ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE TECHNICKÁ FAKULTA

Katedra materiálu a strojírenské technologie

Vliv tvrdosti abraziva na odolnost proti opotřebení

DIPLOMOVÁ PRÁCE

Vedoucí diplomové práce: Ing. Petr Hrabě, Ph.D.

Autor práce: Bc. Martin Bureš

PRAHA 2013

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE

Katedra materiálu a strojírenské technologie Technická fakulta

ZADÁNÍ DIPLOMOVÉ PRÁCE

Bureš Martin

Silniční a městská automobilová doprava

Název práce Vliv tvrdosti abraziva na odolnost proti opotřebení

Anglický název Effect of the abrasive hardness against the wear resistance

Cíle práce

Shromáždit literární podklady o vlivu tvrdosti abraziva na odolnost proti opotřebení. Vyhodnocení odolnosti experimentálních zkoušek opotřebení.

Metodika

Současný stav řešeného problému (literární rešerše), cíle práce a metody jejího vypracování, výsledky experimentů a jejich diskuze, závěry a přínos práce.

Osnova práce

1. Úvod

2. Cíl práce a metodika

- 3. Současný stav problematiky opotřebení
- 4. Experimentální zkoušky opotřebení
- 5. Závěr
- 6. Seznam použité literatury

Qficialní dokuntent * České zemědělská univerzita v Praze * Karnýcka 129, 165-21 Praha 6 - Suchdol

Rozsah textové části

cca 60 stran

Klíčová slova

Tvrdost, opotřebení, abrazivní částice, odolnost

Doporučené zdroje informací

DASTUR, M., R., MOSKOVITC, L., N.: Tallored coating for hardfacing. In: Proceeding of the annual powder. Metalurgy conference, 1983, No 39, s. 307 – 321.

DORAZIL, E.: Strojírenské materiály a povrchové úpravy. Brno, VUT, 1988, 330s.

Friction and Wear Testing. American Society for Testing and Materials, West Conshohocken, PA, 1987. pp. 186.

KARAKOZOV, E. S.: Sojediněje metalov v tvěrdoj faze. Moskva, Metalurgija, 1976, 264 s.

KUČERÍKOVÁ, V.: Organické povrchové úpravy. Bratislava, STK 1974, 99 s.

Repair and Maintenance Welding Handbook. ESAB AB. 120 s.

STEDFELD, R. L.: Metals Handbook. Vol. 5., Surface cleaning, finishing, and coating. 9. ed. Metals Park, Ohio, American Society for Metals 1982. XVI, 715 s.

TUMANOVA, N. CH.: Galvaničeskije pokrytija iz ionnych rasplavov. Kijev, 1983, 164 s.

Časopisy: Strojírenská technologie, MM Průmyslové spektrum, TM Svařování – dělení- spojování materiálů, Technik Firemní literatura: katalogy, prospekty

Vedoucí práce Hrabě Petr, Ing., Ph.D.

Termín zadání listopad 2011

Termín odevzdání duben 2013

prof. Ing. Milan Brožek, CSc.

Vedoucí katedry

prof. Ing. Vladimír Jurča, CSc. Děkan fakulty

ificiální dokument = Geská zemédelska uhivelzíta v Praze = Kámýcká 129, 168,21 Praha 6 - Suchdol

Čestné prohlášení

Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením a za pomoci vedoucího diplomové práce Ing. Petra Hraběte, Ph.D. a použil jen pramenů citovaných v přiložené bibliografii.

V Praze dne: 6. 4. 2013

Martin Bureš

Poděkování

Děkuji za věcné připomínky a odbornou pomoc, kterou mi při psaní diplomové práce poskytl Ing. Petr Hrabě, Ph.D. Abstrakt: Cílem této diplomové práce bylo shromáždit literární podklady o vlivu tvrdosti abraziva na odolnost proti opotřebení a vyhodnotit výsledky experimentálních zkoušek opotřebení. Teoretická část práce postihuje současný stav problematiky opotřebení a s ním souvisejícího tření. Charakterizuje jednotlivé druhy opotřebení. Podrobněji se věnuje opotřebení abrazívnímu a vlivu tvrdosti abraziva na odolnost proti opotřebení. V praktické části byl zkoušen vliv tvrdosti tří druhů abraziv (Al2O3, ocelová drť, SiO2) na ocelové zkušební vzorky o dvou relativně nízkých tvrdostech s použitím metody s volnými abrazivními částicemi.

Klíčová slova: tvrdost, opotřebení, abrazivní částice, odolnost

Effect of the abrasive hardness against the wear resistance

Summary: The aim of this thesis was to gather literary information about the influence of the hardness of the abrasive particles on wear resistance and evaluate the results of the experiments wear. The theoretical part of the work affects the present state of wear and the related friction. The work describes the various types of wear and provides an analysis of the abrasive wear and impact abrasive particles hardness of the abrasive wear resistance. The practical effect of hardness was tested three types of abrasive materials (Al2O3, steel grit, SiO2) on steel specimens of two relatively low hardness using methods with loose abrasive particles.

Key words: hardness, wear, abrasive particle, resistance

Obsah

1 Úvod	
2 Současný stav problematiky opotřebení	
2.1 Definice tření a jeho druhy	
2.2 Definice a druhy opotřebení	
2.2.1 Adhezívní opotřebení	5
2.2.2 Abrazívní opotřebení	б
2.2.3 Erozivní opotřebení	
2.2.4 Kavitační opotřebení	9
2.2.5 Únavové opotřebení	
2.2.6 Vibrační opotřebení	
2.3 Nejdůležitější faktory ovlivňující abrazívní opotřebení	
2.3.1 Velikost abrazívních částic	
2.3.2 Tvar abrazívních částic	
2.3.3 Pevnost abazivních částic	14
2.3.4 Tvrdost abraziva	
2.4 Zkoušení vlivu tvrdosti abraziva na odolnost proti opotřebení	
2.5 Tvrdost materiálu a její zkoušení	
2.5.1 Zkouška podle Brinella	
2.5.2 Zkouška podle Rockwella	
2.5.3 Zkouška podle Vickerse	
2.5.4 Zkouška podle Shoreho	
3 Experimentální zkoušky opotřebení	
3.1 Výroba a příprava materiálu pro zkoušky	
3.2 Výběr a příprava abraziva	
3.3 Laboratorní zkoušení vlivu tvrdosti abraziva na odolnost proti opotřebení	
3.4 Výsledky měření a vyhodnocení experimentálních zkoušek opotřebení	
4 Závěr	
5 Literatura:	

1 Úvod

S rozvojem techniky stoupají nároky na technickou úroveň nových strojů a strojních zařízení, ale i na jejich spolehlivost a efektivnost. V řadě výrobních odvětví je kladen důraz na splnění požadovaných technických a ekonomických parametrů pro trvalý, bezporuchový provoz a maximální šetření materiálem s ohledem na dopady na životní prostředí. Rozbory příčin poruch strojů a zařízení ukazují, že jejich nejčastější příčinou je opotřebení důležitých funkčních částí. Opotřebení strojů a strojních zařízení vede k postupné ztrátě jejich funkčnosti a negativně ovlivňuje kvalitu a ekonomii výrobního procesu. Proto je třeba zaměřit se na možnosti omezení tohoto nežádoucího jevu.

Jedním z velmi intenzivních degradačních procesů je abrazívní opotřebení materiálu, které způsobují tvrdé převážně minerální částice. Změny na funkčním povrchu součástí a strojů způsobené abrazivními částicemi jsou velmi různorodé a mají na ně vliv konstrukční, materiálové i provozní faktory. Abrazivní opotřebení patří mezi důležité činitele omezující dobu použití součástí a strojů využívaných v mnoha technických i jiných oborech.

V řadě případů lze prodloužit životnost strojů a součástí použitím materiálů, které mají vyšší odolnost proti danému typu opotřebení. Důležitým předpokladem pro volbu optimálních materiálů je znalost jejich chování v různých podmínkách provozu a s tím související znalost vlivu jednotlivých faktorů na intenzitu opotřebení. Patří sem například velikost, tvar a pevnost abrazivních částic. Velmi významný je také vliv tvrdosti abraziva, a to zejména ve vztahu k tvrdosti opotřebovávaného kovového materiálu.

2 Současný stav problematiky opotřebení

2.1 Definice tření a jeho druhy

Tření je jev, který přijímáme zcela samozřejmě v běžném životě, a široce se uplatňuje v technické praxi.

Podle nejznámější definice: "Tření je odpor proti pohybu, vznikající mezi dvěma tělesy v oblasti dotyku jejich povrchů, v tečném směru k nim". Tato definice se prakticky nezměnila od doby Leonarda da Vinci (1452- 1519) a platí v plné míře pro vnější tření [1].

Aby bylo definicí postiženo i vnitřní tření, byla nově formulována takto:

"Tření je ztráta mechanické energie v průběhu, na začátku nebo při ukončení relativního pohybu navzájem se dotýkajících materiálových oblastí " [2].

Vnější tření je charakterizováno stykem dvou třecích těles. Naproti tomu vnitřní tření, pro které se u tuhých těles používá přesnější výraz útlum a u kapalin se označuje jako viskozita (vazkost), probíhá v materiálových vrstvách patřících témuž tělesu. Rozděluje se tření v klidu, definované jako odpor proti působení vnější síly, které postačuje právě k uvedení tělesa do pohybu. A dále tření za pohybu u těles v relativním pohybu.

Obr. 1 Případy relativního pohybu těles [1]

V závislosti na vzájemném pohybu funkčních povrchů mohou vznikat následující druhy tření:

- a) tření při kluzném pohybu dvou těles, například pohyb pístních kroužků s pístem ve válci motoru
- b) valivé tření při odvalování těles, příkladně u valivých ložisek nebo, pohyb kol železničních vagónů po kolejích
- c) prokluz při kluzném tření, může to být např. lamela kotoučových spojek.
- d) vrtné tření, vzniká například při pohybu rotačního nástroje (hřbet vrtáku, hřbet zubu frézy)
 při obrábění kovů

Kombinací tření při kluzném pohybu a valivého tření při odvalování těles vzniká valivé tření s větším nebo menším prokluzem funkčních ploch [1].

Podle přítomnosti maziva nebo jiné látky mezi styčnými povrchy se rozlišuje tření bez maziva, tření s tuhým mazivem, tření s plastickým nebo kapalným mazivem, tření ve vrstvě plynu.

Při kapalinném tření jsou funkční plochy odděleny vrstvou maziva nebo kapalného média. Vrstva materiálu, ve které probíhá tření má vlastnosti kapaliny. Od kapalinného tření odlišované, tzv. suché tření, nemá označení zcela přesné, protože na povrchu třecích materiálů jsou téměř vždy absorbovány vrstvy plynů, vlhkost nebo oxidické vrstvy kovů, které mají vliv na třecí vlastnosti funkčních povrchů.

Limitním případem kapalinného tření je tzv. mezní tření, při kterém jsou vlastnosti přítomné tenké vrstvy kapaliny odlišné od jejich objemových vlastností.

V označení smíšené tření je zahrnuta celá řada případů, kdy v procesu tření dochází za přítomnosti maziva k občasným dotykům mikronerovností povrchu funkčních ploch [1,2].

Všechny druhy tření, které byly výše zmíněny, mohou být podstatou procesů žádaných, využívaných v řadě průmyslových technologií a u strojních součástí. Jsou však také podstatou jevů nežádaných, mezi něž patří opotřebení materiálu.

2.2 Definice a druhy opotřebení

Opotřebení je definováno jako nežádoucí změna povrchu nebo rozměrů tuhých těles, způsobená buď vzájemným působením funkčních povrchů, nebo funkčního povrchu a media, které opotřebení vyvolává.[1,3].

Je to v důsledku tření vyskytující se stálá změna tvaru nebo změna vlastností vrstev materiálu tvořících povrch tuhých těles, která vznikla mimo technologicky požadované tváření nebo mimo požadovanou změnu materiálu [2]. Tento jev může být doprovázen i jinými vlivy, např. chemickými, elektrochemickými nebo elektrickými. Projevem opotřebení je odstraňování nebo přemísťování částic hmoty z funkčního povrchu působením mechanických účinků.

Existuje šest základních druhů opotřebení: adhezívní, abrazívní, erozivní, kavitační, únavové, vibrační. [1, 3]

Obr. 2 Symbolické znázornění jednotlivých druhů opotřebení [2]

Na tyto základní druhy opotřebení je však třeba nahlížet jako na ideální zjednodušené případy, protože v technické praxi se obvykle tyto jevy kombinují a setkáváme se s řadou variant [1,2].

2.2.1 Adhezívní opotřebení

Adhezívní opotřebení způsobuje oddělování a přemísťování částic kovu mezi dvěma povrchy, které se dostávají do kontaktu a jsou v relativním pohybu [1,2]

Povrchy tuhých těles nejsou nikdy dokonale hladké. V závislosti na použití technologie opracování povrchu zde dochází ke vzniku makronerovnosti, mikronerovností a submikronerovností. Při působení zatížení na tělesa se pak styk povrchů realizuje prostřednictvím velkého množství kontaktních plošek, kdy za současného působení velkých sil vznikají plastické deformace a vlivem adhezních sil se tvoří mikrospoje. Tyto jsou v důsledku relativního pohybu povrchů v zápětí rozrušovány.

Obr. 3 Schéma adhezívního opotřebení

Adhezívní opotřebení materiálů se může v praxi objevovat v rozsahu od opotřebení mírného až po intenzivní.

