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ABSTRACT

This thesis deals with an emerging unconventional use case for modern theodolites, also
known as Robotic Total Stations (RTSs), as a tracking and guidance system, by mea-
suring the precise position of a dynamically moving object. This applies especially to
situations where conventional positioning systems such as GNSS are insufficient or com-
pletely unavailable. A kinematically acquired position from a constantly tracking RTS
could be used for real-time autonomous navigation of small Unmanned Aerial Vehicles
(UAVs), essentially providing them with a reference coordinate frame and an immediate
position within it. A significant part of this thesis is dedicated to the design and realiza-
tion of suitable experiments, which would estimate the reliability of this precise position
measurement in a precise moment in time. The S7 and SO series stations from the
Trimble company were evaluated and an S9 HP RTS, which provides a continuous mea-
suring frequency of up to 10 Hz was then predominantly used for experiments. The local
time of a TSC7 controller, interfacing with the RTS, was being synchronized through
Precision Time Protocol (PTP) with the local time of a Raspberry Pi mini-computer,
which then provided a reference measurement of an object's true position in time. The
conclusion summarizes all obtained results.

KEYWORDS

theodolite, robotic total station, tacheometry, position measurement, kinematic mode,
navigation

ABSTRAKT

Praca sa zaobera objavujicim sa nekonvenénym vyuzitim modernych teodolitov, tiez
znamych ako Robotické Totalne Stanice (RTS), ako sledovaci a navadzaci systém, urce-
nim presnej pozicie dynamicky sa pohybujliceho objektu. To sa tyka najma situacii, kde
nie je mozné vyuzit konvenéné polohovacie systémy akym je napriklad GNSS. Kinema-
ticky urcend poloha objektu kontinuélne sledujicou RTS méze byt nasledne v redlnom
Case vyuzita pre autonémnu navigaciu malych bezpilotnych leteckych prostriedkov (UAV)
poskytnutim referen¢ného stradnicového systému a okamzitej polohy v nom. Podstatna
Cast prace je venovana navrhu a realizacii vhodnych experimentov, ktoré overia spolah-
livost urcovania presnej polohy objektu v presnom casovom okamziku. Boli preverené
stanice série S7 a S9 od spoloc¢nosti Trimble a stanica S9 HP, ktord disponuje frekven-
ciou kontinualneho merania az do 10 Hz bola napokon vyuzita pre experimenty. Lokalny
Cas ovladacieho panelu TSC7, ktory zabezpecCuje komunikaciu so stanicou bol pomocou
protokolu PTP synchronizovany s lokalnym ¢asom mini-pocitaca Raspberry Pi, ktory
nasledne poskytoval referencné meranie skutocnej polohy objektu v Case. V zavere si
zhrnuté vysledky experimentov.

KLUCOVE SLOVA
teodolit, roboticka totalna stanica, tachymetria, meranie polohy, kinematicky rezim, na-
vigacia
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ROZSIRENY ABSTRAKT

Uvod

Teodolitické systémy merajice uhly a vzdialenosti si standardnym nastrojom v
geodetickych a konstrukénych odvetviach. Moderné pristroje, zname ako Robotické
Totdlne Stanice (z ang. Robotic Total Station (RTS)) umoznuji okrem beznych
merani aj vykreslovanie geometrickych tvarov v priestore, vytvaranie detailnych 3D
map alebo urcovanie presnych poloh objektov v ur¢enom sturadnicovom systéme.
Robotizované stanice si zaroven schopné sledovat pohybujice sa objekty vo svo-
jom lokalnom priestore. Je to prave tato schopnost, ktora pontka nové moznosti
ich vyuzitia aj mimo Standardné aplikicie. Pontka sa napriklad riesenie navigécie
pre malé bezpilotné letecké prostriedky (ang. Unmanned Aerial Vehicle (UAV))
v interiéroch budov alebo v situdciach, kedy nie je mozné vyuzit Standardné navi-
gacné prostriedky, akym je napriklad GNSS. Takato aplikacia vSak nie je primarnym
ucelom totalnych stanic a je nutné overenie ich parametrov pre zhodnotenie redlnej
aplikovatelnosti. V tejto praci boli testované stanice S7 a S9 HP od spolo¢nosti

Trimble.

Analyza problému a navrh vhodnej koncepcie

Pre ucely navigacie pohybujiceho sa objektu je nutné aby systém ¢o najpresnejsie
vystihoval jeho poziciu v priestore a ¢ase. Prvotna reserse ukazala hlavné problémy
vyskytujice sa pri kinematickom merani polohy pomocou RTS. Jeden problém
spoc¢iva v nejasnosti pri stanovovani ¢asovych znaciek, ktoré stanica posiela spolu
s polohovymi udajmi. Nie je tplne znamy okamzik vyhotovenia casového tdaju,
¢o moze viest k nespravne urcenej polohe. Dalej, kedze RTS pozostava z dvoch
primarnych casti, ktoré samostatne meraji uhol a vzdialenost s roznymi periédami,
vysledna poloha urcena ich kombindciou nemusi spravne odzrkadlovat skutocni
polohu objektu ak sa tato poloha v case meni (vid. Obr. 2.4). Preferované su
vysoké frekvencie merania a maximéalna rychlost prenosu dat z RT'S. Zakladné kon-
cepcie experimentu spocivaju v paralelne prebiehajicom referencnom merani, ktoré
urcuje objektivne spravnu polohu alebo ¢as pohybujticeho sa objektu pocas mera-
nia s RTS. Zvolend koncepcia hlavného experimentu spociva v presne vytycenej
konkrétnej polohe, ktori objekt pri svojom pohybe opakovatelne dosahuje. Refer-
encné meranie udava vzdy skutoc¢ny cas, v ktorom je tato poloha dosiahnutd, a ten
je potom mozné porovnat s casom, ktory tejto polohe pripisuje RTS. Tymto sa
stanovi celkové oneskorenie urcenej polohy, ktoré uz v sebe méze zahinat aj interné

nepresnosti totalnej stanice a je teoreticky mozné ho integrovat do navigacnej tlohy.



Realizacia experimentov a testov

Pri pocdiatocnych testoch bolo zistené, ze stanica S7 dosahuje frekvencie merania
maximalne 2.5 Hz a stanica S9 HP podporuje zvysenu frekvenciu az do 10 Hz
(vid obrazky 4.3 a 4.4). Pre pohyb bola pouzitd dostupnd rota¢na konstrukcia,
ktord svojim umiestnenim vykonavala tlmené kmity (vid Obr. 5.5) a bola stabilne
upevnena tak aby ich ¢o najmenej ovplyvnila.

Referenéné meranie vykondval senzor so svetelnou branou (Panasonic EX-Z11,
vid Obr. 5.2) nastavenou na dizku 5 mm, ktora spolu s 2 mm tzkou ty¢inkou (Obr.
5.3) presne vytycovala pokojovii polohu kyvadla. Referenény cas bol tejto polohe
priradovany pocitacom Raspberry Pis operacnym systémom Raspberry Pi OS Lite.
Meraci program bol napisany v jazyku C s kniznicou PiGpio.

Komunikacia s RTS bola vykonavana pomocou ovladacieho panelu TSC7 so sys-
témom Windows 10 cez standardnd aplikdaciu Trimble Access. Stanica bola umi-
estnend v niekolkych réznych vzdialenostiach od kyvadla kolmo na rovinu kmitov
a kontinudlne sledovala hranol umiestneny na ramene kyvadla (Obr. 5.6, vpravo).
Pociatok suradnicového systému bol vzdy od samotnej polohy stanice a nulovy hor-
izontalny uhol bol definovany s kyvadlom v pokojovej polohe.

Meraci program v hlavnom vlakne cez systém preruseni priradoval ¢asovi znacku
kazdému prechodu cez branu (pokojovi polohu kyvadla). Datovy vystup z RTS (vid
Vyp. 5.1) prichddzajici na UART vstup RPi bol paralelne zaznamenavany druhym
vlaknom a zaroven bola kazdému prichadzajicemu bodu merania priradena casova
znacka. Lokalny ¢as panelu TSCT7 bol pomocou protokolu PTP (z ang. Precision
Time Protocol) pocas kazdého merania synchronizovany s lokdlnym ¢asom RPi a
priebeh tejto synchronizacie bol zaznamenavany v log stuboroch.

Stanovené ¢asové znacky prechodov cez branu mohli byt porovnané so znackami
z RTS a tym urcené celkové oneskorenie merania od skuto¢ného momentu pokojovej
polohy k tomu, ktory tejto polohe priradila stanica. Dalsie oneskorenie vyplyva
z rozdielu casu, kedy je niektory stanicou zmerany bod pristupny na koncovom
zariadeni a opat ¢asom ktory mu bol stanicou priradeny, teda oneskorenie prenosu
(vid Obr. 4.2). Okrem tlmenych kmitov bol vykonany experiment s manudlnym
nahodnym pohybom kyvadla a dodato¢né testy, ktoré mohli urcit vplyv natocenia

hranolu a dynamické obmedzenia pre pohyb.

Vysledky vykonanych experimentov

Casové znacky ziskane z RTS boli interpolované k nulovym (pokojovym) polohdm
tak, aby bol urc¢eny ich presny ¢asovy okamzik. Vsetky casové hodnoty z RTS a RPi

boli prevedené na spoloc¢ny zaklad tak by mohli byt nasledne vzajomne porovnavané.



Na obrazkoch 6.13, 6.14 a 6.15 st sithrnné grafy pre jednotlivé sady experimentov.
Je vidiet, Ze vo vSetkych pripadoch sa oneskorenia merania polohy pohybuji okolo
110 ms. Mierne vyssie hodnoty na Obrazku 6.13 boli zmerané pri konfiguracii, kde
bola velmi presne dosiahnuta kolma orientacia RTS, avsak nie je zrejmé ¢i prave to
bola pri¢ina vyssich hodnot. Na Obrazku 6.16 je celkovy histogram oneskoreni pre
vsetky zobrazené sady. Obrazok 6.17 potom ukazuje oneskorenie prenosu, bliziace
sa k 26 ms. Obréazky 6.21, 6.22 a 6.23 zobrazuju obdobné vysledky pre experiment
s manualnym pohybom ramena.

Na obrazku 6.19 je vidiet zdanlivi korelaciu medzi frekvenciou ¢asovych znaciek
urcenych pri UART vstupe RPi a frekvenciou vyplyvajicou zo samotnych casovych
znaciek z RTS. Je mozné domnievaft sa, ze stanica priraduje tieto ¢asy bud neskor az
v momente odoslania dat na vystup alebo st znacky priradené v momente merania

ale okamzite odoslané na vystup.

6.28). Na Obrazku 6.29 je vidiet stratu dat so zvacsujicim sa pociatoénym rozk-
mitom a s tym suvisiacou rychlostou hranolu. Ta bola pocitand zo samotnych
nepresnych dat z RTS a tym znacne obmedzené mozné zavery. Na Obrazku 6.30
je vidiet znacny narast oneskorenia merania pri velmi malych rychlostiach, kedy
dochadzalo k zastaveniu kmitania. Presnejsie experimenty s nezavislym urcenim
rychlosti by mohli spolahlivejsie stanovit tieto zavislosti.

Na obrazkoch 6.25, 6.26 a 6.27 je mozné vidiet vplyv horizontalnej rotacie hra-
nolu. Tieto vychylky pravdepodobne spdsobuje prechod medzi jednotlivymi re-
flexnymi elementmi hranolu, avSak rozsiahlejSie experimenty st potrebne pre ro-

bustnejsie urcenie zavislosti.

Zaver

V tejto praci bolo vykonanych niekolko experimentov pre overenie parametrov mera-
nia polohy pohybujiceho sa objektu pomocou RTS.

V tivodnych dvoch kapitolach prace boli najprv popisané zéakladné principy mera-
nia s teodolitmi a nacrtnuta problematika merania s dynamickym pohybom objektu.
Néasledne boli popisané parametre dostupnych totalnych stanic a ich prislusenstva
vyuzivaného v tejto praci.

V stvrtej a piatej kapitole bol vykonany podrobnejsi rozbor danej problematiky,
stanovené parametre a poziadavky, a zvolenda koncepcia pre hlavny experiment.
Nésledne boli vybrané konkrétne komponenty, ich rozlozenie a konfiguracia pre dany
experiment. Bol tiez uvedeny podrobny postup jeho realizacie.

Siesta kapitola poskytla podrobny postup spracovania ziskanych dat a ich findlnu

prezentaciu a zhodnotenie.
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Introduction

This thesis builds upon experience with and previous work on my semestral thesis,
essentially providing a comprehensive and finalized document with many enhance-
ments and additions [1]. The initial results were also published in [2].

Modern measurement systems based on the principles of theodolite position mea-
surements are being greatly utilized within the geodetic or construction industries.
Rapid progress in the development of these systems has led to a shift from just simple
devices that could measure angles in the horizontal and vertical axes towards fully
automatic total stations that can provide both angle and distance measurements,
create three-dimensional maps of the environment or track and follow moving ob-
jects. These devices are more generally referred to as Robotic Total Stations (RTSs).
The term total station refers to a combination of an angle measuring element (clas-
sic theodolite) with a unit measuring the distance from the equipment into a single
integrated device. This allows the total station to determine an absolute (total) po-
sition of virtually any point in its surroundings. Elements inside contemporary total
stations are exclusively electronic as opposed to the earlier much more rudimentary
mechanic theodolites. In addition, modern total stations are being equipped with
servomotors, enabling their fully automatic and remote operation.

With the advent of robotized automatic total stations, new forms of their uti-
lization are emerging, even in non-standard fields. The automatic control of a total
station brings new functionalities, such as the mentioned following of moving ob-
jects. In a standard scenario, this would enable only a single operator to completely
operate the total station and therefore perform geodetic measurements much more
effectively. However, an interesting byproduct of this functionality is the ability to
now have a continual stream of a moving object’s positional data, which is gathered
from a device generally capable of very precise measurements. This capability can
be used in many other applications, where such position information is required.

One such application is, for example, using a total station as a tracking and
guidance system in environments, where conventional positioning systems such as
Global Navigation Satellite Systems (GNSS) are limited or completely unavailable.
This mostly includes building interiors, where reliably obtaining a stable signal
from positioning satellites is very difficult, or other places, which do not have suffi-
cient satellite coverage. This positional data acquired from the total station can be
subsequently used for real-time autonomous navigation of small Unmanned Aerial
Vehicles (UAVs) inside buildings or even during GNSS signal loss.

For this data to be really useful, however, its credibility and precision in space
and time relating to the true object location must be guaranteed. In a standard total

station operation, a position measurement is performed statically, on a stationary
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object, where high position stability and accuracy are guaranteed. However, a dy-
namic application, such as drone navigation, requires continual position estimation,
where stopping the movement and waiting for measurement is simply not feasible.
This raises many questions and complications, where possible discrepancies between
the true object’s position at a given time and a position assigned to it for this time

instant as a result of a measurement can occur.

18



1 Thesis objectives and motivation

This issue has been the topic of several research papers over the years [10, 30] -
[18, 34]. The aim of this thesis is to evaluate the usability of robotic total stations
from the Trimble Inc. company, available at the Department of Control and In-
strumentation, i.e. Ustav automatizace a mérici techniky (UAMT), at the Faculty
of Electrical Engineering and Communication (FEEC), Brno University of Tech-
nology (BUT) for kinematic position measurement. Overall, three total stations
available, which are the S7, S9 and SX10 series. Within this master’s thesis, the
main focus and tests with namely the Trimble S7 and Trimble S9 HP have been
performed. It has been found that the S7 series total station in the existing con-
figuration does not provide measurement frequencies higher than 2.5 Hz. Following
practical experiments have, therefore, been performed with the Trimble S9 HP, which
supports frequencies of up to 10 Hz. The Trimble SX10 was not used in this thesis
and might provide an interesting option for future research. A detailed description
of the hardware used and all available total stations is provided in Chapter 3.

In order to determine the parameters of an RTS measurement of a moving ob-
ject, it is necessary to firstly, in a suitable manner, define a real objective position
in a specific time instant. Together with its timestamp, this position can be then
compared with data acquired from the RTS. Since the monitored object is moving
dynamically, a type and shape of motion that takes into account expected exper-
iment results and its feasibility within the thesis need to be selected. Section 2.3
deals with the issue of dynamic RTS measurements in more detail and gives reason-
ing behind the selection of such a motion for the experiments.

Section 4.2 describes the structure and realization procedure of the experiment as
well as the selection of suitable components for the reference position measurement.
Parameters and requirements, which the experiment must meet in order to ensure
correct RTS parameter determination for the purposes mentioned in the introduc-
tion are discussed. In short, the expected result of the experiments is an objective
determination of the deviation of data acquired by the RTS from a real (reference)
position in an exact time instant. Subsequent evaluation of these results is described

in the conclusion (see p. 100).
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2 Position measurement with a total station

This chapter will familiarize the reader with the topic of measurement with a total
station. A short overview of the historical evolution and elementary principles, and
functionalities of total stations and theodolites will be explained. Several complica-
tions and issues with kinematic measurements will be outlined. Attention is focused

mainly on problems concerning the subject of this thesis.

