
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

STROJOVÉ UČENÍ V ELEKTRONICKÉM OBCHODOVÁNÍ

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE PETR HUF
AUTHOR

BRNO 2014



VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

MACHINE LEARNING STRATEGIES IN ELECTRONIC
TRADING
STROJOVÉ UČENÍ V ELEKTRONICKÉM OBCHODOVÁNÍ

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE PETR HUF
AUTHOR

VEDOUCÍ PRÁCE Doc. Dr. Ing. JAN ČERNOCKÝ
SUPERVISOR

BRNO 2014



Abstrakt
Úspěšné obchodování na trzích je snem mnoha lidí. Zajímavým odvětvím tohoto byznysu
je elektronické obchodování, kde obchodní strategie běží na počítači bez jakéhokoliv zásahu
člověka. Tento způsob obchodování poskytuje spoustu volného času a vysoké příjmy. Tato
práce je zaměřena na využití neuronových sítí při stavbě takovéto obchodní strategie. Jako
základ byla použita již existující rekurentní neuronová síť, která byla postupně modifikována
podle potřeb pro obchodování. Výsledkem je neuronová síť předpovídající budoucí pohyby
trhu. Obchodní strategie používající tuto neuronovou síť dokáže na burze úspěšně ob-
chodovat.

Abstract
Successful stock trading is a dream of many people. Eletronic trading is an interesting
branch of this business. The trading strategy runs on the computer all the time without
any human intervention. This way of trading provides a lot of free time and high earnings.
This thesis is aimed at usage of neural networks in building this type of trading strategy.
An already existing recurrent neural network was used as a basis and was modified for the
needs of trading. The result is a neural network which predicts future market moves. The
trading strategy based on this neural network is able to perform a successful trading.

Klíčová slova
neuronová síť, rekurentní neuronová síť, burza, obchodování, trh, profit, model

Keywords
neural network, recurrent neural network, stock exchange, trading, market, profit, model

Citace
Petr Huf: Strojové učení v elektronickém obchodování, bakalářská práce, Brno, FIT VUT
v Brně, 2014



Strojové učení v elektronickém obchodování

Prohlášení
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana Doc.
Dr. Ing. Jana Černockého. Uvedl jsem všechny literární prameny a publikace, ze kterých
jsem čerpal.

. . . . . . . . . . . . . . . . . . . . . . .
Petr Huf

May 16, 2014

Poděkování
Tímto bych chtěl poděkovat svému vedoucímu bakalářské práce, Doc. Dr. Ing. Janu Čer-
nockému, za odborné vedení práce, poskytnutí mnoha rad a nápadů a příjemnou atmosféru.
Poděkování patří také Ing. Františku Skálovi, který mi velmi pomohl při řešení problému
spojených s neuronovými sítěmi. Také děkuji své rodině a přítelkyni za podporu a trpělivost
při psaní této práce.

c© Petr Huf, 2014.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.



Contents

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Structure of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Overivew of trading 5
2.1 Chart types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Money management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Trade more contracts . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Diversification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Risk reward ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Types of trading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Electronic trading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Approach to creating algorithms . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.3 Long-term functionality . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.4 Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Recurrent neural networks 13
3.1 Neural network functionality . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Recurrent neural network . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Use of RNNs for trading 18
4.1 Network inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.1 Discrete sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.2 Continuous sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Changes in RNN LM toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Trading strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Implementation 22
5.1 Used software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1.1 Ninja trader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.2 RNN LM toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Testing and results 24
6.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1.1 Discrete values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1



6.1.2 Continuous values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Conclusion 38
7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A CD content 41

B Manual 42
B.1 Prerequisite installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
B.2 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

B.2.1 Ninja Trader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
B.2.2 Neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

B.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
B.4 Real trading usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2



Chapter 1

Introduction

Trading exists since a long time ago. In the beginning it was just
”
piece by piece“. Almost

everything was used as a currency – from eggs, milk and other food to cows, goats and
other animals, mostly livestock. The establishment of currency has changed this concept
and in these days, in almost every trade, money got its place.

People bartered and still barter goods, money and services. In every trade, always two
participants take part–the seller and the buyer. Seller offers some goods or service to the
buyer. Everything is happening for the purpose of a profit. The seller usually obtains the
money from the buyer, which he can barter further. The buyer obtains required goods or
service. Most people imagine trading as a visit of some shopping center, supermarket or
perhaps cafe. But in this thesis, we will focus on stock trading.

Stock exchange is a regulated market, where can be bought or sold various shares of
companies, commodities or diverse financial derivatives. The word

”
regulated“ is very

important in this context. It means that there is a supervisor who controls the whole
market1. Most often it is some government subject. I do not want to discuss exactly how
stock exchange works and describe everything, what can be bought or sold there. I will
confine myself to simple description of facts, that are useful for understanding this thesis,
see chapter 2.

1.1 Motivation

Stock trading provides huge potential, but also big danger. The issue is that stock trading
is a very specific kind of business. Stock exchange provides possibility to make big money
and also lose a lot of money. A great advantage is that stock trading can be done by
everybody in these days. All you need is just input capital. Great emphasis should be
put on this condition, because undercapitalized traders are losing their money very often.
Higher capital gives more possibilities and gives bigger space to mistakes.

In this thesis, I will concentrate on using neural networks in stock trading. Neural
networks are usually used in artificial intelligence as data structures capable of learning.
The basic unit of neural networks is a neuron, which models human neuron with simple
abstraction. Neural network is a kind of simplified model of a human brain. And how will
it look like in stock trading?

The purpose will be, simply said, to teach neural network the market activity and then
use it as a predictor of future prices. With this knowledge, a trading system should be built,

1For example, this does not apply to forex market, where so-called market-maker can be broker.

3



with two goals: safety and profitability. This system should be able to run without any
user input, perform trades and make profit, of course. It should be noted that a necessary
condition to reach this goal is not only the right prediction, but also trade management,
execution planning, money management of the whole trade system etc. As we see, building
trade system is like assembling a mosaic, which consists of many details and problems, that
need to be solved. But if the whole mosaic is successfully compound, the reward will be a
profitable and safe trading system.

1.2 Structure of thesis

In chapter 2, trading is described in a form that is important for this thesis. All information,
necessary to ensure overview and put thesis to the context of trading, are mentioned there.

The following chapter 3 describes principles of general networks. This chapter does not
cover full neural network theory, as architectures, constructions and optimization of neural
network are not subject of this thesis (in detail).

The next chapter 4 is describing how the network had to be modified for using it in
price prediction.

Chapter 5 contains description of trading system architecture and interfacing the neural
network to this process is described in detail.

The most interesting chapter 6 documents the testing process and its results.
The last chapter 7 summarizes the results and mentions a few ideas for future work.

4



Chapter 2

Overivew of trading

Stock exchange provides information about buying and selling prices. These prices are
established on a principle of supply and demand. If supply prevails demand, then prices are
falling. And vice versa, if demand prevails supply, then prices are rising. This information
can be mostly seen as charts. Trading itself is very simple. A trade can be opened as long
or as short. Long trade is opened, when trader expects rising prices. Because of that, he
buys relevant commodity and waits until price grows. At the moment he wants to stop the
trade, he simply sells the commodity. The resulting difference between buying price and
selling price is trader’s profit. If selling price is lower than buying price (price of commodity
has fallen instead of expected rise), then the trader received a loss. Short trade is the exact
opposite of long trade. Stock exchange allows selling a commodity even if trader did not
buy it before. It means that trader can speculate on commodity prices decrease too. For
example, trader expects falling prices, so he decides to sell a commodity. If he wants to
stop the trade, then he has to buy commodity back. His resulting profit is the difference
between selling and buying price again. If price of the commodity has grown up instead of
expected decrease, then the trader received a loss.

As a defense against higher losses than the trader is able to tolerate, the trader can use
stop loss command [3], which allows defining a certain price. When the price of commodity
intersects this price, the trade is automatically canceled. So the trader can define his
maximum loss in one trade this way1.