V krajním případě tzv. mírného opotřebení, při němž oxidické ochranné vrstvy kovu vznikají rychleji než jejich porušování při vzájemném relativním pohybu funkčních povrchů, jsou adhezivní spoje méně četné a méně dokonalé. Nedochází tak k významnému přenosu materiálu mezi povrchy a mírně opotřebené povrchy jsou lesklé, vyhlazené, nemají rýhy a stopy po zadírání. Obdobný vzhled adhezivně opotřebených povrchů můžeme pozorovat, pokud je přítomno mazivo mezi povrchy, které se třou.

V případě intenzivního opotřebení nastává výrazné, relativně hluboké, rozrušování funkčních povrchů, jehož průvodním jevem je vznik četných částic, jejich oddělování a přenos mezi styčnými povrchy spolu s velkými změnami funkčních povrchů následkem plastické deformace mikrooblastí a makrooblastí. Intenzivně opotřebené povrchy jsou rýhované, rozbrázděné a často mají pouhým okem viditelné částice materiálu, které ulpívají

na povrchu jedné či obou součástí, které se spolu stýkají. Toto vede k růstu odporu proti pohybu a může nastat až úplné zablokování (zadření). Velmi častou příčinou tohoto stavu je selhání mazání [1,4].

Projevy adhezívního opotřebení v praxi lze zaregistrovat např. u kluzných ložisek, u čepů nebo při kontaktu kolejového vozidla s kolejnicemi.

Průběh adhezívního opotřebení je ovlivněn řadou působících faktorů. Mezi nejvýznamnější patří zatížení, kluzná rychlost, materiály třecí dvojice a jejich fyzikálně mechanické a chemické charakteristiky, mazivo, okolní prostředí, systém mazání, velikost stykových povrchů, způsob jakým byly vyrobeny jednotlivé členy dvojice a doba jejich funkce [1].

2.2.2 Abrazívní opotřebení

Abrazívní opotřebení lze popsat jako oddělování částic materiálu z funkčního povrchu působením tvrdšího a drsného povrchu druhého tělesa nebo účinkem abrazivních částic. Toto se projevuje poškozením povrchu funkční plochy rýhami.

a - interakce dvou těles, b - interakce tří těles

Obr. 4 Schéma mechanismu abrazívního opotřebení [2]

U abraze mohou nastat dva případy. Při prvním z nich jde o opotřebení vzájemným silovým působením tvrdých, obvykle minerálních částic a funkčního povrchu součásti. Při tomto ději dochází k oddělování a přemisťování částeček materiálů, Jde vlastně o interakci dvou těles, částic a součásti, kdy tvrdé částice opotřebovávají jeden funkční povrch.

Příkladem může být opotřebení ostří u radlice pluhu nebo opotřebení zubů u rýpadel. Druhý případ abrazívního opotřebení způsobují tvrdé částice, které jsou mezi dvěma vzájemně se pohybujícími funkčními povrchy. Dochází zde k interakci tří těles. Takto se opotřebovávají prakticky všechny pohybové mechanismy, do kterých mohou vniknout částice nebo nečistoty z okolního prostředí [1,3].

Částice, které způsobují abrazi, mohou být volné (sypký materiál) nebo dostatečně pevně vázány, jak je tomu např. u brusného plátna, nebo jsou vázány vzájemně jako v případě brusných kotoučů.

Pro abrazivní částice, které jsou dostatečně pevně vázány, platí, že opotřebený objem je přímo úměrný zatížení a délce dráhy částic a nepřímo úměrný tvrdosti opotřebovaného povrchu. Při reálném styku nerovností nebo abrazivních částic s funkčním povrchem dochází podle působících sil v místě dotyku ke vzniku pružných, pružně plastických nebo plastických deformací.

Bylo prokázáno, že deformace povrchu materiálu závisí především na poměru $\frac{h}{R}$, kde *h* je hloubka vzniku výstupku tvrdého tělesa, R je poloměr vznikajícího výstupku. K plastickým deformacím dochází při $\frac{h}{R} < 0,1$ a při $\frac{h}{R} \ge 0,1$ dochází k mikrořezání.

S analogickou situací se setkáváme při styku abrazivních částic, které jsou více nebo méně pevně vázány s opotřebovaným povrchem [1].

V technické praxi jsou časté případy abrazívního opotřebení částicemi úplně volnými nebo jen slabě vzájemně vázanými. To se děje například při přemísťování sypkých materiálů, nebo při těžbě písku a štěrku. V těchto podmínkách se realizuje jednak vzájemný relativní pohyb částice a tělesa, ale abrazivní částice se vzájemně pohybují i mezi sebou. Mezi částicemi tak může docházet k posuvným pohybům, k odvalování, k rotaci. Abrazivní účinek částic volných nebo málo vzájemně vázaných je proto výrazně menší než u částic pevně vázaných[1,2].

U čepů a kluzných ložisek může dojít k opotřebení účinkem abrazívních částic, které mají původ v nečistotách maziva. Paradoxem je, že se více opotřebovává tvrdý čep oproti poměrně měkké výstelce ložiska. Způsobují to tvrdé částice, které se mohou zamáčknout do měkého ložiskového kovu a svými vyčnívajícími výstupky pak rýhují tvrdý čep [1].

Poškození funkčního povrchu součástí v případě abraze závisí na zatížení a na vlastnostech abrazívních částic, tj. na jejich velikosti, tvaru, pevnosti, tvrdosti. Další faktory, které ovlivňují abrazívní opotřebení jsou např. kluzná rychlost a vlhkost. Odolnost proti abrazívnímu opotřebení může být u řady kovových materiálů zvýšená legováním a tepelným zpracováním [1].

2.2.3 Erozívní opotřebení

Erozívní opotřebení se projevuje oddělováním částic a poškozováním funkčního povrchu:

- částicemi nesenými proudem kapaliny (např. u trysek armatur, u součástí čerpadel)

- částicemi nesenými proudem plynu (příkladně součásti ventilátorů)

- proudem kapaliny, kapek, páry nebo plynu (např. u parních armatur, částí parních turbín, součástí plynových turbín) [1,2].

a - částice nesené proudem plynu, b - částice nesené proudem kapaliny, c - proudem kapaliny, kapek, páry anebo plynu.

Obr. 5 Schéma mechanismu erozívního opotřebení [2]

Na intenzitu erozívního opotřebení má vliv řada faktorů. Je to především relativní rychlost, teplota a chemické působení nosného média a dále charakter částic, tj. jejich druh, velikost, tvar a tvrdost. Účinek erozívního média s částicemi závisí především na kinetické energii a úhlu dopadu částic na funkční povrch [1,2,4].

Typickým projevem erozívního opotřebení je nerovnoměrné porušení funkčního povrchu a často jeho výrazné zvlnění. Je to důsledek turbulence proudícího média, při níž může docházet k oddělování částic materiálu v určitých exponovaných místech povrchu [1].

2.2.4 Kavitační opotřebení

Kavitační opotřebení je charakteristické oddělováním částic a poškozováním povrchu součástí v oblasti zanikání kavitačních dutin v kapalině.

Kavitace často vzniká v hydraulických zařízeních, kde tekutiny obsahující plyny působí na povrch tuhých těles při vysokých rychlostech. V místech, kde vzrůstá rychlost proudění a v důsledku toho se sníží tlak kapaliny, se objeví kavitační bubliny (dutiny) vyplněné parou nebo plynem a ulpí na povrchu kovu. Tyto bubliny zanikají implozí. V okamžiku zániku kavitačních dutin dochází ke vzniku hydrodynamických rázů, které rozrušují povrch kovových součástí [1,4].

A - proud tekutiny, B - povrch tělesa

Obr. 6 Schéma mechanismu kavitačního opotřebení [2]

Intenzita kavitačního opotřebení je proměnlivá s časem. V první fázi dochází ke kumulaci poruch v povrchových vrstvách materiálu bez oddělování částic. Až v další fázi dochází ke vzniku povrchových a podpovrchových trhlinek.

Kavitační opotřebení poškozuje nejčastěji např. vodní turbíny, čerpadla, součásti hydraulických systémů, redukční ventily, tlakově mazaná ložiska [1].

Kavitační opotřebení ovlivňuje řada faktorů, mezi něž především patří obsah plynů v kapalině, teplota a tlak, povrchové napětí a viskozita [1].

2.2.5 Únavové opotřebení

Únavové opotřebení má podstatu v postupné kumulaci poruch v povrchové vrstvě materiálu funkčních ploch při opakovaných stykových napětích v určitých oblastech funkčních povrchů. Je-li napětí pod mezí kluzu, vzniká vysokocyklová únava, při napětích nad mezí kluzu vzniká nízkocyklová únava, K únavovému poškození tedy dochází v důsledku cyklického namáhání součástí.

Obr. 7a Schéma mechanismu únavového opotřebení [1]

a – Cyklický pohyb, b – vratný skluz

1 – zárodek opotřebení z povrchové anebo podpovrchové trhliny

Oblasti nízkých mikrotrhlin se postupně rozšiřují a vznikají rozsáhlejší oblasti únavového opotřebení. Tento děj vázaný převážně na vrstvy povrchu materiálu může vést až ke vzniku únavových lomů, které postihnou část nebo celý průřez součásti.

S únavovým opotřebením se velmi často setkáváme u valivých ložisek, u ozubených kol, u zdvihátek ventilů a podobně [1,2].

Únavové procesy jsou ovlivňovány především materiálovými faktory, z nichž nejvýznamnější jsou tvrdost, vměstky a nečistoty, kvalita a drsnost povrchu [1].

2.2.6 Vibrační opotřebení

Charakter vibračního opotřebení je dán oddělováním částic a poškozováním povrchu materiálu v místech kmitavých tangenciálních posuvů funkčních ploch při působení normálového zatížení.

Obr. 8 Schéma mechanismu vibračního opotřebení

Při vibračním opotřebení jsou amplitudy kmitavého pohybu poměrně malé. Jejich hodnoty se pohybují v rozmezí 0,1 až 100 µm. Typickým průvodním jevem vibračního opotřebení je vznik oxidů železa, které mají hnědočervenou nebo hnědočernou barvu.

V praxi vzniká vibrační opotřebení u valivých ložisek, čepů, nalisovaných spojení náboje kola a hřídele. Vlivem vibrací mohou být poškozeny i velmi tvrdé materiály bez

ohledu na přítomnost maziva. Důsledkem vibračního opotřebení mohou být i únavové lomy [1].

Průběh vibračního opotřebení a jeho intenzita mohou být ovlivňovány především velikostí amplitudy pohybu, kmitočtem, dobou působení kmitavého pohybu, prostředím, ale i vlastnostmi materiálu [1].

2.3 Nejdůležitější faktory ovlivňující abrazívní opotřebení

Na abrazívní opotřebení funkčních povrchů strojních součástí nebo zařízení se významně podílí zatížení a abrazívní částice, respektive jejich vlastnosti, to je velikost, tvar, pevnost a tvrdost.

2.3.1 Velikost abrazívních částic

Studiem závislosti abrazívního opotřebení různých materiálů na zatížení a průměrné velikosti částic bylo zjištěno, že tato závislost není lineární, Tyto závislosti popsali při zatíženích 0,5; 1; 2; 4 a 6 N Chruščov a Babičev [5] u železa a litiny, kdy bylo zkoušeno opotřebení abrazívními částicemi (50 až 800 µm) při dráze kluzu 6 m a rychlosti kluzu 0,5 m/s. Obdobná pozorování zaznamenali také Nathan a Jones [6]. Zjištěná závislost objemového otěru při konstantní dráze kluzu na velikost abraziva při proměnném zatížení je znázorněna na následujícím obr. č. 9, ze kterého je patrné, že průběh sledovaných závislostí lze rozdělit na 3 části:

1. Oblast velmi malých rozměrů zrna, kdy je objemový otěr přímo úměrný průměrné velikosti zrna

2. Přechodná oblast, kdy dochází ke změně závislosti opotřebení

3. Oblast větších rozměrů zrna, kde je závislost objemového otěru a průměrné velikosti zrna lineární.

Obr. 9 Závislost objemového otěru při konstantní dráze kluzu na velikosti abrazívního zrna a zatížení vzorků [1]

Velikost abrazívních částic, při které se výrazně mění závislost opotřebení na průměrné velikosti abrazívních částic, byla označena jako tzv. kritická velikost abrazívního zrna. Je závislá na zatížení a za daných zkušebních podmínek nabývá hodnot 70 až 200 µm.

Znalost kritické velikosti abrazívních částic má význam pro praxi. Zmenšováním velikosti abrazívních částic pod kritickou hodnotu výrazně klesá jejich abrazivní účinek. To může pomoci řešit například problém nežádoucích účinků abrazívních částic, které se dostávají do maziva [1].

2.3.2 Tvar abrazívních částic

Abrazivní účinky částic jsou nepochybně ovlivněny i jejich tvarem, který je možné popsat:

- množstvím hran či výstupků (makrogeometrie)
- hladkostí povrchu hran či výstupků (mikrogeometrie)
- poloměrem výstupků.

Na vliv uvedených faktorů neexistuje jednotný názor, což je dáno obtížností měření a hodnocení tvaru částic, jejich různorodými vlastnostmi i chemickým složením [1].

Makrogeometrie abrazívního zrna se může posuzovat například podle tzv. součinitele hranatosti, definovaného jako poměr povrchu skutečného zrna k povrchu koule o stejném objemu. V praxi je měření součinitele hranatosti využívané nejvíce k určení vlastností slévárenských písků používaných pro formování odlitků. Lze též předpokládat, že čím bude reálná částice odlišnější od kulového tvaru, tím bude mít větší počet výstupků a hran a tím větší bude také pravděpodobnost rýhování a oddělování částic z funkčního povrchu při relativním pohybu.