2.1 Historical background

Devices measuring angles, heights, distances or providing horizontal (level) and ver-
tical (plumb) alignment functionalities have been known since the antic times. No-
table are for example the roman groma, chorobrates or dioptra, each performing
different specific operations. Several sources date the term theodolite to first start
appearing no earlier than around the 16th century. Devices referred to by this name
where usually simpler (in their capabilities, but certainly not in their complexity)
single purpose instruments with a gradated scale, from which an angle value in the
range of 0 to 360 degrees would be read out.

It was only later, when devices serving different independent functions started
to be combined, as for example enhancing a telescope with angle measurements, a
spirit level, compass or other elements. Reading out the angle measurements was
usually accomplished by what is called a vernier scale, which enabled more precise
measurements than regular scales. The theodolite, which was at first limited to ro-
tation only in the horizontal plane, was later enhanced to also rotate vertically. Due
to their construction however, the ability for vertical rotation was largely limited
(see Fig. 2.1, left) and later in the 19th century, first devices that could perform full
360 degree rotations in the vertical started appearing in the United States. These
were called vernier transits or simply transits. In the 1950s, the Geodimeter device
provided a first application of Electronic Distance Measurement (EDM). Classical
direct angle readings were soon phased out in favor of more advanced optical tech-
niques. Apart from even more modern methods, the scale could for example be
safely enclosed within the device and read out by an optical guiding and magnifying
apparatus, which allowed the addition of a micro scale with a substantially greater
resolution and again more precise measurements. An important aspect in any kind
of a theodolite measurement was correct synchronization of the zero value of a scale
with what is called a horizontal or vertical circle.

In the later half of the 20th century, theodolites performing electronic angle read-
ings with photoelectric sensors and rotary encoders first started appearing. With

this advancement now, two previously independent and unrelated measuring devices,
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Fig. 2.1: A visual comparison of an old and modern theodolite. Left: taken from
3], Right: taken from [4].

the EDM and the new electronic theodolite, could be combined into a single unit
called a total station. Moving further, advancements in the microelectronic industry
enabled the total station to be equipped with an internal microprocessor, extending
its functionalities even beyond regular measurements. It was then able to perform
on-device data processing and memory storage, so the range of possible kinds of
obtainable data was extended to, for example, projections of measured positions
into a chosen coordinate frame. The data could be stored and kept on the device for
later processing or exported to another instrument at any time. External sources of
information could also now be connected to the total station, providing for instance
the current date or localization data from GNSS, which enabled unification of the
measured local positional data with geodetic coordinate frames. The initial calibra-
tion of the device was substantially simplified and many procedures were now done
automatically. The latest step in the evolution of total stations was equipping the
rotary mechanisms with servo motors at the beginning of the 21st century. While
before that, manual precise orienting by mechanical gearings was necessary, now
even this operation could be done automatically. It enabled further expansion of
possible features by adding automatic object tracking. This fully automated device
is known by the term Robotic Total Station (RTS), an example of which is shown
in Figure 2.1 on the right. The field which specializes in geodetic measurements,

mainly utilizing total stations, is also called tacheometry [5].
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2.2 Fundamental measurement principles

Typically in a tacheometric measurement, an angle is given in the units of gon (gra-
dian). This unit is formally defined as nine-tenths of a degree, meaning it divides a
whole circumference into 400 equal parts, where 90 ° = 100 gon. A clear advantage of
such a formalization is very efficient, fast and intuitive mental reconstruction of ori-
entation. Figure 2.2 illustrates the basic concept of theodolite angle measurements.
As was stated above, the device can rotate in the horizontal and vertical planes
and the measured (horizontal and vertical) angles can be either read out directly
or optically from a certain scale, or provided by electronic measuring equipment.
Modern RTSs provide an easy way of setting up the reference, or zero, azimuth
(0,000 gon, as shown in Fig. 2.2), from which the horizontal angles are measured
either clockwise or counterclockwise. The reference for vertical angles is usually
fixed, either pointing up (towards the zenith) or down (towards nadir), which are
shown in Figure 2.3. Specifically for the Trimble S7 and S9 HP, the reference will
always be at the zenith [6], [7]. Servo drives are another mentioned enhancement of
modern RTSs. They enable automatic rotation around both, the vertical and hor-
izontal axes. Precise angle measurements are nowadays usually done electronically,
by incremental rotary encoders for example, which provides higher flexibility and

overall enhancement of the station’s functionalities.

Vertical A -
axis -
Objective

Horizontal
axis

Sight
axis Eyepiece

Horizontal
circle

Fig. 2.2: Theodolite axes and angles representation. Taken from [8].

Distance (also referred to as slope distance) measurement with EDM units is
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Fig. 2.3: Zenith and Nadir representation. Taken from [9].

based on transmitting and receiving signals of a certain spectrum of radiation and
comparing their difference. Commonly, these signals lie within the optical or mi-
crowave band. Another common practice is emitting a focused laser beam. The
main difference between all of these types of signal sources is that while for a mi-
crowave ray, separate devices for receiving and emitting of the light have to be used,
the optical light as well as laser beams allow for a single device to serve both as
an emitter and a receiver. Hence, the complexity and number of necessary compo-
nents can be minimized. In this case an emitting device sends out a ray (or beam),
which is then reflected from the measured object back to the same device which
also receives it and a phase shift between the sent and received signal is calculated.
Alternatively a Time of Flight (TOF) measurement principle is used, where a time
difference between the moment of dispatch and the moment of acquisition is cal-
culated instead. Measurement can be done either by reflecting the light from an
opaque surface or a specialized light-reflecting prism, which directs the light back
towards the device can be used. Modern total stations, such as the Trimble S7 or S9
HP, usually utilize a laser light source and enable both operation modes, providing
the user with an option to choose between a Direct Reflex (DR) or a reflexive prism
target-based measurement method.

RTSs equipped with an internal microprocessor can perform further data pro-
cessing and control of its individual components, continuous monitoring of its state
and error compensation, processing of external GNSS localization data or numerous
other functions. Apart from standard angle and distance measurement functions,
a modern RTS can, for instance, measure and lay out different geometrical shapes
in 3D space, measure areas and volumes, create dense precise 3D maps of its sur-

roundings or provide positions in a coordinate frame [5].
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2.3 Measurement with dynamic object movement

As was outlined in Section 2.1, latest modern RTSs can provide not only static
measurements of non-moving objects, but also dynamically track the position of an
object during its motion. This is done using a matrix image sensor, which picks up
deviations of the incoming light from a central position, from which angle corrections
can be made. For a standard use case, the benefits are clear. In the construction
industry, for example, work can be carried out much more effectively by requiring
only a single person to operate the total station for all of its measurements. The
RTS is first locket onto a prism target and the operator can then freely relocate the
prism to any desired position without requiring a second operator to reorient the
RTS accordingly. After a satisfactory prism placement, the operator can initiate its
precise position measurement from a distance.

Since the RTS can also provide a continuous output data stream while it’s fol-
lowing the prism, a notion of utilizing this data for other means arises. However,
as can be evident, this process employs fast measurements in rapid succession and
the final accuracy of such acquired positions can be degraded, compared to precise
static measurements which can take up to several seconds. Trimble total stations
can perform measurements in a Tracking (TRK) mode with sub-second periods of
up to 100 ms (for a more detailed description see Chapter 3). In some cases, a 50 ms
measurement period is available with a Trimble Universal Total Station (UTS) (see
Sec. 4.1).

The measuring process is in its principle the same as with a static measurement.
An often discussed problem concerning this rapid data acquisition was time synchro-
nization between the individual RTS components. Namely, the distance measuring
EDM unit and the angle measuring component. The problem lies within a different
time period required by each component to perform its own measurement. Typ-
ically, an angle can be acquired much sooner then a distance value, therefore the
approximated position of an object can divert slightly from a real one, as the result-
ing position is estimated from both of these measurements. This limitation does not
really effect static measurements, as there will be no expected change in position
within this time interval, however for fast moving objects it can cause deviations
from their true positions. An illustrative example of this effect can be sen in Figure
2.4.

Several studies performed by Lenda et al. [10, 11] show that with a favorable
placement of the RT'S and by using modern total stations with high sampling periods,
these deviations can be reduced to the sub-millimeter regime. In these cases they also
present favorably higher positioning accuracies when compared to GNSS-based Real

Time Kinematic (RTK) methods. An interesting solution proposed by Kerekes et
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Fig. 2.4: Position measurement deviation. Taken from [10].

al. [12] lies within avoiding the slower distance measurement completely and instead
utilizing a network of two or possibly more RT'Ss, using the faster and arguably more
precise angle measurements only. Their method was also able to achieve accuracies
to within several millimeters and allowed to nearly double the acquisition rate of
measurements.

The desired AutoLock tracking functionality is only available with prism-based
measurements [6], [7]. Since light used to perform the distance measurement has
to be reflected and directed back towards the instrument, the main evident limiting
factor of using these devices for positioning is the necessity of direct line of sight at all
times. An otherwise useful feature of modern RT'Ss is a predictive tracking capability
in the event of a lost line of sight, where the station predicts the next position of a
target based on its previous movement. This can be useful if the navigated drone,
for example, flies behind an obstacle and its trajectory is not expected to change
during this time. However, it might ultimately lead to a worsened tracking ability,
when such changes in direction of motion are expected or for generally unpredictable
movements. A more consistent proposed method for dealing with the loss of line of
sight is presented by Kerekes et al. [13], where a network of multiple total stations
tracking the same prism from different angles can provide sufficient redundancy.

Another factor influencing the quality and accuracy of kinematic object track-
ing and position measurement is the type of prism used. It is clear, that standard
circular types of prisms (Fig. 2.5, left) will not be well suited for multi-directional
tracking, as they can reflect light rays only from a specific orientation range. When
mounted on a drone, a correcting gyroscope mechanism might perhaps be used,
however this increases complexity and a much simpler solution presents itself by
using specialized 360 ° prisms (Fig. 2.5, right). These contain reflexive elements
around their whole perimeter, effectively making them usable from any orientation
and angle. Conversely, as is shown by Lackner et al. [14], the circular type typically
provides higher angle and distance accuracies, especially when aligned correctly.
This is attributed to the neighbouring elements influencing the RTS locking mech-

anism at certain orientations. However, maintaining perfect constant alignment, in
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particular during dynamic motion of the target might be difficult to achieve and
modern prism designs are shown provide acceptable accuracies. The biggest influ-
ence appears to be moments when the prism orientation facilitates changes between
these elements. Active prisms providing better recognition of a target in highly re-
flexive environments might also be useful, however their benefits might be negated
their increased weight. A passive Trimble VX/S 360 prism, which can be seen in

Figure 2.5 on the right was used exclusively in all experiments within this thesis.

o, 58128001 prisngf

Fig. 2.5: An example of a circular (left) and 360 (right) prism. Left: taken from
[19].

During a continuous measurement, the RTS assigns a timestamp to each final
measured position. This is also done during static measurements, however the im-
plication of these values is, more or less, only informative, as they bear little to no
relevance when the position of the object doesn’t change. For a kinematic measure-
ment however, these timestamps gain much higher significance, since at any instant
in time the position of the object can be different. Especially for the purposes of
real-time navigation of small UAVs, the necessity of acquiring not only an accurate
position, but also an accurate time in which the object occupied that position arises.
It is evident that an incorrect or shifted timestamp assigned to a specific position
might also cause errors in navigation and an incorrect localization despite having an
accurate absolute position. Since for typical industry applications, these time val-
ues bear little significance in measurement precision, exact parameters of how and
when they are attached are not always evident and definite. Manufacturers might
not include the details in their specifications and it is also apparent that given the
different measuring periods of the individual RTS components, these values cannot,
in principle, be absolutely definite. The question, in which part of the measuring
process was this timestamp created, arises. The theodolite can, for example, acquire
angles with a high frequency and subsequently use several samples for calculating
an average or other suitable value. The same can, in principle, be done by the EDM
for distances as well. These raw angle and distance values might in addition be

further processed by the internal processor for calculating other data values, such as
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the object’s coordinates in a given reference frame. It is not clear at which point in
this process a timestamp was associated with the final data point. Deeper investi-
gations into the internal timing parameters of total stations can be seen in research
by Stempfhuber et al. [15], Boniger et al. [16], Gojcic et al. [17] or Thalmann et al.

[18], however these deal with specific scenarios and RTS models.
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3 Trimble total stations and accessories

In this chapter, known parameters and functionalities of the available total stations
will be described. The reader will be acquainted with their basic operation sequences
and procedures for performing measurements. The parameters and operation de-
scriptions will focus mainly on the functionalities, which are significant to the aims
of this thesis.

3.1 Main measurement options

Two measurement modes are available, which are Standard (STD) and Tracking
(TRK). These mainly affect how the EDM instrument operates. Angles are always
being averaged during the course of a distance measurement. STD mode provides
a single precise measurement, which can be accepted by the operator or discarded.
The distance value itself can also be averaged over several measurements for higher
accuracy. A continuous data output is only available while in TRK mode, where
the EDM continually provides measurements as soon as they are finished. This also
means that the dynamic target following functionality only works with TRK mode.
Since automatic prism tracking is the main focus of this thesis, TRK will be the
preferred mode used during experiments.

Available target options are either a reflexive prism, where a specific type with its
parameters can be selected or a DR target, which is a general non-reflexive surface.
Both measurement modes are available with either target, however the AutoLock

function, which enables object tracking can only be used with reflexive prisms [7, 6].

3.2 Trimble S7 Robotic Total Station

The S7 series (see Fig. 3.1) total stations come equipped with MagDrive servo
motors and absolute encoders with diametrical reading and with precisions given at
either 0.3 mgon, 0.6 mgon, 1.0 mgon or 1.5 mgon. The stations provide automatic
level compensations with a precision of 0.15 mgon. The maximum given angular
velocity of the servos is 115 °/s.

The given measuring accuracy for distance values in TRK mode with a reflexive
prism is 4 mm + 2 ppm with a measurement period of 400 ms. Non-reflexive DR
targets are not considered in this thesis. The usable distance range is from 20 cm
up to 2,5 km. However, when using the AutoLock mode with a passive reflexive
prism, the maximum gets limited to 500 m - 700 m and pointing precision is given
to be better than 2 mm, at a 200 m distance. A pulsed laser diode (905 nm) with
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Fig. 3.1: Trimble S7 Robotic Total Station. Taken from [20].

a horizontal beam divergence of 2 cm/50 m and a vertical divergence of 4 cm /50 m

is used as a light source for the EDM.

A digital image sensor with a resolution of 2048 x 1536 pixels can be used as
well. Power is provided by a 6.5 Ah battery or an external 12 V power supply.
Connectivity is provided through a 2.4 GHz antenna, Bluetooth or a direct serial

connection. The internal COM port can also be used for data output [21]. Table

3.1 summarizes the relevant or used parameters.

Angles Sensor type || absolute encoder
Accuracy 0.3 mgon, 0.6 mgon, 1.0 mgon or 1.5 mgon
Distances | Sensor type || 905 nm pulsed laser diode

Accuracy 4 mm + 2 ppm

Precision < 2mm @ 200 m

Range from 20 cm to 500 m - 700 m
Max. angular velocity || 115 °/s
Measurement period 400 ms

Measurement modes

TRK, AutoLock

Tab. 3.1: Relevant parameters of the Trimble S7.
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3.3 Trimble S9 HP Robotic Total Station

The Trimble S9 HP (Fig. 3.2) RTS utilizes the same MagDrive servo motors as
the S7. Exact types of angle sensors are not specified, but it is assumed that they
are also a similar type of absolute encoders. Given angle measurement accuracies
are 0,15 mgon or 0,3 mgon. Level compensator accuracy is not specified. Maximal

servo angular velocity is again 115 °/s.

Fig. 3.2: Trimble S9 HP Robotic Total Station. Taken from [4].

When using a reflexive prism target in the TRK mode, the given distance mea-
surement accuracy is 5 mm + 2 ppm and a standard measuring period of 400 ms.
A valid distance range for measurements with a passive reflexive prism is 150 cm
to 3 km. Again, the AutoLock functionality limits the maximum effective usable
range to only 500 m - 700 m with a pointing precision of less than 2 mm at a 200 m
distance. A 660 nm laser diode with a horizontal and vertical beam divergence of
4 ¢cm/100 m is used as the EDM light source. An increased measurement frequency
of 10 Hz when in TRK mode is also mentioned within the documentation.

The 59 HP also is equipped with a digital image sensor with a 2048 x 1536
resolution. Power is again provided by a 6.5 Ah battery or an external 12 V power
supply. A 2.4 GHz antenna, Bluetooth or an internal serial port provide connectivity.
The S9 HP can also deliver data output through the internal COM port [22]. Table

3.2 again summarizes the relevant or used parameters.
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Angles Sensor type || absolute encoder assumed

Accuracy 0.15 mgon or 0.3 mgon

Distances | Sensor type || 660 nm laser diode

Accuracy 5 mm + 2 ppm
Precision < 2mm @ 200 m
Range from 150 cm to 500 m - 700 m

Max. angular velocity || 115 °/s

Measurement period 400 ms, 100 ms available
Measurement modes TRK, AutoLock

Tab. 3.2: Relevant parameters of the Trimble S9 HP.

