou singularitou v pocatku, studovanych obecné na
neomezeném intervalu [0,00). Tyto vySetfované rovnice jsou zobecnénim sin-
gularnich diferencialnich rovnic, jez se vyskytuji v mnoha oblastech védy, ob-
zvlasté pak v hydrodynamice. V praci jsou vySetfovany dva typy zobecnéni
téchto modelovych rovnic, a to rovnice bez ¢-Laplacidnu a s ¢-Laplacianem.
Dané rovnice jsou vysetfovany spolu s okrajovymi podminkami v 0 a co. Tyto
podminky, jakoz i podminky na datové funkce tulohy, jsou voleny s ohledem
na puvodni hydrodynamicky model a na specificky typ jeho hledaného teSe-
ni — tzv. bublinové feSeni. Studium okrajové tlohy je prevedeno na vySetfovani
pocatecnich tloh.

Prace se zabyva zejména otazkou existence a jednoznacnosti feSeni téchto
pocatec¢nich tloh a jejich asymptotickymi vlastnostmi. Podstatna ¢ast prace je
pak vénovana vySetfovanim specifickych typt feSeni v zavislosti na jejich supremu
— tlumenda, homoklinickd a tunikova TeSeni. Studuje se existence téchto jed-
notlivych typu feseni a jejich asymptotické vlastnosti. U rovnic bez ¢-Laplacianu
je znacna pozornost vénovana tlumenym feSenim a podminkam zarucujicim jejich
oscilatori¢nost. U rovnic s ¢-Laplacianem jsou pak studovana zejména tnikova
feSeni a kritéria zarucujici jejich neohranic¢enost.

Klicova slova: obycejné diferencialni rovnice druhého radu, ¢asova singularita,
¢-Laplacidn, asymptotické vlastnosti, existence a jednoznacnost feSeni, tlumené
feSeni, homoklinické TeSeni, tnikové TeSeni, neohrani¢ené feSeni, oscilatorické
FeSeni, neomezeny interval



3 Introduction

In the thesis, we investigate the second order nonlinear ordinary differential equa-
tions (ODEs) without ¢-Laplacian

(p(t)u' (1)) + q(t) f(u(t)) = 0 (3.1)
and with ¢-Laplacian

(p()p(u' (1)) + p(t) f(d(u(t))) = 0. (3:2)

The basic assumptions on functions p, ¢, f and ¢ are mentioned in Chapter 3.
Both equations (3.1) and (3.2) are studied with the initial conditions

u(0) = ug, u'(0) = 0. (3.3)

These initial value problems (IVPs) are investigated generally on the positive
half-line [0, 00).

Equations (3.1) and (3.2) can have a time singularity at the origin in the
following sense. Let us consider the system of ODEs

Z(t) = f(t,z), tel, (3.4)

where f: I xR®" - R", z € R", I C R. If the function f fulfils the Carathéodory
conditions, then the system (3.4) is called regular, otherwise it is called singular.
By the time singularity at 0 we understand that

JRECEIEEE

for some = € R and for each sufficiently small ¢ > 0. If we put v = pu/, then
equation (3.1) can be expressed as a special case of system (3.4)

u'(t) = mv(t), V() = —q(t) f(u(t))
Similarly, for v = p¢(u), we can assume equation (3.2) as the system
/ _ 1 / _
u'(t) = %v(t% V(1) = —p() f(d(u(t)))

One of our basic assumptions on the function p is that p(0) = 0. Hence, the
integral fol ﬁ ds can be divergent, which yields the time singularity at 0. Con-

sequently, our investigated equations (3.1) and (3.2) can have the time singularity.
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This contrasts with the papers that study more general equations in the regu-
lar setting, mentioned in Chapter 3. In addition, the nonlinearity f in our case
does not satisfy the sign condition zf(x) > 0 for all x # 0. Therefore, the glob-
ally monotonous behaviour of f, which is often required in the literature, is not
fulfilled here.

4 Recent state summary

Regular equations

A considerable amount of literature exists on the qualitative analysis of equations
(3.1), (3.2) and their generalizations in the regular setting, where p(t) > 0 for ¢ €
[0,00). The monograph [31] provides a general overview of asymptotic properties
of solutions of nonautonomous ODEs. Research in the last decades has focused
significantly on asymptotic analysis of the second order Emden—Fowler equation

u"(t) + q(@O)u®)["sgnu(t) =0,  ¥>0, v#1,

which is a special case of equations (3.1) and (3.2). For the historic overview, see
[71]. The oscilation and nonoscilation of the second order Emden—Fowler equation
is researched in [36, 41, 42, 55]. The Emden-Fowler equation of arbitrary order
is analysed in [71]. Further extensions of these results have been reached for
more general equations, as can be seen in, e.g. |9, 17, 18, 26, 35, 43, 72, 73].
Nonlinearities in equations in the cited papers have similar globally monotonous
behaviour, characterized by the sign condition xf(z) > 0 for x € R\ {0}. We
would like to emphasize that, in contrast to these papers, the nonlinearity f in
our equations (3.1) and (3.2) does not have globally monotonous behaviour.

The second order Emden—Fowler equation can be generalized into the follow-
ing equation with p-Laplacian

(p()Pa(v/(1)) + q(t) P4 (u(t)) =0,  a>0, 7>0,

where @, (u) := |u|*sgnu. This equation is called sub-half-linear, half-linear or
super-half linear if & > v, a = 7 or a < 7, respectively. The existence results of
the sub-half-linear case are mentioned in [28, 37, 39|, those of the half-linear case
in [15, 29, 38] and those of the super-half-linear case in [16, 45].

