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ABSTRACT
This thesis discusses ionizing radiation measurements conducted by autonomous robotic
platforms, namely, unmanned ground vehicles and unmanned aircraft systems. The
research comprises two fundamental tasks: radiation mapping and the localization of
radioactive sources. The author introduces various radiation detection systems and
explores their integrability into terrestrial and aerial robots. The experimentation is de-
signed to develop methods for retrieving the positions of radiation emitters. The actual
effort to produce such techniques embraces both systematic pre-planned surveys and ac-
tive adjustment of the measurement trajectories to accelerate the process. Notably, this
type of adjustment also involves directionally sensitive sensors. The thesis investigates
the benefits of collaboration between ground and aerial platforms in detailed radiation
mapping, exposing a practical application scenario. Furthermore, a possible use case
rests in three-dimensional radiological characterization of a building via an unmanned
aircraft. The majority of the proposed algorithms have been validated through real-world
experiments that have confirmed their robustness and practicality.

KEYWORDS
Radiation mapping, radiation source search, mobile robotics, cooperative robots, envi-
ronmental monitoring.

ABSTRAKT
Tato disertační práce se věnuje oblasti měření ionizujícího záření prostřednictvím auto-
nomních robotických platforem, konkrétně pozemních robotů a bezpilotních leteckých
systémů. Zaměřuje se na dva hlavní cíle, a to na radiační mapování a lokalizaci radio-
aktivních zdrojů. Autor představuje různé systémy pro detekci radiace a zabývá se jejich
integrací na pozemní i vzdušné roboty. Nedílnou součástí výzkumu je vývoj metod pro
zjištění pozic zářičů, a to nejen pomocí systematického průzkumu podél předem napláno-
vané trasy, ale také s využitím aktivního upravování měřicí trajektorie za účelem zrychlení
tohoto procesu. V rámci aktivní lokalizace jsou prověřovány také směrově citlivé senzory.
Tato práce zkoumá i výhody spolupráce mezi pozemními a leteckými platformami, čímž
demonstruje praktickou využitelnost prezentovaných postupů. Další oblastí využití robotů
je trojrozměrné radiační mapování budov prostřednictvím bezpilotního letadla. Většina
navržených algoritmů byla experimentálně ověřena v terénu.
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1 Introduction

This thesis explores robotic platforms and methods for ionizing radiation measure-

ments, with a particular emphasis on radiation mapping and the localization of

radioactive sources. The author is affiliated with the Robotics and AI research

group at Brno University of Technology, which collaborates extensively with various

organizations committed to the mitigation of chemical, biological, radiological, and

nuclear (CBRN) threats. The partnerships encompass both local institutions such

as the Brno-based University of Defence (and the National Radiation Protection

Institute of Prague) and worldwide bodies including, for example, the International

Atomic Energy Agency. Through these collaborative efforts, it has become increas-

ingly evident that the intersection of robotics and radiation protection holds sig-

nificant potential for enhancing our capacity to reduce relevant complex hazards.

This work has been conceived to expose the critical aspects of nuclear security and

to examine the application of robotic systems, with a strong focus on autonomous

operations.

Ionizing radiation plays an important role in present-day human lives, as the effect

can be encountered in a variety of fields where it serves to our benefit. In medicine,

the radiation facilitates both diagnostics and therapy; the former involves X-ray

radiography, computer tomography (CT) scans, and positron emission tomography

(PET) scans, while the latter allows specialists to destroy cancer cells. The radia-

tion is inseparably connected with the electricity generation in nuclear power plants.

Further, it is employed in inspecting the integrity of welds, pipelines, and industrial

structures in general; however, the effect finds use also in sterilizing medical equip-

ment, pharmaceuticals, and food. Another target domain lies in research, namely,

in fields like particle physics and material science. Weak sources are embedded even

in smoke detectors, which can be easily found in common hotel rooms.

In many of the applications above, the source of radiation rests in radionuclides,

and these substances can slip out of control during incidents or accidents. Such

uncontrolled sources may pose a risk to human health; therefore, we need to monitor

the radiation situation via spatially distributed measurements, and sometimes it is

even necessary to retrieve the precise position of the sources. As ionizing radiation

is invisible, a multitude of detection systems of different types have been developed

over the past century since the time radioactivity became an object of interest.

10



Ionizing radiation occurs in three primary forms, each characterized by distinct

properties and interaction mechanisms. Alpha particles are helium-4 nuclei, meaning

that they exhibit a large mass and a positive charge; thus, they can be easily stopped

and remain relatively safe if not inhaled or ingested. Conversely, beta particles

are high speed electrons or positrons and possess greater penetration capabilities,

potentially posing a risk to tissues upon contact. However, as these particles are

also charged, they can still be efficiently stopped by certain shielding materials.

Gamma rays are electromagnetic waves and the most penetrating form of natural

radiation. The rays cannot be completely disabled, only exponentially attenuated;

such an outcome is achievable with dense materials such as lead and tungsten. All

the radiation forms share the capacity to ionize atoms, disrupting their electron

structures and affecting a range of biological and molecular effects. The ionizing

particles are released either immediately, during radioactive decay processes, or later,

through the resulting nuclear transitions. Yet another distinct form of ionizing

radiation rests in neutron radiation, which relates primarily to nuclear fission and

nuclear fusion. The research presented herein centers solely on gamma radiation

due to its high penetration capabilities, relevance in typical applications, and also

the fact that it is emitted by commonly appearing isotopes such as caesium-137.

Gamma radiation interacts with matter through several fundamental processes.

First, let us mention Compton scattering, during which the photon transfers a part

of its energy to an interacting electron; as a result, the photon’s direction changes.

Note that the process follows the scattering formula, which can be exploited to

estimate the angle of the incident gamma ray. In the case that the gamma photon

is fully absorbed by an electron, the interaction is called the photoelectric effect.

These two phenomena dominate at lower energies; once the transferred energy has

exceeded the level of 1022 keV, a pair production is enabled, yielding the emission

of an electron and a positron. The principal interactions are schematically depicted

in Fig. 1.1. These processes form the basis of the detection principles, and they

have to be understood properly in order to explain the radiation propagation in

the environment. The radiation follows the inverse square law, i.e., the intensity

is inversely proportional to the square of distance. Further, the radiation is also

exponentially attenuated in mass at a rate given by the linear attenuation coefficient,

which depends on the material and the photon energy.

The set of radiation detection principles involves various techniques that utilize

the fundamental interactions to give rise to measurable signals, providing crucial

insights into the presence, type, and energy of the radiation. The detectors are clas-

sified into three principal categories, namely, gas-filled, scintillation, and semicon-

ductor devices. The first category comprises ionizing chambers and Geiger-Müller

(GM) counters; the former operate via measuring the electrical charge generated
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Figure 1.1: Common gamma radiation interactions with matter.

by gas ionization within the chamber. This charge is proportional to the energy

of the incident radiation, allowing the spectrometry. A spectrum is essentially an

energy histogram of registered interactions, typically containing features such as the

so-called Compton edge (related to the scattering) and photopeaks (related to the

photoelectric effect), which allow us to identify the isotope that emitted the detected

radiation. Conversely, the GM counters lack the ability to provide energy informa-

tion because the original charge is amplified via the Townsend discharge (avalanche);

this amplification, however, offers high sensitivity, simple operation, and the capa-

bility of detecting single radiation events. Importantly, the set of gaseous detectors

includes a further type, in addition to the above ones; the relevant device is called

the proportional counter and combines the principles of the other two approaches.

The counter exploits the avalanche concept but is still able to measure the spectra.

Scintillation detectors exploit the ability of certain materials (scintillators) to

emit flashes of light when irradiated. These flashes are converted to electric signals

by means of photodetectors, namely, either the conventional photomultiplier tubes

or the recently broadly available semiconductor devices. The amplitude of such

signals is proportional to the energy of the original interaction; scintillators thus

exhibit spectrometric capabilities. This commonly used detection principle plays an

essential role in the thesis and is illustrated in Fig. 1.2.

Finally, semiconductor detectors are based on the electrical charge generated by

the gamma radiation interacting with the semiconductor lattice. Again, the mag-

nitude of such a charge depends on the energy of the incident radiation. These

detectors are made from, e.g., silicon or germanium and provide excellent energy

resolution, making them highly suitable for precise radionuclide identification. The

choice of a proper detector always depends on factors such as the type of the ra-

diation being measured, the desired energy resolution, the required sensitivity, and

the application domain. A comprehensive insight into the radiation measurement

domain is provided in reference [1].
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Figure 1.2: The scintillation detector principle.

Once the mission objectives are established and a convenient detection system

is selected for the purpose, the detectors have to be transported to the points of

interest, typically denoted as sampling points. Traditionally, this task is carried out

by radiation operatives; examples of airborne (airplane or helicopter), carborne, and

even walking surveys are available in the literature [2, 3, 4]. However, the devices can

be also mounted on robotic platforms, introducing several benefits into the task. The

robots are able to access environments overly dangerous or inaccessible to humans.

The unmanned vehicles are either remotely operated or work autonomously, allowing

the radiation specialists to stay outside of potentially contaminated regions. In the

autonomous mode, the robots manage to perform measurements consistently and

repeatedly, reducing possible variability in the results. Moreover, under proper con-

ditions, the robotically acquired datasets tend to exhibit more prominent precision

and accuracy. Nonetheless, the robotic platforms also exhibit certain disadvantages.

First, it may be technically challenging to fully integrate radiation detection systems

into robots; this holds true especially of off-the-shelf systems designed to be used

by humans. Second, traditional measurement procedures and calibration models

may not be directly applicable; therefore, the methodology needs to be adapted

and validated, and sometimes reference data acquired by conventional means are

needed. Finally, the robotic systems have limitations in terms of the power supply

and mobility; they are usually not designed to fit a variety of different environments.

Further, there may be a problem with susceptibility to radiation damage in high-

intensity scenarios; radiation-hardened devices may be required instead of common

commercial platforms.

Principally, two field robotics domains are relevant to radiation monitoring, and

these include ground and aerial robots. Each category finds use in specific applica-

tions, possessing inherent attributes given by its character. The terrestrial platforms

provide stability, i.e., the detector can easily dwell in a fixed position. They can op-

erate close to the obstacles without a significant risk of collision and are capable of

carrying detection systems at a constant height above the ground, which is benefi-
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cial for precise absolute radiation mapping. The ground robots also grant a superior

proximity to radiation sources distributed on the surface, compared to the aerial

vehicles.

Conversely, the drones exhibit exceptional speed and mobility to rapidly perform

large-scale surveys and can avoid ground-level obstacles, e.g., dense vegetation, by

flying over them. In general terms, aerial platforms ensure a bird’s eye perspective

and can simultaneously collect image data or laser scans to reconstruct an up-to-

date model of the examined scene. Finally, the measurements are not limited to a

single plane, having a potential to be carried out in three dimensions to acquire more

comprehensive radiation maps. Regrettably, unlike the ground platforms in the same

weight category, the aerial vehicles typically exhibit smaller payload capacities, a

drawback preventing them from being equipped with heavy tools such as gamma

cameras. Similarly to the detection system, the choice of a fitting robotic platform

should always depend on specific conditions related to the environment and mission

objectives.

1.1 Motivation

Several real-world events advocate the utilization of robotic systems in situations

where uncontrolled radiation sources or radioactive contamination occurred. Fol-

lowing the explosion at the Chernobyl nuclear power plant (NPP) in 1986, robots

were applied to assess reactor conditions, clear up debris, and monitor radiation

levels. In addition to other devices, the Soviet lunar rovers Lunokhod facilitated the

designing and development of state-of-the-art robots for this task, as these pioneer-

ing vehicles had already been partially radiation-hardened to operate in space; in

practice, however, both of the units employed at Chernobyl eventually failed because

the radiation levels had become extremely high (Fig. 1.3a).

Another large-scale nuclear disaster took place in 2011 at Fukushima, where mul-

tiple reactor meltdowns resulted in a release of radioactive materials. Unmanned

ground vehicles like the PackBot and Quince were utilized to explore the reactor

building (Fig. 1.3b). During the subsequent years, other platforms were developed,

e.g., snake-like robots to inspect the pipes leading into the containment vessels, and

surface boats to operate in the pools that had formed due to the need to cool down

the damaged cores. Robots equipped with manipulators are essential in specific

decommissioning chores. The contamination generated by the Fukushima event is

spread across Japan, and the radioactive waste needs to be stored. Such hazardous

sites require periodical monitoring to assess the risks and to help with the remedi-

ation; unmanned aircraft systems (UASs), or drones, have therefore been exploited

to do so in multiple cases (Fig. 1.3c).
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(a) (b)

(c) (d)

(e) (f)

Figure 1.3: Examples of real-world scenarios where the robotic systems were applied

to measure radiation or perform related tasks: cleaning the debris at the

Chernobyl NPP [5] (a); exploring the reactor building at the Fukushima

Dai-ichi NPP [6] (b); a UAS-based radiation map of the nuclear waste

temporary storage site in Kawamata, Japan [7] (c); securing a lost ra-

dioactive source in Mexico [8] (d); a robot exploring the collapsed tunnel

at Henford, Washington, the US [9] (e); surveying a uranium legacy site

in Kyrgyzstan via a UAS [10] (f).
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However, other risks have to be considered too. In Mexico, for example, it is

rather common that radioactive sources get stolen during transportation; the thieves

usually claim that they were targeting the vehicle, not its content. A prominent in-

cident of 2013 involved the application of a remotely controlled robot to secure the

lost source (Fig. 1.3d); similar events nevertheless happen almost every year in the

region. In the USA, by extension, a tunnel collapsed in 2017 at a major nuclear

facility near Hanford, Washington, creating a potentially dangerous situation. The

authorities deployed a TALON robot, or, more concretely, the Hazmat model, to

survey the area, acquire the radiation data, and capture relevant videos (Fig. 1.3e).

Drones are being increasingly used to survey and map both operational and aban-

doned uranium mines, where the natural radioactivity occurs in extensive volumes.

The relevant application sites are spread across, e.g., Australia, the United Kingdom,

and Central Asia (Fig. 1.3f).

1.2 Aims and Objectives

The aim of the research herein is to probe various aspects, the practical ones in par-

ticular, of the robotic measurements of gamma radiation, with an emphasis on two

principal tasks: the radiation mapping and the localization of sources. In order to

be able to test the proposed methods through real-world experiments, it is necessary

to establish the scope of possible scenarios and to select suitable radiation detection

systems accordingly. An inevitable step, then, is to equip the robots operating in

the studied domains (ground and aerial) with these sensors.

The state-of-the-art techniques often lack the ability to automatically estimate

the parameters of the sources, such as their position, mainly in the case that the

amount of the sources is not known in advance. The goal lies in introducing a robust

method that is able to process data collected during a traditional systematic survey

to retrieve the number and location of the radionuclides present in the mapped region

of interest. A related aim is to shorten the localization time by altering the robot

trajectory dynamically, exploiting the actual measurements; these techniques may

take advantage of, for instance, the directional sensitivity of the applied detection

system or the on-line source estimates acquired via Bayesian inference.

The research has been conceived to focus on utilizing multiple unmanned vehicle

at a time, as the cooperation between the vehicles can combine the advantages of

the different types of robots. The aerial photogrammetry executed by the drones

has the capacity to build a 3D model of the surveyed area, which can be exploited in

autonomous navigation or even enable the production of three-dimensional radiation

maps.
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The main objectives of the thesis can be defined as follows:

Aim 1: Integrating various radiation detection systems into both the terrestrial

and the aerial robotic platforms to enable data collection and comprehen-

sive field testing of radiation mapping and localization algorithms.

Aim 2: Developing algorithms for localizing radioactive point sources on the basis

of scattered sampling points and exploring the possibilities of information-

driven localization.

Aim 3: Examining applications which expand the capabilities of straightforward

radiation mapping, namely, the cooperation between the terrestrial and the

aerial robots and three-dimensional mapping; this aim is closely related to

verifying the usability of the applications in real-world conditions.

1.3 Outline

This thesis explores the primary outcomes of the author’s research, presenting a

compilation of the key publications that cover the relevant results. The text is

structured into two distinctive segments: Preamble and Publications. The former

part defines the aims and goals while providing a comprehensive overview of the

current knowledge in the specific research topics; in this sense, the focus is on the

radiation mapping and source localization via ground and aerial robots (State of

the Art). Additionally, the central chapters, above all Research Summary, offer

an insight into the author’s most significant achievements and published research

articles; the Discussion section then interrelates the past efforts and the objectives

set out in the thesis.

The latter segment, conveniently called Publications, centers on the author’s main

published results, accommodating five pre-prints of the articles that address the

above-presented research topics. Four of these items, comprising a proceedings and

three journal articles, have already undergone the peer-review process. The remain-

ing part, a manuscript, is currently being considered for publication, as of October

2023. Each item indicates the fundamental details, including the bibliographical

information, abstract, author’s contribution, funding, and copyright notice.

An exhaustive index of the author’s publications, encompassing both those closely

aligned with the examined domain and those concerning other radiation-related

subjects, is offered in the Appendices under the section List of Author’s Publications.
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2 State of the Art

The broad area of measuring ionizing radiation via robotic systems can be di-

vided into three principal domains, namely, radiation mapping, the localization of

hotspots, and the tracking of radioactive plumes [11]. The first field is centered on

finding the spatial distribution of the radioactive contamination or ambient dose

rate in a pre-defined region of interest (ROI). The tasks are usually carried out by

sampling the relevant values in a relatively regular grid and ensuring their subse-

quent interpolation. The yielded radiation map may advise the first responders and

radiation authorities whether it is safe to employ human personnel in certain areas.

The following activity, localization, seeks to establish the coordinates (and, possi-

bly, other relevant parameters) of the hotspots, or the regions of increased radiation

intensity, usually produced by point sources in this context. Such an outcome is

typically useful in the so-called search for uncontrolled radiological sources. The

common localization algorithms presented below are not able to handle more com-

plex types of sources, e.g., contamination dispersed over an area or a volume, and the

mapping is required to quantify such sources. Note that the radiation map may yield

the positions of the point sources, thus performing the localization task; however,

this does not hold true in the opposite direction. The mapping is typically performed

via measuring the radiation levels along the pre-planned trajectories; however, there

are known cases when the surveying is information-driven (e.g., [12]). Below, the

former approach will be denoted as passive exploration, while the latter will be re-

ferred to as active. In the localization domain, active algorithms are more common

than in the mapping.

The last assignment concerns the radioactive plumes which occur after severe

radiological accidents. This thesis does not address such large-scale issues, and

therefore plume tracking is omitted from the literature overview.

2.1 Radiation Mapping

For the purpose of this section, let us consider, in a very general sense, radiation

mapping to be any concept that leads to revealing radiation distribution in the

context of the studied scene; this then means that the mapping does not necessarily

embed the data into a specific coordinate frame. The provision of the sources’
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positions is not expected. The section is structured as follows: First, the articles

which discuss aerial platforms, or unmanned aircraft systems, are presented; then,

the terrestrial domain is explored through unmanned ground vehicles; and, finally,

miscellaneous approaches are supplemented, including those applying cooperation

between different robotic assets.

2.1.1 Unmanned Aircraft Systems

A comprehensive study on the use of aerial systems in airborne radiation mapping

is delivered by the authors of [13]. The researchers compare various hardware plat-

forms and methodologies to complete both the mapping and the localization tasks.

The article advocates utilizing UASs in contrast to static and mobile ground mea-

surements and piloted airborne surveys, the criteria being the relevant advantages

and disadvantages, such as that the drones enable rapid data collection over vast

areas while not having to negotiate obstacles and that the operators may maintain

a safe distance from contaminated zones. The available platforms include, on the

one hand, fixed-wing vehicles which operate at high speeds, thus providing a greater

coverage but inferior spatial resolution, and, on the other, helicopters and multiro-

tors able to work at lower altitudes and speeds. Generally, the spatial resolution is

affected by the flight speed, the integration period of the detection system, and the

flight altitude. During the mission planning, it is necessary to establish the main

objectives of the measurement and to consider the size of the surveyed area as well

as the required spatial resolution and the maximal allowed data collection time.

In many cases, the exploration can be divided into multiple stages with different

parameters (Fig. 2.1). Unmanned aircraft systems usually carry scintillation and

semiconductor detectors, as these provide a sufficient sensitivity. Typical scintilla-

tion materials include sodium iodide (NaI), cesium iodide (CsI), and lanthanum(III)

bromide (LaBr3), which offers a better energy resolution; despite such a benefit, the

bromide is nevertheless not suitable for detecting low-level radiation anomalies. In

semiconductor detectors, the most prominent material lies in cadmium zinc telluride

(CZT), whose crystals can be manufactured up to a volume of 1 cm3 and merged into

pixel detectors. Aerial radiation mapping generally includes three steps, namely, es-

tablishing a calibration model, measuring and normalizing the data, and presenting

the data. The first phase is indispensable, as the radiation measured at typical flight

altitudes is affected by not only the inverse square law but also the attenuation; the

model can be acquired via hover surveys. Further, the calibration is required to

convert raw data to, e.g., a dose rate that possesses a clear physical meaning. The

data are then collected along parallel lines whose spacing needs to be selected as

a compromise between the coverage and the time efficiency. The data are usually
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Figure 2.1: The concept of multi-phase radiation mapping via distinct aerial plat-

forms [13].

normalized to the height of 1 meter above the ground level (AGL) and then inter-

polated to be ready for presentation. The resulting map can be simply laid over an

orthophoto of the surveyed area; however, a 3D model is sometimes used to provide

a context with the environment features. It is possible to acquire the model via

either photogrammetry or lidar scans.

To discuss the literature in concrete terms, we can present diverse research reports

and articles on the problems outlined in the thesis; all of the items are included in

the references section.

In article [14], a real-world post-disaster scenario in Fukushima Prefecture is out-

lined, following from the notorious nuclear power plant accident. The experiment

relies on a custom UAS carrying a CZT detector and a laser rangefinder stabilized

on a gimbal. The rangefinder allows reconstructing a 3D model of a sample farm

with a stepped vertical profile. An automatic waypoint navigation ensures data

collection at a speed of 1 m/s, at a minimal safe altitude and with a line spacing

of 2 meters. The terrain data are processed using a custom software based on the

Delaunay triangulation.
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The authors of [15] discuss, above all, practical considerations of airborne mea-

surements, emphasizing the situation in developing countries. The spatial resolution

is studied with respect to various flight and detector parameters; however, the arti-

cle proposes that a superior spatial resolution is not required in the case of uranium

legacy sites. One of the novel solutions introduced is an inequality that ensures dis-

tinguishing a point source from the radiation background; the detecting capabilities

are influenced by several factors, including the source activity, detector sensitivity

and integration period, background intensity, and flight altitude. By extension, two

different detection systems are compared to determine if a high-volume detector de-

livers any significant advantages. The surveys are carried out at an altitude of 10 m

and a speed of 3 m/s, with the line spacing of 10 m; the achieved coverage is 2.7 ha

per mission lasting 15-20 minutes. To facilitate the data interpolation, splines are

utilized; according to the researchers, a good visual interpretation is a major aspect

having an impact on the utility of the results.

Another example of a real-world application is embodied in article [16], which

focuses on the Chernobyl exclusion zone. A fixed-wing aircraft equipped with a pair

of CsI(Tl) detectors and a Global Navigation Satellite System (GNSS) receiver is

designed to explore an area of 2.4 km2. The data are collected at speeds and altitudes

ranging from 14 to 18 m/s and 40 to 60 m, respectively. The processing includes

the correction of various factors – the components of the background radiation in

particular – and normalization to height of 1 m AGL. To allow the interpolation, a

rather simple algorithm called inverse distance weighting (IDW) is employed.

The project characterized in [17] is focused on three-phase radiation surveying.

The first phase is carried out at a high altitude, using a UAS equipped with a

lidar; as a result, a 3D map of the area is yielded via simultaneous localization

and mapping (SLAM). The second phase takes place at a low altitude (1 m) and

speed (0.2 m/s), exploiting a Geiger-Müller (GM) detector to build a radiation map.

Although the authors suggest that this task could be performed autonomously via

the on-board anticollision systems, the UAS is controlled by a pilot. The last phase

rests in visiting the hotspots revealed previously to acquire more detailed information

and to execute other steps, such as identifying the present radionuclides; the step

involves solving the traveling salesman problem to find the optimum sequence of the

hotspots to inspect. An interesting algorithm is presented, enabling the vegetation

segmentation from the 3D model; the resulting radiation map is projected on the

ground layer.

The approach set out in article [18] introduces a drone carrying a depth camera

and a GM detector to explore a compact indoor area. The data from the sensors are

collected simultaneously, but the processing involves two stages, as follows: First, a

3D model is reconstructed via SLAM; second, the radiation layer is computed. It is
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Figure 2.2: The active mapping approach presented by [12]; the true positions of the

sources are labeled with the letters A through H.

assumed that every item in the point cloud embodies a source having an unknown

intensity, and the measured radiation constitutes a superposition of all of the sources’

contributions governed by the inverse square law. The problem formulation results

in a system of equations that can be solved if the area has been covered sufficiently

and, therefore, the system is not underdetermined. The algorithm is verified on a

real scene, albeit with simulated radiation data only.

In [19], yet another real-world issue is addressed, namely, monitoring the soil con-

tamination around the Fukushima Dai-ichi NPP during three consecutive years. The

researchers employ an unmanned helicopter and three types of scintillation detec-

tors. The flight parameters are set to an altitude and line spacing of 80 m, and the

speed equals 8 m/s; the automatic waypoint navigation is ensured by an RTK-GNSS

receiver. The explored zone exhibits an area of 52 km2, and a single mission covered

merely 2 km2; the complete survey thus took approximately a month, requiring the

authors to consider also the radioactive decay in the data processing. The data are

normalized to a height of 1 m AGL and interpolated via Kriging; it is confirmed

that the values conform to the reference measurements acquired on the ground.

A different set of procedures is presented in [20], a source dedicated to devel-

oping and testing a modular radiation monitoring system ready to be deployed on

various UASs in dose rate measurements, air sampling, and the acquisition of a radi-

ation map. The system was practically demonstrated during field trials at the NPP

Jaslovske Bohunice, Slovakia, the aim being to keep the devices low-cost to facilitate

their use on multiple drones simultaneously and, moreover, to distribute them as

static monitoring nodes. The module integrates a GM detector, an air sampler, and

a GNSS receiver to ensure georeferencing.
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The project in [12] is designed to use drones operating in a GNSS-denied envi-

ronment. The studied space is divided into voxels, and the radiation intensity and

the gradient are estimated in the explored cells; the related information and the

estimation uncertainty then propagate into the neighboring voxels. The applied

path planning is active and divided into the global and the local planner; the former

brings the UAS into radiologically more interesting parts of the space, while the lat-

ter ensures a sufficient sampling in each visited cell. The environment is unknown

and is continuously mapped via an optical SLAM. The algorithms are practically

tested using a custom aerial platform comprising a lightweight scintillation detector

coupled with a silicon photomultiplier (SiPM). To view an example of the yielded

map, refer to Fig. 2.2.

2.1.2 Unmanned Ground Vehicles

Involving a ground robot, the experiments in [21] address the problem of the com-

plete coverage of a structured area. The explored region is subjected to an approx-

imate cell decomposition; the size of the cells is deduced from the parameters of

the detection system on the one hand and from the required map resolution on the

other, invariably via computing a minimum detectable amount (MDA). The neigh-

boring cells’ centroids are then connected, and their optimal sequence is found via

depth-first search to ensure that each cell is visited. The algorithms were verified in

real-world experiments, with the measured data subsequently interpolated via IDW.

The project presented in [22] ranges within a slightly different domain, as the

robot operates on a water surface. The authors employ a commercial platform

equipped with a GM detector, claiming that a spiral trajectory is more suitable

than the typical boustrophedon-style type of path. The ROI borders are defined

manually, but the subsequent measurement within them is automatic. Again, the

IDW is applied to interpolate the collected data.

The authors of [23] introduce a robotic platform that, as a matter of fact, is

employed in dismantling and decommissioning nuclear facilities in France; therefore,

even radiation hardening needs to be addressed. The unmanned ground vehicle

(UGV) can carry either a manipulator to collect the samples or a detection unit

composed of a spectrometer, a gamma camera, and a dose rate meter. The rugged

steel structure with belts enables the vehicle to move at the maximum speed of 10

meters per minute. The gamma camera localizes the hotspots and is accompanied

with a laser rangefinder and an RGB camera to allow the fusion of images and a

radiation layer. The report also summarizes several types of mission where the robot

is applicable.
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In the experiments presented through [24], a vehicle is deployed at the Fukushima

Dai-ichi NPP, facilitating safe search with a heavily shielded box for human operators

to control the radiation monitoring in the area. The truck maps the radiation

by means of a gamma camera and a lidar assisting to adjust the camera’s ’focal

length’. It also carries a TALON, a remotely operated robot to expand the inspection

capabilities; a pan-tilt-zoom camera and a thermal imager are available too.

A robot with autonomous navigation and detection abilities is discussed in [25].

The platform comprises a Husky UGV carrying an off-the-shelf localization stack

and a dose rate meter. The mapping proceeds along user-defined waypoints, the

navigation relying on SLAM; further, the navigation is extended to involve a ra-

diation costmap to keep the vehicle away from high-intensity areas, protecting it

from potential radiation damage. This mapping approach was experimentally ver-

ified in a semi-structured environment containing two sources; the robot managed

to maintain safe clearance from these sources after recording the relevant data.

The authors of [26] present a novel method for interpolating robot-collected ra-

diation data that are irregularly spaced, noisy, and of low intensity. The method

exploits Gaussian process regression (GPR), with the suitability of the chosen ker-

nel verified using Monte Carlo N-Particle (MCNP) simulations. The assets of such

an approach include the possibility of directly establishing the interpolation uncer-

tainty, which may assist in future exploration planning. The algorithm resembles

Kriging; however, applying GPR in robotics has proved beneficial, and research ar-

ticles are available on utilizing the procedure to improve the autonomous behavior.

To perform the experimental testing, a Jackal UGV having an RGB camera, a pair

of lidars, and a scintillation detector are used. The authors demonstrate on a simple

single source scenario that their method provides better results than other commonly

applied algorithms, namely, linear and thin-plate spline interpolation. Several ker-

nels are considered and compared to establish that the Matérn 3/2 embodies the

most suitable option for the studied cases.

The concept presented in [27] does not yield any actual radiation map; however, it

is mentioned here, as it relates to the topic. A mobile robot carries an RGB camera

and a detector mounted in a lead collimator, enabling the directional sensitivity of

the device. The vehicle sweeps through the explored area to construct a panoramic

image and to identify the directions in which the sources can be found.

In article [28], robotic systems are deployed in real-world nuclear scenarios via

competitions., the idea being heavily promoted by the authors. According to the

text, only few opportunities are available to test these systems, and the topic has

encountered a lack of interest by the scientific community. The International Atomic

Energy Agency (IAEA) hosted a demonstration of robots for special applications in
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2017 to yield the conclusion that none of the vehicles could be immediately applied

in real missions.