Při posuzování mikrogeometrie částic bylo zjištěno, že hrany a výstupky částic nejsou geometricky přesné řezy krystalografických rovin, ale téměř vždy to jsou zaoblené tvary. Bylo to prokázáno proměřováním karborundových a korundových částic malé i velké zrnitosti [1,5]. Detailní proměřování mikrogeometrie zrn by mohlo být využito při studiu mechanismu opotřebení, protože umožňuje poměrně přesně postihnout tvar částic i jejich změny v průběhu abrazivního opotřebení. Tato metoda se však pro svou pracnost a náročnost spíše nevyužívá.

2.3.3 Pevnost abazivních částic

Pro průběh a intenzitu opotřebení má veliký význam pevnost abrazívních částic. Při vzájemném pohybu částic a funkčního povrchu součástí dochází k porušování materiálu a současně k otupování či vylamování výstupků a hran abrazívních zrn. Vocel a Dufek [1] svými zkouškami prokázali, že při malém silovém působení se příliš nemění průměrná velikost zrn, ale mění se jejich mikrogeometrie. Sledovali pokles abrazívního účinku křemenných částic o průměru 1 až 2 mm v brusné nádobě, ve které byly za rotace exponovány po různou dobu vždy čtyři válcové vzorky o průměru 10 mm z oceli 12050 o tvrdosti 200 až 210 HV. Sítovým rozborem částic po ukončení zkoušky bylo zjištěno, že průměrná velikost abrazívních zrn se změnila maximálně o 10%, ale jejich účinek poklesl až na 40% původní hodnoty.

Dynamickými zkouškami pevnosti abrazívních částic, při kterých částice dopadají volným pádem na válec, který rotuje obvodovou rychlostí 30 ms⁻¹, bylo zjištěno, že u korundu

(Al₂O₃) dochází k fragmentaci částic více než u karbidu křemíku (SiC). Za těchto zkušebních podmínek se karbid křemíku jevil jako odolnější [1].

Větší silové působení během interakce abraziva s funkčním povrchem způsobuje větší porušování zrn, především jejich fragmentaci, čímž se do určité míry kompenzuje větší otupování výstupků a hran. Tím se zřejmě vysvětluje skutečnost, že pokles abrazívního účinku částic při větším silovém působení se výrazně neliší od poklesu abrazivity při malém silovém působení.

Podle Červeného [7] spočívá vliv pevnosti abrazívních částic v tom, že při nízké pevnosti částic dochází k jejich drcení a k otupování olamováním hran. Současně se však vytvářejí částice nové, které mají ostré hrany. Tyto dva jevy (zmenšování rozměrů a otupování na jedné straně a vznik nových ostrohranných částic na straně druhé působí protichůdně. Výsledkem je fakt, že s rostoucím zatížením povrchů téměř nedochází ke změně abrazivity [1,7].

2.3.4 Tvrdost abraziva

Velmi intenzivním degradačním procesem je opotřebení povrchu materiálu způsobené tvrdými, převážně minerálními částicemi. Více než padesát procent ze všech případů opotřebení strojů a strojních součástí se přisuzuje abrazi. Abrazívní opotřebení, jak je popsáno v článku 2.2.2 této práce, mohou způsobovat tvrdé částice, které jsou volné nebo vázané (např. v hornině nebo na brusném plátně) nebo dochází k abrazi působením tvrdých částic přítomných mezi dvěma funkčními povrchy, které se vůči sobě vzájemně pohybují. Reálné procesy vzájemného působení tvrdých abrazívních částic a materiálů podléhajících opotřebení jsou však mnohem složitější. Jsou ovlivněny také charakterem a časovým průběhem sil, které působí mezi abrazívními částicemi a opotřebovávaným povrchem. [1,16]

Tvrdost abraziva patří mezi jeho nejdůležitější vlastnosti. Při opotřebení se výrazně uplatňuje v souvislosti s tvrdostí opotřebovávaného materiálu. Čím jsou abrazívní částice tvrdší než funkční povrch, tím snáze do tohoto opotřebovávaného materiálu částice vnikají a intenzita opotřebení je tím větší [2,7].

Pro usnadnění vzájemného porovnávání různých materiálů byla zavedena tzv. poměrná odolnost proti opotřebení ψ , definovaná vztahem

$$\psi = \frac{W_l etalonu}{W_l vzorku} = \frac{W_h et.}{W_h vz.} \cdot \frac{\rho vz.}{\rho et.} = \frac{W_o et}{W_o vz}.$$

Definuje se tedy jako poměr délkového otěru W_l zkoušeného etalonu a vzorku nebo jako poměr objemového otěru W_o zkoušeného etalonu a vzorku. Objemový otěr se pak nejčastěji určuje nepřímo z hmotnostního otěru W_h při známé hustotě ρ . Při srovnávání se používají obvykle kovové etalony, které mohou být zhotoveny tvářením nebo litím. Pro omezení vlivu náhodných faktorů na výsledky zkoušek se používají též etalonová abraziva [1].

Vlivy poměru tvrdostí abraziva a opotřebovaného kovového materiálu na poměrnou odolnost proti abrazívnímu opotřebení sledovali Chruščov a Babičev [5] a znázorňuje je obr. č. 10.

Obr. 10 Závislost poměrné odolnosti proti abrazivnímu opotřebení ψ kovových materiálů na jejich tvrdosti [5]

Blaškovič, Balla a Dzimko [2] poukazují na výsledky řady prací ukazujících významný vliv vzájemného, vztahu mezi tvrdostí abraziva a opotřebovávaného kovu. Byl prokázán poměrně prudký vzrůst odolnosti proti opotřebení, pokud koeficient tvrdosti $K_T = \frac{H}{H_a}$ (kde *H* je tvrdost opotřebovávaného materiálu a H_a je tvrdost abraziva) přesáhne hodnotu 0.5 až 0.6. Toto je zpázorněne na obrázku ž. 11

hodnotu 0,5 až 0,6. Toto je znázorněno na obrázku č. 11

Obr. 11 Vztah mezi poměrem tvrdosti abrazíva a opotřebovaného kovu a poměrnou odolností proti opotřebení [2]

Chruščov a Babičev [5] popsali závislost poměrného opotřebení $\frac{1}{\psi}$ a poměrné odolnosti proti opotřebení ψ zkoušeného kovu a tvrdosti H_k na tvrdosti abraziva H_a . Schéma této závislosti znázorňuje obr. č. 12

Obr. 12 Závislost poměrného opotřebení $\frac{1}{\psi}$ *a poměrné odolnosti proti opotřebení* ψ *zkoušeného kovu o tvrdosti H_k na tvrdosti abraziva H_a[5]*

Hodnotou $\frac{1}{\psi}$ je definováno tzv. poměrné opotřebení vzorku vzhledem k etalonu. Na schématu obr. 11 je označena tvrdost abraziva H_a a tvrdost kovu H_k . Má-li abrazivum menší tvrdost než kov, jde o oblast I na schématu, k opotřebení ve větší míře nedochází. V oblasti III, kde tvrdost abraziva výrazně převyšuje tvrdost kovu, je opotřebení víceméně konstantní a nezávisí na poměru $H_{a'}/H_k$. Významná je tzv. přechodová oblast II, ve které opotřebení vzrůstá od minimální hodnoty $H_a = H_k$ k hodnotě maximální $H_a = k$. H_k . Chruščov [5] uvádí, že hodnoty součinitele k pro různé kovy a různá abraziva kolísají v rozmezí 1,3 až 1,7. Vocel a Dufek [1] uvádějí také hodnoty součinitele k podle Tenenbauma v rozmezí 1,6 až 2,0.

Na základě experimentálních výsledků byl pro velikost opotřebeného objemu v závislosti na poměru tvrdosti abraziva a tvrdosti kovu odvozen vztah:

$$W_0 = K_1 \cdot \log_{10} \frac{H_a}{H_k},$$

kde W_o je objemový otěr

 H_a - efektivní tvrdost abraziva (definovaná maximální tvrdostí kovu, který může být ještě abrazivem opotřebován)

 H_k – tvrdost kovu

 K_1 – konstanta odpovídající daným zkušebním podmínkám [1].

Vztah mezi objemovým otěrem kovu a poměrem H_{a}/H_{k} znázorňuje obr. č. 12. Z tohoto obrázku je patrné, že závislost poměru tvrdosti a opotřebení objemu s výjimkou velmi měkkých kovů rovnici odpovídá.

Obr. 13 Vztah mezi objemovým otěrem kovu a poměrem $\frac{H_a}{H_k}$ *pro tři druhy abraziva [1]*

Závislost délkového otěru W_l na tvrdosti abraziva u některých typů ocelí a litin zachycují autoři Vocel a Dufek [1] na základě údajů podle Gürleyika [12] na obr.14

Označení etalonové oceli St 37 odpovídá dle EN jakosti S 235 a označení C 85 odpovídá dle EN jakosti CS 85.

Obr.14 Závislost délkového otěru W_i na tvrdosti abraziva u některých typů ocelí a litin[1]

Na obr. 14 a) je průběh opotřebení výše popsané etalonové oceli tepelně zpracované na různé hodnoty tvrdosti. Na obr. 14 b) je znázorněn průběh opotřebení pro austenitické oceli a bílé litiny. Z obrázků je patrné, že u ocelí se dosáhne maximálního opotřebení již při tvrdosti abraziva kolem 1000 HV, zatímco u bílých litin stoupá opotřebení i u tvrdších abraziv. Je to ovlivněno zřejmě větším obsahem karbidů ve struktuře, jejichž tvrdost je srovnatelná s tvrdostí křemene, korundu nebo karbidu křemíku [1].

Poznatky o vlivu tvrdosti abraziva na opotřebení materiálu ukazují na to, že při porovnávání odolnosti materiálu proti opotřebení je třeba pracovat v laboratorních podmínkách v oblasti, kde hodnota poměrné odolnosti proti opotřebení ψ nezávisí na poměru $\frac{H_a}{H_k}$. To znamená, že tvrdost použitého abraziva musí být větší než tvrdost zkoušeného kovu nebo materiálu. Proto nejčastěji používanými abrazivy jsou korund (α -Al₂O₃) nebo karbid křemíku (SiC) [1,4]. Kašparová, Zahálka a Houdková [14] zkoušeli opotřebení nelegované konstrukční uhlíkové oceli vhodné ke svařování o označení ČSN 41 1523 (ocel 11 523) a žárově stříkaných povlaků na bázi cementu "WC-CrC-Ni". Porovnávali opotřebení při tzv. DrySand/RubberWheel (DSRW) a DrySand/SteelWheel (DSSW) zkouškách, tj. při třítělesovém uspořádání za použití jednak gumově lemovaného kola a dále za použití ocelového kola. Použitými abrazívními médii byly písek z bílého korundu (Al₂O₃) o velikosti zrn 212 – 250 μ m a křemičitý písek (SiO₂) o velikosti zrn 200 – 300 μ m. Zkouškami probíhajícími při dvou různých zatíženích, a to 22 N a 56 N, byly zjišťovány objemové úbytky materiálu, vypočítané z hmotnostních úbytků zjištěných vážením vzorků s přesností na 0,0001 g. Mezi zajímavé závěry z těchto zkoušek patří:

- Rychlost opotřebení ocelového materiálu je pro obě použitá abraziva při DSSW podmínkách téměř dvojnásobně vyšší než při DSRW zkouškách.
- Písky Al₂O₃ a SiO₂ o zrnitostní frakci 200-300 μm mají téměř stejnou abrazivní schopnost vůči oceli ČSN 11 523 bez ohledu na jejich rozdílné vlastnosti.
- Se zvyšujícím se zatížením se zvyšuje opotřebení oceli bez závislosti na použitém abrazívním médiu.
- Drsnost povrchu ocelového kola se mění pouze s měnícím se abrazívním médiem, vliv zatížení nebyl průkazný.
- Byla zjištěna závislost mezi velikostí zatížení a rychlostí opotřebení ocelového kola.
- Pro hodnocení žárově stříkaných povlaků dle DSSW je nutné zohlednit typ testovaného materiálu povlaku a zabezpečit vhodné podmínky zkoušek a reprodukovatelnost procesu [14].

2.4 Zkoušení vlivu tvrdosti abraziva na odolnost proti opotřebení

Laboratorní zkoušky pro určování opotřebení jsou klasifikovány podle typu používaných zařízení, hlavních parametrů určujících stupeň opotřebení a podle geometrického uspořádání systému. Jestliže používané zatížení vede k poškození abrazivních částic, je opotřebení nazýváno "high–stress" abrazívní opotřebení. Pokud poškození abrazívních částic není jednoznačně patrné, jedná se o tzv. "low-stres" abrazívní opotřebení. Dalším významným termínem pro hodnocení opotřebení je "x-tělesové" opotřebení. Jestliže je například abrazivum v kontaktu s jiným předmětem a zároveň dalším povrchem, jedná se o tzv. "tří-tělěsové" abrazívní opotřebení, při kterém bývá materiál abraziva většinou tvrdší než opotřebovaný objekt [4, 15].

Na základě podmínek v oblasti dotyku mezi opotřebovaným povrchem a abrazívními částicemi lze experimentální zařízení rozdělit na přístroje s vázanými částicemi, přístroje s volnými částicemi a přístroje s vrstvou volných částic mezi dvěma stykovými povrchy.