Another approach to the asymptotic analysis is provided by the theory of reg-
ular variations |11, 17]. The asymptotic results for the related equations or sys-
tems with regularly varying functions are mentioned in [22, 27, 10, 19, 50, 67, 68].
Criteria for oscillation and nonoscillation of related two-dimensional linear and
nonlinear systems can be found in [21, 46, 52].



Singular equations

The journal articles [56, 57, 60, 61, 62, 63, 64, 65, 66] are the most significant for
the dissertation. They contain a detailed study of the singular nonlinear equation
(p(t)u' (1)) + p(t) f (u(t)) = 0. (4.1)

Equation (4.1) is a special case of equation (3.1), where p = ¢ and also a special
case of equation (3.2), where ¢(z) = z. All types of possible solutions of IVP
(4.1), (3.3) with proofs of their existence and assymptotic properties are described
in |60, 61, G4]. The existence of escape and homoclinic solutions is discussed in
(62, 63].
The damped oscillatory solutions of problem (4.1), (3.3) are studied in [56, 57,
|, where the conditions for their existence, convergence to zero and for another
asymptotic properties are given. For the results about damped nonoscillatory
solutions, we refer to [69]. The asymptotic formulas and conditions that guarantee
the existence of Kneser solutions are derived there. The variational methods for
p(t) = t*, k € Nor k € (1,00) are used in [10] or [12], respectively, where
problem (4.1), (3.3) is transformed into a problem to find positive solutions on
the half-line.

Many other problems for singular equations are described in |7, 8, 53, 58, 59|
and [541], where the existence theory of two-point boundary value problems on
finite and semi-infinite interval is introduced. For other close existence results,
see also Chapters 13 and 14 in [53], where the existence results for second order
ODEs on finite, semi-finite and infinite intervals are shown. Works [58, 59] are
focused on regularization and sequential techniques and contain the existence
theory for a variety of singular boundary value problems, especially those with
¢-Laplacian.

5 Thesis objectives

The solutions for our IVP (3.1), (3.3) without ¢-Laplacian as well as for prob-
lem (3.2), (3.3) with ¢-Laplacian are divided according to their supremum into
damped, homoclinic and escape solutions.

Equations without ¢-Laplacian

The following objectives are concerned with the IVP (3.1), (3.3) without ¢-
Laplacian.
e The first aim of the thesis is to prove the existence and uniqueness of the
damped solutions of problem (3.1), (3.3).

e Further, our effort is focussed on finding the conditions under which each
damped solution is oscillatory.



e Our next goal is to prove the existence and uniqueness of escape solutions
of the above-mentioned problem. Here we use the existence results of the
oscillatory solutions.

e The principal objective concerning the IVP without ¢-Laplacian is to prove
the existence of homoclinic solution, which is important in applications.

Equations with ¢-Laplacian

e Our aim is to generalize our results for damped and escape solutions of
problem (3.1), (3.3) without ¢-Laplacian to problem (3.2), (3.3) with ¢-
Laplacian.

e Moreover, we want to find conditions which guarantee that each escape
solution of problem (3.2), (3.3) is unbounded and thus prove the existence
of unbounded solutions.

Finally, we intend to illustrate all these main results on various examples.
Open problems and other aims of research

e The thesis contains the existence result for a homoclinic solution of problem
(3.1), (3.3) without ¢-Laplacian. The existence of homoclinic solutions for
problem (3.2), (3.3) with ¢-Laplacian stays as an open problem.

e The next open problem is finding conditions leading to the existence of the
unique homoclinic solution of problem (3.1), (3.3) and problem (3.2), (3.3).

e Another interesting problem is to investigate the set of all solutions of
equation (3.1) and (3.2) depending on initial values. We know that — for
both of these equations — initial values in [B, L) give only damped solutions
(see Theorem 7.10, Theorem 7.31). However, a structure of solutions for
initial values in (LO, B) is still an open problem.

6 Theoretical framework and meth-
ods applied

The thesis is motivated by the research of second order singular equations initi-
ated by I. Rachinkova, J. Tomecek et al. in [56, 57, 60, 61, 62, 63, 61, 65, 66].
These papers investigate equation (4.1) and they are based on the following basic
assumptions. The function f is (locally) Lipschitz continuous on the domain,
where the solution is searched for. Further, f satisfies a certain sign condition, f
has either two zeros 0, L > 0 [56, 57, 60, 61, 65, 66] or three zeros 0, Ly < 0, L > 0



[62, 63, 64]. The function p is continuous on [0, 00), continously differentiable and
increasing on (0, 00), p(0) = 0 and lim; ’% = 0. For more information about
contents of above cited papers, see Chapter 3.

Our effort is to generalize current results about existence and properties of
three types of solutions of equation (4.1) to the more general equations (3.1) and
(3.2). In the dissertation, f has three zeros 0, Ly < 0, L > 0 and the basic
assumptions are mentioned in Chapter 3.

Our results are based on the methods of differential equations and functional
analysis. The fixed point theory plays an important role in the proofs of existence
of solutions of our IVPs. We reduce an IVP to an operator equation and search
for a fixed point of a corresponding operator. For the existence of solutions of
auxiliary IVPs with and without ¢-Laplacian, we use the Schauder fixed point
theorem. Here it is necessary to prove the compactness of the operator. To
prove this, we use the Arzela—Ascoli theorem. The uniqueness of a solution is
proved with the help of the Gronwall lemma. The existence and uniqueness of a
solution can be proved also by the Banach fixed point theorem, which we show
for the original IVP without ¢-Laplacian with a bounded nonlinearity and some
additional conditions.