To be able to do stock trading, a broker is necessary. Broker has usually access to stock
exchange, so he ensures the execution of trades for his clients. As a reward for his services,
he is charging commissions for every trade. This costs the client roughly $5–$10 per trade.
Another trader’s expense is a slippage. Slippage is a situation, when the trader sends a
command to his broker to buy or sell some commodity. Meanwhile, the price can rise or fall
a little and the trade is opened on price different from price in time, when the command
was sent. Time delay plays a significant role here. It is also good to realize that for the
trade, two participants1 are needed – the seller and the buyer. And it can take some time
to find counterparty for the required trade.

2.1 Chart types

As it was already mentioned in chapter’s introduction, the most common visualization of
actual and historical prices of a commodity are charts. There are many types of charts, but

1Just approximate loss. For example, it may come to slippage. This term is described further.

5



we will introduce just a few basics. At the beginning, it is necessary to explain something
about price movements. Price of a commodity sometimes changes very quickly. For gener-
ating a chart, the price is drawn in certain intervals. And just the way of defining of this
interval gives rise to create various types of charts. To keep the most information from this
interval, every drawn line (unit) consists of 4 parts:

• Open – The price at which a commodity was traded at the time of a drawing the
beginning of the line.

• High – The maximum price at which a commodity was traded in the time of a drawing
the line.

• Low – The minimum price at which a commodity was traded in the time of a drawing
the line.

• Close – The price at which a commodity was traded in the time of a drawing the end
of the line.

For the chart reading, colors are also used. Green lines represent growing lines. It means
Close is greater than Open. Red lines represents falling lines. It means Close is lower than
Open. Let’s finally introduce a few basic chart types.

• Time – This is the most common type of chart. A line is drawn every second or
minute or 5 minutes etc. The user can choose any time period he wants.

• Range – When this type of chart is chosen, line is always drawn when price moves
about given number of points. So the difference between High and Low is still the
same. If the price do not move much, line drawing can take a longer time. As a result,
every line represents different time interval.

• Volume – In this type of chart, every line is drawn when given number of contracts
(not trades) was traded2.

• Tick – This type of chart is similar to Volume chart. Only difference is that interval
is not defined by number of contracts, but by number of trades.

• Renko – This type of chart is made by lines of the same height. This height is given
by the user. If descending line is followed by another descending line, then drawing
behavior is normal. But if a descending line is followed by a rising line, the price
has to move twice more than the height of lines to draw this rising line. Open price
is drawn higher to keep the height of line still the same. In case of rising lines the
principle does not change. Figure 2.1 should explain it better.

2.2 Money management

Money management is an integral part of every successful trade strategy [9]. Let’s start
with the balance. The height of the balance is directly linked to market which we want to
trade. Good choice could be share indexes, which are very liquid3 and cheap. For successful
trading, input capital of $10 000 should be enough.

2Number of trades is not the same thing as number of traded contracts. In one trade, it is possible to
buy or sell more contracts. So every trade consists of one or more contracts

3Sufficient number of trades are made. It is no problem to open and close trade whenever we want.

6



Figure 2.1: Time based chart vs. renko chart.

• NQ – E-mini NASDAQ 100. It is the cheapest share index on market for trading.
The smallest move is 0.25 points, it is $5 in dollars. This market is suitable for the
beginners also because of its small volatility4. That is the reason, why small stop
losses can be used.

• YM – E-mini DOW. This market moves in entire points. One point symbolizes $5.
Compared with NQ, this market is not so much liquid, but more volatile. This leads
to more frequent slippage and a possibility to reach greater profits.

• YM – E-mini S&P 500. The smallest move of this market is 0.25 points, which is
$12.5. This is more expensive market meant more likely for professional traders.

• TF – E-mini Russel2000. The smallest move is just 0.1 points, which is equal to $10.
This market is the most volatile of this share indexes. Because of that, it is suitable
for professional traders.

Stop losses $100 high should be sufficient on these markets. For safe trading, it is
recommended to define 1% of balance as loss per one trade. It follows that the input

4Market’s moves are more likely small

7



capital should be $10 000 high at least, as was already mentioned above.

2.2.1 Trade more contracts

To increase the success rate, trading with two contracts is nothing unusual. But do not
forget about margin. Margin is some kind of refundable deposit, which is saved by broker
while trader has opened trade. The amount of margin depends on the number of contracts
bought by the trader. To be able to open a trade, the balance has to be as high as the
required margin at least.

Trading with more contracts can be used for increasing the trading stability. One of
well-known techniques is buy more contracts and sell them one by one during the trade.
Let’s show it on an example. A trader sees a nice opportunity for a long trade. He buys two
contracts and then he is waiting until price reaches profit target that he has determined.
After the price reached this target, he sells one contract. Now he is holding just one contract.
This contract is used to maximize profit as much as possible. This simple method showed
to be very highly efficient.

2.2.2 Diversification

Diversification is a powerful tool and every successful businessman should know about it.
In trading, there are several ways how a trader is able to diversify his behavior. The first
simple way how to diversify is trading on more markets. However, it is not recommended
to novices, as every market has his own characteristics and going from one to another leads
to worse perception of these characteristics which leads to more losses. Because of that, it
is necessary to well consider this step and be ready for this situation. This step is much
easier in case of automatic trading.

Another way is to develop more trading strategies. It does not mind when some strategy
fails if more strategies are traded. The other strategies will cover losses caused by currently
non-functional strategy. Meanwhile there is an opportunity to fix the problem. But there
is one thing you should care about. Strategies should not correlate with each other5. The
result would be the same as trading one strategy multiple times. In case of manual trading
loss of concentration is quite possible and then following rules of strategies has worse quality.
Automatic trading is making it simpler again.

2.2.3 Risk reward ratio

It is a very important term which you should know. Before entering a trade, you should be
able to evaluate the risk potential of the trade. If stop loss is set to $50 and profit target
is $10, then RRR (risk reward ratio) is only 1:0.2. It means that we can gain just one fifth
of money we risk. Trading strategies based on higher RRR have better chance in general.
Of course, higher success rate could be achieved with lower RRR, but more consecutive
losses may seriously endanger the balance. It takes much longer to cover losses. Higher
RRR allows lower success rate, but only a few successful trades increase the height of the
balance. Why risk more than you can get? Testing is the basis of everything and it should
show importance of this term.

5They should realize dissimilar trades.

8



2.3 Types of trading

There are very different types of trading [6]. In this chapter, some basic types of trading
will be described. In the end, we will select a type of trading for this thesis.

• Position traders – This kind of traders open a trade, stay in for a few days or weeks
and then close it. This attitude leads to necessity to have higher input capital, less
opportunity for trades, higher commissions, but also it is less time-consuming and
mentally demanding. We have plenty of time to make analysis of the market. Another
advantage is free data, because there is no need to have real-time data which are paid.

• Intraday traders – A trade made by these traders takes several hours, minutes or even
seconds. This style of trading is quite demanding. Quick decision has to be made,
you have to sit and watch market a few hours a day and real-time data are paid. But
it brings great benefits. There are enough trade opportunities, you do not need high
input capital and balance growth can be very fast (as well as a decrease). Psyche
plays a very important role here.

• Trend-following traders – These traders are waiting for a trend in market. Trend can
be explained as still growing or decreasing market. This kind of trader tries to make
a profit on a trend. How? He

”
simply“ participates in the trend. Trading with a

trend is simpler than trading against a trade. Not for nothing it is said:
”
Trend is

your friend.“

• Trading against the trend – The basis and the most difficult task is to determine when
the current trend is over and an opposite trend is starting. If a trader is able to do it,
then he opens a trade just at the beginning of the trend. It makes larger profits than
opening a trade in the middle of the trend. This style of trading is more demanding
and a prediction of a change of trend ends with no success very often.

• Scalpers – These traders are opening a trade just for a very short time – a few seconds
or even milliseconds. They make hundreds of trades for a minimum profit, but with
high success rate. This is one of the most difficult trading styles. It requires high
concentration, speed and very fast internet connection.

• Fundamental traders – This kind of traders make decisions according to messages
published by various news and economic servers, according to weather and weather
forecast, actual events, simply according to information from the whole world.

• Technical analysis – This is an opposite of fundamental traders. Traders, using tech-
nical analysis makes decisions, using charts only. These charts display price evolution
in time and allow drawing various lines, indicators and another marks useful for mak-
ing decisions. They are able to read significant information from charts and use them
for market’s movements prediction.

• Discretionary traders – These traders are sitting at a computer, watching price and
making decisions about opening and closing trades. They can have some rules for
opening and closing trades, but they always use actual

”
mood“ of market in decisions.