3.4 Trimble SX10 Scanning Total Station

This station belongs to the Scanning Total Station (STS) category with its high
speed 3D scanning capability. It is, again, equipped with similar MagDrive servo
motors and absolute encoders with diametrical readings as the S7 and S§9 HP.
The given angle measurement accuracy is 0.3 mgon. Its centered dual-axis level

compensator accuracy is 0.15 mgon. Maximal servo angular velocity is not specified.

Fig. 3.3: Trimble SX10 Scanning Total Station. Taken from [23].

With reflexive prism targets in the TRK mode, the given distance measurement
accuracy is 2 mm + 1.5 ppm. The measuring period for the TRK mode is not
specified, however a scanning rate of 26.6 kHz is achievable. The available range for
standard reflexive prism measurements is from 1 m up to 5.5 km. The maximum is

again limited, when used in conjunction with the AutoLock functionality, to 300 m
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- 700 m, for 360 prisms specifically. The pointing precision is 0.88 mm at a 50 m
distance. The EDM light source is a 1550 nm laser diode.

It contains three image cameras with a 2592 x 1944 pixel resolution. A 6.5 Ah
battery or an external power supply providing 11.1 V can be used. Wi-Fi or 2.4 GHz
radio and a USB are stated as communication options. A serial COM interface,
similar to that of the S7 and S9 HP is visibly present [24]. The relevant parameters

are summarized in Table 3.3.

Angles Sensor type || absolute encoder

Accuracy 0.3 mgon

Distances | Sensor type || 1550 nm pulsed laser diode

Accuracy 2 mm + 1.5 ppm

Precision 0.88 mm @ 50 m

Range from 100 cm to 300 m - 700 m
Scanning rate 26.6 kHz

Measurement modes TRK, AutoLock

Tab. 3.3: Relevant parameters of the Trimble SX10.

This station was, unfortunately, not used or tested during this thesis, however
several interesting factors might make it a promising option for any future research.
Most notably, as is mentioned by Lenda et al. [11], its high measurement rates might
be beneficially utilized for the navigation task. This might also point to a gener-
ally better inter-component synchronization and more accurate timing capabilities.
The high measurement rate, however, is connected specifically to the 3D scanning
functionality and might not be utilizable for standard prism tracking. Nonetheless,
custom solutions, which will be presented in Section 3.7 might enable full utiliza-
tion of this capability and therefore it might be an interesting path for any future

research.

3.5 TSCY7 controller

The TSCT7 is a handheld device used for remote operation of Trimble total stations.
It has a 17.8 cm diameter, 1280 x 800 resolution touchscreen and a full keyboard
with a numpad and navigation buttons, as can be seen in Figure 3.4.

Standard connectivity features such as Wi-Fi, Bluetooth or WWAN are available.
Internally, it is equipped with an Intel Pentium 1.1 GHz Apollo Lake 64-bit quad
core CPU, 8 GB of LPDDR4 RAM and an eMMC storage of 64 GB. It is powered
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Fig. 3.4: TSCT controller.

by two 3.1 Ah hot-swappable batteries or a 19 V/5 A charging power supply. The
controller runs on a full-fledged Windows 10 Pro 64-bit operating system, essentially
making it a fully independent handheld Personal Computer (PC). Communication
and control of an RTS is managed by a Trimble-developed application called Trimble
Access, that comes preinstalled with the device. Two external EMPOWER modules
can be attached to extend the device’s functionalities (see Chap. 3.7). The controller
used had a radio antenna module, that was managing the connection to a total
station, attached. A peripheral USB and an RS232 serial port can be used for data
transfer [25].

3.6 Basic instrument operation for measurements

For remote RTS operation a TSCT7 controller (see Sec. 3.5) and a 2.5 GHz radio
connection is used. After powering on, the RT'S waits for connections at a specified
channel ID and frequency. For an initial connection, these parameters have to be
set accordingly and saved in the Trimble Access application, after which all future
connections are done automatically.

Once a radio link to the total station has been made, the user can proceed to
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perform their measurements. Basic angle and distance data is available right away,
however for additional values a coordinate system and a location of the RTS within
it have to be defined. Several methods are available, nonetheless for the purposes of
this thesis a basic Station Setup process was sufficient. If the RT'S level compensator
is out of tolerance, meaning the station is not leveled properly, a calibration screen
with a graphical representation of spirit levels for the horizontal plane is displayed.
After adjusting the level to acceptable limits, the level compensation function can be
used. Afterwards, environmental quantities such as temperature and atmospheric
pressure can be entered. After that, the user can move on to define the coordinate
system.

First, a Base Station point has to be set. This point represents the location
of the RTS within the coordinates. The Base Station point can be set explicitly
with the z,y, z values or one of several methods, such as resection, can be used to
calculate the location. Another value that can be set is the height of the point. This
helps to easily define a ground level for the coordinates. The total station calculates
all coordinate values using its distance and angle measurements, which means the
measured height is going to be influenced by the actual height of the measuring
equipment. This value is therefore used to compensate for the influence. If the
value is set to zero, the origin of the vertical axis will be coincident with the optical
axis.

After the Base Station point is set up, a Back Sight point has to be measured.
This essentially defines the orientation of the defined coordinate system in the hor-
izontal plane. This point is measured from the instrument, and its azimuth and
height can be set explicitly. The height here serves the same purpose, only from
the target point of view. If the Back Sight is, for example, a prism attached to
a pole of certain length, but we want to ignore the pole, the height can be set to
compensate for the pole’s length. The azimuth can be set to define the orientation
of the coordinates within a global existing frame.

After the user accepts the Back Sight point measurement, the total station is
configured and ready for real measurements. Further Back Sight points for higher
precision (see Sec. 5.3) or other topological points can be measured. An example
of a layout after the setup procedure, not representing the actual experiment setup,
can be seen in Figure A.1.

When the station icon (Fig. A.1 up) is clicked a menu with several RTS features
is displayed. Here, one of the measurement modes described in Section 3.1 can be
selected. TRK mode, which allows high frequency measurements and the AutoLock
feature, which automatically locks onto a target within the station’s field of view
can be selected from this menu. The prism icon provides options for selecting a
target type (see Sec. 3.1) and its height.
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The last option relevant to the purposes of this thesis is data output. This
can be found after clicking the three lines icon at the top left (Fig. A.1) and
navigating to Instrument Settings. Three options for data output format (Fig.
5.8) are available, GDM user defined, Pseudo NMEA GGA or GDM HA VA SD. The
pseudo NMEA is a format based on the equally named standard from the National
Marine Electronics Association (NMEA), which is commonly used in navigational
and maritime applications. Transmission parameters such as the used COM port,
baud rate or flow control can also be specified. One important fact to keep in
mind is that this screen must not be exited with the escape button, otherwise the
transmission will be closed. Navigating to different screens while this one is opened

in the background is of course possible.

3.7 Alternative operation options

Many studies, some of which were mentioned in Section 2.3 or will be talked about
further in Section 4.1, performed their research using total stations developed by
the Leica Geosystems AG company. A common trend was utilizing their available
Application Programming Interface (API) for direct control of the RTS, called Leica
GeoCOM. 1t is an ASCII-based communications protocol, which provides basic oper-
ation commands to, for example, directly query the EDM or theodolite instruments
for distance or angle measurements. On a higher level, custom programs developed
with C/C+4, MS-VBA, Matlab or LabView can use this API for direct access and
operation of the instrument. As it is presently understood, this system is licensed
by Leica and needs to be acquired from the appropriate channels [26].

An investigation was conducted into similar possibilities for the available total
stations from Trimble. Three possible third-party development solutions were found.
First is the Trimble EMPOWER platform. This is an option that provides the abil-
ity to enhance the Trimble controllers (such as the TSC7) for different proprietary
applications. Custom hardware modules and software programs can be developed to
create new functionalities, such as adding Near Field Communication (NFC) com-
munication capabilities. Access to the necessary Software Development Kit (SDK)
needs to be first consulted and approved by the company [27]. This option is,
however, not suited for the purposes stated in this thesis.

The second option is the Trimble Access SDK. This provides software developers
access to the core of the Trimble Access application used to control their RT'Ss in
order to enhance its functionalities or develop new custom solutions utilizing the
API of the program. New workflows, User Interface (UI) elements or measurement
routines can be developed. However, this still relies on the core application philoso-

phy with an abstraction layer between the real RTS hardware. Access to this SDK,
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again, needs to be acquired by the appropriate Trimble communication channels
[28]. This option might still not be the best suited solution for the aims presented
by this thesis.

The last and most promising option is called the Trimble Precision SDK. This
seems to provide an API for direct access to the Trimble hardware, such as their
total stations. Custom applications, not bound to any already existing solution,
can be created and control of individual station interfaces is available. The API is
designed specifically for development in the Microsoft Windows environment with
C++ or C#. Thus any limitations stemming from the available Trimble Access
application can be circumvented by a direct custom solution. Similarly as with the
Leica GeoCOM interface, independent control of the distance an angle measuring
components should be available. The SDK is provided through Trimble’s Installation
Manager application and a necessary license must first be acquired from Trimble
[29]. This option seems to be the most suitable for any RTS-based navigation
solutions outlined in this thesis. Acquiring the necessary license was not achieved
during the time frame of this thesis, therefore a practical implementation is not

presented. However, it provides an interesting direction for any future research.
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4 Problem analysis and concept design

This chapter will provide detailed clarification for the experiment methodology and
design. The specific scenario concerning this thesis will be analyzed and require-
ments that need to be satisfied will be outlined. A suitable experiment structure,
from the physical and hardware up to the software design will be specified. Each
aspect will be further elaborated providing a full justification for the proposed ex-

periment concept.

4.1 Analysis of the kinematic RTS measurement prob-

lem

Section 2.3 already provided an overview of the principles and setbacks of a an
RTS measurement for dynamically moving objects. Here, a further dissection of the
problem will be presented and specific experiment design properties will be stated.

In order to effectively utilize the continually acquired RTS data in real time, it is
necessary for them to accurately reflect the real physical properties of the monitored
object, namely position and time, and to have as little as possible diversions from
these real properties. In other words, each measured position and its timestamp
must describe the real location, in which the object was at that time as accurately
and reliably as possible. Or in reverse logic the real time, in which the object was
at that particular location.

Many research papers, now spanning over more than a decade have been dealing
with the applicability of kinematic total station measurements and their parame-
ters for several distinct applications. Lienhart et al. [30] discuss the potential of
kinematic RTS measurements to be used for dynamic monitoring of vibrations of
constructions, such as bridges. Several interesting parameters, which are also of
interest for real time object tracking and navigation, notably a need for high data
transfer rates and measuring frequency were discussed in this research.

Multiple factors can influence the requirements on the positional and temporal
data, being for example the velocity and character of motion, distance from which
the object is observed or time synchronization of different measuring components.
Given, for example, the maximum angular velocity of the available total stations’

servo motors, a maximal target motion speed can be estimated from equation 4.1
Vmax = Wmax * T (4.1)

where

* Umax 1S the maximal prism velocity,
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o Wmax = 115 °/s = 2 rad/s is the maximal angular velocity given by the Trimble

documentation,

e 7 is the distance from the RTS.

It can be seen that the maximal prism velocity depends linearly on distance by a
factor of two in the specific case of Trimble S7 and S9 HP stations.

The impact of dissociation of measurements by different parts of the RTS is
most evident in a dynamic scenario where the moving object can be in different po-
sitions when each instrument accomplishes its measurement. This was problematic
especially in the early days with older hardware and insufficient inter-component
synchronization. Stempfhuber et al. [15] and Lenda et al. [10, 11] describe these
influences in detail and show acceptable results within a millimeter for modern total
stations that have been developed in the 21st century. These studies however, have
been performed with movement velocities of only up to 3 m/s, therefore applications
requiring higher target speeds might necessitate more investigation before usage, as
the expected errors might also be higher. The experiments were performed with
a linear motion and deviations from expected lateral and vertical positions were
observed.

Additional experiments with actual UAV navigation were also performed by
Roberts et al. [31], Maxim et al. [32] and Hankus-Kubica et al. [33]. These
again focused on positional deviations from expected reference trajectories.

The mentioned articles so far focused on positional data evaluation with the
time aspect being controlled for. Gojcic et al. [17] and Thalmann et al. [18]
perform deeper investigations into the temporal parameters of RTSs and present
synchronization routines for different dynamic applications. Interesting and relevant
insights into the internal workings of the measurements and time characteristics can
be seen, however their results are aimed at specific scenarios and the exact details
might also vary between different instruments available for this thesis.

Additionally, Stempthuber et al. [15] and more recently Paraforos et al. [34]
have performed experiments with Trimbe UTSs, which allow high frequency mea-
surements of up to 20 Hz. A higher measurement rate is generally favorable for
lowering of inter-component delays. A dependency of position errors on prism mo-
tion velocity is also demonstrated in [34], however velocities of only up to 1 m/s were
tested. These total stations are considered to be at the highest development stage,
offering even higher accuracies and, as stated, measurement rates. They are part
of the Trimble Heavy Industry sub-brand. Their higher quality component design
and construction might make them even more suitable for real time tracking and
navigation than typical RTSs [35].

It is important to state that most of these groups performed experiments with
Leica total stations and utilized the availability of their GeoCOM commands, which
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provide a more direct control of the individual RTS components. Similar potential
options were investigated in Section 3.7. Many research papers also present a higher
positioning accuracy and precision compared to even RTK GNSS methods, when a
suitable configuration is attained, which is favorable and further supports the aims
of this thesis for RTS-based navigation.

Several notions arise from all of the above mentioned. First, a certain type of
motion has to be defined, which ideally reflects the monitored factors. A reference
providing the true quantity values needs to be established in order evaluate the
quality of the RTS measurements. Finally, a relationship between the reference and

the monitored quantities should be known in order to perform a valid comparison.

4.2 Experiment concepts and requirements

The performed experiment should therefore be able to safely quantify the reliabil-
ity of the RTS data. Three main realization concepts are arising. Both of them
incorporate two concurrently running measurements, that is the actual RTS and a
reference measurement. A mutual relationship between these two processes needs
to be accurately known in order to maximally isolate any undesired influences that
the experiment might have on the observed parameters.

The first option would be apriori synchronization of measurement intervals be-
tween both processes. Either the acquisition times are exactly known and can be
aligned for both the reference and RTS measurement or a quantifiable relationship
exists between them so that measurement synchronization can be achieved. This
way the time values for both measuring processes correspond to each other and a
deviation of the RTS measured position data from the reference at each time instant
can be objectively estimated. A similar concept of evaluating the positional data,
whether by directly synchronizing the measurement times or by statistical fitting of
the acquired trajectories is realized in [31], [33] and [34].

The second option is the opposite, that is the notion of perfectly known positions
for both measuring processes, which are exactly coincident. These positions are
know from the character and realization of motion and experiment. Therefore time
deviations can be estimated from the values assigned by the RTS and the reference
times, in which the object really occupied these positions. This provides a way of
estimating measurement delays associated with the RTS as a whole.

Lastly, an experimental setup, which isolates the time data entirely can be re-
alized. This incorporates an exactly defined linear track for motion with positions
in the longitudinal direction being observed and lateral and vertical positions are
expected to remain zero or constant. A comparison of deviations from zero can

then be made with respect to the linear motion. A reference measurement is also
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maintained and time data can, in principle, also still be evaluated. This type of
experiment provides a way of evaluating the internal component synchronization
delays and is shown in [15], [10] and [11].

4.2.1 Requirements on temporal data

An important aspect of the experiment realization is a correct formalization of time
parameters and isolation of the experiment chain influences from the observed RTS
parameters. The whole chain can be separated into an RTS measurement process
and a reference measurement process.

Factors influencing the RTS measurement process can be the station’s delay,
data processing by the RTS’s measurement software or data propagation delay from
the RTS to a logging device. These are the parameters that are to be quantified.
In order to utilize the obtained data for other purposes in real time, the overall
delay from the moment of a physical position measurement to the moment of data
availability at the end point is of concern. It might also be beneficial to have the
knowledge of when (or at which point of the process) a timestamp was associated
with a specific position measurement. These facts are not always evident in advance
and should be estimated in a suitable manner.

The reference measurement process provides greater flexibility and control over
individual components, hence it can be characterized more precisely. The reaction
time of the end sensor performing the physical measurement and how fast it provides
the results on output, both need to be considered. Similarly, the propagation delay
from the sensor to an evaluating device is also important. Since the timestamp
association is fully under our control, the parameters of the evaluating device and
its effect on this association have to be taken into account.