Using the method of a priori estimates, we obtain estimates of solutions whose
existence is not guaranteed, which is useful to prove the general existence prin-
ciples. In the study of unbounded solutions of the IVP with ¢-Laplacian, the
difficulties arise in the case where the uniqueness of solution is not guaranteed.
The lower and upper functions method for auxiliary mixed problem helps us to
solve these difficulties in connection with the proof of existence of specific type
of the solution of the IVP. The lower and upper functions satisfy the differential
inequalities derived from our differential equation and fulfil the inequalities de-
rived from the mixed boundary conditions. Our lower and upper functions are
well-ordered, that is the upper function is greater or equal to the lower function
and the solution is located between these functions.

7 Original results

The thesis contains new results in the theory of singular nonlinear ODEs of second
order on the half-line [0,00). They are based on the results published in multiple
peer-reviewed journals [1, 2, 3, 4].
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Differential equations without ¢-Laplacian

We study the equation
(p(t)u' (1)) + q(t) f(u(t)) = 0

with the initial conditions
w(0) =ug, u'(0)=0, wug€ [Lo,L]
and assume the following basic assumptions:
Lo <0<L, [f(Lo)=f(0)=f(L)=0,
f€ClLy, L], xf(x)>0forze (LyL)\{0},
peCl0,00), p(0)=0, p(t)>0forte (0,00),
q € C[0,00), ¢(t)>0forte (0,00).

A model example of (7.1), (7.2) is the following:

p(t) =t qt)=t°, te[0,00), a>0, B3>0,
flz)=x(x — Lo)(L —x), z€R, Ly<0<L.

(7.2)

N TN N TN
NN A
S O s W
S N N

Equation (7.1) can have various types of solutions which are defined as follows.

Definition 7.1. Let ¢ € (0,00). A function v € C'[0, ] with pu’ € C*0, ]
which satisfies equation (7.1) for every t € [0, ] is called a solution of equation
(7.1) on [0, ¢]. If u is solution of equation (7.1) on [0, ¢| for every ¢ > 0, then u is

called a solution of equation (7.1).

Definition 7.2. Let ¢ € (0,00). A solution u of equation (7.1) on [0, ¢] which
satisfies the initial conditions (7.2) is called a solution of problem (7.1), (7.2) on
[0, ¢]. If w is solution of problem (7.1), (7.2) on [0, | for every ¢ > 0, then w is

called a solution of problem (7.1), (7.2).

Definition 7.3. A solution u of problem (7.1), (7.2) is said to be oscillatory if
u # 0 in any neighborhood of co and if v has a sequence of zeros tending to oo.

Otherwise, u is called nonoscillatory.

Definition 7.4. Let u be a solution of problem (7.1), (7.2) with ug € (Lo, L).

Denote
Usup = sup{u(t): t € [0,00)}.

If ugyp < L, then u is called a damped solution of problem (7.1), (7.2).
If ugyp = L, then u is called a homoclinic solution of problem (7.1), (7.2).

Definition 7.5. Assume that u is a solution of problem (7.1), (7.2) on [0, ¢,

where ¢ € (0,00) and ug € (Lo, L). If u satisfies
u(c) =L, u'(c) >0,
11



then u is called an escape solution of problem (7.1), (7.2) on [0, c].

Let us illustrate different types of solutions of problem (7.1), (7.2) with respect
to their asymptotic behaviour in relation to Definitions 7.4 and 7.5 in Figure 7.1.

u(t) / escape solution
L -

homoclinic solution

/_\ Z X, £\ damped solution
0 / \/ NSt

Figure 7.1: Types of solutions

Note that, according to p(0) = 0, the integral fol szS) may be divergent, which
means that equation (7.1) can have a singularity at t = 0.

In order to derive the existence of all three types of solutions of problem (7.1),
(7.2), we introduce the auxiliary equation

(p(t)u/ (1)) + q() f (u(t)) = 0, (7.7)
where
) f(x) forxe[Ly L]
J(x) = {O forx < Ly, x> L. (7.8)

(7.3), equations (7.1) and (7.7) have the constant solutions u(t) = L,
) = 0 and u(t) = Lo. Moreover, the solution u(t) = 0 is the only solution of
1) and (7.7) with uy = 0.

For many following results, we need, besides the basic assumptions (7.3)—(7.6),
the next assumptions.

By

u(t
7.

3B € (Ly,0): F(B) = F(L), where F(x / f(z reR, (7.9)
pq is nondecreasing on [0, c0) (7.10)
f € Lipoe (Lo L]\ {0}). (7.11)
lim L/t (s)ds =0 (7.12)
ot p(t) Jy N T '
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First, we provide the existence and uniqueness results, both for the auxiliary
problem (7.7), (7.2) and for the original problem (7.1), (7.2). The following two
theorems deal with the auxiliary problem.

Theorem 7.6 (Existence of a solution of problem (7.7), (7.2)). Assume
that (7.3)~(7.6) and (7.12) hold. Then, for each uy € [Ly, L], problem (7.7), (7.2)

has a solution w.
If moreover conditions (7.9)~(7.11) hold, then the solution u satisfies:

ifuo € [B,L), thenu(t)>B, te(0,00), (7.13)
if up € (Lo, B), then u(t) > ug, t€ (0,00). (7.14)

Theorem 7.7 (Uniqueness and continuous dependence on initial values).

Assume that (7.3)—~(7.6) and (7.12) hold and let
f € Lip[Lo, L] (7.15)

hold. Then, for each uy € [Lo, L], problem (7.7), (7.2) has a unique solution.
Further, for each b > 0, there exists K > 0 such that

lur — ug||c1ppp) < K|By — Byl

Here u; is a solution of problem (7.7), (7.2) with ug = B;, i = 1, 2.
Now, let us discuss the original problem.

Theorem 7.8 (Existence and uniqueness of a solution of problem (7.1),
(7.2)). Assume that (7.3)~(7.6), (7.9), (7.10), (7.12),

f € Liploc[L07oo)7
3CL € (0,00): —CL < f(x) <0 forx>1L

are satisfied. Then, for each ug € [Lo, L], problem (7.1), (7.2) has a unique
solution w. This solution u satisfies (7.13) and (7.14).