• Electronic trading – This term can be understood in two ways. First, it can be a
situation, when a trader uses a computer for sending trading commands to his broker

9



and he sends it directly to stock exchange’s servers. This style of trading prevails older
pit trading, where instead of servers, every broker has his man on stock exchange and
this man makes trades according to commands from his broker. The second way how
this term can be understood is a situation, when a trader has his own trading strategy
which is assembled from simply defined rules. The trader programs rules into trading
platform and let trading strategy run on a computer. Then the strategy is running and
making trades without any intervention from the trader. Finding working strategy
can take some time, but after this part is done, trader can do almost nothing with
running trading strategy.

In this thesis, trading strategies based on intraday trading will be used, because we can
make more trades with lower input capital on these data. Decisions about opening and
closing trade will be based on a price history – technical analysis will be used. Strategies
will be programmed and then evaluated by trading platform – we will use electronic trading.

2.4 Electronic trading

Creating computer program trading without any intervention of the trader, is difficult.
Thinking that having such a program would reward you with a lot of free time, is correct
only to a certain extent. The creation of a good trading algorithm is not easy. The trading
strategies, which are easy to trade manually, are not necessarily programmed. Programmed
strategies do not provide overall view of the market and make trades in situations, when the
author of the strategy would evaluate a situation as very risky. The creation and finding
of functional strategy can be very time-consuming. Other aspects, which have to be taken
into consideration, are problems outside of the computer program. Internet connection can
fail anytime and opened trade can stay opened and the trader will not have any chance to
close it via the internet. Nevertheless, he does not have to even know about it, because the
strategy is running whole day and the trader does not watch it all the time. This situation
can leads to large losses. A solution could be to buy a virtual server, where a provider
guarantees backup internet connection, backup power supply and other services.

A great advantage of electronic trading is the possibility to test a trading strategy very
quickly. In case of discretionary trading, it is necessary to go through all charts in a certain
period and mark all trades, which would be made according to trading strategy. The whole
trading strategy can be evaluated only after this process and this process can take days or
weeks. And if any change in this strategy is made, the whole process has to be repeated.
A programmed trading strategy does not have this problem. Any change in the trading
strategy can be tested immediately in a few seconds. Trading platforms provides evaluation
of the trading strategy in details – drawdown6, profit per trade, success rate etc.

Another great advantage is unequivocal rules of a trading strategy. The program evalu-
ates a situation always as expected. Because of that, the results of testing and real trading
do not differ much. This is a problem in discretionary trading, where the results of testing
and real trading often do differ very much. It is because decisions depends on a human and
this decision making is very influenced by actual mood, psyche, results of a few last trades
and many others factors. These factors are one of the most common reasons, why traders
are losing their money.

6Maximum decline of a balance

10



2.4.1 Approach to creating algorithms

Many approaches can be used to creating trading strategies. One of the most simplest
attitudes is watching price movements and other indicators and making decisions about
opening or closing a trade based on it. Experiences from discretionary trading can be
useful here (see section 2.3). A trader can program trading strategies, which were profitable
when he traded them manually. The trader wants to do some optimization very often.
Strategies and various indicators have their own parameters and proper combination of these
parameters can turn a loosing trading strategy into a profitable one. And this takes us to
using genetic algorithms. On the market, tools exist, allowing finding proper combination of
input parameters using genetic algorithms, which speeds up finding of the best combination
considerably.

Another approach will be tested in this thesis. Involvement or neural networks to
electronic trading introduces a different view on the creation of profitable trading strategies.
There is no need to think about describing strategies for opening and closing trade. It is
assumed, that the neural network will learn market moves itself and thanks to this ability,
the neural network will be able to predict future prices. How reliably a neural network can
do that, will be shown in this thesis.

This application in electronic trading can be seen as straightforward at first, but many
hidden important aspects need to be solved as was mentioned in section 1.1. The neural
network will be trained on historical data. When being used, actual price of market will be
send to the neural network and predicted price will be returned. This only information is
not enough for successful trading. It is just a clue, which can be the base of sophisticated
trading strategy and this trading strategy should exploit it as much as possible.

2.4.2 Overfitting

Overfitting is a problem of many trading strategies? The trading strategy is always tested
on historical data and tuned to make maximum profit on them. After deployment to a real
account, the trading strategy can stop working. It is because the strategy was adapted to
historical data too much. There are several procedures to prevent this situation.

One of basic procedures is a separation of historical data into two parts – training data
and evaluation data. Training data are used for development of a strategy and tuning of
parameters. Evaluation data are used just for evaluation. If the strategy fails on evaluation
data, it means, that the strategy is ovefitted and whole process has to be repeated. Ideally
the results on training data and evaluation data should be similar.

Let us mention one more procedure, which is related to building automatic trading
strategies. If you are looking for a really robust system, there are many possibilities, how
to test the system. You can test the system on different timeframes, different chart types
(time, volume, tick etc.), markets etc. Requirements on the robustness do not have to
be stringent and it is possible to lower these requirements. For example, if the strategy
works very well on five minute timeframe and just well on one hour timeframe, it is still
acceptable.

2.4.3 Long-term functionality

When we develop a trading system, the most basic requirements include working as long as
possible. It is necessary to test the strategy on sufficient number of trades [7]. If the system

11



is tested on a few dozens of trades, then positive results of testing can be just a short-term
deviation of losing trading strategy. Thousands of trades can be considered as sufficient.

2.4.4 Platforms

It is advantageous to develop the strategy on the trading platform, that will be used for
the real trading – by keeping the environment fixed, we will be sure that the strategy will
work the same way as in the development phase. The trading platform also offers detailed
information about the strategy when the strategy is tested. That helps the evaluation of
the strategy and allows for focusing on logic of the system and not on creating mechanisms
evaluating the strategy. Tradestation and Multicharts are widely used trading platforms [5],
which define logic of the strategy with their own programming language – Easy language.
It allows using for DLL libraries and this greatly extends the usage. The second big player
on the field of trading platforms is NinjaTrader. NinjaTrader uses C# for writing a code
of the strategy. C# provides many libraries and allows for connecting of many different
technologies. NinjaTrader is free when using demo account. Data feed connection is also free
from CQG 7 and can be used for watching market in real-time and testing your strategies.
For testing purposes, NinjaTrader will be used.

7http://www.ampclearing.com/ninjatrader_cqg.php

12

http://www.ampclearing.com/ninjatrader_cqg.php


Chapter 3

Recurrent neural networks

We recognize two main types of neural networks –
”
feed forward“ and

”
recurrent“ neural

networks. Section 3.1.1 explains, why recurrent neural network was chosen.

3.1 Neural network functionality

Let us describe feed forward neural network first. As was already mentioned in chapter
1.1, the core of the neural network is a model of neuron. Neurons are organized in layers,
usually input layer, hidden layer and output layer. More hidden layers can be used. Every
layer has a fixed number of neurons. Every neuron is always connected to all neurons in
neighbouring layers with synapses and every synapse has a defined weight determining its

”
importance“. This architecture can be seen in figure 3.1. A neuron defines his value from

input synapses and transfer function (sigmoid or softmax).

Figure 3.1: Architecture of feed forward neural network.

Let us describe, how the feed forward neural network is used. At first, neural network
has to be trained. In the training phase, the neural network is fed with training data
multiple times. When an input vector is presented to the neural network, it is copied to
the input layer a(t). Then, neurons in all layers are calculated from weights of synapses:

bj(t) = f

(∑
i

ai(t)mji

)
(3.1)

ck(t) = g

∑
j

bj(t)nkj

 (3.2)

13



Function f(x) is sigmoid:

f(x) =
1

1 + ex
(3.3)

Function g(x) is softmax function:

g(zi) =
ezi∑
k e

zk
(3.4)

Layers are evaluated from the input layer to the output layer. After that, the result of
the neural network is stored in output layer and is used for calculation of error: comparison
correct value with the result of the network. Gradient of errors eo in the output layer is
calculated using cross entropy criterion as

eo(t) = d(t)− c(t), (3.5)

where d(t) is a correct output which comes in next step t + 1. eh is backpropagated error
gradient in the hidden layer.