Several requirements on the experiment chain follow from the above mentioned.
The RTS measurement requirements are given largely by the intended final usage.
Given the advertised sampling period of 100 ms or 400 ms (see Chap. 3), possible
data loss and a potential delay increase from lower data propagation rates, it is desir-
able for the RTS timestamps to have acceptably low deviations from the true time,
or for the deviations to be deterministic and exactly known for the whole application
period. With typical velocities of small quadrocopters being in the range of ones
to tens of meters per second (or mm/ms) [36], a delay of hundreds of milliseconds
creates a position error of tens to hundreds of centimeters. Greater delay values
could potentially render the navigation task difficult to accomplish, expanding the
position error beyond the size of the aircraft itself. For the reference measurement,
the process should reflect the true time of the position as accurately as possible.

The delay from a physical detection to a timestamp association should be mini-
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mal so as not to significantly skew the determined RTS measurement parameters.
This delay should then, ideally, not exceed hundreds of microseconds or possibly be
exactly deterministic so that it can be safely accounted for during processing. If
these requirements are met, the reference data can be accepted as the true object’s
properties from the RTS’s point of view.

Last but not least, the whole experiment chain should be considered as well,
meaning the time data of both processes should be mutually synchronized and share
a common frame or a direct relationship between them has to be known in order to

be able to process both data sets in a comparative way.

4.2.2 Requirements on positional data

The requirements are again evaluated from two parts, the RTS and reference mea-
surement processes. Position estimation is the main task in this point of view, ergo
a certain accuracy of its measurement has to be adhered to. Again, considering
the typical sizes of small quadrocopters being in tens of centimeters, the error in
position estimation with an RTS should ideally be in millimeters, possibly units of
centimeters. The accuracy of position estimation of a total station is a parameter
explicitly given by the manufacturer and further verifications of its credibility are
not a primary concern of this thesis. Additionally, for dynamically moving targets a
much higher effect on the overall position estimation accuracy is expected to come
from time and synchronization inaccuracies.

As far as the reference measurement process is concerned, again the acquired
reference data point must reflect the true property of the object as accurately as
possible. If the reference position is measured by a sensor, its accuracy must be high
enough so as not to significantly skew the determined parameters of an RTS mea-
surement. If the experiment setup provides inherent objectively known positions,
its character and realization must allow for repeatable and reliable estimations of
these positions.

4.3 Selection and evaluation of selected conception

and parts

4.3.1 Target motion type

Based on the outlined requirements, parameters and available resources a suitable
conception of the experiment to be performed has to be designed. Three basic
shapes (or trajectories) of motion, which could be realized within an experiment in

this thesis emerge from experiments performed in the aforementioned articles. As

41



is shown in Figure 4.1, these are a straight line, circular and sinusoidal motions, or
possibly a combination or particular section of any one of them. The figure displays
them in a two dimensional plane and viewed from the top. However, the particular
choice of axes and orientation of the RT'S in space relative to them is arbitrary and

depends solely on experiment conditions and desired outcomes.

Lox Lox

(a) Straight. (b) Circular.

y y
(¢) Sinusoidal. (d) Other parts or combinations.

Fig. 4.1: Examples of possible motion types and trajectories.

A pendulum type of motion with a spatial shape similar to that of a half-circle
in Figure 4.1 (d) was chosen for the main experiment realization. An already avail-
able rotary mechanism, which was constructed as a part of a different thesis [37]
could be used since it has all the necessary structural properties for the purposes
of experiments performed in this thesis. The used bearings provide sufficiently low
friction, which guarantees a satisfactory number of naturally damped oscillations
even at lower amplitudes, provided that a suitable radius is established. By fixating
the construction sufficiently, a repeatability of motion trajectory within one plane
can be ensured. Omne source of instability is the actual pendulum arm, which in
principle cannot be fixated. With an increasing radius, the rigidity of the arm de-
creases, however for a higher number of oscillations and greater traveled distances a
larger radius is desirable. A way of increasing the arm’s rigidity while maintaining

sufficient length is presented further in Chapter 5. With a convenient orientation of

42



the RTS perpendicular to the plane of oscillation the processing task can be simpli-
fied into a two-dimensional realm. The main advantage of this character of motion
is that the rest point of the pendulum can be exactly characterized by both the
reference and RTS measurement. This type of motion also provides an extensive
dynamic scenario with varying velocities and direction of motion changes, which can
evaluate the overall RT'S’s capabilities in a scenario representative of a real-world

motion.

4.3.2 Experiment realization concept

One of the outlined methods of experiment realization is utilizing known object
positions and comparing their timestamps between both, the RTS and reference
measuring processes. Given the character of the chosen oscillating pendulum mo-
tion such a precisely known position offers itself in the pendulum’s rest, or zero,
point. Exploiting this feature, a comparison can be performed between timestamps
associated by the RTS and reference measurement at the exact moment when the
pendulum crosses its rest position. This way, with a suitable experiment config-
uration, a direct expression of the delay between the moment of a physical event
and the time the RTS associated with this event can be known. In other words,
a total delay of position measurement by the total station can be expressed. This
time delay can be easily converted, by integrating through the interval (eq. 4.2),
into a position error and if the velocity of the object is constant during that period,
relation 4.2 simplifies into 4.3. What is more, this time delay is also easily integrable
into the navigation task, which permits better and more effective synchronization

of all participating components.
to+Ag
5, = / v, (4.2)
to

where
0, is the positional error,
e tp is the moment of the true physical position event,
o A is the time delay,

e v is the object’s velocity during this interval.

Ap =" At) (43)

where
« A, is the positional error,
o A is the time delay,

e v is the object’s velocity during this interval.
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The perpendicular alignment of the RT'S (see more in Sec. 5.2) also places it in a
wort case scenario (also see Fig. 2.4), enabling a comprehensive evaluation of its real
capabilities. Using this methodology, any inaccuracies emerging in the positional
domain will, as a result, also be reflected and encompassed within the estimated time
delay. This leads to an interpretation, where measured position values are treated
virtually as absolutely accurate and the time error contains all the inaccuracies
(which, ergo, can also stem from an inaccurate position measurement) within itself.

Two separate and different types of time delays will be talked about within this
thesis and in order to minimize confusion, their visual representation can be seen in

Figure 4.2.

treal tmeas tavail

time

Ameas Aprop

Fig. 4.2: Visual representation of estimated time delays.

The main delay emerging from the whole pendulum rest point experiment is the
time difference between the real time when an object was physically occupying a
certain position (#ea) and the time, which was assigned to this particular object’s
position by the RTS (fpeas). In other words, an overall position measurement delay
is estimated (marked as Ape.s in Fig. 4.2). The second one is the delay between
the time that the RTS assigned to a position measurement (tneas) and the time,
in which the data from this particular measurement is available at the end device
(tavain). This will be called a data propagation delay and is marked as A, in Figure
4.2.

4.3.3 RTS measurement components
Evaluating the available total stations

Preliminary tests have been performed within the semestral part of this thesis to
evaluate the suitability of the Trimble S7 RTS. It had been found that this station
truly does not provide a higher measurement rate during continuous tracking in
the TRK mode and the frequency is limited to standard 2.5 Hz. Several different

settings were tested, such as enabling and disabling the FineLock and LaserLock
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functions, or changing the Predictive tracking time and data output baud rate,
however none seemed to have an effect on the measurement frequency. Figure 4.3
displays an example of the time data from one of the tests.
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Fig. 4.3: Time data from the Trimble S7 RTS.

Further research into the Trimble documentation provided an interesting revela-
tion. Although an older version of the documentation from 2017 [6] explicitly states
that this feature is only available with the S§ and 59 series total stations, a newer
(latest as of writing this thesis) version completely omits that note. From this, it
follows that either this fact is mistakenly omitted from the newer versions, or per-
haps the feature can be added even into the S7 (and possibly others) by a firmware
upgrade. However, given that the data-sheet for the S9 explicitly states the avail-
ability of a 10 Hz tracking feature, while the S7 one does not, it leads to a conclusion
that even though possible, it might be an undocumented enhancement at this time.
The present firmware version, as of testing, was H2.7.19 and further investigations
into upgrades contained within the newer versions were not conducted.

For the final experiments, the Trimble S9 HP RTS was ultimately chosen as it
had been confirmed that it truly can provide measurements with a rate of up to
10 Hz. Figure 4.4 shows time data from the S9 HP.
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Fig. 4.4: Time data from the Trimble S9 HP RTS.

Data output settings

Data output was accomplished through the RTS’s internal serial COM port. Initially
in the semestral part, the data was captured by a separate PC at its USB port
through an RS232 <—> USB cable. The baud rate was set to 57 600 bits/s and flow
control was Xo,/Xog. The number of data bits, stop bits and parity are implicitly
set by the RTS to 8, 1 and none, respectively and this cannot be modified.

Given the outcomes of [30], the baud rate was subsequently raised to the max-
imum available 115 200 bits/s and all further experiments presented in this final
thesis were performed with this transfer rate. Any other older results will only be
presented in supplement B. The PC and RS232 <—> USB cable were left out com-
pletely by connecting the output directly onto the Universal Asynchronous Receiver-
Transmitter (UART) pins of reference measurement device, which is dealt with in
Section 4.3.4. In this case the flow control is set to none. This also means that the
data acquisition times are within the same time frame as the reference measurement
itself, ergo a further timestamp evaluation and data propagation delay from the RTS
to an end device estimation can be performed. Table 4.1 at the end summarizes all

the final parameters of the RTS measurement process for this thesis.
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4.3.4 Reference measurement components
Measurement process performing device

The reference measurement processing device can be chosen from several distinct
options. An obvious one might be direct control with a micro-controller, such as
the STM32 type. Another option is to use an industrial compact controller like
the CompactRIO or a full-fledged Programmable Logic Controller (PLC). Possibly,
the data can be processed directly by a Field-Programmable Gate Array (FPGA)
module. All of these options provide real-time processing capabilities, which is
beneficial to the task. Another option is a mini-PC, such as the Raspberry Pi (RP1i).
This device runs on an operating system and, therefore, its kernel handling might
interfere and cause measurement delays as opposed to the true real-time solutions.
However, it also provides ease of use and flexibility for various distinct tasks that
might be useful for the experiment implementation. Direct hardware access is still
available through its General-Purpose Input/Output (GPIO) pins, and by choosing
a suitably low resource-hungry OS and a well implemented library for GPIO access,
the negative effects of kernel scheduling should be sufficiently mitigated.

An entirely different approach is using a device, which can all by itself provide
the complete required temporal and positional information with an accuracy much
higher than that of the RTS. Some of the mentioned research groups were using
a Laser Tracker device to serve as a reference source of the true object properties
[13, 12, 18]. Its design is of a similar construction as an RTS, but it only uses a
highly precise laser system to perform measurements. The laser beam is reflected
back by a specialized reflector, similar to an RTS prism, however much smaller in
size. It can also track a moving reflector and general use cases are performing highly
precise alignments or surface shape measurements. A potential substitution of the
entirety of an RTS by a Laser Tracker will be discussed in Section 6.4. As far as
this thesis is concerned, such a device was not available at the institute and its
procurement would be more complicated. From all of the above stated, the final
choice was a Raspberry Pi 3B mini-PC, which was already available at the UAMT

department.

Raspberry Pi configuration

The Raspberry Pi OS Lite Linux distribution was chosen as the operating system for
the RPi, since it is directly developed and provided by the Raspberry Pi foundation
and should provide the best optimization for the hardware. The lite version provides
minimal overhead and an added benefit is an exhaustive documentation and support

available for the OS. Tickless kernel, a mode used for power saving by reducing
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the number of kernel updates when the CPU is idle, was disabled by adding the
nohz=off parameter to the kernel cmdline at /boot/cmdline.txt. Although recent
recommendations suggest that this option has minimal effect on time delays, saving
power consumption is not a concern for this application and the mode was turned
off to ensure no influences either way. The CPU governor was set to maximum
performance by the cpupower frequency-set -g performance command and this
setting was made permanent on boot by adding the command to /etc/rc.local.
As was stated in Section 4.3.3, the output data from the RTS was processed
directly by the reference measurement device, which in this case is the Raspberry
Pi. In order to connect the RS232 output with the UART input of the RPi, a
conversion had to be made. Ready-made RS232 <-> UART adapters utilizing the
MAX-232 chip exist on the market, however a full both-way communication is not
necessary and a much simpler one-way circuit is sufficient. The voltage levels of the
RTS serial output are -5.8 V to +6.8 V for high and low logic levels, respectively.
The Transistor—Transistor Logic (TTL) UART of the Raspberry Pi on the other
hand operates with voltage levels of +3.3 V to 0 V for the same high and low logic
levels. Since data is flowing only from the RTS to the RPi, voltage inversion and
limitation are adequate. Figure A.2 shows these signal voltage levels. Figure 4.5

displays a simple circuit performing these adjustments.

Fig. 4.5: Serial voltage adjusting adapter for GPIO UART.

Standard 3.3 k€2 and 330 €2 resistors provide suitable current values on the order
of milliamperes. When the input voltage is high, the transistor opens and the output
level is set to 0 V. Once the input voltage goes to negative values, all the current
flows through the diode and the transistor stays closed, in which case the output is
pulled to 3.3 V.
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Library for implementation

A well known and widely used library for GPIO access on the Raspberry Pi is
WiringP1i. 1t provides a simple API to interface with the pins and is designed to be
consistent with the Arduino wiring system style and functionality. However, Arduino
code compatibility is not important for this thesis, and highly accurate timing and
processing seem to rather not be a primary concern for the library implementation.
As of 2019 it is also deprecated and is not updated anymore [38].

Another option is the bem2835 library. It provides a fast API for C/C++ pro-
gramming, however interrupt services are not supported [39].

The measurement program was ultimately implemented using the PiGpio library
in C language. This appears to be the lowest level and fastest GPIO access library
by implementing timing and GPIO handling directly through the kernel. Interrupts
are also supported. The code is open source and available on github, and it also
provides a wider and more comprehensive set of functionalities. The API it provides

is easy to use and understand, and it is well documented [40].

Event detecting sensor

For the pendulum rest position detection a small photoelectric light barrier sensor
configuration was used. Initially, in the semestral part, an Omron U-type photomi-
crosensor was used. Its reaction time is max. 333 ps at U, = Ugy. The state change
reaction area is 1.1 mm from each side. The light emitting/receiving slit width and
length of the barrier were 2 mm and 15 mm, respectively. It was powered from a
+5 V output GPIO pin on the RPi. The NPN open collector output was connected
to an input GPIO pin through an external 3.3 k2 pullup resistor at +3.3 V. The
effect of output U, voltage being lower than the power U.. = +5 V on the reaction
time was not considered [41]. The configuration can be seen in Figure B.1.
Subsequently, for this final thesis implementation, a Panasonic EX-Z11 series
photoelectric sensor configuration was selected. Again, any older results achieved
with the Omron sensor will only be provided in supplement B. Its reaction time is
less than 500 ps. The light emitting and receiving slit width is 0.3 mm and the
distance between the emitter and receiver can be set as required and up to 50 mm.
Its connection was more involved as it requires a minimum power source of +12 V DC
and the open collector output of the receiver was ultimately a PNP type transistor.
The necessary 12 volts were supplied by an external switched-mode power supply.
Since the transistor opens to full +12 V power, the output cannot be connected
directly to a +3.3 V input GPIO pin [42]. However, a simple voltage-limiting Zener
diode circuit easily solves this problem. Figure 4.6 shows the schematic, where the

additional circuitry of the transistor and sensor is omitted.
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Fig. 4.6: Sensor voltage limiting adapter for GPIO.

The 3.3 V Zener diode provides a save voltage for the GPIO pin when the
transistor opens. By the Panasonic specification, a maximum allowed output current
is Iout.max = 20 mA. This leads to a theoretical minimal value for R; given by the
Ohm’s law 4.4, which is 435 Q.

Uout — Up

Iout ,max

Rl,min = s (44)

where

e R min is the minimum resistance,

e Ugyy is the output voltage from the sensor,

o Up is the diode voltage.

The R5 serves as a pulldown resistor and sets the GPIO pin value low when the
transistor is closed. The supply voltage of Ry needs to be greater than Up, i.e.
equation 4.5 needs to be satisfied. The voltage can be calculated form the equation

for a voltage divider 4.6.

UR2 > UD7 (45)

Ro
U, = — 2 Ups, 4.6
B2 ™ R+ R, t (4.6)

where
o Ug, is the voltage supplied by Rs.
By combining 4.5 and 4.6, the minimum value for Ry is given by 4.7.
Up
Uou — Up

As can be seen in Figure 4.6 standard 3.3 kQ2 and 10 k) resistors were chosen

Ry > Ry, (4.7)

for R; and Ry respectively, which are well above the required minimums and still
provide a high enough reverse current to the Zener diode. Again, all final reference

measurement parameters are summarized in table 4.1.
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4.3.5 Time synchronization

Finally, since a comparison between the time values from the RTS and reference will
be made, a synchronization procedure between both of these processes needs to be
maintained. Since the TSC7 and Raspbery Pi both run on an operating system, one
solution might be synchronizing them to a common Network Time Protocol (NTP)
server. This would give both devices the same time reference, however it has draw-
backs. Most notably, the delays when connecting to external NTP servers are on the
order of tens of milliseconds. Acquiring an internal time source would be beneficial
and reaching sub-millisecond accuracies should be possible with proper implementa-
tions (such as the chronyd package on Linux), however a different approach appears
to be more suitable.