2.1.3 Other Approaches

A methodology centered on data processing algorithms is outlined in [11]. Usually,

a sequence of corrections is applied to raw measurements in order to either reveal

the actual amount of particles emitted by the sources (i.e., true count processing)

or enable isotope identification (i.e., spectrum processing). The former procedure

typically comprises altitude correction addressing the exponential attenuation, solid

angle correction when the terrain shape deviates from the ideal plane, and radia-

tion background subtraction. The last of the tasks is the most difficult one because

the relevant methods need to consider a variety of environmental factors; however,

the entire set of steps can be made somewhat easier by using machine learning ap-

proaches. To facilitate the spectrum processing, a common option is to perform

the Compton correction by subtracting the estimate of the Compton continuum,

the noise reduction via spectral deconvolution, and also the stripping ratio correc-

tion that reduces the contribution of the higher-energy isotopes in the lower energy

channels.

The research in [29] comprises the concept of scene-data fusion (SDF), i.e., fusing

the data from the contextual sensors (cameras, lidars) and radiation detectors or

cameras. The presented platform-independent device executes simultaneously the

3D model reconstruction via SLAM and the radiation layer measurements. The

module integrates an omnidirectional lidar, a GNSS receiver, an inertial measure-

ment unit (IMU), and a Compton camera based on high purity germanium (HPGe).

To reconstruct the radiation image, a list-mode maximum-likelihood expectation-

maximization algorithm is utilized. The authors claim that the method can be used

even with commercial omnidirectional detectors. The device is experimentally tested

in various real-world scenes, including Chernobyl (Fig. 2.3) and Fukushima.

Another device for 3D radiation mapping is discussed in [30], especially as regards

the development and testing. The system consists of a depth camera, a GM detector,

a CZT spectrometer, and a tablet, and can be either carried manually or mounted

on a robot. The SLAM-based mapping yields a point cloud, reprocessed to remove

the outliers; the radiation measurements are then projected onto the 3D model and

also interpolated. The software is capable of filtering out different isotopes via the

spectral data.

The potential of cooperation between the terrestrial and the aerial vehicles is

exposed in [31]. The UAS provides a photogrammetry-based terrain map, i.e., an

orthophoto and a digital elevation model (DEM), and also delivers a coarse radi-
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Figure 2.3: A model and a radiation map of the crane claw located at Chernobyl,

acquired via scene-data fusion [29].

ation map. The discovered hotspots can then be inspected in detail by the UGV,

which is, in addition to a detector, equipped with a lidar for dynamic obstacle avoid-

ance. The path planning for the ground robot is carried out via A*, with the cost

function preferring road traveling; the information on the terrain type is yielded by

a ROI model subjected to segmentation. Interestingly, the UGV did not perform

localization but only confirmed the presence of a radioactive source.

In article [32], the researchers set out innovative achievements in the field of UAS-

UGV cooperation within radiation mapping. Similarly to the previous reference, the

aircraft allows acquiring the DEM of the area, which is further utilized in construct-

ing a costmap of the ROIs to enable the UGV to navigate safely. The Jackal UGV

is equipped with an accurate RTK-GNSS receiver for self-localization and a 2-inch

NaI spectrometric detector with the sampling period of 1 s. A set of rather so-

phisticated algorithms are utilized to extract useful information from the measured

spectra, namely, the Fourier scattering transform and the Laplacian eigenmap. The

spectra are classified into those corresponding to a source being present and those

that embody background radiation only; the former are then subjected to iterative

k-mean clustering by means of a modified Kolmogorov-Smirnov value as the metrics.

As a result, the radiation hotspots produced by the point sources are segmented.

The article also introduces an algorithm for the active localization of a single source.

The proposed methods are thoroughly tested in field trials.

The authors of [33] compare different approaches to interpolating the radiation

data from ground measurement stations scattered over a large area (approximately

7,500 km2). The methods are based mostly on artificial neural networks of different

types and structures, but fuzzy logic – the Mamdani system in particular – is applied

too. The data arrive from 204 detection units, 70 % of them being used for training;
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the rest then facilitate the accuracy evaluation. The authors conclude that the

suggested methods yield fairly similar results, which are precise enough for practical

applications.

In article [34], the examined problem lies in the directional sensitivity of a triplet of

NaI scintillation detectors connected to a custom-made counting electronics. When

the count rate is sufficient, the detectors establish the direction of the incident

radiation at an error rate of 5°; however, the technique was practically verified only

on low-activity sources in close proximity to the device. The method can handle

multiple sources if these comprise different isotopes, the reason being that net counts

in the photopeak area are relied on.

2.2 Localizing Radiation Hotspots

This section introduces various procedures to identify point sources of ionizing ra-

diation. The emphasis is mainly on algorithms that enable such an activity, but

related findings are also mentioned to provide a broader context. The literature

overview focuses on the localization algorithms rather than the physical platforms

applied. The section is structured to characterize, after a brief reference to previous

work on operator-driven concepts, various passive and active localization schemes.

The project discussed in [35] involves a field experiment performed on a site with

a partially collapsed hospital building which comprises a high activity source (1.5

GBq) to be localized. The actual search exploits a teleoperated Packbot UGV

carrying a dose rate meter; the seeking strategy is based on following the radiation

intensity gradient. The operator was unable to localize the source accurately until

they changed the robot movement direction, resulting in a reduced shielding by the

vehicle’s body.

According to the experiments in [36], not all scenarios allow utilizing an au-

tonomous UAS; therefore, the researchers suggest applying a teleoperated drone

with a haptic interface. The aerial platform carries a custom CZT spectrometer,

which enables the system to estimate the radiation gradient; the operator’s controller

then provides a force feedback to guide the pilot in the proper direction.

2.2.1 Passive Methods

A method for the passive localization of radioactive sources via a particle filter (PF)

is outlined in [37]. The emphasis is on selecting the sampling points properly, as the

source is supposed to lie in a region inaccessible to the robot; the iterative k-means

clustering technique is employed to optimize the task.
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In article [38], an iterative Markov chain Monte Carlo (MCMC) algorithm pro-

cesses a sequence of manually selected sampling points. The procedure can be gen-

eralized to localize multiple sources; their amount, however, needs to be determined

in advance, and the efficiency is significantly reduced.

Another method from the MCMC family finds use in [39]. The relevant algorithm

is referred to as component-wise random walk with Metropolis-Hastings acceptance

testing, and it addresses the uncertain self-localization of a robot. The authors

also demonstrate the technique’s capability of estimating the radiation intensity in

unsampled parts of the ROI via the forward Monte Carlo analysis. Notably, the

amount of sources has to be provided by the operator.

In article [40], the radiation field is modeled parametrically as a weighted sum of

Gaussians. Two Bayesian estimators based on the progressive correction principle

are compared: one employs the Gaussian approximation, and the other utilizes

the Monte Carlo approximation. In the simulations, the former approach, which

resembles the extended Kalman filter (EKF), delivers better results; importantly,

this option is also less computationally intensive.

The authors of [41] exploit maximum likelihood estimation (MLE) combined with

the hill-climbing algorithm. The method depends on the initial estimate, obtained

in the discussed case via identifying the isodoses from the searched source.

In the project of [42], an unknown amount of sources is localizable using the

data collected from a static sensor network. The applied algorithm is a hybrid PF

enhanced via the mean-shift technique to increase the robustness of the procedure.

The method can also consider the attenuation in unknown obstacles present in the

ROI. The overall localization performance is significantly influenced by a proper

choice of the bandwidth parameter.

Some of the experiments employ Compton cameras instead of the common om-

nidirectional detectors; see, for example, [43, 44, 45]. The methods used therein

to extract the positional information from the radiation imaging devices include

maximum likelihood expectation maximization (ML-EM), Kalman filter (KF), and

customized additive point source localization (i.e., a sparse parametric image recon-

struction algorithm); the last-mentioned option is proposed in [46].

Finally, worth mentioning are also the efforts summarized in [47], although the

project does not focus strictly on radioactive sources. The proposed method pro-

cesses the data from a static sensor network and localizes and even tracks an un-

known number of moving sources. The advantages of the PF approach are discussed,

including the unnecessity of both knowing the model order in advance and ensuring

that the problem is stationary. The loss of statistical diversity in the particle set is

addressed through a novel form of resampling, namely, the reversible jump MCMC

algorithm.
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2.2.2 Active Methods

Certain information-driven localization methods are based on contour following, i.e.,

establishing an isodose around a group of sources. Presumably, the sources yield

spherical isodoses, which form circles in the survey plane, and they can be subse-

quently localized via tools such as the Hough transform. In article [48], an unmanned

helicopter approaches the center of the ROI along an Archimedean spiral until the

requested radiation level is encountered; the contour is then followed exploiting a

PID controller. The authors also introduce an alternative in the form of a grid-

based Bayesian estimator. In this case, the dynamic path planning rests in pursuing

a direction perpendicular to the anticipated source-detector vector. Further, article

[49] is dedicated to the development of a lightweight CZT-based detection system

deployable to a circular swarm of three small drones. The measured data are pro-

cessed to acquire the mean intensity in the circle, and also the gradient. The swarm

then moves either in the direction of (source seeking) or perpendicularly to (contour

following) the gradient. It is shown that, by making the swarm spin around its axis,

the gradient estimate becomes more accurate. Next, let us mention the referenced

study [50], whose authors propose a multi-phase localization procedure. At the ini-

tial stage, prominent radiation levels are identified using a log gradient classifier,

and then the corresponding contours are mapped. It has to be specified if the con-

tours are concentric (single source) or their shape varies (distributed sources); in the

latter case, an optimum contour is selected for detailed sampling, and the sources

are eventually localized via a variational Bayesian algorithm.

In article [51], the scenario relies on a presupposed single source in an obstacle-

free ROI. The localization exploits a PF enhanced with an MCMC algorithm. To

construct an optimum measurement trajectory, the partially observable Markov de-

cision process (POMDP) is employed, with the reward function based on information

entropy. The entropy reduction can be encountered also in [52]; here, the results

are compared to a traditional pre-planned survey. In this context, by extension, the

authors of [53] developed a method embodied in an unscented particle filter, being a

hybrid between the PF and the unscented Kalman filter (UKF). To prevent particle

degeneracy, the divide-and-conquer strategy is employed. The robot keeps moving

towards the instantaneous estimate of the source’s position until the filter converges,

meaning that only a single radioactive item can be handled.

The approach from [54] rests in estimating the sources’ parameters via a regular-

ized PF enhanced with the progressive correction principle. The amount of localized

items does not need to be known in advance, as it is one of the retrieved parame-

ters. The presented active motion control utilizes the Rényi divergence expectation

maximization to select the most suitable action from a set of possible candidates.
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Figure 2.4: The particle filter-based active localization: the final distribution of the

particles from two angles [55].

The method is verified both through simulation and on a real-world dataset, demon-

strating its ability to find up to two sources.

The concept presented in [55] employs a PF for the localization and introduces

three different active exploration strategies. The first option is denoted as a variance

of the distances, maximizing the variance of the particle distances to the candidate

sampling point; this leads to sampling near the boundaries of the particle set, which

gradually shrinks. The second strategy, namely, previous measurements avoidance,

maximizes the sum of the distances between the candidate sampling point and its

predecessors. The third and final approach then maximizes the information gain

quantified by the Fischer information matrix (FIM). After each iteration, the par-

ticles are clustered, resampled, and regularized; the variance of the Gaussian reg-

ularization kernel is deduced from the maximum deviation of all the clusters. The

methods are verified via simulations based on real-world surveys; the testing em-

phasizes particle convergence under individual planning strategies. The localization

algorithm’s outputs are shown in Fig. 2.4.

Again, there are several examples of experiments relying on directional Comp-

ton detectors, such as those exposed in articles [56] and [57]. In these cases, the

decision-making strategies for active exploration can rely on diverse procedures,

including maximizing the FIM traces, behavior-based exploration, multi-criteria

decision-making, and principal component analysis. However, it is also worth men-

tioning that the possibility of retrieving multiple sources is not enabled in the active

autonomous mode.
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3 Research Summary

The candidate’s initial experience in ionizing radiation measurements arose from

his activities within a research project dedicated to developing a radiation monitor-

ing system based on a directionally sensitive detection head mountable on mobile

robots. The system eventually comprised a pair of scintillation detectors, of which

one was shielded by a massive lead cylinder with an aperture. The collimator had

been designed as rotable to measure the directional characteristics of the incident

radiation; regrettably, the sampling proved to be rather lengthy. Importantly, the

author of this thesis did not participate in developing the hardware setup; rather

than that, he focused on integrating the system in a robotic platform and proposing

the control algorithms for predefined radiation monitoring tasks.

The candidate learned the basic principles of robotic radiation mapping by equip-

ping the unmanned vehicle Orpheus-X4 with a commercial dose rate meter and

performing a simple single-source mission; the robot had been built at the Robotics

and AI group headed by Prof. Ludek Zalud at Brno University of Technology. These

initial results formed the actual basis of the author’s Bachelor’s thesis (available in

Czech) [58].

Subsequently, as the collimator-based detection system was still being developed

at the time, the author started to examine a different principle, namely, partial di-

rectional sensitivity, which exploited a pair of fixed scintillation detectors. Thanks

to both the inverse square law and the mutual shielding of the scintillation crys-

tals, the system has exhibited distinctive angular characteristics. The effect can be

further amplified by inserting a lead layer between the detectors. This approach

eliminates the major disadvantages of the lead collimator, above all, the large mass,

problematic dynamic properties, and sampling time required; however, the provided

angular resolution is markedly lower. Upon completion of the experiments (the year

2017), the detection system was integrated in the Orpheus-X4 robot to allow field

testing (Fig. 3.1a), and selected results were presented at local conferences.

The cooperation between the terrestrial and the aerial robots, whose procedural

details were co-designed by the author, was first demonstrated on a UAS providing a

photogrammetry-based map to define the region of interest and to visualize the data

31



(Fig. 3.2a). The experimental results were presented at the HoloMAS1 conference

through article [59]. The study also involved an early simplistic active localization

approach capable of handling a single radionuclide. The method rested in estimating

the direction to the source from the data points acquired along the conventional

parallel lines from the radiation mapping.

More sophisticated localization schemes based on circular trajectories and the

directional sensitivity provided by the detectors were proposed and verified in the

candidate’s Master’s thesis, [60]. The sampling points arranged in a circle allowed

estimating the directions to multiple sources (both inside and outside the circle) un-

der the assumption that the radiation origins have a sufficient angular separation; in

this condition, each of the source estimates is then approached while correcting the

direction via a P controller. When more circles are employed simultaneously and

the directional rays intersect, the sources’ positions are estimable directly, without

requiring the robot to drive towards them. The method nevertheless exhibits im-

portant drawbacks, the inability to address the obstacles and the need to define the

circles manually in particular.

The cooperation with the UAS and several of the active localization options were

eventually joined together to be published in the International Journal of Advanced

Robotic Systems2 through article Cooperation between an unmanned aerial vehicle

and an unmanned ground vehicle in highly accurate localization of gamma radiation

hotspots [61] in 2018. In this case, the aerial data were also utilized to construct an

occupancy grid of the zone, enabling the robot to automatically navigate from the

deployment site to the selected ROI.

The above-mentioned localization approaches yielded only a gross position es-

timate; therefore, the author developed an algorithm exploiting the Gauss-Newton

method to increase the localization accuracy. The achievements were summarized in

a paper presented at the ELEKTRO3 conference in 2018 [62]. In the same year, the

candidate also began to explore the capabilities and limitations of aerial radiation

measurements carried out by UASs. The impact of the flight altitude in multiple

scenarios was discussed through the simulations set out in a PdES4 conference paper

[63]. The research also involved the idea to follow the terrain shape via altering the

altitude to maintain an approximately constant height above the ground level.

1Industrial Applications of Holonic and Multi-Agent Systems – 8th International Conference,

HoloMAS 2017, Lyon, France, August 28–30, 2017
2AIS 0.225, Q4 in the Robotics category, special issue titled Mobile Robots
312th International Conference ELEKTRO 2018, Mikulov, Czech Republic, May 21–23, 2018
415th IFAC Conference on Programmable Devices and Embedded Systems, Ostrava, Czech Re-

public, May 23–25, 2018
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(a) (b)

Figure 3.1: The UGV Orpheus-X4 equipped with a pair of scintillation detectors (a)

and a collimator-based detection system (b).

In 2019, the project dedicated to the collimator-based detection system was com-

pleted, resulting in the article Localization of ionizing radiation sources via an au-

tonomous robotic system; this output was published in the Radiation Protection

Dosimetry5 journal. The UGV carrying the device (Fig. 3.1b) had the capacity to

operate in three distinct modes, as follows: First, the conventional radiation map-

ping, where the directional sensitivity was not needed. Second, the localization of the

point sources, with the robot following a base trajectory until the direction towards

a source was identified; the source was then approached and localized, allowing the

vehicle to return to the original trajectory. The research within this mode comprised

developing a novel algorithm for two-phase survey planning. Third, the inspection

to periodically repeat a manually defined measurement sequence and indicate any

changes.

At the next stage, preliminary work to contribute towards the UAS-based 3D

radiation mapping of buildings was outlined in a paper presented at the MESAS6

conference [64]. The concept involved a real-world building model and simulated

radiation data, and a method to process the data was proposed.

In 2020, the author benefited from participating in a three-month internship as a

consultant at the International Atomic Energy Agency; more concretely, he spent the

allocated time at the Nuclear Science and Instrumentation Laboratory, Seibersdorf,

Austria, under the guidance of Assoc. Prof. Petr Sladek. This experience enabled

the author to gain a deeper insight into the radiation detection principles, especially

5AIS 0.206, Q3 in the Nuclear Science and Technology category, special issue titled 40th Days of

Radiation Protection
6Modelling and Simulation for Autonomous Systems, 6th International Conference, MESAS 2019,

Palermo, Italy, October 29–31, 2019
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(a) (b)

Figure 3.2: A common radiation map acquired with a UGV (a), and a 3D radiation

map measured via a UAS (b).

as he helped to develop a methodology for using unmanned aircraft systems within

the radiation mapping domain. The performed tasks also included assessing various

spatial interpolation methods and processing the data acquired in the Fukushima

Prefecture.

The activities relating to the cooperation between UGVs and UASs culminated

in 2021, when the comprehensive results were released through the Journal of Field

Robotics7, in article An automated heterogeneous robotic system for radiation sur-

veys: Design and field testing [65]. The research involved a three-phase survey,

covering the aerial photogrammetry, aerial radiation mapping with terrain tracking

to identify the hotspots, and a detailed ground measurement to enable a highly accu-

rate source localization. The complete pipeline required only very few interventions

by the human operator, as the majority of the tasks had been fully automated. In

this case, the localization procedure was merely passive; the robot nevertheless had

the capacity to avoid static obstacles occurring in the ROI.

The follow-up research in the radiation mapping of buildings was eventually pre-

sented at the IROS 2022 – IEEE/RJS International Conference on Intelligent Robots

and Systems, with paper Unmanned Aircraft System-Based Radiological Mapping of

Buildings [66]. The study embodied a proof-of-concept experimental report formed

under real-world conditions. At the time of the project, the UAS responsible for the

data collection was piloted manually, as a close proximity to the building walls was

required. The experiment yielded a 3D radiation map (Fig. 3.2b) and demonstrated

the possibility of roughly localizing the sources inside buildings.

7AIS 1.253, Q1 in the Robotics category
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At present, the candidate focuses on the active localization while relaxing the

previously introduced constraints. His new approach exploits, on the one hand, a

particle filter capable of estimating the amount of sources and their parameters on

the fly, and, on the other, an entropy-based motion planner which optimizes the

measurement trajectory while ensuring that the obstacles are avoided. A scenario

with multiple sources has thus far been verified only through simulations formed from

a previously acquired real-world dataset. The up-to-date results are summarized in

article Localizing Multiple Radiation Sources Actively with a Particle Filter [67],

which is being peer reviewed as of October 2023. The achievements have already

been presented at the ICRA8 conference via a late breaking results poster. The

real-world outcomes obtained in a single source scenario are presented in a relevant

video, [68].

The timeline of the principal research results can be seen in Table 3.1.

8IEEE International Conference on Robotics and Automation 2023, London, United Kingdom,

29 May – 2 June, 2023
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2015–2017 • Prior work

Integrating the detection systems in robots; performing basic

radiation mapping tasks; developing the elementary active localization

algorithms; and publishing the preliminary results at local conferences.

2018 • Cooperation Between an Unmanned Aerial Vehicle . . .

Journal article

Designing and verifying the scheme to exploit a map acquired via

aerial photogrammetry in the ground radiation mapping.

2019 • Localization of Ionizing Radiation Sources via an . . .

Journal article

Introducing the directional detection system based on the lead

collimator, and showcasing the capabilities of the device.

2020 • Consultant with the IAEA

Processing the data from contaminated regions in Fukushima Pref.,

and enhancing the methodology for UAS-based radiation mapping.

2021 • An Automated Heterogeneous Robotic System for . . .

Journal article

Improving the cooperation between the aerial and the terrestrial

robots in multi-phase surveying, and a highly accurate localization of

radiation sources.

2022 • Unmanned Aircraft System-Based Radiological . . .

Conference paper

Demonstrating the possibility of acquiring a 3D radiation map of a

building, and exposing the ability to roughly localize the sources inside.

2023 • Localizing Multiple Radiation Sources Actively . . .

Submitted manuscript

Presenting a novel paradigm for the active localization of an unknown

amount of radioactive sources, utilizing the particle filter and the

two-component trajectory planner.

Table 3.1: The timeline of the selected publications and related activities.
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4 Discussion

The research results presented within this Ph.D. thesis can be categorized into three

segments corresponding to the original goals defined above in the Aims and Objec-

tives section. All of the preset aims and objectives appear to have been met; thus,

in this chapter, they will be covered in greater detail to assess the achievements as

well as potential deficiencies.

The first aim rested in designing physical platforms to deliver various radiation

measurement-related algorithms in real-world conditions rather than through sim-

ulation studies only. This procedure, not having been conceived to primarily bring

scientific innovations, embodied a cornerstone which allowed fulfilling the challeng-

ing follow-up tasks. A major part of the research activities was carried out using the

Orhpeus-X4 terrestrial platform and the scintillation detector dual sensor system.

The integration of the setup required not only mechanical mounting but also soft-

ware development to adjust the devices, read and process the radiation spectra, and

fuse the spectra with the positional data from the RTK-GNSS receiver. Comparable

efforts were made in relation to the collimation-based detection system, which, ad-

ditionally, required the control of the collimator rotation. The smooth operation of

the detectors was ensured via custom software developed by the author of the the-

sis. Regarding the UASs, two different self-contained radiation detection systems,

independent from the aerial platform, were utilized: One was a commercial device

used in the cooperative exercise (Fig. 4.1a), and the other, applied in the building

mapping, was an experimental module offering more flexibility (Fig. 4.1b). In both

cases, the system stored the measurements using a data logger which allowed only

post-processing, eliminating the possibility of active localization. Aerial vehicle ca-

pabilities similar to those of the ground unit discussed herein are currently under

development.

The second goal addressed the problem of point source localization, focusing

on the post-processing algorithms and the information-driven control. The ulti-

mate pipeline to facilitate inputting scattered datapoints to yield the amount of the

sources along with their intensities and positions was successfully designed, tested,

and published. The actual procedure involves interpolating the datapoints; to exe-

cute the task, natural neighbor interpolation based on the Delaunay triangulation

is applied. This method consistently delivered satisfactory outcomes and was also
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(a) (b)

Figure 4.1: The radiation detection systems integrated onboard the photographed

UASs: the DRONES-G carried by the BRUS drone (a), and the experi-

mental module mounted on the Matrice 300 (b).

evaluated as the best option in an analysis performed jointly with the International

Atomic Energy Agency. The hotspots are then separated from the radiation back-

ground via an adaptive thresholding algorithm structured by the candidate; this

tool is able to determine the amount and approximate locations of the sources. The

approach exhibits superior robustness, being applicable with correct results to both

the terrestrial and the aerial data, where the dynamic range may differ by several

orders of magnitude. Finally, the gross estimates are fine-tuned by means of the

Gauss-Newton method, achieving an accuracy resembling that of the data georefer-

encing error. The principal advantage of the proposed pipeline, in contrast to other

state-of-the-art approaches such as MLE, rests in its very simple implementability

and low computational requirements. The design was also thoroughly verified in

field tests under various scenarios, using ground and aerial robots.

Regarding the active (or information-driven) localization, different concepts have

been explored and compared. The earlier projects focused on estimating the vector

towards a source, exploiting directionally sensitive sensor equipment. The author

then showed through several experiments that such an approach has the capacity to

reduce the time required to retrieve the sources; the algorithms, however, exhibited

serious deficiencies in terms of the generality and usability in real-world conditions.

Two distinct schemes with a potential to resolve the direction of the incident ra-

diation were studied, and it may be positively concluded that the dual detector

surpasses the collimator-based system thanks to a greater versatility. To improve

the universality and robustness, the directional approach was eventually abandoned

to be substituted with Bayesian methods, the particle filter in particular; this filter

estimates the source positions on-line. Notably, knowing the instantaneous mutual
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Figure 4.2: The decontaminable terrestrial robot Orpheus-AC3.

positions of the robot and the source indirectly reveals the vector too. However,

instead of following the direction, the motion planner operates to reduce the Shan-

non entropy by driving the robot towards points of a greater information value.

Although the particle filter-based radioactive source localization is well known in

the literature, the author believes that it has not been combined to date with the

novel planner, which introduces important benefits in terms of the complexity.

The third aim lay in reaching beyond the scope of the conventional radiation

mapping, the plan being to identify the advantages of combining robotic platforms

of different kinds and expanding the mapping to include the third dimension. The

experiments with the cooperation between ground and aerial robots managed to

emphasize and exploit the positive features of both platforms. As is expectable,

the drones have the capacity to rapidly explore vast areas and are not limited by

ground-level obstacles or steep terrain; however, they offer only a meager spatial

resolution and do not facilitate localizing the sources very accurately. In one of

the published scenarios, an areal contamination was simulated using a number of

point sources; the fact that multiple sources are involved can be only revealed by a

follow-up survey carried out in the region by a terrestrial robot. Generally, a UGV

can explore only compact places selected by a UAS to deliver a detailed radiation

map in a time-efficient manner. The key assets of the research consist in designing a

highly automated pipeline that has proved beneficial in comprehensive experimenta-

tion involving actual radiological sources. Utilizing airborne detection systems then

facilitated the production of a 3D radiation maps. The field exercise showed that

the pre-designed approach is viable, and the preliminary results were satisfactory.

The views from the three dimensions allow revealing information and context not

accessible via traditional methods; however, further research on the autonomy is

required to ultimately eliminate the pilot from the pipeline.
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In the author’s opinion, the scientific merit of this thesis rests in providing a

thorough insight into robotic radiation measurements, covering multiple detection

principles, data processing algorithms, and unmanned platforms. Several methods

were adopted and novel techniques designed to achieve the preset goals. Except for

the newly developed active localization scheme, all of the conclusions are supported

by elaborate empirical research. Obviously, the addressed topic is very wide and

has become a subject of greater interest to the expert community in recent years,

meaning that there still remain diverse complex tasks to focus on. The future efforts

are supposed to increase the degree of autonomy and to eliminate the dependence

on GNSS receivers, as these are not applicable in all environments. The experi-

mental platforms need to employ SLAM instead and are planned to incorporate dy-

namic obstacle avoidance too. By extension, some real-world scenarios may involve

radioactive dust-contaminated environments, and any convenient ground platform

must therefore be readily decontaminable; a model robot for such a purpose, an

Orpheus-AC3 designed by the group of Prof. Zalud (BUT), is visualized in Fig. 4.2.

Currently, the most prominent assignment is to assess the particle filter performance

in real-world conditions.
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Abstract

The paper discusses the highly autonomous robotic search and localization of radia-

tion sources in outdoor environments. The cooperation between a human operator,

an unmanned aerial vehicle (UAV), and an unmanned ground vehicle (UGV) is used
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to render the given mission highly effective, in accordance with the idea that the

search for potential radiation sources should be fast, precise, and reliable. Each of

the components assumes its own role in the mission; the UAV (in our case, a multi-

rotor) is responsible for fast data acquisition to create an accurate orthophoto and

terrain map of the zone of interest. Aerial imagery is georeferenced directly, using

an onboard sensor system, and no ground markers are required. The UAV can also

perform rough radiation measurement, if necessary. Since the map contains 3D in-

formation about the environment, algorithms to compute the spatial gradient, which

represents the rideability, can be designed. Based on the primary aerial map, the

human operator defines the area of interest to be examined by the applied UGV car-

rying highly sensitive gamma-radiation probe/probes. As the actual survey typically

embodies the most time-consuming problem within the mission, major emphasis is

put on optimizing the UGV trajectory planning; however, the dual-probe (differen-

tial) approach to facilitate directional sensitivity also finds use in the given context.

The UGV path planning from the pre-mission position to the center of the area of

interest is carried out in the automated mode, similarly to the previously mentioned

steps. Although the human operator remains indispensable, most of the tasks are

performed autonomously, thus substantially reducing the load on the operator to

enable them to focus on other actions during the search mission. Although gamma

radiation is used as the demonstrator, most of the proposed algorithms and tasks are

applicable on a markedly wider basis, including, for example, chemical, biological,

radiological, and nuclear missions and environmental measurement tasks.
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A.1 Introduction

At present, new security challenges appear within multiple related fields and disci-

plines. In this connection, the advancement in modern warfare suggests that chem-

ical, biological, radiological, and nuclear (CBRN) defense will assume increasing

importance. The U. S. Department of Health and Human Services defines several

types of terrorist attacks involving sources of ionizing radiation [1]; the perpetrators

of such acts may rely on ‘dirty bombs’, devices having the potential to disperse

radioactive material in urban zones. As radiological sources are commonly present

in medical or scientific facilities, they appear rather vulnerable in terms of becoming

a target or an instrument of criminal practices [2]. In any case of such misuse, it

would be vital to localize and dispose of the dangerous sources without unnecessary

delay.

Current scientific literature outlines various methods to perform the actual re-

trieval and elimination operations; for instance, one of the conventional techniques

relies on airborne spectrometry, where the detectors are carried by a helicopter

through the region of interest (ROI) along a regular trajectory. An example of this

approach is found in paper [3]. The advantage of such a procedure consists in the

possibility of quickly exploring a relatively large region, while the main drawback is

the low accuracy of estimating the hotspot locations. However, a detector can also

be attached to an unmanned aerial vehicle (UAV), as presented in research reports

[4, 5]. The benefits and disadvantages are similar to those characterizing the use

of a helicopter; in this connection, UAVs nevertheless exhibit smaller payloads and

shorter flying ranges, although they also feature lower initial costs.

If a high localization accuracy is required, ground-based assets have to be em-

ployed. The actual localization should not be performed by humans due to health

risks, and as an unmanned ground vehicle (UGV) is less prone to radiation damage,

it finds application in such reconnaissance tasks. Using UGVs in the discussed do-

main is demonstrated in articles [6, 7, 8, 9, 10]. A custom solution offering a high

accuracy of the localization of gamma radiation hotspots is introduced within the

present paper.

The proposed solution consists of an aerial and a ground platform, both working

in the semi-autonomous mode. A UAV is utilized to acquire a three-dimensional

map of the ROI via photogrammetric techniques. The map assists a UGV to plan a

trajectory along which the hotspots are searched. In addition, the UAV may carry

a detector to provide general information related to the positions of the radiation

hotspots. A central advantage of our approach lies in the fact that no prior environ-

mental map is needed, and the goal rests in identifying a solution that overcomes

the state-of-the-art methods in certain particular aspects.
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Figure A.1: The sequence of the operations forming the entire process.