In the next theorem, we show that condition (7.12) used in the previous results
is necessary for the existence of a solution of problem (7.1), (7.2).

Theorem 7.9 (Necessity of condition (7.12)). Assume that (7.3)—(7.6) hold
and let u be a solution of problem (7.1), (7.2) with ug € (Lo,0) U (0,L). Then
(7.12) is valid.

Vice versa, assume that (7.12) is satisfied and let u be a solution of equation (7.1)
with u(0) € [Lg, L]. Then u'(0) = 0 and u is the solution of problem (7.1), (7.2).

Now, we specify an interval for starting values ug, where the existence of
damped solutions is guaranteed. Note that, by Definition 7.4 and the estimates
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(7.13), (7.14), each damped solution u of the auxiliary problem (7.7), (7.2) sat-
isfies Lo < u(t) < L for t € [0,00). According to (7.8), the function f coincides
with f on [Lo, L] and hence, all results for the damped solutions of problem (7.7),
(7.2) are valid also for the original problem (7.1), (7.2). In particular,

Theorem 7.10 (Existence and uniqueness of damped solutions of prob-
lem (7.1), (7.2)). Assume that assumptions (7.3)—(7.6) and (7.9)—(7.12) are
fulfilled. Then, for each uy € (B,L), problem (7.1), (7.2) has a solution u. The
solution u is damped and satisfies (7.13). If

pq is increasing on [0, 00), (7.16)

then this assertion holds also for ug = B.
If moreover f satisfies (7.15), then the solution u is unique.

Definition 7.11. A function u is called eventually positive (eventually negative),
if there exists to > 0 such that u(t) > 0 (u(t) < 0) for t € (tg,00).

In order to obtain conditions under which every damped solution of problem
(7.1), (7.2) is oscillatory, we distinguish two cases according to the convergence
1

or divergence of the integral floo ) ds.

CASE I: We assume that the function p fulfils

<1
/1 mds<oo. (7.17)

CASE II: We assume that the function p fulfils

/ 1 ds = o0. (7.18)
1

p(s)

First, we describe an asymptotic behaviour of nonoscillatory damped solutions
of problem (7.1), (7.2) in Case L.

Theorem 7.12. Assume that conditions (7.3)—(7.6), (7.9), (7.10), (7.17) and

t 1 S
lim —/ q(T)drds = 00
1 p(s) Sy (7)

t—o00

are fulfilled. If u is a damped nonoscillatory solution of problem (7.1), (7.2) with
ug € (Lg,0) U (0, L), then
lim wu(t) = 0.

t—o00

If moreover p satisfies

<1
lim inf p(t / ——ds > 0,
) ¢ p(s)

t—o00
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then
lim /() = 0.

t—o00

In the investigation of oscillatory solutions of problem (7.1), (7.2), we use the
following definition.

Definition 7.13. Let u be an oscillatory solution of problem (7.1), (7.2). Denote
{an} ({bn}) sequences of local maxima (minima) of u. Assume that either a,, <
by, < apy1 < bpy1, n€Nor b, <a, <byi1 < a1, n € N. Then the numbers
u(an) — u(b,), n € N are called amplitudes of u.

Theorem 7.14. Assume that conditions (7.3)—(7.6) and (7.9)—(7.11) hold. Let u
be an oscillatory solution of problem (7.1), (7.2) with ug € (Lo,0) U (0,L). Then
u 18 a damped solution and has nonincreasing amplitudes.

If moreover p and q satisfy (7.16), then amplitudes of u are decreasing.

Now, we provide criteria leading to oscillatory solutions of problem (7.1),
(7.2). First, we prove the results for CASE I (i.e.(7.17)) and then for CASE II
(i.e. (7.18)).

Theorem 7.15 (Damped solution is oscillatory 1, CASE I). Assume that
(7.3)(7.6), (7.9), (7.10), (7.17),

lim inf ) > 0, (7.19)
z—0+t X
lim inf @) > 0, (7.20)
z—0~ T
oo oo 1
/ *(s)q(s)ds = oo,  where ((t) = / —ds (7.21)
1

p(s)
7

¢
are fulfilled. Let u be a damped solution of problem (7.1), (
(0,L). Then u is oscillatory.

2) with ug € (L[), O)U

If we replace assumptions (7.5) and (7.21) by assumptions (7.22)—(7.24), we
get a modification of Theorem 7.15.

Theorem 7.16 (Damped solution is oscillatory 2, CASE I). Assume that
(7.3), (7.4), (7.6), (7.9), (7.10), (7.17), (7.19), (7.20),

p € C0,00) NC20,00),  p(0) =0, (7.22)
p'(t) >0 forte (0,00), tlggo ];,((tt)) =0, liiriigp plll((tt)) < oo, (7.23)
lim inf % >0 (7.24)



hold. Let u be a damped solution of problem (7.1), (7.2) with ug € (Lo, 0)U (0, L).
Then u is oscillatory.

In the next theorem, we provide a criterion for oscillatory solutions in CASE
IT (ie. (7.18)).

Theorem 7.17 (Damped solution is oscillatory 3, CASE II). Assume that
(7.3)-(7.6), (7.9), (7.10), (7.18) and

/100 q(s)ds = o0 (7.25)

are fulfilled. Let u be a damped solution of problem (7.1), (7.2) with ug € (Lo, 0)U
(0,L). Then u is oscillatory.

If we combine assumptions from Theorem 7.10 and Theorem 7.14 with as-
sumptions of Theorem 7.15 or Theorem 7.16 or Theorem 7.17, we get the main
results about existence of oscillatory solutions of problem (7.1), (7.2).