Precision Time Protocol (PTP) is a time synchronization protocol used for high
precision applications and on a local network with proper settings it can achieve
sub-microsecond accuracies. For Linux operating systems two main implementa-
tions are available: PTPd [43] and Linuxptp [44]. The latter seems to be a more
comprehensive implementation with more options and a wider support. Notably, a
HW timestamping functionality is implemented directly through the Linux kernel.
This means that timestamps can be acquired directly by the Network Interface Con-
troller (NIC) hardware upon receiving and sending packets (if it has the necessary
components) without any further overhead. This allows for the sub-microsecond ac-
curacies mentioned earlier. However, the NIC present of the Raspberry Pi does not
support this functionality and more importantly, Linuxptp is not compatible with
the Windows OS, which is on the TSC7 controller. Enabling the processing of PTP
packets on Windows is a matter of configuring the correct registries and in theory it
should be able to react with messages from any Linux implementation. After further
research the problem seems to lie in the way these messages are handled. Windows
accepts PTP packets only in unicast mode and presently does not provide support
for a HW timestamping implementation. On the contrary, packets sent by Linuzptp
can be in unicast mode exclusively only with HW timestamping. Another thing that
Windows requires is that the receiving packets must have the ptp_timescale flag
set to PTP. Again, this flag is probably only set with HW timestamping for Linuxptp.
Another time acquiring method is SW timetamping, which is a software-based ap-
proach and it is implemented within Windows. This method can provide accuracies
on the order of microseconds, which is still suitable for the experiment purposes
of this thesis [45]. On Linux, the latest release of PTPd is managed by Aptitude
with the apt-get command and for Linuzptp, a custom script named updateptp4l
checks for the latest source on their sourceforge repository, compares it with the

currently installed and performs an update if necessary.
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Attempts were made to enable the accepting of multicast PTP messages on
Windows. A registry key called EnableMulticastRx exists in the PTP configu-
ration section, however it had no effect when enabled at the time of writing this
thesis. Ultimately, PTP synchronization using the PT'Pd implementation on Linux,
directly between the TSC7 controller and the Raspberry Pi was performed, where
the (grand) master source clock was the RPi and the controller adjusted its clock
in slave mode. The synchronization was always running throughout the whole mea-

surement process.

RTS Model Trimble S9 HP
Controller TSC7
Measurement period || 100 ms
Reference Device Raspberry Pi 3B
Sensor Panasonic EX-Z11
Sensor slit 0.3 mm
Sensor distance 5 mm
Application PiGpio, C
Data Source RTS COM
transfer End RPi UART
Baud rate 115 200 bits/s
Flow control None
Data bits 8
Stop bits 1
Parity None
Time Protocol PTP
synchronization | Implementation PTPd
Master clock Raspberry Pi 3B
Slave clock TSC7
Interface Ethernet

Tab. 4.1: Main experiment parameters and configuration.
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5 Experiment realization procedure

This chapter will inform the reader of the actual physical configuration and layout
of the experiment and its components. All the final chosen and argued concepts
from previous chapters will be presented here in their real physical realizations and
the methodology and procedure for the experiments will be shown. The device

configurations, setups and developed programs will be presented.

5.1 Description and display of reference measurement

components

5.1.1 Raspberry Pi 3 B

Reasoning for the selection of this device was provided in Section 4.3.4. It comes
with a 1.2 GHz 64-bit BCM2837 processor, 1 GB of RAM and storage for the OS and
data is maintained by an external Micro-SD card. It provides a 100 Base Ethernet
Local Area Network (LAN) connection, and also Wi-Fi and Bluetooth connectivity.
Power is provided by a 5 V/2.5 A power supply. A set of 40 GPIO pins is available,
which can provide reference 5 V, 3.3 V or Ground, access to peripherals such as
UART or 12C, or general input/output functionality [46].

Fig. 5.1: Both adapters connected to the Raspberry Pi.
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As was mentioned, for connecting with the sensor and RS232 serial output, simple
custom adapters had to be made. Their description is provided in Section 4.3.4.
Figure A.3 shows their realization for use and Figure 5.1 shows their connection to
the RPi.

5.1.2 Panasonic EX-Z11

Fig. 5.2: Mounting brackets for the Panasonic EX-Z11 sensor. Left: emitter, Right:

receiver.

It is a miniature photoelectric sensor that uses a 650 nm LED for motion detec-
tion. It comes as physically separate emitter and receiver units that can be mounted
according to desired use. The width of the emitted light is controlled by a 0.3 mm
slit and the freely adjustable emitter-receiver distance was set to be 5 mm. For this,
custom mounting brackets, where the position and distance of the two elements can
be adjusted, were designed and 3D-printed (Fig. 5.2).

5.1.3 Sensor-crossing prism extension

Chapter 4 provided a more abstract theoretical description of the experiment design
and realization methodology. All of the individual components of the experiment
have now also been described, but what remains to be further elaborated is the actual
realization of the mentioned event or objectively known position in the pendulum
rest point. From all that was mentioned so far, it is evident that some kind of an
object is going to cross a light barrier sensor setup providing a reference and that
the RTS will be tracking a prism constantly during the motion.

For this purpose, an attachment that is mounted onto the moving prism was

designed and 3D-printed. The barrier-crossing element (a thin rod-like extension)
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was created as narrow as possible in order to minimize asymmetricality of the setup,
since it will be crossing the light barrier from both sides as the pendulum swings
back and forth. Its circular shape allows for its invariance to orientation at which it
is crossing the barrier. An earlier quickly set up proof-of-concept attachment that
was used in the semestral part is shown in Figure B.1 on the right. The actual
design with a 2 mm thin rod extending from the prism attachment, which was used
in this final thesis, is displayed in Figure 5.3. This was the smallest thickness that
could be reasonably printed and, together with the 0.3 mm slit on the sensor, should

create minimal deviations between the left and right swings.

bl i i e Y o xSl

Fig. 5.3: A thin rod extension crossing the light barrier mounted on a Trimble VS/S
360 prism.

The attachment consists of two parts. The inner section mounts directly onto the
prism and serves as a bracket for the actual attachment with the rod extension. The
parts are secured together by two screws protruding through the whole construction.
Since the desired precisions of the setup are expected to be within millimeters and
milliseconds, any kind of movement at the connections between the two parts should
be eliminated. For this, internal grooves and protrusions where designed to secure
both parts firmly in place and prevent any rotational or lateral movement. Figure
5.4 shows the inner design of the parts.
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Fig. 5.4: Detail on the inner connection between the two attachment parts.

5.2 Component layout

This section will describe the physical realization and layout of the main experiment.
The pendulum, prism and sensor setup can be seen in Figure 5.5 and a graphical top
view of the layout in Figure 5.6, right. The extension described in Section 5.1.3 was,
together with the prism, mounted onto the end of the pendulum arm. Its set length
ensured a large enough number of oscillations through the sensor and also enabled
the extending thin rod to be as short as possible (32 mm) in order to minimize any
of its own vibrations. The whole construction was firmly fixed in place so that it
didn’t negatively interfere with the observed motion. As was stated in Chapter 4.3,
the only unsecurable part is the arm itself, which can have unwanted vibrations in
the lateral direction. Its rigidity was increased by fixing two of such pillars onto each
other in that specific direction. This reduced the negative vibrations, leaving the
weakest link in the connection at the center of rotation, which in principle cannot
be fixed any further. The negative effects were negligible (see Sec. 6.3.3).

The reference measurement light barrier sensor setup was fixed on the ground.
It was precisely positioned such that the pendulum in its rest position just breaks
the light barrier with its left side, as seen from the point of view in Figure 5.5.
This represents the exact true known zero position of the pendulum. The oscillating
motion was always initiated from the right side, again from the view in Figure 5.5.
The RTS was placed on the ground (in a position behind the camera view) at varying

distances from the pendulum. It was oriented to be as perpendicular as possible to
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Fig. 5.5: Experiment component layout (RTS behind camera view).

the plane of oscillations, so that the whole motion was being performed mostly in
one axis. Perfect alignment can in practice never be achieved, however a method
which provided an observable difference was applied. The basic concept can be seen
from Figure 5.6 on the left.

L Rotation ! R Rotation. Rest point
< axis o ,7 S, axis Pendulum’
N e ! oscil‘l“ati"ons
distance ~ | »  distance RTS
RTS measurementf§

Fig. 5.6: RTS alignment principle (left) and component layout (right), top view, not
the of same scale.

A slope distance value from two points lying on a horizontal line and equidistant
from the axis of rotation was measured. The equidistance was achieved by observing
the edges of a circular structure seen in Figure 5.5 at the top. The RTS was set
to DR mode for laser-target measurements. Its vertical angle was first set to align
with a specific point on one side of the circle. Subsequently, only the vertical angle
was being changed (moving left and right) to align with a second point on the other

side, while the vertical angle remained fixed. The RTS was positioned such that
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the measured distance values from both points were equal. This procedure has its
limitations and depends on the precision with which the two points can be sighted.

In summary, the pendulum arm radius was 128 cm and the RTS was placed at
three distinct distances from the pendulum, where several measurements were made.

The largest was at around 4.9 m, following with around 2.7 m and around 1.5 m.

5.3 Configuration and setup of experiment compo-

nents

5.3.1 Total Station configuration

Whole operation of the total station was performed using the TSC7 controller,
settings of which will be described in a following section. The RTS was set up
as follows. After the initial orientation alignment, level calibration is performed
as described in Section 3.6. Subsequently, a coordinate system suitable for the
experiment can be defined. A flat linear Euclidean-space local coordinate system
with a scale factor of 1.0 was used for all measurements performed within this thesis,
since it is perfectly sufficient for the purposes of local navigation with an RTS. A
global system with polar coordinates referenced with GNSS is not relevant for these
purposes, because the RTS itself will be the source of the coordinates.

Following the basic Station Setup procedure then, two points have to be mea-
sured. First is the Base Station point, which defines the location of the RTS itself
within the coordinate system. Again, the system for navigation is going to be fully
defined and provided by the RTS, therefore an explicit setting for the Base Station
point as the origin of the coordinates is preferable. The values for z,y and z were
explicitly set to [0,0,0]. The height value for this point was set to 24 cm, which
is the measured height from bottom (ground) to the top notch at the sighting axis
and this ensures that the coordinates will originate from the ground in the vertical
direction. The second point, called a Back Sight defines the horizontal orientation
of the coordinates and its position is measured by the RTS. The Back Sight will
also define the known zero target position for the RTS. When the pendulum was
at its rest position with the prism at the bottom, the RTS was, using the AutoLock
function, locked onto the prism. This point was then measured as the Back Sight
in STD mode with 10 averaged measurements, ensuring a highly precise definition.
The azimuth value was also set to 0 to define it as the starting orientation for hor-
izontal angle measurements. The starting orientation for vertical angles is fixed at
the zenith. Finally, the height of this point was set to 0, as the RT'S was measuring

the real prism location with no additional offsets.
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After accepting of the measured Back Sight point, the station now provides
location data of the measured target within the defined coordinate system. The RTS
defines these local coordinates in the Fast, North, Up (ENU) framework. Figure 5.7
displays the resulting configuration and Figure A.1 shows a particular example with
several other points on the TSCT7 screen. The RT'S there was not placed directly on
the ground and that is why the points are located below the origin with negative
height values. The location ENU values sent out as data output are of the Fasting,

Northing, Elevation convention.

X, Northing
BackSight*

»

>

BaseStation Y
o 4
Easting

.

E-

U, Z, Elevation

\ 4

N

Fig. 5.7: Representation of the RTS local coordinate frame.

This configuration implies extrapolation of the measurements from the refer-
ence, which as an effect might provide worsened accuracies as is stated in [47].
The proposed configuration is with several Back Sight points enclosing the desired
measurement perimeter. However, this seems to apply more to general static topo
or stakeout measurements and resection techniques, which are not relevant for the
purposes of this thesis with dynamic motion.

EDM settings

The final step for the RTS is enabling TRK mode and the AutoLock function. The
10 Hz measurement functionality can be enabled by a checkbox in the settings, but
is only available when AutoLock is on and the station is in TRK mode. The target
type has to be a prism and whenever the station is set to DR measurements, it will
automatically disable the functionality until a prism target is selected. The FineLock
function, which is used for static measurements with multiple close by prisms and
does not work with TRK mode, should also be disabled. It might also be beneficial
to disable the LaserLock function as it interferes with AutoLock.
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Data output

For data output it is necessary to keep the screen opened in the background. The
output was set to Continuous mode and a GDM user defined structure is selected
where all the necessary values can be set for output. The data was being sent in
a format shown in Figure 5.8, where each measured value is specified by its label
number and a complete data point is ended with the >’ termination character.
An example of acquired data from the RTS can be seen in Listing 5.1. Highest
resolutions of all displayed values were set in the global job settings. In the data
output section, the most important is the resolution of time values that will be sent
out. The highest possible resolution in 10 ms. Parameters of the data transfer were
summarized in Table 4.1.

=‘@115:08 m g_(_ *’r‘t
T DEIT A 02400 3

95%

Data output

Continuous > GDM user defined

 User defined record

GDM label 1 , GDM label 2
il 51 (Date) - 52 (Time)
GDM label 3 GDM label 4
7 (HA) v 8 (VA)
GDM label 5 GDM label 6
9(SD) v 10 (VD)
j kGDMrlabel 7 | GDM label 8

v 37 (N)
i GDM label 10
il v 39 (ELE)
transrri‘ls‘svi‘é;j; Lg%facter
v

Fig. 5.8: Configured RTS data output labels.

As was mentioned, no flow control was used for transmission. The hardware
flow control RS232 outputs were, therefore, interconnected with their corresponding
inputs (see Fig. 5.9) so that transmission was always running and the RTS was
continually sending all of its output from the COM interface immediately as it
appeared. The Raspberry Pi was then immediately processing this data on its
UART input. The conversion from RS232 to UART was explained in Section 4.3.4.

With all this, the RTS is finally configured for the experiments and is constantly
sending data through its COM serial port.
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Listing 5.1: Example
RTS data output, show-

ing one point.

0 h
51=2021.0421 o/ Tx
52=18.411712 O- >

DTR->DSR

8=102.00073
9=2.660

10=-0.084 5 GND>
11=2.659
37=2.659
38=0.000
39=23.916
>

7=0.00006 og*RTS->CTS
(o

Fig. 5.9: RS232 DB9 connector pin connections.

5.3.2 TSC7 controller configuration
General Windows settings

Some additional modifications, for the purposes of experiment, were also made to
the TSCT controller. The version of the Windows operating system, which was used
at the time of performing all experiments was 20H2, build 19042.867. The Trimble
Access application, used for controlling the RTS, was updated to its latest available
version 2021.00. A basic user-space configuration of the OS was made. Features
such as transparency, animations and hiding of scroll bars were disabled for high
responsiveness. Most settings in the Privacy and Gaming sections were turned off or
disabled and some services which were not relevant for this thesis, such as Connected
User Experiences and Telemetry or Distributed Link Tracking Client were
also disabled in order to assure as minimal as possible OS interference with the

experiment. All general setting changes are documented in the TSC7_changes.txt
file.

PTP configuration for the experiment

Since the TSC7 also provided its time to the RTS and the acquired timestamps
reflected this time, the controller was synchronized with the reference measuring
Raspberry Pi. A more involved configuration was needed to set up the PTP synchro-

nization. Basic guidelines however, are available at the Microsoft github repository
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[45] and a set of custom PowerShell scripts was developed to easily configure the
controller for experiment and revert all changes back to the original configuration
after its completion. The execution of unsigned local PowerShell scripts first had to
be enabled in the Update & Security -> For Developers settings section. The
lowest level scripts:

e EnableSWTimestamping/DisableSWTimestamping,

o EnableW32TMlogging/DisableW32TMlogging,

e SetUpPTPFirewall/RestorePTPFirewall,

e SetUpPTPWinTime/RestorePTPWinTime,

e QuerySyncStatus and LogSyncStatus
perform the necessary configurations and display the running state. The higher level
ones:

e StartMeas/StopMeas and SetUpEnvironment/RestoreEnvironment
then call them to quickly prepare the device and manage the measurement process.

Three general actions were necessary. First, the SoftwareTimeStamping module
had to be installed, if not present already, and the mode had to be enabled on the
desired network interface. The synchronization was performed through Ethernet on
both devices (TSC7 and RPi) and since the TSC7 does not have an Ethernet port,
a converter from USB 3.1 to Ethernet was used. The influence of this converter on
the quality of synchronization was imperceivable. Second, ports 319 and 320 had to
be enabled in the firewall. Lastly, correct registry key values had to be set to enable
high accuracy timing for the Windows Time Service, enable the PTP provider and
disable other time providers. All modified registry values are, beforehand, saved to
.reg files to be later restored. These values were set according to the Microsoft
recommendations, where a couple of changes were made. The DelayPollInterval
was changed from 16 seconds to 1 second and the AnnouncelInterval from 4 to 0.5
seconds. Also, the PollInterval was changed from default 64 to the lowest possible
4 seconds. More about these settings is also at [48].