The article is organized as follows: Section ’Methods’ discusses the methods and

equipment employed, together with several localization algorithms; chapter ’Results’

offers an overview of the results achieved, including the performance, time efficiency,

and accuracy typical of the individual maps and methods; and section ’Discussion’

compares the results with those outlined in the referenced literature, introducing

the relevant advantages and disadvantages.

A.2 Methods

The following chapter presents the working scheme of the proposed system; both the

UAV and the UGV are described in detail. The final part of this section introduces

the algorithms used.

A.2.1 Process Description

The sequence of steps to ensure information related to the gamma radiation hotspots

is illustrated in Figure A.1. The entire process is controlled by a human operator

(user).

At the initial stage, the operator has to plan a flight trajectory for the UAV

to cover the potentially affected area; then, the UAV acquires images along the

defined trajectory, and these are used to reconstruct the 3D model of the area. The

model assists the operator in selecting the proper region of interest rideable for the

UGV, considering the presence of possible radiation hotspots. The ROI is a polygon

defined by a sequence of vertices.

The UGV is deployed near the border of the mapped area. First, the trajectory

from the deployment position to the edge of the ROI is calculated to avoid the

obstacles and slopes found by the UAV; subsequently, the operator chooses the
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Figure A.2: The DJI S800 UAV equipped with the multi-sensor system for direct

georeferencing.

UGV working mode. In general terms, two modes are available: mapping and

localization. While the former procedure yields a map of the radiation distribution

in the area, the latter one enables us to localize the radiation sources as quickly as

possible; the corresponding data are then acquired in a suitable manner. Finally,

the measurement is interpolated in order to provide either a map or a set of the

sources’ coordinates, and the results are communicated to the operator.

A.2.2 UAV

In aerial mapping, the benefit of unmanned aerial vehicles consists in their fast and

safe operation at a very reasonable price, especially when compared to manned air-

craft. For this reason, UAVs are convenient primarily for the mapping of local areas

as their operational time is rather limited; conversely, however, the vehicles can

produce a refreshed map on a daily basis, thus significantly reducing the product

cycle known from traditional mapping. UAVs have already proven useful in fields

and disciplines such as agriculture, civil engineering, archaelogy, or environmental

and radiation mapping. Currently, projects are being executed which focus on di-

rect radiation mapping via onboard sensors [4, 11] and combine radiation mapping

with UAV photogrammetry to facilitate 3D surface reconstruction [12]; this paper

nevertheless aims to explore the potential for cooperation between UAVs and UGVs.

To perform the aerial mapping, we used a six-rotor DJI S800 Spreading Wings

UAV fitted with a DJI Wookong M flight controller supporting an autonomous flight

according to a given trajectory. As regards the experimental aicraft, the most im-

portant utility parameter was the payload limit of about 3 kg, which allowed us to

carry the required equipment (see Table A.1 for more parameters). The UAV com-

prises a custom-built multi-sensor system facilitating the direct georeferencing (DG)
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Table A.1: The parameters of the UAV DJI S800 and the UGV Orpheus-X3 [13, 14].

Parameter UAV UGV

Dimensions 1.0 × 1.2 × 0.5 m 1.0 × 0.6 × 0.4 m

Weight 8 kg 51 kg

Operational time 10 mins 120 mins

Drive type multi-rotor wheel-differential

Operating speed 5 m·s−1 0.6 m·s−1

Maximum speed 26 m·s−1 4.2 m·s−1

Table A.2: The parameters of the custom-built multi-sensor system for UAVs to

enable the direct georeferencing of aerial imagery.

Parameter Value

Position accuracy (BD982)a horizontal: 8 mm, vertical: 15 mm

Attitude accuracy (Ellipse-E)b roll/pitch: 0.1◦, heading: 0.4◦

Camera resolution 6,000 × 4,000 px

Camera lens 15 mm

Operational time 120 mins

Distance from base 1,000 m

Dimensions 1.5 × 0.2 × 0.2 m

Weight 2.6 kg

a1σ error in the RTK mode, according to the manufacturer’s specification.

bThe RTK mode in the airborne applications, according to the manufacturer’s specification.

of aerial imagery (Figure A.2), an operation that enables us to create a georefer-

enced orthophoto, point cloud, or digital elevation model (DEM) without requiring

ground control points (GCP).

The multi-sensor system comprises a digital camera Sony Alpha A7, a global

navigation satellite system (GNSS) receiver Trimble BD982, an inertial navigation

system (INS) SBG Ellipse-E, and a single board computer Banana Pi R1 (Fig-

ure A.3). The GNSS receiver measures the position with centimeter-level accu-

racy when real time kinematic (RTK) correction data are transmitted, and as it is

equipped with two antennas for vector measurement, the device also measures the

orientation around two axes. The position and orientation data are used as an aux-

iliary input for the INS, which provides data output at a frequency of up to 200 Hz.

Since all the sensors are precisely synchronized, once an image has been captured,

the position and orientation data are saved into the onboard SSD data storage (more
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Figure A.3: The multi-sensor system for the UAV and ground station.

parameters are contained in Table A.2). The multi-sensor system mounted on the

UAV is shown in Figure A.2 and described in more detail within [15].

Both the position and the image data from the onboard sensors are processed us-

ing photogrammetric software Agisoft Photoscan Professional. This SW integrates

computer vision-based algorithms performing structure from motion (SfM) to allow

the surface reconstruction, and it offers two georeferencing options: indirect (IG),

using GCPs, and direct, utilizing onboard data. We may benefit from DG as the

only approach to produce accurately georeferenced maps of areas inaccessible for

humans (which is the case with radiation mapping). To achieve centimeter-level ob-

ject accuracy, a method for calibrating the designed system was developed [16]. The

calibration process involves the field estimation of the lever arms and the synchro-

nization delay between the camera shutter and the INS unit; these steps significantly

increase the accuracy of the position measurement of the camera perspective center.

In our experiment, the UAV is used only for the aerial photogrammetry, enabling

us to create a highly detailed, up-to-date orthophoto and DEM. These products are

applicable for both the localization of the ROI and the UGV navigation. If the UAV

were equipped also with radiation detectors, it would locate the ROI more reliably.

A.2.3 UGV

The UGV is an Orpheus-X3 civil reconnaissance robot, a four-wheeled mid-size vehi-

cle equipped with a sensor head carrying cameras. The robot has the ability to carry

all the equipment needed for this type of mission, namely, devices to facilitate self-

localization, gamma detectors with counting electronics, and a control module with

the designed algorithms. The whole system, namely, the robot carrying the equip-

55



Figure A.4: The Orpheus-X3 carrying the equipment.
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Figure A.5: The interconnection of the components (a), and the control diagram of

the simplified robot drive (b).

ment, is represented in Figure A.4. The basic parameters of the robot are shown

in Table A.1. The interconnection between the main components of Orpheus-X3 is

shown in Figure A.5a. The robot is capable of autonomous driving. A simplified

block scheme of all major modules for the robot motion control is drawn in Figure

A.5b; all the blocks of this scheme will be described in detail within the following

paragraphs.

In applications that require the autonomous motion control of a mobile robot, the

self-localization task must be solved in real time. The self-localization module of the

Orpheus-X3 mobile robot is designed exploiting the modular concept with real-time

data output; such an approach allows the quick and easy integration of localization

data from different sources. The data fusion is based on uncertainties of the input

data. In standard missions, the self-localization module includes solutions from

an RTK GNSS (Trimble BD982), a MEMS-based INS (SBG Ellipse-E), and wheel

odometry (data from the motor drivers). One of the central advantages of an RTK

GNSS is the high accuracy without any drift caused by the length of the measuring
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period or traveled distance. The applied RTK GNSS receiver can be connected

to two antennas, allowing drift-less heading measurement from the position vector

between the two antennas. The localization data from special methods (including,

for example, SLAM) can be also integrated if the uncertainties of the values are

known. In environments with a good open sky view, an RTK GNSS is usable as the

only solution. To increase the robustness of the entire self-localization module, we

may also employ some relative methods to bypass the time when the RTK solution is

unavailable due to reasons such as reinitialization. The position estimation accuracy

reaches the level of centimeters, and the orientation (azimuth) is better than 0.5 deg

if the RTK solutions are fixed. As regards accuracy, more results are obtainable

from the PhD thesis [17].

The Orpheus-X3 also integrates a navigation module (Figure A.6) to control the

robot motion, utilizing an externally computed requested trajectory. The trajectory

is defined as a sequence of waypoints in the WGS-84 coordinate system. The inter-

nal computational scheme of the navigation solution (block No. 1 in Figure A.6) is

presented in Figure A.7. The robot motion parameters, such as the turning radius

and maximum speeds, can be dynamically adjusted during a mission via an inte-

grated application interface from the related hi-level control module. The sequence

of waypoints is also dynamically modifiable from the path planner module during a

mission. More information about the navigation algorithms is outlined within paper

[14] and PhD thesis [17].
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Figure A.8: The directional characteristics of the detection system.

The gamma radiation detection system comprises scintillation detectors and mea-

suring electronics. A pair of 2-inch sodium iodide doped with thallium (NaI(Tl))

detectors are used as scintillators. The detectors are integrated with photomulti-

plier tubes having a standard 14-pin base. Multichannel analyzers NuNA MCB3

manufactured by NUVIA are used as the electronics; the analyzers ensure a high

voltage source, a preamplifier, and ADC sampling and processing. The detector

tubes are equipped with lead shielding, and one half of each spherical detector is

covered with a 2 mm layer of lead facing the other detector. The reason for such

a configuration is to intensify the directional sensitivity of the resulting detection

system. The directional characteristics of the detectors placed on the robot are in-

troduced in Figure A.8; however, these remain valid only if the distance between

the detector centers equals 106 mm.

A.2.4 Optimal Path to the Area of Interest

The terrain negotiability of a UGV is markedly affected by its actual slope pattern.

In this context, it appears very helpful if the entire system can assist the operator

in finding the shortest possible path to the target area from places accessible using

the regular transport infrastructure. The main obstacles for a UGV are areas where

the slope of the terrain exceeds the limit value of the given UGV. The slope map

is computed from a DEM, which constitutes a product of UAV photogrammetry.

The paths from the starting positions to the requested target are obtained using an

A* algorithm [18] in a binarized and down-sampled slope map; the down-sampling

of the map is needed due to a significant reduction of the computational demands.

The size of a cell in a down-sampled obstacle map should be slightly higher than the

width of the applied UGV. Lowering this size below this limit has no effect because
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of the impossibility to pass through a corridor with the width of one pixel, whereas

increasing it worsens the resolution and may cause the loss of the trajectory. The

down-sampling algorithm must preserve the thin lines that represent high slopes in

the terrain.

Another approach to reduce the computational demands consists in using lossless

compression algorithms (e. g., quadtree [29]) on a primary hi-resolution binary map.

These algorithms can also be employed in lossy compression applications, where the

cell size of a leaf (the last level of the tree) is larger than in the original map. In

the given case, however, the workflow must be changed, with the primary binary

map packed using a quadtree algorithm at the start of the data processing. Further,

the path planning algorithm must be modified to natively handle the compressed

data without fully expanding to an equidistant grid. Compared to the basic down-

sampling, this procedure significantly reduces the number of points needed to travel

through a path planning algorithm while keeping the same resolution of the map.

Such an optimization then markedly affects the computational demands. Due to

the negligible duration (only several seconds) of the trajectory planning operation

as opposed to the DEM calculation time (which amounts to several hours if a com-

puting grid is not utilized), the benefits of more advanced obstacle map compression

techniques are unimportant in the described application.

Yet another option for diminishing the computational demands of the path plan-

ning process is to employ an optimized method to find the shortest trajectory instead

of the fundamental variant of the A* algorithm. A good candidate can be seen in

the Jump Point Search [30] algorithm, which is capable of reducing the running time

by an order of magnitude. Due to both the planned ranges of the areas where the

trajectories are searched and the applied map resolutions, the trajectory planning

time is not critical in the context of the DEM generation time. When large areas

(exceeding ∼1 km2) are considered, it is suitable to ensure the time optimization of

the path planning process by means of a better performing algorithm or to compress

the map, thus reducing the number of points into which the objects in the map are

divided.

The starting position securing the shortest path to the target spot is preferred.

The whole sequence of tasks is shown in Figure A.9.
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Figure A.10: A schematic example of the mapping trajectory.

A.2.5 Methods for Path Planning and Field Mapping

An algorithm specified by the adjective mapping constitutes an elementary algo-

rithm to measure environmental quantities such as the dose rate in the region of

interest. The idea is to pass the entire area along the parallel equidistant lines and

to measure the dose or count rate periodically. If the line spacing and the robot’s

speed are small enough, even subtle changes in the radiation field can be noticed;

thus, even weak sources can be found. This is apparently a significant advantage

of the mapping operation. The drawback then rests in that the time requirements

increase rapidly with the size of the measured area. A schematic example of a

mapping trajectory in a pentagonal ROI is shown in Figure A.10.

The waypoints for the navigation module are generated on parallel lines inside

the polygon which defines the boundaries of the ROI. It is convenient to make the

lines parallel to one of the polygon’s longer edges in a manner where all the lines

intersect the polygon at not more than two points. When such conditions have been

satisfied, the resulting trajectory becomes more efficient for the robot because the

number of the turns required is minimized.

The parallel lines are separated by pre-defined spacing, a critical parameter related

to the algorithm’s capability of finding low-activity point radiation sources in the

area. The lower the spacing, the weaker the sources localizable and the longer the

timespan needed to acquire the data. Given that we know the intensity of the

weakest source to be found, the optimal value of the parameter is computable. In

the worst case, the source is located exactly halfway between two trajectory lines.

The dose rate generated by the source should be at least three times higher than the

background one, ḊB. Since the background may rise above the normal level in the

stricken area, it is necessary to measure its value once the robot has been deployed.

The spacing parameter is then given by the following equation:

d = 2

√
Ḋ1

3 · ḊB

(A.1)
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Figure A.11: A schematic example of the strong source search trajectory.

where Ḋ1 stands for the dose rate generated by the weakest source to be searched

for at the distance of 1 meter. If a particular radionuclide is to be found, this value

may be computed from its activity.

The mapping yields a set of scattered data points. Each of such points comprises

the coordinates and spectra acquired by both detectors during a measurement pe-

riod. The data points are not very suitable for visualization and further map pro-

cessing, namely, the conversion to a 3D point cloud. Thus, the calculation of the

radiation intensity (either the total count or the dose rate) at points in a regular

grid is needed. This step can be carried out through a Delaunay triangulation [19].

After the interpolation has been performed, the data become visualizable and in-

terpretable by the operator. If any point source is present in the mapped ROI, its

position may be computed automatically, as will be described later.

In any situation where finding only one strong source is required and timing

is important, the mapping algorithm may be extended as outlined below. The

extension exploits the dynamic change of the trajectory in accordance with the

measured data.

First, the robot follows a basic mapping trajectory. Once the end of the line has

been reached, the data are examined to yield a significant peak in the radiation

intensity. If peaks are found in two neighboring lines and their positions correlate,

the trajectory is altered, and the robot continues in a direction perpendicular to

the mapping lines passing through the center of the peak projections to the current

line. The new direction is maintained until another significant peak in the measured

radiation intensity appears. Afterwards, the final part of the trajectory denoted as

a loop is planned, and its purpose consists in acquiring a sufficient amount of data

points in the vicinity of the anticipated source position in order to determine that

position more accurately. A schematic example of the measurement trajectory is

shown in Figure A.11

A disadvantage of the above-described algorithm is the dependence of the result

on the initial mutual position of the robot and the source. The algorithm presented

below exploits the directional characteristics of the detectors, meaning that its per-
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formance should not depend excessively on the initial conditions and, under some

circumstances, multiple sources can be found.

As the difference between the detectors’ directional characteristics is rather indis-

tinctive, we have to find a more effective way to acquire data in order to gain relevant

information about the direction in which a source is present. A measurement cycle

along a closed loop seems promising because all possible angles between the detec-

tors and the sources are assumed. For a certain azimuth of the robot, an extremal

ratio of the detectors’ responses should be measured if a source is present within the

detectable range. This is a principle similar to that found in the peaks measured

by the authors of paper [20]. Obviously, the robot can simply rotate in place, but

it may be convenient to choose a circular trajectory instead because the range has

increased and the extremum is anticipated also in the count rate values due to the

inverse square law. Since the sum of the count rates is burdened by a statistical

error lower than that of the rates’ ratio, this should lead to better estimation of the

direction.

Assuming the robot maintains a constant speed once it has reached the circle, a

cyclic dataset with equidistant data points will result from the measurement. If there

are multiple sources adequately separated by an angle, more than one dominant peak

can be present, and it does not suffice to only find the maximum. Real data are very

noisy, requiring a robust peak detector. A simple peak is defined as a point having

a value greater than its two neighboring points; the peaks are then compared to the

reference levels evaluated for each peak in the following manner:

1. The nearest point with a greater or equal value is found to the left of the

examined peak.

2. The point exhibiting the lowest value is found in the interval bounded by the

peak and the point from step 1.

3. Steps 1 and 2 are repeated to the right of the peak.

4. The higher of the two interval minima specifies the reference level.

If the peak amplitude is greater than or equal to the reference level multiplied by

the desired relative prominence, the peak is accepted. Once the peaks have been

identified, it is convenient to fit their neighborhood using an appropriate function.

This procedure is performed for several reasons, including that, due to the dead

time, the point in the correct direction may not exhibit the maximum count rate.

In the given context, we can also assume that the actual maximum is somewhere

between the samples. The interpolation then provides the subsample precision. A

quadratic polynomial ensures sufficient results, and its parameters are computable

via the least squares method.
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Figure A.12: A schematic example of the circular algorithm trajectory.

One detector is pointed outwards and the other inwards. By comparing the count

rates in the peak, we can then determine whether the source is located outside or

inside the circle.

Due to multiple effects, such as an overlap of the radiation fields, the initial direc-

tion estimation may not be accurate; however, taking advantage of the directional

sensitivity, the error can be compensated. The detection system is arranged in such

a manner that the difference of the count rates measured by both detectors converges

to zero if the source lies in the axis of the robot. Thus, the effort is to minimize the

difference by changing the azimuth of the robot while the vehicle is approaching the

source. The value by which the azimuth is altered should depend on both the present

and the past measured differences. Given the current readings from the detectors

on the right-hand and left-hand sides, R(t) and L(t), and considering the previous

readings, R(t− 1) and L(t− 1), the desired azimuth change may be expressed as

∆ϕ = K1
R(t)− L(t)
R(t) + L(t)

+K2
R(t− 1)− L(t− 1)

R(t− 1) + L(t− 1)
+

+K3
R(t)

L(t)
− R(t− 1)

L(t− 1)
,

(A.2)

where K1, K2, and K3 are conveniently chosen constants. Note that whenever the

robot heads left from the source, the count rate measured by the right-hand detector

increases while the other one decreases; as a consequence, the change of the azimuth

is positive – in other words, the robot starts to head more to the right.

When the total count rate drops during three or more sampling periods in a row,

it can be assumed that the robot has already passed around the source. In that case,

the final part of the trajectory, or the loop, as presented previously, can be planned.

Once the source has been localized, the robot may proceed in another direction where

a source is anticipated. The schematic example of such a measurement trajectory is

shown in Figure A.12; the actual location of the source is marked by the red point,

and the black lines represent the initial direction estimation.
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Table A.3: The object accuracy (RMS error) achieved with the direct and indirect

georeferencing methods in UAV photogrammetry.

Method GCP/TP X [mm] Y [mm] Z [mm]

DG 0/30 19 27 25

IG 6/24 9 9 20

An obvious disadvantage of the presented algorithm rests in the limited explo-

ration range provided by one circle. However, it is possible to cover a larger area

using a set of complementary circles, applying the algorithm to each one of them.

Each of the three above-presented strategies allows us to find point radiation

sources. As proposed earlier, the process of determining the sources’ coordinates

can be automated: First, a data point denoted as maximum, which is as close as

possible to the source, has to be chosen; in the latter two algorithms, the data point

should be one acquired along the final loop and having the largest total count rate.

Regarding the mapping, the interpolated map has to be searched for two-dimensional

prominent peaks, which should correspond to the centers of the individual hotspots.

Afterwards, the data points measured within the defined radius around each max-

imum are selected for further processing; the radius should be proportional to the

total count rate in a given maximum. The points are then fitted with a suitable func-

tion. If the selected radius corresponds well to the source intensity, the paraboloid

of revolution secures sufficient interpolation, and its parameters are simply com-

putable via the least squares method. Better interpolation can be achieved using a

two-dimensional Gaussian function.

A.3 Results

This section summarizes the achieved results; the outcomes of the aerial mapping,

path planning, and localization of radiation sources are presented graphically.

A.3.1 Aerial Mapping

A region of approximately 30,000 m2 accommodating a potential radiation source

was mapped by a UAV carrying a multi-sensor system for direct georeferencing.

During an 8-minute automatic flight, 137 photographs were taken. The flight tra-

jectory and image capture period had been set to meet the requirement of 80 % side

and 80 % forward overlap. As the applied full-frame camera was fitted with a 15

mm lens and the flight altitude corresponded to 50 meters above the ground level

(AGL), the ground resolution of the images is about 2 cm/px.
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Figure A.13: The textured point cloud containing 29 million points; the blue rectan-

gles represent the image planes, whose positions were measured using

the onboard system.
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Figure A.14: The position error distribution in the terrain model generated using

the UAV, without the GCPs (determined on 30 TPs).
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Figure A.15: The georeferenced ortophoto (a), digital elevation model (b), and gra-

dient map (c), all generated using UAV photogrammetry without the

GCPs.

Once the onboard position data have been refined using custom calibration, we

employed them for terrain reconstruction together with the image data. Photoscan

was used to generate a dense point cloud with a density of about 800 points/m2

(Figure A.13); although the point cloud was georeferenced directly, without any

GCP, thirty markers were distributed across the area due to accuracy assessment.

The positions of these markers were measured with a survey-grade GNSS receiver

just before and after the flight. Table A.3 presents the RMS error of the object

position determined in all the 30 markers, or test points (TP). The RMS error did

not exceed 3 cm for each axis, and the spatial error equalled 4.1 cm RMS. The

histograms in Figure A.14 present the error distribution within the measurement,

assessed using the TPs.

The same set of image data was exploited in testing the performance of indirect

georeferencing, which is a techique widely used in UAV photogrammetry. Six mark-

ers were used as the georeferencing GCPs, and the remaining 24 ones assumed the

role of TPs. As presented in Table A.3, the RMS error did not exceed 1 cm in

the X and Y axes and 2 cm in the Z axis. The spatial RMS error of 2.4 cm was

about twice smaller compared to that found in DG. Despite this excellent result, IG

requires GCPs to enable georeferencing, and the technique thus cannot be utilized

in situations where the area of interest is inaccessible to humans, as is the case with

radiation contamination.

The georeferenced point cloud is then employed for the creation of other products,

namely, a true orthophoto and a digital elevation model (Figure A.15a and A.15b).

These two map layers can significantly simplify the process of localizing a source
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Figure A.16: The obstacle (a) and orthophoto (b) maps with possible trajectories

to the target.

of radiation (if a visible damage is observable) and, above all, help us to navigate

the UGV across the area. Because the applied UGV is not capable of operating on

steep slopes, a gradient map layer (Figure A.15c) constitutes an instrument towards

finding an appropriate trajectory to ROI.

A.3.2 Path to the Area of Interest

A binary obstacle map is obtained from the successfully formed DEM to retrieve the

shortest path to the ROI. The slope threshold limit to mark a relevant cell in the

map as an obstacle for the UGV is 15 degrees. The cell size in the down-sampled

obstacle map was set to 150 % of the robot width, yielding a map with 300 x 285

pixels (0.9 m/pixel). Such a resolution allows us to find one path within seconds on

a common PC unit. The possible mission starting positions were manually selected

in the orthophoto map. The identified trajectories to the target spot are shown in

Figures A.16a and A.16b. The point at which the robot was unloaded from the car

was chosen from among the starting positions offering the shortest paths (with the

most advantageous one being 83 m long). The final path was planned using also the

A* algorithm, and it ran between the unloading point and the first waypoint of the

polygon where the mapping had been performed.
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Figure A.17: The errors in waypoint tracking on the trajectory.
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Figure A.18: The errors in waypoint tracking on the trajectory.

A.3.3 Robot Navigation Accuracy

The robot navigation accuracy was determined as the waypoint tracking accuracy.

The relevant value was estimated from the real trajectory of the mobile robot and the

positions of the waypoints to be passed around. The error distance between the robot

trajectory and a waypoint embodies the closest distance between a waypoint and the

real robot trajectory, as demonstrated in Figure A.17. The histogram of the error

distance related to the waypoint tracking along the entire trajectory applied within

the standard mapping method is presented in Figure A.18. The error distances are

evaluated on the horizontal plane (east-north). The average error equals 2.8 cm.

A.3.4 Radiation Sources Localization

The proposed methods to localize gamma radiation sources were first simulated

and then tested with actual radionuclides. There are two main reasons to run the

simulations: a) The behavior of the algorithms is influenced by several parameters

to be set prior to any experiment, e. g., the peak prominence and azimuth change

constants; and b) it is vital to set up the experiments in a manner that enables the

algorithms to work as expected, meaning that when the experiments are prepared

using simulation, the time needed on site can be reduced.
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The radioactive decay of a source is a process describable with the Poisson distri-

bution. The probability of the emission of x photons is expressed as [21]

p(x = X) = P(x;λ) = e−λλx

x!
, (A.3)

where λ denotes the mean emission of photons and its value is proportional to the

source’s activity. On the short-term basis, this activity is approximately constant in

the employed radionuclides. In the long-term run, it decays following the equation

[21]

A = A0e
− t

T1/2 ln(2) , (A.4)

where T1/2 is the half-time of the radionuclide, and A0 represents its original activity

(usually stated in the calibration protocol).

Since the λ values are typically in the order of thousands and the Poisson dis-

tribution is numerically stable within the order of tens at most, the sources were

approximately modeled using the normal distribution. The radiation background

was modeled with the uniform distribution. The detectors were assumed to exhibit

100% conversion efficiency, and only their directional characteristics were consid-

ered. The dependence of the registered counts on the distance from a source is

given by the inverse square law. Given the parameters of the sources, it is possible

to calculate the counts registered in a measurement period by the detectors at any

point. The total count detected by the detector k can be obtained from the equation

Ck = cB +
R∑

r=1

ck,r, (A.5)

where cB ← U([cB,min; cB,max]) is the contribution of the background, and ck,r de-

notes the count rate due to the source r. The relevant value is given as

ck,r =
Kk(ϕk,r)ar

||xk − xr||2 + h2k
, (A.6)

where Kk(ϕ) is the sensitivity in the direction ϕ; ϕk,r is the angular coordinate of

the source r in the coordinate system of the detector k; ar ← P(λr) stands for

the number of emitted photons; xk and xr are the coordinates of the detector and

the source, respectively; and hk is the height of the detector k above the ground.

The simulations were run for multiple values of each parameter within the relevant

possible range, with the parameter values set according to a convenient optimality

criterion.

The radionuclides used for the experimenting are summarized in Table A.4, to-

gether with their actual activities. All the experiments took place in the same poly-

gon that had been defined using the map acquired by the UAV. The positions of the
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Table A.4: The parameters of the radionuclides.

Label Radionuclide Activity [MBq]

S1
60Co 8.0

S2
60Co 40.0

S3
137Cs 65.6

S4
137Cs 0.22

S5
60Co 0.35
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Figure A.19: The result of the mapping algorithm.

sources were measured prior to the experiments in order to provide the reference

data.

To test the mapping algorithm, sources S1, S4, and S5 were placed in the ROI,

with the spacing sufficient to facilitate their differentiation. The distance between

the parallel lines was set to 1 meter. The data acquisition took 15 minutes and 3 sec-

onds. The map resulting from the application of a Delaunay triangulation is shown

in Figure A.19, where the black crosses mark the positions of the sources gained

through the interpolation. The mean error of the computed positions corresponded

to 0.06 meters.

The next algorithm, strong source search, was tested using source S3. After the

passage of the first two lines, we localized the direction in which the source had been

estimated. The whole localization process lasted 2 minutes and 53 seconds, including

the final loop around the source. The resulting trajectory consisting of data points

is visualized in Figure A.20a. The achieved position error equals 0.04 meters (the
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Figure A.20: The result obtained with the strong source search algorithm.

same order as in the mapping). The experiment was repeated using source S2, where

the achieved error corresponded to 0.94 meters. Since the azimuth was not corrected

while approaching the source, the result strongly depended on the accuracy of the

initial estimation.

First of all, the circular algorithm was verified with one source (S2); the source

was located after 1 minute and 28 seconds, with the position error of 0.52 meters.

After the actual completion, another experiment was set up, using two sources (S1

and S2) placed inside the area in such a manner that the circular trajectory lay

between them. The resulting trajectory can be seen in Figure A.20b; apparently,

the initial estimation of the direction in which source S2 can be found is rather

inaccurate. However, thanks to the proposed continuous correction of the azimuth,

both the sources were eventually located, and the mean position error corresponded

to 0.40 meters. The entire experiment took 2 minutes and 54 seconds.

A.4 Discussion

The UAV has proven to embody a very effective tool for fast and accurate aerial

mapping. The presented custom-built multi-sensor system to facilitate direct georef-

erencing can be carried by any UAV that exhibits a sufficient payload capacity, thus

enabling the actual photogrammetry to be performed without using GCPs. This is

essential when mapping areas inaccessible or dangerous to humans, including, for

example, those characteristic of natural disasters or radiation mapping. The elimi-
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nation of GCPs also allows us to automate the entire mapping process, resulting in

no need of human interaction during the data acquisition processing.

The spatial ground accuracy of the multi-sensor system related to the above flight

mission is 4.1 cm RMS, a sufficient accuracy rate for UGV navigation. This is a result

surpassing those achieved within similar projects. Turner et al. [22] obtained the

spatial accuracy of 11 cm using a multicopter carrying a DSLR camera synchronized

with a positioning system based on a Differential GPS receiver. Fazeli et al. [23] then

used a low-cost RTK GPS module to perform DG; however, they generated a spatial

error of 29 cm RMS due to inaccurate time synchronization. A system similar to

the one presented in this research report is characterized in a related paper by Eling

et al. [24], who also used a multicopter UAV equipped with a dual antenna RTK

GPS receiver, paying special attention to the calibration and time synchronization.

The experiment yielded very accurate results, namely, 1.4 cm RMS for the XYZ

axes, but these were achieved with a very low altitude and flight speed (20 m AGL,

2 m/s).

If we compare the accuracies of DG with those of IG, the former are typically

slightly worse but remain comparable in selected cases. The object accuracy of a

model georeferenced using IG mainly depends on the quality of the ground markers

(GCPs), but it also reflects the flight altitude and ground resolution. The spatial

error of the IG technique is normally within centimeters, as presented in, for exam-

ple, the corresponding papers by Fazeli et al. [23], Barry et al. [25], and Panayotov

[26]. But, as already mentioned, this approach is not suitable for our application

due to the need of ground markers.