Schématické uspořádání přístrojů na zkoušky odolnosti materiálu proti abrazívnímu opotřebení jsou na obr. 15.

Přístroje s vázanými abrazívními částicemi pracují nejčastěji s brusným plátnem nebo s brusným kotoučem. Používají se přístroje s rotačním pohybem, ale také s přímočarým vratným pohybem, případně přístroje s brusným pásem. Z uvedených druhů přístrojů se ke zkouškám kovových materiálů užívají nejčastěji přístroje s brusným plátnem. Jejich výhodou je jednoduchost, spolehlivost a dobrá reprodukovatelnost výsledků s malým rozptylem.

U přístrojů s brusným kotoučem se využívá možnosti zkoušet materiály proti abrazivnímu opotřebení za vysokých teplot.

U všech přístrojů s vázanými částicemi však lze zaznamenat jako nevýhodnou vlastnost klesající abrazivitu brusného plátna nebo brusného kotouče v průběhu zkoušek. Opakovanými interakcemi s povrchy zkoušených vzorků dochází postupně k otupování a vylamování částic abraziva a také se jejich povrch znečišťuje částicemi otěru.

22

Obr. 15 Schémata přístrojů na zkoušky odolnosti materiálů proti abrazívnímu opotřebení: a –přístroj s brusným plátnem, b – přístroj s brusným pásem, c – přístroj s brusným kotoučem, d – přístroj s brusnou nádobou, e – přístroj s pružným kotoučem, f – bubnový přístroj, g – přístroj s vrstvou brusných částic mezi dvěma stykovými povrchy [1]

Přístroje s volnými abrazivními částicemi lze rozdělit na přístroje s brusnou nádobou, přístroje s pružným kotoučem a bubnové přístroje.

Přístroje s brusnou nádobou pracují tak, že do zkušební nádoby s abrazívními částicemi zasahují zkušební vzorky a vlivem vzájemného relativního pohybu vzorků a volných abrazívních částic se jejich povrch opotřebovává.

Zkoušení na těchto přístrojích je vhodné proto, že lépe simulují provozní podmínky, umožňují využití různých druhů abraziva a materiály lze zkoušet i za vysokých teplot. K nevýhodám zkoušek patří postupný pokles abrazivity volných částic, který je důsledkem jejich interakcí s povrchem zkoušených vzorků. Dochází k drcení, otupování a znečisťování částic abraziva otěrem. V praxi toto bývá řešeno periodickou výměnou abrazivních částic.

Přístroje s pružným kotoučem využívají abrazivního účinku částic sypaných mezi vzorek zkoušeného materiálu a rotující kotouč. Tyto přístroje dobře modelují podmínky provozu strojních zařízení pracujících v zemině. Při těchto zkouškách se však obtížněji reprodukují výsledky měření při použití nestandardního abraziva s různou velikostí částic.

Bubnové přístroje jsou velmi jednoduché a v provozu spolehlivé. Pracují tak, že vzorky zkoušeného materiálu upevněné na vnitřní obvodové straně bubnu jsou opotřebovávány působením rotujících volných abrazívních částic. Výsledky takto pořízených zkoušek se obvykle využívají k hodnocení odolnosti materiálů proti opotřebení v podmínkách mletí.

Přístroje s vrstvou abrazívních částic mezi dvěma stykovými povrchy pracují s dvojící vzorků, které jsou v relativním pohybu. Tyto přístroje se využívají méně. Při zkouškách je obtížné dosáhnout rovnoměrnosti ve vrstvě abraziva. Náročné je také odstraňování rozdrcených částic z pracovní oblasti a dodávka částic nových [1,2,4,5,8].

2.5 Tvrdost materiálu a její zkoušení

Tvrdost je jednou z mechanických vlastností, která má hlavně u kovových materiálů mimořádnou důležitost. Ze všech vlastností materiálů ji lze zjistit nejrychleji, nejlevněji a i na předmětech nejmenších rozměrů. Z tvrdosti lze usuzovat i na některé další vlastnosti

materiálu (pevnost v tahu, obrobitelnost apod.). Zkoušení tvrdosti se provádí buď na zkušebních vzorcích, nebo přímo na hotových výrobcích.

Tvrdost je definována jako odpor, který klade materiál proti vnikání cizího tělesa. Na této definici je založena většina přístrojů k měření tvrdosti.

Zkoušky tvrdosti patří mezi nejpoužívanější způsoby zkoušení materiálu také pro svou jednoduchost, snadnou proveditelnost a možnost zkoušení hotových dílů bez jejich znehodnocení. Podmínky zkoušek jsou stanoveny empiricky a hodnoty tvrdosti získané různými zkouškami jsou udávány v různých stupnicích, které nelze exaktně vzájemně porovnávat, tzn. nelze je převést na jiné tvrdosti. V technické praxi nejsou vždy k dispozici veškeré přístroje potřebné pro měření tvrdosti všemi metodami. Proto byly sestaveny porovnávací tabulky tvrdostí pro ocel (ČSN 42 0379).

Z mnoha druhů zkoušek tvrdosti jsou ve strojírenství nejpoužívanější metody vnikací. Statické vnikací zkoušky jsou normalizované metody, které spočívají v pozvolném vtlačování vnikacího velmi tvrdého tělesa (indentoru) vhodného tvaru (kulička, kužel, jehlan) do povrchu zkoušeného materiálu. Měřítkem tvrdosti je velikost vniklého vtisku (průměr, hloubka nebo uhlopříčka).

2.5.1 Zkouška podle Brinella

Zkouškou podle Brinella (ČSN EN ISO 6506-1,2,3 (42 0359) : 2000) se zjišťuje vtisk, který se považuje za kulový. Indentorem je vyleštěná kulička z tvrdokovu, slinutého karbidu wolframu (WC), o průměru D = 10; 5; 2,5 a 1 mm. Po odlehčení zkušebního zatížení F se měří průměr vtisku d, který se získá jako aritmetický průměr dvou na sebe kolmých rozměrů d_1 a d_2 . Tloušťka zkoušeného materiálu nesmí být menší než osminásobek hloubky vtisku, aby se neprojevil vliv tvrdosti podložky. Teplota měření musí být 10 až 35 °C. (obvykle je 23±5°C).

Doba počátečního zatěžování až do jeho plné hodnoty nesmí být kratší než 2s a nesmí trvat déle než 8s. Doba plného zkušebního zatížení má být v rozmezí 10 až 15 s. Zkušební zatížení musí být vybráno tak, aby průměr vtisku ležel v rozmezí 0,24 D až 0,6 D. Poměr zatížení k průměru kuličky $(0,102 \cdot \frac{F}{D^2})$ musí být vybrán s ohledem na zkoušený materiál a jeho tvrdost.

Obr. 16 Schéma zkoušky tvrdosti podle Brinella [11]

Tvrdost podle Brinella se označuje HBW a určuje se jako poměr zkušebního zatížení a povrchu vtisku. Podle vztahu $HBW = \frac{0,102F}{A}$ kde *F* je zkušební zatížení v N a *A* je plocha vtisku v mm²:

Pro výpočet tvrdosti se používá upravený vzorec:

$$HBW = 1.02 \frac{2F}{\pi \cdot D \cdot (D - \sqrt{D^2 - d^2})}$$

Příklad značení podle normy:

350 HBW 5/750 značí tvrdost 350 dle Brinella, určenou kuličkou z tvrdokovu o $\emptyset D = 5 \text{ mm}$ při zkušebním zatížení 7,355 kN pro standardní dobu působení [11,19].

2.5.2 Zkouška podle Rockwella

(ČSN EN ISO -1,2(42 0360) : 2000).

Tvrdost podle Rockwella se určí z hloubky *h* trvalého vtisku vnikajícího tělíska měřením s přesností na $\pm 2\mu m$. Indentorem pro tvrdé materiály je diamantový kužel o vrcholovém úhlu 120°. Pro měkké materiály se používá kulička z tvrdokovu o průměru 1,578mm nebo 3,175mm. Celkové zkušební zatížení $F = F_0 + F_1$ se skládá předběžného zatížení ($F_0 = 98,07$ N) a přídavného zatížení (F_1 je různé podle stupnice tvrdosti.)

Obr.17a Diamantový kužel pro Rockwellovy zkoušky tvrdosti (HRC, HRA) [11]

Obr.17b Kulička pro Rockwellovy zkoušky (HRB, HRD, HRE, HRF, HRG, HRH, HRK) [11]

Tvrdost se vypočítá z zjištěné hodnoty h a konstant N (číslo charakterizující stupnici) a S (jednotková stupnice) podle vzorce:

Tvrdost podle Rockwella =
$$N - \frac{h}{S}$$
,

Pro tuto zkoušku jsou tvrdoměry většinou upravovány tak, že hloubka vtisku se odečte na číselníkovém úchylkoměru, kde ukazatel na číselníku ukazuje přímo tvrdost podle Rockwella.

Příklady označení tvrdosti:

59 HRC – tvrdost podle Rockwella měřená na stupnici C s použitím diamantového kužele.

60 HRB – tvrdost podel Rockwella měřená na stupnici B s použitím kuličky z tvrdokovu

70 HR 30N – tvrdost podle Rockwella měřená na stupnici 30 N s celkovým zkušebním zatížením 294,2N [11,17,19].

2.5.3 Zkouška podle Vickerse

(ČSN EN ISO 6507 -1,2 (42 0374) : 1999).

Zkouška spočívá ve vtlačování diamantového vnikacího tělesa do zkušebního tělesa pod zkušebním zatížením po stanovenou dobu a v následném změření úhlopříček vtisku. Zjišťuje se aritmetický průměr délek obou změřených uhlopříček po odlehčení zatížení. Indentorem je diamantový čtyřboký jehlan o vrcholovém úhlu 136°. Zatížení je obvykle v rozsahu 49 až 981 N. Standardní doba zatěžování je 10 až 15s [19].

Obr. 18 Diamantový čtyřboký jehlan pro Vickersovu zkoušku[11]

Tvrdost podle Vickerse se označuje HV a stanoví se podle vztahu:

$$HV = 0,102 \cdot \frac{2F \cdot \sin \frac{136^{\circ}}{2}}{d^2} = 0,1891 \frac{F}{d^2},$$

kde $d = \frac{d_1 + d_2}{2} [mm]$ je aritmetický průměr délek úhlopříček a *F* zkušební zatížení v N.

Příklady označování:

640 HV je tvrdost podle Vickerse při stanovené zatížení 294,2N působícím po standardní dobu

640 HV1 je tvrdost 640 dle Vickerse stanovené při zkušebním zatížení 9,81N působícím po standardní dobu

640 HV 30/20 je tvrdost 640 dle Vickerse stanovená při zatížení 294,2N působícím po dobu 20s.

2.5.4 Zkouška podle Shoreho

V praxi se používá také odrazová zkouška založená na principu pružného odrazu závaží, spuštěného z určité výšky od zkoušeného materiálu. Používaný přístroj se nazývá Shoreho skleroskop. Zjištěná výška odskoku závaží je přímo hodnota tvrdosti HSh (tvrdost podle Shoreho). (ČSN EN ISO 868 z 2/1999) [13,17]

Obr. 19 Schéma Shoreova skleroskopu [13]

3 Experimentální zkoušky opotřebení

3.1 Výroba a příprava materiálu pro zkoušky

Jako materiál na výrobu zkušebních vzorků byla použita normalizovaná plochá ocelová tyč tažená za studena, polotovar dle ČSN 42 6522 o rozměrech: délka:1000 mm, šířka 25 mm, tloušťka 8 mm. Složení materiálu: Fe - 99,54%, Cr - 0,019%, Ni - 0,08%, Mn - 0,38%, C - 0,11%, Si- 0,018%, Cu- 0,071, S - 0,035%, P - 0,050%.

Po důkladném očistění byla ocel nařezána na rámové pile na jednotlivých dvacet kusů o délce 40 mm. Takto hotové polotovary byly následně dále třískově obráběny. Přesto, že bylo třeba ubrat na tloušťce více než jeden mm, bylo rozhodnuto neprovádět frézování materiálu vzhledem k časové náročnosti při složitém upínání vzorků. Materiál byl proto pouze broušen. Broušení vzorků bylo provedeno na magnetické brusce tak, abychom získali přesné rozměry a požadovanou drsnost povrchu na pracovních plochách. Po broušení byly u vzorků ručně sraženy hrany. Bylo tak získáno 20 vzorků o rozměrech 40x24x7 mm. Vzorky byly označeny pořadovými čísly od 1 do 20 pomocí razníku. Následně byly vzorky na vrchní plošce označeny důlčíkem z důvodu dodržení orientace při jejich upínání do přístroje měřícího abrazívní opotřebení. Na takto upravených vzorcích byla následně zjišťována tvrdost podle Vickerse pomocí univerzálního tvrdoměru. Bylo použito standardní zatížení 294,2N po dobu patnácti sekund.

Obr. 20 Universální tvrdomě

Každý z dvaceti vzorků byl měřen jednou a následně byla vypočtena průměrná tvrdost dle vzorce: $HV = 0,1891 \frac{F}{u^2}$, která činila 204 HV.