An officially undocumented registry key called Al1lowAnyMaster was found within
the PTP configuration section. On older versions of Windows this had no effect,
however when set on the 20H2 version, it enables the computer to accept correctly
configured PTP packets from any device that is casting them towards it. This might
lead to incorrect clock adjustments and time errors in multi-device setups, however
the scheme in this thesis is a simple two-device setup and no other interfering clock
sources were present on the network. It is still a unicast process, nonetheless it
simplifies the configuration as, ultimately, only a single unicast destination address
has to be configured.

A Windows Time Service log was also maintained during the synchronization

process with the w32tm /debug /enable command to assess the quality and reli-
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ability of the synchronization. Additional useful information, such as error states,
was also obtained from the w32tm /query /status /verbose query command and
so its output was also periodically being saved into a log file.

All of the mentioned configuration is performed automatically by the developed
PowerShell scripts. QuerySyncStatus executes the mentioned query command pe-
riodically and could be used to quickly verify the state of the synchronization.
The LogSyncStatus script can save this periodic output into a log file. Execut-
ing SetUpEnvironment enables SW Timestamping on the Ethernet port and sets
the appropriate firewall rules. Subsequently, the StartMeas script can start the log-
ging and set the necessary registry key values, by which the synchronization process
is initiated. The log filename can be provided as an argument and since two files
are being handled at the same time, appropriate modifiers (_w32tm for time service
logs and _w32tm_cst for query logs) are applied to the name automatically by the
scripts. The Restore, Stop and Disable counterpart script versions restore all the
modified settings and configuration back to a state before any of them were made.

It is important to state that the presented Windows PTP configuration only
accepts packets, effectively, in slave mode and it could not serve as a master clock.
That is why the Raspberry Pi was the master source clock within the scheme.

The TSCT controller is now ready to receive synchronization PTP packets from

the Raspberry Pi on the Ethernet port.

5.3.3 Raspberry Pi configuration
PTP configuration for the experiment

The RPi was, through its Ethernet port, connected to the same LAN network as the
TSC7, from which it was accessed and it also could connect to the internet. For eas-
ier subsequent data processing and reference, the internal time of the RPi was first
synchronized with an NTP server (time.google.com). For this, the chronyd pack-
age was used with a single run of the chronyd -q -m ’server time.google.com
iburst’ command from the sync_ntp script. Subsequently, only PTP is used as
the protocol for any further synchronization. The approach of custom Shell scripts
for the various configurations and setups was adopted here as well.

The sync_ptp_master script starts the PTP synchronization using the ptpd -c
ptpdwindows.conf -V command. As can be seen, PTP synchronization settings
are provided by the ptpdwindows.conf configuration file. The Microsoft github
repository [45], again, provides recommended settings. Most of these were, however,
already default in the used ptpd package. A full breakdown of all the recommended
settings compared with the default values is provided in the

e ptpdunicast_fullexample_descriptions.txt
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file. The most important ones are:
e ptpengine:ip_mode, which must be set to unicast,
e ptpengine:unicast_destinations, which contains the IPv4 address of the
TSCT controller,

e ptpengine:ptp_timescale, which must be set to PTP and

e ptpengine:clock_class, which must be set to the value 10.

The other two important settings are ptpengine:log_announce_interval and
ptpengine:log delayreq_interval, which must both be set to the same values
as their corresponding counterparts on the Windows side (AnnounceInterval and
DelayPollInterval registry keys, respectively), otherwise the synchronization will
not work. It is important to keep in mind that while on the Windows side, these
values are set as hexadecimal numbers representing milliseconds (where 0x01f4 =>
500 ms), here they are set as exponents of 2 representing seconds (where —1 =>
271 = 0.5 s). Some of the other non-default recommended settings relevant to this
thesis were also set. Otherwise, all was left default as in the ptpd package.

All in all, after executing the sync_ptp_master script, the Raspberry Pi is send-
ing master PTP packets to the TSCT7 controller though its Ethernet port.

Initiating the measurement

After confirming that the PTP synchronization is running and functional, the mea-
surement program on the RPi can be started. A detailed description of its workings
will be presented in Section 5.3.4. The program was written to also process com-
mand line arguments and it can be started by executing either the measure or
measurewargs script. The former was used mainly during testing and it already
supplies a default output file name argument. The latter was used for actual exper-
iments, where the file name and other arguments are passed through from the user.
In both cases the program is compiled from source by the gcc -Wall -pthread -o
main main.c storetime.c storetime.h -lpigpio -1lrt command and run.
After this, the physical pendulum motion (or other experiment) was initiated.
When it was done, the measurement was stopped, synchronization ended and the

TSCT controller reverted back to its original configuration.

5.3.4 Custom measurement program

The program was developed using the PiGpio library in C language. Since the PiG-
pio version managed by Aptitude, with the apt-get command, is sometimes behind
the latest available on github, a custom script called updatepigpio was created,
which checks for the latest release directly on github, compares it with the currently

installed one and performs the update if necessary. The basic functionality can be
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divided into two parts. First is the main thread, which handles the Panasonic EX-
Z11 sensor and assigns the pendulum event timestamps. The second is a separate
parallel thread, which handles UART communication by logging all data output

from the Trimble RTS and time stamping each arrived measurement point.

Main thread

This thread acquires the main reference timestamps, which are used for comparison
with the RTS time and a subsequent estimation of a delay, with which the RTS mea-
sures positions (tea in Fig. 4.2). It first configures the GPIO pins for the intended
use and allocates a buffer to be used for the sensor timestamps. The secondary
thread for UART is initiated and subsequently an Interrupt Service Routine (ISR)
handles the sensor light barrier crossing events (on a configured GPIO pin) until
either the buffer is filled or a termination sequence is initiated. This is done either
with a signal message from pressing the ctrl+c combination or with a physical but-
ton connecting specific GPIO pins. The interrupt handler immediately acquires a
timestamp using the clock_gettime() function from the sys/time.h library and
adds it to the buffer. The code snippet in Listing 5.2 shows an example of this

assignment.

Listing 5.2: Light barrier event timestamp assignment.

struct timespec current_time;
clock _gettime (CLOCK_REALTIME, &current_time);
VOID2TIMELB (aData)->
buffer ns[VOID2TIMELB (aData)->val_idx] =
(uint32 t)current _time.tv_nsec;
VOID2TIMELB (aData)->
buffer s[VOID2TIMELB (aData)->val_idx] =
(uint32 t)current _time.tv_sec;
VOID2TIMELB (aData)->
buffer_ isrticks[VOID2TIMELB(aData)->val_idx] = aTick;

++(VOID2TIMELB (aData)->val_idx);

After a termination condition is met, the ISR is disabled and the main thread
waits for the UART thread to gracefully finish and exit. Subsequently, all the
buffer contents are dumped into a Comma-Separated Values (CSV) format log file.

The length of the timestamps buffer and name of the log file can be specified by
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input arguments with keywords -1 and -o. Otherwise, a default buffer length is
used and the program asks for an output file name. The nanosecond precision
time values acquired from the clock_gettime() function are used for the eventual
time evaluation. The PiGpio ISR implementation itself provides a microsecond
timestamp of when the interrupt call was detected, however this value is given as
an elapsed period from OS boot time. Since this moment is not known globally, the
resulting timestamp could not have been used for comparison with the actual RTS

time values.

UART thread

This thread saves incoming data from the RTS and assigns timestamps, which are
used to evaluate the time it takes for the RTS measured data to arrive and be
available at the end device (faya in Fig. 4.2). All the incoming UART data from
the RTS is saved to a log file and an arrival timestamp is assigned to each full
measurement point, which is then being saved to a CSV format log file. Names for
these files are created from the single file name provided to the program by adding
a _uart and _uart_t modifier to the data and UART timestamp log, respectively.
The extension for the data log is by default always replaced with .log.

Listing 5.3: Synchronization of the UART transmission.

fprintf (stdout, "\n%s:, Synchronizing, ,UART transmission
u...\n", __argvI[0]);
uart_helper.curr_read_byte = serReadByte (handle);
while (((char)uart_helper.curr_read_byte !=
UART_RTS_EOT_CHAR) && start_logging)

{

if ((uart_helper.bytes_available =

serDataAvailable (handle)) > 0)

uart_helper.curr_read_byte = serReadByte (handle);

terminate = gpioRead (GPIO_TERMINATE_IN);
if (terminate || *(intx*)arg)

start_logging = FALSE;

The thread first waits for the beginning of a point by detecting the end ’>°
character (see Lis. 5.1 and 5.3). The RTS is sending its data continuously and
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this way, whenever the measuring program starts, the log will always begin with a
full point. After this, a continuous while loop checks for any available bytes on the
UART input. Whenever more than one byte is available, a time value is immediately
taken, again, using the clock_gettime() function. Now, if the read byte is a valid
character, it is saved into the data log file and if the previously read byte was the
end ’>’ character, meaning the current byte is the first character of a new point,
the acquired time value is saved into the timestamp log file. A predefined number of
initial characters from the incoming data is also displayed for verification purposes.
The code in listing A.1 shows an example of these procedures. If a termination
condition is met (by a ctrl+c signal message, button press or a call from the main
thread), the thread again waits until an end ’>’ character is detected, then saves all
opened log files and exits. This way, the log will also always end with a full point.
Abrupt physical disconnections might, therefore, cause the loop to hang indefinitely,
however these are not planned to happen. This time-stamping implementation has
a drawback however. As it is described, the saved timestamps are really the times,
in which the first byte of a measurement point was read by the program from the
UART buffer, and not when the particular byte was actually presented into the
buffer. This means that an error resulting from the time it takes to read out a
character from the UART buffer is added to the time in which it actually was first
available.

Delay between sending and reading on UART
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Fig. 5.10: Loop-back test of RPi UART read delays.

67



This error however, is not expected to reach the order of milliseconds. To evalu-
ate this, loop-back testing was done with the RPi UART port, where the output Tz
pin was connected directly to the input Rz one. A simulated RTS data stream was
continuously being sent by the main thread and the secondary UART thread was, in
parallel, continuously reading the arrived bytes. Each sent out point had an associ-
ated sending timestamp and each received point was being ordinarily timestamped
by the process described above. From this, an internal RPi-related delay could be
estimated, representing the difference between the time of sending a character and
the time of reading the character from the UART buffer. The result of one test can
be seen in Figure 5.10. The delay is generally below 800 ps and it is reasonable to
assume that the time it takes to read a character from the UART buffer, after it
had already appeared, should be even smaller that this. Also, a maximum num-
ber of 8 bytes was left in the buffer at any point in time, which at a baud rate of
115 200 bits/s would lead to a discrepancy of about 556 ps until a byte is actually
read out from the buffer. The total length of the UART buffer is 4096 bytes.

Last read character before ISR call
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Fig. 5.11: Testing interrupt-driven time-stamping on UART.

An attempt was made to make the UART time-stamping also interrupt-driven,
however shortcomings of the chosen HW solution have shown up. The premise
was as follows. The incoming data would be split into two paths. One would go
directly to the UART interface and the other to a GPIO pin, which would have
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an ISR handler associated with it. Whenever an end ’>’ character was detected
on the UART interface, the ISR, which would detect the first falling edge and
immediately acquire a timestamp, would be enabled. After the handling would be
done, the ISR would be disabled and enabled again only when the next end >’
character arrives at the UART interface. This way, true time values of when the
starting character physically appears on the end device could have been acquired.
However, after initial tests, the process of disabling and re-enabling the ISR on
the Raspberry Pi ultimately took longer than was the actual period between two
arriving data points. The mechanism was not able to keep up and often timestamped
characters much later within the point or skipped the full point altogether (see Fig.
5.11). This method was, therefore, abandoned and not pursued any further. The
approach was taken from Sama et al. [49]. However, they were using a dedicated
Digital Signal Processor (DSP) with specialized Input Capture (IC) interfaces for
the time-stamping and the whole process, together with UART handling, was fully
[SR-driven.

5.3.5 Summary of the main procedures

A fully connected reference measurement setup ready for experiment can be seen
in Figure 5.12. The experiment component layout and data flow can be seen in
Figure 5.13. To summarize, the main procedure for the pendulum experiment was
as follows.

1. The Panasonic light barrier sensor setup was placed on the ground, defining
the exact pendulum rest position (see Fig. 5.5).

2. The RTS was placed at the desired distance from the pendulum and aligned
as described in Section 5.3.1 (see Fig. 5.6).

3. The Base Station point was set as the origin of the coordinate system and the
Back Sight was measured at the pendulum rest position.

4. Data output from the RTS was started with labels shown in Figure 5.8 and
TRK mode was set.

5. Executing the SetUpEnvironment script, necessary configuration on the TSC7
was performed.

6. PTP synchronization between the RPi and TSC7 with both Windows logs
(see Sec. 5.3.2) was initiated with the StartMeas script and provided log file
name. The Linux master node was started by the sync_ptp_master script.

7. After a first successful clock correction, confirmed using the QuerySyncStatus
script, the measurement program on the RPi was started by executing the
measurewargs script and providing the output file name.

8. After the measurement process was finished, first, PTP synchronization was
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Fig. 5.12: Fully connected reference measurement setup. Panasonic sensor: left,
Raspberry Pi: middle, RTS data output: right.
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Fig. 5.13: Block diagram of the experiment layout and data flow.
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stopped by executing the StopMeas script in Windows. This saved the neces-
sary Windows log files (see Tab. 5.1). The Linux master node was left running
if any subsequent measurements were to be made.

9. Finally, the measurement program was stopped (by ctrl+c termination or

a button press). The RTS data output, light barrier timestamp and UART
timestamp logs were saved (see Tab. 5.1).

10. If no further measurements were being made, the Linux master PTP node was
stopped and the TSCT controller reverted back to its original configuration by
the RestoreEnvironment script.

For each of the three measurement distances, at which the main experiment was
being done, static measurements were made as well. The pendulum, together with
prism, was left stationary at its rest point and a continuous data stream from the
RTS was collected with no reference data from the Raspberry Pi. This was done
once right after the station setup and alignment (before the experiments) and also
after all the measurements were finished. This provided a static baseline for the
RTS data and the particular configuration of the components at the time of each
measurement.

All the relevant different log types gathered during the experiment are shown in
Table 5.1.

Associated L
Log file . Description

device
. Raspberry Timestamps of sensor crossings, contain-

.CSV
Pi/Sensor ing teal.
Output data from the RTS, also contain-

*_uart.log RTS

INg fmeas-

Raspberry Data logged by the RPi UART thread,
Pi/UART also containing t,yai.

Data logged by the Windows Time Ser-

* uart_t.csv

*_w32tm.log TSC7 .
vice.

Data logged from the query command out-
*_w32tm_cst.log | TSCT ; 58 anery
put.

Tab. 5.1: Log files acquired during an experiment.
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5.4 Additional experiments and evaluation

Apart from the main pendulum motion experiment, several other tests to verify

different influences or parameters were done as well.

5.4.1 Measurement rate analysis

A variability of the measurement rate could be seen in figures 4.3 and 4.4. As the
data is arriving, it seems that the measuring frequency is not constant, but rather
oscillates around the expected value, creating an average that approaches the desired
measurement rate. This variability was also seen in direct oscilloscope readings of
the outgoing RTS data (see Fig. A.9). Frequency of the RPi timestamps acquired
upon data point arrival on the UART interface (fayai) could be compared with the
apparent frequency of the RTS time data (fpe.s) to evaluate their assignment point
(see Tab. 5.1).

5.4.2 Aperiodic manual prism motion

Another set of experiments was made for each of the three distances. The basic
procedure was the same as for the main experiment. However, the pendulum arm
was being moved manually by hand at irregular intervals and different velocities.
Reference rest point crossing data was being acquired by the Raspberry Pi and the
same timestamp evaluation was performed as well. This provided a more chaotic

and unpredictive type of motion in addition to the periodic pendulum oscillations.

5.4.3 Lateral pendulum arm displacement

The prism was left stationary in the pendulum rest point position. Data output
from the RTS in TRK mode was again collected by the RPi the same way as with
the main experiment, but no reference time data was being collected. The pendulum
arm was then perturbed to induce as much vibrations as the structure allows in the
lateral direction (Northing axis). Ideally, this would again be performed for each of
the three experiment distances to verify the effect with each particular setup at the
time of experiment. However, only one test was done, where the RTS was placed at
about a 4.7 m distance from the pendulum. This test was mainly done to verify the
rigidity of the setup and the expected limits for the light barrier length. It does not
provide any significant conclusions for the main subject of this thesis.
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5.4.4 Horizontal prism rotation

This test was inspired by the research done in [14]. However, the methodology of
this test was not as precise and accurate as theirs, and these results should be taken

in a more informative rather than definitive way.

Fig. 5.14: Prism placement for horizontal rotation tests.

These tests were performed at two different distances. The prism was fully
screwed down as is shown in figure 5.14 and the RTS was placed on the ground
(below the height of the prism) at a horizontal distance of 4.6 m and 1.2 m. The
same station setup as with previous experiments was done, the coordinate origin
being at the Base Station point and the Back Sight being the measured prism
location. Subsequently a 10 Hz data output, TRK mode measurement was initiated.
The prism was then being slowly rotated on the screw by hand. A full 360 degree
horizontal rotation (visible prism elements in Fig. 5.14 moving to the right) was
performed and then it was rotated backwards (prism elements moving to the left)
to the original starting position. One test was done with 720 ° rotations. This was
repeated two to three times in one measurement run.