In the present article, the UAV was employed for optical mapping only; never-

theless, if a higher payload capacity were available, a detector of ionizing radiation

could also be carried. In such a case, the orthophoto would be expanded to include

the radiation intensity layer an outcome very beneficial for localizing the ROI. Yet

this type of radiation maps cannot be as accurate and detailed as that produced by

ground mapping (UGVs), because a typical flight altitude of a UAV is within tens

of meters AGL. Ionizing radiation mapping via UAV is discussed in, for example,

papers by Kaiser et al. [12], Torii et al. [27] or Martin et al. [28].

Since the UGV does not possess the ability to avoid obstacles autonomously, the

digital elevation model is a valuable aid for the operator to define the region where

the UGV can operate safely.

In this paper, three different strategies to survey the ROI are introduced and tested

in real conditions. The basic surveying method consists in a mapping algorithm

which provides reference of the time costs and localization accuracy for the other

algorithms. Mapping the selected ROI with the area of 438 m2 took approximately

15 minutes, with the line spacing corresponding to 1 meter. Since the trajectory was
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planned evenly inside the ROI, the dependence of the time intensity on the region’s

area is rather linear. This fact embodies the major disadvantage of the mapping:

the given operating time of the UGV equalled 120 minutes, and the maximum region

that can be surveyed within a single action is limited to an area of roughly 3,500

m2. Conversely, the advantages include the ability to negotiate radiation hotspots

other than isotropic point sources – for example, area or directional sources (such

as a radionuclide in an open lead container). Both the sensitivity and the accuracy

of the method may be increased by setting smaller line spacing and lower forward

speed of the robot; the survey, however, is then likely to be more time-consuming.

The methods based on a dynamic change of the trajectory in accordance with the

information provided by the detectors reduce the time consumption while ensuring

a similar accuracy. Together with the time saving feature, the strong source search

algorithm provides two considerable benefits: First, if no source is found or present,

the operator still gains the data allowing them to reconstruct the radiation map;

second, the method is independent from the applied detection system and thus can

be employed with other types of detectors, even the non-spectrometric ones. A

disadvantage rests in the marked dependence of the result on the position of the

source with respect to the initial position of the robot.

The circular algorithm, however, remains unaffected by this drawback and was

discussed in the present paper as an alternative to the strong source search algo-

rithm, which can beneficially exploit a direction-sensitive detection system. The

relevant experiment proved that, under certain conditions, more than one source

is localizable. The central importance of the algorithm nevertheless consists in its

being a fundamental block for a more advanced localization algorithm to explore

larger areas. Considering sources detectable at the distance of 4 meters (in the case

of the detection system outlined in this paper, such sources consist in radionuclides
60Co or 137Cs, showing activity in the order of tens of megabecquerels), one circle

covers the area of approximately 200 m2. Within the experiments, such a circular

trajectory was completed during 48 seconds. But assuming also the time consump-

tion associated with the movement between the circles, a primary survey of the ROI

chosen in this paper would last roughly 2 minutes – a major reduction of the time

cost compared to the mapping.

The mapping algorithm provides localization accuracy in the order of centimeters.

Johsi et al. [3] present a helicopter-borne radiation detection system and discuss

the localization of a source having an intensity similar to that exhibited by the

sources in our experiments. The obtained localization accuracy is within the order

of meters, embodying a result expectable with respect the character of the method.

More interesting, however, appears to be a comparison with the achievements of

UGVs. Lin et al. [6] proposed a method for localizing a radiological source via a
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mobile robot; the technique exploits an artificial potential field and a particle filter

which, respectively, can negotiate the obstacles and simplify the localization. The

method was verified by means of a simulation only with one source, with the achieved

estimation error amounting to 0.02 meters. Ristic et al. [7] then presented an

information-driven source search method. The concept was tested using Monte Carlo

simulations in a square area (100 × 100 m) accommodating one source, with the

results comprising an average search that took 90 seconds and yielded an accuracy

in the order of tenths of meters. The relevant simulation cycles were verified using

two datasets measured in real conditions. Although the method appears to be

promising in terms of the time efficiency, it is still awaiting practical application.

Other innovative surveying strategies were introduced by Cortez et al. [9], who

nevertheless verified their research only in an area of 60 × 60 cm, insufficiently for

the discussed scenarios. The localization accuracy of the method is limited to 4

cm. A rather different scheme is described by Duckworth et al. [10]; their source

is localized inside a collapsed building, and the process strongly depends on the

assistance from an operator. Eventually, it took a minute to localize the source

inside a 6 × 6 m space.

The results within the present article are outlined using CPS values because the

detectors were not properly calibrated prior to the experiments. Regarding the

pursued goal, namely, the localization of radiation hotspots, the information value

of the count rate is sufficient. The human operator may decide on the severity of

the situation by comparing the values measured inside the ROI and the background

value acquired after the deployment of the UGV. As the measured spectra are stored,

they can be later approximately converted to dosimetric quantities if desirable – for

example, as information for the operative team charged with the elimination of the

given risk.

Although the radiation map is acquirable via the UGV alone, there are several

reasons for choosing the proposed cooperation with the UAV. The main advantage

consists in the possibility of using the DEM, which allows the UGV to navigate

between terrain obstacles and can be beneficial for the operative team as well. Fur-

thermore, if the radiation layer is measured during the aerial data acquisition, the

area to be searched by the UGV can be reduced to save time and energy. In general,

the cooperative approach combines the advantages of UAV and UGV-based solu-

tions, minimizing the disadvantages related to the stand-alone operation of each of

these systems.
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Figure A.21: Georeferenced map containing orthophoto layer with hill shading cre-

ated using UAV photogrammetry complemented by the gama radiation

intensity layer created by UGV.

A.5 Conclusion

This paper outlined the process of localizing ionization radiation sources via coopera-

tion between a UAV and a UGV. All the presented methods were duly implemented,

and special attention was paid to verifying the theoretical assumptions via a real

mission as many similar projects rely on simulated data only. A UAV equipped

with a custom-built multi-sensor system was employed to acquire the aerial data,

and since this system had been designed for direct georeferencing, the technique does

not require ground markers. The object accuracy obtained through photogramme-

try corresponded to 4 cm RMS, and both an orthophoto and a DEM were used for

the UGV trajectory planning.

An Orpheus-X3 UGV equipped with a purpose-designed gamma radiation detec-

tion system was used to test several strategies facilitating radiation source localiza-

tion. Regarding the general mapping method, the localization accuracy of 6 cm was

achieved in the strong and weak sources placed simultaneously inside the selected
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ROI. Subsequently, an information-driven method based on the data acquired by

an omnidirectional detector was designed and tested, enabling us to localize a sin-

gle source at a rate approximately five times faster than that achievable with the

mapping algorithm. Further, a pair of radiation detectors were utilized to assemble

a detection system with considerable directional sensitivity. A modified algorithm

exploiting such sensitivity, however, may ensure even better time efficiency; under

certain conditions, the method allows us to localize a single source ten times faster

compared to the basic method. When confronted with the common approaches in

terms of the localization accuracy, the improved procedure performs worse by an

order of magnitude; yet the resulting information suffices for neutralizing a source.

Figure A.21 illustrates the composition of both the aerial and the ground mapping

processes.

In the future, UAVs equipped with gamma detectors will likely be usable in rough

radiation mapping, allowing the automatic detection of ROIs. This, along with

implementing obstacle avoidance in UGVs, would lead to the more autonomous

localization of radiation sources.
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Abstract

The article discusses an autonomous and flexible robotic system for radiation mon-

itoring. The detection part of the system comprises two NaI(Tl) scintillation de-

tectors; one of these is collimated to allow directionally sensitive measurements,

and the other is used to calculate the dose rate and provides sufficient sensitivity.

Special algorithms for autonomous operation of an unmanned ground vehicle were

developed, utilizing radiation characteristics acquired by the implemented detection

system. The system was designed to operate in three modes: radiation mapping,

localization of discrete sources, and inspection of a region of interest. All of the

modes were verified experimentally. In the localization mode, the time required
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to localize ionizing radiation sources was reduced by a half compared to the field

mapping mode exploiting parallel trajectories; the localization accuracy remained

the same. In the inspection mode, the desired functionality was achieved, and the

changes in the sources arrangement were detected reliably in the experiments.
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B.1 Introduction

There are many reasons to be prepared for radiation situation reconnaissance of

a region of interest (ROI). Accidents in transportation or handling a radioactive

material pose a risk of losing control over the source of ionizing radiation (IR) [1], [2].

A similar problem consists in the intentional misuse of an IR source as a radiological

exposure device (RED); the worst case scenarios comprise potential threats arising

from a radiological dispersal device (RDD) ([3], [4]) or nuclear power plant accidents

(Chernobyl, Fukushima). The affected area can be of various sizes and different

degrees of danger. To take proper radiation protection measures, we first need to

identify the area contaminated with radioactive substances and to localize the ’hot

spots’ or radiation sources quickly and efficiently. To prevent people from entering

a high risk area, remote sensing and manned or unmanned robotic systems are

widely studied. The aim of our research is to satisfy the requirements for a modern,

autonomous, and flexible robotic detection system that provides comprehensive data

on the radiation situation at the deployment site. The monitoring of a radiation

situation using unmanned aerial or ground vehicles is also a subject of research [5],

[6], [7]; however, the output of such a process is a map of ionizing radiation intensity

that must be evaluated by a competent person.

The method to expand the capabilities of radiation situation reconnaissance con-

sists in obtaining more information than solely the intensity of IR. The direction

to the IR source can constitute such information. The novelty of the research lies

in the development of a new, directionally sensitive detection system together with

special algorithms to autonomously operate the unmanned ground vehicle (UGV)

in dependence on the detected radiation characteristics. These new capabilities

provide radiation mapping with new possibilities in localizing discrete IR sources,

performing radiation inspection of objects, and surveying the radiation signature of

regions of interest.

B.2 Methods

B.2.1 Dosimetry System

A special detection system was developed within the research procedures. The

system comprises two detectors, one omnidirectional and the other directionally

sensitive. Both detectors are based on a scintillation crystal of sodium iodide doped

with thallium (NaI(Tl)) in the size of 2′′×2′′ accompanied with photomultiplier tubes

(Nuvia a.s., CZE). The counting electronics was specially developed to avoid data

delay and distortion usual in data processing in commercial devices. The processed
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Figure B.1: A block diagram of the system.

data comprise a 256-channel spectrum of gamma radiation measured every second.

Thev detectors were calibrated for the energy range from 30 keV to 2 MeV. The

quantity dose equivalent rate was approximately determined by summing the spectra

from the omnidirectional detector. This conversion was calibrated for the energy

of 662 keV (137Cs). The dynamic range of the dose equivalent rate was up to

0.6 mSv·h−1.

The directionally sensitive detector was placed in a lead collimator. Shielding

with the thickness of 2 cm enclosed the top and sides of the scintillating crystal.

Due to the weight and volume, it was not possible to shield the whole detector. The

collimator had a vertical aperture of 11 mm on its side, corresponding to the viewing

angle of 15◦. The collimator exhibited the weight of 7 kg, and its capabilities included

rotation around the vertical axis. The sum of the gamma spectra was measured in

24 sectors during 1 turn (24 sectors × 15◦= 360◦). The obtained histogram was

evaluated for a statistically significant increase in the detector response, which was

interpolated by a triangle; subsequently, the direction to an IR source was estimated.

B.2.2 Robotic System

The detection system can be integrated in any arbitrary robotic system mechanically

capable of carrying its load and is equipped with reliable self-localization and nav-

igation modules. Within the scope of this paper, the Orpheus-X4 robotic platform

developed at the Faculty of Electrical Engineering and Communication and CEITEC

institute, Brno University of Technology, is employed [8], [9]. The Orpheus-X4 is a

mid-size, four-wheeled reconnaissance robot with a differential drive having the pay-

load capacity of approximately 30 kg. Importantly, the vehicle utilizes an advanced
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Figure B.2: The Orpheus-X4 carrying the detection head.

module based on the Real Time Kinematic (RTK) Global Navigation Satellite Sys-

tem (GNSS), which ensures high-accuracy measurement of the robot’s position, with

the error in the order of centimeters [10]; consequently, the robot can automatically

follow a pre-defined outdoor path.

The block diagram in Fig. B.1 shows the manner in which the detection system

was integrated in the robotic platform. The key on-board components are connected

via Ethernet, and they are embodied by a Raspberry Pi (control of detectors), a

GNSS receiver, and a computer running all the control algorithms. A wirelessly

connected ground station provides the correction data for the position measurement

and also the remote control. An image of the complete system, namely, the robot

carrying the detection head, is shown in Fig. B.2.

B.2.3 Operation Modes

For the autonomous detection system testing, three operation modes to facilitate

radiation reconnaissance were designed: radiation mapping, localization of discrete

sources, and inspection of objects or regions of interest.

The first operation mode uses standard ROI exploration along parallel lines by a

robot carrying the radiation detector. There is no need of communication between

the detector and the UGV. The results of this mode comprise a map of the ionizing

radiation intensity. A subsequent evaluation is required to identify the hot spots,

discrete sources, and other aspects.

The main benefit of the second mode is the ability to modify the robot trajectory

in real time, exploiting the data measured by the detection system. The purpose

of this mode is to reduce the time needed to accurately localize IR sources. The

basic idea consists in reacting to an increased level of IR, executing the directional

measurement and subsequently inspecting portions of the surveyed region where

the sources have been detected. This approach causes strong sources to be reported
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quickly to the operator, along with their parameters. The method is described in

more detail within the following subsection.

In the third operation mode, the robotic detection system performs autonomous

inspection of the specified area in terms of the presence of gamma radiation. The

system must be capable of indicating a possible change in the IR intensity and

subsequently specifying the character of the change (e.g., a new or a missing source).

Prior to the inspection, there must be a ’learning’ pass of the inspection trajectory

to identify and remember the radiation signature of the ROI. During the inspection,

the current radiation signature is continuously compared with the learned one. This

mode is able to inform the operator about new IR sources (accident, contamination)

or ’lost’ sources (stolen, moved) in the region of interest, including, for example, a

nuclear power plant site or a radioactive waste repository.

B.2.4 Control Algorithms

The algorithm utilized for navigating the robot along the defined path is also de-

scribed in other papers, such as Autonomous field measurement in outdoor areas

using a mobile robot with RTK GNSS [11]. This chapter emphasizes the algorithms

necessary for operation in the modes described above.

The first mode is rather straightforward, with the data collected along a pre-

defined trajectory composed of parallel lines; the trajectory is not changed during

the measurement. Only one parameter, namely, the distance of parallel lines, sig-

nificantly influences the result, and its choice corresponds to the desired minimum

detectable activity (MDA). In order to produce a well-arranged map of the area

distribution of the ionizing radiation, the scattered data are interpolated via the

Delaunay triangulation [12]. The resulting map is of importance to the human op-

erator, as it offers a quick survey of the sources’ layout and intensity; moreover, it

can provide an additional item of information, such as that on isodoses. Directional

measurement is not employed in this mode, which serves mainly as a reference for

the localization performance of the second mode.

Regarding the utilized algorithms, the second mode is more appealing; its purpose

is to localize the radiation sources in a shorter time but at the same (or similar)

accuracy, exploiting the directional information provided by the detection system.

To perform a directional measurement, the robot has to stop for 12 seconds; thus,

it is desirable to minimize the number of directional measurements to maintain the

algorithm’s ability to compete with the first mode. A possible approach to achieving

this objective is described below.

Let us assume that the sources are present in a region with delimited borders. The

region of interest should be chosen based on a primary measurement; for example,
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Figure B.3: An example of the two-phase survey trajectory from point A to point

C; point B is a dividing spot between the primary and the secondary

trajectories.

its border can be constituted by an approximate isodose. A feasible solution is to

employ aerial assets [13], [14].

The exploration of the region comprises two phases, namely, a rough and a detailed

one. First, the region is decomposed into cells consisting of a 3×3 matrix of subcells.

The size of a subcell should ensure that any source with an MDA present in it is

detectable from its center. Then, to each cell and subcell, a priority number is

assigned (the lower the number, the higher the priority), having the highest value

by the border. A primary trajectory is built over the cell centers, following a set of

rules which prefer:

� a lower priority number,

� unvisited cells,

� constant direction.

The rules are obviously more complex; therefore, their detailed description is not

discussed within this paper. A secondary trajectory over the subcell centers is built

in a similar manner. An example of exploration trajectories is shown in Fig. B.3 for

a region of 3×4 cells.

During the localization, the robot follows these pre-defined trajectories until the

presence of a source is indicated. The indication is based on the instantaneous

measured radiation intensity (represented either by a count rate or a dose rate) if

its value is significantly higher than expected. Before the first source is localized,
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Figure B.4: A trajectory example for a better estimation of the source parameters

(a). The angular dependency of the directionally sensitive detector in

CPS; source of 137Cs, 293.5 MBq, distance 3 m (b).

the anticipated intensity is defined solely by the radiation background, which should

be measured prior to the survey, outside the stricken area (if possible). Once the

indication conditions are fulfilled, the robot stops operating, and the directional

measurement using the detection head is performed. If a significant direction is

found, the robot will alter its trajectory in order to follow that direction. After the

source is provably passed (we need to consider the dead time effect), the trajectory

changes again, with the objective to collect data along a perpendicular line. The

purpose consists in supplying sufficient input data into the algorithm that estimates

the parameters of the source (the position and ’emission’); such a trajectory is

represented in Fig. B.4a. The estimation can be performed using, e.g., the Gauss-

Newton method, as described in Optimizing the localization of gamma radiation

point sources using a UGV [15]. If multiple significant directions are found, i.e.,

more than one source is within the detectable range, then each of them is handled

in the described manner. Afterwards, the robot returns to the base trajectory to

continue the survey. However, the expected radiation intensity value does not derive

from the background only but also from the established sources’ radiation field. The

exploration is completed when the final point of the secondary trajectory is reached.

Finally, in the third operation mode the operator needs to manually define several

checkpoints that exhibit a significant radiation signature. Directional measurements

are conducted in these points to provide reference for a future inspection. The course

of the first inspection sequence, which is driven manually, is logged in a configuration

file containing the trajectory and the distribution of the radiation intensity along

it; the results of the measurements are saved. During the following autonomous
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sequences, it is checked whether a change in some of the quantities oversteps the

tolerance area; if such a condition is found, the anomaly is reported to the operator

and can be verified by additional measurements.

B.2.5 Experimental Setup

For the experimental verification of the autonomous detection system, a rectangular

region with the area of 330 m2 was selected. Sealed radioactive sources of radionu-

clide 137Cs with the activities of 293.5 MBq and 2.9 GBq were employed to test

the first two modes of operation (the radiation mapping and localization of discrete

sources). The location of sources was the same in both cases in order to compare

the accuracy and time requirements of the different approaches; in the third mode,

the setup included other two sources of radionuclide 137Cs, whose activities equalled

14.2 MBq and 94.7 MBq. Here, the intention was to move the sources during the

experiment.

B.3 Results

The detection part of the system was properly tested and calibrated. In particular,

the structure and properties of the collimator for the directionally sensitive detector

(i.e., the thickness of the shielding or the shape and dimension of the aperture) were

investigated and estimated on the basis of Monte Carlo simulations [16] (in Czech).

The real angular dependency as the main property is represented in Fig. B.4b.

The Figure indicates the output of the detector in counts per second (CPS) as the

function of the angle between the aperture and the source of 137Cs (293.5 MBq,

distance 3 m). The ratio of the CPS for 0◦to that for 180◦is approximately 1.7.

Naturally, the ratio depends on the gamma radiation energy. A low energy radiation

with a higher attenuation coefficient constitutes a higher value of the ratio.

The directionally sensitive detector is able to estimate the direction to the source

very reliably within 4 to 6 meters (source of 60Co, 152.5 MBq). The angle measure-

ment accuracy equals approximately 5◦.

The field experiments were performed correspondingly to the setup characterized

above. For the radiation mapping (the first mode), the distance of 1 m between

the parallel lines was chosen in order to provide data for sufficiently smooth inter-

polation. The resulting map is shown in Fig. B.5a. The area exploration took

10.5 minutes, and the localization accuracy of 10.6 cm RMS was achieved.

The experimentation in the second mode (the localization of discrete sources)

necessitated the control algorithm alteration, as some of the spurious attributes of

the detection system had not been anticipated; basically, several effects caused by
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Figure B.5: The radiation mapping result related to the 137Cs sources; the upper left

one has the activity of 2.9 GBq, while the other exhibits 293.5 MBq (a).

The source localization result related to the 137Cs sources; the upper

left one has the activity of 2.9 GBq, while the other exhibits 293.5 MBq

(b).

the measurement geometry and the robot movement were compensated. Eventually,

the sources were localized with the accuracy of 12.4 cm RMS in 5.5 minutes. The

results of the experiment are visualized in Fig. B.5b. The final part of the trajectory

is missing due to the data integrity corruption caused by shading of the GNSS

antennas. Note that the region was decomposed to 1 × 4 cells; the straight line in

the middle embodies the primary survey trajectory while straight lines along borders

of the region represent the second one.

In the inspection mode, an approximately oval trajectory was defined manually,

with two checkpoints near the IR sources where the directional measurements were

carried out. The correct behavior of the system was verified by multiple passes of

the inspection trajectory for each of the scenarios described below. First, the sources

were kept in their initial locations; the algorithm indicated no change, as expected.

Then, one of the sources was removed, and the event was correctly evaluated by

the algorithm. Finally, the weaker source was placed in a new location; the system
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was able to report the presence of a new source on the basis of a radiation intensity

higher (compared to the background) than that detected in the initial measurement.

The described experiments were run multiple times in the same configuration (due

to logistic issues) to verify the algorithms.

B.4 Discussion and Conclusion

The paper presents a custom-made, two-detector system capable of measuring both

the dosimetry quantities and the direction to sources of ionizing radiation. The

system was integrated in the Orpheus-X4 robotic platform and successfully tested

in field experiments with real radioactive sources.

The operation mode, which enables faster localization of discrete IR sources via a

directionally sensitive sensor, is introduced. Compared to the localization approach

based on conventional radiation mapping, the system should offer the same accu-

racy within a shorter time under certain circumstances. The duration of radiation

mapping in a given area is constant, and the choice of the initial measurement point

is relevant in terms of the time required for the first significant item of information

to arrive. Conversely, once the assumption of the sources’ presence near the center

of the region is correct, primary information on the situation is provided earlier,

eliminating the dependence on the initial conditions even with the long directional

measurement time.

Another benefit of our research consists in the inspection mode, which embodies a

rather innovative technique within radiation protection. Currently, the inspection is

possible merely in an outdoor environment, as it depends on the self-localization pro-

vided by the GNSS; such a scenario constitutes an apparent disadvantage. Prospec-

tively, however, the system can be extended with an indoor self-localization module

(e.g., by means of computer vision [17]). Moreover, a variable inspection trajec-

tory of the robot is envisaged to decrease the system’s predictability (to make a

malevolent attack on the system more difficult).

There are several major possibilities of improving the system within future re-

search. First, the size of the directionally sensitive part of the detection system

could be reduced by employing a one-inch detector and a photodiode instead of

the photomultiplier. Although such adjustment will probably reduce the detec-

tion efficiency, it could still ensure a satisfactory trade-off between the mechanical

ruggedness and the accuracy of the directional measurements. Then, the system can

be equipped with a detector for high dose rates, e.g., a GM tube, as the scintillators

become overloaded in the vicinity of high emission sources. Finally, more general

and robust localization algorithms for the robot are planned to be developed and

tested.
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Abstract

During missions involving radiation exposure, unmanned robotic platforms may

embody a valuable tool, especially thanks to their capability of replacing human

operators in certain tasks to eliminate the health risks associated with such an envi-

ronment. Moreover, rapid development of the technology allows us to increase the

automation rate, making the human operator generally less important within the

entire process. This article presents a multi-robotic system designed for highly au-
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tomated radiation mapping and source localization. Our approach includes a three-

phase procedure comprising sequential deployment of two diverse platforms, namely,

an unmanned aircraft system (UAS) and an unmanned ground vehicle (UGV), to

perform aerial photogrammetry, aerial radiation mapping, and terrestrial radiation

mapping. The central idea is to produce a sparse dose rate map of the entire study

site via the UAS and, subsequently, to perform detailed UGV-based mapping in

limited radiation-contaminated regions. To accomplish these tasks, we designed nu-

merous methods and data processing algorithms to facilitate, for example, digital

elevation model (DEM)-based terrain following for the UAS, automatic selection of

the regions of interest, obstacle map-based UGV trajectory planning, and source

localization. The overall usability of the multi-robotic system was demonstrated by

means of a one-day, authentic experiment, namely, a fictitious car accident including

the loss of several radiation sources. The ability of the system to localize radiation

hotspots and individual sources has been verified.
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C.1 Introduction

Any radiation mapping, namely, measurement that provides knowledge of the dis-

tribution of ionizing radiation in space and time, finds use in various applications

related to common activities. In this context, we can mention, for example, geo-

physical surveys, environmental monitoring of nuclear sites, post-disaster responses,

localization of lost radiation sources, and everyday operation of nuclear power plants

(NPP). Advantageously, such tasks are often carried out by utilizing unmanned

robotic systems, mainly to protect human health; however, robots are also capable

of reducing the time and increasing the accuracy thanks to semi- or fully autonomous

operation. To improve the efficiency, different assets and techniques may be com-

bined. Thus, for example, one of the oldest and most commonly applied radiation

survey methods is helicopter-based airborne spectrometry enabling us to quickly

cover square kilometres of land, but only at the expense of inadequate accuracy and

very high cost. Unmanned ground vehicles (UGVs), by comparison, may ensure su-

perb accuracy, but their operational ranges are mostly limited to several hundreds

of square meters; in the same context, unmanned aircraft systems (UASs) offer ade-

quate accuracy and survey range. Therefore, to recognize the radiological situation

in medium-sized areas, a multi-platform system seems to be a promising option.

The paper aims to present the options and perspectives of using a multi-robot

system to perform highly automated radiation mapping and source localization in

an outdoor environment; these tasks embody a common response to radiological

incidents and nuclear accidents. The goal of the mapping, in general terms, rests

in assessing the severity of the situation and providing as many data as possible to

the authorities responsible for restoring the locality (these usually involve relevant

national agencies and fire rescue services). The areas to be surveyed and mapped

are commonly sized in the order of thousands of square meters, with the dimensions

reaching up to 500×500 m; however, considering the point radiological sources, the

desired localization accuracy is within decimeters to allow the sources to be collected

by the human operators and validated using a hand-held device. Nevertheless, our

research does not comprise scenarios with severe nuclear accidents involving serious

health risks and possibly requiring the robots to be radiation-hardened.

To perform the aforementioned tasks, we designed a comprehensive mapping

method that relies mainly on available technologies and algorithms combined to-

gether to solve the problem completely, i.e., from area definition to source local-

ization. Regarding the hardware, the approach employs two unmanned platforms,

namely, an aerial and a terrestrial one; each of these then has a particular role.

In the paper, we cover the necessary theory to enable effective deployment of the

robots, including trajectory planning aspects and choosing proper data collection
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parameters; furthermore, considerable attention is allocated to automating as many

steps as possible to minimize human intervention. In this context, for example, we

survey techniques enabling automatic extraction of radiation hotspots from a sparse

dataset and discuss deterministic estimation of a source’s locations.

A major portion of the paper is centered on the practical verification of the de-

signed process; to fulfill this step, we prepared a comprehensive experiment resem-

bling a real-world scenario to a high degree. The setup encompassed an area of

20,000 m2 featuring considerable height differences, artificial objects, and multiple

radiation sources. Consecutively, we deployed a UAS and a UGV and performed

indispensable processing cycles, as originally planned; moreover, to increase the au-

thenticity, the entire operation was completed within a single day. Although the

results obtained from the single experiment are not statistically plausible enough

to be generalized, we can propose some valuable conclusions that may help to di-

rect the future research activities in a convenient manner. Thus, for instance, the

outcomes illustrate the benefits and drawbacks of the individual robotic platforms

within the radiation mapping context, responding to the question of whether the

aerial mapping suffices to distinguish between the individual isotopes and sources

concentrated on a small area.

The paper is organized as follows: Section C.2 discusses related work in robotic

radiation mapping and source localization, whilst also outlining our long-term re-

search activities within this domain. In the next chapter (Section C.3), we provide

an overview of the mapping process, followed by a thorough description of the rel-

evant theory, designed algorithms, and applied equipment. The experiment setup,

acquired data, and processing outputs are characterized in Section C.4, chronologi-

cally and according to reality. Finally, the Section C.5 compares the achieved results

with both our originally planned targets and the outcomes outlined in the referenced

literature. As this paper constitutes a part of a comprehensive research concept, we

also address tasks to be potentially solved in the future.

C.2 Related Work

C.2.1 Robot Deployment

The necessity to employ remotely operated machines in radiation-contaminated en-

vironments appeared with the expansion of NPPs during the second half of the

20th century. Such machines were mostly used to perform inspection, manipula-

tion, and maintenance; however, nuclear accidents shifted the interest towards the

development of terrestrial mobile robots intended for disaster response applications

[1]. These systems are principally applicable in reconnaissance, data gathering, and
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object manipulation; due to the complexity of the environment, remote control is

generally employed as the most convenient approach [2, 3, 4]. A teleoperated robot

was successfully utilized, for example, to inspect the damage after the Fukushima

Daiichi NPP accident in 2011 [5].

The deployment of robots with autonomous functions in post-disaster environ-

ments, especially inside or close to collapsed buildings, remains a major challenge;

however, various other applications comprising radiation exposure are available.

Ground robots enabling autonomous or semi-autonomous operation can be employed

in radioactive waste storage facilities; areas affected by radiation as a result of an

accident; uranium mines; and to localize uncontrolled radiation sources. [6] present

a six-wheeled unmanned ground vehicle (UGV) specially designed for chemical, bi-

ological, radiological, nuclear, and explosive-related (CBRNE) tasks to solve some

local navigation problems automatically, e.g. laser scanner-based obstacle avoid-

ance. Autonomous radiation mapping inside pre-defined polygons was discussed

by [7]. In this case, precise navigation is enabled thanks to a real-time kinematics

(RTK) GPS receiver, and the data from onboard NaI detector are utilized for particle

swarm optimization-based source localization. The presented solution is, however,

suitable for obstacle-free areas only. The same UGV platform was deployed in a nu-

clear storage facility to perform inspections [8]. In such a GPS-denied environment,

localization embodies the essential task; thus, a light detection and ranging (LiDAR)

sensor is utilized to execute simultaneous localization and mapping (SLAM), facili-

tating navigation inside an unknown territory. As is apparent, the above-mentioned

studies principally examine localization, navigation, and mapping problems.

Flying robots, compared to UGVs, enable quick radiation data collection over

a large area thanks to a higher speed; additionally, they operate in a free space,

typically facing none or only a very small number of obstacles (considering safe dis-

tance from the ground). A UAS as a means to assist in solving nuclear emergency

cases was proposed already in 2008, when a 100 kg unmanned helicopter equipped

with an 8 kg scintillating detector was employed to estimate dose-rate distribution

automatically [9]. A similarly sized unmanned system proved to be beneficial after

the Fukushima Daiichi accident, where it provided information about the deposition

of radioactive cesium around the site [10, 11]; importantly, this was a case when a

detailed radiation map of this type was compiled for the first time. Unlike ground

robots, UASs operate at certain distances from the source, and thus they require a

sensitive radiation detection system, which embodies considerable payload. For this

reason, micro-unmanned vehicles, a category popular thanks to its flexibility, low

price, and safe operation, must operate as close to the ground as possible to collect

radiation data even with less sensitive detectors [12, 13]. Flying robots, moreover,

are applicable in producing digital elevation models (DEM) thanks to the LiDAR or
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photogrammetry techniques to supplement the radiation data layer [14]. [15] present

a complex, multi-sensor system for both UASs and UGVs, which integrates various

sensors and approaches to present radiation data in 3D and real time. The draw-

back of low-altitude mapping rests in potential collisions with obstacles, a problem

discussed within [16], where the flight height during legacy uranium mines mapping

had to be manually adjusted. UASs can operate even indoors, in GPS-denied en-

vironments [17], and novel, lightweight radiation sensors may allow the use of even

smaller vehicles, possibly operated in swarms [18].

