
B R N O UNIVERSITY OF T E C H N O L O G Y

Faculty of Electrical Engineering
and Communication

M A S T E R ' S THESIS

Brno, 2021 Be. Tomas Horelican

T
BRNO UNIVERSITY DF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND

COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF CONTROL AND INSTRUMENTATION
ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY

POSITION MEASUREMENT OF MOVING OBJECTS USING
A ROBOTIC TOTAL STATION
MĚŘENÍ POZICE POHYBUJÍCÍCH SE OBJEKTŮ POMOCÍ ROBOTICKÉ TOTÁLNÍ STANICE

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. Tomáš Horeličan
AUTOR PRÁCE

SUPERVISOR Ing. Tomáš Jílek, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021

T BRNO FACULTY OF ELECTRICAL
UNIVERSITY ENGINEERING
OF TECHNOLOGY AND COMMUNICATION

Master's Thesis
Master's study program Cybernet ics , Cont ro l and Measurements

Department of Control and Instrumentation

Student: Be. Tomáš Horeličan ID: 195315

Year of
^ , 2 Academic year: 2020/21

study:

TITLE O F THESIS :

Position measurement of moving objects using a robotic total station

INSTRUCTION:

The aim of the thesis is to evaluate the parameters and behavior of a robotic total station during continuous

position measurement of moving objects. In relation to the total station, the author is expected to assess the

properties or parameters that are not defined by the manufacturer (such as time delays and non-synchronous

data output). The intended application is UAV navigation inside buildings.

1. Search for and investigate the principles of robotic total stations, together with different methods for verifying

their parameters and behavior in the measurement of moving objects.

2. Explore the control elements and perform basic hands-on operation of the Trimble S7 and S9 total stations.

3. Design and implement experiments to define the main aspects of the device's behavior in moving object

measurement.

4. Process and evaluate the experimentally obtained data.

5. Suggest options for suppressing the identified negative properties.

6. Discuss the possibilities of using robotic total stations for U A V navigation inside buildings.

R E C O M M E N D E D L I T E R A T U R E :

R O B E R T S , Craig & B O O R E R , Peter. Kinematic positioning using a robotic total station as applied to small-scale

U A V s . J o u r n a l of S p a t i a l S c i e n c e . 2 0 1 6 , 6 1 (1) , 2 9 - 4 5 . I S S N 1 4 4 9 - 8 5 9 6 . A v a i l a b l e at:

doi: 10.1080/14498596.2015.1068232

Date of project
specification:

8.2.2021

Supervisor: Ing. Tomáš Jílek, Ph.D.

Deadline for submission: 17.5.2021

doc. Ing. Petr Fiedler, Ph.D.
Chair of study program board

WARNING:
The author of the Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno

ABSTRACT
This thesis deals with an emerging unconventional use case for modern theodolites, also
known as Robotic Total Stations (RTSs), as a tracking and guidance system, by mea­
suring the precise position of a dynamically moving object. This applies especially to
situations where conventional positioning systems such as GNSS are insufficient or com­
pletely unavailable. A kinematically acquired position from a constantly tracking RTS
could be used for real-time autonomous navigation of small Unmanned Aerial Vehicles
(UAVs), essentially providing them with a reference coordinate frame and an immediate
position within it. A significant part of this thesis is dedicated to the design and realiza­
tion of suitable experiments, which would estimate the reliability of this precise position
measurement in a precise moment in time. The S7 and S9 series stations from the
Trimble company were evaluated and an S9 HP RTS, which provides a continuous mea­
suring frequency of up to 10 Hz was then predominantly used for experiments. The local
time of a TSC7 controller, interfacing with the RTS, was being synchronized through
Precision Time Protocol (PTP) with the local time of a Raspberry Pi mini-computer,
which then provided a reference measurement of an object's true position in time. The
conclusion summarizes all obtained results.

KEYWORDS
theodolite, robotic total station, tacheometry, position measurement, kinematic mode,
navigation

ABSTRAKT
Práca sa zaoberá objavujúcim sa nekonvenčným využitím moderných teodolitov, tiež
známych ako Robotické Totálne Stanice (RTS), ako sledovací a navádzací systém, urče­
ním presnej pozície dynamicky sa pohybujúceho objektu. To sa týka najmä situácií, kde
nie je možné využiť konvenčné polohovacie systémy akým je napríklad GNSS. Kinema­
ticky určená poloha objektu kontinuálne sledujúcou RTS môže byť následne v reálnom
čase využitá pre autonómnu navigáciu malých bezpilotných leteckých prostriedkov (UAV)
poskytnutím referenčného súradnicového systému a okamžitej polohy v ňom. Podstatná
časť práce je venovaná návrhu a realizácii vhodných experimentov, ktoré overia spoľah­
livosť určovania presnej polohy objektu v presnom časovom okamžiku. Boli preverené
stanice série S7 a S9 od spoločnosti Trimble a stanica S9 HP, ktorá disponuje frekven­
ciou kontinuálneho merania až do 10 Hz bola napokon využitá pre experimenty. Lokálny
čas ovládacieho panelu TSC7, ktorý zabezpečuje komunikáciu so stanicou bol pomocou
protokolu P T P synchronizovaný s lokálnym časom mini-počítača Raspberry Pi , ktorý
následne poskytoval referenčné meranie skutočnej polohy objektu v čase. V závere sú
zhrnuté výsledky experimentov.

KĽÚČOVÉ SLOVÁ
teodolit, robotická totálna stanica, tachymetria, meranie polohy, kinematický režim, na­
vigácia

Typeset by the thesis package, version 4.03; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

ROZŠÍRENÝ ABSTRAKT

Úvod

Teodolitické systémy merajúce uhly a vzdialenosti sú štandardným nástrojom v
geodetických a konštrukčných odvetviach. Moderné prístroje, známe ako Robotické
Totálne Stanice (z ang. Robotíc Total Station (RTS)) umožňujú okrem bežných
meraní aj vykresľovanie geometrických tvarov v priestore, vytváranie detailných 3D
máp alebo určovanie presných polôh objektov v určenom súradnicovom systéme.
Robotizované stanice sú zároveň schopné sledovať pohybujúce sa objekty vo svo­
jom lokálnom priestore. Je to práve táto schopnosť, ktorá ponúka nové možnosti
ich využitia aj mimo štandardné aplikácie. Ponúka sa napríklad riešenie navigácie
pre malé bezpilotné letecké prostriedky (ang. Unmanned Aerial Vehicle (UAV))
v interiéroch budov alebo v situáciách, kedy nie je možné využiť štandardné navi­
gačné prostriedky, akým je napríklad GNSS. Takáto aplikácia však nie je primárnym
účelom totálnych staníc a je nutné overenie ich parametrov pre zhodnotenie reálnej
aplikovateľnosti. V tejto práci boli testované stanice S7 a S9 HP od spoločnosti
Trimble.

Analýza problému a návrh vhodnej koncepcie

Pre účely navigácie pohybujúceho sa objektu je nutné aby systém čo najpresnejšie
vystihoval jeho pozíciu v priestore a čase. Prvotná rešerše ukázala hlavné problémy
vyskytujúce sa pri kinematickom meraní polohy pomocou RTS. Jeden problém
spočíva v nejasnosti pri stanovovaní časových značiek, ktoré stanica posiela spolu
s polohovými údajmi. Nie je úplne známy okamžik vyhotovenia časového údaju,
čo môže viesť k nesprávne určenej polohe. Ďalej, keďže RTS pozostáva z dvoch
primárnych častí, ktoré samostatne merajú uhol a vzdialenosť s rôznymi periódami,
výsledná poloha určená ich kombináciou nemusí správne odzrkadľovať skutočnú
polohu objektu ak sa táto poloha v čase mení (vid. Obr. 2.4). Preferované sú
vysoké frekvencie merania a maximálna rýchlosť prenosu dát z RTS. Základné kon­
cepcie experimentu spočívajú v paralelne prebiehajúcom referenčnom meraní, ktoré
určuje objektívne správnu polohu alebo čas pohybujúceho sa objektu počas mera­
nia s RTS. Zvolená koncepcia hlavného experimentu spočíva v presne vytýčenej
konkrétnej polohe, ktorú objekt pri svojom pohybe opakovatelné dosahuje. Refer­
enčné meranie udáva vždy skutočný čas, v ktorom je táto poloha dosiahnutá, a ten
je potom možné porovnať s časom, ktorý tejto polohe pripisuje RTS. Týmto sa
stanoví celkové oneskorenie určenej polohy, ktoré už v sebe môže zahŕňať aj interné
nepresnosti totálnej stanice a je teoreticky možné ho integrovať do navigačnej úlohy.

Realizácia experimentov a testov

Pri počiatočných testoch bolo zistené, že stanica S7 dosahuje frekvencie merania
maximálne 2.5 Hz a stanica S9 HP podporuje zvýšenú frekvenciu až do 10 Hz
(viď obrázky 4.3 a 4.4). Pre pohyb bola použitá dostupná rotačná konštrukcia,
ktorá svojim umiestnením vykonávala tlmené kmity (vid Obr. 5.5) a bola stabilne
upevnená tak aby ich čo najmenej ovplyvnila.

Referenčné meranie vykonával senzor so svetelnou bránou {Panasonic EX-Z11.
vid Obr. 5.2) nastavenou na dĺžku 5 mm, ktorá spolu s 2 mm úzkou tyčinkou (Obr.
5.3) presne vytyčovala pokojovú polohu kyvadla. Referenčný čas bol tejto polohe
priradovaný počítačom Raspberry Pi s operačným systémom Raspberry Pi OS Lite.
Merací program bol napísaný v jazyku C s knižnicou PiGpio.

Komunikácia s RTS bola vykonávaná pomocou ovládacieho panelu TSC7 so sys­
témom Windows 10 cez štandardnú aplikáciu Trimble Access. Stanica bola umi­
estnená v niekoľkých rôznych vzdialenostiach od kyvadla kolmo na rovinu kmitov
a kontinuálne sledovala hranol umiestnený na ramene kyvadla (Obr. 5.6, vpravo).
Počiatok súradnicového systému bol vždy od samotnej polohy stanice a nulový hor­
izontálny uhol bol definovaný s kyvadlom v pokojovej polohe.

Merací program v hlavnom vlákne cez systém prerušení priraďoval časovú značku
každému prechodu cez bránu (pokojovú polohu kyvadla). Dátový výstup z RTS (vid
Výp. 5.1) prichádzajúci na U A R T vstup R P i bol paralelne zaznamenávaný druhým
vláknom a zároveň bola každému prichádzajúcemu bodu merania priradená časová
značka. Lokálny čas panelu TSC7 bol pomocou protokolu P T P (z ang. Precision
Time Protocol) počas každého merania synchronizovaný s lokálnym časom R P i a
priebeh tejto synchronizácie bol zaznamenávaný v log súboroch.

Stanovené časové značky prechodov cez bránu mohli byť porovnané so značkami
z RTS a tým určené celkové oneskorenie merania od skutočného momentu pokojovej
polohy k tomu, ktorý tejto polohe přiřadila stanica. Ďalšie oneskorenie vyplýva
z rozdielu času, kedy je niektorý stanicou zmeraný bod prístupný na koncovom
zariadení a opäť časom ktorý mu bol stanicou priradený, teda oneskorenie prenosu
(vid Obr. 4.2). Okrem tlmených kmitov bol vykonaný experiment s manuálnym
náhodným pohybom kyvadla a dodatočné testy, ktoré mohli určiť vplyv natočenia
hranolu a dynamické obmedzenia pre pohyb.

Výsledky vykonaných experimentov

Časové značky získané z RTS boli interpolované k nulovým (pokojovým) polohám
tak, aby bol určený ich presný časový okamžik. Všetky časové hodnoty z RTS a R P i
boli prevedené na spoločný základ tak by mohli byť následne vzájomne porovnávané.

Na obrázkoch 6.13, 6.14 a 6.15 sú súhrnné grafy pre jednotlivé sady experimentov.
Je vidieť, že vo všetkých prípadoch sa oneskorenia merania polohy pohybujú okolo
110 ms. Mierne vyššie hodnoty na Obrázku 6.13 boli zmerané pri konfigurácii, kde
bola veľmi presne dosiahnutá kolmá orientácia RTS, avšak nie je zrejmé či práve to
bola príčina vyšších hodnôt. Na Obrázku 6.16 je celkový histogram oneskorení pre
všetky zobrazené sady. Obrázok 6.17 potom ukazuje oneskorenie prenosu, blížiace
sa k 26 ms. Obrázky 6.21, 6.22 a 6.23 zobrazujú obdobné výsledky pre experiment
s manuálnym pohybom ramena.

Na obrázku 6.19 je vidieť zdanlivú koreláciu medzi frekvenciou časových značiek
určených pri U A R T vstupe R P i a frekvenciou vyplývajúcou zo samotných časových
značiek z RTS. Je možné domnievať sa, že stanica priraďuje tieto časy buď neskôr až
v momente odoslania dát na výstup alebo sú značky priradené v momente merania
ale okamžite odoslané na výstup.

Pri väčších počiatočných rozkmitoch dochádzalo k úbytku dát z RTS (vid Obr.
6.28). Na Obrázku 6.29 je vidieť stratu dát so zväčšujúcim sa počiatočným rozk-
mitom a s tým súvisiacou rýchlosťou hranolu. Tá bola počítaná zo samotných
nepresných dát z RTS a tým značne obmedzené možné závery. Na Obrázku 6.30
je vidieť značný nárast oneskorenia merania pri veľmi malých rýchlostiach, kedy
dochádzalo k zastaveniu kmitania. Presnejšie experimenty s nezávislým určením
rýchlosti by mohli spoľahlivejšie stanoviť tieto závislosti.

Na obrázkoch 6.25, 6.26 a 6.27 je možné vidieť vplyv horizontálnej rotácie hra­
nolu. Tieto výchylky pravdepodobne spôsobuje prechod medzi jednotlivými re­
flexnými elementmi hranolu, avšak rozsiahlejšie experimenty sú potrebne pre ro­
bustnejšie určenie závislostí.

Záver

V tejto práci bolo vykonaných niekoľko experimentov pre overenie parametrov mera­
nia polohy pohybujúceho sa objektu pomocou RTS.

V úvodných dvoch kapitolách práce boli najprv popísané základné princípy mera­
nia s teodolitmi a načrtnutá problematika merania s dynamickým pohybom objektu.
Následne boli popísané parametre dostupných totálnych staníc a ich príslušenstva
využívaného v tejto práci.

V štvrtej a piatej kapitole bol vykonaný podrobnejší rozbor danej problematiky,
stanovené parametre a požiadavky, a zvolená koncepcia pre hlavný experiment.
Následne boli vybrané konkrétne komponenty, ich rozloženie a konfigurácia pre daný
experiment. Bol tiež uvedený podrobný postup jeho realizácie.

Šiesta kapitola poskytla podrobný postup spracovania získaných dát a ich finálnu
prezentáciu a zhodnotenie.

HORELIČAN, Tomáš. Position measurement of moving objects using a robotic total sta­

tion. Brno: Brno University of Technology, Faculty of Electrical Engineering and Com­

munication, Department of Control and Instrumentation, 2021, 121 p. Master's Thesis.

Advised by Ing. Tomáš Jílek, Ph.D.

Author's Declaration

Author: Be. Tomas Horelican

Author's ID: 195315

Paper type: Master's Thesis

Academic year: 2020/21

Topic: Position measurement of moving objects

using a robotic total station

I declare that I have written this paper independently, under the guidance of the advisor

and using exclusively the technical references and other sources of information cited in

the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, I furthermore declare that, with respect to the creation of this paper,

I have not infringed any copyright or violated anyone's personal and/or ownership rights.

In this context, I am fully aware of the consequences of breaking Regulation § 11 of the

Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach

of rights related to intellectual property or introduced within amendments to relevant

Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll.

of the Czech Republic, Section 2, Head VI, Part 4.

Brno 16.5.2021

author's signature*

*The author signs only in the printed version.

A C K N O W L E D G E M E N T

I would, hereby, like to express my gratitude to my master's thesis supervisor Ing. Tomáš

Jílek, Ph.D. for his expert mentoring, readily available consultations, patience and in-

centivising suggestions concerning the thesis.

Brno 16.5.2021

author's signature*

*The author signs only in the printed version.

Contents

Introduction 17

1 Thesis objectives and motivation 19

2 Position measurement with a total station 20

2.1 Historical background 20
2.2 Fundamental measurement principles 22
2.3 Measurement with dynamic object movement 24

3 Trimble total stations and accessories 28
3.1 Main measurement options 28
3.2 Trimble S7 Robotic Total Station 28
3.3 Trimble S9 HP Robotic Total Station 30
3.4 Trimble SX10 Scanning Total Station 31
3.5 TSC7 controller 32
3.6 Basic instrument operation for measurements 33
3.7 Alternative operation options 35

4 Problem analysis and concept design 37
4.1 Analysis of the kinematic RTS measurement problem 37
4.2 Experiment concepts and requirements 39

4.2.1 Requirements on temporal data 40
4.2.2 Requirements on positional data 41

4.3 Selection and evaluation of selected conception and parts 41
4.3.1 Target motion type 41
4.3.2 Experiment realization concept 43
4.3.3 RTS measurement components 44
4.3.4 Reference measurement components 47
4.3.5 Time synchronization 51

5 Experiment realization procedure 53
5.1 Description and display of reference measurement components 53

5.1.1 Raspberry P i 3 B 53
5.1.2 Panasonic EX-Z11 54
5.1.3 Sensor-crossing prism extension 54

5.2 Component layout 56
5.3 Configuration and setup of experiment components 58

5.3.1 Total Station configuration 58

5.3.2 TSC7 controller configuration 61
5.3.3 Raspberry P i configuration 63
5.3.4 Custom measurement program 64
5.3.5 Summary of the main procedures 69

5.4 Additional experiments and evaluation 72
5.4.1 Measurement rate analysis 72
5.4.2 Aperiodic manual prism motion 72
5.4.3 Lateral pendulum arm displacement 72
5.4.4 Horizontal prism rotation 73
5.4.5 Safe prism velocity limits 74

6 Result processing and evaluation 75
6.1 Main experiment data interpretation 75

6.1.1 Data processing and evaluation tools 75
6.2 Main experiment results 83

6.2.1 Raspberry P i timestamp validation 83
6.2.2 Single main experiment run overview 83
6.2.3 A l l main experiment runs evaluation 87

6.3 Additional experiments results 90
6.3.1 Measurement rate analysis 90
6.3.2 Aperiodic manual prism motion 91
6.3.3 Lateral pendulum arm displacement 93
6.3.4 Horizontal prism rotation 94
6.3.5 Safe prism velocity limits 96

6.4 Alternative navigation solutions 99

Conclusions and possible improvements 100

Possible additional work and improvements 101

Bibliography 102

Symbols and abbreviations 109

List of appendices 111

A Supplementary graphs, images and listings 112

B Old experiment configuration 118

C Electronic C D attachment contents 121

List of Figures
2.1 A visual comparison of an old and modern theodolite 21
2.2 Theodolite axes and angles representation 22
2.3 Zenith and Nadir representation 23
2.4 Position measurement deviation 25
2.5 A n example of a circular (left) and 360 (right) prism 26
3.1 Trimble S7 Robotic Total Station 29
3.2 Trimble S9 HP Robotic Total Station 30
3.3 Trimble SX10 Scanning Total Station 31
3.4 TSC7 controller 33
4.1 Examples of possible motion types and trajectories 42
4.2 Visual representation of estimated time delays 44
4.3 Time data from the Trimble S7 RTS 45
4.4 Time data from the Trimble S9 HP RTS 46
4.5 Serial voltage adjusting adapter for GPIO U A R T 48
4.6 Sensor voltage limiting adapter for GPIO 50
5.1 Both adapters connected to the Raspberry P i 53
5.2 Mounting brackets for the Panasonic EX-Z11 sensor. Left: emitter,

Right: receiver 54
5.3 A thin rod extension crossing the light barrier mounted on a Trimble

VS/S 360 prism 55
5.4 Detail on the inner connection between the two attachment parts. . . 56
5.5 Experiment component layout (RTS behind camera view) 57
5.6 RTS alignment principle (left) and component layout (right), top

view, not of the same scale 57
5.7 Representation of the RTS local coordinate frame 59
5.8 Configured RTS data output labels 60
5.9 RS232 DB9 connector pin connections 61
5.10 Loop-back test of R P i U A R T read delays 67
5.11 Testing interrupt-driven time-stamping on U A R T 68
5.12 Fully connected reference measurement setup. Panasonic sensor: left,

RPi : middle, RTS data output: right 70
5.13 Block diagram of the experiment layout and data flow 70
5.14 Prism placement for horizontal rotation tests 73
6.1 Prism motion in local coordinates 78
6.2 S9 HP RTS angle values in time (from motion start to end) 79
6.3 S9 HP RTS time data (full log duration) 79
6.4 S9 HP RTS Easting data with interpolated zeros 80

6.5 S9 HP RTS Easting data with interpolated zeros (closeup) 81
6.6 Derivation of the setup asymmetricality error 82
6.7 Comparison of two different time values acquired at the R P i ISR event. 83
6.8 Comparison of the RTS and R P i timestamp values (single run). . . . 84
6.9 Histogram of the RTS position measurement delay (single run). . . . 84
6.10 RTS position measurement delay with split passes (single run) 85
6.11 Asymmetricality error with respect to prism velocity. 86
6.12 Comparison of the R P i U A R T and RTS timestamp values (single run). 86
6.13 RTS position measurement delay (all runs, 4.9 m distance) 87
6.14 RTS position measurement delay (all runs, 2.7 m distance) 88
6.15 RTS position measurement delay (all runs, 1.5 m distance) 88
6.16 Histogram of the RTS position measurement delay (combined results). 89
6.17 Histogram of the RTS data propagation delay (combined results). . . 89
6.18 RTS data with prism stationary at rest point 90
6.19 Comparison of R P i U A R T and RTS timestamp frequencies 91
6.20 Example of manual prism motion 92
6.21 RTS position measurement delay (manual motion) 92
6.22 Histogram of the RTS position measurement delay (combined results,

manual motion) 92
6.23 Histogram of the RTS data propagation delay (combined results,

manual motion) 93
6.24 Maximum pendulum arm displacement in the Northing axis 94
6.25 Angle deviations with horizontal prism rotation (4.6 m distance). . . 95
6.26 Northing and Easting deviations with horizontal prism rotation (4.6 m

distance) 95
6.27 Easting deviations with horizontal prism rotation (1.2 m distance). . 96
6.28 Data reduction at wider motion starting angles 97
6.29 Data integrity with motion starting angle 97
6.30 RTS position measurement delay with max. prism velocity (combined

results) 98
A . l Coordinate orientation on the TSC7 (does not reflect the real exper­

iment layout) 112
A.2 RTS data output. Left: before, Right: after conversion (bit values

not the same between images) 112
A.3 Custom adapters for Panasonic EX-Z11 (left) and RS232 (right) data

output 113
A.4 Near-perfect perpendicular RTS alignment 113
A.5 Finding the start and end point of the motion 115
A.6 Finding the boundary points for interpolation sections 115

A.7 Interpolation in the zero-crossing sections 116
A.8 P T P synchronization status during an experiment run 116
A. 9 RTS data output, measurement point arrivals 117
B. l Old reference measurement setup. Left: R P i and sensor, Right: prism

with extension 118
B.2 Comparison of the RTS and R P i timestamp values (old data, single

run, delays only) 118
B.3 RTS position measurement delay with split passes (old data, single

run) 119
B.4 Histogram of the RTS position measurement delay (old data, single

run) 119
B.5 Histogram of the RTS position measurement delay (old data, com­

bined results) 120
B.6 P T P synchronization status during an experiment (old data) 120

List of Tables
3.1 Relevant parameters of the Trimble S7 29
3.2 Relevant parameters of the Trimble S9 HP 31
3.3 Relevant parameters of the Trimble SX10 32
4.1 Main experiment parameters and configuration 52
5.1 Log files acquired during an experiment 71

Listings
5.1 Example RTS data output, showing one point 61
5.2 Light barrier event timestamp assignment 65
5.3 Synchronization of the U A R T transmission 66
6.1 Example of a found corruption in the RTS data 75
A . l RTS data logging and time stamping 114

Introduction
This thesis builds upon experience with and previous work on my semestral thesis,
essentially providing a comprehensive and finalized document with many enhance­
ments and additions [1]. The initial results were also published in [2].