The drawbacks of this methodology are the following. First, the threads on the
screw and the hand rotation might create unwanted displacements influencing the
rotation-related data. Second, in conjunction with the horizontal rotation, the prism
was also moving up and down vertically as it was rotated on the screw, so a full
isolation of the effect of rotation might not have been achieved.

A solid relationship between the prism angle and the measurements might not

have been obtained here and a different test, where the prism would be precisely
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positioned at several specific known angles of incidence and measurements taken

without any movement, might also provide more substantial results in the future.

5.4.5 Safe prism velocity limits

Some conclusions can also be made from the fact that the RTS starts loosing data
as the initial starting angle, and with it the velocity, of the pendulum arm increases.
When the starting angle gets too wide, the RTS is not able to track and looses
the prism instantly. Tests with several different starting angles were run and the
data already gathered from the experiment runs could also be used to estimate the
velocity limits.

This test, again, is not ideal as the prism velocity is not controlled and depends on
the starting angle and subsequent oscillation amplitudes. What is more, the velocity
values are calculated from the actual RT'S measured angles. A much more reasonable
and expansive experiment could be made in the future, where a constant linear
(or angular) velocity would be maintained and gradually increased to the point of
measurement failure. The velocity would also need to be measured implicitly on the

moving target as opposed to being calculated from the imperfect RT'S measurements.
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6 Result processing and evaluation

This chapter will provide the final results from the above extensively described
experiments. The data processing methodology will first be explained and then
conclusions that can be made from the performed measurements will be stated.
Concluding, perhaps unconventionally, with also some other potential alternatives

to the presented navigation problem solution.

6.1 Main experiment data interpretation

6.1.1 Data processing and evaluation tools

Table 5.1 showed all the acquired log files that were used for the subsequent data
processing and evaluation, which was performed in the Matlab environment. These

logs, whenever mentioned, will be from now on referred to by their associated device.

RTS log parsing and data extraction

A custom Matlab function had to be created to parse data gathered from the RTS,
since the proprietary format (see Lis. 5.1) is not easily loaded into the environment.
The function parselog_TrimbleS reads the RTS log file and creates a matrix from
this acquired data, organizing them into a standard spreadsheet-style format, where
columns represent all the different quantities (time, angle, distance, easting, etc.)
and rows the individual full measurement points. The function also handles in-
complete data (e.g. missing quantities) or dropouts in the measurement. For this,
apart from the log file location, the function also takes a second argument, which
is a vector of all the expected quantity labels in their expected order. A full point,
ending with the ’>’ is loaded into a temporary buffer. The quantity labels and their
corresponding values are extracted and the labels are referenced with the provided
quantity label vector. If at any point during parsing an expected quantity label is
missing or the label is missing a value, the corresponding value field is filled with a
NaN and the user is notified by a warning about the corrupt points and their missing
quantity labels (see Lis. 6.1).

Listing 6.1: Example of a found corruption in the RTS data.

06-May-2021 20:07:31 Parsing RTS log
Warning: Missing data value with label ’52’ at point 598
(line ~6569 in log)! Missing values filled with NaN,

check for data corruption.
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> In parselog_TrimbleS (line 115)
In analyzeData_scr (line 128)
06-May-2021 20:07:32 Done, time elapsed: O min. 1.091648 s

The function also informs about an unexpected ordering of the read labels. If
more quantity labels than expected are found, it exits, prompting the user to provide
a different vector. Using this function, the acquired RTS data could be quickly and
efficiently loaded and analyzed.

TSC7 log parsing and data extraction

The TSC7 logs contain vast amounts of information and a parsing scheme had to
be devised for them as well. Contrarily, a different approach was taken, where a
PowerShell script (ParseLogData) in conjunction with a simple parsing program
written in C was used. The most relevant entries in these logs are the PTP synchro-
nization statistics and error states. These are contained inside the Windows Time
Service and query command logs, respectively. The log files are natively created in
Unicode formatting and first had to be reformatted to UTF-8 in order to be used
in subsequent steps. The script then uses the findstr /i command (with either
a ’offset:’ or ’error:’ search phrase) to retrieve content lines containing the
required data values and calls the parsing program (dataparser.exe), which filters
the remaining text, extracts the numerical values and formats them into a final CSV
file. This could then be easily loaded into the Matlab environment and used for fur-
ther processing. The parsing program is a modified version of a utility, the original
of which had been created and published on github at a time before the writing of
this thesis [50].

Time data interpretation

The different time values from all the acquired logs had to be converted into a
common uniform frame, in which they could be compared and evaluated. Even
though time data from both, the RTS and the TSC7 logs comes from the same
TSCT time source, their value format was ultimately different. Therefore, three
Matlab functions were created:

e parsetime_TrimbleS,

e parsetime_RaspberryPi,

e parsetime_TSC7,
performing the necessary conversions of the RT'S, Raspberry Pi and TSC7 time data
respectively. As can be seen from label 52 in Listing 5.1, the RTS time data format

is |HH| . |mm|ss|msms|. These are in a 24-hour local Coordinated Universal Time
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(UTC) time, respecting the current timezone location. The parsetime_TrimbleS
function converts them using relation 6.1, where N = 1e3, into their native millisec-
onds.

(Hours - 3600 4+ Minutes - 60 + Seconds) - N, (6.1)

where N is the scale, which converts seconds to the desired time unit.

An RPi time data value consists of two parts: the elapsed UNIX epoch seconds
and the elapsed nanoseconds since this time. These UNIX epoch time values were
converted into the same UTC time frame as the RTS data. The UNIX epoch seconds
are easily converted to a UTC time value using the datetime () Matlab function.
Since the RTS time values account for the local timezone, a correct UTC offset has
to be known to correctly perform rest of the conversion. During the writing of this
thesis a Daylight Saving Time (DST) clock shift had occurred, resulting in some of
the logs requiring different UTC offsets. So to make the conversion convenient and
universal across all logs, the parsetime_RaspberryPi function was made to take a
date value argument, from which it can automatically determine the correct UTC
offset, as well. This date is specifically taken from the RTS data log (see Lis. 5.1,
label *517). This way, the conversion is always tied to the particular time frame
of the RTS log, respecting its timezone. Finally, the resulting time values can be
converted using relation 6.1, where N = 1e9 and applying the correct UTC hour
offset, into nanoseconds and joined with their nanosecond part.

The Windows Time Service logs maintained a timestamp value for each new
appended entry. These values were not particularly used for any evaluation and they
were only useful when plotting the actual relevant PTP synchronization statistics to
maintain a common horizontal axis with all of the other graphs. If they were to be
used this way, however, they still had to be converted since their default format was
UTC+0 with a 7 decimal place fraction of a second. Hence, the parsetime_ TSC7
function also takes a date value argument to calculate the correct UTC timezone
offset and converts the time values into nanoseconds using relation 6.1, where N =
1e9.

RTS data processing

A Matlab script (analyzeData_scr) globally handles all the data processing and
outputs the resulting graphs or statistics. After all data from the logs had been
parsed and loaded into the environment, the actual processing could be performed. If
the data contained any initial or ending points with a corrupt or missing time value,
they were cut off. A warning message informs of any such corruptions remaining in
the middle of the data.
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The angle values were converted from gon units to degrees (see Sec. 2.2). They
were also shifted from a o € [0,360] ° range to a € [0,£180] °, where the zero
reference azimuth had already been conveniently set up during the experiment. The
vertical starting angle was shifted from the zenith to the pendulum rest point and
flipped so that the angle values increase upwards from the rest point. This made
for a more convenient visualization of the values.

Figure 6.1 shows an example of the performed pendulum motion in local coor-
dinate space. In can be seen that oscillations were being done in the Fasting axis
and, in this particular example, a displacement of max. 13 mm was present in the
Northing axis as a result of imperfect alignment of the RTS. This slight rotation
should have a minimal impact on estimation of the rest position. An example result
of a near-perfect perpendicular alignment can be seen in Figure A.4.

Figures 6.2, 6.3 and 6.4 show the angle, timestamp and Fasting coordinate values
from this particular run of the experiment. A clear indication of data loss is visible
from all of these figures. This log did not have any missing or corrupt values and it
is in fact all the data as it was arriving from the RTS. A further discussion of the
this and the dependency of data fidelity on distance, prism velocity and the starting
angle will be presented in Section 6.3.5.

log: 03_488cmRTS_uart
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Fig. 6.1: Prism motion in local coordinates.

As can be seen in Figure 6.4, interpolation of the Fasting data had been per-
formed. The points arriving from the RTS were varying in frequency and there was

no guarantee that they would always collide with the precise pendulum rest point.
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log: 03_488cmRTS_uart
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Fig. 6.2: S9 HP RTS angle values in time (from motion start to end).
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Fig. 6.3: S9 HP RTS time data (full log duration).
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log: 03_488cmRTS_uart
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Fig. 6.4: S9 HP RTS Easting data with interpolated zeros.

That is why the exact rest point values were obtained by interpolating between each
zero-bounding pair of the RTS data points. A closeup of this is shown in Figure 6.5.
Since ENU coordinate data is of particular interest for the purposes of UAV naviga-
tion, Fasting values were used together with the timestamps for this interpolation.
A point might be made that the horizontal angle values would be more accurate and
reliable data to use, however no significant difference was observed in the results.

Before the interpolation begins, a starting and ending point is automatically
found within the data. The beginning is easy to find as it will always be the maximal
achieved distance (or angle) and the experiment was always, conveniently, started
from the same direction. The end is obtained by finding the first point where no
significant movement beyond a certain threshold (in order to account for noise) is
observed. This step is visualized in Figure A.5. Subsequently, the closest-to-zero
points within this area are found for both the positive and negative side (see Fig.
A.6). In some cases there might be a point which does hit the rest position at zero
exactly, in which case no interpolation is being performed for that section and the
true zero is used. A simple linear interpolation is sufficient if the sections are small
enough. Typically, a section was about 8 cm long.

Millisecond time values obtained from the parsetime TrimbleS function and

meter position values are converted to nanoseconds and millimeters respectively.
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Fig. 6.5: S9 HP RTS Easting data with interpolated zeros (closeup).

Within each zero bounding two-point section, positions are linearly spaced out by
a step of 1 pm (or generally one one-thousandth of the input value). Time values
are then interpolated onto each of these points. This way, all zero-crossing sections
are densely populated by interpolated data (see Fig. A.7). Generally, this method
had always found an exact zero position, however if for any reason that was not the
case, the value closest to zero was taken. All of these steps are done by the created
interpOpass and getOpoints functions, where the final output, apart from other
data, is a matrix containing the zero position with its corresponding time value for
each rest point crossing. This process is also able to handle imperfect or partially
incomplete forms, especially at the beginning, but naturally these points are not
going to be trustworthy since the resulting sections might be too long, or a single
point could be assigned where two physical passes happened. However, this would be
a result of incomplete data and not an inherent fallacy of the interpolation method.
The interpolated points were visible in figures 6.4 and 6.5. The resulting timestamps
are already expressed in nanoseconds and can be directly compared with the RPi
sensor timestamps to estimate the RTS measurement delay (Apeas, Fig. 4.2).

The last processing step is estimating the expected theoretical error given by
the potential asymmetricality of the reference measurement setup. As the prism-

mounted extension is crossing the light barrier from the left side (i.e. returning
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pass), it will break the barrier at a different position (and earlier time) than from
the right side (i.e. forward pass), and therefore slightly offset timestamps might be
acquired. This is easily visible from the old setup seen in Figure B.1 on the right

and Figure 6.6.

Extension Sext.
Sensor —
€<

Sslit
Sext. - Sslit

—

Fig. 6.6: Derivation of the setup asymmetricality error.

The extension cannot be narrower than the sensor’s emitting and receiving slits
since it must completely obstruct the beam in order to trigger a change. The actual
setup used for these experiments, which was presented in Figure 5.3 minimizes any
potential occurrence of this error by using en extremely thin slit sensor and making
the extension as thin as possible (see Sec. 5.1). Since the width of the extension is
known and the velocity of the pendulum near the crossing point can be estimated
from the densely interpolated values, the time which it takes to move from a barrier-
breaking position of the returning pass to the barrier-breaking position of the forward
pass can easily be calculated. This distance is a very small portion of the oscillation
and it can be considered linear without any curvature. Therefore a simple linear

velocity equation can be used for the calculation (Eq. 6.2).

Sex - Ssi
fopy = ot Dslit (6.2)

Uprism

where
ot is the estimated expected error,
o Seyt. is the width of the extension,

e St is the width of the sensor’s slit,
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* Uprism 1S the prism velocity near the rest point.
This resulting asymmetricality error is introduced to the data as a correction, by
adding it to each corresponding RPi timestamp. Both, corrected and uncorrected

values will be plotted together in the following graphs.

6.2 Main experiment results

6.2.1 Raspberry Pi timestamp validation

The RPi timestamps can also be evaluated using the ISR ticks provided directly by
the PiGpio implementation at the sensor interrupt event after shifting both of them
to a zero start value. These are defined as microsecond ticks since boot time (see Sec.
5.3.4). Since both types of these stamps were taken at the same event, they should
not deviate from each other significantly. Figure 6.7 shows their difference (the first
point is zero since both were shifted to a zero start) and it can be seen that they
did not deviate by more than 300 ps throughout a performed experiment. Other
experiment runs showed the same result. As there is no significant deviation, the
local time timestamps acquired by the clock_gettime () function could be accepted

as reference for the RTS measurements.
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Fig. 6.7: Comparison of two different time values acquired at the RPi ISR event.

6.2.2 Single main experiment run overview

The RTS position measurement delay (A peas, see Fig. 4.2) was established as the
difference between the RTS and the reference RPi timestamp (fmeas — treal). Both
time series were parallel shifted to start according to the first RPi value. Since
a delay is expected, these differences should be positive. Figure 6.8 shows results
from the single experiment run that has been used as an example so far. Figure 6.9
presents the estimated delay in a histogram. The aforementioned corrections are

also displayed.
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Fig. 6.8: Comparison of the RT'S and RPi timestamp values (single run).
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Fig. 6.9: Histogram of the RTS position measurement delay (single run).
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Figure 6.10 shows a comparison between the delays of forward and returning zero
point passes before any applied corrections. An expected offset with the returning
passes creating a higher final delay because of the earlier timestamp acquisition is

seen, however the difference is small and the setup was not far from being symmet-

rical.
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Fig. 6.10: RTS position measurement delay with split passes (single run).

These graphs contain all the experiment data together with the sparser begin-
ning section, which might not provide trustworthy results. The time delay in this
experiment run clusters around the 100 ms mark with a median of 112 ms before
corrections. An average of the calculated expected asymmetricality errors was 7 ms
with a maximum of 84 ms at the last point where the velocity was the smallest. It
can be seen that the RTS measurement delays tend to increase rapidly towards the
end section as the pendulum moves gradually slower until its complete stop. This
was observed in every experiment run. This may have been caused by the prism
covering gradually shorter distances from the central rest point, effectively forcing
the RTS to operate further within its highest error range due to the experiment
layout (see figures 5.6 and 2.4). However, a definite conclusion cannot be stated
and more experiments with varying RTS positions and orientations could have been
done to evaluate this hypothesis. Since the expected asymmetricality error also rises
with decreasing pendulum velocity as it takes more time for the extension to cover
the error distance (see Figure 6.11), the ending section was not trusted for the final

evaluation.
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Fig. 6.11: Asymmetricality error with respect to prism velocity.

From the above stated, it is clear that both the beginning and ending sections
might not provide trustworthy results, therefore a middle part from the movement
was always taken, starting from a point with dense enough original data and ending
with a point where the calculated asymmetricality error is not higher than 20 ms.

The data propagation delay (Apop, see Fig. 4.2) was established as a difference
between a RPi UART and RTS timestamp (fayaii —

the data set regardless of a pendulum rest position pass. This can be seen in Figure

tmeas) for each of the points in

6.12. This delay was around 24 ms.
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Fig. 6.12: Comparison of the RPi UART and RTS timestamp values (single run).

PTP behavior can be seen in figure A.8. After the initial spike, all synchroniza-
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tion offsets were within 200 ps throughout the whole experiment. A single error was
detected by the query command. Results obtained with the old setup within the

semestral part can be seen in supplement B.

6.2.3 All main experiment runs evaluation

Several runs of the main experiment as it was shown in Section 6.2.2 were performed
at three different distances (approximately 1.5 m, 2.7 m and 4.9 m). For each
distance around four to six runs were done with a wider and narrower starting
angle resulting in a total of 34 experiment runs, some of which contained unusable
data. For easier comparison of the individual runs, each will be encompassed into a
single boxplot, where the top and bottom box boundaries indicate the 75th and 25th
percentiles, respectively. The mark shows the median value and whiskers extend to
maxima and minima before outliers, which are plotted independently. Only data

without the beginning and ending sections was processed for all of these results.
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Fig. 6.13: RTS position measurement delay (all runs, 4.9 m distance).