Theorem 7.18 (Existence of oscillatory solutions 1, CASE I). Assume
that (7.3)—(7.6), (7.9)«(7.12), (7.17) and (7.19)~(7.21) are fulfilled. Then, for
each ug € (B,0) U (0, L), problem (7.1), (7.2) has a solution u. This solution u
18 damped, oscillatory and has nonincreasing amplitudes.

Theorem 7.19 (Existence of oscillatory solutions 2, CASE I). Assume
that (7.3)—(7.6), (7.9)~(7.12), (7.17), (7.19), (7.20) and (7.22)—(7.24) are fulfilled.
Then, for each ug € (B,0) U (0, L), problem (7.1), (7.2) has a solution u. This
solution u 1s damped, oscillatory and has nonincreasing amplitudes.

Theorem 7.20 (Existence of oscillatory solutions 3, CASE II). Assume
that (7.3)—(7.6), (7.9)~(7.12), (7.18) and (7.25) are fulfilled. Then, for each uy €
(B,0) U (0, L), problem (7.1), (7.2) has a solution u. This solution u is damped,
oscillatory and has nonincreasing amplitudes.

Now, we study escape and homoclinic solutions. According to Theorem 7.10,
provided (7.16), a solution of problem (7.1), (7.2) is damped if uy € [B,L).
Hence, if u is escape or homoclinic solution of problem (7.1), (7.2), then uy €
(LO, B). Therefore, we can restrict our consideration about escape and homo-
clinic solutions on ug € (Lo, 0).

For the following existence theorems, we need these assumptions.

(pq)’ > 0 on (0,00), (7.26)
(p(t)q(t))"
fim =y = 0, (7.27)
()
h{ggf a0 > 0, (7.28)
litrg(ixrjf q(t) >0 (7.29)
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The next existence theorems have the following common assumptions
(7.3)—(7.6), (7.9), (7.12), (7.15) and (7.26)—(7.29). (7.30)

We provide the existence results for two cases which are characterized by condi-
tions (7.17) and (7.18). Therefore, we use in addition either assumptions

(7.17) and (7.19)(7.21) (7.31)

or assumptions

(7.17), (7.19), (7.20) and (7.22)—(7.24) (7.32)

or assumption (7.18).

Theorem 7.21 (Existence of escape solutions of problem (7.7), (7.2)).
Assume that (7.30) and either (7.31) or (7.32) or (7.18) hold. Then there exist
a sequence {u,}5°, of escape solutions of problem (7.7), (7.2) with uy = B,, €
(Lo, B).

Theorem 7.22 (Existence of a homoclinic solution of problem (7.7),
(7.2)). Assume that (7.30) and either (7.31) or (7.32) or (7.18) hold. Then
there exists a homoclinic solution of problem (7.7), (7.2).

Finally, we extend the existence results from Theorem 7.21 and Theorem 7.22
to the original problem (7.1), (7.2).

Theorem 7.23 (Existence of escape solutions of problem (7.1), (7.2)).
Assume that (7.30) and either (7.31) or (7.32) or (7.18) hold. Then, for each
n € N, there exist constant ¢, € (0,00) and function u,, such that u, is an escape
solution of problem (7.1), (7.2) on [0,¢,] with ug = B, € (Lo, B).

Theorem 7.24 (Existence of a homoclinic solution of problem (7.1),
(7.2)). Assume that (7.30) and either (7.31) or (7.32) or (7.18) hold. Then
there exists a homoclinic solution of problem (7.1), (7.2).

Differential equations with ¢-Laplacian

Now, we investigate the equation
(p(®)o(u' (1)) + p(t) f((u(t)) =0 (7.33)
with the initial conditions
w(0) =wug, '(0)=0, wg€ [Lg,L] (7.34)

and assume these basic assumptions:
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¢ € C'(R), ¢'(z)>0forze (R\{0}), (7.35)

¢(R) =R, ¢(0)=0, (7.36)

Ly <0< L, f(o(Lo)) = f(0) = f(o(L)) =0, (7.37)

f € Clo(Lo),o(L)], zf(x)>0for x € ((¢(Lo), p(L)) \ {0}), (7.38)
p € C[0,00) N C(0, oo) p'(t) > 0 for t € (0,00), p(0)=0. (7.39)

A model example of (7.33), (7.34) is a problem with the a-Laplacian:

o(z) = |z|*sgnz, zeR, a>1,

p(t)=1t°, te€[0,00), >0,
f(@) =z (- ¢(Lo)) (¢(L) —x), z€R, Lo<0<L.

First, we study bounded solutions defined on [0,00). Therefore, we use the
next definitions.

Definition 7.25. A function u € C*[0, 00) with ¢(u') € C* (0, 00) which satisfies
equation (7.33) for every t € (0,00) is called a solution of equation (7.33). If
moreover u satisfies the initial conditions (7.34), then u is called a solution of
problem (7.33), (7.34).

Definition 7.26. Consider a solution u of problem (7.33), (7.34) with uy €
(Lo, L) and denote

Usup := sup{u(t): t € [0,00)}.
If ugyp < L, then w is called a damped solution of problem (7.33), (7.34).
If usyp = L, then u is called a homoclinic solution of problem (7.33), (7.34).
The homoclinic solution is called a regular homoclinic solution, if u(t) < L for
€ [0,00) and a singular homoclinic solution, if there exists ¢, > 0 such that

u(to) = L.

Equation (7.33) has the constant solutions u(t) = L, u(t) = 0 and u(t) = Ly.
Moreover, the solution u(t) = 0 is the only solution of problem (7.33), (7.34) with
ug = 0.