Modern measurement systems based on the principles of theodolite position mea­
surements are being greatly utilized within the geodetic or construction industries.
Rapid progress in the development of these systems has led to a shift from just simple
devices that could measure angles in the horizontal and vertical axes towards fully
automatic total stations that can provide both angle and distance measurements,
create three-dimensional maps of the environment or track and follow moving ob­
jects. These devices are more generally referred to as Robotic Total Stations (RTSs).
The term total station refers to a combination of an angle measuring element (clas­
sic theodolite) with a unit measuring the distance from the equipment into a single
integrated device. This allows the total station to determine an absolute (total) po­
sition of virtually any point in its surroundings. Elements inside contemporary total
stations are exclusively electronic as opposed to the earlier much more rudimentary
mechanic theodolites. In addition, modern total stations are being equipped with
servomotors, enabling their fully automatic and remote operation.

With the advent of robotized automatic total stations, new forms of their uti­
lization are emerging, even in non-standard fields. The automatic control of a total
station brings new functionalities, such as the mentioned following of moving ob­
jects. In a standard scenario, this would enable only a single operator to completely
operate the total station and therefore perform geodetic measurements much more
effectively. However, an interesting byproduct of this functionality is the ability to
now have a continual stream of a moving object's positional data, which is gathered
from a device generally capable of very precise measurements. This capability can
be used in many other applications, where such position information is required.

One such application is, for example, using a total station as a tracking and
guidance system in environments, where conventional positioning systems such as
Global Navigation Satellite Systems (GNSS) are limited or completely unavailable.
This mostly includes building interiors, where reliably obtaining a stable signal
from positioning satellites is very difficult, or other places, which do not have suffi­
cient satellite coverage. This positional data acquired from the total station can be
subsequently used for real-time autonomous navigation of small Unmanned Aerial
Vehicles (UAVs) inside buildings or even during GNSS signal loss.

For this data to be really useful, however, its credibility and precision in space
and time relating to the true object location must be guaranteed. In a standard total
station operation, a position measurement is performed statically, on a stationary

17

object, where high position stability and accuracy are guaranteed. However, a dy­
namic application, such as drone navigation, requires continual position estimation,
where stopping the movement and waiting for measurement is simply not feasible.
This raises many questions and complications, where possible discrepancies between
the true object's position at a given time and a position assigned to it for this time
instant as a result of a measurement can occur.

18

1 Thesis objectives and motivation
This issue has been the topic of several research papers over the years [10, 30] -
[18, 34]. The aim of this thesis is to evaluate the usability of robotic total stations
from the Trimble Inc. company, available at the Department of Control and In­
strumentation, i.e. Ústav automatizace a měřicí techniky (UAMT) , at the Faculty
of Electrical Engineering and Communication (FEEC), Brno University of Tech­
nology (BUT) for kinematic position measurement. Overall, three total stations
available, which are the S7, S9 and SX10 series. Within this master's thesis, the
main focus and tests with namely the Trimble S7 and Trimble S9 HP have been
performed. It has been found that the S7 series total station in the existing con­
figuration does not provide measurement frequencies higher than 2.5 Hz. Following
practical experiments have, therefore, been performed with the Trimble S9 HP, which
supports frequencies of up to 10 Hz. The Trimble SX10 was not used in this thesis
and might provide an interesting option for future research. A detailed description
of the hardware used and all available total stations is provided in Chapter 3.

In order to determine the parameters of an RTS measurement of a moving ob­
ject, it is necessary to firstly, in a suitable manner, define a real objective position
in a specific time instant. Together with its timestamp, this position can be then
compared with data acquired from the RTS. Since the monitored object is moving
dynamically, a type and shape of motion that takes into account expected exper­
iment results and its feasibility within the thesis need to be selected. Section 2.3
deals with the issue of dynamic RTS measurements in more detail and gives reason­
ing behind the selection of such a motion for the experiments.

Section 4.2 describes the structure and realization procedure of the experiment as
well as the selection of suitable components for the reference position measurement.
Parameters and requirements, which the experiment must meet in order to ensure
correct RTS parameter determination for the purposes mentioned in the introduc­
tion are discussed. In short, the expected result of the experiments is an objective
determination of the deviation of data acquired by the RTS from a real (reference)
position in an exact time instant. Subsequent evaluation of these results is described
in the conclusion (see p. 100).

19

2 Position measurement with a total station
This chapter will familiarize the reader with the topic of measurement with a total
station. A short overview of the historical evolution and elementary principles, and
functionalities of total stations and theodolites will be explained. Several complica­
tions and issues with kinematic measurements will be outlined. Attention is focused
mainly on problems concerning the subject of this thesis.

2.1 Historical background

Devices measuring angles, heights, distances or providing horizontal (level) and ver­
tical (plumb) alignment functionalities have been known since the antic times. No­
table are for example the roman groma, chorobrates or dioptra, each performing
different specific operations. Several sources date the term theodolite to first start
appearing no earlier than around the 16th century. Devices referred to by this name
where usually simpler (in their capabilities, but certainly not in their complexity)
single purpose instruments with a gradated scale, from which an angle value in the
range of 0 to 360 degrees would be read out.

It was only later, when devices serving different independent functions started
to be combined, as for example enhancing a telescope with angle measurements, a
spirit level, compass or other elements. Reading out the angle measurements was
usually accomplished by what is called a vernier scale, which enabled more precise
measurements than regular scales. The theodolite, which was at first limited to ro­
tation only in the horizontal plane, was later enhanced to also rotate vertically. Due
to their construction however, the ability for vertical rotation was largely limited
(see Fig. 2.1, left) and later in the 19th century, first devices that could perform full
360 degree rotations in the vertical started appearing in the United States. These
were called vernier transits or simply transits. In the 1950s, the Geodimeter device
provided a first application of Electronic Distance Measurement (EDM). Classical
direct angle readings were soon phased out in favor of more advanced optical tech­
niques. Apart from even more modern methods, the scale could for example be
safely enclosed within the device and read out by an optical guiding and magnifying
apparatus, which allowed the addition of a micro scale with a substantially greater
resolution and again more precise measurements. A n important aspect in any kind
of a theodolite measurement was correct synchronization of the zero value of a scale
with what is called a horizontal or vertical circle.

In the later half of the 20th century, theodolites performing electronic angle read­
ings with photoelectric sensors and rotary encoders first started appearing. With
this advancement now, two previously independent and unrelated measuring devices,

20

Fig. 2.1: A visual comparison of an old and modern theodolite. Left: taken from
[3], Right: taken from [4].

the E D M and the new electronic theodolite, could be combined into a single unit
called a total station. Moving further, advancements in the microelectronic industry
enabled the total station to be equipped with an internal microprocessor, extending
its functionalities even beyond regular measurements. It was then able to perform
on-device data processing and memory storage, so the range of possible kinds of
obtainable data was extended to, for example, projections of measured positions
into a chosen coordinate frame. The data could be stored and kept on the device for
later processing or exported to another instrument at any time. External sources of
information could also now be connected to the total station, providing for instance
the current date or localization data from GNSS, which enabled unification of the
measured local positional data with geodetic coordinate frames. The initial calibra­
tion of the device was substantially simplified and many procedures were now done
automatically. The latest step in the evolution of total stations was equipping the
rotary mechanisms with servo motors at the beginning of the 21st century. While
before that, manual precise orienting by mechanical gearings was necessary, now
even this operation could be done automatically. It enabled further expansion of
possible features by adding automatic object tracking. This fully automated device
is known by the term Robotic Total Station (RTS), an example of which is shown
in Figure 2.1 on the right. The field which specializes in geodetic measurements,
mainly utilizing total stations, is also called tacheometry [5].

21

2.2 Fundamental measurement principles

Typically in a tacheometric measurement, an angle is given in the units of gon (gra-
dian). This unit is formally defined as nine-tenths of a degree, meaning it divides a
whole circumference into 400 equal parts, where 90 ° = 100 gon. A clear advantage of
such a formalization is very efficient, fast and intuitive mental reconstruction of ori­
entation. Figure 2.2 illustrates the basic concept of theodolite angle measurements.
As was stated above, the device can rotate in the horizontal and vertical planes
and the measured (horizontal and vertical) angles can be either read out directly
or optically from a certain scale, or provided by electronic measuring equipment.
Modern RTSs provide an easy way of setting up the reference, or zero, azimuth
(0,000 gon, as shown in Fig. 2.2), from which the horizontal angles are measured
either clockwise or counterclockwise. The reference for vertical angles is usually
fixed, either pointing up (towards the zenith) or down (towards nadir), which are
shown in Figure 2.3. Specifically for the Trimble S7 and S9 HP, the reference will
always be at the zenith [6], [7]. Servo drives are another mentioned enhancement of
modern RTSs. They enable automatic rotation around both, the vertical and hor­
izontal axes. Precise angle measurements are nowadays usually done electronically,
by incremental rotary encoders for example, which provides higher flexibility and
overall enhancement of the station's functionalities.

Fig. 2.2: Theodolite axes and angles representation. Taken from [8].

Distance (also referred to as slope distance) measurement with E D M units is

22

t Zen i th

As t ronomica l Hor izon

Fig. 2.3: Zenith and Nadir representation. Taken from [9].

based on transmitting and receiving signals of a certain spectrum of radiation and
comparing their difference. Commonly, these signals lie within the optical or mi­
crowave band. Another common practice is emitting a focused laser beam. The
main difference between all of these types of signal sources is that while for a mi­
crowave ray, separate devices for receiving and emitting of the light have to be used,
the optical light as well as laser beams allow for a single device to serve both as
an emitter and a receiver. Hence, the complexity and number of necessary compo­
nents can be minimized. In this case an emitting device sends out a ray (or beam),
which is then reflected from the measured object back to the same device which
also receives it and a phase shift between the sent and received signal is calculated.
Alternatively a Time of Flight (TOF) measurement principle is used, where a time
difference between the moment of dispatch and the moment of acquisition is cal­
culated instead. Measurement can be done either by reflecting the light from an
opaque surface or a specialized light-reflecting prism, which directs the light back
towards the device can be used. Modern total stations, such as the Trimble S7 or S9
HP, usually utilize a laser light source and enable both operation modes, providing
the user with an option to choose between a Direct Reflex (DR) or a reflexive prism
target-based measurement method.

RTSs equipped with an internal microprocessor can perform further data pro­
cessing and control of its individual components, continuous monitoring of its state
and error compensation, processing of external GNSS localization data or numerous
other functions. Apart from standard angle and distance measurement functions,
a modern RTS can, for instance, measure and lay out different geometrical shapes
in 3D space, measure areas and volumes, create dense precise 3D maps of its sur­
roundings or provide positions in a coordinate frame [5].

23

2.3 Measurement with dynamic object movement

As was outlined in Section 2.1, latest modern RTSs can provide not only static
measurements of non-moving objects, but also dynamically track the position of an
object during its motion. This is done using a matrix image sensor, which picks up
deviations of the incoming light from a central position, from which angle corrections
can be made. For a standard use case, the benefits are clear. In the construction
industry, for example, work can be carried out much more effectively by requiring
only a single person to operate the total station for all of its measurements. The
RTS is first locket onto a prism target and the operator can then freely relocate the
prism to any desired position without requiring a second operator to reorient the
RTS accordingly. After a satisfactory prism placement, the operator can initiate its
precise position measurement from a distance.

Since the RTS can also provide a continuous output data stream while it's fol­
lowing the prism, a notion of utilizing this data for other means arises. However,
as can be evident, this process employs fast measurements in rapid succession and
the final accuracy of such acquired positions can be degraded, compared to precise
static measurements which can take up to several seconds. Trimble total stations
can perform measurements in a Tracking (TRK) mode with sub-second periods of
up to 100 ms (for a more detailed description see Chapter 3). In some cases, a 50 ms
measurement period is available with a Trimble Universal Total Station (UTS) (see
Sec. 4.1).

The measuring process is in its principle the same as with a static measurement.
A n often discussed problem concerning this rapid data acquisition was time synchro­
nization between the individual RTS components. Namely, the distance measuring
E D M unit and the angle measuring component. The problem lies within a different
time period required by each component to perform its own measurement. Typ­
ically, an angle can be acquired much sooner then a distance value, therefore the
approximated position of an object can divert slightly from a real one, as the result­
ing position is estimated from both of these measurements. This limitation does not
really effect static measurements, as there will be no expected change in position
within this time interval, however for fast moving objects it can cause deviations
from their true positions. A n illustrative example of this effect can be sen in Figure
2.4.

Several studies performed by Lenda et al. [10, 11] show that with a favorable
placement of the RTS and by using modern total stations with high sampling periods,
these deviations can be reduced to the sub-millimeter regime. In these cases they also
present favorably higher positioning accuracies when compared to GNSS-based Real
Time Kinematic (RTK) methods. A n interesting solution proposed by Kerekes et

24

station

prism track

registered track of the prism

Fig. 2.4: Position measurement deviation. Taken from [10].

al. [12] lies within avoiding the slower distance measurement completely and instead
utilizing a network of two or possibly more RTSs, using the faster and arguably more
precise angle measurements only. Their method was also able to achieve accuracies
to within several millimeters and allowed to nearly double the acquisition rate of
measurements.

The desired AutoLock tracking functionality is only available with prism-based
measurements [6], [7]. Since light used to perform the distance measurement has
to be reflected and directed back towards the instrument, the main evident limiting
factor of using these devices for positioning is the necessity of direct line of sight at all
times. A n otherwise useful feature of modern RTSs is a predictive tracking capability
in the event of a lost line of sight, where the station predicts the next position of a
target based on its previous movement. This can be useful if the navigated drone,
for example, flies behind an obstacle and its trajectory is not expected to change
during this time. However, it might ultimately lead to a worsened tracking ability,
when such changes in direction of motion are expected or for generally unpredictable
movements. A more consistent proposed method for dealing with the loss of line of
sight is presented by Kerekes et al. [13], where a network of multiple total stations
tracking the same prism from different angles can provide sufficient redundancy.

Another factor influencing the quality and accuracy of kinematic object track­
ing and position measurement is the type of prism used. It is clear, that standard
circular types of prisms (Fig. 2.5, left) will not be well suited for multi-directional
tracking, as they can reflect light rays only from a specific orientation range. When
mounted on a drone, a correcting gyroscope mechanism might perhaps be used,
however this increases complexity and a much simpler solution presents itself by
using specialized 360 ° prisms (Fig. 2.5, right). These contain reflexive elements
around their whole perimeter, effectively making them usable from any orientation
and angle. Conversely, as is shown by Lackner et al. [14], the circular type typically
provides higher angle and distance accuracies, especially when aligned correctly.
This is attributed to the neighbouring elements influencing the RTS locking mech­
anism at certain orientations. However, maintaining perfect constant alignment, in

25

particular during dynamic motion of the target might be difficult to achieve and
modern prism designs are shown provide acceptable accuracies. The biggest influ­
ence appears to be moments when the prism orientation facilitates changes between
these elements. Active prisms providing better recognition of a target in highly re­
flexive environments might also be useful, however their benefits might be negated
their increased weight. A passive Trimble VX/S 360 prism, which can be seen in
Figure 2.5 on the right was used exclusively in all experiments within this thesis.

Jfc

Fig. 2.5: A n example of a circular (left) and 360 (right) prism. Left: taken from
[19].

During a continuous measurement, the RTS assigns a timestamp to each final
measured position. This is also done during static measurements, however the im­
plication of these values is, more or less, only informative, as they bear little to no
relevance when the position of the object doesn't change. For a kinematic measure­
ment however, these timestamps gain much higher significance, since at any instant
in time the position of the object can be different. Especially for the purposes of
real-time navigation of small UAVs, the necessity of acquiring not only an accurate
position, but also an accurate time in which the object occupied that position arises.
It is evident that an incorrect or shifted timestamp assigned to a specific position
might also cause errors in navigation and an incorrect localization despite having an
accurate absolute position. Since for typical industry applications, these time val­
ues bear little significance in measurement precision, exact parameters of how and
when they are attached are not always evident and definite. Manufacturers might
not include the details in their specifications and it is also apparent that given the
different measuring periods of the individual RTS components, these values cannot,
in principle, be absolutely definite. The question, in which part of the measuring
process was this timestamp created, arises. The theodolite can, for example, acquire
angles with a high frequency and subsequently use several samples for calculating
an average or other suitable value. The same can, in principle, be done by the E D M
for distances as well. These raw angle and distance values might in addition be
further processed by the internal processor for calculating other data values, such as

26

the object's coordinates in a given reference frame. It is not clear at which point in
this process a timestamp was associated with the final data point. Deeper investi­
gations into the internal timing parameters of total stations can be seen in research
by Stempfhuber et al. [15], Böniger et al. [16], Gojcic et al. [17] or Thalmann et al.
[18], however these deal with specific scenarios and RTS models.

27

3 Trimble total stations and accessories
In this chapter, known parameters and functionalities of the available total stations
will be described. The reader will be acquainted with their basic operation sequences
and procedures for performing measurements. The parameters and operation de­
scriptions will focus mainly on the functionalities, which are significant to the aims
of this thesis.

3.1 Main measurement options

Two measurement modes are available, which are Standard (STD) and Tracking
(TRK). These mainly affect how the E D M instrument operates. Angles are always
being averaged during the course of a distance measurement. STD mode provides
a single precise measurement, which can be accepted by the operator or discarded.
The distance value itself can also be averaged over several measurements for higher
accuracy. A continuous data output is only available while in T R K mode, where
the E D M continually provides measurements as soon as they are finished. This also
means that the dynamic target following functionality only works with T R K mode.
Since automatic prism tracking is the main focus of this thesis, T R K will be the
preferred mode used during experiments.

Available target options are either a reflexive prism, where a specific type with its
parameters can be selected or a D R target, which is a general non-reflexive surface.
Both measurement modes are available with either target, however the AutoLock
function, which enables object tracking can only be used with reflexive prisms [7, 6].

3.2 Trimble S7 Robotic Total Station

The S7 series (see Fig. 3.1) total stations come equipped with MagDrive servo
motors and absolute encoders with diametrical reading and with precisions given at
either 0.3 mgon, 0.6 mgon, 1.0 mgon or 1.5 mgon. The stations provide automatic
level compensations with a precision of 0.15 mgon. The maximum given angular
velocity of the servos is 115 °/s.

The given measuring accuracy for distance values in T R K mode with a reflexive
prism is 4 mm + 2 ppm with a measurement period of 400 ms. Non-reflexive DR
targets are not considered in this thesis. The usable distance range is from 20 cm
up to 2,5 km. However, when using the AutoLock mode with a passive reflexive
prism, the maximum gets limited to 500 m - 700 m and pointing precision is given
to be better than 2 mm, at a 200 m distance. A pulsed laser diode (905 nm) with

28

Fig. 3.1: Trimble S7 Robotic Total Station. Taken from [20].

a horizontal beam divergence of 2 cm/50 m and a vertical divergence of 4 cm/50 m
is used light source for the E D M .

A digital image sensor with a resolution of 2048 x 1536 pixels can be used as
well. Power is provided by a 6.5 A h battery or an external 12 V power supply.
Connectivity is provided through a 2.4 GHz antenna, Bluetooth or a direct serial
connection. The internal C O M port can also be used for data output [21]. Table
3.1 summarizes the relevant or used parameters.

Angles Sensor type
Accuracy

absolute encoder
0.3 mgon, 0.6 mgon, 1.0 mgon or 1.5 mgon

Distances Sensor type
Accuracy
Precision
Range

905 nm pulsed laser diode
4 mm + 2 ppm
< 2 mm @ 200 m
from 20 cm to 500 m - 700 m

Max. angular velocity 115 °/s

Measurement period 400 ms

Measurement modes T R K , AutoLock

Tab. 3.1: Relevant parameters of the Trimble S7.

29

3.3 Trimble S9 HP Robotic Total Station

The Trimble S9 HP (Fig. 3.2) RTS utilizes the same MagDrive servo motors as
the S7. Exact types of angle sensors are not specified, but it is assumed that they
are also a similar type of absolute encoders. Given angle measurement accuracies
are 0,15 mgon or 0,3 mgon. Level compensator accuracy is not specified. Maximal
servo angular velocity is again 115 °/s.

Fig. 3.2: Trimble S9 HP Robotic Total Station. Taken from [4].

When using a reflexive prism target in the T R K mode, the given distance mea­
surement accuracy is 5 mm + 2 ppm and a standard measuring period of 400 ms.
A valid distance range for measurements with a passive reflexive prism is 150 cm
to 3 km. Again, the AutoLock functionality limits the maximum effective usable
range to only 500 m - 700 m with a pointing precision of less than 2 mm at a 200 m
distance. A 660 nm laser diode with a horizontal and vertical beam divergence of
4 cm/100 m is used as the E D M light source. A n increased measurement frequency
of 10 Hz when in T R K mode is also mentioned within the documentation.

The S9 HP also is equipped with a digital image sensor with a 2048 x 1536
resolution. Power is again provided by a 6.5 A h battery or an external 12 V power
supply. A 2.4 GHz antenna, Bluetooth or an internal serial port provide connectivity.
The S9 HP can also deliver data output through the internal C O M port [22]. Table
3.2 again summarizes the relevant or used parameters.

30

Angles Sensor type
Accuracy

absolute encoder assumed
0.15 mgon or 0.3 mgon

Distances Sensor type
Accuracy
Precision
Range

660 nm laser diode
5 mm + 2 ppm
< 2 mm @ 200 m
from 150 cm to 500 m - 700 m

Max. angular velocity 115 °/s

Measurement period 400 ms, 100 ms available

Measurement modes T R K , AutoLock

Tab. 3.2: Relevant parameters of the Trimble S9 HP.

3.4 Trimble SX10 Scanning Total Station

This station belongs to the Scanning Total Station (STS) category with its high
speed 3D scanning capability. It is, again, equipped with similar MagDrive servo
motors and absolute encoders with diametrical readings as the S7 and S9 HP.
The given angle measurement accuracy is 0.3 mgon. Its centered dual-axis level
compensator accuracy is 0.15 mgon. Maximal servo angular velocity is not specified.

Fig. 3.3: Trimble SX10 Scanning Total Station. Taken from [23].

With reflexive prism targets in the T R K mode, the given distance measurement
accuracy is 2 mm + 1.5 ppm. The measuring period for the T R K mode is not
specified, however a scanning rate of 26.6 kHz is achievable. The available range for
standard reflexive prism measurements is from 1 m up to 5.5 km. The maximum is
again limited, when used in conjunction with the AutoLock functionality, to 300 m

31

- 700 m, for 360 prisms specifically. The pointing precision is 0.88 mm at a 50 m
distance. The E D M light source is a 1550 nm laser diode.

It contains three image cameras with a 2592 x 1944 pixel resolution. A 6.5 A h
battery or an external power supply providing 11.1 V can be used. W i - F i or 2.4 GHz
radio and a USB are stated as communication options. A serial C O M interface,
similar to that of the S7 and S9 HP is visibly present [24]. The relevant parameters
are summarized in Table 3.3.

Angles Sensor type
Accuracy

absolute encoder
0.3 mgon

Distances Sensor type
Accuracy
Precision
Range

1550 nm pulsed laser diode
2 mm + 1.5 ppm
0.88 mm @ 50 m
from 100 cm to 300 m - 700 m

Scanning rate 26.6 kHz

Measurement modes T R K , AutoLock

Tab. 3.3: Relevant parameters of the Trimble SX10.

This station was, unfortunately, not used or tested during this thesis, however
several interesting factors might make it a promising option for any future research.
Most notably, as is mentioned by Lenda et al. [11], its high measurement rates might
be beneficially utilized for the navigation task. This might also point to a gener­
ally better inter-component synchronization and more accurate timing capabilities.
The high measurement rate, however, is connected specifically to the 3D scanning
functionality and might not be utilizable for standard prism tracking. Nonetheless,
custom solutions, which will be presented in Section 3.7 might enable full utiliza­
tion of this capability and therefore it might be an interesting path for any future
research.

3.5 TSC7 controller

The TSC7 is a handheld device used for remote operation of Trimble total stations.
It has a 17.8 cm diameter, 1280 x 800 resolution touchscreen and a full keyboard
with a numpad and navigation buttons, as can be seen in Figure 3.4.