The advantages of both ground and aerial robots may be combined within a

multi-robotic radiation mapping system. Such an idea was introduced by [19], whose

unconventional solution comprises an unmanned helicopter carrying a small UGV. In

this case, the UAS is intended to localize potential radiation-contaminated area via

an onboard detector and to produce a DEM. A UGV, by contrast, is deployed with

a winch system, facilitating comprehensive ground inspection and sample collection.

However, the practical capabilities of the system have not been confirmed sufficiently.

A similar method was introduced and verified by [20], whose aerial platform yielded a

georeferenced orthophoto and a DEM, while also performing measurements with an

onboard scintillation detector. A ground robot was then automatically navigated to

locations exhibiting a maximal counts per second (CPS) value, and a classified map

based on the orthophoto as well as the DEM enabled the choice of an energy-effective

path; real-time obstacle avoidance was ensured by a LiDAR. The experiment verified

the system’s ability to localize an unknown source; however, the simple localization

technique detects one maximum only, thus being unsuitable for multi-source or areal

contamination scenarios. A promising concept to exploit different robotic platforms

is described within the study [21], where the key idea rests in using an aerial imagery-

based DEM to divide the study site into sub-areas according to their suitability for

individual robots. Ground radiation measurements are carried out in UGV-passable

regions only; a UAS is employed in the rest of the target zone. Moreover, various

algorithms exploiting radiation spectra are tested to find the sources. Despite the

advantages, the system has not yet been fully prepared to operate in real-world

conditions without operator intervention.

C.2.2 Source Localization Methods

One of the common tasks addressed in the literature is the localization, which con-

sists in identifying the parameters of the point sources present in the studied region

of interest. The methods usually work with a series of discrete measurements that

are assumed to have been taken at known positions; these measurements are per-
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formed by either a robotic platform or static sensors. In many cases, the methods

are verified only by simulation.

The paper [22] utilizes maximum likelihood estimation (MLE) to find the coor-

dinates of a single source via measurements from multiple locations, reducing the

problem to two dimensions to acquire a coarse estimate that is improved by using a

gradient method. In [23], the artificial potential field approach is adopted to localize

a source by navigating a robot towards it; the attractive force is derived from the

source’s position estimated via the particle filter (PF) technique, while the repulsive

one allows the robot to avoid obstacles. Another example of PF application can be

found in [24]; the advantage of the interpretation proposed within the article consists

in that it is not necessary to know the number of sources a priori. The algorithm

works with a network of detectors measuring at multiple places simultaneously and is

thus unsuitable for single-robot scenarios. An array of directional sensitive detectors

can be employed for tracking a moving source as well [25]. Fast hotspot localization

is characterized by [26], where the proposed algorithm dynamically adopts the UAS

trajectory to move towards the hotspot. Localization methods utilizing a UAS to

collect data are examined in paper [27]. A method exploiting the radiation contour

is outlined; the related analysis managed via the Hough transform is able to find

multiple sources, whose contours may overlap. Surveying the region of interest with

more UGVs enabling us to localize multiple sources is covered in [28]; the presented

strategy prefers short paths having higher radiation intensity gradients. The param-

eter estimation utilizes the PF method with disperse resampling to prevent particle

degeneration.

Over the last decade, the localization algorithms have been studied by B. Ris-

tic and his research group, who partially verified the methods by using real data

acquired during a field test. The paper [29] compares three approaches to single

source localization; the techniques are based on the MLE, the extended Kalman

filter (EKF), and the unscented Kalman filter (UKF). The authors also analyzed

the theoretical minimum estimation error with a Cramér-Rao bound, indicating

that sequential Bayesian estimators (the EKF and the UKF) provide better per-

formance than the MLE. The radiation field can be modeled as a weighted sum of

2D Gaussians, or a Gaussian mixture [30]. To find the Gaussians’ parameters, two

estimators, namely, a Gaussian and a Monte Carlo approximation, are employed,

with the former yielding better results in both the simulations and the real data

application. The algorithm is rather robust, and exact a priori knowledge of the

number of sources is not required. In [31], up to three sources are localized, with

binary and continuous genetic algorithms constituting alternative implementations

of the MLE algorithm and negative-log likelihood being the objective function. The

number of sources present in the area can be found by applying the minimum de-
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scription length (MDL) principle. This method is based on minimizing the function

that takes the parameter matrix as the input; this matrix needs to be estimated for

every considered number of sources [32]. An information-driven search altering the

measurement trajectory during the data acquisition process is outlined in the article

[33]. The number of sources is assumed to be unknown; the source are tracked by

one or more mobile observers, and their parameters are estimated via a multi-target,

track-before-detect particle filter. The particles are initialized with different amounts

of sources; at the end of each update step, some of the particles acquire a source

while some others lose it. The observer motion control maximizes the estimation

of the reward function. The simulations have shown that the information-driven

search yields results more accurate than those obtained from the survey along a

pre-defined uniform trajectory. The method was also verified by using field data.

C.2.3 Possible Applications

Potential missions for multi-robot systems involve several applications that ben-

eficially combine quick, flexible operation and a large range of aerial assets with

the versatility and better radiation measurement conditions ensured by terrestrial

robots. A combination of UASs and UGVs provides a synergy of benefits for radi-

ological mapping, bringing both global information from the territory and accurate

dosimetry or spectroscopy data from the points of interest. Nuclear safety, radia-

tion and environmental protection, remediation, and decommissioning then embody

some of the target fields. Generally, prior knowledge of the character of the post-

accident radiological situation is not available, i.e., it is not known whether the

sources are solid, liquid, sealed, leaking, or the contamination is dispersed in the

soil. Despite this, the mapping strategy mostly remains the same, and its goal is

to acquire gridded data. Different types of algorithms are employed, e.g., when

tracking a radioactive cloud; however, such an example is a very special and ranges

outside the scope of our research. Common incidents involve uncontrolled sources

used in non-destructive testing, medicine, or geology; typically, these sources are

sealed. Even when the nature of the contamination does not allow the sources to be

localized, the mapping is still important in delimiting the safe zones.

Regarding UGVs, a major advantage rests in the possibility of applying semicon-

ductor high-purity germanium (HPGe) detectors with high resolution (radionuclide

identification) capabilities; in UASs, conversely, the resolution is still limited by vi-

brations and the microphonic effect [34], and the onboard heavy sensitive detectors

restrain the operation time. Although some HPGe detection systems are not suscep-

tible to vibrations, their weight often exceeds 18 kg [35], making them inconvenient

for the category of UASs utilized in our research. In general terms, the aircraft are
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suitable for light-weight detectors like GM tubes and plastic scintillators; consid-

ering the purpose, we can also employ inorganic (crystal) scintillators or CdZnTe

solid-state detectors to acquire basic spectroscopy capabilities. In the given con-

text, a UGV is significantly more flexible and can carry diverse detection systems,

including continuously working dose rate meters with high dynamic range coverages,

accurate solid-state spectrometers, neutron detectors and beta contamination me-

ters for occasional static measurements, and alpha contamination indicators. The

devices mounted on a UGV may support the monitoring with measurements at a

height of 1 m above the ground, which corresponds to the dosimetry standard for

radiological mapping [36]. Comprehensive radiation surveys necessarily involve de-

tailed, laboratory-based analyses of the samples, and the use of UASs/UGVs can

improve the applied sampling strategy. Moreover, a ground robot is capable of

assisting in remote sample collection if equipped appropriately.

C.2.4 Authors’ Previous Work

CBRNE robotics and multi-robot systems have for almost two decades embodied

the research focus of the Robotics and AI group headed by Prof. Zalud at Brno

University of Technology. The Orpheus reconnaissance robot family [37], a cen-

tral project pursuing the development of four-wheel skid-driving portable CBRNE

robots (Figure C.1), is being continuously refined and has been employed in various

experiments and missions, such as those devised to determine water contamination

[38]. In the context of the topic, we have examined automatic radiation mapping

thanks to the robot’s built-in RTK global navigation satellite system (GNSS) -based

navigation system, establishing that a UGV is capable of substituting for human-

performed measurements effectively, more accurately, and without safety risks [39].

However, the approach was not subjected to comprehensive testing, including, for

example, obstacle-accommodated environment.

To extend the usability of the terrestrial platforms, we developed a multi-sensor

system for UAS photogrammetry to assemble high-resolution orthophotos and sur-

face models [40]. Benefiting from the capability of operating without ground geo-

referencing targets, the solution is perfectly convenient for radiation-related tasks;

the products are applicable in UGV trajectory planning under difficult conditions.

Moreover, our simulations suggest that the surface model may find use in aerial ra-

diation mapping, too [41]. In radiation detection system-equipped UASs, flying at a

constant altitude above ground level (AGL) collects more consistent data compared

to flying at a constant mean sea level (MSL) altitude, thus making source localiza-

tion more accurate. All the above-mentioned equipment, methods, and experience

enabled us to compose a comprehensive multi-platform system for automatic ra-
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Figure C.1: The four-wheel Orpheus robot family and other platforms of the het-

erogeneous reconnaissance mobile robot system ATEROS.

diation source search. A first attempt in this field was published previously [42];

however, numerous aspects and issues still remain to be addressed to increase the

reliability, credibility, robot interoperability, and overall real-world usability, i.e., the

main topics dealt with in this research.

C.3 Methods

C.3.1 Method Overview

Robot-based environmental mapping in an outdoor environment generally embodies

a challenging task due to the largely variable conditions that may be encountered,

especially in terms of the terrain, vegetation diversity, and weather conditions. More-

over, further special requirements may arise as regards the measuring equipment and

time constraints. In this context, choosing the proper robotic platform is crucial to

achieve the desired results.

To perform the radiation mapping and source localization tasks, we designed

a method operating two different robots, namely, a hexacopter UAS and a four-

wheel, skid-steering UGV. The former platform enables us to cover a large area

within a reasonable time, regardless of the terrain nature; however, the distance

from the surface may limit the applicability of some sensors. Advantageously, at

the initial stages of the procedure, the vehicle is employed to carry out the aerial

photogrammetry and sparse radiation mapping. The latter platform is suitable

for the reconnaissance and mapping of small areas (hundreds of square meters)

only, due to its low operation speed; another limiting factor rests in the reduced

terrain negotiability, depending on the slope pattern. Thus, the UGV finds use in
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Figure C.2: The sequence of the operations that form the entire process. The actual

mapping comprises the aerial (blue) and terrestrial (green) branches;

the user interventions are highlighted in red.

precise radiation mapping and source localization, namely, at the final stages. Both

platforms are described within Section C.3.7.

As is evident from Figure C.2, our approach comprises the following three phases:

aerial photogrammetry, aerial radiation mapping, and terrestrial radiation map-

ping. The first phase aims to create the actual orthophoto and 3D model of the

area, i.e., products to be utilized later for the trajectory planning and to help op-

erators orientate themselves in the unknown environment. The initial step, namely,

defining the area of interest, must be executed by a user considering the current sit-

uation; however, the following operations, such as the actual flight, are already fully

automatic, with the UAS’s trajectory designed according to the photogrammetric

requirements. Yet, from the general perspective, the entire operation must still be

supervised by a pilot, especially due to safety and legal concerns. The outcomes

of the photogrammetric processing (Section C.3.2) and the first phase as a whole

embody a georeferenced orthophoto and a DEM.

The second phase is intended to localize potential radiation hotspots by means of

aerial radiation mapping of the entire area. In order to obtain credible results, the

UAS trajectory design encompasses the DEM acquired within the previous phase

to allow us to operate at a constant height above ground level (AGL). This pro-

cedure is described thoroughly in Section C.3.3. Once the sparse radiation map is
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available, our algorithm selects the sub-areas that exhibit increased radiation levels

(Section C.3.4).

The goal of the final phase consists in building detailed radiation maps of the

hotspots by using the UGV; this step facilitates the potential localization of in-

dividual sources. To perform such a task, we must consider the degree to which

the terrain negotiability is limited in the relevant platform, and thus the selected

regions are adjusted via both the DEM-based obstacle map and the orthophoto,

where other possible obstacles and impassable locations are selected by the user.

The aforementioned mechanisms are addressed in Section C.3.4. The UGV trajec-

tory planning problem can then be divided into two tasks, namely, covering the

pre-specified polygons (hotspots) and executing A*-based robot navigation between

the polygons (Section C.3.5). The collected data are employed to generate a de-

tailed radiation map and to allow the source localization. This stage, described in

Section C.3.6, involves utilizing the least-square method to estimate both the precise

location of the individual sources and their approximate activity.

C.3.2 Aerial Photogrammetry

Aerial photogrammetry embodies the first phase of the mapping method, and its

goal is to deliver the actual orthophoto and DEM, i.e., products necessary for tra-

jectory planning during subsequent mapping phases. The stage comprises three

principal steps: trajectory planning, data acquisition, and processing. In terms of

the first step, the common approach involves the flight pattern with parallel strips,

known from both manned and unmanned aerial photogrammetry [43, 44]. Rele-

vant parameters, such as the flight height, image overlaps, and ground resolution,

are selected with respect to the applied photographic equipment and the required

quality of the final product. In the data acquisition, we consider a custom-built

multi-sensor system to collect both the aerial imagery and the position data; the

system is introduced in Section C.3.7.

The aerial data are typically processed via a photogrammetric pipeline tool; for

example, the widely used Agisoft Photoscan software package embodies a suitable

choice, as it enables us to execute all the photogrammetric processing stages. The

workflow comprises estimating the camera exterior and interior orientations, gen-

erating the sparse and dense point clouds, and composing the orthophoto and the

DEM (see [45] for a detailed workflow description). Assuming available position

data of the locations where the individual images were captured, the software al-

lows transforming the products into a geographic coordinate system even without

GCPs; this approach is known as direct georeferencing [46, 47]. Nevertheless, sev-

eral ground targets are commonly recommended to be used for accuracy assessment
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purposes and to support the estimation of the camera’s intrinsic parameters. The

conventional procedure involving GCPs, namely, the indirect georeferencing method,

is generally unsuitable in CBRNE tasks, given the health risks.

C.3.3 Aerial Radiation Mapping

Aerial radiation mapping embodies the second phase of the mapping method. The

technique aims to create a sparse ionizing radiation map of the entire study site to

localize possible hotspots to be mapped via the UGV. Without any prior knowl-

edge of the hotspots, and lacking a detection system with directional sensitivity,

the straightforward flight strategy comprises parallel survey lines, similarly to the

previous photogrammetry flight. The main difference rests in the setting of major

parameters, including the flight altitude AGL h, distance between lines n, speed v,

and sampling period p. Certainly, no single correct solution is ready for choosing

the parameters, but several rules can still be defined to find a setting appropriate

to the actual mission. As UASs typically carry a low-weight and low-sensitivity

detector, and as the dose rate decreases with the square of the distance, the h must

be as small as possible to detect even weak sources. In practice, the minimum flight

altitude is always limited by the actual precision of the UAS navigation system;

the terrain shape and obstacles within the mapping site have to be considered, too.

However, the distance d between the source and the detector is, in addition to the

vertical component h, formed also by the horizontal distance. The condition d = h

applies when the UAS is directly above the source, and the formula (C.1) describes

the marginal situation when the source is located exactly between the survey lines

being n meters apart (Figure C.3).

d =

√(n
2

)2

+ h2 (C.1)

The n, together with the v · p value, define the spatial density of the collected

radiation data. A low n value yields data with a high density and homogeneity in

the lateral axis (with respect to the flight lines); the intensity decrease in a source

positioned between the flight lines is insignificant. Nevertheless, such a setting can

result in a very long flight trajectory and operation time. Contrariwise, a high n

value produces a shorter trajectory; however, the resulting data density can be too

low to distinguish between the individual sources, and thus the hotspot localization

may become ineffective. Moreover, weak sources lying between the flight lines may

not be detected at all due to a considerable intensity decrease. The described effects

are illustrated in Figure C.4 for h = 15, a realistic flight height value in micro UASs.

The data density in the longitudinal axis, determined by the speed and the sam-

pling period, should be approximately the same as in the lateral axis, due to the
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Figure C.3: The basic parameters of the UAS trajectory for the radiation mapping

procedure.

Figure C.4: The effect of the n value (the distance between the flight lines). The

blue line expresses the intensity of a source located exactly between the

flight lines, relative to the intensity of a source lying under the flight

line; the intensity decreases due to the inverse-square law. The red line

renders the flight trajectory length per 1 ha squared area.

subsequent processing. Since the maximum v is often limited to ensure safe UAS

operation close to the surface, the p must be set in view of this fact (high density

data may be downsampled without any information loss in the postprocessing). In

addition, the speed setting directly relates to the operation time.

The flight parameters also influence the resolution of the mapping, which can be

imagined as a hypothetical peak width invoked by a single point source; the narrower

the peak, the better the resolution. More concretely, the resolution depends mostly

on the detector’s footprint, that is, the ground area that produces a majority of

incident particles. With decreasing size, a higher resolution can be achieved. In a

stationary detector, the footprint consists in a circle of radius approximately equal

to the detector’s altitude. When the measurement is performed by moving aircraft,

the footprint is dilated along the trajectory portion traversed during the sampling
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period. Given these assumptions, the dependency of available scan accuracy on

the altitude and speed of the UAS is quadratic and linear, respectively. In our

case, the resolution is limited especially by the minimum feasible flight altitude.

The mapping resolution can be improved via methods based on deconvolution, as

outlined in article [48]. The authors of the referenced paper address the effect of

varying height above ground as an essential issue; in our approach, however, this is

solved during the trajectory planning phase. To apply deconvolution, it is necessary

to have a precise model of the detector’s response, the most important aspect then

being its energy efficiency, which could be acquired either experimentally or via

MCNP simulation.

In UAS-based radiation mapping, the common approach involves operating at a

constant MSL altitude [20, 16], an option applicable at locations that lack signifi-

cant height differences. As indicated within one of our previous papers [41], major

variations in the flight height above ground level produce non-homogeneous and

unreliable data; thus, a means to secure a constant AGL height is essential in hilly

sites. The proposed method utilizes a photogrammetry-based DEM, the output of

the initial UAS flight, to adjust the radiation mapping trajectory, i.e., to modify the

vertical trajectory components. The procedure is described within Algorithm 1and

illustrated in Figure C.5. Yet the trajectory produced by using the algorithm may

contain an extensive amount of waypoints to be stored in the UAS’s memory; there-

fore, the s value has to be chosen carefully.

Another option to maintain a constant flight height above the surface rests in

utilizing a laser rangefinder; in such a case, the MSL altitude is controlled according

to the measured data. This functionality, however, must be supported by the UAS’s

control unit and, above all, may pose a risk in unknown areas due to the inability to

avoid vertical obstacles having a height higher than the actual AGL flight altitude

(buildings, for example). Thus, we consider the DEM-based approach more suitable

for the discussed application, although the operation must still be supervised by
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an operator. To increase the robustness and safety, a combination of DEM-based

planning and real-time obstacle avoidance would deliver the ideal approach.

C.3.4 Automatic Selection of the Terrestrial Mapping Areas

Aerial radiation mapping yields a set of scattered data points, each comprising the

coordinates and the spectrum. For further processing and finding hotspots, calcu-

lating the radiation intensity (dose rate) at points in a regular grid is required; this

step can be carried out through the interpolation based on Delaunay triangulation

[49]. The density of the data points in the axis parallel to the flight direction is ap-

proximately five times higher than that in the perpendicular axis, due to the chosen

flight speed, sampling period, and distance between the strips. Regrettably, such

point distribution is not convenient for the interpolation, and each four subsequent

spectra are thus averaged in order to achieve an even distance of points in both axes.

Once the interpolated radiation map is available, the operator can manually mark

the regions of interest (ROIs); nevertheless, we believe that automatic selection,

despite not being indispensable, provides a helpful auxiliary tool. The goal is to

minimize the number of human interventions in the whole process. Moreover, a

similar algorithm can be re-used during the source localization phase, as will be

shown later. A viable approach to automatic selection rests in employing a two-

Algorithm 1 The DEM-based trajectory adjustment.

Input: The horizontal trajectory T (turnover points), digital elevation model D

(raster), AGL height h (scalar), and segment size s (scalar).

Output: The terrain-adjusted spatial trajectory Tt (3D points).

1: Trajectory segmentation: Splitting the lines defined by the points T into

smaller segments having a maximum size s to obtain dense trajectory points Ts

will facilitate precise terrain following. The s value is chosen with respect to the

character of the terrain.

2: Find the corresponding DEM points: For every point defined in Ts, find

the nearest horizontal point of D.

3: Compose the 3D trajectory: Use the height values of the obtained DEM

points as the height coordinates for the trajectory Ts.

4: Compute a new altitude: Increase the altitude of every point in Ts by the

height h.

5: Smooth the trajectory: Apply the 7th order low-pass IIR filter to the Ts

point sequence to obtain the filtered trajectory Tt. This step is taken to avoid

sudden height changes; regrettably, it is not energy-efficient and can increase

the operation time.
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dimensional peak detector; such an option is unsuitable for the general case, as the

data do not always represent a clear sharp peak, e.g., if

� the peak comprises contributions by multiple radiation sources;

� the magnitude of the peak is comparable to the radiation background, as the

data are very noisy due to statistical laws;

� the magnitude of the peak exceeds the capacity of the detector, and the dead

time is over 50 %, causing higher dose rate levels to yield a lower number of

counts.

The first two cases can be certainly expected during aerial radiation mapping;

thus, we adopt a different method. The basic idea is as follows: By eliminating

the radiation background, a connected set will be left for each significant peak. The

problem is in identifying the background, as it not only depends on the geographical

location but, generally, can be increased by strong artificial sources. The unnecessary

data may be assumed to lie within the three-sigma band around their mean value. To

find such an adaptive threshold, the statistical parameters of the background must be

estimated. An analytical solution to the described problem is not feasible, because

we cannot anticipate the number of radiation sources or their activity relative to

natural radionuclides and cosmic rays. Instead, an empirical threshold Tbg is derived

from the statistical parameters of the complete dataset as a sum of the dataset’s

mean value and a half of its standard deviation:

Tbg = µ+
σ

2
(C.2)

From points having an intensity lower than Tbg, the threshold of the hotspots is

derived:

Thotspots = µbg + 3 · σbg (C.3)

The adaptive thresholding method was verified with both simulated [41] and pre-

viously measured terrestrial data.

Once the thresholding is applied to the interpolated points arranged in a regular

grid, the remaining connected sets are enclosed by contours using the marching

squares algorithm [50]. Apparently, only contours having a certain minimal length

should be accepted in order to eliminate random noise-induced peaks; we suggest

that a valid contour should encircle at least four aerial samples. Finally, the regions

are smoothed and optionally enlarged via the Minkowski addition [51] with a circle-

shaped structuring element. The hotspots are eroded at first to suppress the noise;

subsequently, they may be dilated again to adjust their sizes. The resulting ROIs

are passed, as connected sets of points in a regular grid, on to the next stage for

further processing; such a grid is then denoted as the ROI map.
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C.3.5 Terrestrial Radiation Mapping

The first task for a UGV is to move from a safe zone to the first detected contami-

nated area. A system user selects in the map suitable places where the robot can be

potentially unloaded. This task requires the knowledge of obstacles in the area of

interest. The required obstacle map is computed from the previously created DEM.

We attempt to obtain a DEM with the highest possible resolution to acquire

the best source data, allowing us to reveal as many obstacles as detactable in the

real terrain. The effective resolution is limited by the capabilities of the equipment

and the time allocated for the processing. The intended DEM resolution equals

10 cm/pixel, considering the parameters of the sensing and processing equipment.

Regarding the path planning, the process is resource-intensive if we use a large

quantity of obstacle map cells; thus, it is convenient to employ only the number

of cells necessary for the given purpose. Our mission allows having an obstacle

map where the pixel size approaches the width of the UGV, with a satisfactory

path planning accuracy preserved. Such a procedure of creating the obstacle map

involves also reducing the pixel count; this operation, however, is not implemented

as separate downscaling. The input parameters to facilitate the generation of the

obstacle map are as follows:

� the maximum allowed inclination of the ground (max allowed magnitude of

the robot pitch and roll angle),

� the maximum height of a negotiable obstacle perpendicular to the terrain,

� the pixel size of the obstacle map.

From these parameters, we can define the obstacle function (Figure C.6) of the

employed UGV. The function is used for detecting the impassable area in the group

of DEM pixels that forms one pixel of the obstacle map. Each existing square sub-

group of the DEM pixels for every obstacle map pixel is checked by verifying if the

obstacle function has been satisfied. The algorithm starts by checking all groups of

2x2 DEM pixels, then 3x3 pixels, etc.; the process terminates at the whole group

of DEM pixels, which invariably forms a pixel of the obstacle map. In the case

that a sub-group of DEM pixels is found that does not meet the obstacle function,

the corresponding pixel of the obstacle map is marked as the obstacle. The process

produces a binary map whose pixel size equals the integer multiple of the DEM pixel

size.

To find the optimal scenario of moving a UGV to the contaminated areas, the

system operator must manually select the places where the robot can be potentially

unloaded. From these starting points, we plan three types of trajectories: towards
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Figure C.6: The obstacle function.

the detected contaminated areas; between these zones; and back from the last area

to the unloading place. To move between the contaminated areas, the starting

point for the path planning is the waypoint at the end of the trajectory inside

the current area, while the final point is marked by one of the endpoints of the

trajectory inside the next area. These path planning tasks can be generally solved

by any A* based algorithm [52]; the shortest sequence of paths from the set of all

possible solutions is used. A precondition for solving the global path planning task

rests in the availability of an obstacle map, which, in our case, is derived from the

photogrammetry-based DEM.

To plan a trajectory inside the regions of interest, we have to describe each such

region with a set of polygons, one ’envelope’ representing the outer limits of the

area; optionally, the description can be expanded to include multiple ’holes’ that

characterize obstacles not traversable by the UGV. At this point, both the coarse

characterization of the terrestrial-mapped hotspots (Section C.3.4) and the obstacle

map are available and need to be fused. This is also the moment when the operator

should intervene to validate if all of the actual obstacles are contained in the map;

alternatively, the operator inserts the missing objects manually. Note that this step

can utilize the earlier acquired orthophoto to identify restrictions.

Both maps are composed of binary value cells, which can be either empty or

occupied. In the ROI map, the empty cells represent the areas where the terres-

trial mapping is to be performed. The maps are fused through a relatively simple

intersection: If corresponding cells in the maps are empty, then the cell is empty;

conversely, it is occupied when the occupancy condition has been met in at least one

of the maps. An example of the fusion producing a fused map is shown in Figure

C.7.

Generally, a single region of interest may be divided by obstacles into multiple

subregions; thus, the fused map is subjected to connected-component labeling [53]

to distinguish individual areas enclosed by the envelopes. Subsequently, each area
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Figure C.7: An example of how a fused map is generated; the white color represents

the free space.

Figure C.8: An example of the Boustrophedon decomposition and interconnection

of subsequent cells; the black color represents the obstacles, while their

dilation is in grey.

greater than the rationally chosen threshold (the criterion being applied to exclude

miniature portions of the region) is searched for contours in order to identify its

envelope and holes.

Then, each mapped region is divided into a set of disjoint obstacle-free subregions

by using the Boustrophedon decomposition [54], a procedure suitable for problems

where obstacles are defined by polygons. The principle of this algorithm is to acquire

subregions, or cells, that can be completely covered by a uniform back-and-forth

trajectory; each cell has two edges parallel to the sweep line, which, in turn, is

parallel to the survey direction. The result of the decomposition depends on the

selected sweep line orientation (relative to the ROI); in general terms, it is desirable

to minimize the number of cells. Finally, the region is described by a graph whose

nodes represent the subregions and edges define their adjacency.

To determine the order in which the subregions are explored, the depth-first search

algorithm is applied; this method guarantees that all nodes (cells) are visited and

prefers transitions between adjacent ones. Trajectory planning inside the cells is

rather straightforward. In some cases, when moving from one cell to another, a
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direct connecting path may collide with an obstacle. Since the non-traversable zones

are already described by the polygons, the visibility graph algorithm [55] is utilized

to find the shortest non-colliding path; to preserve a clearance from the obstacles,

the corresponding polygons are dilated. The situation is illustrated in Figure C.8.

C.3.6 Radiation Data Processing and Source Localization

Handling the terrestrial data is largely similar to the aerial radiation data processing

presented in Section C.3.4. The localization of the sources can be characterized by

three steps:

1. Estimating the number of sources, R.

2. Estimating the initial coarse parameters of R sources.

3. Increasing the accuracy of the parameters in accordance with the measured

data.

The first step utilizes the adaptive thresholding algorithm. Although multiple

sources in a single region form a sole hotspot within the primary map, they may

yield more peaks inside the detailed secondary map built from the UGV data, which

are acquired in a finer grid and from a closer distance than the aerial dataset. To

perform the estimation, the following steps are applied:

1.a Compute the peak threshold.

1.b Interpolate the data into a regular grid.

1.c Eliminate the radiation background.

1.d Find valid contours in the map; their count equals the number of sources.

Regarding the source parameters, three items are sought for each source; these

items include the emission intensity and coordinates in two axes. Let us have a

source i with the vector θi = (αi, xi, yi); all of the sources are then characterized

by the parameter matrix θ = (θ1,θ2, . . . ,θR)
⊺. To initiate the matrix, we suggest

choosing a central point within each contour to define the coordinates and taking

the greatest corresponding total count value to estimate the intensity. By filling in

the matrix, the second localization step is completed.

Finally, the accuracy of the parameters is iteratively improved via the Gauss-

Newton method [56], which finds use in solving non-linear least squares problems.

Given a matrix of M measurements, z = (z1, z2, . . . ,zM)⊺, where zi = (ci, xi, yi)

to denote the total count obtained and the coordinates where the measurement has
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(a) (b)

Figure C.9: The BRUS UAS configured for the experiment: with a multi-sensor

system to perform the photogrammetry (a), and carrying a gamma ra-

diation detection setup (b).

been taken, the Gauss-Newton algorithm minimizes the sum of residuals (the differ-

ences between the expected and the measured values); the residual m is expressed

as:

rm = cm −
R∑

r=1

αr

(xm − xr)2 + (ym − yr)2 + h2
, (C.4)

where h is the height of the detectors above the terrain. The parameter matrix is

updated in each step according to the equation

θk+1 = θk − (J⊺J)−1J⊺r(θk), (C.5)

where J is theM×3R Jacobi matrix of the partial derivatives of the residuals. The

iterations continue until the sum of the squared residuals stops decreasing signifi-

cantly.