The next step is backpropagation – the error is propagated back from the output layer
to the input layer. In this moment, weights of synapses are adjusted in order to minimize
the error.

njk(t+ 1) = njk(t) + bj(t)eok(t)α− njkβ (3.6)

mij(t+ 1) = mij(t) + ai(t)ehj(t)α−mijβ (3.7)

This is the way, how the network is learned. The training is stopped, when the error is
acceptable. Now, the network is ready for use. We will feed it with the test data and read
results from the output layer. It is the same procedure as the first part of the learning.
Adaption (described in more detail in 3.2) is optional – the neural network can learn from
test data too.

3.1.1 Recurrent neural network

The neural network described above responds to same inputs in the same way and ignores
the context of inputs. To eliminate this undesirable effect, a recurrent neural network is
used. A recurrent neural network has the output of the hidden layer connected not only to
the output layer, but its copy is also concatenated to the input layer (Fig 3.2), so the input
layer is assembled from two parts. The first part of the input layer is initialized according
to input sample. The second part is copy of hidden layer from the previous step and this
is how the feedback is implemented. The reaction of the neural network depends not on a
new input only, but on previous inputs too1.

The computations are almost the same as in the feed forward neural network. The
biggest difference is, that hidden layer is not calculated from the input layer only, but from
previous state of the hidden layer too. The hidden layer is now calculated as

1Note that in feed forward neural network this is solved by enlargement of the input and output layer
[8]. Anyway this solution is not perfect, the context of inputs is formed by fixed number of inputs. This is
not problem of recurrent neural networks.

14



Figure 3.2: Architecture of recurrent neural network.

bj(t) = f

(∑
i

ai(t)mji +
∑
l

bl(t− 1)pjl

)
(3.8)

In the training, the weights between the second part of input layer and the hidden layer
are updated as follows:

plj(t+ 1) = plj(t) + bl(t− 1)ehj(t)α− pljβ (3.9)

The training and testing take place in the same way as in feed forward neural network.

3.2 Parameters

Neural network written in RNN LM toolkit offers many parameters for setting the network.
In this section, parameters used and adjusted in testing, will be described. We concentrate
only on parameters influencing the network, and do not mention other configuration pa-
rameters like train file, valid file etc. All parameters are described in [2].

• Alpha – Sets the starting learning rate. Learning rate defines the speed of the training.
Large value can leads to divergence and small value to slow process of learning. This
parameter is applied when adjusting weights as can be seen in equations 3.6, 3.7 and
3.9.

• Beta – L2 regularization used while adjusting weights in order to ensure training
stability. Its influence is very small.

• Hidden – Sets size of the hidden layer.

• Compression – Sets size of the second hidden layer. Setting it to zero turns the second
hidden layer off.

15



• Direct – Sets size of the hash for direct connections. This parameter is not much
important as it reports almost no improvements on small tasks [2].

• Direct-order – Sets the n-gram order for direct connections.

• Bptt – Set amount of steps to propagate error back in time. Setting it to zero
is equal to simple RNN (simple backpropagation). Backpropagation through time
allows to simulate deep feedforward neural network with N hidden layers (with the
same dimensionality) with recurrent neural network with one hidden layer which is
used for M time steps back. Backpropagation through time is illustrated in figure 3.3.
It is necessary to save state of N hidden layers and an error has to be propagated over
M time steps. This leads to more time-consuming and memory intensive training,
which should result in more accurate network.

• Bptt-block – This parameter speeds up the training (at the expense of accuracy) as
an error is backpropagated through time only after every P steps.

• Gradient-cutoff – Specifies maximal absolute gradient value in all layers in order to
improve training stability. It can be turned off by setting it to zero.

• Dynamic – This is only parameter for testing the network. It sets learning rate for
testing phase and represents adaption in run-time. It can be turned off by setting it
to zero. When turned on, the network learns while testing – dynamic model. When
turned off, the network does not learn while testing – static model.

• Min-improvement – Default value is set to 1.003 and it represents minimal relative
entropy improvement (discrete input) or minimal error improvement (real input) in
the training phase.

16



Figure 3.3: Bppt set to 3 time steps back in time.

17



Chapter 4

Use of RNNs for trading

Neural networks are used in many industry sectors. Their application can be found in
medicine, transport, finance etc. One of the most important applications is application in
language modelling where neural networks successfully compete with n-gram models [2].
This self-learning data structure is exploitable everywhere where slight inaccuracy does not
mind. Neural networks can often replace otherwise complex decision-making mechanism.
These properties of neural networks make them the ideal candidate for use in automatic
trading strategies as a predictor of future prices.

As will be mentioned in section 5.1.2, used neural network is based on Mikolov’s toolkit
[2]. It was designed for statistical language modeling and because of that, there was a big
effort to achieve high speed and avoid high memory consumption. Also, it contains many
functions useful for language modeling but not for electronic trading. This resulted to some
code reduction and simplification. But let us take it from the beginning.

4.1 Network inputs

Default RNN LM toolkit is adapted to work with words and large dictionaries. At the
first sight, this state is completely unsuitable for usage in trading, nevertheless this neural
network can be still used. It is just necessary to sample continuous quantity (real numbers)
to discrete quantity (words). It can be done in a few ways, which will be described in the
following sections.

4.1.1 Discrete sampling

The first way, how sampling can be done is very simple and fast. From numbers, data
are transformed to symbols (= words) representing high growth, lower growth, no change,
lower decrease and higher decrease. Limit for every single symbol can be found just by
looking at the data on a few average days. This view can tell us, which growth can be
considered as high or as lower, etc. For example, growth higher than 0.4 points will be a
high growth and growth lower or equal than 0.4 points will be low. This approach is tested
in section 6.1.1.

The second way is more demanding but also more accurate. Growths and decreases (in
points/ticks) are exported from data. Histogram of these values is generated afterwards
(Fig. 4.1). As decreasing values has almost the same number of occurrences as opposite
growing values, decreases are transformed by changing their sign and added to growths.
From this modified histogram, limits for symbols are chosen (Fig. 4.2). With decreasing

18



numbers of occurrences, intervals for symbols become wider. Negative values are distin-
guished in real usage by adding negative sign as first character of symbol. Final symbol
distribution is illustrated in figure 4.3. Tests with this sampling can be found in section
6.1.1.

Figure 4.1: Example of histogram of
growths and decreases.

Figure 4.2: Symbol distribution over his-
togram.

Figure 4.3: Symbol distrbution for growths and decreases is the same.

4.1.2 Continuous sampling

The neural network from RNN LM toolkit in its default state is not able to work with real
numbers. Because of that, many changes had to be made, which are described in section
4.2. After these changes, growths and decreases in points can be sent to the network. The
network returns prediction of next value of growth or decrease. The results of this approach
are analyzed in section 6.1.2.

19



4.2 Changes in RNN LM toolkit

The input layer consists of the input vector, which has the size of the dictionary, and the
output of the hidden layer. The input vector is always full of zeros except for one neuron
(corresponding to input word), which has value one. It means that just connections between
the active word and the hidden layer are active while computing the output. Neurons in the
input layer corresponding to hidden layer are simply initialized by copying previous values
from the hidden layer.

Hidden layer is placed between the input and the output layer. Two hidden layers
can be chosen. When computing the network output, a sigmoid (3.3) function is applied to
values at the outputs of hidden layers in order to introduce non-linearities into the network,
otherwise, the network could learn linear functions only.

The output layer consists of two parts. First part is the vector, which has the size of the
dictionary, again. Second part represents classes. Classes are implemented to increase speed
of the network. This attitude significantly increases speed and decreases accuracy just a
little. Nevertheless, we will not working with large dictionaries, so classes were completely
removed. Results of the neural network are probabilities of words. Probability is obtained
when softmax (3.4) is applied to class and word part of the output layer. Softmax in the
output layer ensures that the sum of probabilities will be one [1].