Standard connectivity features such as Wi-F i , Bluetooth or W W A N are available.
Internally, it is equipped with an Intel Pentium 1.1 GHz Apollo Lake 64-bit quad
core C P U , 8 GB of LPDDR4 R A M and an e M M C storage of 64 GB. It is powered

32

Fig. 3.4: TSC7 controller.

by two 3.1 A h hot-swappable batteries or a 19 V / 5 A charging power supply. The
controller runs on a full-fledged Windows 10 Pro 64-bit operating system, essentially
making it a fully independent handheld Personal Computer (PC). Communication
and control of an RTS is managed by a Th'mWe-developed application called Trimble
Access, that comes preinstalled with the device. Two external EMPOWER modules
can be attached to extend the device's functionalities (see Chap. 3.7). The controller
used had a radio antenna module, that was managing the connection to a total
station, attached. A peripheral USB and an RS232 serial port can be used for data
transfer [25].

3.6 Basic instrument operation for measurements

For remote RTS operation a TSC7 controller (see Sec. 3.5) and a 2.5 GHz radio
connection is used. After powering on, the RTS waits for connections at a specified
channel ID and frequency. For an initial connection, these parameters have to be
set accordingly and saved in the Trimble Access application, after which all future
connections are done automatically.

Once a radio link to the total station has been made, the user can proceed to

33

perform their measurements. Basic angle and distance data is available right away,
however for additional values a coordinate system and a location of the RTS within
it have to be defined. Several methods are available, nonetheless for the purposes of
this thesis a basic Station Setup process was sufficient. If the RTS level compensator
is out of tolerance, meaning the station is not leveled properly, a calibration screen
with a graphical representation of spirit levels for the horizontal plane is displayed.
After adjusting the level to acceptable limits, the level compensation function can be
used. Afterwards, environmental quantities such as temperature and atmospheric
pressure can be entered. After that, the user can move on to define the coordinate
system.

First, a Base Station point has to be set. This point represents the location
of the RTS within the coordinates. The Base Station point can be set explicitly
with the x, y, z values or one of several methods, such as resection, can be used to
calculate the location. Another value that can be set is the height of the point. This
helps to easily define a ground level for the coordinates. The total station calculates
all coordinate values using its distance and angle measurements, which means the
measured height is going to be influenced by the actual height of the measuring
equipment. This value is therefore used to compensate for the influence. If the
value is set to zero, the origin of the vertical axis will be coincident with the optical
axis.

After the Base Station point is set up, a Back Sight point has to be measured.
This essentially defines the orientation of the defined coordinate system in the hor­
izontal plane. This point is measured from the instrument, and its azimuth and
height can be set explicitly. The height here serves the same purpose, only from
the target point of view. If the Back Sight is, for example, a prism attached to
a pole of certain length, but we want to ignore the pole, the height can be set to
compensate for the pole's length. The azimuth can be set to define the orientation
of the coordinates within a global existing frame.

After the user accepts the Back Sight point measurement, the total station is
configured and ready for real measurements. Further Back Sight points for higher
precision (see Sec. 5.3) or other topological points can be measured. A n example
of a layout after the setup procedure, not representing the actual experiment setup,
can be seen in Figure A . l .

When the station icon (Fig. A. 1 up) is clicked a menu with several RTS features
is displayed. Here, one of the measurement modes described in Section 3.1 can be
selected. T R K mode, which allows high frequency measurements and the AutoLock
feature, which automatically locks onto a target within the station's field of view
can be selected from this menu. The prism icon provides options for selecting a
target type (see Sec. 3.1) and its height.

34

The last option relevant to the purposes of this thesis is data output. This
can be found after clicking the three lines icon at the top left (Fig. A . l) and
navigating to Instrument Settings. Three options for data output format (Fig.
5.8) are available, GDM user defined, Pseudo NMEA GGA or GDM HA VA SD. The
pseudo NMEA is a format based on the equally named standard from the National
Marine Electronics Association (NMEA) , which is commonly used in navigational
and maritime applications. Transmission parameters such as the used C O M port,
baud rate or flow control can also be specified. One important fact to keep in
mind is that this screen must not be exited with the escape button, otherwise the
transmission will be closed. Navigating to different screens while this one is opened
in the background is of course possible.

3.7 Alternative operation options

Many studies, some of which were mentioned in Section 2.3 or will be talked about
further in Section 4.1, performed their research using total stations developed by
the Leica Geosystems AG company. A common trend was utilizing their available
Application Programming Interface (API) for direct control of the RTS, called Leica
GeoCOM. It is an ASCII-based communications protocol, which provides basic oper­
ation commands to, for example, directly query the E D M or theodolite instruments
for distance or angle measurements. On a higher level, custom programs developed
with C/C++, M S - V B A , Matlab or Lab View can use this A P I for direct access and
operation of the instrument. As it is presently understood, this system is licensed
by Leica and needs to be acquired from the appropriate channels [26].

A n investigation was conducted into similar possibilities for the available total
stations from Trimble. Three possible third-party development solutions were found.
First is the Trimble EMPOWER platform. This is an option that provides the abil­
ity to enhance the Trimble controllers (such as the TSC7) for different proprietary
applications. Custom hardware modules and software programs can be developed to
create new functionalities, such as adding Near Field Communication (NFC) com­
munication capabilities. Access to the necessary Software Development Kit (SDK)
needs to be first consulted and approved by the company [27]. This option is,
however, not suited for the purposes stated in this thesis.

The second option is the Trimble Access SDK. This provides software developers
access to the core of the Trimble Access application used to control their RTSs in
order to enhance its functionalities or develop new custom solutions utilizing the
A P I of the program. New workflows, User Interface (UI) elements or measurement
routines can be developed. However, this still relies on the core application philoso­
phy with an abstraction layer between the real RTS hardware. Access to this SDK,

35

again, needs to be acquired by the appropriate Trimble communication channels
[28]. This option might still not be the best suited solution for the aims presented
by this thesis.

The last and most promising option is called the Trimble Precision SDK. This
seems to provide an A P I for direct access to the Trimble hardware, such as their
total stations. Custom applications, not bound to any already existing solution,
can be created and control of individual station interfaces is available. The A P I is
designed specifically for development in the Microsoft Windows environment with
C++ or C#. Thus any limitations stemming from the available Trimble Access
application can be circumvented by a direct custom solution. Similarly as with the
Leica GeoCOM interface, independent control of the distance an angle measuring
components should be available. The SDK is provided through Trimble's Installation
Manager application and a necessary license must first be acquired from Trimble
[29]. This option seems to be the most suitable for any RTS-based navigation
solutions outlined in this thesis. Acquiring the necessary license was not achieved
during the time frame of this thesis, therefore a practical implementation is not
presented. However, it provides an interesting direction for any future research.

36

4 Problem analysis and concept design
This chapter will provide detailed clarification for the experiment methodology and
design. The specific scenario concerning this thesis will be analyzed and require­
ments that need to be satisfied will be outlined. A suitable experiment structure,
from the physical and hardware up to the software design will be specified. Each
aspect will be further elaborated providing a full justification for the proposed ex­
periment concept.

4.1 Analysis of the kinematic RTS measurement prob-

Section 2.3 already provided an overview of the principles and setbacks of a an
RTS measurement for dynamically moving objects. Here, a further dissection of the
problem will be presented and specific experiment design properties will be stated.

In order to effectively utilize the continually acquired RTS data in real time, it is
necessary for them to accurately reflect the real physical properties of the monitored
object, namely position and time, and to have as little as possible diversions from
these real properties. In other words, each measured position and its timestamp
must describe the real location, in which the object was at that time as accurately
and reliably as possible. Or in reverse logic the real time, in which the object was
at that particular location.

Many research papers, now spanning over more than a decade have been dealing
with the applicability of kinematic total station measurements and their parame­
ters for several distinct applications. Lienhart et al. [30] discuss the potential of
kinematic RTS measurements to be used for dynamic monitoring of vibrations of
constructions, such as bridges. Several interesting parameters, which are also of
interest for real time object tracking and navigation, notably a need for high data
transfer rates and measuring frequency were discussed in this research.

Multiple factors can influence the requirements on the positional and temporal
data, being for example the velocity and character of motion, distance from which
the object is observed or time synchronization of different measuring components.
Given, for example, the maximum angular velocity of the available total stations'
servo motors, a maximal target motion speed can be estimated from equation 4.1

lem

'max max • r

where
• vmax is the maximal prism velocity,

37

• w m a x = 115 °/s = 2 rad/s is the maximal angular velocity given by the Trimble
documentation,

• r is the distance from the RTS.
It can be seen that the maximal prism velocity depends linearly on distance by a
factor of two in the specific case of Trimble S7 and S9 HP stations.

The impact of dissociation of measurements by different parts of the RTS is
most evident in a dynamic scenario where the moving object can be in different po­
sitions when each instrument accomplishes its measurement. This was problematic
especially in the early days with older hardware and insufficient inter-component
synchronization. Stempfhuber et al. [15] and Lenda et al. [10, 11] describe these
influences in detail and show acceptable results within a millimeter for modern total
stations that have been developed in the 21st century. These studies however, have
been performed with movement velocities of only up to 3 m/s, therefore applications
requiring higher target speeds might necessitate more investigation before usage, as
the expected errors might also be higher. The experiments were performed with
a linear motion and deviations from expected lateral and vertical positions were
observed.

Additional experiments with actual U A V navigation were also performed by
Roberts et al. [31], Maxim et al. [32] and Hankus-Kubica et al. [33]. These
again focused on positional deviations from expected reference trajectories.

The mentioned articles so far focused on positional data evaluation with the
time aspect being controlled for. Gojcic et al. [17] and Thalmann et al. [18]
perform deeper investigations into the temporal parameters of RTSs and present
synchronization routines for different dynamic applications. Interesting and relevant
insights into the internal workings of the measurements and time characteristics can
be seen, however their results are aimed at specific scenarios and the exact details
might also vary between different instruments available for this thesis.

Additionally, Stempfhuber et al. [15] and more recently Paraforos et al. [34]
have performed experiments with Trimbe UTSs, which allow high frequency mea­
surements of up to 20 Hz. A higher measurement rate is generally favorable for
lowering of inter-component delays. A dependency of position errors on prism mo­
tion velocity is also demonstrated in [34], however velocities of only up to 1 m/s were
tested. These total stations are considered to be at the highest development stage,
offering even higher accuracies and, as stated, measurement rates. They are part
of the Trimble Heavy Industry sub-brand. Their higher quality component design
and construction might make them even more suitable for real time tracking and
navigation than typical RTSs [35].

It is important to state that most of these groups performed experiments with
Leica total stations and utilized the availability of their GeoCOM commands, which

38

provide a more direct control of the individual RTS components. Similar potential
options were investigated in Section 3.7. Many research papers also present a higher
positioning accuracy and precision compared to even R T K GNSS methods, when a
suitable configuration is attained, which is favorable and further supports the aims
of this thesis for RTS-based navigation.

Several notions arise from all of the above mentioned. First, a certain type of
motion has to be defined, which ideally reflects the monitored factors. A reference
providing the true quantity values needs to be established in order evaluate the
quality of the RTS measurements. Finally, a relationship between the reference and
the monitored quantities should be known in order to perform a valid comparison.

4.2 Experiment concepts and requirements

The performed experiment should therefore be able to safely quantify the reliabil­
ity of the RTS data. Three main realization concepts are arising. Both of them
incorporate two concurrently running measurements, that is the actual RTS and a
reference measurement. A mutual relationship between these two processes needs
to be accurately known in order to maximally isolate any undesired influences that
the experiment might have on the observed parameters.

The first option would be apriori synchronization of measurement intervals be­
tween both processes. Either the acquisition times are exactly known and can be
aligned for both the reference and RTS measurement or a quantifiable relationship
exists between them so that measurement synchronization can be achieved. This
way the time values for both measuring processes correspond to each other and a
deviation of the RTS measured position data from the reference at each time instant
can be objectively estimated. A similar concept of evaluating the positional data,
whether by directly synchronizing the measurement times or by statistical fitting of
the acquired trajectories is realized in [31], [33] and [34].

The second option is the opposite, that is the notion of perfectly known positions
for both measuring processes, which are exactly coincident. These positions are
know from the character and realization of motion and experiment. Therefore time
deviations can be estimated from the values assigned by the RTS and the reference
times, in which the object really occupied these positions. This provides a way of
estimating measurement delays associated with the RTS as a whole.

Lastly, an experimental setup, which isolates the time data entirely can be re­
alized. This incorporates an exactly defined linear track for motion with positions
in the longitudinal direction being observed and lateral and vertical positions are
expected to remain zero or constant. A comparison of deviations from zero can
then be made with respect to the linear motion. A reference measurement is also

39

maintained and time data can, in principle, also still be evaluated. This type of
experiment provides a way of evaluating the internal component synchronization
delays and is shown in [15], [10] and [11].

4.2.1 Requirements on temporal data

A n important aspect of the experiment realization is a correct formalization of time
parameters and isolation of the experiment chain influences from the observed RTS
parameters. The whole chain can be separated into an RTS measurement process
and a reference measurement process.

Factors influencing the RTS measurement process can be the station's delay,
data processing by the RTS's measurement software or data propagation delay from
the RTS to a logging device. These are the parameters that are to be quantified.
In order to utilize the obtained data for other purposes in real time, the overall
delay from the moment of a physical position measurement to the moment of data
availability at the end point is of concern. It might also be beneficial to have the
knowledge of when (or at which point of the process) a timestamp was associated
with a specific position measurement. These facts are not always evident in advance
and should be estimated in a suitable manner.

The reference measurement process provides greater flexibility and control over
individual components, hence it can be characterized more precisely. The reaction
time of the end sensor performing the physical measurement and how fast it provides
the results on output, both need to be considered. Similarly, the propagation delay
from the sensor to an evaluating device is also important. Since the timestamp
association is fully under our control, the parameters of the evaluating device and
its effect on this association have to be taken into account.

Several requirements on the experiment chain follow from the above mentioned.
The RTS measurement requirements are given largely by the intended final usage.
Given the advertised sampling period of 100 ms or 400 ms (see Chap. 3), possible
data loss and a potential delay increase from lower data propagation rates, it is desir­
able for the RTS timestamps to have acceptably low deviations from the true time,
or for the deviations to be deterministic and exactly known for the whole application
period. With typical velocities of small quadrocopters being in the range of ones
to tens of meters per second (or mm/ms) [36], a delay of hundreds of milliseconds
creates a position error of tens to hundreds of centimeters. Greater delay values
could potentially render the navigation task difficult to accomplish, expanding the
position error beyond the size of the aircraft itself. For the reference measurement,
the process should reflect the true time of the position as accurately as possible.
The delay from a physical detection to a timestamp association should be mini-

40

mal so as not to significantly skew the determined RTS measurement parameters.
This delay should then, ideally, not exceed hundreds of microseconds or possibly be
exactly deterministic so that it can be safely accounted for during processing. If
these requirements are met, the reference data can be accepted as the true object's
properties from the RTS's point of view.

Last but not least, the whole experiment chain should be considered as well,
meaning the time data of both processes should be mutually synchronized and share
a common frame or a direct relationship between them has to be known in order to
be able to process both data sets in a comparative way.

4.2.2 Requirements on positional data

The requirements are again evaluated from two parts, the RTS and reference mea­
surement processes. Position estimation is the main task in this point of view, ergo
a certain accuracy of its measurement has to be adhered to. Again, considering
the typical sizes of small quadrocopters being in tens of centimeters, the error in
position estimation with an RTS should ideally be in millimeters, possibly units of
centimeters. The accuracy of position estimation of a total station is a parameter
explicitly given by the manufacturer and further verifications of its credibility are
not a primary concern of this thesis. Additionally, for dynamically moving targets a
much higher effect on the overall position estimation accuracy is expected to come
from time and synchronization inaccuracies.

As far as the reference measurement process is concerned, again the acquired
reference data point must reflect the true property of the object as accurately as
possible. If the reference position is measured by a sensor, its accuracy must be high
enough so as not to significantly skew the determined parameters of an RTS mea­
surement. If the experiment setup provides inherent objectively known positions,
its character and realization must allow for repeatable and reliable estimations of
these positions.

4.3 Selection and evaluation of selected conception

and parts

4.3.1 Target motion type

Based on the outlined requirements, parameters and available resources a suitable
conception of the experiment to be performed has to be designed. Three basic
shapes (or trajectories) of motion, which could be realized within an experiment in
this thesis emerge from experiments performed in the aforementioned articles. As

41

is shown in Figure 4.1, these are a straight line, circular and sinusoidal motions, or
possibly a combination or particular section of any one of them. The figure displays
them in a two dimensional plane and viewed from the top. However, the particular
choice of axes and orientation of the RTS in space relative to them is arbitrary and
depends solely on experiment conditions and desired outcomes.

(a) Straight. (b) Circular.

(c) Sinusoidal. (d) Other parts or combinations.

Fig. 4.1: Examples of possible motion types and trajectories.

A pendulum type of motion with a spatial shape similar to that of a half-circle
in Figure 4.1 (d) was chosen for the main experiment realization. A n already avail­
able rotary mechanism, which was constructed as a part of a different thesis [37]
could be used since it has all the necessary structural properties for the purposes
of experiments performed in this thesis. The used bearings provide sufficiently low
friction, which guarantees a satisfactory number of naturally damped oscillations
even at lower amplitudes, provided that a suitable radius is established. By fixating
the construction sufficiently, a repeatability of motion trajectory within one plane
can be ensured. One source of instability is the actual pendulum arm, which in
principle cannot be fixated. With an increasing radius, the rigidity of the arm de­
creases, however for a higher number of oscillations and greater traveled distances a
larger radius is desirable. A way of increasing the arm's rigidity while maintaining
sufficient length is presented further in Chapter 5. With a convenient orientation of

42

the RTS perpendicular to the plane of oscillation the processing task can be simpli­
fied into a two-dimensional realm. The main advantage of this character of motion
is that the rest point of the pendulum can be exactly characterized by both the
reference and RTS measurement. This type of motion also provides an extensive
dynamic scenario with varying velocities and direction of motion changes, which can
evaluate the overall RTS's capabilities in a scenario representative of a real-world
motion.

4.3.2 Experiment realization concept

One of the outlined methods of experiment realization is utilizing known object
positions and comparing their timestamps between both, the RTS and reference
measuring processes. Given the character of the chosen oscillating pendulum mo­
tion such a precisely known position offers itself in the pendulum's rest, or zero,
point. Exploiting this feature, a comparison can be performed between timestamps
associated by the RTS and reference measurement at the exact moment when the
pendulum crosses its rest position. This way, with a suitable experiment config­
uration, a direct expression of the delay between the moment of a physical event
and the time the RTS associated with this event can be known. In other words,
a total delay of position measurement by the total station can be expressed. This
time delay can be easily converted, by integrating through the interval (eq. 4.2),
into a position error and if the velocity of the object is constant during that period,
relation 4.2 simplifies into 4.3. What is more, this time delay is also easily integrable
into the navigation task, which permits better and more effective synchronization
of all participating components.

to+At
v dt (4.2)

where
• <5P is the positional error,
• to is the moment of the true physical position event,
• At is the time delay,
• v is the object's velocity during this interval.

v • A (4.3)

where
• Ap is the positional error,
• At is the time delay,
• v is the object's velocity during this interval.

43

The perpendicular alignment of the RTS (see more in Sec. 5.2) also places it in a
wort case scenario (also see Fig. 2.4), enabling a comprehensive evaluation of its real
capabilities. Using this methodology, any inaccuracies emerging in the positional
domain will, as a result, also be reflected and encompassed within the estimated time
delay. This leads to an interpretation, where measured position values are treated
virtually as absolutely accurate and the time error contains all the inaccuracies
(which, ergo, can also stem from an inaccurate position measurement) within itself.

Two separate and different types of time delays will be talked about within this
thesis and in order to minimize confusion, their visual representation can be seen in
Figure 4.2.

treal tmeas tavail

t i m e

Ameas Aprop

Fig. 4.2: Visual representation of estimated time delays.

The main delay emerging from the whole pendulum rest point experiment is the
time difference between the real time when an object was physically occupying a
certain position (teal) and the time, which was assigned to this particular object's
position by the RTS (Was)- In other words, an overall position measurement delay
is estimated (marked as / ^ m e a s hi Fig. 4.2). The second one is the delay between
the time that the RTS assigned to a position measurement (Was) and the time,
in which the data from this particular measurement is available at the end device
(4vaii)- This will be called a data propagation delay and is marked as ApTop in Figure
4.2.

4.3.3 RTS measurement components

Evaluating the available total stations

Preliminary tests have been performed within the semestral part of this thesis to
evaluate the suitability of the Trimble S7 RTS. It had been found that this station
truly does not provide a higher measurement rate during continuous tracking in
the T R K mode and the frequency is limited to standard 2.5 Hz. Several different
settings were tested, such as enabling and disabling the FineLock and LaserLock

44

functions, or changing the Predictive tracking time and data output baud rate,
however none seemed to have an effect on the measurement frequency. Figure 4.3
displays an example of the time data from one of the tests.

(10' log: 10Hz_attempt01

„ 5 . 2 1 8 (/)
^ 5.217
D)
0,5.216
0
E 5.215

5.214

- i

•

0 20 40 60 80 100 120

500

^ 4 5 0

o
Q-400
0
H—1

1 350
o
J 300

— n 1 k-f
f: «

1 1 — n 1 k-f
f: «

— n 1 k-f
f: «

- T T ^ " II t f i l
• • • :;. z:

'• •'• i i • • i • 4 4
******** :|:: :#***""

• 4 * *
• '•: ;j:;

i : ;: • : i >' • • • •
* • • *

i . . .

0 20 40 60

Point [-]
80 100 120

Fig. 4.3: Time data from the Trimble S7 RTS.

Further research into the Trimble documentation provided an interesting revela­
tion. Although an older version of the documentation from 2017 [6] explicitly states
that this feature is only available with the S8 and S9 series total stations, a newer
(latest as of writing this thesis) version completely omits that note. From this, it
follows that either this fact is mistakenly omitted from the newer versions, or per­
haps the feature can be added even into the S7 (and possibly others) by a firmware
upgrade. However, given that the data-sheet for the S9 explicitly states the avail­
ability of a 10 Hz tracking feature, while the S7 one does not, it leads to a conclusion
that even though possible, it might be an undocumented enhancement at this time.
The present firmware version, as of testing, was H2.7.19 and further investigations
into upgrades contained within the newer versions were not conducted.

For the final experiments, the Trimble S9 HP RTS was ultimately chosen as it
had been confirmed that it truly can provide measurements with a rate of up to
10 Hz. Figure 4.4 shows time data from the S9 HP.

45

x10' log: 01_486cmRTS_static_uart

™ 6.0982
(Si

E 6.098
D)

6.0978
dj 6.0976
j l 6.0974
6.0972 0 20 40 60 80 100

; ; ; ;

: • • • " ! :

120

To" 150

o

o
Q.

< 50

1 00 f» • :»•••* •
ill* •

20 40 60
Point [-]

80 100 120

Fig. 4.4: Time data from the Trimble S9 HP RTS.

Data output settings

Data output was accomplished through the RTS's internal serial C O M port. Initially
in the semestral part, the data was captured by a separate P C at its USB port
through an RS232 <-> USB cable. The baud rate was set to 57 600 bits/s and flow
control was X o n / X 0 f f . The number of data bits, stop bits and parity are implicitly
set by the RTS to 8, 1 and none, respectively and this cannot be modified.

Given the outcomes of [30], the baud rate was subsequently raised to the max­
imum available 115 200 bits/s and all further experiments presented in this final
thesis were performed with this transfer rate. Any other older results will only be
presented in supplement B. The P C and RS232 <-> USB cable were left out com­
pletely by connecting the output directly onto the Universal Asynchronous Receiver-
Transmitter (UART) pins of reference measurement device, which is dealt with in
Section 4.3.4. In this case the flow control is set to none. This also means that the
data acquisition times are within the same time frame as the reference measurement
itself, ergo a further timestamp evaluation and data propagation delay from the RTS
to an end device estimation can be performed. Table 4.1 at the end summarizes all
the final parameters of the RTS measurement process for this thesis.

46

4.3.4 Reference measurement components

Measurement process performing device

The reference measurement processing device can be chosen from several distinct
options. A n obvious one might be direct control with a micro-controller, such as
the STM32 type. Another option is to use an industrial compact controller like
the CompactRIO or a full-fledged Programmable Logic Controller (PLC). Possibly,
the data can be processed directly by a Field-Programmable Gate Array (FPGA)
module. A l l of these options provide real-time processing capabilities, which is
beneficial to the task. Another option is a mini-PC, such as the Raspberry Pi (RPi).
This device runs on an operating system and, therefore, its kernel handling might
interfere and cause measurement delays as opposed to the true real-time solutions.
However, it also provides ease of use and flexibility for various distinct tasks that
might be useful for the experiment implementation. Direct hardware access is still
available through its General-Purpose Input/Output (GPIO) pins, and by choosing
a suitably low resource-hungry OS and a well implemented library for GPIO access,
the negative effects of kernel scheduling should be sufficiently mitigated.