C.3.7 Unmanned Platforms

The proposed method involves using two unmanned platforms, namely, a UAS and

a UGV; the former item ensures aerial data acquisition during the initial stage

of the mapping process. The system must be capable of operating automatically

and carrying various sensors to perform the photogrammetry and to measure the

ionizing radiation. Since the latter procedure comprises low-altitude flying, which

requires high maneuverability and low-speed operation, we chose a BRUS Heavy

rotary-wing UAS by the Military Technical Institute of the Czech Republic. This

platform provides a sufficient payload capacity and endurance for the desired tasks

(Table C.1).
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Table C.1: The parameters of the unmanned platforms and equipment. RDS: radi-

ation detection system.

Parameter UAS UGV

Dimensions 1.2 × 1.2 × 0.5 m 1.0 × 0.6 × 0.4 m

Weight (incl. battery, without payload) 10.7 kg 51 kg

Max payload weight 8.0 kg 30 kg

Operational time without payload 45 mins 120 mins

Drive type multi-rotor wheel, skid-steering

Operating speed 2.0 – 5.0 m/s 0.6 m/s

Max speed 16.7 m/s 4.2 m/s

Photogrammetry system weight 2.8 kg —

RDS – weight 3.0 kg 2.2 kg

RDS – number of detectors 1 2

RDS – detector type NaI(Tl)

RDS – detector size 2×2”
RDS – energy range 50 keV – 3 MeV

RDS – energy resolution 7 % @ 662 keV

RDS – channels (conversion gain) 256 1024

RDS – multichannel analyzer NUVIA MCB3

At the initial stage of the actual mapping, the UAS is fitted with a custom-

built multi-sensor system for aerial photogrammetry, illustrated in Figure C.9a.

This setup enables us to create georeferenced photogrammetric products, namely,

an orthophoto or a DEM, without requiring ground control points (GCPs). The

setup integrates a consumer-grade, full-frame camera; a dual-antenna RTK GNSS

receiver; an inertial navigation system (INS); and other necessary components. It

was previously described in more detail within article [40] and subsequently found

use in, for example, UAS-based aerial snow depth mapping [57]. The existing results

indicate that the system able to reach centimeter-level object accuracy. A similar

concept was already utilized by other researchers, too [58, 59, 60].

The second phase of the mapping cycle comprises ionizing radiation measurement;

for this purpose, the UAS is fitted with a NUVIA DRONES-G radiation detection

system (Figure C.9b, Table C.1). The compact setup involves a detector and other

relevant electronic components (such as a GNSS module and a laser altimeter).

For the terrestrial mapping, we chose the four-wheeled Orpheus-X4 UGV (Fig-

ure C.10, Table C.1). The robot offers an automatic navigation along the planned
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Figure C.10: The Orpheus-X4 UGV equipped with a GNSS receiver and a pair of

NaI(Tl) radiation detectors.

trajectory, and in the case of a good and stable GNSS RTK solution, it is possible

to reach 3 cm (1σ) in stable flat surfaces [61]. However, the accuracy is generally

much worse in unstable traction terrains. The self-localization function employs a

dual antenna GNSS, an INS, and wheel odometry. The system relies mainly on the

RTK GNSS to solve the 2D position and heading, nevertheless, the dead reckoning

solutions INS and wheel odometry are used to bypass insufficient GNSS solution.

Orpheus was previously described in more detail in articles [62] and [63].

To perform the robotic mapping of gamma radiation, scintillation detectors seem

to make a good trade-off for the desired features. The detectors provide a high

density and volume, thus have good sensitivity for gamma rays. Moreover, com-

mon inorganic scintillators possess spectrometric abilities; knowledge of the spectra

enables us to identify different radionuclides and can facilitate separating useful in-

formation from the radiation background. The applied setup, summarized within

Table C.1, was chosen mainly thanks to its accessibility, conventionality, and pre-

vious experience. If not stated otherwise, the presented algorithms work with the

total count (TC) value, i.e., the sum of counts in all channels. An advantage of

utilizing multiple detectors consists in higher sensitivity of the measurement system

and better cumulative statistical attributes of the measurements.

C.4 Results

C.4.1 Experiment Setup

The method for multi-robot radiation mapping and source localization presented in

the paper was evaluated by utilizing a fictitious accident at a site in close proximity to

the campus of Brno University of Technology, Brno, the Czech Republic, in August
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Figure C.11: The location of the study site, and the spatial distribution of the ra-

diation sources (orthophoto courtesy of the State Administration of

Land Surveying and Cadastre [64]. FEEC BUT: Faculty of Electrical

Engineering and Communication at Brno University of Technology

2018 (Figure C.11). The goal was to arrange authentic conditions corresponding

to a scenario with several gamma radiation sources lost in a certain area after a

car accident. Regarding the parameters known to the tested method, the exact

location, number, and activity were undefined; we can nevertheless assume that the

sources belong to the class utilized in the civil sector, and the application options

thus involve, for example, the calibration of devices for nondestructive testing, flow

meters, level measurement systems, nuclear densometers, and density well-logging

probes.

The experiment site occupies an area of 20,000 m2, comprising mainly grassy ter-

rain with various man-made objects such as a road, paths, climbing walls, and several

vehicles involved in the car accident. While one half of the location is relatively flat

(< 4◦), the other includes hills with slopes up to 30◦ and other UGV-impassable

zones.

Within the experiment site, we planted eight gamma radiation sources, namely,

Co-60 and Cs-137 isotopes exhibiting the activity of 2.9–123.8 MBq (Table C.2).

The strongest source can be considered category 4 (out of 5) according to the In-

ternational Atomic Energy Agency’s classification [65], i.e., a person is unlikely to

be harmed unless directly exposed for many hours or standing close by for multiple
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Table C.2: Radiation sources used in the experiment.

Source Zone Isotope Activity [MBq]

s1 2 Co-60 2.85

s2 2 Cs-137 7.53

s3 2 Co-60 2.95

s4 2 Cs-137 7.53

s5 2 Cs-137 79.82

s6 2 Co-60 24.56

s7 2 Co-60 24.76

s8 1 Co-60 123.78

weeks. Other sources range within category 5, meaning that they are most probably

not dangerous. However, possible delayed health effects are not taken into account.

None of the sources is exempt, and all were handled by human operators. As is

evident from Figure C.11, the sources are scattered inside two locations: Zone 1,

containing a single, high-activity source, and zone 2, which includes seven sources

representing the areal contamination. To ensure safety, the relevant area was closed

to common access during the experiment.

C.4.2 Aerial Photogrammetry

The photogrammetry parameters, such as the image overlaps and ground resolution,

were selected to yield high-resolution mapping products and to capture even the

smallest details (Table C.3); the resulting trajectory is illustrated within Figure C.12.

To assess the accuracy, six ground targets were deployed prior to the experiment,

and their positions were acquired by a survey grade GNSS receiver (the position of

the custom base station providing correction data to our robots was obtained in the

same manner).

The data collected during the first, 10-minute UAS flight were processed imme-

diately after landing; 124 relevant images from the total of 211 collected items were

eventually utilized (one of the images is shown in Figure C.13a). The estimated

camera location measurement accuracy (1σ spatial error) reported by the onboard

GNSS-aided INS equals 0.74 m on the average and 5.3 m maximally. As is evident

from Figure C.13b, a conspicuous accuracy decrease of to up to five meters occurred

for a short time interval only; the reason rests in the GNSS’ RTK fix solution out-

age caused by an insufficient quality of the signal necessary for the carrier-phase

tracking.
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Table C.3: The parameters of the flight trajectories and data acquisition for both

flights (one enabling the photogrammetry and the other facilitating the

radiation mapping). ATOP: above take-off point.

Parameter 1st flight 2nd flight

Number of strips 6 14

Strip length 160 m 140 m

Distance between strips (n) 26 m 10 m

Flying altitude (h) 60 m ATOP 15 m AGL

Flying speed (v) 5 m/s 2 m/s

Sampling period (p) 2 s 1 s

Base (b) 10 m 2 m

Image forward overlap 92 % —

Image side overlap 84 % —

Image footprint 190 × 125 m —

Image ground resolution 3.1 cm/px —

Camera shutter speed 1/1,000 s —

Camera aperture 5.6 —

Camera ISO Auto (100–400) —

Figure C.12: The UAS trajectory planned for the photogrammetry flight. The yel-

low rectangle represents the study site (having an area of 20,000 m2),

and the red triangles indicate the positions of the ground targets.
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(a) (b)

Figure C.13: A sample image captured at 60 m AGL during the initial flight. The

detail shows the car accident simulated in zone 2 (a). The flight tra-

jectory and the INS spatial error estimation at the camera locations,

with the starting point highlighted. The zero coordinates correspond

to the position of the base station (b).

The dataset was processed in Photoscan at a low quality in order to reduce

the processing time (approximately 45 minutes), yielding a point cloud contain-

ing ∼200 points/m2 and producing a DEM and an orthophoto with the resolutions

of 7.4 cm/pix and 1.9 cm/pix, respectively (Figures C.14a and C.14b). The geo-

referencing quality was assessed by utilizing the six ground targets; the procedure

reported root mean square error (RMSE) values of 0.55, 0.34, and 1.13 m for the

latitude, longitude, and altitude, respectively. Despite the fact that, due to the

RTK outage, these accuracies do not correspond to the capabilities of the system

as outlined in our previous studies, the levels should not affect the subsequent map-

ping phases: The UAS is intended to fly at a safe distance from the surface (15 m

AGL) during the radiation mapping, and the UGV trajectory planning algorithm

comprises a clearance around the obstacles to prevent collision caused by inaccura-

cies in the map or navigation. In this context, it is then important to stress that

an operator must supervise the operation of both platforms to abort the process in

cases of an imminent accident.

C.4.3 Aerial Radiation Mapping

The aerial radiation mapping parameters described in Section C.3.3 were chosen in

view of the applied hardware and with the aim to obtain data having an approximate
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(a) (b)

Figure C.14: The UAS photogrammetry-based DEM (indicating the spectral color-

scaled elevation and black-marked slopes) (a) and orthophoto (b).

spatial density of 10×10 m, a suitable value for the hotspot localization (the param-

eters are summarized in Table C.3). Note that these flight parameters correspond

to the detector footprint size of approximately 770 m2. The vertical components of

the trajectory (Figure C.15) were computed employing Algorithm 1 with s = 10,

resulting in 209 waypoints; the relevant points are represented in Figure C.16 (the

red series). The upper part of the figure further displays the vertical coordinate of

the actual GPS trajectory and the underlying terrain; the bottom graph shows the

height above ground level. The presented data refer to the UAS flown at a relatively

constant distance from the surface; at some moments, however, deviation from the

desired value of 15 m is obvious. In this context, the rangefinder reports the height

of 13.7 m RMSE, while the GPS-DEM derived value (GPS height minus surface

height) is slightly higher, reaching 16.6 m RMSE. It should be noted that none of

the sources is accurate enough for detailed assessment. The distance values mea-

sured by the rangefinder exhibit a high accuracy (usually in the order centimeters);

however, the device measures incorrect data, namely, greater values, during tilting

maneuvers. The GPS/DEM-derived data, by contrast, are independent from the

UAS attitude; nevertheless, the typical accuracy of code-based GPS height mea-

surement lies in the order of meters, and the low frequency error components may

cause a non-negligible offset, considering a short time period. Despite these draw-

backs, the presented data clearly indicate that the terrain-following method allowed

us to collect radiation data at a relatively constant distance from the surface as

compared to the common approach involving flying at a constant MSL height. The

applied algorithm is further discussed in Section C.5.

122



Figure C.15: The UAS trajectory planned for the radiation measurement flight (the

yellow rectangle represents the study site).

Figure C.16: The vertical profile of the UAS trajectory during the radiation-mapping

phase, completed with the trajectory waypoints and underlying terrain

(upper graph). The AGL flight height recorded by the rangefinger, rep-

resented together with the related GPS/DEM-based estimation (bot-

tom graph).

The relevant portion of the collected radiation data comprises the minimum and

maximum values of 0.042 and 0.207 µGy·h−1, respectively, whereas the mean ra-

diation background intensity approximately equals 0.07 µGy·h−1. The scattered

data, illustrated within Figure C.17a, indicate two areas with an increased radia-

tion intensity; we can draw the same conclusion from the values interpolated to the

10 cm regular grid presented in Figure C.17b. To perform the interpolation, we

downsampled the original data to achieve a comparable data density in both axes.

The dataset contains, in addition to the dose rate values, also raw data allowing
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(a) (b)

Figure C.17: The dose rates obtained during the UAS-based radiation mapping pro-

cedure (a); the acquired data were downsampled and interpolated for

the subsequent processing (b).

spectral analysis and radionuclide identification; this step, however, is not necessary

for hotspot localization and was thus not performed during the experiment. The

spectral analysis potential is outlined in Section C.5.

C.4.4 Areas Selected for the Terrestrial Mapping

The interpolated radiation map has been subjected to the ROI selection algorithm.

First, the background threshold was computed automatically, equaling 0.090 µGy·h−1;

such a result is in good accordance with the actual background intensity, which

reached up to about 0.095 µGy·h−1. Subsequently, the script was able to determine

the hotspot separation threshold, attaining 0.103 µGy·h−1. A 3D visualization of

the thresholding process is shown in Figure C.18a. Note the small ’spikes’ around

the two major radiation intensity peaks, induced by the measurement noise. In

order to eliminate these spikes and to smoothen the region’s borders slightly, the

imprint of the hotspots was morphologically eroded by a structuring element of a

size corresponding to 3 meters. Finally, both of the remaining regions were roughly

approximated by polygons with 7 vertices (Figure C.18b).

C.4.5 Terrestrial Radiation Mapping

The terrestrial radiation mapping is carried out by a UGV; thus, the actual pro-

cedure requires knowledge of inaccessible areas to enable proper path planning. In

this concrete application, we do not need the obstacle map to have a resolution as

high as that of the source DEM (74 mm), because the path planning is intended to
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(a) (b)

Figure C.18: The adaptive thresholding applied to the aerial radiation data (a), and

polygonal approximation of the hotspots (b).

be performed at a resolution corresponding to the dimensions of the UGV, as suf-

fices for outdoor environments; in this context, we can point out that larger pixels

reduce the time of the subsequent processing operations. To deliver the planned

mission, we selected the value of 0.518 m, namely, the integer multiple of the DEM

pixel size which corresponds to the width of the UGV. The resulting obstacle maps

(Figure C.19) computed for five different terrain limits show the terrain negotiabil-

ity differences. When in the automatic navigation mode, our UGV can safely pass

an outdoor terrain characterized by a gradient of 16 degrees or surmount obstacles

having 0.16 m; if operated manually, however, the vehicle is capable of managing

20 degrees and 0.2 m. These values were obtained experimentally during previous

missions. In certain conditions, the UGV may nevertheless be unable to negotiate

areas that exhibit such parameters (e.g., when the terrain is sodden or comprises

oily surfaces). The results described below are based on the obstacle map computed

for the 0.16 m and 16 deg limits (the orange layer in Figure C.19).

Subsequently, the obstacle map is fused with the hotspot polygons. Prior to the

processing by the automatic script, several additional obstacles, in particular a curb

and plants that formed a new boundary limiting the southern side of the upper-right

ROI (corresponding to zone 1), had to be defined manually. Moreover, two minor

obstacles, namely, a small barrel and the remains of a tree, were added inside the

lower-left ROI (zone 2). In Figure C.20a, these adjustments are marked in gray.

The rough hotspot borders, modified in accordance with the obstacle map, form the

’envelopes’ of the regions to be mapped and are visualized as the green polygons;

the blue polygons inside the green ones then represent the ’holes’ to be avoided.

Note that the algorithm yielded two distinct subregions within the lower-left ROI;
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Figure C.19: The obstacle maps computed for the different UGV limits.

one of these areas, however, is inaccessible to the UGV (as can be proved via the

path-planning algorithm) and will not be further examined within the article.

Both envelopes and their corresponding holes are passed to the algorithm respon-

sible for the decomposition. Zone 1, whose area reached approximately 750 m2, was

divided into 13 cells, as shown in Figure C.21a. Note that the numerical labels of the

cells refer to their indices assigned during the decomposition, i.e., the numbers cor-

relate to the order in which the cells were initiated. The sweep line orientation was

eventually chosen manually because the implementation had not been robust enough

to handle an arbitrary case. In the trajectory planning, the first phase consists in

selecting the initial point to start the survey; in our case, this step was performed

manually. The resulting trajectory is plotted in Figure C.21b, and its theoretical

length equals 448 m; note that this value applies only to holonomic robots without

kinematic constraints.

The same procedure was utilized also in zone 2, where the Boustrophedon al-

gorithm split the area of 250 m2 into 10 distinct partitions (Figure C.22a). The

complete trajectory has the length of 192 m and is shown in Figure C.22b.

The last path planning task interconnects the regions of interest and the zone most

convenient for unloading the UGV. The operator selects suitable points to start the

mission; we chose two spots (the green and pink circles in Figure C.20b) on the road

at the edge of the mapped area, where the contamination level is within the safe

limits. The start and end points of the planned trajectory inside the ROI are fixed

and cannot be altered during this phase. Using the A* algorithm implemented in

the project presented in [66], three paths were planned: from the unloading zone to a
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Figure C.20: The adjustment of the regions of interest via the obstacle map (a). The

A* planned trajectories between the unloading zone and the regions of

interest (b).
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Figure C.21: The result of the Boustrophedon cell decomposition for the first ROI,

complemented with a cell adjacency graph (a); the planned trajectory

within the first ROI (b).

ROI, from this ROI to the next ROI, and from this last ROI back to the unloading

zone. The sums of the path lengths are evaluated to select the lowest value. To

reduce the UGV collision probability, all of the obstacles are expanded with an

enclosing pixel (the red areas in Figure C.20b). The resulting shortest sequence of

the three paths is shown in a modified obstacle map (Figure C.20b). The paths are

200 m long in total, and the UGV completed them in 6 minutes and 20 seconds (the

speed varied from 0.4 to 0.6 m/s).
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Figure C.22: The result of the Boustrophedon cell decomposition for the second ROI,

complemented with a cell adjacency graph (a); the planned trajectory

within the second ROI (b).

C.4.6 Radiation Data Processing and Source Localization

After completing the path planning phases, we employed the UGV to acquire the

radiation data in both zones. The robot’s minimal turning radius was set to 0.6 m;

thus, the shape of the actual trajectory differed from that of the pre-generated one.

With the maximal forward speed equaling 0.6 m/s (0.4 m/s while turning), the

measurement took 15 minutes and 10 seconds in zone 1, while the time relevant to

zone 2 was 7 minutes and 35 seconds.

The measurement outcomes for zone 1 are presented in Figure C.23a; the relevant

path was 495 m long. Subsequently, the data were interpolated and the background

removed (the background and hotspot threshold exhibited the values of 1645 CPS

and 2124 CPS, respectively). As the zone included merely a single source, the

thresholding left a sole peak, and the parameter matrix was initialized smoothly. The

initial and the improved estimates, are indicated in Figure C.23b. The localization

error equaled 0.123 m (Table C.4).

The situation was more problematic in zone 2, where we placed 7 sources in total.

The individual data points captured are shown in Figure C.24a; the length of the ac-

tual trajectory corresponded to 221 m. Three sources, namely, radionuclides s1, s4,

and s7, were located outside the surveyed area (discussed in Sec. C.5). The thresh-

old levels for the background and the hotspots equaled 2707 CPS and 4684 CPS,

respectively; note that the values are greater than those relating to zone 1, as the

major portion of the data points lay in the vicinity of the sources. The adaptive

thresholding yielded three distinct peaks, correspondingly to sources s3, s5, and s6;

the last peak (s2, weak caesium 137) was overshadowed by the strong Cs-137 in its
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Figure C.23: The individual data points measured along the planned trajectory; the

points capture the total count in the first ROI (a). The interpolated

radiation map highlighting the result of the source localization proce-

dure (b).

close proximity. Consequently, only 3 out of the 7 sources were localized successfully,

as is obvious from the detailed results in Table C.4. The average localization error

in both of the zones (considering only sources whose parameters were found) equals

0.10 cm RMS.

To quantify the benefits of employing the UGV in more detailed measurement,

the localization algorithm was also applied to the aerial data. The thresholding

result remained the same as in the ROI selection (Figure C.18), yielding two source

estimates. Clearly, the localization error in zone 2 cannot be computed, because the

7 sources present there appear as a single one in the aerial radiation map. However,

we can compare the results obtained within zone 1, where the UAS localization error

equals 1.28 m (Table C.4).

C.5 Discussion

Within the presented experiment, we introduced and successfully tested a multi-

robot radiation mapping method consisting of numerous steps (the essential mapping

outputs are summarized in Figure C.25). The entire operation lasted 24 hours; this

continuous time interval comprised not only the necessary tasks, namely, the data

gathering and processing, but also the site preparation and cleanup, safety-related

steps, and activities not directly associated with the experiment. The time intensity

of the operations relevant to the mapping and processing are summarized within

the Gantt chart in Figure C.26. The individual items include the time spent on

the automatic tasks (data processing, robot operation), operator interventions, and
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Figure C.24: The individual data points measured along the planned trajectory; the

points capture the total count in the second ROI (a). The interpolated

radiation map highlighting the result of the source localization proce-

dure (b).

robot preparation and manipulation. The most time-intensive stages are the UGV

operation and the photogrammetric processing. Theoretically, an ideal mission takes

less than 4 hours; in reality, however, we had to face numerous minor issues that

eventually prolonged the whole process, mainly as the mission marked the first time

the systems were deployed together.

The UAS photogrammetry survey involved the use of our custom-built multi-

sensor system and was carried out repeatedly; during the procedures, we thoroughly

evaluated the achievable accuracy. Despite this, the attained values did not meet

our expectations: As described in Section C.4.2, the RMS object error determined

by using the six test points lay within the order of decimeters in the horizontal

coordinates and rose slightly above a meter in the vertical one. According to our

investigation and data analysis, all systems performed properly (including the RTK

correction transmission); however, the signals on the GNSS receiver’s antennas were

rather weak, caused insufficient conditions for the carrier phase tracking during

the entire flight. This problem resulted in RTK-fixed solution outages and made

the INS exclude the GNSS data from the position and orientation estimates for a

moment; the issue affected the beginning of the third survey line (Figure C.13b).

Since the multi-sensor system was combined with the BRUS UAS for the first time,

the problem may have been generated by interferences from the UAS’s electronic

systems; this assumption must nevertheless be verified through future experiments.

Fortunately, the lower georeferencing quality did not manifest itself in the subsequent
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Table C.4: The source localization results: N-q stands for non-quantifiable, as the

UAS localization error for zone 2 cannot be expressed in the usual man-

ner.

Source Zone
Error Error

Isotope
Activity

Comment
UGV [m] UAS [m] [MBq]

s1 2 – Co-60 2.85 Outside the ROI

s2 2 – Cs-137 7.53 –

s3 2 0.067 Co-60 2.95 –

s4 2 – N-q Cs-137 7.53 Outside the ROI

s5 2 0.138 Cs-137 79.82 –

s6 2 0.018 Co-60 24.56 –

s7 2 – Co-60 24.76 Inaccessible to

the UGV

s8 1 0.123 1.28 Co-60 123.78 –

phases, and we still consider direct georeferencing crucial with respect to radiation-

related missions.

Aerial radiation mapping proved to be a very effective tool for hotspot localiza-

tion. The innovative approach involving flying at a constant AGL height regardless

of the surface character allowed us to collect homogeneous data. Outside this sce-

nario, the distance separating the ground and the detector would vary between 15

and 30 meters in a flight 15 meters above the highest location (at a fixed MSL alti-

tude); such a diversity would certainly mean inconsistent data, and lower-positioned

hotspots would be localized inaccurately or not at all. However, the DEM-based tra-

jectory adjustment (Algorithm 1) needs to be improved in several aspects, of which

the two most prominent ones are as follows: First, the method does not deliver the

desired distance from the surface at high gradient locations, as it modifies the verti-

cal coordinates of the waypoints only; another reason for the deficiency rests in the

smoothing technique, which, while suppressing sudden height variations contained

in the trajectory, further slows down the response to rapid slope changes. These

effects are illustrated in Figure C.16, where the negative and positive peaks in the

bottom part almost exclusively relate to the sudden gradient alterations. Second,

the algorithm would perform better if it considered UAS vertical speed limits.

Based on the UAS-collected data, two regions of interests were automatically

defined; this action reduced the original area of 20,000 square meters, to less than

10 %, with only 1,500 m2 left for the terrestrial mapping. Nonetheless, the system

can be scaled to a larger area by dividing the surveys into multiple UAS flights. As
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Figure C.25: The most significant map layers assembled during the mapping and

processing. The layers are arranged according to their times of origin,

from the bottom upwards: the primary orthophoto (a); the UAS-based,

shaded DEM (b); the UAS-made orthophoto (c); the UAS-delivered

radiation map (d); the detected regions of interest (e); the DEM-based

UGV traversability map (f); and the UGV-made radiation map (g).

stated in the introduction, the largest region reasonably explorable via the described

methodology has the size of 500×500 m. Assuming the flight parameters employed

within our research, the image and radiation data acquisition missions would take

two and nine flights, respectively; this scenario can be regarded as acceptable for

the given purpose. By extension, the reconnaissance of such a large area probably

does not require an equal spatial resolution of the measurements, meaning that the

necessary number of flights can theoretically be reduced. Surveying significantly
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Figure C.26: The approximate times of the individual tasks during the experiment

(considering an ideal case, i.e., a scenario when no issues or other

activities prolong the operation; in reality, the experiment was carried

out within 24 hours).

vaster regions, however, already requires helicopter-based systems to narrow down

the search space.

Using only a DEM to select regions inaccessible to UGVs within the mapped area

cannot yield 100% reliable outputs. Deformable objects (such as blades of grass and

light bushes) satisfy the definition of an obstacle in terms of the height and gradient,

despite being effectively bypassable by a UGV; moreover, such objects cannot be

separated from non-deformable obstacles, because in a DEM they are represented

by the same data. Although the decision-making can utilize an orthophoto (auto-

matically or manually), this approach produces only probable bypassability, which

does not constitute a reliable option. Other issues arise from the actual capabil-

ities of a DEM, one of the main limitations being that some free spaces, such as

those under bridges, are not covered by the model. If no safe path for a UGV is

found, we can follow that with the highest passability rate, albeit exclusively in the

operator-assisted mode.

For many reasons, autonomous UGVs designed to participate in diverse missions

require real-time obstacle avoidance. In view of this parameter, the DEM-based

method is markedly limited in that the model captures only the situation existing

at the time the source data were acquired, and thus the technique’s applicability

remains solely within the representation of fixed obstacles, including hills and moun-

tains. Another set of incorrectly evaluated obstacles comprises objects undetected

due to inaccuracies stemming from either the low resolution (e.g., in thin items such

as columns and fences) provided by a DEM or poor object texture (e.g., the light

being outside the usable sensor range). Such collisions can be prevented by a real-

time obstacle avoidance system installed on board the UGV. In the context of our

mission, it is important to emphasize that objects inside the mapped area are very
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likely to occur or change unexpectedly, and this type of system would significantly

increase the efficiency of the entire reconnaissance process. However, operator su-

pervision may still be applicable (and even irreplaceable in certain critical missions)

thanks to its overall safety and reliability.

Considering the requirement for short overall mission time, an adequate DEM

resolution has to be selected. For this purpose, we tested higher resolutions (up to

16x) to determine that while they did not improve the resulting obstacle map, the

processing time and noise level increased significantly. Based on the attempts to

fine-tune the whole task, we may conclude that computing a DEM with resolutions

above 5 cm/pix does not bring any substantial benefits. Regarding the UAS path

planning for the second flight, which also embodies the second task employing a

DEM, it is possible to point out the lower sensitivity to DEM accuracy, an aspect

that enables us to achieve satisfactory results even at values below 5 cm/pixel.

In terms of planning the path for the UGV, it seems beneficial to optimize the pro-

cedure, as the terrestrial survey has shown to be one the most time-consuming stages

of the whole mission. The robot must markedly reduce its speed while turning, and

therefore optimizing the number of turns could yield more convenient trajectories.

A possible approach is presented in paper [67], the basic idea being that the sweep

direction does not have to remain the same in all of the cells but should exploit

the angle of the long axis of each polygon instead. Another suggestion relies on

connecting the subregions in a manner which reduces the length of the traversals.

Finally, the decomposition process itself can be optimized to achieve a minimum

sum of cell widths. Still other enhancement concepts are outlined in article [68];

these, however, focus on aerial assets. In the case of terrestrial path planning, we

cannot employ convex hulls of polygons, because otherwise obstacle avoidance could

not be assured; moreover, taking the wind direction into account is not necessary.

Although all of the algorithms worked only with either the dose rate or the raw

total count during the entire source localization procedure, the use of spectrometric

detectors in the experiment enabled further processing of the acquired data. Fig-

ure C.27 shows the sample spectrum integrated over the period of 10 s along the

trajectory between the distinct radionuclides. The graph visualizes three photo-

peaks, which essentially embody the ’fingerprints’ of the incident photons, namely,

the photons’ energy that is unique for each radioactive element. The net counts

in the energy windows are proportional to the contribution of the relevant isotopes

towards the overall measured intensity; note that the width of a window depends on

the energy resolution of the detector, usually expressed by full width at half max-

imum (FWHM). To compute the net value, it is necessary to subtract the average

background level and also the counts yielded through the impact of the higher-

energy photons (in our experiment, the cobalt 60 affects the caesium 137 window
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Figure C.27: A radiation spectrum measured by the UGV’s on-board detector; the

graph indicates the energy windows of the applied radionuclides.
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Figure C.28: The maps with separated radiation intensities for the cobalt 60 (a) and

the caesium 137 (b).

via Compton scattering). The photons’ influence can be quantified via the stripping

coefficient, acquired from those measurements where the cobalt is present while the

caesium is not; such a scenario was performed in area 1. As an example of the

spectral isotope separation, maps relating to the two radionuclides are presented in

Figure C.28; the images clearly show that Cs-137 sources were located in only one

of the hotspots. This step was not vital for the localization of the sources via our

method and was therefore supplied additionally. In a practical scenario, the maps

with separated isotopes could be utilized by relevant authorities.

Another one of the procedures and outcomes executed or obtained at a later

time is the estimation of the source strength and activity. These properties were

estimated solely with the aerial data because the spectra measured by the terrestrial
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robot had been corrupted due to an HW malfunction and could not be converted to

dose rate values in a proper manner; regrettably, the problem was discovered only

during the post-processing phase, when the measurements could not be repeated.

For the estimation, curve fitting was utilized to find the coefficients a, b, c of the

following mathematical function:

Ḋ = f(d) =
a

d2 + b2
+ c, (C.6)

which expresses the dependence of the measured dose rate Ḋ on the horizontal

distance d from the source. The sought parameters are the dose rate at the distance

of one meter (a), the vertical distance from the source (b), and the background dose

rate (c). Theoretically, the measured altitude could be used instead of the second

coefficient; however, the accuracy of the relevant value is not sufficient to enable a

decent fit. Note that d denotes the distance from the estimated position provided by

the localization algorithm. The results of the fitting for both regions of interest are

introduced in Figure C.29; each zone was delimited by the radius of 35 m around

the estimated source position. Although the fit error in zone 2 (where multiple

radionuclides were present) is somewhat greater than that in the single-source case

(zone 1), it is actually impossible to determine the number of sources from the aerial

data only.