This state of the neural network was used for some of tests as described in section 6.1.1.
For usage as regression, some modifications had to be made. Direct connections between
input and output layer were removed, as they are useless for our testing. The following
modification solves transformation from word-based neural network to number-based neural
network. Almost all neurons representing dictionary in the input and the output layers were
removed. Just one neuron remained for representing all input numbers. When an input
number comes, the activation of neuron is set to value of input. But before that, the value
of input is normalized with mean-variance normalization:

x′ =
x− µ
σ

, (4.1)

where µ is the mean and σ is the variance. Error in the output layer is calculated from
difference between the predicted and real value. MSE1

MSE = E[(θ̂ − θ)2] (4.2)

is used as an objective function applied to this difference. Another way of evaluating the
error (also shown in the toolkit’s log files) is to compute the average of absolute values of
differences between the predicted and the real values:

er =
1

N

N∑
i=1

| θ̂i − θi | (4.3)

Now the neural network is ready for number-based input. Tests with this input are
described in 6.1.2.

1Mean squared error

20



4.3 Trading strategy

Having prediction of prices is not enough for successful trading. The second step is creating
a trading strategy, which will use predictions in decision making.

Principle of basic trading strategy used in testing (chapter 6) is simple. Strategy does
not look at the time as the vast majority of data are from trading hours where volume is
high. But it is important to consider this when testing it on complete data or using it in a
real trading.

There are two limits defined – limits for opening and closing a trade. When the network
predicts big price move which crosses the opening limit, the strategy opens a trade on a
relevant side (long or short). The trade is closed when the network predicts big price move
against the position which crosses the closing limit. But this is not only way how the trade
can be closed. The trade can be closed by hitting a stop loss or at the end of the day.
Closing at the end of the day ensures, that the trade does not remain open after trading
hours as volume goes down and broker can charge higher commissions for trading outside
of trading hours.

21



Chapter 5

Implementation

In this chapter, design and implementation of programs and date structures (necessary
for embedding the neural network into building of trading system and its testing), will be
described. The resulting concept aims at simple usage in real trading with the smallest
differences between testing and real trading.

5.1 Used software

The entire architecture is divided into two main parts. The first is the neural network
and the second is NinjaTrader platform. The logic of the trading strategy is defined in
the trading platform. The strategy communicates with the neural network with simple
messages. The strategy sends the actual price to the neural network and gets back the
predicted next price. Details of this communication are described in section 5.2. Trading
strategy responds to predicted value and buys, sells or does nothing according to defined
rules.

5.1.1 Ninja trader

Implementation of trading strategy is written in C#. NinjaTrader’s interface offers many
functions for automatic trading. Entry point of algorithm is

”
OnBarUpdate()“ method,

which is called on every new drawn line in the chart. A line is drawn according to chosen
type of chart (Fig. 2.1). Chosen type of chart has strong influence on strategy performance
and should not be underestimated.

A trade is opened on chosen direction by calling functions
”
EnterLong()“ or

”
EnterShort()“.

Function
”
SetStopLoss()“ is there for setting stop loss. The trade is closed by calling func-

tions
”
ExitLong()“ or

”
ExitShort()“. Actual and historical1 prices2 are accessible as values

of various indicators. These tools are sufficient for building any trading strategy.
Testing in NinjaTrader is hidden under Strategy Analyzer tab. This tab contains trad-

ing strategy, market, tested period etc. I consider settings for commission and slippage
simulation very useful. When these settings are used, the results are much closer to real
results.

1Just fixed count of values backwards.
2Open, High, Low, Close

22



5.1.2 RNN LM toolkit

Creating already created does not have any sense, therefore the RNN library designed by
Mikolov [2] was used. He achieved great results in language modelling with this library.
Basic design is not very suitable for our usage so many changes had to be made as was
already mentioned in section 4.2.

5.2 Integration

Connecting the trading platform and the neural network is not trivial. Neural network
is written in C++ language and that is the reason why it cannot be simply added as a
trading strategy in NinjaTrader. One solution would be to rewrite neural network into C#,
which would make everything much easier. This was not done though because of lack of the
time and the neural network was kept as separate program. To make a connection between
two programs, an inter-process communication – named pipe – was used. Trading strategy
creates new named pipe

”
rnnlm“ in a role of server, then it starts the neural network as

normal binary file. The neural networks loads trained network and connects to created
named pipe. A simple communication follows – the strategy sends new price to the neural
network and the neural network sends the predicted price back to the strategy. As the price
is sent every time OnBarUpdate() is called, the close value of just drawn line is sent. The
whole communication can be seen in figure 5.1.

Figure 5.1: Diagram of communication between NinjaTrader and recurrent neural network
(RNN).

23



Chapter 6

Testing and results

Modifications of neural network took place gradually. During these modifications, exper-
iments were performed. Data were divided into training data and evaluation data. The
final profit of the strategy was evaluated and was the key for comparing the results.

6.1 Data

Data from market TF (E-mini Russell2000) from 2011 to 2013 was chosen as reference
data. It is a shares bundle of two thousand smallest companies, which are contained in
Russell3000. The names of companies are not much important. Contract specifications are
more important. The size of one tick is 0.1 points. This tick has value of $10. The value
of a whole point is $100. Contracts are traded in quarterly cycle (March, June, September
and December) 1.

Raw data were tick data in a simple text file, where every line responds to single trade
and defines actual price in time of a relevant trade. These data had to be converted to
NinjaTrader format and imported with NinjaTrader Historical Data Manager. From this
point, NinjaTrader does all data sampling necessary for displaying various kinds of charts.
It is important to have tick data as it contains information about trades/volume and thanks
to it, volume-based chart can be displayed (volume chart, tick chart etc.).

We should note that the data is not 100% complete. Very often, the data does not
contain prices from the whole day, but only from trading hours. Sometimes, we are missing
whole days. These problems were not solved and all data sampling stayed in NinjaTrader’s
hands as only important data are from trading hours and data from other hours would be
cut anyway.

Training data are from 16.12.2010 to 31.12.2012 and evaluation data are from 1.1.2013
to 25.9.2013. In experiments, a commission of $5 is included per trade and also one tick of
slippage is set. These settings should simulate real market conditions. Timeframe was set 5
minutes to reduce small market movements and preserve sufficient amount of data. Initial
balance is $0 to see profitability at first sight and keep independence on input capital.

The network was trained on data from 16.12.2010 to 30.6.2012. On data from 1.7.2012
to 31.12.2012, the network was tested and all parameters (learning rate, number of neurons
in hidden layer etc.) were set to reach balance as high as possible. The performance of
trading strategy is shown on evaluation data.

1See contract description https://www.theice.com/productguide/ProductSpec.shtml?specId=86

24

https://www.theice.com/productguide/ProductSpec.shtml?specId=86


6.1.1 Discrete values

In this section, the strategy with word-based neural network will be tested. Discrete sam-
pling is described in section 4.1.1.

Sampling by hand

The first experiments use the default version of the toolkit. Data are sampled to repre-
senting basic market movements. Word A represents higher growth (more than 0.5 points),
word B represents moderate growth (less than 0.5 points), word C represents no change
(still the same price), word D represents moderate decrease (less than 0.5 points) and word
E represents higher decrease (more than 0.5 points). Why 0.5 points is a limit? That is
because the average value of absolute values of growths and decreases is approximately 0.5
points.

The initial strategy opens a trade when A or E is expected (has the highest probability)
and closes the trade when opposite direction is expected (D or E when long or A or B
when short). Stop loss was set to $150 and minimal improvement in entropy stayed set
to 1.003. Important training parameters were -alpha 0.1 -beta 0.0000001 -compression 0
-gradient-cutoff 15 -hidden 30 -bptt 4 -bptt-block 10 -direct-order 3 -direct 2 and parameters
for testing were -dynamic 0.1. All parameters were gradually tuned.

In this configuration, the whole strategy ended $-77860 in loss. At first, exit signal
(from D or E when long and A or B when short) was changed to close a trade when E
(when long) or A (when short) was expected. The number of trades was highly reduced
and the final loss was

”
only“ $-28680 now. The following parameter was adaption in run-

time. Changing it did not make any difference, even when the adaption in run-time was
completely turned off. A change of stop loss caused an improvement. The influence of stop
loss on the resulting profit can be seen in figure 6.1.