We introduce the auxiliary equation

(p()(u' (1)) + p(t) f(d(u(t))) = 0, (7.40)
where

f(z) =

; fx) for x € [¢(Lo), ¢(L)],
0 for x < ¢(Lo), x > ¢(L).
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For many following results, we need, besides the basic assumptions (7.35)—
(7.39), the next assumptions.

3B € (Lo, 0): F'(B) = F(L), where F(z) := /Ox f(o(s))ds, zeR (7.41)

and ”
lim supp( ) < 00. (7.42)
t—o0 p(t)
Theorem 7.27 (Existence of solutions of problem (7.40), (7.34)). Assume
that (7.35)—(7.39) hold. Then, for each uy € Lo, L], there exists a solution u of
problem (7.40), (7.34).

Now, we examine the uniqueness of solutions of the auxiliary problem (7.40),
(7.34). Assumption (7.35) implies that ¢ € Lipjo.(R). This need not be true for
¢~ 1. The special case when both ¢ and ¢! are locally Lipschitz continuous is
discussed in the next theorem.

Theorem 7.28 (Uniqueness and continuous dependence on initial values
I). Assume that (7.35)—(7.39),

f € Lip[a(Lo), d(L)], (7.43)
¢! € Lippoc(R) (7.44)

are satisfied. Let u; be a solution of problem (7.40), (7.34) with ug = B; € [Lo, L],
1 =1,2. Then, for each 3 > 0, there exists K > 0 such that

|lur — usl|cryo,5) < K| By — Bal.

Furthermore, any solution of problem (7.40), (7.34) with uy € [Ly, L] is unique
on [0, 00).

In the next two theorems, we show the assumptions under which solutions of
problem (7.40), (7.34) continuously depend on their initial values in the case that
¢~ is not locally Lipschitz continuous.

Theorem 7.29 (Continuous dependence on initial values II). Assume that
(7.35)~(7.39), (7.41)~(7.43) and

lim sup <—3: (gb_l)/ (x)) < oo, ¢ is nonincreasing on (—oo,0) (7.45)

z—0~

are fulfilled. Let By, Bs satisfy

B, € (25,[/ — 26), |B1 — BQ’ < €

19



for some € > 0. Let u; be a solution of problem (7.40), (7.34) with uy = B;,
1 =1,2. Then, for each B > 0, where

u, <0 on (0,0], i=1,2,
there exists K € (0,00) such that
lur = wallcro,p < KBy — Bal.

Theorem 7.30 (Continuous dependence on initial values III). Assume
that (7.35)—(7.39), (7.41)—(7.43) and

lim sup (3: ((b*l)/ (I)) < o0, ¢ is nondecreasing on (0,00) (7.46)

z—0t

hold. Let By, By satisfy
B, € (L0+28,—26), |Bl—B2’ < €

for some € > 0. Let u; be a solution of problem (7.40), (7.34) with uy = B;,
1=1,2. Then, for each 3 > 0, where

u, >0 on (0,0], i=1,2,
there exists K € (0,00) such that

|lur — usl|crio,5) < K| By — Bal.

The existence of damped solutions of the original problem (7.33), (7.34) is
proved in Theorem 7.31. Moreover, this theorem yields the uniqueness of damped
solutions provided that ¢! is Lipschitz continuous, while Theorem 7.32 gives the
uniqueness of damped solutions without the Lipschitz continuity of ¢~!.

Theorem 7.31 (Existence and uniqueness of damped solutions of prob-
lem (7.33), (7.34)). Assume that (7.35)—(7.39), (7.41) and (7.42) hold. Then,
for each ug € [B,L), problem (7.33), (7.34) has a solution. Every solution of
problem (7.33), (7.34) with ug € [B, L) is damped.

If moreover (7.43) and (7.44) hold, then the solution is unique.

By Theorem 7.31, we can get homoclinic solutions only if ug € [LO, B’).

Theorem 7.32 (Uniqueness of damped solutions). Assume that (7.35)-
(7.39), (7.41)—(7.43), (7.45) and (7.46) are fulfilled. Let u be a damped solution
of problem (7.33), (7.34) with uy € (Lo, L). Then u is a unique solution of this
problem.

Further, we discuss homoclinic solutions.
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Theorem 7.33 (Nonexistence of singular homoclinic solutions). Assume
that (7.35)(7.39), (7.43) and (7.44) hold. Then each homoclinic solution of
problem (7.33), (7.34) with ug € (LO,B) is reqular.

Theorem 7.33 discusses the case, where ¢! € Lipjo.(R). Now, we study the
case, where condition (7.44) falls, that is ¢! ¢ Lipj,c(R). Then both regular and
singular homoclinic solutions may exist and we are able to prove the uniqueness
just for regular ones.

Theorem 7.34 (Uniqueness of regular homoclinic solutions). Assume that
(7.35)—(7.39), (7.41)—~(7.43) and (7.46) are satisfied. Let u be a reqular homoclinic
solution of problem (7.33), (7.34) with uo € (Lo, B). Then u is a unique solution
of this problem.

Now, we study escape — especially unbounded — solutions. For their investi-
gation, the need the assumption

f € Clop(Ly),0), f(xr) <0 for x> ¢(L) (7.47)

and consider the following definition of the solution.

Definition 7.35. Let [0,b) C [0, 00) be a maximal interval such that a function
u e C'[0,b) with ¢(u') € C' (0, b) satisfies equation (7.33) for every t € (0,b) and
let u satisfy the initial conditions (7.34). Then w is called a solution of problem
(7.33), (7.34) on [0,b). If u is solution of problem (7.33), (7.34) on [0,00), then
u is called a solution of problem (7.33), (7.34).

Since f is bounded on R, the maximal interval [0,b) for each solution of
problem (7.40), (7.34) is [0, 00).