Given the curve parameters, in particular the dose rate at one meter, Ḋ1 (nGy·h−1),

and assuming a single source whose isotope is known, we can evaluate the activity

of the source. The computation is rather straightforward and exploits the relation-

ship between the activity, generated dose rate, and exposure rate constant, which

is radionuclide-specific [69]. In zone 1, the estimated activity in Co-60 (note that

the isotope can be identified from the spectra by its characteristic photopeaks)

equals 105.0 MBq; the error reaches −15.2 % with respect to the reference value of

123.8 MBq. In aerial radiation mapping, such a result is comparatively accurate.

The experiment indicated that both aerial and terrestrial radiation mapping pro-

cedures involve specific drawbacks, as follows: The information density of the data

acquired by the UAS suffices for localizing a single isolated source (s8), providing

a result that could be accurate enough in practice; however, given the coarse aerial

radiation map, it is virtually impossible to distinguish between a strong source,

multiple radionuclides, and non-point areal contamination, as demonstrated in zone

2. By contrast, the UGV-based measurements characterized the actual radiological

situation in a better manner, yet still not precisely enough; the reason lay in that

the hypothetical ’center of radiation’ (an analogy to a center of mass) in zone 2

was shifted towards the east by the relatively strong source s7, causing the weak

radionuclides to be left outside the region of interest. In the future, this problem
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Figure C.29: The dependence of the dose rate measured by the UAS on the horizon-

tal distance from the estimated position of a source. The data points

are fitted with a curve in order to evaluate the source strength.

could be easily eliminated by enlarging the ROI prior to executing the UGV path

planning phase. Although the radiation detection systems mounted on the UAS and

the UGV were principally the same (the only exception being that the terrestrial

robot carried two detectors instead of one), the resolution of a scan delivered by the

UGV will always be superior to that obtained from the UAS, given the fundamental

physics of the detection. As the aerial detector performs the measurements from an

AGL altitude 30 times greater (0.5 m vs. 15 m) than the terrestrial one, it neces-

sarily averages radiation from an area approximately 900 times larger. The ground

platforms allow utilizing heavier systems, e.g., a collimated gamma camera; however,

to apply such systems, we would have to alter the surveying strategy completely.

The gamma camera requires a series of long stationary measurements from points

elevated above the scanned area; based on our experience, we can assume that the

localization process would be more time-consuming and less accurate if conducted

via this technique. Obviously, a terrestrial robot is incapable of localizing sources

positioned in a space classified as an obstacle (s7), and this deficiency, in general

terms, requires further application of a UAS to explore such portions of the ROI

that remain inaccessible to other robots. Using a UAS in this scenario nevertheless

also invokes the question of safety, as the aerial vehicle needs to be brought closer

to the terrain. Regarding the ground inspection, another disadvantage consisted in

that the procedure failed to separate the overshadowed weak source (s2); however,

performing a measurement detailed enough to localize this source would probably

be more time-intensive than repeating the entire survey after other sources had been

removed from the area. Yet, despite the difficulties, the UGV has proved to be a

significant component of the system because it provides a more accurate overview

of the radiological situation within the hotspots.
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Contrary to our previously published research, we did not attempt to employ

information driven localization, i.e., real-time UGV trajectory adaptation according

to continuously acquired data. Instead, the goal was to compile a radiation map

as precise as possible to cover also sources that are generally difficult to detect.

With some prior information, such as that only one radionuclide is sought, we could

utilize the partial directional sensitivity provided by the two-detector system to head

towards the radiation source immediately after its presence has been indicated. To

achieve this purpose, it would be necessary to assure obstacle avoidance, fusing the

source direction estimation with the obstacle map via exploiting the potential field

algorithm if feasible.

If we compare the results achieved within our research with those presented in

articles focused on the same or similar topics, namely, [20] and [21], several key

differences stand out. The former paper offers semantic classification of the surface

type, providing useful information for navigating a terrestrial robot. Importantly,

the applied UGV is equipped with an obstacle avoidance system that can be espe-

cially helpful in environments with dynamically occurring obstacles. By contrast,

however, the authors do not utilize any sophisticated aerial data processing method

to recognize multiple points of interest (POI) on the ground. The latter article

introduces algorithms that exploit the measured spectra in selecting the POIs to

perform information-driven localization of a single source; advantageously, the au-

thors also compare multiple methods applicable for the given purpose. Considering

the outcomes of these two research projects, we can stress that the novelty and ben-

efit of our concept consist in other aspects, defined as follows: the terrain- following

capability and directly georeferenced photogrammetry delivered by the UAS; auto-

matic selection of the ROIs; and higher-accuracy, isotope-independent localization

of multiple sources, performed with a UGV whose navigation and trajectory plan-

ning are fully autonomous (except for the necessity to validate the obstacle map by

an operator). Finally, it is worth mentioning in the given context that the whole

experiment was completed in a single day.

C.6 Conclusion

Using relevant experiments, this paper verified a concept of exploiting aerial and ter-

restrial robotic platforms to localize uncontrolled radiation sources in a previously

unknown outdoor area. After completing the three phases of the designed survey

process, we found four of the eight radionuclides (or three of the four significant

ones); the achieved accuracy was below 0.2 m, a value sufficient to support subse-

quent steps such as the removal of the sources from the area. The experiment was

implemented in 24 hours, including the elimination of various technical issues. The-
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oretically, the area of 20,000 m2 can be explored in only 4 hours, assuming conditions

similar to those presented herein. To complete the entire task smoothly, however,

the system would require further modifications. In this context, there remain major

constraints as related to the weather, environment, radiological situation, and other

relevant aspects: The systems must operate in adequate flight conditions, and sat-

isfactory GNSS reception as well as the accessibility of a significant part of the area

to the UGV need to be ensured. Moreover, the radiation intensities have to be well

detectable yet not hazardous for the electronics. At this point, it is also vital to

emphasize that the cooperation between aerial and terrestrial robots should be pro-

moted because the same results cannot be achieved with one of the variants only; a

UAS, for example, is incapable of ensuring either conclusive localization accuracy or

differentiation between sources concentrated within an area of hundreds of square

meters. By contrast, a UGV, if operated without the aerial data, has to explore

the inspected area globally, and the lack of an obstacle map causes serious naviga-

tion problems, especially where the applied vehicle is not equipped with an evasion

module. Our future research will be directed towards employing information-driven

localization and fitting the UGV with an obstacle avoidance system.
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Abstract

The article focuses on acquiring a 3D radiation map of a building via a two-phase

survey performed with an unmanned aircraft system (UAS). First, a model of the

studied building is created by means of photogrammetry. Then, radiation data are

collected using a 2-inch NaI(Tl) detector in a regular grid at a distance of 2 m from

all accessible surfaces of the building (i.e., the walls and the roof). The data are then

georeferenced, filtered, projected to the building model, and interpolated to yield

the detailed radiation map. A method to estimate the parameters of the radiation

sources located inside is introduced and successfully tested, providing a localization
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accuracy in the order of meters. This task is aimed to deliver the proof of concept

for employing such a mapping technique within nuclear safeguards. The acquisition

of the radiation data was performed via a manual flight to ensure an appropriate

safety level; in this context, it should be noted that the autonomous flight mode still

requires major improvements in terms of safety.
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D.1 Introduction

The present-day society relies on nuclear technology significantly; therefore, the ne-

cessity to inspect and monitor radiation-related facilities remains a permanent fac-

tor. Tasks such as tracking illegal transportation and storage of radioactive nuclear

material, searching for uncontrolled radioactive sources, securing detailed surveys of

buildings and structures to detect possible contamination, and monitoring nuclear

facilities (e.g., nuclear repositories) require accurate and up-to-date information on

the area of interest. The traditional approaches rely on human-made measurements;

such techniques may nevertheless be inefficient as regards the radiation safety and

security, time requirements, and costs. Thus, the utilization of robotic platforms is

becoming more frequent in this domain, as their overall availability increases. The

majority of the research articles propose acquiring planar radiation maps; in some

applications, however, it can be beneficial to have a 3D map of the structure being in-

vestigated. This type of map then represents the spatial distribution of the radiation

intensity, covering multiple angles of view. Such scenarios comprise mainly buildings

and other complex structures that exhibit a distinctive vertical profile. A 3D map

can assist with identifying radiation hotspots not visible to an overhead monitor-

ing vehicle due to various structural elements, properties, and configurations of the

building. This article discusses radiological mapping that employs unmanned air-

craft systems (UAS), multicopters in particular. These platforms, unlike terrestrial

and other aerial robots, facilitate measuring data close to the examined buildings

and at adjustable altitudes.

The efforts embodied in this article are centered on the following scenario: A

building with at least two floors comprises one or more radioactive sources, placed

either loosely or in a container. Let us assume that the radionuclides exhibit an

activity and energy sufficient for them to be detectable from the outside. No other

sources, except the radiation background, are present within a relevant distance

from the structure under investigation. The building is also required to offer ample

space around it to enable the operation of a UAS in the vicinity of the building’s

outer shell.

The actual survey involves two phases: First, a flight is conducted at a high alti-

tude to ensure the 3D reconstruction of the relevant building via, for example, aerial

photogrammetry or laser scanning. Second, a comprehensive flight is performed in a

regular pattern around the building to acquire radiation data. Finally, all the data

are processed to estimate the source locations and to produce a relevant 3D radiation

map, i.e., a model with interpolated radiation data projected on its surface.

An overview of industry-related inspection tasks for which the application of the

UAS technology can be beneficial is outlined in [1], radiological cases are covered
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as well. The authors claim that UASs are capable of minimizing the survey time

and the human resources; moreover, they also protect the operators by executing

the hazardous tasks. The typical role of UASs in area radiation mapping is ex-

posed in source [2]; this article describes radiation data processing in great detail.

Another variant of the survey, also exploiting LiDAR readings to acquire a coarse

elevation model of the explored area, can be found in [3]. The authors of [4] adopt

a more conventional approach to aerial radiological monitoring, relying on a 3D

model reconstruction of the studied area via photogrammetry. Two examples of

data acquisition in a 3D space that are not strictly related to ionizing radiation are

presented in sources [5], [6]; while the former analyzes the inspection of bridges, the

latter covers an automated UAS-based assessment of buildings, thus being more rel-

evant to our research. Radiation mapping inside buildings, utilizing SLAM based on

a depth camera to reconstruct an environment map, is suggested in [7]. Article [8]

describes a multiphase UAS inspection involving a LiDAR-based SLAM, identifica-

tion of radiation hotspots, and characterization of radioactive sources. Applications

relevant to international nuclear safeguards are provided in paper [9]. A radiological

inspection of a collapsed building is discussed in article [10]; similarly to our case,

the radiation data were collected at various height levels, enabling the localization

of a source not stationed on the ground. Article [11] presents work that relates to

our outcomes very closely, promoting a concept termed Scene-data fusion (SDF):

The 3D model of a scene, obtained via LiDAR scanning and SLAM, is fused with ra-

diation readings using the list-mode maximum-likelihood expectation-maximization

(ML-EM) algorithm. Such an approach yields radiological maps with good relative

localizations of the hotspots and can be scaled from small scenes and local objects

up to large buildings.

This article builds on our previous work, as we already analyzed the radiological

inspection of buildings; a simulation was carried out and characterized in [12]. In

this context, we also partially utilize our results obtained via the co-deployment of

a UAS and a terrestrial robot in a thorough examination of an area of interest [13].

D.2 Radiation Theory

Regarding radation, we consider only the gamma form because it is generated by

most sources, either directly or as a by-product of various relevant interactions (e.g.,

those induced by neutron sources, nuclear material, and beta sources). Importantly,

this type of high-energy electromagnetic radiation also exhibits a good penetrability.

A radioactive source is characterized by several parameters. These include, above

all, an activity in Bq, which stands for the number of atom disintegration cycles

per second. By extension, the emitted photons can have either one or multiple
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energy levels (keV), and their average amount per disintegration cycle is stated as

a ratio (%). The other parameters (besides activity) are defined by the type of

radionuclide. Note that radioactive decay is a stochastic process and follows the

Poisson distribution; all quantities describing it represent merely the mean, or the

most probable cases.

The propagation of radiation in space is affected by the traveled distance and the

materials passed through. The radiation intensity can be expressed as the flux of

photons (s−1·m−2); in practice, however, dosimetry quantities are utilized more fre-

quently, involving either the dose rate (Gy·h−1) or the equivalent dose rate (Sv·h−1).

The intensity is inversely proportional to the square of the distance. While travers-

ing the mass, the radiation is exponentially attenuated at a rate determined by the

linear attenuation coefficient µ (m−1); its value depends on the material proper-

ties and the energy of the photons. When passing through N segments of multiple

materials, the intensity decreases to

I = I0
exp

(
−∑N

i=1 µidi

)
(∑N

i=1 di

)2 (D.1)

where I0 is the initial intensity. This equation, however, applies only to the ideal case

of no scattering and secondary radiation in the material. In reality, such a scenario

is not feasible but can be approximated in a narrow-beam geometry; conversely,

in a broad-beam geometry, both scattered particles and secondary radiation reach

the detector, affecting the measurement result. The geometry type is determined

mostly by the mutual positioning of the source, detector, and shielding/obstacles in

between. The aforementioned laws of propagation need to be considered in acquiring

and interpreting radiation maps of buildings and other structures.

Both the origin and the detection of ionizing radiation comprise stochastic phe-

nomena, which then significantly affect the detection sensitivity and energy reso-

lution of the spectroscopic measurements (besides the number of incident photons,

their energy is measured as well). The detection systems may suffer from dead time

when overloaded by a high flux of photons; additionally, this undesirable effect re-

duces the reliability of the results acquired. However, it is possible to estimate and

compensate for the dead time if digital signal processing is employed.

Finally, radiation background should be mentioned, as it introduces consider-

able noise into the measurements. The effect consists of two principal components,

namely, terrestrial and cosmic radiation. While the former is produced by the ra-

dionuclides that are naturally present in the soil (in particular, uranium-238 and

thorium-232 together with their decay products, but also potassium-40), the latter

arises from stellar objects. The background does not have a constant intensity, due
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to the randomness inherent in its generation, and its mean varies in time. The

background embodies a severe issue when its magnitude is comparable with that of

the radiation to be detected.

For more information on the principles of ionizing radiation, the reader is invited

to consult the book [14].

D.3 Processing Pipeline

The proposed process of handling the measured data has three inputs and two out-

puts. Thus, the pipeline is entered by the radiation data (acquired by the detection

system), positioning data, and building model (represented by a point cloud) to

yield an interpolated radiation map projected on the model and an estimate of

the sources’ parameters. Both outputs are produced in two independent branches,

even though they share the data pre-processing phase. The complete pipeline is

illustrated in Fig. D.1; a description of the individual steps follows.

Figure D.1: The data processing pipeline with the individual steps (rectangles), in-

put data (sloping rectangles), and outputs (rounded rectangles).

Converting the spectra

First, the raw radiation data are converted to dose rate values, which carry a clear

physical meaning. Obviously, an inappropriate choice of the detection system can

negatively influence the mapping results; let us therefore assume a spectrometric

detector having a latency limited to the sampling period, i.e., all pulses are correctly

registered during the period, with no further processing or averaging performed by

the counting electronics. Commercial survey meters are usually unsuitable for our

purposes. To perform the data conversion, we need to identify the relationship

between the spectra (a histogram of the incident photon energies) and the dose

rate for the applied detection system. This is achieved via calibration: the spectra

are collected for not less than 5 minutes at diverse distances from the radioactive

source (typically, Caesium-137); then, the total absorbed energy per second at each

point is computed, and, finally, the dependence of the theoretical dose rate on the
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absorbed energy is fitted with an appropriate curve, such as that described by a

polynomial function [15]. Note that the background value, obtained from a separate

measurement, must be included.

Data georeferencing

As the radiation data are to be interpreted spatially, together with the building

model, georeferencing is of vital importance. In this context, utilizing a global

navigation satellite system (GNSS) onboard the UAS embodies the most accessible

and straightforward approach to the given task; the method, however, may comprise

significant positioning errors in the vicinity of obstacles, due to a poor signal level

and multipath errors. The accuracy and robustness can be increased by including

in the position estimation process other sensors, such as a barometer and inertial

sensors. Another technique for obtaining the absolute positions rests in tracking

the flying UAS by means of a robotic total station; despite the excellent accuracy,

however, the line-of-sight requirement is satisfiable only with substantial difficulty in

applicable scenarios. Conversely, the radiation data may be georeferenced relatively

to the building’s facade by using a simultaneous localization and mapping (SLAM)

algorithm. This approach not only delivers the positioning data but also creates the

model, which, alternatively, is also assembled via aerial photogrammetry or laser

scanning.

Position adjustment

Due to various inaccuracies in the data georeferencing, the whole dataset may include

a translational error in the context of the building model. As the data are collected at

approximately constant distances, it should be feasible to estimate the magnitude of

such an offset and to eliminate the problem. The naive approach lies in aligning the

centroids of the model and the radiation dataset; this option, however, may not yield

a correct result when either the model or the dataset has a more complex shape.

By contrast, exploiting point distances is potentionally functionable in a broader

set of scenarios. The initial stage involves, above all, computing the mean distance

between the measured points and the model; after that, the difference between the

mean and the actual distances is minimized via the steepest descent algorithm by

adjusting the translation of the datapoints in all three axes.

Data filtering

In order to achieve satisfactory interpolation results, it is beneficial to have similar

datapoint densities in all axes. As the distance between the sampling points is

usually significantly shorter than that in parallel survey line spacing, the dataset

152



is reduced prior to further processing. First, depending on the data noisiness, a

moving mean is applied to the dose rate values of all the dataset components; then,

each n subsequent points are fused into a single one. During the filtering, various

data fluctuations are suppressed.

Data projection

Due to a lack of measurements inside the studied building, the aerial data must be

projected onto the building’s surfaces; otherwise, the interpolation algorithm would

assume incorrectly that the radiation intensity on the surfaces is lower than at the

locations of the measurements (which only applies if the intensity inside is zero).

The selected projection method is rather straightforward: for each measurement,

the closest point of the model is found and assigned the relevant dose rate value.

This universal approach does not require any assumptions or prior knowledge. In

terms of the accuracy, we can then claim, based on the description above, that the

closer to the surface the measurements are taken, the more accurate the projection

result is.

Data interpolation

Finally, the radiation data are interpolated to the outer shell of the building being

investigated; the shell is represented by a point cloud delivered through, for example,

the photogrammetry. The applied method is a natural neighbor interpolation based

on the Delaunay triangulation [16]; this option exhibited the most accurate results

in our previous research.

Hotspot clustering

The number of sources located in the building needs to be estimated prior to finding

the sources’ parameters. To execute this task, several algorithms are adopted. Step

one rests in removing the points that likely do not form a part of the hotspots from

the dataset. This is achieved by thresholding the dose rate values; the threshold is

determined by the statistical parameters of the dataset, as shown in our previous

work [13]. As a result, a subset of datapoints is yielded, forming clusters around

the expected locations of the radiation sources. To split the clusters, a k-means

algorithm [17] is employed; however, the number of the clusters is not known a

priori. The parameter k is estimated by using the silhouette method [18], which

computes a silhouette value for each possible k (range 1 to 10); the value specifies

whether a point is similar to its own cluster or, rather than that, other clusters.

The k with the greatest corresponding silhouette level is chosen. The suitability of
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the output is furthermore validated via the elbow method [18]. The k value directly

determines the estimated number of sources.

Source localization

The parameters of the sources, namely, their location in 3D and their intensity,

are found with the iterative Gauss-Newton method in a manner analogous to our

previous research [13]. As the initial position estimates, we utilize the centroids of

the clusters. Regarding the sources’ intensity, the maximum dose rate ten times

multiplied is chosen in each cluster to constitute the initial estimate.

D.4 Experimental Setup

As already mentioned, a similar method for radiation data mapping on a building

surface was previously studied and characterized within one of our papers [12];

however, the simulated radiation and positioning data exposed therein may not

correspond to reality sufficiently to assess the algorithm in a thorough manner.

For this reason, we conducted an experiment involving real radiation sources in

a building, two UASs to collect the actual radiation data, and aerial imagery to

perform the 3D reconstruction.

D.4.1 Study Site

The experiment took place at a fire rescue service training center, namely, a three-

story brick building with a reinforced concrete skeleton, which proved suitable for

assessing the method (Fig. D.2). The building has originally been designed as a

storehouse, meaning that the individual floors are predominantly arranged as an

open space including a minimum of inner walls (Fig. D.3). The building is approx-

Figure D.2: The building from the experiment (north-east view).
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imately 37 m long, 28 m wide, and 11 m tall; the longer walls contain multiple

windows, while the shorter ones have none.

3rd floor

2nd floor

1st floor
North

S1

S2

S3

Figure D.3: The building floorplan indicating locations of the individual radiation

sources (black points, see Table D.1).

The 3D model was obtained by means of aerial photogrammetry and indirect

georeferencing [19]. At this stage, a DJI Mavic 2 multirotor UAS was employed to

collect the aerial imagery from a height of 30 m, and a survey-grade GNSS allowed

us to localize the 12 ground control points pre-distributed around the building.

This reconstruction technique, assuming a similar mission setup, typically reaches

a centimeter-to-decimeter georeferencing accuracy [20]. Although the accuracy was

not evaluated via check points, and, in general, may vary locally due to numerous

factors (such as the texture complexity or lighting conditions), the reconstruction

method and the expected quality are entirely satisfactory for the intended purpose,

namely, the model facilitates only visualizing the radiation data and has no impact

on the source localization phase.

In the experiment, we used three different radiation sources, as summarized in

Table D.1. The sources were placed on different floors, as far apart from one an-

other as possible (Fig. D.3); this configuration allowed the radionuclides to be easily

distinguished in the collected radiation data. Even the strongest source yields a dose

rate of merely 1 mGy·h−1 in close proximity (if unshielded); to affect the UAS (the

communication module and the GNSS receiver in particular), the intensity would

have to be ten times greater.
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Table D.1: The characteristics and locations of the radiation sources.

Source Isotope Activity Shielding Floor

S1 Cs-137 10.90 GBq 1” lead container 1st

S2 Cs-137 2.41 GBq none 2nd

S3 Co-60 0.63 GBq none 3rd

D.4.2 Radiation data acquisition system

To acquire the aerial radiation data, we utilized an off-the-shelf DJI M210 multirotor

UAS (Fig. D.4); the vehicle provided a sufficient payload and flight time along with

fair stability and controllability, enabling us to operate near obstacles in the man-

ual control mode. The onboard radiation detection system (RDS) consisted of two

components: a photomultiplier-based, 2′′ × 2′′-sized, NuDET NAI thallium-doped

sodium iodide detector, and a multichannel analyzer exploiting a NuNA MCB. The

former had a resolution of 7.5 % at 662 keV, and the latter ensured digital signal

processing in 1,024 channels and was calibrated to an energy range from 50 keV to

3 MeV. The recommended sampling period of the RDS equaled 1 s. The radiation

data georeferencing relied on the UAS’s internal localization data, which had been

supplied by the GNSS, barometer, inertial sensors, and other data sources. In addi-

tion, we collected the locations of the individual flights’ take-off points via employing

a survey-grade GNSS and shifted the recorded flight trajectories accordingly within

the postprocessing stage. This step was expected to contribute towards suppressing

potential long-term offsets, produced mostly by the low-accuracy onboard GNSS;

thus, we possibly reached an increase in the relative accuracy of the georeferenced

model and radiation measurements.

D.4.3 Data Acquisition Setup

The choice of the data acquisition parameters, namely, the spatial density, distance

from the facade, and flight speed, directly influences the resulting radiation map

in terms of its resolution, accuracy, and level of details. The mission setting, how-

ever, must also respect the UAS’s limits, RDS parameters, and, if applicable, time

constraints.

A straightforward mapping approach comprises flight lines parallel to the building

facade and roof, assuming a constant spacing and distance from the structure. Con-

sidering the radiation propagation theory (section D.2), the distance should be as

low as possible; otherwise, the informative impact of the measurements may degrade.
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Figure D.4: The unmanned aircraft with a radiation detection system, and the live

spectrum visualization.

By extension, when choosing the proper value for the given scenario, we should re-

spect the UAS’s limits and characteristics, wind speed, and pilot experience. The

built-in obstacle avoidance system of the M210 UAS maintains a clearance of 3.5 m;

however, taking into account all the conditions, we deactivated this feature to select

a minimum safe clearance of 2 m for the mission.

The spatial density of the collected radiation data directly influences the level of

details in the resultant radiation map; however, an excessively high density may lead

to prolonged flight times. A straightforward mapping approach comprises flight lines

parallel to the building facade and roof, with the density given by the line spacing

and flight speed (at a constant sampling period). We consider 2 m line spacing,

0.5 m/s flight speed, and 1 s sampling rate the optimum values for the object being

investigated; all of the parameters were verified by a mission specialist. The spatial

resolution of airborne surveys was further studied in [21].

D.5 Results

The resulting dataset comprises 2,727 datapoints corresponding to a net flight time

of approximately 45 minutes. Obviously, the actual flight was longer, due to factors

such as stopovers and battery swaps.

The acquired spectra constituted an absorbed energy range from 30 to

3,800 MeV·s−1. The radiation detection system was subsequently calibrated by

using a Cs-137 source, yielding a relationship between the absorbed energy and the

dose rate in the relevant range. The dependence was fitted with a quadratic func-

tion (Fig. D.5) to compensate for the deficiencies of the multichannel analyzer; all

of the spectra were converted to dose rate values accordingly. Although we focus
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Figure D.5: The calibration of the detection system.

especially on relative mapping, not on measuring accurate dosimetry quantities, this

step enables us to linearize the intensity values, resulting in improved localization

of the sources. In view of the georeferencing, the data quality corresponds to our

expectations: the horizontal accuracy, especially close to the ground, is strongly

affected by the GNSS limitations, but the vertical components are fairly accurate

thanks to the barometric data included.

The collected radiation data were shifted with respect to the model; thus, we

applied the offset correction method, yielding the result T = (0.88,−1.58,−0.17) m
in the x, y, and z axes, respectively. Such magnitudes, importantly, should not

be neglected. The datapoints after position refinement are presented in Fig. D.6a.

Their pre-processing was completed by fusing every three subsequent points, and

the moving average had not been applied. The members of the reduced dataset were

projected onto the building, exploiting the point cloud obtained via photogramme-

try. Finally, the interpolation was carried out, producing a continuous layer on the

building’s shell. The resulting color-coded radiation map is shown in Fig. D.6b. This

map exposes two interesting effects: First, several artefacts appeared, especially on

the roof near the elevator shaft. The issue arises from the applied experimental setup

and method, which caused several datapoints to be incorrectly projected on the shaft

to induce a gap in the data on a portion of the roof. Second, the dependence of the

radiation propagation on the building’s structure and materials is clearly visible,

including in particular the difference between the windows and the brick walls. The

concrete columns between the windows are also distinguishable upon a closer look.

The sources on the 1st and 2nd stories cannot be detected from above, due to the

attenuation in the ceilings and floors; this outcome actually substantiates the need

of 3D mapping (if there were no source in the 3rd story, no radiation anomaly would

be detected by means of a conventional aerial survey). The density of the survey

lines and the aircraft speed proved to be adequate in terms of the spatial resolution

of the resulting map; the radiation distribution is captured in sufficient detail.
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(a)

(b)

Figure D.6: The collected (a) and interpolated (b) radiation data over the 3D model

obtained via aerial photogrammetry. The left-hand column captures

the north-east view, while the right-hand one visualizes the south-west

direction. All of the colour bars are in the log scale.

Table D.2: The localization results, supplemented with improperly expressed inten-

sities of the sources.

Absolute Estimated

Src. True position Estimated position position dose rate

error in 1 m

X [m] Y [m] Z [m] X [m] Y [m] Z [m] [m] [µGy·h−1]

S1 -2.97 -1.93 1.59 -1.21 2.09 3.02 4.6 6.6

S2 -8.83 -18.25 5.28 -9.87 -19.93 5.94 2.1 37.3

S3 -33.38 -8.11 8.50 -33.89 -5.52 8.05 2.7 14.3
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The dataset was then thresholded and clustered by using the k-means algorithm.

Both the silhouette and the elbow method indicated that the optimal number of

clusters equals three, which is in accordance with the actual count of radioactive

sources. The estimates of the sources’ parameters were subsequently initialized and

improved by means of the Gauss-Newton algorithm. The localization accuracy was

assessed with respect to the approximate ground-truth positions; the results are

summarized in Table D.2. To reveal their true intensity or even activity, the sources

need to be unshielded; this condition, however, is not feasible in the examined

scenario. The achieved magnitude of the localization error is comparable to that of

the georeferencing error, which produces an inaccuracy greater than neglecting the

attenuation does. Thus, for example, the data around the northeast corner in the

survey lines at the level of the 1st floor are shifted away from the building, causing

the source S1 to be localized outside. Generally, the algorithm tends to estimate

the sources’ positions closer to the measured points than they really are; this is due

to the simplification of the applied radiation propagation model.

Our results can be regarded as bringing a certain degree of novelty to complete

the previous research discussed in the Introduction. A comprehensive study on the

complete post-disaster response procedure was proposed by Duncan and Murphy

[10]; these authors’ raster scan, however, was not employed at a sufficient complexity

and detail. Moreover, the paper did not specify any visual results to represent the

spatial distribution of the radiation. By extension, the localization method relied

on manual greedy search, and the coordinates were not provided; this is in contrast

to our approach, where the sources’ coordinates are estimated automatically during

the data processing phase. Outcomes very similar to our 3D radiological map of the

building were delivered by Vetter et al. [11], whose scenario nevertheless included

only one source, not enabling us to evaluate the performance of the system in a

multi-source case. Further, the research did not involve localizing the source in

terms of estimating its exact position. On the other hand, Vetter et al. achieved a

greater relative positional accuracy in the collected datapoints, as they did not rely

on absolute georeferencing but rather on a SLAM-based concept. Another difference

between Vetter et al’s project and our solution rests in the better spatial resolution

of our map.

D.6 Conclusion

We introduced a comprehensive method to produce, by utilizing an unmanned air-

craft system, a 3D radiation map of buildings and other structures. The proposed

procedure requires an experienced pilot to operate the UAS at a rather small con-

stant distance from the building’s surfaces. The general purpose of this article lay
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in delivering a proof of concept, namely, establishing whether the presented data

collection approach is effective; the aims and objectives therefore did not involve

developing an ultimate autonomous system. The UAS was characterized as a valu-

able asset in the discussed type of task. In this context, we can conclude that a

high-energy (above 300 keV) source with an activity in the order of hundreds of

megabecquerels is well detectable from the outside, even when located in a rela-

tively subtle container; this, however, holds true if the source’s distance from the

edge of the structure does not significantly exceed 5 m.

A successful automatic localization of the sources was conducted to offer a com-

plementary interpretation of the measured radiation data. Although the accuracy

was not strictly superior, primarily due to problematic georeferencing of the input

data, knowing the sources’ parameters could help us to correct the dose rate values

during the projection phase; however, the exact relationship between the parameters

and the rate still remains to be investigated.

Neither the spatial accuracy nor the accuracy of the radiation measurements,

however, are critical for the intended field of application. The purpose of the re-

search was to provide complementary information to relevant authorities because

real nuclear security operations still require human intervention. Generally, a 3D

radiological map helps to increase the situational awareness and to reduce the op-

erational costs in terms of the time and risks. A precise 3D model (see the map

detail in Fig. D.7) allows a mission commander to see what parts of the examined

structure are potentially unsafe, reflecting the current trends within the domain.