Vzorek	u ₁	u ₂	u [mm]
1	0,523	0,524	0,524
2	0,520	0,528	0,524
3	0,530	0,522	0,526
4	0,528	0,517	0,523
5	0,525	0,518	0,522
6	0,523	0,518	0,521
7	0,525	0,521	0,523
8	0,522	0,522	0,522
9	0,526	0,521	0,524
10	0,516	0,508	0,512
11	0,524	0,525	0,526
12	0,530	0,530	0,530
13	0,520	0,513	0,516
14	0,524	0,526	0,525
15	0,527	0,520	0,524
16	0,513	0,513	0,513
17	0,526	0,527	0,527
18	0,516	0,515	0,516
19	0,516	0,515	0,516
20	0,527	0,527	0,527

Tab. 1 Uhlopříčky po vtisku jehlanu naměřené na jednotlivých vzorcích

Vzorek	u [mm]	HV	Vzorek	u [mm]	HV
1	0,524	203	11	0,526	201
2	0,524	203	12	0,530	198
3	0,526	201	13	0,516	209
4	0,523	204	14	0,525	202
5	0,522	204	15	0,524	203
6	0,521	205	16	0,513	211
7	0,523	203	17	0,526	201
8	0,522	204	18	0,516	209
9	0,524	203	19	0,516	209
10	0,512	212	20	0,527	200
	· · · · · ·	Průměr	: 204 HV		

Tab. 2 Tvrdosti jednotlivých vzorků v HV

U poloviny vzorků byla ponechána současná tvrdost. Druhá polovina vzorků byla následně žíhána, aby byly získány vzorky dvou rozdílných tvrdostí. Pro velmi nízký obsah uhlíku (0,11%) v oceli nebylo možné materiál kalit a dosáhnout tak vyšší tvrdosti vzorku. Proto bylo rozhodnuto připravit vzorky tvrdosti nižší a polovina vzorků byla tedy žíhána.

Obr.21a Pec Carbolite

Obr.21b Pohled do vnitřního prostoru pece

Před žíháním v peci Carbolite byly vzorky natřeny ochranným prostředkem proti oxidaci a oduhličení Condursal Z1100 od firmy Nussle Hartetechnik Nagold. Poté byly uloženy do pece vyhřáté na 950 °C po dobu jedné hodiny, následně byla teplota v peci snížena na 700 °C a vzorky zde ponechány po dobu 6 hodin. Poté se vzorky nechaly chladnout na vzduchu. U vzorků byly tradičním způsobem odstraněny okuje a následně byly vzorky opět broušeny na magnetické brusce pro dosažení kvalitního povrchu na pracovní ploše. Na takto upravených žíhaných vzorcích byla znovu měřena jejich tvrdost. Každý z deseti vzorků se měřil jednou a byla vypočtena průměrná tvrdost 133 HV.

Vzorek	u ₁	u ₂	u [mm]
11	0,648	0,646	0,647
12	0,639	0,633	0,636
13	0,662	0,658	0,660
14	0,664	0,654	0,659
15	0,643	0,644	0,644
16	0,650	0,640	0,645
17	0,647	0,648	0,648
18	0,649	0,641	0,645
19	0,651	0,650	0,651
20	0,645	0,636	0,641

Tab.3 Uhlopříčky jehlanu HV naměřené na jednotlivých vzorcích

Vzorek	u [mm]	HV				
11	0,647	133				
12	0,636	137				
13	0,660	128				
14	0,659	128				
15	0,644	134				
16	0,645	134				
17	0,647	133				
18	0,645	134				
19	0,651	132				
20	0,641	136				
Průměr: 133 HV						

Tab.4 Tvrdost jednotlivých vzorků

Získali jsme tak dvacet vzorků o dvou tvrdostech. Deset o tvrdosti 133 HV a zbylých deset o tvrdosti 204 HV. Obě dvě sady byly tedy velice měkké, neměřitelné Rocwellovou metodou.

3.2 Výběr a příprava abraziva

Pro naše měření byly zvoleny 3 druhy abraziva o rozdílných tvrdostech a stejné zrnitosti:

1. Ocelová drť s označením GH80, zakoupená od společnosti PKIT Praha s.r.o. Jedná se o granulát o tvrdosti 900 HV a zrnitosti 0,1- 0,3 mm.

2. Křemičitý písek (SiO₂) o tvrdosti 950 HV byl přesíván pomocí dvou sít tak aby bylo dosaženo stanovené zrnitosti 0,1- 0,3 mm.

3. Nejtvrdší materiál byl použit Korund (Al₂O₃) s označením F 80 o tvrdosti 2060 HV.

Obr. 22 Měření velikosti zrna programem QUICKPHOTO INDUSTRIAL 2.3

U všech tří materiálů byla pomocí stereoskopického mikroskopu SZP11-T ZOOM a programu QUICKPHOTO INDUSTRIAL 2.3 zjišťována průměrná velikost zrna tak, že bylo proměřeno vždy 100 náhodně vybraných částic abraziva. Způsob měření průměrů částic je zobrazen na obrázku č. 22

Obr.23 stereoskopický mikroskop SZP11-T ZOOM

Zjištěné hodnoty jsou uvedeny v následující tabulce.

Abrazivo	Al ₂ O ₃	SiO ₂	Ocel
Průměrná zrnitost [mm]	0,254125	0,222213	0,247543

Tab. 5 Průměrná zrnitost jednotlivých abraziv

Na následujících obrázcích jsou detailně zvětšeny částice jednotlivých abraziv.

Obr.24 Detailní zvětšení abraziva - oceli (jeden dílek měřítka představuje 0,2 mm)

Obr.25 Detailní zvětšení abraziva SiO₂ (jeden dílek měřítka představuje 0,2 mm)

 $Obr.26 \ Detailni \ zvětšeni \ abraziva \ Al_2O_3 \ (jeden \ dílek \ měřítka \ představu je \ 0,2 \ mm)$

Obr.27Detailní zvětšení abraziva SiO₂ (jeden dílek měřítka představuje 1 mm)

Obr. 28Detailní zvětšení abraziva oceli (jeden dílek měřítka představuje 1 mm)

Obr.29 Detailní zvětšení abraziva Al₂O₃ (jeden dílek měřítka představuje 1 mm)

Drobné rozdíly v průměrné velikosti zrna jsou pravděpodobně způsobeny rozdílnými tvary jednotlivých abraziv.

3.3 Laboratorní zkoušení vlivu tvrdosti abraziva na odolnost proti opotřebení

Zkoušky tvrdosti abraziva na odolnost proti opotřebení byly prováděny v tzv. třítělesovém uspořádání na přístroji s volnými částicemi a pružným kotoučem. Přístroj byl sestaven v laboratoři Katedry materiálů a strojírenské technologie Technické fakulty České zemědělské university v Praze. Princip zkoušky schematicky znázorňuje obr. 30.

Obr. 30 Schéma zkušebního zařízení: 1 – Kotouč s povrchovou vrstvou z tvrdé pryže, 2 – Testovaný Vzorek, 3 – Násypka s abrazivem, 4 – Závaží zajišťující konstantní přítlačnou sílu na vzorek

Zařízení je sestrojeno z rotujícího ocelového kotouče o průměru 130 mm a šířce 10 mm opatřeného po obvodu tvrdým pryžovým materiálem, dále přítlačného dvouramenného zařízení ve tvaru úhelníku, na jehož svislém rameni se upevňuje vzorek zkoušeného materiálu. Vodorovné rameno slouží jako páka zatížená na konci závažím. Nad těmito

součástmi je umístěna kovová násypka s abrazivem, jejíž stopka (pádová trubice) ústí těsně nad stýkajícími se funkčními povrchy.

Průběh zkoušky byl následující: abrazivní částice o dané tvrdosti a zrnitosti, které opotřebovávají zkoušený kov, padají z násypky po stanovenou dobu mezi kotouč rotující otáčkami 400 min⁻¹ a kovový vzorek, který je ke kolu přitlačován určitou silou realizovanou závažím o tíze 0,575 kg zavěšeným na konci vodorovné páky. Výsledkem zkoušky byl hmotnostní úbytek materiálu.

Hmotnostní úbytky pro jednotlivá měření byly zjišťovány s přesností měření 0,0001 g na digitálních analytických vahách KERN ABS 120 od německého výrobce KERN & SOHN GmbH.

Obr.31 Digitální analytické váhy KERN ABS 120[18]

Zkušební zařízení je zachyceno na obr. č. 32 Před vlastním začátkem zkoušek bylo třeba seřídit polohu etalonu tak, aby dosedal tangenciálně na pryžové kolo. Bylo to provedeno pomocí tří stavících šroubů po orientačním pokusu na dvou zkušebních etalonech. Zároveň byla upravena poloha vyústění násypky tak, aby abrazivo dopadalo přímo mezi kotouč a testovaný vzorek. Podmínky měření byly nastaveny tak, aby každé měření na vzorku probíhalo při zatížení 27 N přesně jednu minutu. Pro vyloučení nepřesnosti měření času a lepší reprodukovatelnost výsledků byla předem na digitální váze s přesností 0,1g zjištěna hmotnost každého druhu abraziva, které projde násypkou přesně za dobu jedné minuty. Tyto hmotnosti činily: 220,0 g pro SiO2, 248,5 g pro Al2O3 a 433,0 g pro ocel. Takto zjištěné

množství abraziva bylo předem naváženo pro každé měření. Pro každé ze tří zvolených abraziv bylo použito vždy šest ocelových vzorků, tři vzorky o tvrdosti 204 HV a tři o tvrdosti 133 HV. Na každém vzorku bylo celkem provedeno 11 měření po dobu jedné minuty, kterým předcházelo tzv. nulté měření, aby se na vzorku vytvořila konstantní styková plocha. Aby nedocházelo k přehřívání kotouče při měření a nepřesnostem s tím spojeným byla po každém čtvrtém minutovém měření zařazena přestávka na dobu 10 minut.

Po nultém měření byly vzorky očištěny v acetonu, osušeny na vzduchu a následně dosušeny proudem horkého vzduchu a poté zváženy na vahách s přesností 0,0001 g pro zjištění jejich počáteční hmotnosti, od které byly zjišťovány jednotlivé hmotnostní úbytky. Stejným způsobem byly vzorky očištěny vždy před každým dílčím zjištěním jejich změněné hmotnosti. Hmotnosti vzorků byly zjišťovány po prvním, druhém, pátém, sedmém, desátém a jedenáctém měření.

Obr. 32 Zkušební zařízení Pro zkoušku s volným abrazivem

Zjištěné hodnoty dílčích hmotností jednotlivých vzorků byly průběžně zaznamenávány. Po pořízení všech požadovaných hodnot byly tyto výsledky přeneseny do tabulek v aplikaci Microsoft Excel a následně vypočítány hmotnostní úbytky a výsledky zkoušek zpracovány graficky.

3.4 Výsledky měření a vyhodnocení experimentálních zkoušek opotřebení

Zjištěné výsledky abrazivního opotřebení na vzorcích zvoleného ocelového materiálu o složení: Fe - 99,54%, Cr - 0,019%, Ni - 0,08%, Mn - 0,38%, C - 0,11%, Si- 0,018%, Cu- 0,071, S - 0,035%, P - 0,050%. s použitím korundu Al_20_3 , oceli a křemene SiO₂ jako abraziv, jsou uvedeny v následujících tabulkách a z nich plynoucí závislosti jsou zobrazeny graficky.

		Číslo měření								
Tvrdost	Vzorek	1	1 2 5 7 10							
204 HV	1	0,0067	0,0134	0,0305	0,0439	0,0643	0,0714			
	2	0,0062	0,0130	0,0305	0,0436	0,0637	0,0715			
	3	0,0068	0,0137	0,0266	0,0396	0,0600	0,0676			
133 HV	11	0,0061	0,0125	0,0316	0,0438	0,0640	0,0713			
	12	0,0072	0,0129	0,0324	0,0443	0,0644	0,0713			
	13	0,0066	0,0130	0,0298	0,0429	0,0637	0,0714			

Tab. 6 Hmotnostní úbytky v gramech testovaných vzorků při použití abraziva SiO₂

*Obr. 33 Graf znázornění hmotnostních úbytků jednotlivých vzorků odvou tvrdostech v průběhu jedenácti minutových měřeních poři použití abraziva SiO*₂

		Číslo měření								
Tvrdost	Vzorek	1	2	5	7	10	11			
204 HV	7	0,2100	0,4079	0,9393	1,2638	1,6905	1,8013			
	8	0,2038	0,3985	0,9229	1,2443	1,7004	1,7981			
	9	0,2171	0,4496	0,9805	1,2741	1,7016	1,8046			
133 HV	17	0,2197	0,5711	1,2862	1,6036	2,0095	2,0924			
	18	0,2768	0,4505	1,0310	1,3361	1,7145	1,8085			
	19	0,2148	0,4109	1,1012	1,4148	1,8215	1,9165			

Tab.7 Hmotnostní úbytky v gramech testovaných vzorků při použití abraziva Al₂O₃

Obr. 34 Graf znázornění hmotnostních úbytků jednotlivých vzorků o dvou tvrdostech v průběhu jedenácti minutových měřeních při použití abraziva Al₂O₃

		Číslo měření									
Tvrdost	Vzorek	1	1 2 5 7 10								
204 HV	4	0,1607	0,3601	0,9830	1,3949	1,9150	2,0780				
	5	0,1959	0,3994	0,9796	1,3554	1,8844	2,0775				
	6	0,1861	0,3888	0,9954	1,3459	1,8515	2,0099				
133 HV	14	0,1969	0,3752	1,1099	1,4276	1,9499	2,0930				
	15	0,1963	0,3730	0,9395	1,2935	1,7739	1,9227				
	16	0,1875	0,3737	0,9337	1,2918	1,7992	1,9492				

Tab.8 Hmotnostní úbytky v gramech testovaných vzorků při použití abraziva oceli

Obr. 35 Graf znázornění hmotnostních úbytků jednotlivých vzorků o dvou tvrdostech v průběhu jedenácti minutových měřeních při použití abraziva oceli

*Obr. 36 Graf porovnání hmotnostních úbytků na materiálech o tvrdosti 133HV a 204HV způsobených abrazivem SiO*₂ za 11 měření.