A n entirely different approach is using a device, which can all by itself provide
the complete required temporal and positional information with an accuracy much
higher than that of the RTS. Some of the mentioned research groups were using
a Laser Tracker device to serve as a reference source of the true object properties
[13, 12, 18]. Its design is of a similar construction as an RTS, but it only uses a
highly precise laser system to perform measurements. The laser beam is reflected
back by a specialized reflector, similar to an RTS prism, however much smaller in
size. It can also track a moving reflector and general use cases are performing highly
precise alignments or surface shape measurements. A potential substitution of the
entirety of an RTS by a Laser Tracker will be discussed in Section 6.4. As far as
this thesis is concerned, such a device was not available at the institute and its
procurement would be more complicated. From all of the above stated, the final
choice was a Raspberry Pi SB mini-PC, which was already available at the U A M T
department.

Raspberry Pi configuration

The Raspberry Pi OS Lite Linux distribution was chosen as the operating system for
the R P i , since it is directly developed and provided by the Raspberry P i foundation
and should provide the best optimization for the hardware. The lite version provides
minimal overhead and an added benefit is an exhaustive documentation and support
available for the OS. Tickless kernel, a mode used for power saving by reducing

47

the number of kernel updates when the C P U is idle, was disabled by adding the
nohz=of f parameter to the kernel cmdline at /boot/cmdline.txt. Although recent
recommendations suggest that this option has minimal effect on time delays, saving
power consumption is not a concern for this application and the mode was turned
off to ensure no influences either way. The C P U governor was set to maximum
performance by the cpupower frequency-set -g performance command and this
setting was made permanent on boot by adding the command to /etc/rc. l o c a l .

As was stated in Section 4.3.3, the output data from the RTS was processed
directly by the reference measurement device, which in this case is the Raspberry
P i . In order to connect the RS232 output with the U A R T input of the R P i , a
conversion had to be made. Ready-made RS232 <-> UART adapters utilizing the
MAX-232 chip exist on the market, however a full both-way communication is not
necessary and a much simpler one-way circuit is sufficient. The voltage levels of the
RTS serial output are -5.8 V to +6.8 V for high and low logic levels, respectively.
The Transistor-Transistor Logic (TTL) U A R T of the Raspberry P i on the other
hand operates with voltage levels of +3.3 V to 0 V for the same high and low logic
levels. Since data is flowing only from the RTS to the RP i , voltage inversion and
limitation are adequate. Figure A.2 shows these signal voltage levels. Figure 4.5
displays a simple circuit performing these adjustments.

R S 2 3 2) -

R l
3k3

+3V3
A

R2
330

D
0V7 Í

<UARTI
Tl
BC337

G N D GND

Fig. 4.5: Serial voltage adjusting adapter for GPIO U A R T .

Standard 3.3 k i l and 330 Vt resistors provide suitable current values on the order
of milliamperes. When the input voltage is high, the transistor opens and the output
level is set to 0 V . Once the input voltage goes to negative values, all the current
flows through the diode and the transistor stays closed, in which case the output is
pulled to 3.3 V .

48

Library for implementation

A well known and widely used library for GPIO access on the Raspberry P i is
WiringPi. It provides a simple A P I to interface with the pins and is designed to be
consistent with the Arduino wiring system style and functionality. However, Arduino
code compatibility is not important for this thesis, and highly accurate timing and
processing seem to rather not be a primary concern for the library implementation.
As of 2019 it is also deprecated and is not updated anymore [38].

Another option is the bcm2835 library. It provides a fast A P I for C /C++ pro­
gramming, however interrupt services are not supported [39].

The measurement program was ultimately implemented using the PiGpio library
in C language. This appears to be the lowest level and fastest GPIO access library
by implementing timing and GPIO handling directly through the kernel. Interrupts
are also supported. The code is open source and available on github, and it also
provides a wider and more comprehensive set of functionalities. The A P I it provides
is easy to use and understand, and it is well documented [40].

Event detecting sensor

For the pendulum rest position detection a small photoelectric light barrier sensor
configuration was used. Initially, in the semestral part, an Omron U-type photomi-
crosensor was used. Its reaction time is max. 333 us at U c c = U o u t . The state change
reaction area is 1.1 mm from each side. The light emitting/receiving slit width and
length of the barrier were 2 mm and 15 mm, respectively. It was powered from a
+5 V output GPIO pin on the R P i . The N P N open collector output was connected
to an input GPIO pin through an external 3.3 kfl pullup resistor at +3.3 V . The
effect of output U o u t voltage being lower than the power U c c = +5 V on the reaction
time was not considered [41]. The configuration can be seen in Figure B . l .

Subsequently, for this final thesis implementation, a Panasonic EX-Z11 series
photoelectric sensor configuration was selected. Again, any older results achieved
with the Omron sensor will only be provided in supplement B. Its reaction time is
less than 500 us. The light emitting and receiving slit width is 0.3 mm and the
distance between the emitter and receiver can be set as required and up to 50 mm.
Its connection was more involved as it requires a minimum power source of +12 V DC
and the open collector output of the receiver was ultimately a P N P type transistor.
The necessary 12 volts were supplied by an external switched-mode power supply.
Since the transistor opens to full +12 V power, the output cannot be connected
directly to a +3.3 V input GPIO pin [42]. However, a simple volt age-limiting Zener
diode circuit easily solves this problem. Figure 4.6 shows the schematic, where the
additional circuitry of the transistor and sensor is omitted.

49

+12V
A

PNP

<OUT OUT I |~ÍŇ>-
Rl
3k3

R2
10k

<GPIO

2
DZ
3V3

GND GND

Fig. 4.6: Sensor voltage limiting adapter for GPIO.

The 3.3 V Zener diode provides a save voltage for the GPIO pin when the
transistor opens. By the Panasonic specification, a maximum allowed output current
is I 0ut,max = 20 mA. This leads to a theoretical minimal value for R i given by the
Ohm's law 4.4, which is 435 Q.

U o u t — U d

In
(4.4)

where
• R i , m i n is the minimum resistance,
• U o u t is the output voltage from the sensor,
• U d is the diode voltage.
The R 2 serves as a pulldown resistor and sets the GPIO pin value low when the

transistor is closed. The supply voltage of R 2 needs to be greater than U d , i-c.
equation 4.5 needs to be satisfied. The voltage can be calculated form the equation
for a voltage divider 4.6.

U R 2 > U D , (4.5)

U
R-2

K 2
• U . out, R i + R 2

where
• U r 2 is the voltage supplied by R 2 .

By combining 4.5 and 4.6, the minimum value for R 2 is given by 4.7.

U D

(4.6)

R 2 > • R i , (4.7)
Uout — U d

As can be seen in Figure 4.6 standard 3.3 kQ and 10 kQ resistors were chosen
for Ki and R 2 respectively, which are well above the required minimums and still
provide a high enough reverse current to the Zener diode. Again, all final reference
measurement parameters are summarized in table 4.1.

50

4.3.5 Time synchronization

Finally, since a comparison between the time values from the RTS and reference will
be made, a synchronization procedure between both of these processes needs to be
maintained. Since the TSC7 and Raspbery P i both run on an operating system, one
solution might be synchronizing them to a common Network Time Protocol (NTP)
server. This would give both devices the same time reference, however it has draw­
backs. Most notably, the delays when connecting to external N T P servers are on the
order of tens of milliseconds. Acquiring an internal time source would be beneficial
and reaching sub-millisecond accuracies should be possible with proper implementa­
tions (such as the chronyd package on Linux), however a different approach appears
to be more suitable.

Precision Time Protocol (PTP) is a time synchronization protocol used for high
precision applications and on a local network with proper settings it can achieve
sub-microsecond accuracies. For Linux operating systems two main implementa­
tions are available: PTPd [43] and Linuxptp [44]. The latter seems to be a more
comprehensive implementation with more options and a wider support. Notably, a
HW timestamping functionality is implemented directly through the Linux kernel.
This means that timestamps can be acquired directly by the Network Interface Con­
troller (NIC) hardware upon receiving and sending packets (if it has the necessary
components) without any further overhead. This allows for the sub-microsecond ac­
curacies mentioned earlier. However, the NIC present of the Raspberry P i does not
support this functionality and more importantly, Linuxptp is not compatible with
the Windows OS, which is on the TSC7 controller. Enabling the processing of P T P
packets on Windows is a matter of configuring the correct registries and in theory it
should be able to react with messages from any Linux implementation. After further
research the problem seems to lie in the way these messages are handled. Windows
accepts P T P packets only in unicast mode and presently does not provide support
for a HW timestamping implementation. On the contrary, packets sent by Linuxptp
can be in unicast mode exclusively only with HW timestamping. Another thing that
Windows requires is that the receiving packets must have the ptp_timescale flag
set to PTP. Again, this flag is probably only set with HW timestamping for Linuxptp.
Another time acquiring method is SW timetamping, which is a software-based ap­
proach and it is implemented within Windows. This method can provide accuracies
on the order of microseconds, which is still suitable for the experiment purposes
of this thesis [45]. On Linux, the latest release of PTPd is managed by Aptitude
with the apt-get command and for Linuxptp, a custom script named updateptp41
checks for the latest source on their sourceforge repository, compares it with the
currently installed and performs an update if necessary.

51

Attempts were made to enable the accepting of multicast P T P messages on
Windows. A registry key called EnableMulticastRx exists in the P T P configu­
ration section, however it had no effect when enabled at the time of writing this
thesis. Ultimately, P T P synchronization using the PTPd implementation on Linux,
directly between the TSC7 controller and the Raspberry P i was performed, where
the (grand) master source clock was the R P i and the controller adjusted its clock
in slave mode. The synchronization was always running throughout the whole mea­
surement process.

RTS Model Trimble S9 HP
Controller TSC7
Measurement period 100 ms

Reference Device Raspberry P i 3B
Sensor Panasonic EX-Z11
Sensor slit 0.3 mm
Sensor distance 5 mm
Application PiGpio, C

Data Source RTS C O M
transfer End R P i U A R T

Baud rate 115 200 bits/s
Flow control None
Data bits 8
Stop bits 1
Parity None

Time Protocol P T P
synchronization Implementation P T P d

Master clock Raspberry P i 3B
Slave clock TSC7
Interface Ethernet

Tab. 4.1: Main experiment parameters and configuration.

52

5 Experiment realization procedure
This chapter will inform the reader of the actual physical configuration and layout
of the experiment and its components. A l l the final chosen and argued concepts
from previous chapters will be presented here in their real physical realizations and
the methodology and procedure for the experiments will be shown. The device
configurations, setups and developed programs will be presented.

5.1 Description and display of reference measurement

components

5.1.1 Raspberry Pi 3 B

Reasoning for the selection of this device was provided in Section 4.3.4. It comes
with a 1.2 GHz 64-bit BCM2837 processor, 1 GB of R A M and storage for the OS and
data is maintained by an external Micro-SD card. It provides a 100 Base Ethernet
Local Area Network (LAN) connection, and also W i - F i and Bluetooth connectivity.
Power is provided by a 5 V/2.5 A power supply. A set of 40 GPIO pins is available,
which can provide reference 5 V , 3.3 V or Ground, access to peripherals such as
U A R T or I2C, or general input/output functionality [46].

Fig. 5.1: Both adapters connected to the Raspberry P i .

53

As was mentioned, for connecting with the sensor and RS232 serial output, simple
custom adapters had to be made. Their description is provided in Section 4.3.4.
Figure A.3 shows their realization for use and Figure 5.1 shows their connection to
the R P i .

5.1.2 Panasonic EX-Z11

Fig. 5.2: Mounting brackets for the Panasonic EX-Z11 sensor. Left: emitter, Right:
receiver.

It is a miniature photoelectric sensor that uses a 650 nm L E D for motion detec­
tion. It comes as physically separate emitter and receiver units that can be mounted
according to desired use. The width of the emitted light is controlled by a 0.3 mm
slit and the freely adjustable emitter-receiver distance was set to be 5 mm. For this,
custom mounting brackets, where the position and distance of the two elements can
be adjusted, were designed and 3D-printed (Fig. 5.2).

5.1.3 Sensor-crossing prism extension

Chapter 4 provided a more abstract theoretical description of the experiment design
and realization methodology. A l l of the individual components of the experiment
have now also been described, but what remains to be further elaborated is the actual
realization of the mentioned event or objectively known position in the pendulum
rest point. From all that was mentioned so far, it is evident that some kind of an
object is going to cross a light barrier sensor setup providing a reference and that
the RTS will be tracking a prism constantly during the motion.

For this purpose, an attachment that is mounted onto the moving prism was
designed and 3D-printed. The barrier-crossing element (a thin rod-like extension)

54

was created as narrow as possible in order to minimize asymmetricality of the setup,
since it will be crossing the light barrier from both sides as the pendulum swings
back and forth. Its circular shape allows for its invariance to orientation at which it
is crossing the barrier. A n earlier quickly set up proof-of-concept attachment that
was used in the semestral part is shown in Figure B . l on the right. The actual
design with a 2 mm thin rod extending from the prism attachment, which was used
in this final thesis, is displayed in Figure 5.3. This was the smallest thickness that
could be reasonably printed and, together with the 0.3 mm slit on the sensor, should
create minimal deviations between the left and right swings.

Fig. 5.3: A thin rod extension crossing the light barrier mounted on a Trimble VS /S
360 prism.

The attachment consists of two parts. The inner section mounts directly onto the
prism and serves as a bracket for the actual attachment with the rod extension. The
parts are secured together by two screws protruding through the whole construction.
Since the desired precisions of the setup are expected to be within millimeters and
milliseconds, any kind of movement at the connections between the two parts should
be eliminated. For this, internal grooves and protrusions where designed to secure
both parts firmly in place and prevent any rotational or lateral movement. Figure
5.4 shows the inner design of the parts.

55

Fig. 5.4: Detail on the inner connection between the two attachment parts.

5.2 Component layout

This section will describe the physical realization and layout of the main experiment.
The pendulum, prism and sensor setup can be seen in Figure 5.5 and a graphical top
view of the layout in Figure 5.6, right. The extension described in Section 5.1.3 was,
together with the prism, mounted onto the end of the pendulum arm. Its set length
ensured a large enough number of oscillations through the sensor and also enabled
the extending thin rod to be as short as possible (32 mm) in order to minimize any
of its own vibrations. The whole construction was firmly fixed in place so that it
didn't negatively interfere with the observed motion. As was stated in Chapter 4.3,
the only unsecurable part is the arm itself, which can have unwanted vibrations in
the lateral direction. Its rigidity was increased by fixing two of such pillars onto each
other in that specific direction. This reduced the negative vibrations, leaving the
weakest link in the connection at the center of rotation, which in principle cannot
be fixed any further. The negative effects were negligible (see Sec. 6.3.3).

The reference measurement light barrier sensor setup was fixed on the ground.
It was precisely positioned such that the pendulum in its rest position just breaks
the light barrier with its left side, as seen from the point of view in Figure 5.5.
This represents the exact true known zero position of the pendulum. The oscillating
motion was always initiated from the right side, again from the view in Figure 5.5.
The RTS was placed on the ground (in a position behind the camera view) at varying
distances from the pendulum. It was oriented to be as perpendicular as possible to

56

the plane of oscillations, so that the whole motion was being performed mostly in
one axis. Perfect alignment can in practice never be achieved, however a method
which provided an observable difference was applied. The basic concept can be seen
from Figure 5.6 on the left.

Rotation
s ax is

N
S

s
S l o p e N

s

distance s

R

RTS

• Slope
distance

Rotation^ Rest point
axis Pendulum*

oscillations

RTS
measurement!

Fig. 5.6: RTS alignment principle (left) and component layout (right), top view, not
the of same scale.

A slope distance value from two points lying on a horizontal line and equidistant
from the axis of rotation was measured. The equidistance was achieved by observing
the edges of a circular structure seen in Figure 5.5 at the top. The RTS was set
to DR mode for laser-target measurements. Its vertical angle was first set to align
with a specific point on one side of the circle. Subsequently, only the vertical angle
was being changed (moving left and right) to align with a second point on the other
side, while the vertical angle remained fixed. The RTS was positioned such that

57

the measured distance values from both points were equal. This procedure has its
limitations and depends on the precision with which the two points can be sighted.

In summary, the pendulum arm radius was 128 cm and the RTS was placed at
three distinct distances from the pendulum, where several measurements were made.
The largest was at around 4.9 m, following with around 2.7 m and around 1.5 m.

5.3 Configuration and setup of experiment compo­

nents

5.3.1 Total Station configuration

Whole operation of the total station was performed using the TSC7 controller,
settings of which will be described in a following section. The RTS was set up
as follows. After the initial orientation alignment, level calibration is performed
as described in Section 3.6. Subsequently, a coordinate system suitable for the
experiment can be defined. A flat linear Euclidean-space local coordinate system
with a scale factor of 1.0 was used for all measurements performed within this thesis,
since it is perfectly sufficient for the purposes of local navigation with an RTS. A
global system with polar coordinates referenced with GNSS is not relevant for these
purposes, because the RTS itself will be the source of the coordinates.

Following the basic Station Setup procedure then, two points have to be mea­
sured. First is the Base Station point, which defines the location of the RTS itself
within the coordinate system. Again, the system for navigation is going to be fully
defined and provided by the RTS, therefore an explicit setting for the Base Station
point as the origin of the coordinates is preferable. The values for x, y and z were
explicitly set to [0,0,0]. The height value for this point was set to 24 cm, which
is the measured height from bottom (ground) to the top notch at the sighting axis
and this ensures that the coordinates will originate from the ground in the vertical
direction. The second point, called a Back Sight defines the horizontal orientation
of the coordinates and its position is measured by the RTS. The Back Sight will
also define the known zero target position for the RTS. When the pendulum was
at its rest position with the prism at the bottom, the RTS was, using the AutoLock
function, locked onto the prism. This point was then measured as the Back Sight
in STD mode with 10 averaged measurements, ensuring a highly precise definition.
The azimuth value was also set to 0 to define it as the starting orientation for hor­
izontal angle measurements. The starting orientation for vertical angles is fixed at
the zenith. Finally, the height of this point was set to 0, as the RTS was measuring
the real prism location with no additional offsets.

58

After accepting of the measured Back Sight point, the station now provides
location data of the measured target within the defined coordinate system. The RTS
defines these local coordinates in the East, North, Up (ENU) framework. Figure 5.7
displays the resulting configuration and Figure A . l shows a particular example with
several other points on the TSC7 screen. The RTS there was not placed directly on
the ground and that is why the points are located below the origin with negative
height values. The location E N U values sent out as data output are of the Easting,
Northing, Elevation convention.

X/ Northing
Backsight i

U, Z, Elevation

©

BaseStation (y
Easting

N
Fig. 5.7: Representation of the RTS local coordinate frame.

This configuration implies extrapolation of the measurements from the refer­
ence, which as an effect might provide worsened accuracies as is stated in [47].
The proposed configuration is with several Back Sight points enclosing the desired
measurement perimeter. However, this seems to apply more to general static topo
or stakeout measurements and resection techniques, which are not relevant for the
purposes of this thesis with dynamic motion.

EDM settings

The final step for the RTS is enabling T R K mode and the AutoLock function. The
10 Hz measurement functionality can be enabled by a checkbox in the settings, but
is only available when AutoLock is on and the station is in T R K mode. The target
type has to be a prism and whenever the station is set to DR measurements, it will
automatically disable the functionality until a prism target is selected. The FineLock
function, which is used for static measurements with multiple close by prisms and
does not work with T R K mode, should also be disabled. It might also be beneficial
to disable the LaserLock function as it interferes with AutoLock.

59

Data output

For data output it is necessary to keep the screen opened in the background. The
output was set to Continuous mode and a GDM user defined structure is selected
where all the necessary values can be set for output. The data was being sent in
a format shown in Figure 5.8, where each measured value is specified by its label
number and a complete data point is ended with the '> ' termination character.
A n example of acquired data from the RTS can be seen in Listing 5.1. Highest
resolutions of all displayed values were set in the global job settings. In the data
output section, the most important is the resolution of time values that will be sent
out. The highest possible resolution in 10 ms. Parameters of the data transfer were
summarized in Table 4.1.

- \ 15:08 0 0 § | H _ *T

- ^ 0 6 / 1 1 86% 95% I 0.2400 ^
3 « 0.2300 HA:399.8847 VA:100.1812 SD:2.028

D a t a o u t p u t ^

C o n t i n u o u s • J G D M user de f ined •

U s e r d e f i n e d r e c o r d

GDM label 1 GDM label 2

51 (Date)

GDM label 3

7 (HA)

GDM label 5

9 (S D)

GDM label 7

52 (Time)

GDM label 4

8 (VA)

GDM label 6

10 (VD)

GDM label 8

51 (Date)

GDM label 3

7 (HA)

GDM label 5

9 (S D)

GDM label 7

52 (Time)

GDM label 4

8 (VA)

GDM label 6

10 (VD)

GDM label 8

51 (Date)

GDM label 3

7 (HA)

GDM label 5

9 (S D)

GDM label 7

52 (Time)

GDM label 4

8 (VA)

GDM label 6

10 (VD)

GDM label 8

11 (HD) 37 (N)

GDM label 9 GDM label 10

3 8 (E) 39(ELE) •w

End of transmission character

6 2 (">")

Esc
Stop

Fig. 5.8: Configured RTS data output labels.

As was mentioned, no flow control was used for transmission. The hardware
flow control RS232 outputs were, therefore, interconnected with their corresponding
inputs (see Fig. 5.9) so that transmission was always running and the RTS was
continually sending all of its output from the C O M interface immediately as it
appeared. The Raspberry P i was then immediately processing this data on its
U A R T input. The conversion from RS232 to U A R T was explained in Section 4.3.4.

With all this, the RTS is finally configured for the experiments and is constantly
sending data through its C O M serial port.

60

Listing 5.1: Example
RTS data output, show­
ing one point.

0
51=2021.0421
52=18.411712
7=0.00006
8=102.00073 DTR->DSR
9=2.660
10=-0.084
11=2.659
37=2.659 Fig. 5.9: RS232 DB9 connector pin connections.
38=0.000
39=23.916
>

5.3.2 TSC7 controller configuration

General Windows settings

Some additional modifications, for the purposes of experiment, were also made to
the TSC7 controller. The version of the Windows operating system, which was used
at the time of performing all experiments was 20H2, build 19042.867. The Trimble
Access application, used for controlling the RTS, was updated to its latest available
version 2021.00. A basic user-space configuration of the OS was made. Features
such as transparency, animations and hiding of scroll bars were disabled for high
responsiveness. Most settings in the Privacy and Gaming sections were turned off or
disabled and some services which were not relevant for this thesis, such as Connected
User Experiences and Telemetry or Distributed Link Tracking Client were
also disabled in order to assure as minimal as possible OS interference with the
experiment. A l l general setting changes are documented in the TSC7_changes.txt

PTP configuration for the experiment

Since the TSC7 also provided its time to the RTS and the acquired timestamps
reflected this time, the controller was synchronized with the reference measuring
Raspberry Pi . A more involved configuration was needed to set up the P T P synchro­
nization. Basic guidelines however, are available at the Microsoft github repository

file.

61

[45] and a set of custom PowerShell scripts was developed to easily configure the
controller for experiment and revert all changes back to the original configuration
after its completion. The execution of unsigned local PowerShell scripts first had to
be enabled in the Update & Security -> For Developers settings section. The
lowest level scripts:

• EnableSWTimestamping/DisableSWTimestamping,
• EnableW32TMlogging/DisableW32TMlogging,
• SetUpPTPFirewall/RestorePTPFirewall,
• SetUpPTPWinTime/RestorePTPWinTime,
• QuerySyncStatus and LogSyncStatus

perform the necessary configurations and display the running state. The higher level
ones:

• StartMeas/StopMeas and SetUpEnvironment/RestoreEnvironment
then call them to quickly prepare the device and manage the measurement process.