The best profit $-17925 was obtained with stop loss $230 high. A surprise happened
when the sizes of both hidden layers were tuned. Changing these values did not make
any change in profit. Too coarse sampling (ABCDE) can be the reason. And this reason
probably stays behind results of changing all the other parameters. Alpha, beta, bppt,
bppt-block, direct, direct-order, gradient-cutoff – changing any of them did not change any
trade and profit. The strategy tuning ended with final profit $-17925 and profit $-9.24 per
trade on training data. This result was expected and can be considered as good. Sampling
was very coarse and without commissions and slippage, the strategy would end in a little
profit. It corresponds to the fact that this sampled data are very close to random data
and expected result without commissions and slippage should be around zero. The results
on testing data can be seen in figures 6.3 and 6.2. Let us mention the final parameters.
Training parameters are -alpha 0.1 -beta 0.0000001 -compression 0 -gradient-cutoff 15 -
hidden 30 -bptt 4 -bptt-block 10 -direct-order 3 -direct 2 and test parameters are -dynamic
0.1.

From a trader’s view, this setup is unsuitable. As we can see from figure 6.3, the strategy
is absolutely unprofitable. The number of trades is very high and it leads to a lot of money
drowned in commissions and slippage. But as the most likely reason, we can consider very
limited sampling. Thanks to it, the data are very close to random data. The result on test
data is worse than the result on training data, but this fact is expected.

25



Figure 6.1: Influence of stop loss with
ABCDE sampling.

Figure 6.2: Equity with ABCDE sampling.

Figure 6.3: Strategy performance with ABCDE sampling.

Sampling based on histogram

The following experiment solves the problem with very limited sampling. Data were sam-
pled according to histogram of data. The histogram can be seen in figure 6.4. Table 6.1
shows how data were sampled.

26



Interval/Value Word
0.1

”
0.1“

0.2
”
0.2“

0.3
”
0.3“

0.4
”
0.4“

0.5
”
0.5“

0.6
”
0.6“

<0.7;0.8>
”
0.75“

<0.9;1.0>
”
0.95“

<1.1;1.3>
”
1.20“

<1.4;1.8>
”
1.60“

<1.9;2.6>
”
2.25“

<2.7;inf>
”
4.00“

Table 6.1: Histogram sampling

Data with high numbers of occurrences were not sampled and other data were sampled to
intervals. The system works similarly to the system in the first experiment. When expected
value represents high increase or decrease, then a trade is opened and stays opened until
the expected value is too bad for keeping the trade open.

The basic strategy had a limit for opening a trade set to 2 points. The limit for closing
a trade was set to -0.2 points. These values are valid for long trades. For short trades,
opposite values are used. Stop loss was set to $150 again and minimal improvement in
entropy stayed set to 1.003 also. Important training parameters were -alpha 0.1 -beta
0.0000001 -compression 0 -gradient-cutoff 15 -hidden 30 -class 1 -bptt 4 -bptt-block 10 -
direct-order 3 -direct 2 and parameters for testing were -dynamic 0.1. All parametere were
tuned in the same order as in the previous strategy.

The profit of the basic strategy was $4530 ($26.65 per trade). Even this basic strategy
with no optimization has a great result. Tuning has started with setting the limit value
for opening a trade. Tests showed that values less than 1.8 give lower profit. Other higher
values give still the same profit – $4530, so we have stayed at the 2 points. Another
parameter is the limit value for closing a trade. This parameter was changed to zero as
this configuration has raised performance of the strategy to $6650. The influence of this
parameter on the balance can be seen in figure 6.5

Figure 6.4: Histogram of growths and de-
creases.

Figure 6.5: Influence of a limit for closing a
trade.

27



Tuning has continued with setting the learning rate in the adaption phase. Thanks to
it, the performance has risen again and the profit has reached $7210. Figure 6.6 shows, how
this learning rate affects the performance of the strategy. It is obvious, that the impact of
this parameter is very strong.

The same situation should arise with setting a stop loss. See figure 6.7 for quite striking
results. This figure shows that using higher stop loss leads to worse results. The exact
opposite is usual as small movements of the market against opened positions do not close
the trade with a loss. The fact, that this strategy requires lower stop loss, makes many
things easier. A trader is able to start with a lower input capital and many losses in a row
do not have serious negative consequences on the balance or the trader himself. By the
way, using no stop loss resulted in the worst results.

Figure 6.6: Influence of the adaption in run-
time.

Figure 6.7: Influence of a stop loss.

Stop loss optimization was the last one that significantly increased the profit. Changing
sizes of both hidden layers did some differences, but only in negative ones as can be seen
in figures 6.8 and 6.9. In case of adaption in run-time, it is the same situation. Setting it
to any different value just worsened the performance, see figure 6.10.

Figure 6.8: Influence of the size of the first
hidden layer.

Figure 6.9: Influence of the size of the sec-
ond hidden layer.

Changing beta had almost none impact to the profit. Results have differed only in the
order of dozens of dollars and the profit was worse anyway. The following parameters that
were optimized with no success are bppt, bppt-block and direct. The profit were moving
down with any change of one of these parameters, but never moved under $7500. A little
improvement was brought by a change of direct-order parameter. As can be seen from figure

28



6.11, the impact of this parameter was sometimes very strong, however the improvement
is just $200 in the end. $200 difference is probably caused by just a one different trade,
thus these little changes do not affect result on testing data much. We can consider these
changes as just noise.

Figure 6.10: Influence of the adaption in
run-time.

Figure 6.11: Influence of a direct-order pa-
rameter.

The last optimization is very similar to previous ones. Gradient-cutoff parameter was
changed and improved the performance by $500. It should be said, that changes of this
parameters were causing only little changes in the profit. Differences while optimizing this
parameter were not larger than $1000.

The optimization ended with training parameters alpha 0.1 -beta 0.0000001 -gradient-
cutoff 0.3 -hidden 30 -compression 0 -bptt 4 -bptt-block 10 -direct-order 10 -direct 2 and test
parameters -dynamic 0.12. The results of this experiment are promising, but not perfect.
The system is finally profitable. Even if balance is positive in the end of testing, the whole
system is not suitable for real trading. When analyzing the balance equity in figure 6.13, it
is obvious that there is no stability. And the average profit per trade is very poor. Bigger
slippage can appear and the profitability will be gone. The drawdown is over one third
of earned money, which is an indicator that this strategy can be very risky. Nevertheless,
there is a huge improvement in performance that tells us that we are moving in the right
direction.

6.1.2 Continuous values

In this section, testing the neural network with real-valued input and output will be de-
scribed. All necessary changes from the original RNN LM toolkit to the neural network,
which is able to work with real numbers, are described in 4.2. Tuning and adjusting all the
parameters took place in the same way as for other tests before. Only some parameters
were removed while changing the network.

Fixed parameters

The first test is based on tuning parameters and letting the strategy run with these fixed
values. The strategy logic is still the same as in previous tests.

The initial values of parameters were almost the same as in previous tests. Only default
learning rate has been changed, because the network diverged with the default learning rate.
Important training parameters were -alpha 0.01 -beta 0.0000001 -hidden 30 -compression
0 -bptt 4 -bptt-block 10 -gradient-cutoff 15 and parameters for testing were -dynamic 0.01.

29



Figure 6.12: Strategy performance with advanced sampling.

All parameters were tuned in the same order as in the previous strategy. You can see, that
learning rate was decreased. That is because higher values lead to divergence [4].

The initial profit of the strategy was poor $1235, but with $137.22 per trade. This result
denotes that number of trades was quite small as was already discussed in section 2.4.3, it
is not very suitable for testing. The first tuned parameter was the limit for opening a trade.
This parameter has very strong influence on results of the strategy which is illustrated in
figure 6.14. The strategy’s profit was significantly improved to $6170 at the cost of profit
per trade, which decreased a little to $118.65. Changing the limit for closing a trade did
not make any improvement as its default value gives best result. It can be seen in figure
6.15. The same situation happened when adaption in run-time was tuned. Changing this
parameter influenced profit significantly, but no improvement has been achieved as can be
seen in figure 6.16. Let us move to the following parameter which is the stop loss. Stop
loss brought various results and some improvement too. See figure 6.17 for more details.
The profit raised to nice $7680 and the profit per trade increased almost two times to $192
with stop loss $380 high. Let us just note that high balance would be needed if trading was
done with this stop loss.

The size of the hidden layer was tuned next. The influence of this parameter can be seen

30



Figure 6.13: Equity with advanced sampling.

Figure 6.14: Influence of the limit for open-
ing a trade.