*Obr. 37 Graf porovnání hmotnostních úbytků na materiálech o tvrdosti 133HV a 204HV způsobených abrazivem Al*₂*O*₃*za 11 měření.*

Obr. 38 Graf porovnání hmotnostních úbytků na materiálech o tvrdosti 133HV a 204HV způsobených abrazivem Ocelí za 11 měření.

Obr. 39 Graf porovnání tří abraziv rozdílné tvrdosti a dvou vzorku o rozdílné tvrdosti

Porovnání abrazivních účinků korundu a křemene ukazuje na to, že abrazivum s větší tvrdostí opotřebovává kov více než abrazivum s tvrdostí nižší. Tomu však neodpovídají výsledky opotřebení zjištěné působením dvou srovnatelně tvrdých abraziv, a to křemene a oceli, kdy částice křemene opotřebovaly vzorky kovu podstatně méně než ocelové abrazivní částice. Tyto rozdílně výsledky v opotřebení nepochybně ovlivňují další faktory, především ostrost hran a tvar abrazivních částic, jak je patrné z obrázků č. 24, 25 a 26. Srovantelnou abrazivní schopnost vůči zvolenému ocelovému materiálu obou tvrdostí vykazovaly korund a ocel. Úbytky hmotnosti opotřebovaných vzorků byly přibližně 28 krát vyšší ve srovnání s úbytky dosaženými abrazivním působením křemene, jak je zřejmé z grafu č. 7. Vzhledem

k tomu, že obě tvrdosti použitých vzorků byly výrazně nižší než tvrdosti použitých abraziv, neměl rozdíl jejich tvrdosti zádný vliv na hmotnostní úbytky, čož je patrné z grafů č. 4, 5 a 6.

V následující tabulce a grafu jsou uvedeny průměrné hodnoty hmotnostních úbytků vždy za jednu minutu při použití obou materiálů a všech tří abraziv.

	Ocel	Al ₂ O ₃	SiO2	
HV	900	2060	950	
204	0,191135	0,203049	0,006298	
133	0,192628	0,234581	0,006402	

Tab.9 Průměrné hmotnostní úbytky za dobu jedné minuty

Obr. 40 Graf vlivu jednotlivých abraziv na hmotnostní úbytek vzorku měřený za jednu minutu

 $Obr. \ 41 \ Vzorky \ opotřebené \ jednotlivými \ abrazivy \ a) - SiO_2, \ b) - Ocelová \ drť, \ c) - Al_2O_3$

4 Závěr

Získávání poznatků o faktorech, které mají významný vliv na opotřebení materiálu má význam především pro technickou praxi. Cílem práce bylo shromáždit literární podklady o vlivu tvrdosti abraziva na odolnost proti opotřebení a vyhodnotit výsledky experimentálních zkoušek opotřebení.

Práce se ve své teoretické části zaměřuje na současný stav problematiky opotřebení a s ním úzce souvisejícího tření. Charakterizuje jednotlivé druhy opotřebení s důrazem na opotřebení abrazivní. Podrobněji pojednává o tvrdosti abraziva a jejím vlivu na odolnost proti opotřebení.

Provedeným zkoušením vlivu tvrdosti abraziva za použití metody s volnými abazivními částicemi bylo pro ocelové vzorky o tvrdosti 204 HV a 133 HV a tři abrazivní materiály (korund, ocel, křemen) zjištěno, že tvrdost vzorků, která byla v obou případech velice nízká (204 a 133 HV) a příliš se nelišila, neměla žádný vliv na intenzitu opotřebení. U tří testovaných tvrdostí abraziva nebyla prokázána úměra mezi velikostí jejich tvrdosti a velikostí opotřebení vzorků, neboť abrazivum oceli (900 HV), které bylo přibližně stejně tvrdé jako křemen (950 HV), způsobilo 28 krát vyšší úbytek hmotnosti vzorku oproti křemeni, zatím co korund (2060 HV), který byl přibližně 2 krát tvrdší než ocel, prokázal v porovnání s ocelí téměř shodné výsledky.

Uvedené výsledky vedou k závěru, že pro zkoušení byl zvolen u obou druhů vzorku poměrně měkký materiál. Porovnání abrazivních účinků použitých abraziv dokazuje, že kromě tvrdosti, která významně ovlivňuje opotřebení kovů, se výrazně podílí na otěru materiálu také tvar částic a ostrost hran.

Vliv tvrdosti abrazívních částic různých abrazívních materiálů patří mezi významné faktory ovlivňující opotřebení kovových materiálů, proto je potřebné získané poznatky dále rozšiřovat. Na základě již zjištěných výsledků je třeba věnovat při další práci pozornost výběru zkušebních materiálů, aby bylo možné nově dosažené výsledky lépe aplikovat v praxi.

5 Literatura:

- VOCEL, M DUFEK, V a kol. Tření a opotřebení strojních součástí. Praha, STNL 1976. 376 s.
- [2] BLAŠKOVIČ, P.- BALLA, J DZIMKO, M Tribológia. Bratislava, ALFA 1990. 360 s.
- [3] ČSN 01 5050. Opotřebení materiálu. Názvosloví. 1969
- [4] BHARAT, B. GUPTA B.K. *Handbook of Tribology*. New York, McGraw-Hill, Inc. 1991. 1171s.
- [5] CHRUŠČOV, M.M. BABIČEV, M.A. *Abrazivnoje Iznašivánije*, Moskva, Nauka, 1970. 251 s.
- [6] NATHAN, G.K JONES, W. J. D. : *The empirical relationship between abrasive wear and the applied conditions*. Wear, 1966.
- [7] ČERVENÝ, J. Abrazivní a erozivní opotřebení lopatek míchadel. Povrcháři [online].
 2008 [cit. 2012 -08-15]. Dostupný z WWW: http://www.povrchari.cz/kestazeni/200804_povrchari.pdf
- [8] TENENBAUM, M. M. Iznosostojkost' konstrukcionnych materialov i detalej mašin pri abrazivnom iznašivani. Moskva, Mašinostrojenije 1966. 330s.
- [9] KOSŤECKIJ, B. I. *Odolnost strojních součástí proti opotřebení*, Praha, Průmyslové Vydavatelství 1952. 184 s.
- [10] BUTTERY, T.C.- ARCHARD, J.F. *Grinding and abrasive wear*, London, Institution of Mechanical Engineers, 1971. 10s.
- [11] HLUCHÝ, M KOLOUCH, J Strojírenská technologie 1, Praha, Scientia, 2002. 266s.
- [12] GÜRLEYIK, M. I. Gleitverschleiss Untersuchungen an Metallen und nichtmetallischen Hartstoffen unter Wirkung körniger Gegenstoff, Bamberg, Rodenbusch, 1967
- [13] conVERTER [online]. 2002 [cit. 2012 -08-20]. Dostupné z : http://www.converter.cz/jednotky/tvrdost-shore.htm
- [14] KAŠPAROVÁ, M ZAHÁLKA, F- HOUDKOVÁ,Š. Wear with respect to load and to abrasive sand under Dry Sand/Steel Wheel abrasion condition [online]. 2008 [cit. 2012 -08-10] dostupné z : skodavyzkum.cz/projekty/nastriky/doc/vrstvy_povlaky2008.pdf

- [15] KAŠPAROVÁ, M ZAHÁLKA, F- HOUDKOVÁ,Š . Hodnocení abrazivní a adhezivní odolnosti materiálů. [online]. 2009 [cit. 2012 -08-11] dostupné z : http://www.metal2013.com/files/proceedings/metal_09/Lists/Papers/054_e.pdf
- [16] SUCHÁNEK, J. Abrazívní opotřebení kovových materiálů. *Tribotechnika* [online]. 2010, [cit.2012-12-10]. Dostupné z: http://www.tribotechnika.sk/tribotechnika-12010/abrazivni-opotrebeni-kovovychmaterialu.html
- [17] DORAZIL, E Strojírenské materiály a povrchové úpravy. Brno, VUT, 1988. 331s
- [18] KONEKO marketing . [online]. [cit. 2013 02-20] dostupné z : http://www.obchod.laboratore.cz/analyticke_vahy_abs_120-4~z884.html
- [19] MACEK, K. Nauka o materiálu. Praha. ČVUT, 2007.89s.
- [20] Měření Tvrdosti [online]. 2005 [cit. 2013 -02-10]. Dostupné z : http://www.merenitvrdosti.cz/tabulka-srovnani-tvrdosti-podle-ruznych-metodmenreni.html

Seznam obrázků:

- Obr. 1 Případy relativního pohybu těles
- Obr. 2 Symbolické znázornění jednotlivých druhů opotřebení

Obr. 3 Schéma adhezívního opotřebení

Obr. 4 Schéma mechanismu abrazívního opotřebení

Obr. 5 Schéma mechanismu erozívního opotřebení

Obr. 6 Schéma mechanismu kavitačního opotřebení

Obr. 7a Schéma mechanismu únavového opotřebení

Obr. 7b Mechanismus únavového opotřebení

Obr. 8 Schéma mechanismu vibračního opotřebení

Obr. 9 Závislost objemového otěru při konstantní dráze kluzu na velikosti abrazívního zrna a zatížení vzorků

Obr. 10 Závislost poměrné odolnosti proti abrazivnímu opotřebení ψ kovových materiálů na jejich tvrdosti

Obr. 11 Vztah mezi poměrem tvrdosti abrazíva a opotřebovaného kovu a poměrnou odolností proti opotřebení

Obr. 12 Závislost poměrného opotřebení $1/\psi$ a poměrné odolnosti proti opotřebení ψ zkoušeného kovu o tvrdosti Hk na tvrdosti abraziva Ha

Obr. 13 Vztah mezi objemovým otěrem kovu a poměrem $\frac{H_{-a}}{H_{-b}}$ pro tři druhy abraziva

Obr. 14 Závislost délkového otěru Wl na tvrdosti abraziva u některých typů ocelí a litin

Obr. 15 Schémata přístrojů na zkoušky odolnosti materiálů proti abrazívnímu opotřebení

Obr. 16 Schéma zkoušky tvrdosti podle Brinella

Obr. 17a Diamantový kužel pro Rockwellovy zkoušky tvrdosti (HRC, HRA)

Obr. 17b Kulička pro Rockwellovy zkoušky (HRB, HRD, HRE, HRF, HRG, HRH, HRK

- Obr. 18 Diamantový čtyřboký jehlan pro Vickersovu zkoušku
- Obr. 19 Schéma Shoreova skleroskopu
- Obr. 20 Universální tvrdoměr
- Obr. 21a Pec Carbolite
- Obr. 21b Pohled do vnitřního prostoru pece
- Obr. 22 Měření velikosti zrna programem QUICKPHOTO INDUSTRIAL 2.3
- Obr. 23 Stereoskopický mikroskop SZP11-T ZOOM
- Obr. 24 Detailní zvětšení abraziva oceli
- Obr. 25 Detailní zvětšení abraziva SiO2
- Obr. 26 Detailní zvětšení abraziva Al2O3
- Obr. 27 Detailní zvětšení abraziva SiO2
- Obr. 28 Detailní zvětšení abraziva oceli
- Obr. 29 Detailní zvětšení abraziva Al2O3
- Obr. 30 Schéma zkušebního zařízení
- Obr. 31 Digitální analytické váhy KERN ABS 120
- Obr. 32 Zkušební zařízení Pro zkoušku s volným abrazivem

Obr. 33 Graf znázornění hmotnostních úbytků jednotlivých vzorků odvou tvrdostech v průběhu jedenácti minutových měřeních poři použití abraziva SiO2

Obr. 34 Graf znázornění hmotnostních úbytků jednotlivých vzorků o dvou tvrdostech v průběhu jedenácti minutových měřeních při použití abraziva Al2O3

Obr. 35 Graf znázornění hmotnostních úbytků jednotlivých vzorků o dvou tvrdostech v průběhu jedenácti minutových měřeních při použití abraziva oceli

Obr. 36 Graf porovnání hmotnostních úbytků na materiálech o tvrdosti 133HV a 204HV způsobených abrazivem SiO2 za 11 měření.

Obr. 37 Graf porovnání hmotnostních úbytků na materiálech o tvrdosti 133HV a 204HV způsobených abrazivem Al2O3 za 11 měření.

Obr. 38 Graf porovnání hmotnostních úbytků na materiálech o tvrdosti 133HV a 204HV způsobených abrazivem Ocelí za 11 měření

Obr. 39 Graf porovnání tří abraziv rozdílné tvrdosti a dvou vzorku o rozdílné tvrdosti Obr. 40 Graf vlivu jednotlivých abraziv na hmotnostní úbytek vzorku měřený za jednu minutu Obr. 41 Vzorky opotřebené jednotlivými abrazivy

Seznam tabulek:

- Tab. 1 Uhlopříčky po vtisku jehlanu naměřené na jednotlivých vzorcích
- Tab. 2 Tvrdosti jednotlivých vzorků v HV
- Tab. 3 Uhlopříčky jehlanu HV naměřené na jednotlivých vzorcích
- Tab. 4 Tvrdost jednotlivých vzorků
- Tab. 5 Průměrná zrnitost jednotlivých abraziv
- Tab. 6 Hmotnostní úbytky v gramech testovaných vzorků při použití abraziva SiO₂
- Tab. 7 Hmotnostní úbytky v gramech testovaných vzorků při použití abraziva Al_2O_3
- Tab. 8 Hmotnostní úbytky v gramech testovaných vzorků při použití abraziva oceli
- Tab. 9 Průměrné hmotnostní úbytky za dobu jedné minuty

Příloha 1. Tabulka srovnání tvrdosti podle různých metod měření

Hodnoty tvrdostí lze srovnávat jen při použití stejné metody a stejného zkušebního zatížení. Převody hodnot tvrdosti podle různých metod jsou pouze orientační. Takové převody tvrdosti jsou možné jen na základě provedených porovnávacích zkoušek.