In cases of searching for uncontrolled sources, UAS mapping-based localization can

significantly reduce the time to be spent inside a risky environment, thus minimizing

the radiation exposure.

Figure D.7: A detail of the real world data-based hotspot produced by the source

S2 on the building model. The approximate position of the source is

marked with a white cross.
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The presented mapping technique is applicable in differently sized and complex

buildings; however, the data collection time may increase dramatically. In large

premises, the different data acquisition parameter values, namely, those of the dis-

tance from the building, line spacing, and flight speed, may embody a factor that

not only reduces the operating time but also lowers the map quality and source

localization performance.

The most prominent challenge concerning further development of the mapping

methodology lies in making the radiation data acquisition phase autonomous. This

process, however, would require us to perform significant improvements on the UAS,

including mounting proximity sensors and using advanced algorithms to perform the

localization and navigation tasks autonomously even in highly complicated or GNSS-

disturbed environments. State-of-the-art commercial UASs enable automatic flights

or maintain a safe clearance from obstacles; such features, however, do not suffice

to accomplish autonomous mapping near complex structures.

Applying LiDAR is expected to facilitate accurate radiation datapoint positioning

in the coordinate system of a building (via either a pre-acquired model or SLAM).

Such an improvement could significantly enhance the quality of the eventual map, as

poor georeferencing previously affected the spatial resolution of the map and also the

localization results. Finally, the impact of the flight parameters on various aspects

of the aerial spectrometry and mapping needs to be studied comprehensively, as this

issue has not been sufficiently covered in the literature to date.
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Abstract

We discuss the localization of radiation sources whose number and other relevant

parameters are not known in advance. The data collection is ensured by an au-

tonomous mobile robot that performs a survey in a defined region of interest popu-

lated with static obstacles. The measurement trajectory is information-driven rather

than pre-planned, and the localization exploits a regularized particle filter estimat-

ing the sources’ parameters continuously. Regarding the dynamic robot control, this

switches between two modes, one attempting to minimize the Shannon entropy and

the other aiming to reduce the variance of expected measurements in unexplored
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parts of the target area; both of the modes maintain safe clearance from the obsta-

cles. The performance of the algorithms was tested in a simulation study based on

real-world data acquired previously from three radiation sources exhibiting various

activities. Our approach reduces the time necessary to explore the region and to

find the sources by approximately 40 %; at present, however, the method is unable

to reliably localize sources that have a relatively low intensity. In this context, ad-

ditional research has been planned to increase the credibility and robustness of the

procedure and to improve the robotic platform autonomy.
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E.1 Introduction

Radiation detection and the localization of radioactive sources are tasks of major

significance in many fields and facilities, including nuclear power plants, environmen-

tal monitoring, and search for uncontrolled sources. Traditionally, these procedures

have relied on human operatives, who are required to enter potentially contaminated

areas; the advancement in robotics has nevertheless allowed radiation mapping with

unmanned vehicles. The robots can survey hazardous environment, eliminating nu-

clear risk to human health, and are capable of navigating through complex terrain

to locate and identify radiation sources. By using autonomous vehicles, we can

also increase the efficiency and accuracy of the process. This article has been de-

signed to present an approach for localizing multiple radiation sources without prior

knowledge of their number and other relevant parameters. We propose a method

that localizes sources by using a particle filter combined with an active planning

strategy, increasing the task performance efficiency.

The problem of finding sources of ionizing radiation via robotic assets has been

thoroughly studied in the literature. An overview of different approaches to active

localization (i.e., the measurement trajectory is not pre-planned or controlled by a

human operator), including their comparative analysis, is offered in [1]. Several tech-

niques rely on pixel detectors or Compton cameras, which provide various degrees

of directional information. The set of articles on mapping or passive localization

comprises, for instance, reference [2], where a 3D radiation image is reconstructed

to enable locating a single source. The authors of [3] introduce a comprehensive

simulation tool for Timepix detectors, verifying their instrument via using a micro

aerial vehicle to retrieve a source. An additive point source localization algorithm is

presented in [4], demonstrating its ability to find up to four radionuclides by means

of a custom handheld device. An active localization method utilizing a Compton

imaging device and the maximum likelihood-expectation maximization algorithm is

described in [5]; the authors exploit a Fisher information matrix (FIM) to identify

an optimal sequence of dwell points. The central deficiencies of gamma cameras,

namely, the long acquisition time and poor angular resolution, are addressed in

[6]; here, an optimal data acquisition strategy to suit the camera’s parameters is

outlined through multi-criteria decision-making, delivering better results than the

behavior-based approach. Article [7] applies principal component analysis to previ-

ous measurements to determine the direction of the next dwell point, the localiza-

tion relying on a simple back-projection; there is the possibility of locating multiple

sources, which nevertheless requires an input from a human operator.

Other articles discuss common omnidirectional detectors; at this point, we can

focus on those that investigate passive localization. A method for extracting direc-

167



tional information from an acquired dataset and finding intersections via maximum

likelihood estimation is presented in [8]. The authors of [9] then propose a platform

based on the Robot Operating System (ROS) to systematically map an indoor en-

vironment in which radiation hotspots are definable. The approach characterized

in [10] relies on a static network of detectors and presents a hybrid particle filter

supported by a mean-shift algorithm capable of locating an unknown number of

sources.

An associated cluster of articles embraces active localization; here, studies con-

sidering a single source are referred to first. The procedure set out in [11] localizes

the source via a particle filter enhanced with a Markov chain Monte Carlo method;

the search strategy alone adopts a partially observable Markov decision process sub-

suming a reward function based on the Shannon entropy. Another concept that

employs the entropy is exposed in [12]. Further, article [13] proposes a combination

of a particle filter and an unscented Kalman filter to estimate the source position in

each axis separately; the robot is driven directly towards the point where the source

is anticipated.

Finally, related work on the active localization of multiple sources is summarized.

Article [14] focuses on sophisticated radiation mapping rather than source localiza-

tion; the proposed framework is able to reconstruct a 3D map with an unmanned

aircraft system (UAS) in a satellite navigation-denied environment, and different

isotopes can be distinguished. Another UAS-based approach exploits contour fol-

lowing supported by sampling in a suitable region of interest [15]; the localization

is performed with a variational Bayesian algorithm. The authors of [16] propose 2D

localization via a particle filter involving progressive correction and apply a search

strategy based on maximizing the Rényi divergence; a relevant experimental verifi-

cation demonstrated the capability of retrieving up to two sources. In article [17], a

particle filter is also used to localize sources in 3D; moreover, the radioactive decay

and attenuation of the radiation in the obstacles can be modeled, thanks to auto-

matic identification of the isotopes. During the search, a pre-determined number

of measurements are conducted; the choice of the optimal trajectory is FIM-based.

Nonetheless, the above-mentioned studies do not demonstrate the capability of re-

trieving multiple sources while ensuring that the entire region is explored; impor-

tantly, our research proposes an attempt to address such a deficiency.

The problems, scenarios, and preconditions in this article can be described as

follows: Let us have an unknown number of radioactive sources that are concealed

in a known region of interest (ROI) defined by a polygon with holes (static obstacles).

A single unmanned ground vehicle (UGV) equipped to control its linear and angular

velocity is available; the UGV carries an accurate self-localization system and a

radiation detector which provides a counts per second (CPS) value at a constant
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sampling period. The goal is to localize all of the sources as quickly as possible; the

result is expected to be independent of the starting position of the robot, and the

robot must not leave the ROI or cross the obstacles. The proposed algorithms are

verified through simulations exploiting the real-world dataset acquired during our

previous research [18].

E.2 Localization algorithm

This section characterizes the proposed localization algorithm, which exploits the

importance sampling principle. The method has been designed to function inde-

pendently of the data acquisition trajectory, and it should operate smoothly even

in pre-planned systematic surveys. The particle filter is a Bayesian technique that

approximates a posterior distribution by a set of random samples, i.e., particles [19].

Let us have a state vector θ and a set of observations Z = {zi}Mi=1. At a time step

t, the posterior probability is computed via the Bayes rule

p(θt|zt) =
p(zt|θt) · p(θt|z1:t−1)

p(zt|z1:t−1)
. (E.1)

As the number of sources r is unknown, it embodies one of the estimated state

variables, and the length of the vector θ varies accordingly. Let us have a set of

N particles χt = {θ(i)
t }Ni=1, where θ(i) = (r, λB, x1, y1, λ1, · · · , xr, yr, λr). The mean

background radiation rate is denoted as λB, and the tuple (x, y, λ) represents the

2D coordinates of the source, together with its mean count rate at the distance of

one meter.

At the start of the localization process, the particles are initialized randomly.

We then have to select the maximum number of sources, rmax, with the minimum

assumed to equal one. Although an emitter is assumed to be present during the

initialization phase, the algorithm is capable of exploiting a particle regularization

to reach the hypothesis that there are no sources (see below). The prior probability

of r sources being present is adopted from [16]; this probability drops linearly with

the increasing r. The background radiation, λB, is distributed uniformly. The

sources’ coordinates (x, y) are drawn from the uniform distribution, and samples

outside the outer boundaries R of the ROI are rejected. Finally, the intensity λ

follows the gamma distribution Γ(α, β), the two parameters being the shape and

the rate, respectively.

Traditionally, the particle filter involves a prediction step that reflects the state

transition probability p(θt|θt−1,ut) given by the previous state and the control input

ut. In this case, we assume the system to be stationary, i.e., θt = θt−1. Such

simplification is possible with the sources in static positions and their half-life values
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markedly exceeding the duration of the localization; thus, the radioactive decay can

be ignored.

A correction step follows, each particle being assigned a weight computed accord-

ing to the measurement model

w
(i)
t ∝ p(zt|θ(i)

t ) · w(i)
t−1. (E.2)

To derive a suitable model, four effects have to be considered:

1. Both the radioactive decay and the radiation detection are stochastic processes,

meaning that we need to select an appropriate probability density function (PDF)

to represent adequately the relevant physical laws. The radioactive decay follows

a binominal distribution, commonly replaced with a Poisson distribution having a

mean λ [20]. At large rates, we can further apply an approximation by the normal

distribution whose mean and variance equal λ, that is

P(λ) ∼ N (λ, λ), (E.3)

p(X = k) =
λke−λ

k!
≈ 1√

λ2π
e−

(k−λ)2

2λ . (E.4)

2. Gamma radiation propagates with respect to the inverse square law and is

attenuated by the mass it passes through. Ideally, with no scattering and secondary

radiation, the intensity decreases to

I = I0
exp

(
−∑S

i=1 µidi

)
(∑S

i=1 di

)2 , (E.5)

where I0 is the initial intensity, µi represents the linear attenuation coefficient of

the i-th material, and di is the length of the intersection of a hypothetical radiation

ray with the material [21]. Our scenario considers high-energy photons passing only

through air at relatively short distances (< 20 m); therefore, the attenuation effect

can be ignored, and the numerator expression in Eq. E.5 approximately equals one.

Conversely, reflecting the attenuation would significantly increase the complexity of

the estimation problem, as the attenuation coefficient µ is energy-dependent; thus,

we cannot know its value a priori.

3. The radiation background introduces considerable noise into the measurements.

The relevant components include terrestrial radiation, produced by the radionuclides

that are naturally present in the soil, and galactic and solar cosmic radiation. It has

to be considered that each acquired spectrum or count rate embodies a superposi-

tion of the useful signal yielded by the localized sources on the one hand and the

background on the other [22].
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4. The detection system may suffer from dead time when overloaded with a high

flux of photons. In particular situations, above all, those where the system exhibits

paralyzable behavior, the detected counts start to decrease with increasing actual

photon interactions; such an effect occurs when the rates are high. This condition

can be compensated for by computing the expected counts λ′, using the theoretical

rate λ and the detector-specific dead time constant τ [23].

Combining all of the above effects enables us to express the probability p(zt|θ(i)
t ).

The measurement vector zt is characterized by the tuple (ϕt, ψt, νt), that is, the

coordinates in the x and y axes, and the detected count rate. First, we need to

compute the theoretical count rate at the point (ϕt, ψt), yielded by θ
(i)
t :

λ(zt,θ
(i)
t ) = λ

(i)
B +

r(i)∑
j=1

λ
(i)
j

(x
(i)
j − ϕt)2 + (y

(i)
j − ψt)2 +D2

, (E.6)

where D is the fixed detector height above the ground level; note that we anticipate

all of the sources to be located on the ground. Subsequently, the dead time effect is

applied:

λ′ = λ(zt,θ
(i)
t ) · e−τ ·λ(zt,θ(i)

t ). (E.7)

The notation has been slightly simplified, yielding the reduced equation below,

which computes the unnormalized weight:

ŵ
(i)
t =

1√
κλ′2π

e−
(νt−λ′)2

2κλ′ · w(i)
t−1, (E.8)

where κ is the constant that helps us to tune the variance of the utilized normal PDF

to respect the real-world measurements. Once the particles have been processed, the

weights are normalized, and the effective sample size Neff is computed. We have

w
(i)
t =

ŵ
(i)
t∑N

j=1 ŵ
(j)
t

; Neff =
1∑N

i=1(w
(i)
t )2

. (E.9)

To prevent particle depletion, resampling is not performed in each iteration; in-

stead, the algorithm idles until the effective sample size has dropped below the

chosen threshold, Neff < Nthr. Eventually, the resampling is executed using the low

variance algorithm [24].

As each resampling operation reduces the particle set variance, this needs to

be increased via regularization. Such a step also helps the localization algorithm

to respond to newly discovered sources through altering their estimated count r.

First, all parameters but r are regularized. The resampled set χ is divided into

subsets, χ1,χ2, · · · ,χrmax , with respect to the number of sources. In each subset,

the standard deviation σ of the parameters is computed, and the vector of random
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numbers G is drawn from the Gaussian kernel. Then, the particles are updated to

read

∀θ ∈ χ̄i : θ = θ +
hi
ξ
σiG, (E.10)

where h is the suggested bandwidth [25], and ξ denotes the tuning parameter. When-

ever a source hypothesis reaches beyond R or its intensity drops below zero, it

dissolves, and the respective r value is decremented.

Then, the number of sources is regularized according to the pre-set probabilities

of ’birth’, pB, and ’death,’ pD. The latter case is straightforward: a random source

hypothesis is picked and dissolved; note that the minimum allowed number of sources

equals zero. When a new hypothesis is added, the corresponding parameters are

sampled, respecting the posterior p(θt|zt). Specifically, the coordinates (x, y) ∈ R
are sampled from the normal distribution centered at (ϕt, ψt), while the intensity

exploits

λ ∼ P
(
νt
[
(x− ϕt)

2 + (y − ψt)
2 +D2

])
. (E.11)

The control algorithm presented in the next section requires us to use the current

source estimate in some cases; to acquire one, the expected number of sources is

computed first, reading

r̂t =

⌊
N∑
i=1

w
(i)
t · r(i)t + 0.5

⌋
. (E.12)

The source estimate is then expressed as

θ̂t =
∑

i:r(i)=r̂t

w
(i)
t · θ(i)

/ ∑
i:r(i)=r̂t

w
(i)
t . (E.13)

E.3 Control algorithm

The control system is designed to propose a motion command on the basis of previous

measurements. The suggested algorithm comprises two components, one denoted as

a local and the other as a global planner; the former aims to speed up the convergence

of the particle filter, while the latter ensures that the whole ROI is covered.

The region is subjected to an approximate cell decomposition, which yields a set

of free square cells C = {Ci}Ki=1. The cells have a dimension δ, chosen with respect

to the time efficiency relative to the exhaustive exploration along a boustrophedon

path. The extent of the most dense meaningful trajectory can be pre-determined

for a given ROI by the parameters of the detection system and the desired spatial

resolution; this limit should not be exceeded in the dynamic planning. The cell Ci is
considered free when its center, ci, lies inside the ROI,R, and does not appear within
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any obstacle O ∈ O. A survey ends once every cell has been visited, meaning that

the number of measurements acquired therein is greater than the preset threshold:

∀C ∈ C :
∣∣{zi : (ϕi, ψi) ∈ C}

∣∣ ≥ smin. (E.14)

The two planners introduced earlier are switched according to three conditions.

In these, the global planner is applied if: 1. The current cell (i.e., that which accom-

modates the robot at a time t) is visited; 2. the robot is not in a free cell (as may

happen near region boundaries and obstacles); 3. the relative mean unnormalized

weight of the particles is above the threshold

ŵt / ŵ1:t > ŵthr. (E.15)

The local planner, by contrast, finds use in all other scenarios. Both planners differ

in the criterion function f(u), which allows selecting the fittest member from the

set of potential actions U =
{
ui = (vi, ωi)

}L

i=1
(the linear and angular velocities).

In each action, a new position (ϕ′, ψ′) is acquired with a common differential drive

kinematic model.

The local planner relies on the Shannon entropy. First, the expected count rate

at (ϕ′, ψ′) is computed with respect to the current estimate θ̂t via Eqs. E.6 and E.7;

subsequently, all particles are weighted. The entropy is then given by

H = −
N∑
i=1

w(i) · logw(i). (E.16)

Finally, the entropy values are rescaled so that the maximum equals one.

Conversely, the global planner’s criterion exploits the Euclidean distance between

the new position and the center of the next-best cell. To choose this cell, the curiosity

value C is estimated, equaling the standard deviation of expected measurements at

the center ci of a cell, the measurements being yielded by the particles in χt. We

have

C(Ci) =

√√√√ 1

N

N∑
j=1

(
E[λ(θ(j), ci)]− E[λ]

)2

. (E.17)

As the most curious cell may appear on the opposite side of the ROI and the

curiosity may change with every measurement, an A*-like algorithm is adopted to

pick a suitable unvisited cell that is close to the robot. This algorithm searches

for an optimal path from the current position to the highest-curiosity cell; however,

the cost of visiting a node (cell) is not only given by the physical distance but also

exhibits an inverse proportionality to the respective curiosity value. The resulting

next-best cell then embodies the first unvisited node along the path. Once this

sub-goal has been reached, a new one is chosen.
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At the following stage, obstacles need to be considered, as we do not desire the

robot to cross them. To address this requirement, another criterion function common

for the planners is introduced; the function is inspired by the repulsive force used in

artificial potential fields [26], reading

g(u) = (RR −min ||(ϕ′, ψ′)− (x, y) ∈ R||)2+∑
O∈O

(RO −min ||(ϕ′, ψ′)− (x, y) ∈ O||)2 , (E.18)

where RR and RO represent the effective radii for the region boundaries and the

obstacles, respectively. Finally, the fittest action is selected by using the criterion

functions (depending on the currently applied planner) and weighting factors a, b:

argmin
u∈U

a · f(u) + b · g(u). (E.19)

The overall structure of the proposed algorithm is outlined through the flowchart

in Fig. E.1.

Figure E.1: The structure of the localization and control algorithms.
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E.4 Experimental setup

The performance of both the localization and the control algorithms was tested via

a comprehensive simulation study utilizing real-world experimental data [18]. The

region of interest captures an area of 277 m2 and contains three static obstacles,

whose areas range from 1 m2 to 2.5 m2 and were delimited utilizing a photogram-

metric model. The obstacles in this scenario involved exclusively sparse vegetation

and plastic drums, allowing them to avoid conflict with ignoring the attenuation.

It is assumed that the survey can start in any vertex of the polygon R. The ROI

comprises three distinguishable radiation sources, of which one is cesium-137 and

two are cobalt-60, the respective activities calculated to the measurement date being

80 MBq, 25 MBq, and 3 MBq; hereafter, the point sources are specified as S1, S2,

and S3. Note that the radioactive material is sealed and unshielded.

The area was decomposed to 29 cells, each having the dimension δ = 3 m

(Fig. E.3a). The character of the study site, i.e., a flat grass field, enables sim-

plifying the localization algorithm into two dimensions. We can reasonably assume

that any uncontrolled point source lies on the terrain surface, which is known to be

flat thanks to the available digital elevation model (DEM).

The original data were acquired by an Orpheus-X4 UGV carrying a pair of

2′′ × 2′′ thallium-doped sodium iodide (NaI(Tl)) detectors that executed the sam-

pling at the period of 1 s. The self-localization was ensured by an accurate Real-time

Kinematic Global Navigation Satellite System (RTK-GNSS) receiver. With respect

to the applied platform’s capabilities and limitations, the set of candidate actions

was populated with 5 elements: U = {(0.6 ms−1, 0 s−1), (0.5 ms−1,±π/8 s−1), (0.4

ms−1,±π/4 s−1)}. The remaining relevant parameters are specified in Table E.1.

Table E.1: The relevant parameters of the proposed algorithms.

N 104 α 2 Nthr 2000 smin 3

rmax 10 β 12000 ξ 2.55 ŵthr 0.35

λB,min 250 τ 2 · 10−5 pB 1/100 RR 1.5 m

λB,max 750 κ 152 pD 1/600 RO 1 m

E.5 Results and Discussion

Three iterations of an example run of the proposed algorithm are presented in

Fig. E.3b, E.3c, and E.3d, respectively. In this case, the survey took 229 itera-

tions in total, and all of the three sources were localized successfully. To assess the
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efficiency of the control algorithm and the robustness of the localization one, 500

simulations were run, with the initial robot position being randomly selected from

the set of the ROI vertices. As a reference, the dataset acquired during the pre-

planned survey was employed; this dataset consisted of 437 datapoints iteratively

fed into the localization algorithm. We carried out 100 simulations for both the

original and the reversed measurement orders. An overview of the results is pro-

vided in Table E.2; here, a source hypothesis is considered valid once the variance of

coordinates in both axes has dropped below 1.5 m2, and a source is localized if the

corresponding hypothesis lies within a range of 1.5 meters. Valid hypotheses beyond

1.5 m from any source are labeled as false positives. The progress of the localization

error and the occurrences of the false positives in time are displayed in Fig. E.2;

note that these aspects embody the averaged results from all of the 500 simulations

covered by our control algorithm. An additional series of simulations enabled us

to verify how the algorithm performs in the no-source scenario; relevant results are

summarized at the bottom of Table E.2. The actual radiation measurements in this

case were replaced with Gaussian noise having parameters (µ = 500, σ = 70) derived

from real data.
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Figure E.2: The localization error pattern.

Considering the above-presented data, the localization algorithm can be charac-

terized as robust enough, as it identifies all of the sources in each of the cases under

the pre-planned exhaustive survey trajectory scenario. Such a good result, however,

does not apply to source S3 when the proposed dynamic control algorithm is em-

ployed: The source is really weak and thus detectable only from a close proximity

(< 1.5 m), and, given the selected cell size, the algorithm does not always navigate

the robot adequately. As determined empirically, the current algorithm setup re-

quires approximately 9 samples per cell on average, meaning that the δ value cannot
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be significantly reduced; for the studied area and the reference systematic survey,

the information-driven control tends to be less efficient if δ < 2.3 m. Note that

the original line spacing equaled approximately 1 m, this being the value chosen to

achieve the maximum possible spatial resolution with respect to the applied platform

and detectors.

Table E.2: The averaged localization results: The numbers after the ± sign represent

the standard deviation from all of the performed simulated experiments

(where applicable).

Proposed

control

Systematic

survey

Systematic

survey

algorithm (original) (reversed)

Total iterations 271± 32 437 437

False positive rate (%) 4.8 1.8 9.0

S1 Localized? (% of all experiments) 99.8 100.0 100.0

First localizing iteration 77± 38 64± 5 217± 31

% of localizing iterations 58± 18 75± 11 34± 9

Localization error (m) 0.45± 0.29 0.33± 0.24 0.46± 0.37

S2 Localized? (% of all experiments) 100.0 100.0 100.0

First localizing iteration 51± 45 22± 3 311± 35

% of localizing iterations 74± 19 76± 16 26± 8

Localization error (m) 0.39± 0.25 0.43± 0.19 0.48± 0.34

S3 Localized? (% of all experiments) 62.8 99.0 100.0

First localizing iteration 176± 65 301± 11 148± 4

% of localizing iterations 24± 17 30± 5 29± 11

Localization error (m) 0.47± 0.34 0.38± 0.24 0.33± 0.29

No sources

Total iterations 216± 22 437 437

False positive rate (%) 0.0 0.0 0.0

Estimated number of sources 1e−5± 3e−4 0.012± 0.005 0.010± 0.003

Interestingly, the false positive (FP) rate is significantly greater when the order of

the datapoints has been reversed in the pre-planned trajectory case; this condition

may arise from the fact that essentially all of the measurements in the first third of

the survey carry only a minor information value, as the count rates are situated near

the radiation background. Conversely, the dynamic planner exhibits a satisfactory

FP rate. In Fig. E.2, the FPs are shown to appear mostly after the source S3 has

been encountered, with the other two sources having been already localized by that
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moment. Even though the algorithm may seem to encounter issues at low count

rates due to an improper choice of the kernel for the particle weighting process,

other functions were rejected, as they caused fast particle deprivation and overall

algorithm instability: For example, the apparently suitable Poisson kernel exhib-

ited an excessively narrow PDF in the given context. The algorithm’s performance

at low intensities was partially improved by progressively altering the κ parameter

(instead of leaving it constant); this approach, however, produced additional issues.

The problem therefore needs to be addressed in the future research to yield more so-

phisticated adjustment of the method; possibly, some factors such as the directional

characteristics of the detection system should not be neglected.

The localization error ranges from 0.35 m to 0.5 m and is relatively stable in each

source during the experiment. Such an accuracy may suffice from a practical perspec-

tive, but when really necessary, better results are achievable via post-processing, by

using, for instance, the Gauss-Newton method [18]. Moreover, it was demonstrated

that an absence of sources does not affect the algorithm’s behavior negatively: No

FPs occurred during the surveys, and the estimated number of sources converged

towards zero in both the pre-planned and the dynamic trajectories.

The proposed dynamic control has met our expectations, as it indeed reduces the

time required to localize the sources independently of the robot’s starting position;

this holds true especially of the two strong sources, S1 and S2. The total iterations

are reduced by 39 % compared to the systematic approach, and the iterations needed

to localize the three sources drop by 41 or 44 %, depending on the order of the

datapoints in the reference survey. The main drawback lies in that the weakest

source, S3, is not found each time. This issue is planned to be addressed in the

future experiments, by such means as enhancing the planners to reward the actions

which bring the robot farther from the previously acquired datapoints; this concrete

step will increase the effective coverage of the ROI for the same number of iterations.

Our current efforts were inspired mostly by Ristic et al. [16] and Mascarich et

al. [14]. From the former, we adopted the regularization framework and particle

structure, albeit with a slight modification: We allowed also the estimation of the

mean radiation background rate (as suggested in, e.g., [8]). The latter then led us to

develop the idea of dividing the control algorithm into local and global components.

Our local planner exploited the Shannon entropy ([11], [12]); although we had al-

ready carried out experiments involving the FIM, applying the entropy enabled us

to obtain better results.

The novelty of the research presented herein rests in the global planner design and

the strategy of switching the control modes. In this context, we also modified the

algorithms and tuned their parameters to reach sufficiently consistent outcomes even

with noisy real-world data. Compared to Ristic et al., we demonstrated the ability
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(a) (b)

(c) (d)

Figure E.3: The region of interest decomposed into cells, with the sources denoted al-

phanumerically (a). Three iterations of an example run of the proposed

algorithm: Showing iterations No. 25 (b), 56 (c), and 229, namely, the

final one (d). The color bars are in the log scale.

to acquire valid localization results even when the parameter rmax is significantly

greater than the actual number of sources being sought; moreover, our approach

ensures complete coverage of the target area.

In the future experimentation, we will focus on utilizing the information embed-

ded in the measured radiation spectra; an inspiring option was presented by, for

instance, Anderson et al. [17]. Regrettably, relevant datasets available to us lack

reliable spectra because the detection system was damaged during the initial field-

work. Another challenge to improve the procedures lies in exploiting the partial

directional information provided by an array of measurement units; importantly,

179



the task may be successfully completed with only two detectors. By extension, we

can also mention that the presented use case including only bare sources may not be

realistic; our planned work is therefore expected to focus on more complex scenarios.

E.6 Conclusion

The article discusses a comprehensive method for localizing multiple radiation sources

by means of an autonomous mobile robot in a known outdoor environment. Two

principal factors, namely, a localization and a control algorithm, are relied on: The

former estimates the number of the sources and their relevant parameters via a par-

ticle filter, and the latter chooses the optimal robot movement sequence to reduce

the time required to find the sources while ensuring complete coverage of the re-

gion of interest. The novelty of the research rests in conveniently combining known

partial algorithms into a coherent unit that delivers robust performance, as verified

through extensive simulation studies based on real-world data. Our solution localizes

the sources already during the measurement, i.e., earlier than the post-processing,

and alters the robot trajectory accordingly to prioritize the most information-rich

sectors of the target area. The method is applicable primarily within the search for

uncontrolled sources but can be modified to find use in other domains too. Impor-

tantly, the algorithms will be deployed on an Orpheus-X4 platform to yield reliable

functionality verification.

The drawbacks include, above all, the need to know the environment map a priori,

the dependence on an accurate RTK-GNSS self-localization, the assumption that the

sources are located in a 2D plane, and the inability to manage the radiation atten-

uation in potentially dense obstacles. To address the first two issues, we intend to

enable the UGV to navigate itself with lidar-based Simultaneous localization and

mapping (SLAM); however, an instrument to limit the scope of the surveyed region

will still be necessary. This planned step will improve the system’s overall autonomy,

albeit probably at the expense of the localization algorithm’s performance, which

may deteriorate due to a lower accuracy of the datapoint positioning. Regarding

the third problem, the difficulty is easily resolvable through expanding the particle

structure and the measurement model to include another coordinate; to avoid esti-

mating phantom sources in improbable positions (e.g., hovering in air), it may be

beneficial to acquire and exploit a terrain model.

The last of the above-outlined disadvantages, however, is markedly more promi-

nent, requiring knowledge of the radiation energy, geometry of the obstacles, and

relevant attenuation coefficients. A set of possible solutions were proposed in the

literature; most of the authors nevertheless assume that at least some parameters

have been provided in advance to reduce the estimation problem complexity.
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GNSS Global Navigation Satellite System

GPS Global Positioning System

HPGe High Purity Germanium

IAEA International Atomic Energy Agency

IDW Inverse Distance Weighting

IG Indirect Georeferencing

IMU Inertial Measurement Unit

INS Intertial Navigation System

IR Ionizing Radiation

KF Kalman Filter
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MCMC Markov Chain Monte Carlo

MCNP Monte Carlo N-Particle

MDA Minimum Detectable Amount, Minimum Detectable Activity

MLE Maximum Likelihood Estimation

ML-EM Maximum Likelihood Expectation Maximization

MSL Mean Sea Level

NaI Sodium Iodide

NaI(Tl) Thallium-doped Sodium Iodide

NPP Nuclear Power Plant

P Proportional

PDF Probability Density Function

PF Particle Filter

PID Proportional-integral-derivative

POMDP Partially Observable Markov Decision Process

RDS Radiation Detection System

RGB Red, Green and Blue

RMS Root Mean Square

RMSE Root Mean Square Error

ROI Region of Interest

ROS Robot Operating System

RTK Real-time Kinematic

SLAM Simultaneous Localization and Mapping

TC Total Count

TP Test Points

UAS Unmanned Aircraft System

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

UKF Unscented Kalman Filter
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