Figure 6.15: Influence of the limit for closing
a trade.

in figure 6.18. It is clear that the size of the hidden layer is very important, nevertheless, the
best profit was obtained by hidden layer with 27 neurons. Only 3 neurons were removed.
A little surprise came with setting the size of the second hidden layer. Setting it to any
value greater than zero led to zero trades executed.

The size of the hidden layer was the last parameter which caused some improvement.
Setting learning rate had strong influence on the results (Fig. 6.19), but no improvement

31



Figure 6.16: Influence of the adaption in
run-time.

Figure 6.17: Strategy performance with var-
ious stop loss.

was obtained. Parameter beta did not any change and changing bptt and bptt-block lead
to decrease of profit. Last parameter to adjust is gradient-cutoff. Its influence is similar to
other tuned parameter - strong influence but no improvement (Fig. 6.20).

Figure 6.18: Influence of size of the first hid-
den layer.

Figure 6.19: Influence of a learning rate in
training phase.

The final parameters are -alpha 0.01 -beta 0.0000001 -hidden 27 -compression 0 -bptt
4 -bptt-block 10 -gradient-cutoff 15 and test parameters are -dynamic 0.01. Tuning ended
with profit $8235 and $222.57 per trade. Number of trades is lower than it should be.
On tested data a little worse results were expected. But results of testing were worse
significantly as you can see in figures 6.22 and 6.21. Only $1500 profit was achieved. Why
this happened? The first reason is definitely the low number of trades. This is caused by
strategy design and lack of data. As data needs to be uniform for all tests, more data
will not be added. The strategy design could not be changed too, at least this not will be
the first solution. The second reason are fixed parameters. For example, volatility changes
through days, month and years but stop loss is firmly set to some value. Stop loss (and
other parameters) should be set according to actual volatility. This improvement will be
tested in the following section.

Working with volatility

The next test tries to eliminate the negative influence of fixed parameters. Volatility is
changing ale the time; sometimes, stop loss $100 is high enough and sometimes it is so
small that this stop loss is hit almost immediately. The same situation happens with limits
for opening and closing a trade. When market moves are too big, this limit would be hit
almost all the time.

32



Figure 6.20: Influence of gradient-cutoff.

Figure 6.21: Equity with number-based
neural network.

The most important input for adapting of parameters according to actual volatility is
ATR (average true range) indicator:

ATRt(n) =
(n− 1)ATRt−1 + TRt

n
,where (6.1)

TRt = max(hight − lowt, | high− closet−1 |, | low − closet−1 |) (6.2)

Simply put, this indicator measures volatility of N bars2 back. The higher the value of
indicator, the higher the volatility is and vice-versa. The strategy should undergo a few
changes. Stop loss and opening and closing limits are multiplied by actual ATR values.
This ensures higher stop loss and limits when volatility rises.

The initial values of parameters stayed set to the values from the previous testing: test
parameters -dynamic 0.01 and training parameters -alpha 0.01 -beta 0.0000001 -hidden 27
-compression 0 -bptt 4 -bptt-block 10 -gradient-cutoff 15. Stop loss is set to $380 and the
period of ATR indicator is set to 14. This means that it is counted from 14 previous bars.
14 bars represent a history of 90 minutes as 5 minute sampling is used.

The basic result of this strategy was $4265 and $170.6 per trade. At first, the limit for
opening a trade was changing. This parameter had a very interesting influence. Because
of that, the number of trades had to be taken in consideration too. As can be seen in
figure 6.23, the highest profit (around $7400) was achieved a few times. The value 0.161
was chosen, because of still high number of trades. In the other cases, number of trades
was very low for tuning the strategy. Profit per trade is still great – $82.33. The second
tuned parameter was the limit for closing a trade. Adjusting the parameter was not so
much interesting as the previous one. The profit was not changing much as can be seen in
figure 6.24. This parameter has increased the profit to $9260.

2Bar = one drawn line, see 2.1.

33



Figure 6.22: Strategy performance with number-based neural network.

Changing adaption in run-time had very strong influence as always (see figure 6.25).
Nevertheless, higher profit was not achieved and this parameter stayed set to 0.01. Stop
loss tuning has brought nice improvement as traditionally. In figure 6.26 the ideal stop loss
value of $212 can be seen. Thanks to that, the profit has risen to excellent $12105 and stop
loss was lowered, which does not place so much high demands on the input capital.

Tuning the ATR period was the next move, but changing it did not bring any improve-
ment (Fig. 6.27). The most likely reason is that the values of previous already tuned
parameters are set to work with the default ATR period. In figure 6.28, almost the same
influence can be seen. This time, this is influence of the size of the first hidden layer.
Changing it did not increase the profit again. The influence of the second hidden layer is
the same as in the previous test. With turning on the second hidden layer, no trades were
made and the profit stayed at $0.

Other parameters changed the resulting profit very slightly. The influence of learning
rate in the training phase can be seen in figure 6.29. As the influence is strong, no im-
provement was made. Changing beta, bptt, and bptt-block had very similar results – only
slight influence on profit, but always in a negative way. The last improvement was made

34



Figure 6.23: Influence of the limit for opening a trade.

Figure 6.24: Influence of the limit for closing
a trade.

Figure 6.25: Influence of adaption in run-
time.

Figure 6.26: Influence of stop loss. Figure 6.27: Influence of ATR period.

by gradient cutoff parameter. The improvement was very slight and improved the profit to
$12565. This profit is the highest profit achieved in training and tuning the strategy.

The final training parameters are -alpha 0.01 -beta 0.0000001 -hidden 27 -compression
0 -bptt 4 -bptt-block 12 -gradient-cutoff 6 and test parameters are -dynamic 0.01. The
results on the test data show a big step forward. Strategy performance and balance equity

35



Figure 6.28: Influence of size of the first hid-
den layer.

Figure 6.29: Influence of learning rate in
training phase.

can be seen in figures 6.31 and 6.32. The profit is now $5170, which is five times better
than profit of the previous test. Unfortunately, profit per trade is higher only slightly. This
parameter should be much higher in real trading. Equity of this strategy is much nicer and
shows growing trend. Also, the number of trades can be considered as appropriate.

Figure 6.30: Influence of gradient cutoff.

Figure 6.31: Equity with number-based
neural network with ATR.

36



Figure 6.32: Strategy performance with number-based neural network with ATR.

37



Chapter 7

Conclusion

This thesis shows that it is possible to create a functional trading strategy based on recurrent
neural networks. The neural network can work with both symbolic (discrete) and real
(continuous) types of inputs. When tuning the network and the strategy, the initial values
of parameters can affect the result significantly. The tests have shown, that only about a
half of tuned parameters (input and output limit, both learning rates and stop loss) were
crucial for the performance. The second half was then adapted to previously tuned values.

The reached profit was not bad: more than $500 per month with simple tuning of
parameters. The potential of this way of trading is however much greater, as there are
many variables which affect the final result - neural network setting, strategy parameters,
strategy logic, used indicators etc. Each of them can turn a loosing strategy into a profitable
one and vice versa.

Some ideas that have a potential to improve the results are described in the following
section.

7.1 Future work

At the end, let us mention a few tips and ideas for the future work.

• Involvement of genetic algorithms in the tuning phase.

• In our approach, only one parameter was tuned at the time. A better solution would
be to tune several (or all) parameters at the same time, with the profit as criterion,
probably using one of the gradient descent methods.

• Use profit metric in RNN. Training of RNN was done with the classical criterion of
Maximum Entropy, while the final criterion is the profit. It would be nice to re-do
the mathematical framework to propagate the final metric (the profit) directly to the
training of the RNN.

• Using more neural network models. The prediction can be made by merging results
of several models.

• Integrating all price indicators. In the current state, only close price is analyzed, but
open, high, low prices are ignored.

38



• Using various indicators. The price is only one of possible inputs to the network.
Feeding the network with the values of various other indicators, such as EMA, MACD,
RSI, MFI, Williams %R, PSAR1 etc., should improve the results.

• Choosing ideal timeframe. Chosen timeframe was 5 minutes as a compromise between
financial demands and reducing data noise.

• Looking at the actual price. The trade is controlled strictly by the network outputs
now. Looking at the actual price could prevent some errors caused by the network.

• Using limit orders. Every opening of a trade is made when the line is drawn at the
close price of this line. Limit orders allows setting a price, where a trade should be
open. It can prevent opening a trade too late.