Převod tvrdosti je obsahem normy ČSN EN ISO 18265 (420379) Kovové materiály - Převod hodnot tvrdosti (ISO 18265:2003).

Rockwell			Rockwell Superficial			Brinell		Vickers	Shore				
	D	0	D	T	T	15 N	20 N	45 N	20 T	2000	500	126	
А	В	C	D	E	F	15-N	30-IN	45-IN	30-1	3000 kg	500 kg	130	
60kg Brale	100kg 1/16" Ball	150kg Brale	100kg Brale	100kg 1/8" Ball	60kg 1/16" Ball	15kg Brale	30kg Brale	45kg Brale	30 kg 1/16" Ball	10mm Ball Steel	10m m Ball Steel	Diamond Pyramid	Sciero- scope
86.5		70	78.5			94.0	86.0	77.6				1076	101
86.0		69	77.7			93.5	85.0	76.5				1044	99
85.6		68	76.9			93.2	84.4	75.4				940	97
85.0		67	76.1			92.9	83.6	74.2				900	95
84.5		66	75.4			92.5	82.8	73.2				865	92
83.9		65	74.5			92.2	81.9	72.0		739		832	91
83.4		64	73.8			91.8	81.1	71.0		722		800	88
82.8		63	73.0			91.4	80.1	69.9		705		772	87
82.3		62	72.2			91.1	79.3	68.8		688		746	85
81.8		61	71.5			90.7	78.4	67.7		670		720	83
81.2		60	70.7			90.2	77.5	66.6		654		697	81
80.7		59	69.9			89.8	76.6	65.5		634		674	80
80.1		58	69.2			89.3	75.7	64.3		615		653	78
79.6		57	68.5			88.9	74.8	63.2		595		633	76
79.0		56	67.7			88.3	73.9	62.0		577		613	75
78.5	120	55	66.9			87.9	73.0	60.9		560		595	74
78.0	120	54	66.1			87.4	72.0	59.8		543		577	72
77.4	119	53	65.4			86.9	71.2	58.6		525		560	71
76.8	119	52	64.6			86.4	70.2	57.4		500		544	69
76.3	118	51	63.8			85.9	69.4	56.1		487		528	68
75.9	117	50	63.1			85.5	68.5	55.0		475		513	67
75.2	117	49	62.1			85.0	67.6	53.8		464		498	66
74.7	116	48	61.4			84.5	66.7	52.5		451		484	64
74.1	116	47	60.8			83.9	65.8	51.4		442		471	63
73.6	115	46	60.0			83.5	64.8	50.3		432		458	62

72.5 114 44 58.5 82.5 63.1 47.8 400 434 71.0 113 42 56.9 82.0 62.2 46.7 400 412 70.4 112 40 56.2 80.0 60.4 44.3 381 402 70.4 112 40 55.4 79.9 58.6 41.9 382 381 382 382 382 382 384 363 384 384 384 384 384 384 384 384 384 384 384 384 384 384	60
72.0 113 43 57.7 82.0 62.2 46.7 400 423 71.5 113 42 56.9 81.5 61.3 45.5 390 412 70.9 112 41 56.2 80.9 60.4 44.3 381 402 70.4 112 40 55.4 80.4 59.5 43.1 371 372 372 68.9 110 37 53.1 78.8 56.8 39.6 344 363 67.4 108 34 50.8 77.7 55.0 37.2 311 313 67.4 108 34 50.8 76.6 53.3 34.9 310	58
71.5 11.3 42 56.9 81.5 61.3 45.5 390 412 70.9 112 41 56.2 80.9 60.4 44.3 381 402 70.4 112 40 55.4 70.9 58.6 41.9 362 382 69.9 110 38 53.8 79.4 57.7 40.8 353 372 68.4 109 36 52.3 77.7 55.0 37.2 354 354 67.4 108 34 50.8 77.2 54.2 36.1 314 314 314 314 314 314 314 314	57
70.9 112 41 56.2 + 80.9 60.4 44.3 381 402 70.4 112 40 55.4 80.4 59.5 43.1 371 392 69.9 111 39 54.6 79.4 57.7 40.8 362 382 69.4 110 38 53.8 78.4 55.9 38.4 363 363 68.4 109 36 52.3 78.5 55.9 38.4 326 345 67.4 108 34 50.8 77.2 54.2 36.1 311 327 66.3 107 32 49.2 77.7 75.5 51.3 32.5 311 327 66.3 107 32 49.2 75.5 51.3 <td>56</td>	56
70.4 112 40 55.4 \cdots \cdots 79.9 58.6 41.9 \cdots 362 \cdots 382 69.9 110 38 53.8 \cdots \cdots 79.9 58.6 41.9 \cdots 362 \cdots 382 69.4 110 38 53.8 \cdots 77.4 68.8 39.6 \cdots 344 \cdots 363 68.4 109 36 52.3 \cdots \cdots 78.3 55.9 38.4 \cdots 344 \cdots 366 67.4 108 34 50.8 \cdots 77.2 50.0 37.2 \cdots 316 33.5 51.5 \cdots 77.2 51.3 32.5 110 310 \cdots 318 66.3 106 31 48.4 \cdots 77.5 51.3 32.5 \cdots 311 \cdots 318 65.8 106 31 48.4 $1\cdots$ 77.5 51.4 31.3	55
69.9 111 39 54.6 79.9 58.6 41.9 362 382 69.4 110 38 53.8 79.4 57.7 40.8 353 372 68.9 110 37 53.1 78.8 56.8 39.6 344 363 68.4 109 36 52.3 78.8 55.9 38.4 346 353 67.4 108 34 50.8 77.2 55.0 37.2 311 336 66.8 108 33 50.0 76.6 51.3 32.5 301 318 65.3 105 30 47.7 75.6 51.3 32.5 294 302 64.7 104 29 47.0 74.5 49.5 30.1 271 <td>54</td>	54
69.4 110 38 53.8 79.4 57.7 40.8 353 372 68.9 110 37 53.1 78.8 56.8 39.6 344 363 68.4 109 36 52.3 78.3 55.9 38.4 336 354 67.9 109 35 51.5 77.7 55.0 37.2 365 67.4 108 34 50.8 77.7 55.0 37.2 310 336 66.8 108 33 50.0 76.6 53.3 34.9 310 318 65.8 106 31 48.4 75.0 50.4 31.3 214 310 64.7 104 28 46.1 73.3 47.7 27.8 <td>52</td>	52
68.9 110 37 53.1 78.8 56.8 39.6 344 363 68.4 109 36 52.3 78.3 55.9 38.4 336 354 67.9 109 35 51.5 77.7 55.0 37.2 327 345 67.4 108 34 50.8 77.2 54.2 36.1 311 336 66.8 108 33 50.0 76.6 53.3 34.9 311 327 66.3 107 32 49.2 76.6 51.3 32.5 301 318 65.8 106 31 48.4 75.6 51.3 32.5 294 302 64.3 104 28 46.1 77.5	51
68.4 109 36 52.3 78.3 55.9 38.4 336 354 67.9 109 35 51.5 77.7 55.0 37.2 327 345 67.4 108 34 50.8 77.2 54.2 36.1 319 336 66.8 108 33 50.0 76.6 53.3 34.9 311 327 66.3 107 32 49.2 76.6 51.3 32.5 294 310 65.3 105 30 47.7 75.6 51.3 32.5 294 310 64.3 104 28 46.1 75.4 49.5 30.1 286 294 63.3 103 27 45.2 71.5 48.6 28.9 <td>50</td>	50
67.9 109 35 51.5 77.7 55.0 37.2 327 345 67.4 108 34 50.8 77.2 54.2 36.1 319 336 66.8 108 33 50.0 76.6 53.3 34.9 311 327 66.3 107 32 49.2 76.1 52.1 33.7 301 318 65.8 106 31 48.4 75.6 51.3 32.5 294 310 65.3 105 30 47.7 75.0 50.4 31.3 286 302 64.3 104 28 46.1 73.3 47.7 27.8 258 272 63.8 103 26 44.6 71.6 45.0	49
67.4 108 34 50.8 77.2 54.2 36.1 319 336 66.8 108 33 50.0 76.6 53.3 34.9 311 327 66.3 107 32 49.2 76.1 52.1 33.7 301 318 65.8 106 31 48.4 75.6 51.3 32.5 294 310 65.3 105 30 47.7 75.6 51.3 32.5 294 302 64.3 104 28 46.1 73.9 48.6 28.9 271 286 63.8 103 27 45.2 72.8 46.8 26.7 258 272 62.8 102 25 43.8 71.6 45.0	48
66.8 108 33 50.0 76.6 53.3 34.9 311 327 66.3 107 32 49.2 76.1 52.1 33.7 301 318 65.8 106 31 48.4 75.6 51.3 32.5 294 310 65.3 105 30 47.7 75.6 51.3 32.5 294 302 64.7 104 29 47.0 74.5 49.5 30.1 274 294 64.3 104 28 46.1 73.3 47.7 27.8 254 272 63.3 103 26 44.6 72.8 46.8 26.7 253 266 62.4 101 24 43.1 71.0	47
66.3 107 32 49.2 \cdots \cdots 76.1 52.1 33.7 \cdots 301 \cdots 318 65.8 106 31 48.4 \cdots \cdots 75.6 51.3 32.5 \cdots 294 \cdots 310 65.3 105 30 47.7 \cdots \cdots 75.6 51.3 32.5 \cdots 294 \cdots 302 64.7 104 29 47.0 \cdots \cdots 75.0 50.4 31.3 \cdots 286 \cdots 302 64.3 104 28 46.1 \cdots \cdots 77.9 48.6 28.9 \cdots 271 \cdots 286 63.8 103 27 45.2 \cdots \cdots 77.8 46.8 26.7 \cdots 258 \cdots 272 62.8 102 25 43.8 \cdots \cdots 71.6 45.0 24.3 \cdots 247 \cdots 266 62.4 101 24 43.1 \cdots \cdots 71.6 45.0 24.3 \cdots 247 \cdots 260 62.0 100 23 42.1 \cdots \cdots 71.6 45.0 24.3 $-\cdots$ 234 195 248 61.5 99 22 41.6 \cdots \cdots 71.6 45.0 24.3 $-\cdots$ 247 \cdots 260 62.4 101 24 43.1 \cdots \cdots 71.6 45.0 24.3 2.0 81.5	46
65.8 106 31 48.4 75.6 51.3 32.5 294 310 65.3 105 30 47.7 75.0 50.4 31.3 286 302 64.7 104 29 47.0 73.5 49.5 30.1 279 294 64.3 104 28 46.1 73.9 48.6 28.9 271 286 63.8 103 26 44.6 72.8 46.8 26.7 25.8 264 272 62.8 102 25 43.8 71.6 45.0 24.3 247 260 62.4 101 24 43.1 71.6 45.0 24.3 247 260 61.5 99 22 41.6	44
65.3 105 30 47.7 75.0 50.4 31.3 286 302 64.7 104 29 47.0 74.5 49.5 30.1 279 294 64.3 104 28 46.1 73.3 47.7 27.8 271 286 63.8 103 27 45.2 73.3 47.7 27.8 264 272 63.3 103 26 44.6 72.8 46.8 26.7 25.8 266 62.4 101 24 43.1 71.6 45.0 24.3 247 260 62.0 100 23 42.1 71.0 44.0 23.1 82.0 240 201 254 61.5 99 22 41.6 70.5	43
64.7 104 29 47.0 \cdots \cdots 74.5 49.5 30.1 \cdots 279 \cdots 294 64.3 104 28 46.1 \cdots \cdots 73.9 48.6 28.9 \cdots 271 \cdots 286 63.8 103 27 45.2 \cdots \cdots 73.3 47.7 27.8 \cdots 264 \cdots 279 63.3 103 26 44.6 \cdots \cdots 72.8 46.8 26.7 \cdots 258 \cdots 272 62.8 102 25 43.8 \cdots \cdots 72.2 45.9 25.5 \cdots 253 \cdots 266 62.4 101 24 43.1 \cdots \cdots 71.6 45.0 24.3 \cdots 247 \cdots 260 62.0 100 23 42.1 \cdots \cdots 71.6 45.0 24.3 \cdots 247 \cdots 260 61.0 99 22 41.6 \cdots \cdots 71.0 44.0 23.1 82.0 240 201 254 61.5 99 22 41.6 \cdots \cdots 70.5 43.2 22.0 81.5 234 195 248 61.0 98 21 40.9 \cdots \cdots 69.4 41.5 19.6 80.5 222 184 238 59.0 96 18 \cdots \cdots \cdots \cdots \cdots 77.0 78.0 200 1	42
64.3 104 28 46.1 73.9 48.6 28.9 271 286 63.8 103 27 45.2 73.3 47.7 27.8 264 279 63.3 103 26 44.6 72.8 46.8 26.7 258 266 62.4 101 24 43.1 71.6 45.0 24.3 247 260 62.0 100 23 42.1 71.6 45.0 24.3 240 201 254 61.5 99 22 41.6 69.9 42.3 20.7 81.0 228 189 243 61.5 99 20 40.1 69.4 41.5 19.6 80.5 222 184 238 60.5 97 20 40.1 69.4 41.5	41
63.8 103 27 45.2 73.3 47.7 27.8 264 279 63.3 103 26 44.6 72.8 46.8 26.7 258 272 62.8 102 25 43.8 72.2 45.9 25.5 253 266 62.4 101 24 43.1 71.6 45.0 24.3 247 260 62.0 100 23 42.1 70.5 43.2 22.0 81.5 234 195 248 61.5 99 22 41.6 70.5 43.2 20.0 81.5 234 195 248 61.0 98 21 40.9 69.4 41.5 19.6 80.5 222 184 238 59.0 96 18 10	41
63.3 103 26 44.6 72.8 46.8 26.7 258 272 62.8 102 25 43.8 72.2 45.9 25.5 253 266 62.4 101 24 43.1 71.6 45.0 24.3 247 260 62.0 100 23 42.1 71.6 45.0 24.3 247 260 61.5 99 22 41.6 70.5 43.2 22.0 81.5 234 195 248 61.0 98 21 40.9 69.4 41.5 19.6 80.5 222 184 238 59.0 96 18 69.4 41.5 19.6 80.5 222 184 238 59.0 95 16 79.0 210 175	40
62.8 102 25 43.8 72.2 45.9 25.5 253 266 62.4 101 24 43.1 71.6 45.0 24.3 247 260 62.0 100 23 42.1 71.0 44.0 23.1 82.0 240 201 254 61.5 99 22 41.6 70.5 43.2 22.0 81.5 234 195 248 61.0 98 21 40.9 69.9 42.3 20.7 81.0 228 189 243 60.5 97 20 40.1 69.4 41.5 19.6 80.5 222 184 238 59.0 96 18 79.0 210 175 222 57.5 94 15 78.0 200	39
62.4 101 24 43.1 \cdots \cdots 71.6 45.0 24.3 \cdots 247 \cdots 260 62.0 100 23 42.1 \cdots \cdots 71.0 44.0 23.1 82.0 240 201 254 61.5 99 22 41.6 \cdots \cdots 70.5 43.2 22.0 81.5 234 195 248 61.0 98 21 40.9 \cdots \cdots 69.9 42.3 20.7 81.0 228 189 243 60.5 97 20 40.1 \cdots \cdots 69.4 41.5 19.6 80.5 222 184 238 59.0 96 18 \cdots \cdots \cdots 69.4 41.5 19.6 80.5 210 179 230 58.0 95 16 \cdots \cdots \cdots \cdots \cdots \cdots 80.0 216 179 230 58.0 95 16 \cdots \cdots \cdots \cdots \cdots \cdots 79.0 210 175 222 57.5 94 15 \cdots \cdots \cdots \cdots \cdots 78.5 205 171 213 57.0 93 13 \cdots \cdots \cdots \cdots \cdots 77.5 195 163 204 56.5 92 12 \cdots \cdots \cdots \cdots \cdots \cdots 77.5 195 163 204 56.5 92	38
62.0 100 23 42.1 71.0 44.0 23.1 82.0 240 201 254 61.5 99 22 41.6 70.5 43.2 22.0 81.5 234 195 248 61.0 98 21 40.9 69.9 42.3 20.7 81.0 228 189 243 60.5 97 20 40.1 69.4 41.5 19.6 80.5 222 184 238 59.0 96 18 69.4 41.5 19.6 80.5 222 184 238 59.0 96 18 79.0 210 175 222 57.5 94 15 78.0 200 167 208 56.5 92 12 77.5 195 163 204	37
61.5 99 22 41.6 70.5 43.2 22.0 81.5 234 195 248 61.0 98 21 40.9 69.9 42.3 20.7 81.0 228 189 243 60.5 97 20 40.1 69.4 41.5 19.6 80.5 222 184 238 59.0 96 18 69.4 41.5 19.6 80.5 222 184 238 59.0 96 18 80.0 216 179 230 58.0 95 16 79.0 210 175 222 57.5 94 15 78.0 200 167 208 56.5 92 12 77.0 190 160 196 55.5<	36
61.0 98 21 40.9 69.9 42.3 20.7 81.0 228 189 243 60.5 97 20 40.1 69.4 41.5 19.6 80.5 222 184 238 59.0 96 18 69.4 41.5 19.6 80.5 222 184 238 59.0 96 18 80.0 216 179 230 58.0 95 16 79.0 210 175 222 57.5 94 15 78.5 205 171 213 57.0 93 13 78.0 200 167 208 56.5 92 12 77.5 195 163 204 55.5 90 9	35
60.5 97 20 40.1 69.4 41.5 19.6 80.5 222 184 238 59.0 96 18 80.0 216 179 230 58.0 95 16 79.0 210 175 222 57.5 94 15 78.5 205 171 213 57.0 93 13 78.5 200 167 208 56.5 92 12 77.5 195 163 204 56.0 91 10 77.5 195 163 204 55.5 90 9 76.0 185 157 192 55.0 89 8 75.5 180 <td< td=""><td>35</td></td<>	35
59.0 96 18 80.0 216 179 230 58.0 95 16 79.0 210 175 222 57.5 94 15 78.5 205 171 213 57.0 93 13 78.5 205 167 208 56.5 92 12 77.5 195 163 204 56.0 91 10 77.5 195 163 204 55.5 90 9 76.0 185 157 192 55.0 89 8 75.5 180 154 188 54.0 88 7 75.0 176<	34
58.0 95 16 79.0 210 175 222 57.5 94 15 78.5 205 171 213 57.0 93 13 78.0 200 167 208 56.5 92 12 77.5 195 163 204 56.0 91 10 77.0 190 160 196 55.5 90 9 77.0 190 160 196 55.5 90 9 76.0 185 157 192 55.0 89 8 75.5 180 154 188 54.0 88 7 75.0 176 151 184 </td <td>33</td>	33
57.5 94 15 78.5 205 171 213 57.0 93 13 78.0 200 167 208 56.5 92 12 77.5 195 163 204 56.0 91 10 77.0 190 160 196 55.5 90 9 76.0 185 157 192 55.0 89 8 75.5 180 154 188 54.0 88 7 75.5 180 154 184 53.5 87 6 74.5 172 148 180 53.0 86 5 74.0 169 145 176 <td>32</td>	32
57.0 93 13 78.0 200 167 208 56.5 92 12 77.5 195 163 204 56.0 91 10 77.0 190 160 196 55.5 90 9 76.0 185 157 192 55.0 89 8 75.5 180 154 188 54.0 88 7 75.0 176 151 184 53.5 87 6 74.5 172 148 180 53.0 86 5 74.0 169 145 176	31
56.5 92 12 77.5 195 163 204 56.0 91 10 77.0 190 160 196 55.5 90 9 76.0 185 157 192 55.0 89 8 75.5 180 154 188 54.0 88 7 75.5 180 151 184 53.5 87 6 74.5 172 148 180 53.0 86 5 74.5 172 148 180	30
56.0 91 10 77.0 190 160 196 55.5 90 9 76.0 185 157 192 55.0 89 8 75.5 180 154 188 54.0 88 7 75.0 176 151 184 53.5 87 6 74.5 172 148 180 53.0 86 5 74.0 169 145 176	29
55.5 90 9 76.0 185 157 192 55.0 89 8 75.5 180 154 188 54.0 88 7 75.0 176 151 184 53.5 87 6 74.5 172 148 180 53.0 86 5 74.0 169 145 176	28
55.0 89 8 75.5 180 154 188 54.0 88 7 75.0 176 151 184 53.5 87 6 74.5 172 148 180 53.0 86 5 74.0 169 145 176	27
54.0 88 7 75.0 176 151 184 53.5 87 6 74.5 172 148 180 53.0 86 5 74.0 169 145 176	26
53.5 87 6 74.5 172 148 180 53.0 86 5 74.0 169 145 176 70.5 0.	26
53.0 86 5 74.0 169 145 176	26
	25
52.5 85 4 73.5 165 142 173	25
52.0 84 3 73.0 162 140 170	25
51.0 83 2 72.0 159 137 166	24
50.5 82 1 71.5 156 135 163	24
50.0 81 0 71.0 153 133 160	24
49.5 80 70.0 150 130	