As can be seen in figures 6.13 and 6.14, all the experiment results vary around a
110 ms mark. The first three results in Figure 6.13 in both sections were obtained
with a more perpendicular RTS alignment (see Fig. A.4) than the other runs, with

only a 5 mm displacement in the Northing axis. All of the other experiment runs had
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Fig. 6.14: RTS position measurement delay (all runs, 2.7 m distance).

a displacement between 10 mm and 20 mm. However, it is not clear whether only
the alignment had any effect on the higher delay results. The reader might also be,
misleadingly, tempted to compare the 280 ms outlier in Figure 6.13 on the right with
data displayed earlier in Figure 6.8, however that particular shown experiment run
corresponds to batch number 6 on the left side. Figure 6.15 only shows the narrow
starting angles since at the 1.5 m distance, the RTS was not able to maintain lock
on the prism with a wider start angle and always lost track of it. Some outlying
values, which were contained within the max. 20 ms expected asymmetricality error

(see Sec. 6.2.2) cutoff are also visible.
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Fig. 6.15: RTS position measurement delay (all runs, 1.5 m distance).
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A combined histogram of the RT'S position measurement delay for all the experi-
ment runs at all three distances is shown in Figure 6.16 and a combined histogram of
the propagation delay in Figure 6.17. Beyond axis limits and not shown are outlying
values with counts smaller than 5. Again, results from the old setup are shown in
supplement B.
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Fig. 6.16: Histogram of RTS position measurement delay (combined results).
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Fig. 6.17: Histogram of RTS data propagation delay (combined results).

Measurements, where the prism remained stationary at the pendulum rest point
were used to verify the behavior of the setup. This had been done twice for each RTS

distance, before and after any measurements. No significant differences between
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these tests were observed and as expected the Fasting and FElevation coordinate
values stayed at a constant zero throughout the whole measurement. In each case
before experiments, minor drifts were observed in the Northing axis with a maximum
5 mm deviation in two cases, which is also visible from the EDM slope distance
measurement shown in Figure 6.18 on the bottom (values where shifted to start at
zero). For measurements done after experiment runs, no drift was present and only
offsets of + 2 mm max. were seen. All angle values were staying within thousandths
of a degree. The distance (and with it naturally all three coordinate) vales change
with a quantization step of 1 mm, which is in line with the < 2 mm precision
given in the documentation. The observed accuracies were also all within the given

parameters.
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Fig. 6.18: RTS data with prism stationary at rest point.

6.3 Additional experiments results

6.3.1 Measurement rate analysis

As can be seen in figures 4.4 and A.9, the intervals between points sent out by the
RTS seem to have a similar variability to that of the timestamps within the data.
RPi UART and RTS timestamp values throughout the whole logging interval of
the experiment runs were analyzed. Point-to-point differences of both time series

were compared and Figure 6.19 shows a correlation between these two obtained
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frequencies for a particular experiment run. On the right is a distribution of the

difference between them, gathered from all experiment and test logs.
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Fig. 6.19: Comparison of RPi UART and RTS timestamp frequencies.

Two assumptions can be taken from this. If the timestamps are being assigned
at the moment of measurement, this means that the data has to be sent out imme-
diately after a measurement is done. Or they are only assigned at the moment the
data is being sent out through the serial interface, which would mean that the exact
time of measurement is still unknown.

Additionally, these measurement periods seemed to be generally higher when
the prism was moving compared to stationary measurements, however no additional

tests were done to further evaluate this observation.

6.3.2 Aperiodic manual prism motion

For each RTS distance, a set of four tests was made with manual movement of the
pendulum arm at varying velocities, as can be seen in Figure 6.20. From a total of
12 runs, all data was usable. Figures 6.21 and 6.22 show the results. Again, the
delay values cluster around the 110 ms mark. No data is beyond axis limits. Figure
6.23 shows the data propagation delay from these tests. In this case, values with

counts less than 5 are again, not shown.
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Fig. 6.21: RTS position measurement delay (manual motion).
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Fig. 6.23: Histogram of RTS data propagation delay (combined results, manual

motion).

6.3.3 Lateral pendulum arm displacement

To test the rigidity of the pendulum arm in the lateral direction, a simple test,
where it was manually perturbed to vibrate as much as possible at the rest point,
was made. As a consequence, slight oscillations in the Fasting axis were also cre-
ated. However, the most relevant result shown in Figure 6.24 is that even with a
forceful perturbation, displacement in the Northing axis was not larger than several
millimeters and the construction should not have interfered with the experiment
results significantly. These displacements are expected to be even smaller when the
pendulum is set to oscillate naturally in the Easting axis. The physical light barrier
length was set to 5 mm, which in conjunction with the 2 mm rod extension leaves
a free space of only 3 mm for such oscillations. This was not exceeded as the rod

extension was not observed to break during the experiments.
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Fig. 6.24: Maximum pendulum arm displacement in the Northing axis.

6.3.4 Horizontal prism rotation

The final additional set of tests was done to verify the effect of prism orientation on
the RTS measurements. Some conclusions might be made, however better designed
experiments should be performed for stronger and definite correlation estimations
(see Sec. 5.4.4). The main outcome here is a maximal measured deviation of angles
and distances while the prism rotates.

Several consecutive 360 degree rotations back and forth within one test run were
made, with a total of three test runs. First two were done at a 4.6 m distance, the
third one at 1.2 m. Results from one of the runs are shown in figures 6.25 and 6.26.
Jumping behavior between the prism elements is clearly visible, however a further
rotation angle correlation was not made. A maximum deviation of both axes was
4-bmm. At 1.2 m the jumps increased up to 10 mm (Fig. 6.27). A fourth test with
double rotations (720°) back and forth was made, however there was no difference
in the results. Given the chosen main experiment methodology (see Sec. 4.3), these
deviations might also be reflected in the resulting time delay estimations as the angle

of incidence on the prism was changing during its motion.
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Fig. 6.25: Angle deviation with horizontal prism rotation (4.6 m distance).
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Fig. 6.27: Fasting deviations with horizontal prism rotation (1.2 m distance).

6.3.5 Safe prism velocity limits

As is seen in Figure 6.28, the beginning sections with highest prism velocities con-
tained sparser data than the rest of the motion. From the already acquired data
and some additional tests, an evaluation of these limits could to some extent be
performed. Furthermore, this evaluation does not depend on the light barrier sensor
setup since only data from the RTS is being evaluated. That is why, in this case,
acquired data from old experiment runs performed during the semestral part were
also included. They are still labeled as old in the legend to make a clear distinction
between the them and new data sets.

The first 4 periods of motion were always taken from each measurement run.
The number of points contained within these periods was extracted and maximal
velocities calculated. As is seen in Figure 6.28, the data acquires its full fidelity after
a certain number of periods as the peaks of oscillations (and velocity) get smaller.
To be able to compare relative data loss of an incomplete data portion from a full
fidelity picture, only periods that do not contain the full recoveries should make it
to the comparison. Otherwise the fully recovered periods would skew the results
towards a lower relative data loss. That is why 4 periods of motion were chosen,
where it was always guaranteed that the data, if it contained such losses, does not
recover in this interval.

The expected maximal prism velocities according the the RTS specifications (see
Sec. 4.1) are 3.0 m/s, 5.3 m/s and 9.7 m/s for 1.5 m, 2.7 m and 4.9 m respectively.
These were calculated using the actual measured distances by the RTS rounded
to cm precision. As can be seen in Figure 6.29, top left, data integrity decreases
with a wider starting angle and with increasing velocities (top right). The velocity
values were calculated as a gradient of the acquired angles in time, multiplied by
the distance measurements. 80 to 90 points was the maximum observed within the

four periods. The lowest was 30 to 40 and beyond that, with wider starting angles,
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the RT'S completely lost track of the moving prism. Data from the old experiments
also follows the general trend. A set of points at the 4.9 m distance was marked
with a different color (purple). These are the runs, which contained visibly higher
results of the measurement delays in Figure 6.13.

There are limitations to this procedure however. First is the obvious velocity
estimation from the actual imperfect data and a lack of precise control of this velocity
(also see Sec. 5.4.5). A sharp turn in the velocity data can be seen, which is a result
of unreliable calculations from too sparse data. Velocities higher than around 2 m/s
were not reliably calculable. However, if the trend was to be extended, it might be
reasonable to assume a cutoff at around 3 m/s. Second, changing environmental
conditions could have affected the results as, for example, the data integrity might
have been influenced highly by changing light conditions, which was not controlled
for in these experiments.

A decrease of data fidelity with increasing RTS distance is not an expected
result (Fig. 6.29, bottom right) and this might have been influenced by several
factors, processing errors included. One hypothesis might be that the TOF distance
measurement took a longer time at the greater distances resulting in less acquired
data points during the prism’s motion. However, further experiments would have
to be done to verify this. Also, the data from narrower starting angles tends to
cluster around higher values regardless of the distance. It is only the wider starting
angle data points, that seem to follow such a trend (specifically, the 2.7 m and 4.9 m
results). It is also important to mention that no wider start angle data is available at
the 1.5 m distance since there, the RTS was not able to maintain lock on the prism
at all. Another thing which should be verified is the extent to which acceleration
and rapid change of direction could have an effect on data integrity. It might be the
case that the RTS is in fact able to track with higher velocities without data loss

and it is these rapid changes that have a larger effect on the data.
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Fig. 6.30: RTS position measurement delay with max. prism velocity (combined

results).
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The last evaluation stemmed from the visible rise of measurement delays as
the pendulum was gradually halting to a stop (see Fig. 6.8). As was mentioned
in Section 6.2.2, these ending sections were not included in the final measurement
delay evaluations, with a cutoff defined by the expected asymmetricality error of
max. 20 ms. For this evaluation, maximal prism velocities were compared with
the resulting time delays for all of the main experiment runs. Results from the
old setup were not used in this case and peak velocities were calculated from the
whole motion, excluding the initial segments with reduced data. Figure 6.30 shows
a combined plot from all of the the main experiment results, where a sharp rise in
delays is visible at very low velocities. Some points appearing beyond the 2 m/s
limit are hidden from view as these were single outlying values in any particular
data set. These results might be caused by the asymmetricality errors that are also
increasing at lower velocities, however even the points which are not expected to
have these errors follow the same trend. Nonetheless, equivalent shortcomings of

the evaluation apply here as well.

6.4 Alternative navigation solutions

The results presented in the preceding chapters showed measurement delays of about
110 ms to 120 ms from true position time and limitations on target’s dynamic
properties. An interesting area of research is presented by Yang et al. [51] in
using a Laser Tracker for the moving object navigation task. Several orders of
magnitude higher accuracies of these devices might circumvent current limitations
of RTSs, however different obstacles emerge within this solution as well, with even
less tolerance to rapid dynamic target motion changes. The authors devised a new
system for dynamic laser tracker measurements, which might make these devices
even more favorable than RTSs for navigation tasks in the future.

A completely different and more obvious approach is presented by Retscher et
al. [52] in using radio waves for localization and navigation inside buildings. This
completely eliminates the direct line of sight necessity and would be more effectively
expanded throughout the whole building interior. However, despite the favorable
scalability of this solution, the positioning accuracies of these methods are still by

at least an order of magnitude lower than the RTS solutions.
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Conclusions and possible improvements

This thesis touched on the principles of position measurement with a total station
and attempted to investigate their possible applications in more unconventional
scenarios, such as UAV navigation in GNSS-denied environments (see Chap. 2).
Chapter 3 described the parameters and basic operation of Trimble RTSs available at
the UAMT institute of Brno University of Technology. Chapter 4 provided a deeper
elaboration of the theoretical and practical problems of kinematic RTS position
measurements, and outlined the reasoning behind and requirements for suitable
evaluation experiments. A practical realization and implementation details were
then shown in Chapter 5. Finally, all obtained results, together with their processing
methodology, were presented and described in Chapter 6.

Initial tests showed a lack of a 10 Hz measurement rate functionality on the
Trimble S7 RTS, however it was fully available on the S9 HP (see Sec. 4.3.3).
Potential benefits of the available SX10 for future research were outlined and a
completely new option in the Trimble UTS devices was briefly noted (see Sec. 4.1).
Several evaluation experiments were performed with the 59 HP RTS, from which
more than a 100 ms position measurement delay, when compared to a reference true
measurement time, and a data propagation delay of around 26 ms were shown (Sec.
6.2.3). A correlation of RTS-assigned timestamps with serial port arrival rates was
proposed (see Sec. 6.3.1). A limited analysis of RT'S parameters’ dependence on
the target’s dynamic properties was performed (Sec. 6.3.5). Position deviations of
up to 5 mm, which could have contributed to the high delays were also shown from
various additional tests. The reference measurement setup components should not
have contributed to the final results with errors higher than around 1 ms. The data
for processing was constrained to a max. 20 ms theoretical asymmetricality error
caused by the sensor-rod setup, however the resulting offset was only at several units
of milliseconds.

Alternative operation solutions for the RTSs, such as described in Section 3.7,
might further mitigate the measurement delays. Generally, higher data transfer and
measurement rates, which might also indicate better inter-component synchroniza-
tion, are favorable. Larger distances from targets are preferred in order to maintain
successful target tracking, however safe operational velocity (or possibly accelera-
tion) ranges might be limited to only below several units and above tenths of m/s.
A suitable orientation relative to the target’s path should also be considered.

As it currently stands, the tested Trimble S9 HP in its presented configuration
would be capable of navigating small UAVs at reasonably low velocities with smooth
trajectories, however a further expansion of its applicability through a reduction of

measurement delays by custom operation solutions might be preferable. Further
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verifications of a desirable RT'S position might also lead to even lower delays. Alter-
natively, other higher grade total station models might provide even more satisfying
results. Overall, robotic total stations might provide an accurate UAV navigation
solution for indoors and other GNSS-denied environments when correctly set up.
Their cumbersome scalability is still balanced by higher positioning accuracies when

compared to more easily scalable options.

Possible additional work and improvements

Several other experiments could have been made to verify the effect of the RTS’s
alignment and position on the obtained results. A further measurement rate anal-
ysis, providing a better quantification of the RTS’s behavior and more tests with
different RTS devices, estimating any further benefits and differences could also have
been made. Limitations of the additional performed experiments could be eliminated
by, for example, utilizing a second light barrier or an encoder, which would provide
more accurate and independent velocity estimations. Better prism rotation tests
could have estimated a precise angle relation. Different types of motion, such as
linear or circular, would also have been beneficial, singling out any other potential

negative interferences that the current setup might have had on the results.
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https://docs%20.microsoft.?com/en-us/windows-server/networking/windows-time-service/?configuring-systems-for-high-accuracy
http://github.com/Imaniac230/SimpleDataParsing
http://github.com/Imaniac230/SimpleDataParsing

Symbols and abbreviations

API Application Programming Interface
BUT  Brno University of Technology
COM Communication

CPU  Central Processing Unit

CSV Comma-Separated Values

DR Direct Reflex

DSP Digital Signal Processor

DST Daylight Saving Time

EDM  Electronic Distance Measurement
ENU  East, North, Up

FEEC Faculty of Electrical Engineering and Communication
FEKT Fakulta elektrotechniky a komunikacnich technologii
FPGA Field-Programmable Gate Array
GNSS Global Navigation Satellite Systems
GPIO General-Purpose Input/Output
HW Hardware

1C Input Capture

ISR Interrupt Service Routine

12C Inter Integrated Circuit

LAN  Local Area Network

LED Light Emitting Diode

NFC  Near Field Communication

NIC Network Interface Controller

NMEA National Marine Electronics Association
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NTP

oS

PC

PLC

PTP

RAM

RPi

RTK

RTS

SDK

STD

STS

SW

TOF

TRK

TTL

UAMT

UART

UAV

Ul

USB

uTC

UTS

vUT

Network Time Protocol
Operating System

Personal Computer
Programmable Logic Controller
Precision Time Protocol
Random Access Memory
Raspberry Pi

Real Time Kinematic

Robotic Total Station

Software Development Kit
Standard

Scanning Total Station
Software

Time of Flight

Tracking

Transistor—Transistor Logic
Ustav automatizace a méfici techniky
Universal Asynchronous Receiver-Transmitter
Unmanned Aerial Vehicle

User Interface

Universal Serial Bus
Coordinated Universal Time
Universal Total Station

Vysoké uceni technické v Brné
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A Supplementary graphs, images and list-
ings

wa Y B p— T % 0 HA76.5502 VA1037135 SD1797
@ wo | L B 0ss0 , W oseso i .

o A j
;Q‘
QA sPrismRest01
Q -0.0409
ight0 :
‘ )%%%55'9 1 %Igrllsmm
oBaseSt01

0.0000

0.5m

Fig. A.1: Coordinate orientation on the TSC7 (does not reflect the real experiment
layout).
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Fig. A.2: RTS data output. Left: before, Right: after conversion (bit values not the

same between images).
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Fig. A.3: Custom adapters for Panasonic EX-Z11 (left) and RS232 (right) data
output.
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