Definition 7.36. Let u be a solution of problem (7.33), (7.34) on [0,b), where
b € (0,00]. If there exists ¢ € (0,b) such that

u(c) =1L, u'(c) >0,
then w is called an escape solution of problem (7.33), (7.34) on [0,b).

First, we discuss the existence of escape solutions of problem (7.40), (7.34)
provided the Lipschitz continuity of ¢! and f.

Theorem 7.37 (Existence of escape solutions of problem (7.40), (7.34)
I). Let (7.35)~(7.39), (7.41), (7.43), (7.44), (T.47) and

lim p'(t)
t—oo p(t)

= 0. (7.48)

hold. Then there exist infinitely many escape solutions of problem (7.40), (7.34)
with different starting values in (Lo, B) converging to Ly.
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Now, we investigate the existence of escape solutions in the case, where ¢!
and f do not have to be Lipschitz continuous. In order to prove this existence
result, we consider the lower and upper functions method for an auxiliary mixed
problem on [0,7]. In particular, we use this method to find solutions of (7.40)
which satisfy

W'(0)=0, w(T)=C, Ce€lLyLl. (7.49)

Definition 7.38. A function u € C'[0,T] with ¢(v') € C'(0,T] is a solution of
problem (7.40), (7.49) if u fulfils (7.40) for t € (0,7] and satisfies (7.49).

Definition 7.39. A function oy € C[0,7] is a lower function of problem (7.40),
(7.49) if there exists a finite (possibly empty) set ¥; C (0,7) such that o, €
C%((0,T]\ ;) and

(p(t) (01 (1)) + p(t) f(@(01(t))) >0, ¢ € (0,T]\ %y,
—co < o(tT)<ol(tT) <00, TEX,
a(07) >0, o (T) < C.

Analogously,

Definition 7.40. A function o € C[0,T] is an upper function of problem (7.40),
(7.49) if there exists a finite (possibly empty) set Yo C (0,7) such that oy €
C%((0,T] \ X2) and

(p(t) p(0h()))" + p(t) f(d(02(t))) <0, t € (0,T]\ s,
—00 < op(tT) < oh(77) <00, T E Ny,
a,(07) <0, 0o(T) > C.

Theorem 7.41 (Lower and upper functions method). Let (7.35)—(7.39)
and (7.47) hold and let o1 and o9 be lower and upper functions of problem (7.40),
(7.49) such that

Ol(t) §0'2<t>, t e [O,T]

Then problem (7.40), (7.49) has a solution u such that
o1(t) < u(t) < oy(t), te][0,T].

Theorem 7.42 (Existence of escape solutions of problem (7.40), (7.34) II).
Let (7.35)—(7.39), (7.41), (7.47) and (7.48) hold. Then there exist infinitely many
escape solutions of problem (7.40), (7.34) with not necessary different starting
values in [LO,B).

In the case, where ¢! does not have to be Lipschitz continuous, the unique-
ness of damped and regular homoclinic solutions is guaranteed by Theorems 7.32
and 7.34, respectively. Similarly, we can obtain also the uniqueness of escape
solutions.
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Theorem 7.43 (Uniqueness of escape solutions). Assume that (7.35)-
(7.39), (7.42), (7.41), (7.43), (7.46) and (7.47) hold. Let u be an escape solution

of problem (7.40), (7.34) with ug € (LO,B). Then u is a unique solution of this
problem.

Now, we discuss the original problem (7.33), (7.34) and provide conditions
which guarantee that an escape solution of (7.33), (7.34) is unbounded.

Note that solutions of the original problem (7.33), (7.34) and solutions of the
auxiliary problem (7.40), (7.34) are related in the following way, when (7.35)-
(7.39), (7.41), (7.47) and (7.48) are assumed. FEach solution of (7.40), (7.34)
which is not an escape solution, is a bounded solution of the original problem
(7.33), (7.34) in [0, 00). If u is an escape solution of the auxiliary problem (7.40),
(7.34), i.e.

de € (0,00): u(t) € [Lo, L), t € [0,¢), u(c)=L, u'(c)>0, (7.50)

then u fulfils at once the auxiliary equation (7.40) and the original equation (7.33)
on [0,c]. The restriction of u on [0, ¢| can be extended as an escape solution of
problem (7.33), (7.34) on some maximal interval [0,b). Therefore, we search
unbounded solutions of (7.33), (7.34) in the class of escape solutions of (7.33),
(7.34) on [0,b).

Since in general, an escape solution u of (7.33), (7.34) on [0, b) need not to be
unbounded, we derive criteria for u to tend to infinity.

Since all escape solution of (7.40), (7.34) on [0, b) that cannot be extended on
the halfline [0, 00) are naturally unbounded, we continue our investigation about
unboundedness of escape solutions defined on [0, co).

Theorem 7.44. Assume that (7.35)—(7.39) and (7.47) hold and let

lim p(t) < 0. (7.51)

t—o00

Let w be an escape solution of problem (7.33), (7.34). Then

lim u(t) = oo. (7.52)

t—o00

Theorem 7.45. Assume that (7.35)—(7.39), (7.47), (7.48) and
f(x) <0  forx > ¢(L) (7.53)

hold. Let u be an escape solution of problem (7.33), (7.34). Then (7.52) holds.

For f =0 on (¢(L),00), we are able to find necessary and sufficient condition
for the unboundedness of escape solutions of problem (7.33), (7.34).
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Theorem 7.46. Assume that (7.35)—(7.39), (7.47),

flz) =0 forax > ¢(L), (7.54)
¢(ab) = ¢(a)p(b), a,be (0,00) (7.55)

are satisfied. Let u be an escape solution of problem (7.33), (7.34). Then

lim u(t) =00 = /jogbl(]%) ds = oo.