49.0	79	 			 	 69.5	147	128	
48.5	78	 			 	 69.0	144	126	
48.0	77	 			 	 68.0	141	124	
47.0	76	 			 	 67.5	139	122	
46.5	75	 		99.5	 	 67.0	137	120	
46.0	74	 		99.0	 	 66.0	135	118	
45.5	73	 		98.5	 	 65.5	132	116	
45.0	72	 		98.0	 	 65.0	130	114	
44.5	71	 	100.0	97.5	 	 64.2	127	112	
44.0	70	 	99.5	97.0	 	 63.5	125	110	
43.5	69	 	99.0	96.0	 	 62.8	123	109	
43.0	68	 	98.0	95.5	 	 62.0	121	107	
42.5	67	 	97.5	95.0	 	 61.4	119	106	
42.0	66	 	97.0	94.5	 	 60.5	117	104	
41.8	65	 	96.0	94.0	 	 60.1	116	102	
41.5	64	 	95.5	93.5	 	 59.5	114	101	
41.0	63	 	95.0	93.0	 	 58.7	112	99	
40.5	62	 	94.5	92.0	 	 58.0	110	98	
40.0	61	 	93.5	91.5	 	 57.3	108	96	
39.5	60	 	93.0	91.0	 	 56.5	107	95	
39.0	59	 	92.5	90.5	 	 55.9	106	94	
38.5	58	 	92.0	90.0	 	 55.0	104	92	
38.0	57	 	91.0	89.5	 	 54.6	102	91	
37.8	56	 	90.5	89.0	 	 54.0	101	90	
37.5	55	 	90.0	88.0	 	 53.2	99	89	
37.0	54	 	89.5	87.5	 	 52.5		87	
36.5	53	 	89.0	87.0	 	 51.8		86	
36.0	52	 	88.0	86.5	 	 51.0		85	
35.5	51	 	87.5	86.0	 	 50.4		84	
35.0	50	 	87.0	85.5	 	 49.5		83	
34.8	49	 	86.5	85.0	 	 49.1		82	
34.5	48	 	85.5	84.5	 	 48.5		81	
34.0	47	 	85.0	84.0	 	 47.7		80	
33.5	46	 	84.5	83.0	 	 47.0		79	
33.0	45	 	84.0	82.5	 	 46.2		79	
32.5	44	 	83.5	82.0	 	 45.5		78	
32.0	43	 	82.5	81.5	 	 44.8		77	
31.5	42	 	82.0	81.0	 	 44.0		76	
31.0	41	 	81.5	80.5	 	 43.4		75	
30.8	40	 	81.0	79.5	 	 43.0		74	
30.5	39	 	80.0	79.0	 	 42.1		74	
30.0	38	 	79.5	78.5	 	 41.5		73	
29.5	37	 	79.0	78.0	 	 40.7		72	

29.0	36	 	78.5	77.5	 	 40.0	 71	
28.5	35	 	78.0	77.0	 	 39.3	 71	
28.0	34	 	77.0	76.5	 	 38.5	 70	
27.8	33	 	76.5	75.5	 	 37.9	 69	
27.5	32	 	76.0	75.0	 	 37.5	 68	
27.0	31	 	75.5	74.5	 	 36.6	 68	
26.5	30	 	75.0	74.0	 	 36.0	 67	
26.0	29	 	74.0	73.5	 	 35.2	 66	
25.5	28	 	73.5	73.0	 	 34.5	 66	
25.0	27	 	73.0	72.5	 	 33.8	 65	
24.5	26	 	72.5	72.0	 	 33.1	 65	
24.2	25	 	72.0	71.0	 	 32.4	 64	
24.0	24	 	71.0	70.5	 	 32.0	 64	
23.5	23	 	70.5	70.0	 	 31.1	 63	
23.0	22	 	70.0	69.5	 	 30.4	 63	
22.5	21	 	69.5	69.0	 	 29.7	 62	
22.0	20	 	68.5	68.5	 	 29.0	 62	
21.5	19	 	68.0	68.0	 	 28.1	 61	
21.2	18	 	67.5	67.0	 	 27.4	 61	
21.0	17	 	67.0	66.5	 	 26.7	 60	
20.5	16	 	66.5	66.0	 	 26.0	 60	
20.0	15	 	65.5	65.5	 	 25.3	 59	
	14	 	65.0	65.0	 	 24.6	 59	
	13	 	64.5	64.5	 	 23.9	 58	
	12	 	64.0	64.0	 	 23.5	 58	
	11	 	63.5	63.5	 	 22.6	 57	
	10	 	62.5	63.0	 	 21.9	 57	
	9	 	62.0	62.0	 	 21.2	 56	
	8	 	61.5	61.5	 	 20.5	 56	
	7	 	61.0	61.0	 	 19.8	 56	
	6	 	60.5	60.5	 	 19.1	 55	
	5	 	60.0	60.0	 	 18.4	 55	
	4	 	59.0	59.5	 	 18.0	 55	
	3	 	58.5	59.0	 	 17.1	 54	
	2	 	58.0	58.0	 	 16.4	 54	
	1	 	57.5	57.5	 	 15.7	 53	
	0	 	57.0	57.0	 	 15.0	 53	

Zdroj: http://www.merenitvrdosti.cz/tabulka-srovnani-tvrdosti-podle-ruznych-metod-menreni.html