Three general actions were necessary. First, the Sof twareTimeStamping module
had to be installed, if not present already, and the mode had to be enabled on the
desired network interface. The synchronization was performed through Ethernet on
both devices (TSC7 and RPi) and since the TSC7 does not have an Ethernet port,
a converter from USB 3.1 to Ethernet was used. The influence of this converter on
the quality of synchronization was imperceivable. Second, ports 319 and 320 had to
be enabled in the firewall. Lastly, correct registry key values had to be set to enable
high accuracy timing for the Windows Time Service, enable the P T P provider and
disable other time providers. A l l modified registry values are, beforehand, saved to
.reg files to be later restored. These values were set according to the Microsoft
recommendations, where a couple of changes were made. The DelayPollInterval
was changed from 16 seconds to 1 second and the Announcelnterval from 4 to 0.5
seconds. Also, the P o l l l n t e r v a l was changed from default 64 to the lowest possible
4 seconds. More about these settings is also at [48].

A n officially undocumented registry key called AllowAnyMaster was found within
the P T P configuration section. On older versions of Windows this had no effect,
however when set on the 20H2 version, it enables the computer to accept correctly
configured P T P packets from any device that is casting them towards it. This might
lead to incorrect clock adjustments and time errors in multi-device setups, however
the scheme in this thesis is a simple two-device setup and no other interfering clock
sources were present on the network. It is still a unicast process, nonetheless it
simplifies the configuration as, ultimately, only a single unicast destination address
has to be configured.

A Windows Time Service log was also maintained during the synchronization
process with the w32tm /debug /enable command to assess the quality and reli-

62

ability of the synchronization. Additional useful information, such as error states,
was also obtained from the w32tm /query /status /verbose query command and
so its output was also periodically being saved into a log file.

A l l of the mentioned configuration is performed automatically by the developed
PowerShell scripts. QuerySyncStatus executes the mentioned query command pe­
riodically and could be used to quickly verify the state of the synchronization.
The LogSyncStatus script can save this periodic output into a log file. Execut­
ing SetUpEnvironment enables SW Timestamping on the Ethernet port and sets
the appropriate firewall rules. Subsequently, the StartMeas script can start the log­
ging and set the necessary registry key values, by which the synchronization process
is initiated. The log filename can be provided as an argument and since two files
are being handled at the same time, appropriate modifiers (_w32tm for time service
logs and _w32tm_cst for query logs) are applied to the name automatically by the
scripts. The Restore, Stop and Disable counterpart script versions restore all the
modified settings and configuration back to a state before any of them were made.

It is important to state that the presented Windows P T P configuration only
accepts packets, effectively, in slave mode and it could not serve as a master clock.
That is why the Raspberry P i was the master source clock within the scheme.

The TSC7 controller is now ready to receive synchronization P T P packets from
the Raspberry P i on the Ethernet port.

5.3.3 Raspberry Pi configuration

PTP configuration for the experiment

The R P i was, through its Ethernet port, connected to the same L A N network as the
TSC7, from which it was accessed and it also could connect to the internet. For eas­
ier subsequent data processing and reference, the internal time of the R P i was first
synchronized with an N T P server (time.google.com). For this, the chronyd pack­
age was used with a single run of the chronyd -q -m 'server time.google.com
ib u r s t ' command from the sync_ntp script. Subsequently, only P T P is used as
the protocol for any further synchronization. The approach of custom Shell scripts
for the various configurations and setups was adopted here as well.

The sync_ptp_master script starts the P T P synchronization using the ptpd -c
ptpdwindows. conf -V command. As can be seen, P T P synchronization settings
are provided by the ptpdwindows. conf configuration file. The Microsoft github
repository [45], again, provides recommended settings. Most of these were, however,
already default in the used ptpd package. A full breakdown of all the recommended
settings compared with the default values is provided in the

• ptpdunicast_fullexample_descriptions.txt

63

http://time.google.com
http://time.google.com

file. The most important ones are:
• ptpengine: ip_mode, which must be set to unicast,
• ptpengine :unicast_destinations, which contains the IPv4 address of the

TSC7 controller,
• ptpengine :ptp_timescale, which must be set to PTP and
• ptpengine: clock_class, which must be set to the value 10.
The other two important settings are ptpengine: log_announce_interval and

ptpengine: log_delayreq_interval, which must both be set to the same values
as their corresponding counterparts on the Windows side (AnnounceInterval and
DelayPollInterval registry keys, respectively), otherwise the synchronization will
not work. It is important to keep in mind that while on the Windows side, these
values are set as hexadecimal numbers representing milliseconds (where 0x01f4 =>
500 ms), here they are set as exponents of 2 representing seconds (where —1 =>
2 _ 1 = 0.5 s). Some of the other non-default recommended settings relevant to this
thesis were also set. Otherwise, all was left default as in the ptpd package.

A l l in all, after executing the sync_ptp_master script, the Raspberry P i is send­
ing master P T P packets to the TSC7 controller though its Ethernet port.

Initiating the measurement

After confirming that the P T P synchronization is running and functional, the mea­
surement program on the R P i can be started. A detailed description of its workings
will be presented in Section 5.3.4. The program was written to also process com­
mand line arguments and it can be started by executing either the measure or
measurewargs script. The former was used mainly during testing and it already
supplies a default output file name argument. The latter was used for actual exper­
iments, where the file name and other arguments are passed through from the user.
In both cases the program is compiled from source by the gcc -Wall -pthread -o
main main.c storetime.c storetime.h - l p i g p i o - l r t command and run.

After this, the physical pendulum motion (or other experiment) was initiated.
When it was done, the measurement was stopped, synchronization ended and the
TSC7 controller reverted back to its original configuration.

5.3.4 Custom measurement program

The program was developed using the PiGpio library in C language. Since the PiG-
pio version managed by Aptitude, with the apt-get command, is sometimes behind
the latest available on github, a custom script called updatepigpio was created,
which checks for the latest release directly on github, compares it with the currently
installed one and performs the update if necessary. The basic functionality can be

64

divided into two parts. First is the main thread, which handles the Panasonic EX-
Zll sensor and assigns the pendulum event timestamps. The second is a separate
parallel thread, which handles U A R T communication by logging all data output
from the Trimble RTS and time stamping each arrived measurement point.

Main thread

This thread acquires the main reference timestamps, which are used for comparison
with the RTS time and a subsequent estimation of a delay, with which the RTS mea­
sures positions (treai in Fig. 4.2). It first configures the GPIO pins for the intended
use and allocates a buffer to be used for the sensor timestamps. The secondary
thread for U A R T is initiated and subsequently an Interrupt Service Routine (ISR)
handles the sensor light barrier crossing events (on a configured GPIO pin) until
either the buffer is filled or a termination sequence is initiated. This is done either
with a signal message from pressing the ctrl+c combination or with a physical but­
ton connecting specific GPIO pins. The interrupt handler immediately acquires a
timestamp using the clock_gettime() function from the sys/time.h library and
adds it to the buffer. The code snippet in Listing 5.2 shows an example of this
assignment.

Listing 5.2: Light barrier event timestamp assignment.

s t r u c t t i m e s p e c c u r r e n t _ t i m e ;
clock_gettime(CLOCK_REALTIME, & c u r r e n t _ t i m e) ;
V0ID2TIMELB(aData)->

b u f f e r _ n s [V 0 I D 2 T I M E L B (a D a t a) - > v a l _ i d x] =
(u i n t 3 2 _ t) c u r r e n t _ t i m e . t v _ n s e c ;

V0ID2TIMELB(aData)->
b u f f e r _ s [V 0 I D 2 T I M E L B (a D a t a) - > v a l _ i d x] =
(u i n t 3 2 _ t) c u r r e n t _ t i m e . t v _ s e c ;

V0ID2TIMELB(aData)->
b u f f e r _ i s r t i c k s [V 0 I D 2 T I M E L B (a D a t a) - > v a l _ i d x] = = a T i c k ;

++(V0ID2TIMELB(aData)->val_idx);

After a termination condition is met, the ISR is disabled and the main thread
waits for the U A R T thread to gracefully finish and exit. Subsequently, all the
buffer contents are dumped into a Comma-Separated Values (CSV) format log file.
The length of the timestamps buffer and name of the log file can be specified by

65

input arguments with keywords -1 and -o. Otherwise, a default buffer length is
used and the program asks for an output file name. The nanosecond precision
time values acquired from the clock_gettime() function are used for the eventual
time evaluation. The PiGpio ISR implementation itself provides a microsecond
timestamp of when the interrupt call was detected, however this value is given as
an elapsed period from OS boot time. Since this moment is not known globally, the
resulting timestamp could not have been used for comparison with the actual RTS
time values.

UART thread

This thread saves incoming data from the RTS and assigns timestamps, which are
used to evaluate the time it takes for the RTS measured data to arrive and be
available at the end device (4vaO i n Fig- 4.2). A l l the incoming U A R T data from
the RTS is saved to a log file and an arrival timestamp is assigned to each full
measurement point, which is then being saved to a CSV format log file. Names for
these files are created from the single file name provided to the program by adding
a _uart and _uart_t modifier to the data and U A R T timestamp log, respectively.
The extension for the data log is by default always replaced with . log.

Listing 5.3: Synchronization of the U A R T transmission,
f pr i nt f (s t d o u t , " \n%s ̂ S y n c h r o n i z i n g ^ UART • t r a n s m i s s i o n
u . . . \ n " , _ _ a r g v [0]) ;

u a r t _ h e l p e r . c u r r _ r e a d _ b y t e = s e r R e a d B y t e (h a n d l e) ;
w h i l e (((c h a r) u a r t _ h e l p e r . c u r r _ r e a d _ b y t e !=
UART_RTS_EOT_CHAR) && s t a r t _ l o g g i n g)

{
i f ((u a r t _ h e l p e r . b y t e s _ a v a i l a b l e =
s e r D a t a A v a i l a b l e (h a n d l e)) > 0)

u a r t _ h e l p e r . c u r r _ r e a d _ b y t e = s e r R e a d B y t e (h a n d l e) ;

t e r m i n a t e = gpioRead(GPI0_TERMINATE_IN);
i f (t e r m i n a t e I I * (i n t *) a r g)

s t a r t _ l o g g i n g = FALSE;
}

The thread first waits for the beginning of a point by detecting the end '>'
character (see Lis. 5.1 and 5.3). The RTS is sending its data continuously and

66

this way, whenever the measuring program starts, the log will always begin with a
full point. After this, a continuous while loop checks for any available bytes on the
U A R T input. Whenever more than one byte is available, a time value is immediately
taken, again, using the clock_gettime() function. Now, if the read byte is a valid
character, it is saved into the data log file and if the previously read byte was the
end '> ' character, meaning the current byte is the first character of a new point,
the acquired time value is saved into the timestamp log file. A predefined number of
initial characters from the incoming data is also displayed for verification purposes.
The code in listing A . l shows an example of these procedures. If a termination
condition is met (by a ctrl+c signal message, button press or a call from the main
thread), the thread again waits until an end '> ' character is detected, then saves all
opened log files and exits. This way, the log will also always end with a full point.
Abrupt physical disconnections might, therefore, cause the loop to hang indefinitely,
however these are not planned to happen. This time-stamping implementation has
a drawback however. As it is described, the saved timestamps are really the times,
in which the first byte of a measurement point was read by the program from the
U A R T buffer, and not when the particular byte was actually presented into the
buffer. This means that an error resulting from the time it takes to read out a
character from the U A R T buffer is added to the time in which it actually was first
available.

1.2

§ 0 . 8

^ 0 . 6
Q)
< 0.4

Delay between sending and reading on UART

200 400 600 800 1000 1200

Current number of bvtes in the UART buffer

in
£ 6
>^

-Q
O 4
1—

CD

X X X
X X X

x i : : : : x
X X

X
X

x H

X
X >:

200 400 600

Point [-]
800 1000 1200

Fig. 5.10: Loop-back test of R P i U A R T read delays.

67

This error however, is not expected to reach the order of milliseconds. To evalu­
ate this, loop-back testing was done with the R P i U A R T port, where the output Tx
pin was connected directly to the input Rx one. A simulated RTS data stream was
continuously being sent by the main thread and the secondary U A R T thread was, in
parallel, continuously reading the arrived bytes. Each sent out point had an associ­
ated sending timestamp and each received point was being ordinarily timestamped
by the process described above. From this, an internal RPi-related delay could be
estimated, representing the difference between the time of sending a character and
the time of reading the character from the U A R T buffer. The result of one test can
be seen in Figure 5.10. The delay is generally below 800 us and it is reasonable to
assume that the time it takes to read a character from the U A R T buffer, after it
had already appeared, should be even smaller that this. Also, a maximum num­
ber of 8 bytes was left in the buffer at any point in time, which at a baud rate of
115 200 bits/s would lead to a discrepancy of about 556 us until a byte is actually
read out from the buffer. The total length of the U A R T buffer is 4096 bytes.

70
Last read character before ISR call

60

CO
E
Ö 50 CD

T3

Ö
< 4 0

1—

CD
O
2 30
CO
O

20

^ x x x XKCXXXXXXXXXXX X X X » X X
X X X X X X ~ X O 0 < *X x X X X ^ v ^ K

x x xx)«̂ >3©ciBaB©ra©90̂
^ x x ^ >xx >mx x«< ^x x ^xk xx*c*:

10XK X X — X X X X
0 200

- X - X X 1 X X X X K X
400 600 800 1000 1200

Point [-]

Fig. 5.11: Testing interrupt-driven time-stamping on U A R T .

A n attempt was made to make the U A R T time-stamping also interrupt-driven,
however shortcomings of the chosen H W solution have shown up. The premise
was as follows. The incoming data would be split into two paths. One would go
directly to the U A R T interface and the other to a GPIO pin, which would have

68

an ISR handler associated with it. Whenever an end '> ' character was detected
on the U A R T interface, the ISR, which would detect the first falling edge and
immediately acquire a timestamp, would be enabled. After the handling would be
done, the ISR would be disabled and enabled again only when the next end '>'
character arrives at the U A R T interface. This way, true time values of when the
starting character physically appears on the end device could have been acquired.
However, after initial tests, the process of disabling and re-enabling the ISR on
the Raspberry P i ultimately took longer than was the actual period between two
arriving data points. The mechanism was not able to keep up and often timestamped
characters much later within the point or skipped the full point altogether (see Fig.
5.11). This method was, therefore, abandoned and not pursued any further. The
approach was taken from Sama et al. [49]. However, they were using a dedicated
Digital Signal Processor (DSP) with specialized Input Capture (IC) interfaces for
the time-stamping and the whole process, together with U A R T handling, was fully
ISR-driven.

5.3.5 Summary of the main procedures

A fully connected reference measurement setup ready for experiment can be seen
in Figure 5.12. The experiment component layout and data flow can be seen in
Figure 5.13. To summarize, the main procedure for the pendulum experiment was
as follows.

1. The Panasonic light barrier sensor setup was placed on the ground, defining
the exact pendulum rest position (see Fig. 5.5).

2. The RTS was placed at the desired distance from the pendulum and aligned
as described in Section 5.3.1 (see Fig. 5.6).

3. The Base Station point was set as the origin of the coordinate system and the
Back Sight was measured at the pendulum rest position.

4. Data output from the RTS was started with labels shown in Figure 5.8 and
T R K mode was set.

5. Executing the SetUpEnvironment script, necessary configuration on the TSC7
was performed.

6. P T P synchronization between the R P i and TSC7 with both Windows logs
(see Sec. 5.3.2) was initiated with the StartMeas script and provided log file
name. The Linux master node was started by the sync_ptp_master script.

7. After a first successful clock correction, confirmed using the QuerySyncStatus
script, the measurement program on the R P i was started by executing the
measurewargs script and providing the output file name.

8. After the measurement process was finished, first, P T P synchronization was

69

Fig. 5.12: Fully connected reference measurement setup. Panasonic sensor: left.
Raspberry Pi : middle, RTS data output: right.

T S C 7
PTP "HJART

COM

USB ETH
to ETH

• Raspberry P

Radio Link

GPIO

Photoelectric
Sensor

\ A n g l e /
Distance / 'Res t point

Pendulum
(motion)

Fig. 5.13: Block diagram of the experiment layout and data flow.

70

stopped by executing the StopMeas script in Windows. This saved the neces­
sary Windows log files (see Tab. 5.1). The Linux master node was left running
if any subsequent measurements were to be made.

9. Finally, the measurement program was stopped (by ctrl+c termination or
a button press). The RTS data output, light barrier timestamp and U A R T
timestamp logs were saved (see Tab. 5.1).

10. If no further measurements were being made, the Linux master P T P node was
stopped and the TSC7 controller reverted back to its original configuration by
the RestoreEnvironment script.

For each of the three measurement distances, at which the main experiment was
being done, static measurements were made as well. The pendulum, together with
prism, was left stationary at its rest point and a continuous data stream from the
RTS was collected with no reference data from the Raspberry P i . This was done
once right after the station setup and alignment (before the experiments) and also
after all the measurements were finished. This provided a static baseline for the
RTS data and the particular configuration of the components at the time of each
measurement.

A l l the relevant different log types gathered during the experiment are shown in
Table 5.1.

Log file Associated
device Description

* . CSV
Raspberry
Pi/Sensor

Timestamps of sensor crossings, contain­

ing teal-

*_uart.log RTS
Output data from the RTS, also contain­

ing tieas-

*_uart_t.csv Raspberry
P i / U A R T

Data logged by the R P i U A R T thread,
also containing 4vaii-

*_w32tm.log TSC7
Data logged by the Windows Time Ser­
vice.

*_w32tm_cst.log TSC7
Data logged from the query command out­
put.

Tab. 5.1: Log files acquired during an experiment.

71

5.4 Additional experiments and evaluation

Apart from the main pendulum motion experiment, several other tests to verify
different influences or parameters were done as well.

5.4.1 Measurement rate analysis

A variability of the measurement rate could be seen in figures 4.3 and 4.4. As the
data is arriving, it seems that the measuring frequency is not constant, but rather
oscillates around the expected value, creating an average that approaches the desired
measurement rate. This variability was also seen in direct oscilloscope readings of
the outgoing RTS data (see Fig. A.9). Frequency of the R P i timestamps acquired
upon data point arrival on the U A R T interface (4vaii) could be compared with the
apparent frequency of the RTS time data (Was) to evaluate their assignment point
(see Tab. 5.1).

5.4.2 Aperiodic manual prism motion

Another set of experiments was made for each of the three distances. The basic
procedure was the same as for the main experiment. However, the pendulum arm
was being moved manually by hand at irregular intervals and different velocities.
Reference rest point crossing data was being acquired by the Raspberry P i and the
same timestamp evaluation was performed as well. This provided a more chaotic
and unpredictive type of motion in addition to the periodic pendulum oscillations.

5.4.3 Lateral pendulum arm displacement

The prism was left stationary in the pendulum rest point position. Data output
from the RTS in T R K mode was again collected by the R P i the same way as with
the main experiment, but no reference time data was being collected. The pendulum
arm was then perturbed to induce as much vibrations as the structure allows in the
lateral direction (Northing axis). Ideally, this would again be performed for each of
the three experiment distances to verify the effect with each particular setup at the
time of experiment. However, only one test was done, where the RTS was placed at
about a 4.7 m distance from the pendulum. This test was mainly done to verify the
rigidity of the setup and the expected limits for the light barrier length. It does not
provide any significant conclusions for the main subject of this thesis.

72

5.4.4 Horizontal prism rotation

This test was inspired by the research done in [14]. However, the methodology of
this test was not as precise and accurate as theirs, and these results should be taken
in a more informative rather than definitive way.

Fig. 5.14: Prism placement for horizontal rotation tests.

These tests were performed at two different distances. The prism was fully
screwed down as is shown in figure 5.14 and the RTS was placed on the ground
(below the height of the prism) at a horizontal distance of 4.6 m and 1.2 m. The
same station setup as with previous experiments was done, the coordinate origin
being at the Base Station point and the Back Sight being the measured prism
location. Subsequently a 10 Hz data output, T R K mode measurement was initiated.
The prism was then being slowly rotated on the screw by hand. A full 360 degree
horizontal rotation (visible prism elements in Fig. 5.14 moving to the right) was
performed and then it was rotated backwards (prism elements moving to the left)
to the original starting position. One test was done with 720 ° rotations. This was
repeated two to three times in one measurement run.

The drawbacks of this methodology are the following. First, the threads on the
screw and the hand rotation might create unwanted displacements influencing the
rotation-related data. Second, in conjunction with the horizontal rotation, the prism
was also moving up and down vertically as it was rotated on the screw, so a full
isolation of the effect of rotation might not have been achieved.

A solid relationship between the prism angle and the measurements might not
have been obtained here and a different test, where the prism would be precisely

73

positioned at several specific known angles of incidence and measurements taken
without any movement, might also provide more substantial results in the future.

5.4.5 Safe prism velocity limits

Some conclusions can also be made from the fact that the RTS starts loosing data
as the initial starting angle, and with it the velocity, of the pendulum arm increases.
When the starting angle gets too wide, the RTS is not able to track and looses
the prism instantly. Tests with several different starting angles were run and the
data already gathered from the experiment runs could also be used to estimate the
velocity limits.

This test, again, is not ideal as the prism velocity is not controlled and depends on
the starting angle and subsequent oscillation amplitudes. What is more, the velocity
values are calculated from the actual RTS measured angles. A much more reasonable
and expansive experiment could be made in the future, where a constant linear
(or angular) velocity would be maintained and gradually increased to the point of
measurement failure. The velocity would also need to be measured implicitly on the
moving target as opposed to being calculated from the imperfect RTS measurements.

74

6 Result processing and evaluation
This chapter will provide the final results from the above extensively described
experiments. The data processing methodology will first be explained and then
conclusions that can be made from the performed measurements will be stated.
Concluding, perhaps unconventionally, with also some other potential alternatives
to the presented navigation problem solution.

6.1 Main experiment data interpretation

6.1.1 Data processing and evaluation tools

Table 5.1 showed all the acquired log files that were used for the subsequent data
processing and evaluation, which was performed in the Matlab environment. These
logs, whenever mentioned, will be from now on referred to by their associated device.

RTS log parsing and data extraction

A custom Matlab function had to be created to parse data gathered from the RTS,
since the proprietary format (see Lis. 5.1) is not easily loaded into the environment.
The function parselog_TrimbleS reads the RTS log file and creates a matrix from
this acquired data, organizing them into a standard spreadsheet-style format, where
columns represent all the different quantities (time, angle, distance, easting, etc.)
and rows the individual full measurement points. The function also handles in­
complete data (e.g. missing quantities) or dropouts in the measurement. For this,
apart from the log file location, the function also takes a second argument, which
is a vector of all the expected quantity labels in their expected order. A full point,
ending with the ' >' is loaded into a temporary buffer. The quantity labels and their
corresponding values are extracted and the labels are referenced with the provided
quantity label vector. If at any point during parsing an expected quantity label is
missing or the label is missing a value, the corresponding value field is filled with a
NaN and the user is notified by a warning about the corrupt points and their missing
quantity labels (see Lis. 6.1).

Listing 6.1: Example of a found corruption in the RTS data.

06-May-2021 2 0 : 0 7 : 3 1 P a r s i n g RTS l o g ...
Warning: M i s s i n g data v a l u e w i t h l a b e l '52' at p o i n t 598
(l i n e -6569 i n l o g) ! M i s s i n g v a l u e s f i l l e d w i t h NaN,
check f o r data c o r r u p t i o n .

75

> In p a r s e l o g _ T r i m b l e S (l i n e 115)
In a n a l y z e D a t a _ s c r (l i n e 128)
06-May-2021 20:07:32 Done, time e l a p s e d : 0 min. 1.091648 s

The function also informs about an unexpected ordering of the read labels. If
more quantity labels than expected are found, it exits, prompting the user to provide
a different vector. Using this function, the acquired RTS data could be quickly and
efficiently loaded and analyzed.

TSC7 log parsing and data extraction

The TSC7 logs contain vast amounts of information and a parsing scheme had to
be devised for them as well. Contrarily, a different approach was taken, where a
PowerShell script (ParseLogData) in conjunction with a simple parsing program
written in C was used. The most relevant entries in these logs are the P T P synchro­
nization statistics and error states. These are contained inside the Windows Time
Service and query command logs, respectively. The log files are natively created in
Unicode formatting and first had to be reformatted to UTF-8 in order to be used
in subsequent steps. The script then uses the f i nd st r / i command (with either
a 'offset: ' or 'error: ' search phrase) to retrieve content lines containing the
required data values and calls the parsing program (dataparser.exe), which filters
the remaining text, extracts the numerical values and formats them into a final CSV
file. This could then be easily loaded into the Matlab environment and used for fur­
ther processing. The parsing program is a modified version of a utility, the original
of which had been created and published on github at a time before the writing of
this thesis [50].