• Preventing closing a trade to early. When bad price is predicted, the trade is im-
mediately closed. Every trend consists of increases and decreases. The trade should
withstand some moves against the position.

1EMA – exponential moving average, MACD – moving average convergence divergence, RSI – relative
strength index, MFI – money flow index, PSAR – parabolic stop and reverse

39



Bibliography

[1] J. D. McCaffrey. Neural network classification, categorical data, softmax activation,
and cross entropy error. [online]. 2012 [cit. 2014-05-04]. Dostupné z: http:
//jamesmccaffrey.wordpress.com/2011/12/17/neural-network-classification-

categorical-data-softmax-activation-and-cross-entropy-error/.

[2] T. Mikolov. Statistical language model based on neural networks [online]. PhD thesis,
2012.

[3] P. Podhajský T. Nesnídal. Obchodování na komoditních trzích. Grada, Praha, 2
edition, 2007.

[4] G. Orr. Linear neural networks. [online]. 2013 [cit. 2014-05-04]. Dostupné z:
http://www.willamette.edu/~gorr/classes/cs449/linear2.html.

[5] T. Nesnídal P. Podhajský. Jak se stát intradenním finančníkem. Centrum finančního
vzdělávání, Praha, 2008.

[6] T. Nesnídal P. Podhajský. Kompletní průvodce úspěšného finančníka. Centrum
finančního vzdělávání, Praha, 2009.

[7] L. Turek. Manuál technická analýzy, 2008.

[8] I. Vondrák. Neuronové sítě. [online]. 2009 [cit. 2014-05-04]. Dostupné z:
http://vondrak.cs.vsb.cz/download/Neuronove_site.pdf.

[9] L. Williams. Dlouhodobá tajemství krátkodobých obchodů. Centrum finančního
vzdělávání, Praha, 2007.

40

http://jamesmccaffrey.wordpress.com/2011/12/17/neural-network-classification-categorical-data-softmax-activation-and-cross-entropy-error/
http://jamesmccaffrey.wordpress.com/2011/12/17/neural-network-classification-categorical-data-softmax-activation-and-cross-entropy-error/
http://jamesmccaffrey.wordpress.com/2011/12/17/neural-network-classification-categorical-data-softmax-activation-and-cross-entropy-error/
http://www.willamette.edu/~gorr/classes/cs449/linear2.html
http://vondrak.cs.vsb.cz/download/Neuronove_site.pdf


Appendix A

CD content

• /Data – Contains tick data of TF Mini Russel 2000.

• /Test – This is folder containing all sources necessary for repetition of tests. Every
test contains one zip file and one folder. Zip file is strategy for Ninja Trader and
folder contains project for CodeBlocks.

41



Appendix B

Manual

Installation and usage of the neural network and the trading strategy will be described
here.

B.1 Prerequisite installation

Download and install Ninja Trader 7 (http://www.ninjatrader.com/download-registration.
php) and CodeBlocks (http://www.codeblocks.org/downloads/binaries). Use Ninja
Trader support and forum for troubleshooting. You will need to enter valid email to receive
license key. CodeBlocks software is used for building the network binaries on Windows
platform. The whole testing took place on Windows 7.

B.2 Preparation

In this section, preparation of Ninja Trader and neural network will be described.

B.2.1 Ninja Trader

Open Ninja Trader and select Tools → Historical Data Manager. Set everything according
to figure B.1 and click Start Import. Choose file TF ##-##.txt from Data directory. Let
Ninja Trader process the data. After that, select Tools → Instrument Manager. In Name
field, enter TF and click Search. Choose Mini Russel 2000 instrument from a table. Set
Expiry to ##-## and click on the left arrow. Now TF ##-## appeared on the left
in Instrument list. For the help, see figure B.2. Now click again on the Mini Russel 2000
instrument in the table and click on Edit. Choose Misc tab and for Simulator set Minimum
commission to 2.5. This you can see in figure B.3.

For importing trading strategy, click File → Utilities → Import NinjaScript. Select
relevant rnnlm.zip file from Test folder and the folder you want to use. After import, select
Tools → Edit NinjaScript → Strategy and choose RNNLM. Opened window contains the
code of the strategy. You can edit anything you want. In the end click on Compile icon to
compile the strategy.

B.2.2 Neural network

Go to folder of the relevant test in Test folder. Open folder rnnlm and open project
via rnnlm.cbp. This project contains the whole code of the neural network. Compile the

42

http://www.ninjatrader.com/download-registration.php
http://www.ninjatrader.com/download-registration.php
http://www.codeblocks.org/downloads/binaries


Figure B.1: Settings of Historical Data
Manager. Figure B.2: Instrument list.

network with Build → Rebuild.

B.3 Testing

Select File → New → Strategy Analyzer and new window appears. Now click with the right
mouse button on TF ##-## in the left panel and choose Backtest. In the right expander
of Backtest tab, choose RNNLM as Strategy. In section Parameters, you can define input
parameters for the strategy:

• AtrPeriod – Period for ATR indicator. This parameter is included in the last test
only.

• LogFile – Path to text file where the strategy can log important informations and
errors. In the strategy, you can write into log by calling Log() method.

• PipeName – Name of the pipe for inter-process communication between the strategy
and the neural network.

• RnnlmFile – Path to exe file of the neural network. This file is the output of a
CodeBlocks project.

• StopLoss – Defines height of the stop loss in dollars.

• Test – A switch between training and testing of the network. Set it to False for
training the network. Set it to True and the strategy will be opening trades.

• TestParameters – Parameter used for starting the network in testing mode.

• TrainParameters – Parameter used for starting the network in training mode.

The next section Data series defines input data series for testing. A 5 minute timeframe
was used. Section Time frame is important. A time range where the strategy will be tested
can be set here. Just check that Include commission is set to True and Slippage is set to 1.

Revise all parameters, set Test parameter to False and choose time range, where the
network will be trained. Click Run Backtest in order to train the network. After training

43



set Test parameter to True and choose time range, where the strategy will trade and click
Run Backtest again. After that, you can see result of testing with current settings.

This is illustrated by figure B.4.

Figure B.3: Settings of Commission.

Figure B.4: Strategy analyzer.

B.4 Real trading usage

For real trading, you have to get some data feed, for example the free data feed from CQG
1. Select File → Connect and choose data feed. You can select Simulated Data Feed for
random data. Now select File → New → Chart. Choose TF ##-## and select New. In
the right panel, set the input data series. The most important is Period section where you
define type of chart. See figure B.5 for help. In the end, click on OK.

Click on Strategies icon select relevant strategy. Click on New and set strategy param-
eters. Do not forget to set Min. bars required parameter. This parameters defines after
how many bars the strategy will start working. Set Enabled to True and click OK. Now
the strategy should start trading.

In the main window, click on Strategies tab. Running strategy should by colored with
green. If it is color with yellow as in figure B.6, go to Tools→ Options→ Strategies→ Nin-
jaScript and check settings. See http://www.ninjatrader.com/support/helpGuides/
nt7/index.html?strategies_tab2.htm for help.

1http://www.ampclearing.com/ninjatrader_cqg.php

44

http://www.ninjatrader.com/support/helpGuides/nt7/index.html?strategies_tab2.htm
http://www.ninjatrader.com/support/helpGuides/nt7/index.html?strategies_tab2.htm
http://www.ampclearing.com/ninjatrader_cqg.php


Figure B.5: Settings of strategy in real us-
age.

Figure B.6: Strategy state.

45


	Introduction
	Motivation
	Structure of thesis

	Overivew of trading
	Chart types
	Money management
	Trade more contracts
	Diversification
	Risk reward ratio

	Types of trading
	Electronic trading
	Approach to creating algorithms
	Overfitting
	Long-term functionality
	Platforms


	Recurrent neural networks
	Neural network functionality
	Recurrent neural network

	Parameters

	Use of RNNs for trading
	Network inputs
	Discrete sampling
	Continuous sampling

	Changes in RNN LM toolkit
	Trading strategy

	Implementation
	Used software
	Ninja trader
	RNN LM toolkit

	Integration

	Testing and results
	Data
	Discrete values
	Continuous values


	Conclusion
	Future work

	CD content
	Manual
	Prerequisite installation
	Preparation
	Ninja Trader
	Neural network

	Testing
	Real trading usage