If we replace condition (7.55) by

¢(ab) < ¢(a)p(b), a,b € (0,00), (7.56)

/100 ¢t (ﬁ) ds = oo. (7.57)

Now, we present the existence results about unbounded solutions of the origi-
nal problem (7.33), (7.34) in the case, where ¢! and f are Lipschitz continuous,
see Theorems 7.47, 7.48 and 7.49. Then, in Theorems 7.50, 7.51 and 7.52, we
present the main existence results about unbounded solutions of the original
problem (7.33), (7.34) provided ¢! and f need not be Lipschitz continuous.
According to Definition 7.35, we assume that for each n € N, [0,b,) C [0,00)
is a maximal interval such that a function u, satisfies equation (7.33) for every
t € (0,b,).

Theorem 7.47. Assume that (7.35)—(7.39), (7.41), (7.43), (7.44), (7.47), (7.48)
and (7.51) hold. Then there ezist infinitely many unbounded solutions u, of
problem (7.33), (7.34) on [0,b,) with different starting values in (Lo, B), n € N.

Theorem 7.48. Let (7.35)—(7.39), (7.41), (7.43), (7.44), (7.47), (7.48) and
(7.53) hold. Then there exist infinitely many unbounded solutions u, of problem
(7.33), (7.34) on [0, b,) with different starting values in (Lo, B), n € N.

Theorem 7.49. Assume that (7.35)—(7.39), (7.41), (7.43), (7.44), (7.47), (7.48),
(7.54), (7.56) and (7.57) hold. Then there exist infinitely many unbounded so-
lutions u,, of problem (7.33), (7.34) on [0,b,) with different starting values in
(Lo, B), n e N.

Theorem 7.50. Let (7.35)~(7.39), (7.41), (7.47), (7.48) and (7.51) hold. Then
there exist infinitely many unbounded solutions u, of problem (7.33), (7.34) on
0,b,,) with not necessary different starting values in [LO, B), n € N.

then (7.52) holds if

Theorem 7.51. Assume that (7.35)—(7.39), (7.41), (7.47), (7.48) and (7.53)
hold. Then there exist infinitely many unbounded solutions u, of problem (7.33),
(7.34) on [0,b,) with not necessary different starting values in [Lo, B), n € N.
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Theorem 7.52. Let (7.35)—(7.39), (7.41), (7.47), (7.48), (7.54), (7.56) and
(7.57) hold. Then there exist infinitely many unbounded solutions u,, of problem
(7.33), (7.34) on [0,b,) with not necessary different starting values in [Lo, B),
n € N.

It si clear that every unbounded solution of problem (7.33), (7.34) is an escape
solution. We can formulate also the reverse assertion.

Theorem 7.53. Assume all assumptions of Theorem T7.47 or 7.48 or 7.49 or
7.50 or 7.51 or 7.52. Then each escape solution of problem (7.33), (7.34) is
unbounded.

8 Summary of results

The thesis presented new contributions to the theory of singular nonlinear ordi-
nary differential equations on an unbounded interval. We managed to generalize
current results about existence and properties of three types of solutions of the
singular equation

(p(t)u' ()" + p(t) f(u(t)) = 0
to the equation with different coefficient functions p and ¢ and to the equation
with ¢-Laplacian.
The first part of the thesis dealt with the initial value problem

(') +a®) f(u®) =0, u(0) =up € [Lo, L], '(0)=0  (8.1)

and with an auxiliary initial value problem, where the nonlinearity f is replaced
by a bounded nonlinearity f . We proved the existence (Theorem 7.6) and unique-
ness of a solution of this auxiliary problem for every considered starting value as
well as a continuous dependence of solutions on initial values (Theorem 7.7).

A significant attention was dedicated to the damped solutions of the original
problem (8.1). Their existence was proved in Theorem 7.10 together with a
starting interval giving only damped solutions. Theorem 7.14 gave that every
oscillatory solution is the damped solution and has nonincreasing amplitudes. In
addition, three types of conditions which guarantee that each damped solution
is oscillatory were shown in Theorems 7.15, 7.16 and 7.17. The existence of
oscillatory solutions was proved under these three different criteria in Theorems
7.18-7.20.

In connection with three obtained criteria for the oscillation of solutions, we
reached three criteria (with additional conditions) leading to the existence of
escape (Theorem 7.23) and homoclinic solutions of problem (8.1) (Theorem 7.24).

The second part of the thesis investigated the initial value problem

(p(D)o(u' (1)) +p(O)f(D(u(t))) =0, u(0) =uo € [Lo, L], u'(0)=0 (8.2)
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and an auxiliary initial value problem with a bounded nonlinearity f instead of
f. Theorem 7.27 guaranteed the existence of a solution of this auxiliary problem
for each considered starting value. The uniqueness of the solution of this problem
was proved in Theorem 7.28 provided that ¢! is locally Lipschitz continuous on
R. In the case that this condition falls, we proved the continuous dependence of
solutions on positive initial values in Theorem 7.29 and for negative initial values
in Theorem 7.30.

The existence of damped solutions of problem (8.2) was guaranteed by The-
orem 7.31 for the same starting values as for problem (8.1). We proved the exis-
tence of escape solutions of auxiliary problem in the case, where both functions
¢! and f are Lipschitz continuous (Theorem 7.37) and also in the more difficult
opposite case (Theorem 7.42). Further, we derived three criteria guaranteeing
that each escape solution of problem (8.2) is unbounded (Theorems 7.44, 7.45,
7.46). Finally, by combinations of these criteria with theorems guaranteeing the
existence of escape solutions, we obtained the criteria of existence of unbounded
solutions of problem (8.2) (Theorems 7.47, 7.48, 7.49, 7.50, 7.51 and 7.52).
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