Time data interpretation

The different time values from all the acquired logs had to be converted into a
common uniform frame, in which they could be compared and evaluated. Even
though time data from both, the RTS and the TSC7 logs comes from the same
TSC7 time source, their value format was ultimately different. Therefore, three
Matlab functions were created:

• parsetime_TrimbleS,
• parsetime_RaspberryPi,
. parsetime_TSC7,

performing the necessary conversions of the RTS, Raspberry P i and TSC7 time data
respectively. As can be seen from label '52' in Listing 5.1, the RTS time data format
is IHHI . I mm I ss Imsms I. These are in a 24-hour local Coordinated Universal Time

76

(UTC) time, respecting the current timezone location. The parsetime_TrimbleS
function converts them using relation 6.1, where N = le3, into their native millisec­
onds.

(Hours • 3600 + Minutes • 60 + Seconds) • N , (6.1)

where N is the scale, which converts seconds to the desired time unit.
A n R P i time data value consists of two parts: the elapsed UNIX epoch seconds

and the elapsed nanoseconds since this time. These UNIX epoch time values were
converted into the same U T C time frame as the RTS data. The UNIX epoch seconds
are easily converted to a U T C time value using the datetimeO Matlab function.
Since the RTS time values account for the local timezone, a correct U T C offset has
to be known to correctly perform rest of the conversion. During the writing of this
thesis a Daylight Saving Time (DST) clock shift had occurred, resulting in some of
the logs requiring different U T C offsets. So to make the conversion convenient and
universal across all logs, the parsetime_RaspberryPi function was made to take a
date value argument, from which it can automatically determine the correct U T C
offset, as well. This date is specifically taken from the RTS data log (see Lis. 5.1,
label '51 ') . This way, the conversion is always tied to the particular time frame
of the RTS log, respecting its timezone. Finally, the resulting time values can be
converted using relation 6.1, where N = le9 and applying the correct U T C hour
offset, into nanoseconds and joined with their nanosecond part.

The Windows Time Service logs maintained a timestamp value for each new
appended entry. These values were not particularly used for any evaluation and they
were only useful when plotting the actual relevant P T P synchronization statistics to
maintain a common horizontal axis with all of the other graphs. If they were to be
used this way, however, they still had to be converted since their default format was
UTC+0 with a 7 decimal place fraction of a second. Hence, the parsetime_TSC7
function also takes a date value argument to calculate the correct U T C timezone
offset and converts the time values into nanoseconds using relation 6.1, where N =
le9.

RTS data processing

A Matlab script (analyzeData_scr) globally handles all the data processing and
outputs the resulting graphs or statistics. After all data from the logs had been
parsed and loaded into the environment, the actual processing could be performed. If
the data contained any initial or ending points with a corrupt or missing time value,
they were cut off. A warning message informs of any such corruptions remaining in
the middle of the data.

77

The angle values were converted from gon units to degrees (see Sec. 2.2). They
were also shifted from a a G [0,360] ° range to a G [0,±180] °, where the zero
reference azimuth had already been conveniently set up during the experiment. The
vertical starting angle was shifted from the zenith to the pendulum rest point and
flipped so that the angle values increase upwards from the rest point. This made
for a more convenient visualization of the values.

Figure 6.1 shows an example of the performed pendulum motion in local coor­
dinate space. In can be seen that oscillations were being done in the Easting axis
and, in this particular example, a displacement of max. 13 mm was present in the
Northing result of imperfect alignment of the RTS. This slight rotation
should have a minimal impact on estimation of the rest position. A n example result
of a near-perfect perpendicular alignment can be seen in Figure A.4.

Figures 6.2, 6.3 and 6.4 show the angle, timestamp and Easting coordinate values
from this particular run of the experiment. A clear indication of data loss is visible
from all of these figures. This log did not have any missing or corrupt values and it
is in fact all the data as it was arriving from the RTS. A further discussion of the
this and the dependency of data fidelity on distance, prism velocity and the starting
angle will be presented in Section 6.3.5.

log: 03_488cmRTS_uart

East ing [m]

Fig. 6.1: Prism motion in local coordinates.

As can be seen in Figure 6.4, interpolation of the Easting data had been per­
formed. The points arriving from the RTS were varying in frequency and there was
no guarantee that they would always collide with the precise pendulum rest point.

78

log: 03_488cmRTS_uart

\m mm

. 1 .• H . J . . . • .- '. . i . J • • • • 1 • • •

D5
CD
;o
_CD
D5
C
CO

CO
c
o
N

s - 5

X 20 40 60 80 100 120

60 80

Time [s]

Fig. 6.2: S9 HP RTS angle values in time (from motion start to end).

~ 600
o
5"400 h

§ 200
3
< n

1»
j 1 1
it • it • it •

t
•

•

JfNjSgf tip J • iff
• 1

. . . 7 : . $: . .

200 400 600 800

Point [-]
1000 1200 1400

Fig. 6.3: S9 HP RTS time data (full log duration).

79

log: 03_488cmRTS_uart

-400

:«•= t»: \ > i; ** + i*

6.024 6.026 6.028 6.03

True Time [s]
6.032 6.034

x10"

Fig. 6.4: S9 HP RTS Easting data with interpolated zeros.

That is why the exact rest point values were obtained by interpolating between each
zero-bounding pair of the RTS data points. A closeup of this is shown in Figure 6.5.
Since E N U coordinate data is of particular interest for the purposes of U A V naviga­
tion, Easting values were used together with the timestamps for this interpolation.
A point might be made that the horizontal angle values would be more accurate and
reliable data to use, however no significant difference was observed in the results.

Before the interpolation begins, a starting and ending point is automatically
found within the data. The beginning is easy to find as it will always be the maximal
achieved distance (or angle) and the experiment was always, conveniently, started
from the same direction. The end is obtained by finding the first point where no
significant movement beyond a certain threshold (in order to account for noise) is
observed. This step is visualized in Figure A.5. Subsequently, the closest-to-zero
points within this 3X6 cl 3X6 found for both the positive and negative side (see Fig.
A.6). In some cases there might be a point which does hit the rest position at zero
exactly, in which case no interpolation is being performed for that section and the
true zero is used. A simple linear interpolation is sufficient if the sections are small
enough. Typically, a section was about 8 cm long.

Millisecond time values obtained from the parsetime_TrimbleS function and
meter position values are converted to nanoseconds and millimeters respectively.

80

250

200

150

100

50

I °
LU -50

-100

-150

-200

log: 03 _488cmRTS_ _uart original
• interpolated zeros

I

:::!::!::!::: ; I—:—:—:—

\ \ :
original

• interpolated zeros
I

:::!::!::!::: ; I—:—:—:—

\ \ :
• * •

• *

: *.

•
f »

*.:...;
•

.Iii.] •

• *

•

*
•

•

i
: • •f

• >. 1
•

• •

: < •
:

•

•
•

• • *
•

> i *•
•

• :

6.0284 6.0285 6.0286 6.0287 6.0288 6.0289 6.029 6.0291 6.0292 6.0293

True Time [s] xio4

Fig. 6.5: S9 HP RTS Easting data with interpolated zeros (closeup).

Within each zero bounding two-point section, positions are linearly spaced out by
a step of 1 um (or generally one one-thousandth of the input value). Time values
are then interpolated onto each of these points. This way, all zero-crossing sections
are densely populated by interpolated data (see Fig. A.7). Generally, this method
had always found an exact zero position, however if for any reason that was not the
case, the value closest to zero was taken. A l l of these steps are done by the created
interpOpass and getOpoints functions, where the final output, apart from other
data, is a matrix containing the zero position with its corresponding time value for
each rest point crossing. This process is also able to handle imperfect or partially
incomplete forms, especially at the beginning, but naturally these points are not
going to be trustworthy since the resulting sections might be too long, or a single
point could be assigned where two physical passes happened. However, this would be
a result of incomplete data and not an inherent fallacy of the interpolation method.
The interpolated points were visible in figures 6.4 and 6.5. The resulting timestamps
are already expressed in nanoseconds and can be directly compared with the R P i
sensor timestamps to estimate the RTS measurement delay (Z \ m e a s , Fig. 4.2).

The last processing step is estimating the expected theoretical error given by
the potential asymmetricality of the reference measurement setup. As the prism-
mounted extension is crossing the light barrier from the left side (i.e. returning

81

pass), it will break the barrier at a different position (and earlier time) than from
the right side (i.e. forward pass), and therefore slightly offset timestamps might be
acquired. This is easily visible from the old setup seen in Figure B . l on the right
and Figure 6.6.

Extension 3 ext.
Sensor

Sslit

Sext. - Sslit

Fig. 6.6: Derivation of the setup asymmetricality error.

The extension cannot be narrower than the sensor's emitting and receiving slits
since it must completely obstruct the beam in order to trigger a change. The actual
setup used for these experiments, which was presented in Figure 5.3 minimizes any
potential occurrence of this error by using en extremely thin slit sensor and making
the extension as thin as possible (see Sec. 5.1). Since the width of the extension is
known and the velocity of the pendulum near the crossing point can be estimated
from the densely interpolated values, the time which it takes to move from a barrier-
breaking position of the returning pass to the barrier-breaking position of the forward
pass can easily be calculated. This distance is a very small portion of the oscillation
and it can be considered linear without any curvature. Therefore a simple linear
velocity equation can be used for the calculation (Eq. 6.2).

terr = ~ " ~ , (6.2)
p̂rism

where
• 4rr is the estimated expected error,
• Sext. is the width of the extension,
• Ssiit is the width of the sensor's slit,

82

• %>rism is the prism velocity near the rest point.
This resulting asymmetricality error is introduced to the data as a correction, by

adding it to each corresponding R P i timestamp. Both, corrected and uncorrected
values will be plotted together in the following graphs.

6.2 Main experiment results

6.2.1 Raspberry Pi timestamp validation

The R P i timestamps can also be evaluated using the ISR ticks provided directly by
the PiGpio implementation at the sensor interrupt event after shifting both of them
to a zero start value. These are defined as microsecond ticks since boot time (see Sec.
5.3.4). Since both types of these stamps were taken at the same event, they should
not deviate from each other significantly. Figure 6.7 shows their difference (the first
point is zero since both were shifted to a zero start) and it can be seen that they
did not deviate by more than 300 us throughout a performed experiment. Other
experiment runs showed the same result. As there is no significant deviation, the
local time timestamps acquired by the clock_gettime() function could be accepted
as reference for the RTS measurements.

^ 3 0 0
w

<
0

1

t.

1

: : 1 I
0 10 20 30 40 50 60 70 80 90 100

Point [-]

Fig. 6.7: Comparison of two different time values acquired at the R P i ISR event.

6.2.2 Single main experiment run overview

The RTS position measurement delay (Z \ m e a s , see Fig. 4.2) was established as the
difference between the RTS and the reference R P i timestamp (tmeas — teal)- Both
time series were parallel shifted to start according to the first R P i value. Since
a delay is expected, these differences should be positive. Figure 6.8 shows results
from the single experiment run that has been used as an example so far. Figure 6.9
presents the estimated delay in a histogram. The aforementioned corrections are
also displayed.

83

CD 10
E
5 5

CD

oc 0
In E
, - .400
Q.
GC 300

C/D 200
I-
£ 1 0 0

<
E 1

w
CO

x10 10 logs: 03_488cmRTS_uart, 03_488cmRTS

RPi data
RTS data

0 10 20 30 40 50 60 70 80 90 100

with corrections
no corrections

t««« *»"t f t I . ,

0 10 20 30 40 50 60 70 80 90 100

10 20 30 40 50 60

Point number [-]
70 80 90 100

Fig. 6.8: Comparison of the RTS and R P i timestamp values (single run).

30

in 20

Z3 o
O 10

logs: 03_488cmRTS_uart, 03_488cmRTS

: i — J
• 1 1 • •

50 100 150 200 250 300 350 400 450

30

in 20

! ' 1 • i 1

I - I 1 1 no corrections I 1 1 with corrections I
— average
• - median

stdev

T

I
T

I
1! n „ . _ i i—i

50 100 150 200 250 300 350 400 450

A (RTS - RPi) [ms]

Fig. 6.9: Histogram of the RTS position measurement delay (single run).

84

Figure 6.10 shows a comparison between the delays of forward and returning zero
point passes before any applied corrections. A n expected offset with the returning
passes creating a higher final delay because of the earlier timestamp acquisition is
seen, however the difference is small and the setup was not far from being symmet­
rical.

03
500

03
400

R
P

i)

300

w
1

200
1—

100 100

< 0

logs: 03_488cmRTS_uart, 03_488cmRTS

X forward passes
avg

-\- returning passes
avg +X

mi

10 15 20 25 30 35 40 45 50

124.5
03
E 124

^ 123.5 "

C/3 123
I—
CC

<
£ 122.5

122
10 15 20 25 30 35

Swing number [-]
40 45 50

Fig. 6.10: RTS position measurement delay with split passes (single run).

These graphs contain all the experiment data together with the sparser begin­
ning section, which might not provide trustworthy results. The time delay in this
experiment run clusters around the 100 ms mark with a median of 112 ms before
corrections. A n average of the calculated expected asymmetricality errors was 7 ms
with a maximum of 84 ms at the last point where the velocity was the smallest. It
can be seen that the RTS measurement delays tend to increase rapidly towards the
end section as the pendulum moves gradually slower until its complete stop. This
was observed in every experiment run. This may have been caused by the prism
covering gradually shorter distances from the central rest point, effectively forcing
the RTS to operate further within its highest error range due to the experiment
layout (see figures 5.6 and 2.4). However, a definite conclusion cannot be stated
and more experiments with varying RTS positions and orientations could have been
done to evaluate this hypothesis. Since the expected asymmetricality error also rises
with decreasing pendulum velocity as it takes more time for the extension to cover
the error distance (see Figure 6.11), the ending section was not trusted for the final
evaluation.

85

100
vT
E 80

O 60
CD

. 40
E
W 20

log: 03_488cmRTS_uart

X

* 8 S 8 * X « g g K XXXXX XK ' X X X X ' X JX-
0.5 1 1.5

Velocity [m/s]
2.5

Fig. 6.11: Asymmetricality error with respect to prism velocity.

From the above stated, it is clear that both the beginning and ending sections
might not provide trustworthy results, therefore a middle part from the movement
was always taken, starting from a point with dense enough original data and ending
with a point where the calculated asymmetricality error is not higher than 20 ms.

The data propagation delay (Apmp, see Fig. 4.2) was established as a difference
between a R P i U A R T and RTS timestamp (tavan — W a s) for each of the points in
the data set regardless of a pendulum rest position pass. This can be seen in Figure
6.12. This delay was around 24 ms.

logs: 03_488cmRTS_uart, 03_488cmRTS_uart_t

— 60 h
CO
CE 50

40

^ 30

§ 2 0
1 — — — — 1 — • • • •• ••• • • — 1 — I

< o 50 100

Time [s]
150

200

1
150

c 100
O

O
50

0
10 20

average
median
stdev

EL
30 40 50

A (RPi UART - RTS) [ms]
60 70

Fig. 6.12: Comparison of the R P i U A R T and RTS timestamp values (single run)

P T P behavior can be seen in figure A.8. After the initial spike, all synchroniza-

86

tion offsets were within 200 us throughout the whole experiment. A single error was
detected by the query command. Results obtained with the old setup within the
semestral part can be seen in supplement B.

6.2.3 All main experiment runs evaluation

Several runs of the main experiment as it was shown in Section 6.2.2 were performed
at three different distances (approximately 1.5 m, 2.7 m and 4.9 m). For each
distance around four to six runs were done with a wider and narrower starting
angle resulting in a total of 34 experiment runs, some of which contained unusable
data. For easier comparison of the individual runs, each will be encompassed into a
single boxplot, where the top and bottom box boundaries indicate the 75th and 25th
percentiles, respectively. The mark shows the median value and whiskers extend to
maxima and minima before outliers, which are plotted independently. Only data
without the beginning and ending sections was processed for all of these results.

280

260

240

" ^ 2 2 0

E,
^ 2 0 0
Q_
a:

, 180
CO

160

<l 140

120

100

80

wide start angle
n 1 1 1 1-

.+...;...+.
: +

m

.......±..,.

1 L.t j..± 1

1 2 3 4 5 6 7

Data batch number [-]

280

260

240

220

200

180

160

140

120

100

80

+
+

T
• :

narrow start angle

r p
I

_L 4.

1 2 3 4 5 6

Data batch number [-]

Fig. 6.13: RTS position measurement delay (all runs, 4.9 m distance).

As can be seen in figures 6.13 and 6.14, all the experiment results vary around a
110 ms mark. The first three results in Figure 6.13 in both sections were obtained
with a more perpendicular RTS alignment (see Fig. A.4) than the other runs, with
only a 5 mm displacement in the Northing axis. A l l of the other experiment runs had

87

wide start angle
240

220

200

In

£ , 1 8 0

K
X- 160

I
CO

£ 140

<
120
100

80

n 1 r
narrow start angle

i i

: j .
_L

240

220

200

180

160

140

120

100

80

1 2 3 4 5

Data batch number [-]
1 2 3

Data batch number [-]

Fig. 6.14: RTS position measurement delay (all runs, 2.7 m distance).

a displacement between 10 mm and 20 mm. However, it is not clear whether only
the alignment had any effect on the higher delay results. The reader might also be,
misleadingly, tempted to compare the 280 ms outlier in Figure 6.13 on the right with
data displayed earlier in Figure 6.8, however that particular shown experiment run
corresponds to batch number 6 on the left side. Figure 6.15 only shows the narrow
starting angles since at the 1.5 m distance, the RTS was not able to maintain lock
on the prism with a wider start angle and always lost track of it. Some outlying
values, which were contained within the max. 20 ms expected asymmetricality error
(see Sec. 6.2.2) cutoff are also visible.

— 250

200

c o 1 5 0

^ 100

<

narrow start angle
• • •

•

~ i J -
L; M i

i
3 4 5 6

Data batch number [-]

Fig. 6.15: RTS position measurement delay (all runs, 1.5 m distance)

88

A combined histogram of the RTS position measurement delay for all the experi­
ment runs at all three distances is shown in Figure 6.16 and a combined histogram of
the propagation delay in Figure 6.17. Beyond axis limits and not shown are outlying
values with counts smaller than 5. Again, results from the old setup are shown in
supplement B.

all logs

50 100 150 200

200

A (RTS - RPi) [ms]

Fig. 6.16: Histogram of RTS position measurement delay (combined results).

all logs
10000

„ 8000

•£ 6000

Z3

-

I I I
average
median
stdev
a = 25.9.(7 = 13.3

1 •

-

I I I
average
median
stdev
a = 25.9.(7 = 13.3

1

-

I I I
average
median
stdev
a = 25.9.(7 = 13.3

-

I I I
average
median
stdev
a = 25.9.(7 = 13.3

-

/ 1

. =
0 5 10 15 20 25 30 35 40 45 50

A (RPi UART - RTS) [ms]

Fig. 6.17: Histogram of RTS data propagation delay (combined results).

Measurements, where the prism remained stationary at the pendulum rest point
were used to verify the behavior of the setup. This had been done twice for each RTS
distance, before and after any measurements. No significant differences between

89

these tests were observed and as expected the Easting and Elevation coordinate
values stayed at a constant zero throughout the whole measurement. In each case
before experiments, minor drifts were observed in the Northing axis with a maximum
5 mm deviation in two cases, which is also visible from the E D M slope distance
measurement shown in Figure 6.18 on the bottom (values where shifted to start at
zero). For measurements done after experiment runs, no drift was present and only
offsets of ± 2 mm max. were seen. A l l angle values were staying within thousandths
of a degree. The distance (and with it naturally all three coordinate) vales change
with a quantization step of 1 mm, which is in line with the < 2 mm precision
given in the documentation. The observed accuracies were also all within the given
parameters.

1 0 3 log: 01_486cmRTS_static_uart

0 100 200 300 400 500 600

x10" 3

1 1 1 1 1

0 100 200 300 400 500 600

-10 ' 3

j ! - i , i
0 100 200 300 400 500 600

T ime [s]

Fig. 6.18: RTS data with prism stationary at rest point.

6.3 Additional experiments results

6.3.1 Measurement rate analysis

As can be seen in figures 4.4 and A.9, the intervals between points sent out by the
RTS seem to have a similar variability to that of the timestamps within the data.
R P i U A R T and RTS timestamp values throughout the whole logging interval of
the experiment runs were analyzed. Point-to-point differences of both time series
were compared and Figure 6.19 shows a correlation between these two obtained

90

frequencies for a particular experiment run. On the right is a distribution of the
difference between them, gathered from all experiment and test logs.

l ogs : 03_488cmRTS_uart , 03_488cmRTS_uart_t X 1 0 4 a " logs
In 800 f * 1 =T] I 1 B—|

Point number [-] A

R T s (p t p) " A u A R T (P t P) [m s]

Fig. 6.19: Comparison of R P i U A R T and RTS timestamp frequencies.

Two assumptions can be taken from this. If the timestamps are being assigned
at the moment of measurement, this means that the data has to be sent out imme­
diately after a measurement is done. Or they are only assigned at the moment the
data is being sent out through the serial interface, which would mean that the exact
time of measurement is still unknown.

Additionally, these measurement periods seemed to be generally higher when
the prism was moving compared to stationary measurements, however no additional
tests were done to further evaluate this observation.

6.3.2 Aperiodic manual prism motion

For each RTS distance, a set of four tests was made with manual movement of the
pendulum arm at varying velocities, as can be seen in Figure 6.20. From a total of
12 runs, all data was usable. Figures 6.21 and 6.22 show the results. Again, the
delay values cluster around the 110 ms mark. No data is beyond axis limits. Figure
6.23 shows the data propagation delay from these tests. In this case, values with
counts less than 5 are again, not shown.

91

1000

500

D) 0

lS -5 0 0

log: 01_489cmRTS_manual_uart

-1000

»••• original
• interpolated zeros

\ A \
1

7.107 7.108 7.109 7.11 7.1

True T ime [s]
7.112 7.113

x10 4

Fig. 6.20: Example of manual prism motion.

w 160
E

£ 1 2 0

100

80

60

CO
I-

iftltrrr tiiftiit! X

S i

4 5 6 7 8 9

Data batch number [-]
10 11 12

Fig. 6.21: RTS position measurement delay (manual motion).

120 140 160

A (RTS - RPi) [ms]

Fig. 6.22: Histogram of RTS position measurement delay (combined results, manual
motion).

92

all logs

A (RPi UART - RTS) [ms]

Fig. 6.23: Histogram of RTS data propagation delay (combined results, manual
motion).

6.3.3 Lateral pendulum arm displacement

To test the rigidity of the pendulum arm in the lateral direction, a simple test,
where it was manually perturbed to vibrate as much as possible at the rest point,
was made. As a consequence, slight oscillations in the Easting axis were also cre­
ated. However, the most relevant result shown in Figure 6.24 is that even with a
forceful perturbation, displacement in the Northing axis was not larger than several
millimeters and the construction should not have interfered with the experiment
results significantly. These displacements are expected to be even smaller when the
pendulum is set to oscillate naturally in the Easting axis. The physical light barrier
length was set to 5 mm, which in conjunction with the 2 mm rod extension leaves
a free space of only 3 mm for such oscillations. This was not exceeded as the rod
extension was not observed to break during the experiments.

93

log: stationary_wiggle_test_uart

4 . 7 3 6

g
£ 4 . 7 3 4

• —r*:—:— —:—:—:—i

El 1:
• I—r~*—:—I i—:—:—:—

. a • • • • • • •••
—r*:—:— —:—:—:—i

El 1:
• I—r~*—:—I i—:—:—:—

. a

—r*:—:— —:—:—:—i

El 1:
• I—r~*—:—I i—:—:—:—

. a

vx
• •

•
0 10 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

cd - 0 . 0 0 5
LU

-0.01

j -

* :
•

*: * :

- I i
*

:»

' : "
•
• m

*
• i :*

m
m

•
•9 :• M •
:4
.:...
:4
.:...

*

0 10 2 0 3 0 4 0 5 0 6 0 7 0 80

Time [s]

Fig. 6.24: Maximum pendulum arm displacement in the Northing axis.

6.3.4 Horizontal prism rotation

The final additional set of tests was done to verify the effect of prism orientation on
the RTS measurements. Some conclusions might be made, however better designed
experiments should be performed for stronger and definite correlation estimations
(see Sec. 5.4.4). The main outcome here is a maximal measured deviation of angles
and distances while the prism rotates.

Several consecutive 360 degree rotations back and forth within one test run were
made, with a total of three test runs. First two were done at a 4.6 m distance, the
third one at 1.2 m. Results from one of the runs are shown in figures 6.25 and 6.26.
Jumping behavior between the prism elements is clearly visible, however a further
rotation angle correlation was not made. A maximum deviation of both axes was
4-5mm. At 1.2 m the jumps increased up to 10 mm (Fig. 6.27). A fourth test with
double rotations (720°) back and forth was made, however there was no difference
in the results. Given the chosen main experiment methodology (see Sec. 4.3), these
deviations might also be reflected in the resulting time delay estimations as the angle
of incidence on the prism was changing during its motion.

94

0.02
CD

0 0
O)
c
CO -0.02
ni
O -0.04
N

' i _
O

X -0.06
50

log: no_movement_only_rotation_2
1

. m m m

i i

iiiJIS lis
• • * • T ; : ; • ; : * • ? * : : *: * :: •'•'•* ; I: U

• gftei
: I: -VM'^-i-

i l l S|i|
•»f 1 *

• i i

:; i : ; : i : ; :- *> j - '* * •'• J •• : : ; : i : V:!: •

i!;; i '.'••'•>.'\s\ V/iiili'i^ViW-

• • * • T ; : ; • ; : * • ? * : : *: * :: •'•'•* ; I: U

• gftei
: I: -VM'^-i-

i l l S|i|
•»f 1 *

• i i

)\\m\ Imikm
i » M j • 1 • 4 * * 11 5

1 i i

100 150 200 250 300 350

, — 1 0.03 -

[d
eg

0.02 -
CD

an
g

0.01 -

'ti
ca

l

0 *

V
ei

-o.oi L

n.
J *

m m is

n
« h

50 100 150 200 250

Time [s]
300 350

Fig. 6.25: Angle deviation with horizontal prism rotation (4.6 m distance).

4.598
log: no_movement_only_rotation_2

4.596
£Z
'sz
t
o

4.594

4.592

• • * » t

«»£»«•& • • « i» *A« i i M i * •

50 100 150 200 250 300 350

x10"'

I 0

.E -2 h
LU -4

mm m ' • • m * • • • • • • • • • • m^^^f*mmmm *m

f

1

50 100 150 200 250

Time [s]
300 350

Fig. 6.26: Northing and Easting deviations with horizontal prism rotation (4.6 m
distance).

95

1 0 3 log: no_movement_only_rotation_closer

10

D3 5

I . . . i . . . 1

• • • • • *
• • * f m

? f • *
* » • *

t • • •
• « * *
• * * «

*•
• <

• t
«

T -
\i I 4 • • 9 •

• • | »'*]'• t if :• *: $ »: *| • •» • • :* » • * • : i •

•
•

i •

t • a • : * < • : •

•
•

i •

t • a • : * < • : •
•

•:•;* :

::

i * i

I

•• '* :• •I » •
•:•;* :

:: i • \ • f » • ;I

I I

m
•

• * * • 9 *

•
I

• m
• •

i

* * **
• • •

i

1

• *•*•<
i

*

40 60 80 100 120 140 160 180 200 220 240

Time [s]

Fig. 6.27: Easting deviations with horizontal prism rotation (1.2 m distance).

6.3.5 Safe prism velocity limits

As is seen in Figure 6.28, the beginning sections with highest prism velocities con­
tained sparser data than the rest of the motion. From the already acquired data
and some additional tests, an evaluation of these limits could to some extent be
performed. Furthermore, this evaluation does not depend on the light barrier sensor
setup since only data from the RTS is being evaluated. That is why, in this case,
acquired data from old experiment runs performed during the semestral part were
also included. They are still labeled as old in the legend to make a clear distinction
between the them and new data sets.

The first 4 periods of motion were always taken from each measurement run.
The number of points contained within these periods was extracted and maximal
velocities calculated. As is seen in Figure 6.28, the data acquires its full fidelity after
a certain number of periods as the peaks of oscillations (and velocity) get smaller.
To be able to compare relative data loss of an incomplete data portion from a full
fidelity picture, only periods that do not contain the full recoveries should make it
to the comparison. Otherwise the fully recovered periods would skew the results
towards a lower relative data loss. That is why 4 periods of motion were chosen,
where it was always guaranteed that the data, if it contained such losses, does not
recover in this interval.

The expected maximal prism velocities according the the RTS specifications (see
Sec. 4.1) are 3.0 m/s, 5.3 m/s and 9.7 m/s for 1.5 m, 2.7 m and 4.9 m respectively.
These were calculated using the actual measured distances by the RTS rounded
to cm precision. As can be seen in Figure 6.29, top left, data integrity decreases
with a wider starting angle and with increasing velocities (top right). The velocity
values were calculated as a gradient of the acquired angles in time, multiplied by
the distance measurements. 80 to 90 points was the maximum observed within the
four periods. The lowest was 30 to 40 and beyond that, with wider starting angles,

96

500

E

g.
C/3
CO

LU

-500

500

.g o
CO

LU

-500

log: 06_486cmRTS_uart
. 1 - 1

i ^
*

1 •

. * • i • •*.
i * fvj M

» • • •
' * : •

•
• * : : V ;

• . •

t * *
i i ' ? •

i i • • : f
U . •.. 1

i • ; . :
i •• » ;

r ' V'

ptttrt r
. V i . • f ;

• *

? ! • / U]

/ U ;/
m u

•
•

•
* -
*>

10 15

log: 01_486cmRTS_uart

20

F I
1 ..

... ..jf ••••f: ••;

. \ . \ . . ; . > , , . ; . .
I: : : ; \ i '?m

•: : • : • . : : : f: : •
| •: :• : -. : •: :

•:•••»•;•:•:•••?••!•*••*••?•

™ : : • : •'•

* •* .
» : ' : : : ':

* * ? '»

• • iM\:m
i \ ? i f

* . *

• • • i •

......1.1.:\
: * : : •

r • ; * •' * : * : i * * :

* / . * /
» :

• '"Vi?": if *"

V • ••' .». f

" ; " ; " - 7 ; " 1 " »

\ - \!
if V

1 i

W

10

Time [s]
15 20

Fig. 6.28: Data reduction at wider motion starting angles.

>. 80

D5
0

60

CO
S 40 Q

X to • o
X

In 2

^ 1 . 5
o
_o
0 > 1
X
CO

0.5 X-

^ x J

>. 80

D5
0

60

CO
Jo 40

X +

X ^

^ x ^ + :

A A A XS?A

0.4 0.6 0.8

Max Easting [m]
0.5 1 1.5 2

Max Velocity [m/s]
1.5m I 2.0m old + 2.7m A 3.4m old X 4.9m X 4.9m

+ J U U | rt; i '
To1 W Q ,6-
>. 80

4 -5

D5
0
^ 60

CO
as 40
Q

o

XX!
X

0.4 0.6 0.8

Max Easting [m]
2 3 4

Distance [m]

Fig. 6.29: Data integrity with motion starting angle.

97

the RTS completely lost track of the moving prism. Data from the old experiments
also follows the general trend. A set of points at the 4.9 m distance was marked
with a different color (purple). These are the runs, which contained visibly higher
results of the measurement delays in Figure 6.13.

There are limitations to this procedure however. First is the obvious velocity
estimation from the actual imperfect data and a lack of precise control of this velocity
(also see Sec. 5.4.5). A sharp turn in the velocity data can be seen, which is a result
of unreliable calculations from too sparse data. Velocities higher than around 2 m/s
were not reliably calculable. However, if the trend was to be extended, it might be
reasonable to assume a cutoff at around 3 m/s. Second, changing environmental
conditions could have affected the results as, for example, the data integrity might
have been influenced highly by changing light conditions, which was not controlled
for in these experiments.

A decrease of data fidelity with increasing RTS distance is not an expected
result (Fig. 6.29, bottom right) and this might have been influenced by several
factors, processing errors included. One hypothesis might be that the T O F distance
measurement took a longer time at the greater distances resulting in less acquired
data points during the prism's motion. However, further experiments would have
to be done to verify this. Also, the data from narrower starting angles tends to
cluster around higher values regardless of the distance. It is only the wider starting
angle data points, that seem to follow such a trend (specifically, the 2.7 m and 4.9 m
results). It is also important to mention that no wider start angle data is available at
the 1.5 m distance since there, the RTS was not able to maintain lock on the prism
at all. Another thing which should be verified is the extent to which acceleration
and rapid change of direction could have an effect on data integrity. It might be the
case that the RTS is in fact able to track with higher velocities without data loss
and it is these rapid changes that have a larger effect on the data.

all logs

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.

Max Velocity [m/s]

Fig. 6.30: RTS position measurement delay with max. prism velocity (combined
results).

98

The last evaluation stemmed from the visible rise of measurement delays as
the pendulum was gradually halting to a stop (see Fig. 6.8). As was mentioned
in Section 6.2.2, these ending sections were not included in the final measurement
delay evaluations, with a cutoff defined by the expected asymmetricality error of
max. 20 ms. For this evaluation, maximal prism velocities were compared with
the resulting time delays for all of the main experiment runs. Results from the
old setup were not used in this case and peak velocities were calculated from the
whole motion, excluding the initial segments with reduced data. Figure 6.30 shows
a combined plot from all of the the main experiment results, where a sharp rise in
delays is visible at very low velocities. Some points appearing beyond the 2 m/s
limit are hidden from view as these were single outlying values in any particular
data set. These results might be caused by the asymmetricality errors that are also
increasing at lower velocities, however even the points which are not expected to
have these errors follow the same trend. Nonetheless, equivalent shortcomings of
the evaluation apply here as well.

6.4 Alternative navigation solutions

The results presented in the preceding chapters showed measurement delays of about
110 ms to 120 ms from true position time and limitations on target's dynamic
properties. A n interesting area of research is presented by Yang et al. [51] in
using a Laser Tracker for the moving object navigation task. Several orders of
magnitude higher accuracies of these devices might circumvent current limitations
of RTSs, however different obstacles emerge within this solution as well, with even
less tolerance to rapid dynamic target motion changes. The authors devised a new
system for dynamic laser tracker measurements, which might make these devices
even more favorable than RTSs for navigation tasks in the future.

A completely different and more obvious approach is presented by Retscher et
al. [52] in using radio waves for localization and navigation inside buildings. This
completely eliminates the direct line of sight necessity and would be more effectively
expanded throughout the whole building interior. However, despite the favorable
scalability of this solution, the positioning accuracies of these methods are still by
at least an order of magnitude lower than the RTS solutions.

99

Conclusions and possible improvements
This thesis touched on the principles of position measurement with a total station
and attempted to investigate their possible applications in more unconventional
scenarios, such as U A V navigation in GNSS-denied environments (see Chap. 2).
Chapter 3 described the parameters and basic operation of Trimble RTSs available at
the U A M T institute of Brno University of Technology. Chapter 4 provided a deeper
elaboration of the theoretical and practical problems of kinematic RTS position
measurements, and outlined the reasoning behind and requirements for suitable
evaluation experiments. A practical realization and implementation details were
then shown in Chapter 5. Finally, all obtained results, together with their processing
methodology, were presented and described in Chapter 6.

Initial tests showed a lack of a 10 Hz measurement rate functionality on the
Trimble S7 RTS, however it was fully available on the S9 HP (see Sec. 4.3.3).
Potential benefits of the available SX10 for future research were outlined and a
completely new option in the Trimble UTS devices was briefly noted (see Sec. 4.1).
Several evaluation experiments were performed with the S9 HP RTS, from which
more than a 100 ms position measurement delay, when compared to a reference true
measurement time, and a data propagation delay of around 26 ms were shown (Sec.
6.2.3). A correlation of RTS-assigned timestamps with serial port arrival rates was
proposed (see Sec. 6.3.1). A limited analysis of RTS parameters' dependence on
the target's dynamic properties was performed (Sec. 6.3.5). Position deviations of
up to 5 mm, which could have contributed to the high delays were also shown from
various additional tests. The reference measurement setup components should not
have contributed to the final results with errors higher than around 1 ms. The data
for processing was constrained to a max. 20 ms theoretical asymmetricality error
caused by the sensor-rod setup, however the resulting offset was only at several units
of milliseconds.

Alternative operation solutions for the RTSs, such as described in Section 3.7,
might further mitigate the measurement delays. Generally, higher data transfer and
measurement rates, which might also indicate better inter-component synchroniza­
tion, are favorable. Larger distances from targets are preferred in order to maintain
successful target tracking, however safe operational velocity (or possibly accelera­
tion) ranges might be limited to only below several units and above tenths of m/s.
A suitable orientation relative to the target's path should also be considered.

As it currently stands, the tested Trimble S9 HP in its presented configuration
would be capable of navigating small UAVs at reasonably low velocities with smooth
trajectories, however a further expansion of its applicability through a reduction of
measurement delays by custom operation solutions might be preferable. Further

100

verifications of a desirable RTS position might also lead to even lower delays. Alter­
natively, other higher grade total station models might provide even more satisfying
results. Overall, robotic total stations might provide an accurate U A V navigation
solution for indoors and other GNSS-denied environments when correctly set up.
Their cumbersome scalability is still balanced by higher positioning accuracies when
compared to more easily scalable options.

Possible additional work and improvements

Several other experiments could have been made to verify the effect of the RTS's
alignment and position on the obtained results. A further measurement rate anal­
ysis, providing a better quantification of the RTS's behavior and more tests with
different RTS devices, estimating any further benefits and differences could also have
been made. Limitations of the additional performed experiments could be eliminated
by, for example, utilizing a second light barrier or an encoder, which would provide
more accurate and independent velocity estimations. Better prism rotation tests
could have estimated a precise angle relation. Different types of motion, such as
linear or circular, would also have been beneficial, singling out any other potential
negative interferences that the current setup might have had on the results.

101

Bibliography
[1] HORELIČAN, Tomáš. Měření pozice pohybujících se objektů pomocí robotické

totální stanice [online]. Brno, 2021, 44 p. [ref. 2021-04-25]. Available at:
<https : //www. vutbr. cz/studenti/zav-prace/detail/131019>. Semestral
thesis. Brno University of Technology, Faculty of Electrical Engineering and
Communication, Department of Control and Instrumentation. Thesis supervi­
sor: Ing. Tomáš Jílek, Ph.D.

[2] HORELIČAN, Tomáš. POSITION M E A S U R E M E N T OF M O V I N G OB­
JECTS USING A ROBOTIC T O T A L STATION. In: Proceedings I of the 26th
Conference STUDENT EEICT 2020 [online]. 1. Brno: Brno University of Tech­
nology, Faculty of Electrical Engineering and Communication, 2021, accepted
for publication, 4p [ref. 2021-5-11]. ISBN 978-80-214-5942-7. Available at:
<https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni>

[3] B A U T S C H . Historic universal theodolite Pistor & Martins manufactured in
Berlin (1851), exposed 2017 at an exposition of GeoForschungsZentrum Pots­
dam. Taken free-hand with polarising filter. Wikimedia Commons: Univer-
saltheodolit.l^Zoll.Pistor&Martins.Berlin. 1851 [online]. San Francisco, Kal i­
fornia, United States: Wikimedia, 2017, 17 Apri l 2017n. 1. [ref. 2021-4-26].
Available at: <https : //upload. wikimedia. org/wikipedia/commons/9/9e/
Universaltheodolit. 14Zoll. Pistor°/„26Martins. B e r l i n . 1851. jpg>

[4] Trimble S9 HP: Total Station. Trimble: Geospatial [online]. Sunnyvale,
California, United States: Trimble, c2021, 2021 [ref. 2021-4-29]. Available
at: <https://geospatial.trimble.com/sites/geospatial.trimble.
com/files/styles/banner/public/2017-05/S9-total-station_2_l.png?
itok=ANcR10Db>

[5] K A V A N A G H , Barry F. and Tom B. M A S T I N . Surveying: Principles and Ap­
plications. N INTH EDITION. United States of America: Pearson, c2014. ISBN
978-0-13-700940-4.

[6] Trimble Access General Survey: HELP . Trimble: Trimble Geospatial help portal
[online]. Sunnyvale, California, United States: Trimble, 2018 [ref. 2021-03-10].
Available at: <https : //help. trimblegeospatial. com/TALegacy/Help"/
20Files/2017_20_Help/English/Generaiy„20Surveyy„20Help%20v2017.20.
pdf>

[7] T R I M B L E ACCESS G E N E R A L SURVEY: USER GUIDE. Trim­
ble: Trimble Geospatial help portal [online]. Sunnyvale, California,

102

https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni
https://geospatial.trimble.com/sites/geospatial.trimble

United States: Trimble, August 2020 [ref. 2021-4-25]. Available at:
<https://help.trimblegeospatial.com/TrimbleAccess-PDFs /2021.
00/en/TA_General_Survey.pdf>

[8] F R E D T H E OYSTER. A schematic representation of a theodolite's axes and
circles. Wikimedia Commons: Theodolite vermeer [online]. San Francisco, Kal i­
fornia, United States: Wikimedia, 2014, 7 November 2014n. 1. [ref. 2021-1-2].
Available at: <https : //upload.wikimedia. org/wikipedia/commons/d/df /
Theodolite_vermeer.svg>

[9] DTR. A n SVG to show the relationship between Zenith, Nadir, Horizon. Based
on Wikiman lm80.svg and Horizons.svg. Wikimedia Commons: Zenith-Nadir-
Horizon [online]. San Francisco, Kalifornia, United States: Wikimedia, 2007,
13 August 2007 [ref. 2021-5-1]. Available at: <https://upload, wikimedia.
org/wikipedia/commons /4/47/Zenith-Nadir-Horizon.svg>

[10] L E N D A , Grzegorz, Andrzej U Z N A N S K I and Michal S T R A C H . Comparison of
Accuracy of Kinematic Methods for Localization of Mobile Targets. In: 2018
Baltic Geodetic Congress (BGC Geomatics) [online]. Olsztyn, Poland: IEEE,
2018, 2018, p. 138-144 [ref. 2021-03-10]. ISBN 978-1-5386-4898-8. Available at:
doi: 10.1109/BGC-Geomatics.2018.00032

[11] L E N D A , G., A . U Z N A N S K I and M . S T R A C H . Influence of Time Delays of
Robotic Total Stations Witch High Sampling Frequency on Accuracy of Mea­
surements to Moving Prisms. Archives of Civil Engineering [online]. 2019,
65(1), 31-48 [ref. 2021-03-10]. ISSN 1230-2945. Available at: doi:10.2478/ace-
2019-0003

[12] K E R E K E S , Gabriel and Volker SCHWIEGER. Position Determination of a
Moving Reflector in Real Time by Robotic Total Station Angle Measure­
ments. Journal of Geodesy, Cartography and Cadastre [online]. Bucharest,
c2018, December 2018, (9), 13-18 [ref. 2021-4-28]. ISSN 1454-1408. Available
at: <https://jgcc.geoprevi.ro/docs /2018/9/jgcc_2018_no9_2.pdf>

[13] K E R E K E S , Gabriel and Volker SCHWIEGER. Kinematic Position­
ing in a Real Time Robotic Total Station Network System. Born-
imer Agrartechnische Berichte: 6th International Conference on Ma­
chine Control and Guidance [online]. Potsdam, c2018, 1 2 October
2018n. 1., 101, 35-43 [ref. 2020-12-30]. ISSN 0947-7314. Available at:
<https://www.researchgate.net/publication/330779154_Kinematic_
Positioning_in_a_Real_Time_Robotic_Total_Station_Network_System>

103

https://help.trimblegeospatial.com/TrimbleAccess-PDFs/2021.?00/en/TA_General_Survey.pdf
https://help.trimblegeospatial.com/TrimbleAccess-PDFs/2021.?00/en/TA_General_Survey.pdf
https://upload,%20wikimedia.?org/wikipedia/commons/4/47/Zenith-Nadir-Horizon.svg
https://upload,%20wikimedia.?org/wikipedia/commons/4/47/Zenith-Nadir-Horizon.svg
https://jgcc.geoprevi.ro/docs/2018/9/jgcc_2018_no9_2.pdf
https://www.researchgate.net/publication/330779154_Kinematic_?Positioning_in_a_Real_Time_Robotic_Total_Station_Network_System
https://www.researchgate.net/publication/330779154_Kinematic_?Positioning_in_a_Real_Time_Robotic_Total_Station_Network_System

[14] L A C K N E R , Stefan and Werner L I E N H A R T . Impact of Prism Type and
Prism Orientation on the Accuracy of Automated Total Station Mea­
surements. In: Joint International Symposium on Deformation Monitoring
(JISDM) [online]. T U Wien: FIG, 2016, Mar 2016, 8p [ref. 2021-4-29]. Avail­
able at: <https://www.fig.net/resources/proceedings/2016/2016_03_
j isdm_pdf/nonreviewed/JISDM_2016_submission_24.pdf>

[15] S T E M P F H U B E R , Werner. VERIFICATION OF THE TRIMBLE UNI­
VERSAL TOTAL STATION (UTS) PERFORMANCE FOR KINE­
MATIC APPLICATIONS [online]. Zurich, 2009 [ref. 2021-4-29]. Avail­
able at: <https://www.researchgate.net/publication/242294561_
VERIFICATI0N_0F_THE_TRIMBLE_UNIVERSAL_T0TAL_STATI0N_UTS_
PERF0RMANCE_F0R_KINEMATIC_APPLICATI0NS>. Conference Paper. Swiss
Federal Institute of Technology.

[16] BONIGER, Urs and Jens T R O N I C K E . On the Potential of Kinematic G P R
Surveying Using a Self-Tracking Total Station: Evaluating System Crosstalk
and Latency. IEEE Transactions on Geoscience and Remote Sensing [on­
line]. 2010, 48(10), 3792-3798 [ref. 2021-4-29]. ISSN 0196-2892. Available at:
doi:10.1109/TGRS.2010.2048332

[17] GOJCIC, Zan, Slaven K A L E N J U K and Werner L IENHART. Synchronization
routine for real-time synchronization of robotic total stations. In: INGENEO
2017: Proceedings of the 7th International Conference on Engineering Survey­
ing [online]. Lisbon: FIG, 2017, October 18 - 20, 2017, p. 83-91 [ref. 2021-4-
29]. Available at: <https://fig.net/resources/proceedings/2017/2017_
10_INGE0/44PR_TS4-4_Goj cic.pdf>

[18] T H A L M A N N , Tomas and Hans N E U N E R . Temporal calibration and synchro­
nization of robotic total stations for kinematic multi-sensor-systems. Journal of
Applied Geodesy [online]. 2020, 15(1), 13-30 [ref. 2021-4-30]. ISSN 1862-9024.
Available at: doi:10.1515/jag-2019-0070

[19] Prisms & Targets: Traverse Prism. Trimble: Geospatial [online]. Sunnyvale,
California, United States: Trimble, c2021, 2021 [ref. 2021-5-16]. Available
at: <https://geospatial.trimble.com/sites/geospatial.trimble.
com/f iles/styles/large/public/2019-ll/58026019yo20-%20Traverse 0/o
20Prism,/,20with,/,20AR,/,20Coat ing. png?itok=qBavwDpp>

[20] Trimble S7: Robotic Total Station. Trimble: Geospatial [online]. Sunnyvale,
California, United States: Trimble, c2021, 2021 [ref. 2021-4-29]. Available
at: <https://geospatial.trimble.com/sites/geospatial.trimble.com/

104

https://www.fig.net/resources/proceedings/2016/2016_03_?j%20isdm_pdf/nonreviewed/JISDM_2016_submission_24.pdf
https://www.fig.net/resources/proceedings/2016/2016_03_?j%20isdm_pdf/nonreviewed/JISDM_2016_submission_24.pdf
http://www.researchgate.net/publication/242294561_VERIFICATI0N_0F_THE_TRIMBLE_UNIVERSAL_T0TAL_STATI0N_UTS_PERF0RMANCE_F0R_KINEMATIC_APPLICATI0NS
http://www.researchgate.net/publication/242294561_VERIFICATI0N_0F_THE_TRIMBLE_UNIVERSAL_T0TAL_STATI0N_UTS_PERF0RMANCE_F0R_KINEMATIC_APPLICATI0NS
http://www.researchgate.net/publication/242294561_VERIFICATI0N_0F_THE_TRIMBLE_UNIVERSAL_T0TAL_STATI0N_UTS_PERF0RMANCE_F0R_KINEMATIC_APPLICATI0NS
http://fig.net/resources/proceedings/2017/2017_10_INGE0/44PR_TS4-4_Goj%20cic.pdf
http://fig.net/resources/proceedings/2017/2017_10_INGE0/44PR_TS4-4_Goj%20cic.pdf
https://geospatial.trimble.com/sites/geospatial.trimble
https://geospatial.trimble.com/sites/geospatial.trimble.com/

files/styles/banner/public/2017-05/S7-total-station_2.png?itok=
05rmsPuj >

[21] Trimble S7: D A T A S H E E T . Trimble: Geospatial [online]. Sunnyvale, Califor­
nia, United States: Trimble, c2015-2019, 2019, p. 1-4 [ref. 2021-1-3]. Avail­
able at: <https://geospatial.trimble.com/sites/geospatial.trimble.
com/files/2019-06/022516-154G_TrimbleS7_DS_USL_0619_LRsec.pdf>

[22] Trimble S9/S9 HP: D A T A S H E E T . Trimble: Geospatial [online]. Sunnyvale,
California, United States: Trimble, c2015-2020, 2020 [ref. 2021-03-10]. Avail­
able at: <https://geospatial.trimble.com/sites/geospatial.trimble.
com/files/2020-04/022516-155H_TrimbleS9_DS_USL_0320_LRsec_0.pdf>

[23] Trimble SX10: Scanning Total Station. Trimble: Geospatial [online]. Sunny­
vale, California, United States: Trimble, c2021, 2021 [ref. 2021-5-5]. Available
at: <https://geospatial.trimble.com/sites/geospatial.trimble.
com/files/styles/banner/public / 2017-05/SX10-total-station_0.png?
itok=FaEpBLrP>

[24] Trimble SX10: D A T A S H E E T . Trimble: Geospatial [online]. Sunnyvale, Califor­
nia, United States: Trimble, c2016-2017, 2017, p. 1-4 [ref. 2021-1-3]. Available
at: <https://geospatial.trimble.com/sites/geospatial.trimble.com/
files/2019-10/Datasheet%20-y„20SX10y„20Scanning0/020Totaiy„20Stationy„
20-°/„20English0/„20USL0/„20-°/„20Screen. pdf >

[25] Trimble TSC7: C O N T R O L L E R . Trimble: Geospatial [online]. Sunnyvale,
California, United States: Trimble, c2018-2019, 2019 [ref. 2021-4-29]. Available
at: <https://geospatial.trimble.com/sites/geospatial.trimble.com/
files/2020-06/Datasheet0/„20-0/o20Trimble0/„20TSC7y„20controller0/o20-0/o
20Englishy„20y„28USLy„29y„20-y„20Screen.pdf>

[26] Leica TPS 1200: GeoCOM Reference Manual. Arecibo Observatory [online].
Heerbrugg, Canton St. Gallen, Switzerland: Leica Geosystems [ref. 2021-
5-5]. Available at: <http://www2.naic.edu/~phil/hardware/theodolites/
TPS1200_GeoC0M_Manual.pdf>

[27] Trimble E M P O W E R Software Development Overview. Trimble: Devel­
oper Home [online]. Sunnyvale, California, United States: Trimble, c2020,
2020 [ref. 2021-5-5]. Available at: <https://mcsdeveloper.trimble.com/
software-development/>

[28] Trimble Access SDK: Trimble Access Software Development Ki t . Trimble:
Geospatial [online]. Sunnyvale, California, United States: Trimble, c2021,

105

https://geospatial.trimble.com/sites/geospatial.trimble.?com/files/2019-06/022516-154G_TrimbleS7_DS_USL_0619_LRsec.pdf
https://geospatial.trimble.com/sites/geospatial.trimble.?com/files/2019-06/022516-154G_TrimbleS7_DS_USL_0619_LRsec.pdf
https://geospatial.trimble.com/sites/geospatial.trimble.?com/files/2020-04/022516-155H_TrimbleS9_DS_USL_0320_LRsec_0.pdf
https://geospatial.trimble.com/sites/geospatial.trimble.?com/files/2020-04/022516-155H_TrimbleS9_DS_USL_0320_LRsec_0.pdf
https://geospatial.trimble.com/sites/geospatial.trimble
https://geospatial.trimble.com/sites/geospatial.trimble.com/?files/2019-10/Datasheet%20-y�20SX10y�20Scanning0/020Totaiy�20Stationy�?20-�/�20English0/�20USL0/�20-�/�20Screen.%20pdf
https://geospatial.trimble.com/sites/geospatial.trimble.com/?files/2019-10/Datasheet%20-y�20SX10y�20Scanning0/020Totaiy�20Stationy�?20-�/�20English0/�20USL0/�20-�/�20Screen.%20pdf
https://geospatial.trimble.com/sites/geospatial.trimble.com/?files/2019-10/Datasheet%20-y�20SX10y�20Scanning0/020Totaiy�20Stationy�?20-�/�20English0/�20USL0/�20-�/�20Screen.%20pdf
https://geospatial.trimble.com/sites/geospatial.trimble.com/?files/2020-06/Datasheet0/�20-0/o20Trimble0/�20TSC7y�20controller0/o20-0/o?20Englishy�20y�28USLy�29y�20-y�20Screen.pdf
https://geospatial.trimble.com/sites/geospatial.trimble.com/?files/2020-06/Datasheet0/�20-0/o20Trimble0/�20TSC7y�20controller0/o20-0/o?20Englishy�20y�28USLy�29y�20-y�20Screen.pdf
https://geospatial.trimble.com/sites/geospatial.trimble.com/?files/2020-06/Datasheet0/�20-0/o20Trimble0/�20TSC7y�20controller0/o20-0/o?20Englishy�20y�28USLy�29y�20-y�20Screen.pdf
http://www2.naic.edu/~phil/hardware/theodolites/TPS1200_GeoC0M_Manual.pdf
http://www2.naic.edu/~phil/hardware/theodolites/TPS1200_GeoC0M_Manual.pdf
http://mcsdeveloper.trimble.com/software-development/
http://mcsdeveloper.trimble.com/software-development/

2021 [ref. 2021-5-5]. Available at: <https://geospatial.trimble.com/
products-and-solutions/trimble-access-sdk>

[29] T R I M B L E PRECISION SDK F O R WINDOWS: Quick access to all things a
developer may be interested in. Trimble: Developer [online]. Sunnyvale, Califor­
nia, United States: Trimble, c2021, 2021 [ref. 2021-5-5]. Available at: <https:
//developer.trimblegeospatial.com/tpsdk_windows/index.html>

[30] L I E N H A R T , Werner, Matthias E H R H A R T and Magdalena G R I C K . High fre­
quent total station measurements for the monitoring of bridge vibrations. Jour­
nal of Applied Geodesy [online]. 2017, 11(1), 1-8 [ref. 2021-03-10]. ISSN 1862-
9024. Available at: doi:10.1515/jag-2016-0028

[31] ROBERTS, Craig and Peter B O O R E R . Kinematic positioning using a robotic
total station as applied to small-scale UAVs. Journal of Spatial Science [on­
line]. 2016, 61(1), 29-45 [ref. 2021-03-10]. ISSN 1449-8596. Available at:
doi:10.1080/14498596.2015.1068232

[32] M A X I M , Artyom, Otto L E R K E , Marshall P R A D O , Moritz D O R S T E L M A N N ,
Achim M E N G E S and Volker SCHWIEGER. U A V Guidance with Robotic Total
Station for Architectural Fabrication Processes. DVW-SCHRIFTENREIHE:
Unmanned Aerial Vehicles 2017 (UAV 2017) [online]. 2017, 9. 2. 2017,
86, 145-161 [ref. 2020-12-30]. ISSN 0940-4260. Available at: <https:
//www.researchgate.net/publication/320491203_UAV_Guidance_with_
Robotic_Total_Station_for_Architectural_Fabrication_Processes>

[33] H A N K U S - K U B I C A , Agnieszka, Bartosz BRZOZOWSKI , Karol C H E D A , Ma-
ciej K U L I N S K I and Piotr W I E C Z O R E K . Verification tests of total sta­
tion usability for U A V position measurements. 2020 IEEE 7th Interna­
tional Workshop on Metrology for AeroSpace (MetroAeroSpace) [online]. IEEE,
2020, 2020, 331-335 [ref. 2020-12-30]. ISBN 978-1-7281-6636-0. Available at:
doi: 10.1109/MetroAeroSpace48742.2020.9160081

[34] P A R A F O R O S , Dimitris S., Marcus R E U T E M A N N , Galibjon SHARIPOV,
Roland W E R N E R and Hans W. G R I E P E N T R O G . Total station data assess­
ment using an industrial robotic arm for dynamic 3D in-field positioning with
sub-centimetre accuracy. Computers and Electronics in Agriculture [online].
2017, 136(April 2017), 166-175 [ref. 2021-03-10]. ISSN 01681699. Available at:
doi:10.1016/j.compag.2017.03.009

[35] Trimble SPSx30 Total Station: USER GUIDE. Trimble: Docushare [online].
Sunnyvale, California, United States: Trimble, June 2017 [ref. 2021-5-
10]. Available at: <https : / / t r l . trimble. com/docushare/dsweb/Get/

106

http://geospatial.trimble.com/products-and-solutions/trimble-access-sdk
http://geospatial.trimble.com/products-and-solutions/trimble-access-sdk
http://www.researchgate.net/publication/320491203_UAV_Guidance_with_

Document-464679/SPSx300/„20User0/„20Guide0/„20Rev0/„20B0/„20June°/„202017.
pdf>

[36] Phantom 4 Pro V2.0: Specs. DJI: Phantom 4 Pro V2.0 [online]. Shenzhen,
Guangdong, China: SZ DJI Technology Co., c2021 [ref. 2021-4-20]. Available
at: <https://www.dj i.com/sk/phantom-4-pro-v2/specs>

[37] C E P L , Miroslav. Měření přesnosti GNSS přijímačů [online]. Brno, 2019,
51 p. [ref. 2020-12-30]. Available at: <https://www.vutbr.cz/studenti/
zav-prace/detail/118986>. Bachelor's thesis. Brno University of Technology,
Faculty of Electrical Engineering and Communication, Department of Control
and Instrumentation. Thesis supervisor: Ing. Tomáš Jílek, Ph.D.

[38] Home: About. Wiring Pi: GPIO Interface library for the Raspberry Pi [online].
Gordon, c2021 [ref. 2021-5-1]. Available at: <http://wiringpi.com/>

[39] C library for Broadcom B C M 2835 as used in Raspberry P i . Bcm2835 [on­
line]. Mike McCauley, 2021, 2021 [ref. 2021-5-1]. Available at: <https ://www.
airspayce.com/mikem/bcm2835/index.html>

[40] Pigpio: pigpio is a C library for the Raspberry which allows control of the
General Purpose Input Outputs (GPIO). GitHub: joan2937 [online]. San Fran­
cisco, California, United States: GitHub, 2021 [ref. 2021-03-10]. Available at:
<https://github.com/j oan2937/pigpio>

[41] Micro Sensing Device Data Book: Photomicrosensors Microphotonic De­
vices. Omron [online]. Shiokoji Horikawa, Shimogyo-ku, Kyoto 600-8530,
Japan: O M R O N Corporation, c2015, September 2015, p. 56-57 [ref. 2021-3-
10]. Available at: <https://omronfs.omron.com/en_US/ecb/products/pdf/
en-scec-001d-l.pdf>

[42] Ultra-minute Photoelectric Sensor: EX-ZSERIES. Panasonic [online]. 2431-
1 Ushiyama-cho, Kasugai-shi, Aichi, 486-0901, Japan: Panasonic Indus­
trial Devices SUNX Co., c2015, July 2015 [ref. 2021-4-28]. Available
at: <https://mediap.industry.panasonic.eu/assets/download-files/
import/ds_exz_jp_en.pdf>

[43] Ptpd: P T P d official source - master branch a.k.a. trunk. GitHub: ptpd [on­
line]. San Francisco, California, United States: GitHub, 2019 [ref. 2021-03-10].
Available at: <https : //github. com/ptpd/ptpd>

[44] Linuxptp: P T P IEEE 1588 stack for Linux. SourceForge: linuxptp [online].
San Diego, California, United States: Slashdot Media, c2021 [ref. 2021-5-2].
Available at: <https://sourceforge.net/projects/linuxptp/>

107

https://www.dj%20i.com/sk/phantom-4-pro-v2/specs
http://www.vutbr.cz/studenti/zav-prace/detail/118986
http://www.vutbr.cz/studenti/zav-prace/detail/118986
http://wiringpi.com/
https://github.com/j%20oan2937/pigpio
http://omronfs.omron.com/en_US/ecb/products/pdf/en-scec-001d-l.pdf
http://omronfs.omron.com/en_US/ecb/products/pdf/en-scec-001d-l.pdf
https://mediap.industry.panasonic.eu/assets/download-files/?import/ds_exz_jp_en.pdf
https://mediap.industry.panasonic.eu/assets/download-files/?import/ds_exz_jp_en.pdf
http://sourceforge.net/projects/linuxptp/

[45] W32Time: This repo provides resources for high accuracy time on Windows.
GitHub: microsoft [online]. San Francisco, California, United States: GitHub,
2020 [ref. 2021-03-10]. Available at: <https://github.com/microsoft/
W32Time>

[46] Raspberry P i 3 Model B: Single-board computer with wireless L A N and Blue­
tooth connectivity. Raspberry Pi [online]. Cambridge, England, United King­
dom: Raspberry P i (Trading) Limited., 2021 [ref. 2021-5-2]. Available at:
<https://www.raspberrypi.org/products/raspberry-pi-3-model-b/>

[47] Trimble Knowledge Center. Trimble Knowledge Center: SURVEY [online].
Sunnyvale, Kalifornia, United States: Trimble, c2008, 21 January 2008n.
1. [ref. 2020-12-31]. Available at: <http://trl.trimble.com/docushare/
dsweb/Get/Document-406433/SC_Designyo20ofyo20backsightyo20point0/o
20conf iguration°/o20in°/o20resectionyo20setup .htm>

[48] Configuring Systems for High Accuracy. Microsoft: Documenta­
tion [online]. Redmond, United States: Microsoft Corporation, 2018,
05/08/2018 [ref. 2021-5-4]. Available at: <https://docs .microsoft.
com/en-us/windows-server/networking/windows-time-service/
configuring-systems-for-high-accuracy>

[49] S A M A , Michael P., Timothy S. S T O M B A U G H and James E. L U M P P .
A hardware method for time-stamping asynchronous serial data streams
relative to GNSS time. Computers and Electronics in Agriculture [on­
line]. 2013, 97(2013), 56-60 [ref. 2021-4-30]. ISSN 01681699. Available at:
doi:10.1016/j.compag.2013.07.003

[50] SimpleDataParsing: parsing text-file data into a csv file for later pro­
cessing. GitHub: Imaniac230 [online]. San Francisco, California, United
States: GitHub, 2020 [ref. 2021-5-7]. Available at: <https://github.com/
Imaniac230/SimpleDataParsing>

[51] Y A N G , Linghui, Yuanlin P A N , Jiarui LIN, Yang LIU, Yue SHANG, Shuo
Y A N G and Hanwen C A O . Automatic Guidance Method for Laser Tracker
Based on Rotary-Laser Scanning Angle Measurement. Sensors [online]. 2020,
20(15) [ref. 2021-5-10]. ISSN 1424-8220. Available at: doi:10.3390/s20154168

[52] R E T S C H E R , Guenther, Vassilis GIKAS, Hannes HOFER, Harris P E R A K I S
and Allison K E A L Y . Range validation of U W B and Wi-F i for integrated indoor
positioning. Applied Geomatics [online]. 2019, 11(2), 187-195 [ref. 2021-5-10].
ISSN 1866-9298. Available at: doi:10.1007/sl2518-018-00252-5

108

http://github.com/microsoft/W32Time
http://github.com/microsoft/W32Time
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
http://trl.trimble.com/docushare/dsweb/Get/Document-406433/SC_Designyo20ofyo20backsightyo20point0/o20conf%20iguration�/o20in�/o20resectionyo20setup%20.htm
http://trl.trimble.com/docushare/dsweb/Get/Document-406433/SC_Designyo20ofyo20backsightyo20point0/o20conf%20iguration�/o20in�/o20resectionyo20setup%20.htm
http://trl.trimble.com/docushare/dsweb/Get/Document-406433/SC_Designyo20ofyo20backsightyo20point0/o20conf%20iguration�/o20in�/o20resectionyo20setup%20.htm
https://docs%20.microsoft.?com/en-us/windows-server/networking/windows-time-service/?configuring-systems-for-high-accuracy
https://docs%20.microsoft.?com/en-us/windows-server/networking/windows-time-service/?configuring-systems-for-high-accuracy
https://docs%20.microsoft.?com/en-us/windows-server/networking/windows-time-service/?configuring-systems-for-high-accuracy
http://github.com/Imaniac230/SimpleDataParsing
http://github.com/Imaniac230/SimpleDataParsing

Symbols and abbreviations
API Application Programming Interface

B U T Brno University of Technology

C O M Communication

C P U Central Processing Unit

C S V Comma-Separated Values

D R Direct Reflex

DSP Digital Signal Processor

DST Daylight Saving Time

E D M Electronic Distance Measurement

E N U East, North, Up

F E E C Faculty of Electrical Engineering and Communication

F E K T Fakulta elektrotechniky a komunikačních technologií

F P G A Field-Programmable Gate Array

GNSS Global Navigation Satellite Systems

GPIO General-Purpose Input/Output

H W Hardware

IC Input Capture

ISR Interrupt Service Routine

I2C Inter Integrated Circuit

L A N Local Area Network

L E D Light Emitting Diode

N F C Near Field Communication

NIC Network Interface Controller

N M E A National Marine Electronics Association

109

N T P Network Time Protocol

OS Operating System

P C Personal Computer

P L C Programmable Logic Controller

P T P Precision Time Protocol

R A M Random Access Memory

RPi Raspberry P i

R T K Real Time Kinematic

RTS Robotic Total Station

SDK Software Development Ki t

STD Standard

STS Scanning Total Station

SW Software

T O F Time of Flight

T R K Tracking

T T L Transistor-Transistor Logic

U A M T Ústav automatizace a měřicí techniky

U A R T Universal Asynchronous Receiver-Transmitter

U A V Unmanned Aerial Vehicle

UI User Interface

USB Universal Serial Bus

U T C Coordinated Universal Time

U T S Universal Total Station

V U T Vysoké učení technické v Brně

110

List of appendices

A Supplementary graphs, images and listings 112

B Old experiment configuration 118

C Electronic C D attachment contents 121

111

A Supplementary graphs, images and list­
ings

Fig. A . l : Coordinate orientation on the TSC7 (does not reflect the real experiment
layout).

Fig. A.2: RTS data output. Left: before, Right: after conversion (bit values not the
same between images).

112

Custom adapters for Panasonic EX-Z11 (left) and RS232 (right)

log: 03_486cmRTS_uart

East ing [m]

Fig. A.4: Near-perfect perpendicular RTS alignment.

113

Listing A.l: RTS data logging and time stamping,

i f ((u a r t _ h e l p e r . b y t e s _ a v a i l a b l e =
s e r D a t a A v a i l a b l e (h a n d l e)) > 0)
{
clock_gettime(CL0CK_REALTIME, & r e c e i v e _ t i m e) ;

i f ((u a r t _ h e l p e r . c u r r _ r e a d _ b y t e =
s e r R e a d B y t e (h a n d l e)) >= 0)
{

i f d e f UART_DISPLAY_LOG
i f (b _ d i s p l a y e d + + <= UART_DISPLAYED_BYTES)

p u t c ((c h a r) u a r t _ h e l p e r . c u r r _ r e a d _ b y t e , s t d o u t) ;
#endif /* UART_DISPLAY_LOG */

p u t c ((c h a r) u a r t _ h e l p e r . c u r r _ r e a d _ b y t e , f o u t) ;
i f ((c h a r) u a r t _ h e l p e r . p r e v _ r e a d _ b y t e ==
UART_RTS_EOT_CHAR)

{
f p r i n t f (f o u t _ t , "70ld7„c7„91d7„c7„d7„c7„d\nM ,
r e c e i v e _ t i m e . t v _ s e c , UART_CSV_VALUE_SEPARATOR,
r e c e i v e _ t i m e . t v _ n s e c , UART_CSV_VALUE_SEPARATOR,
u a r t _ h e l p e r . b y t e s _ a v a i l a b l e ,
UART_CSV_VALUE_SEPARATOR,
u a r t _ h e l p e r . c u r r _ r e a d _ b y t e) ;
+ + u a r t _ h e l p e r . t o t a l _ h a n d l e d ;
}

u a r t _ h e l p e r . p r e v _ r e a d _ b y t e =
u a r t _ h e l p e r . c u r r _ r e a d _ b y t e ;
}

}

114

6.022 6.024 6.026 6.028 6.03 6.032 6.034 6.036

True Time [s] xio 4

Fig. A.5: Finding the start and end point of the motion.

Upper half closest to zero

6.024 6.026 6.028 6.03 6.032 6.034

x10 4

Lower half closest to zero

6.024 6.026 6.028 6.03 6.032 6.034

True Time [s] xio 4

Fig. A.6: Finding the boundary points for interpolation sections.

115

Fig. A.9: RTS data output, measurement point arrivals.

117

B Old experiment configuration

Fig. B . l : Old reference measurement setup. Left: R P i and sensor setup, Right:
prism with extension.

logs: 8_337cmRTS_14,5cmPrismS_129cmR_experiment02_8
18_12_2020_experiment2_8

200
CL

rx
CO
I-
rr
<

x *

-200

. X X

X X with corrections
X no corrections

10 20 30 40 50 60

Point number [-]
70 80

Fig. B.2: Comparison of the RTS and R P i timestamp values (old data, single run,
delays only).

118

400 •

E _ 300 •
Q.
or or

200 -
CO
1 1
rr

100 -

<
o'-

0

114 r

E _ 113 -
Q.
or

112 -
CO
1 1
rr

111 =

< 110 •

logs: 8_337cmRTS_14,5cmPrismS_129cmR_experiment02_8
18_12_2020_experiment2_8

X forward passes
- a v g

+ returning passes
- a v g

+
X

X

10 15 20 25 30 35 40

10 15 20 25 30

Swing number [-]
35 40

B.3: RTS position measurement delay with split passes (old data, single

30

^ 2 0

o
O 10

0

logs: 8_337cmRTS_14,5cmPrismS_129cmR_experiment02_8
18_12_2020_experiment2_8

i—i i—i i—i

-300 -200 -100 100 200 300 400

30

^ 2 0
c
Z3
O
O 10

0

I no corrections
I with corrections

average
median
stdev

-300 -200 -100 0 100 200

A (RTS - RPi) [ms]
300 400

B.4: Histogram of the RTS position measurement delay (old data, single

119

all logs
— r — p = B7.2, a =18.5 -

- r-
/ \

-
\

_
-

Y
20 40 60 80 100 120 140 160 180

A (RTS - RPi) [ms]

Fig. B.5: Histogram of RTS position measurement delay (old data, combined re­
sults).

2
CO

£ 1

cS
0

o
CD _1
03
£ - 2

log: 8_w32tm_4sec_poll2_parsed

X
I I

x X
X
A x

X X
A x

V >
: : -J-

Li h.

j ; s
X

>
> <x / | M \ X

<x / x

X
A

• • , x x , : : : : :

20 40 60

Time [s]
80 100 120

Fig. B.6: P T P synchronization status during an experiment (old data, single run)

120

C Electronic CD attachment contents

/ root attachment folder
latex LaTeX source files for this thesis

— linux Linux related source code root
ntp_tests source for preliminary testing of custom NTP connections
r p i source for the Raspberry Pi measuring program

sandbox isolated feature testing
.gpiotest initial GPIO handling tests
_ i s r t e s t UART handling with ISR tests
_ s e r i a l t e s t initial UART handling tests

matlab Matlab source code root
checks some checks/tests for correct function behavior
logs acquired log files root
— RPi timestamp log files from the Raspberry Pi
_ TrimbleS7 data log files from the Trimble S7 RTS

TrimbleS9 data log files from the Trimble S9 HP RTS
TSC7 W32Time Windows service logs from the TSC7 controller

old old development scripts
saved_data saved processed data variables

models source for part 3D models
windows Windows related source code root

— Horelican_Tomas_DP_2021.pdf this thesis document

121

