

Management of software projects

based on object-oriented technology

Doctoral thesis in Information Management

Sandra Milena Choles Arvilla

Supervisor: Doc. Ing. Vojtěch Merunka, Ph.D.

 2

I would like to thank my supervisor Doc. Ing. Vojtěch Merunka for all his advise,

support and guidance during this process.

A mis padres por su apoyo y paciencia.

To my friends for all the fun and the support.

God thanks for the endurance and energy

Sandra

3

Dissertation Thesis Topic

Keywords

Methodology, process, agile development, risk management.

Abstract

This study examines the existing risk management practices commonly used

for classic software development. The goal is to integrate the elements of the

traditional risk management methodologies to create a new agile risk

management methodology. The thesis focuses on techniques that can be easily

implemented in extreme programming (XP) and SCRUM. This study is motivated

by the following research questions: What are the elements of existing quality

assurance tools that could meet the principles of agile development? And is it

possible to use risk estimation for improving quality in agile projects? The thesis

presents a synthesis of the most common risk management techniques, as well as

an introduction to agile methods XP and SCRUM. The proposal integrates the

concepts of Failure Mode and Effect Analysis into the iterative life cycle of an

agile software project.

The thesis presents a metamodel which integrates the concepts of agile

development methodologies: SCRUM and XP with the FMEA concepts for risk

quantification. The model was partly implemented into a real development

project. Partial results show the improvement in early identification of failures

and allowed to reconsider the Sprint plan.

 4

Table of Contents

Dissertation	
 Thesis	
 Topic	
 ...	
 3	

Keywords	
 ..	
 3	

Abstract	
 ..	
 3	

Table	
 of	
 Contents	
 ...	
 4	

1	
 Introduction	
 ...	
 6	

2	
 Goals	
 ..	
 8	

Hypothesis	
 ..	
 8	

3	
 Methodology	
 ..	
 10	

Motivation	
 ..	
 10	

Thesis	
 structure	
 ...	
 11	

Limitations	
 and	
 threats	
 ..	
 12	

Related	
 topics	
 that	
 are	
 not	
 contained	
 in	
 the	
 work	
 ...	
 13	

4	
 Literature	
 review	
 ..	
 14	

4.1	
 Quality	
 assurance	
 ...	
 14	

4.1.1	
 Definition of Quality	
 ...	
 15	

4.1.2	
 Risk management	
 ...	
 20	

4.1.3	
 Practices and tools for quality assurance	
 ..	
 22	

4.2	
 Agile	
 software	
 development	
 ..	
 37	

4.2.1	
 SCRUM	
 ...	
 39	

4.2.2	
 Extreme programming	
 ...	
 43	

4.3	
 Agile	
 risk	
 management	
 practices	
 ..	
 48	

4.4	
 Metamodel	
 vs.	
 Model	
 ..	
 49	

5	
 Discussion	
 ..	
 52	

5.1	
 Analysis	
 of	
 existing	
 methods	
 ..	
 52	

6	
 Solution	
 -­‐	
 Elaboration	
 of	
 hypothesis	
 ...	
 56	

6.1	
 Analogy	
 ..	
 60	

6.2	
 Metamodeling	
 Agile	
 Risk	
 Management	
 ..	
 62	

6.2.1	
 Identification of objects and properties	
 ..	
 63	

6.3	
 Concept	
 to	
 object	
 ...	
 65	

5

6.4	
 Graphic	
 representation	
 ..	
 66	

7	
 Verification	
 and	
 validation	
 ..	
 75	

7.1	
 Model	
 validation	
 ..	
 80	

7.1.1	
 Scenario	
 ...	
 80	

7.1.2	
 Study case	
 ...	
 82	

8	
 Discussion	
 of	
 Results	
 ..	
 93	

9	
 Conclusion	
 ..	
 94	

9.1	
 Summary	
 of	
 dissertation	
 ..	
 94	

9.2	
 Suggestions	
 for	
 further	
 research	
 ..	
 95	

10	
 List	
 of	
 abbreviations	
 ...	
 97	

11	
 List	
 of	
 Tables	
 ..	
 97	

12	
 List	
 of	
 Figures	
 ...	
 98	

13	
 Bibliography	
 ...	
 99	

 6

1 Introduction
Agile methodologies were created to provide the user with several releases of the

software as fast as possible assuming continuous variability in the requirements

and design. Functional software is the only certain measure of progress;

therefore continuous deliveries of them are required. Among the characteristics

that agile methodologies should accomplish, according to the agile manifesto,

customer satisfaction is one of their main focuses as the first principle

establishes:

“Our highest priority is to satisfy the customer through early and continuous delivery of

valuable software.” (Beck, Grenning, Martin, & Beedle, 2001)

We could say that a customer or user is considered satisfied when all the

agreed requirements have been delivered on time and on budget.

In order to comply with the main principles of this approach, agile

development teams should be totally receptive to continuous changes in the

requirements. Experts in software development quality assurance as Lindvall,

Boehm and others, have discovered that the quality of personnel required for this

type of projects is higher than (Lindvall, Basili, Boehm, Costa, Dangle, & Shull,

Empirical Findings in Agile Methods, 2002) Experience and communication skills

become as influential as technical knowledge. Therefore, the software

development team and the business analysts cannot be independent teams; they

should have continuous cooperation and clear communication. Surveys like

(Chow T., 2008) shows that what they call high-caliber team is one of the critical

success factors in agile projects.

Agile development methodologies have become very trendy and successful

software development techniques. However, there are still many critics regarding

potential overspending due to the continuous changes in requirements and

design. Authors from Carnegie Mellon institute like (Levine, 2005), (Nelson,

Taran, & Hinojosa, 2008) Consider that although there are principles of some

agile methodologies that contribute to quality assurance, the truth is that there

are no formal processes defined for risk identification and control within the agile

7

approach. This statement motivates the development of this thesis, which

intends to formalize a risk management (RM) model suitable for agile software

development.

 8

2 Goals
This thesis is based on a literature review of most popular agile development and

risk management methodologies. The main sources base for this research were

(Beck, Extreme Programming Explained: Embrace Change, 2004), (Boehm B. ,

1991), (Boehm B. , 2002), (Nyfjord, Towards integrating agile development and

risk management, 2008), (Project Management Institute PMI, 2013) with the

support of many other sources. This work is divided in 3 phases: literature

collection and review, identification of gaps or opportunity for research and

modeling of a methodological proposal.

The principal goals of this thesis are:

• To identify the agile practices that ensure quality software projects.

• To define a methodological approach for RM processes applicable to

projects developed using XP or SCRUM. This approach will be based on

existing methods for identification, evaluation and risk controlling.

In order to pursue these goals, there have been defined sub-goals:

• To review the current state of art in agile practices focusing on risk

management activities.

• To identify the most common risks practices that could be compatible

with XP and SCRUM projects.

• To design a metamodel of agile processes from a risk management

approach and base on this metamodel propose new diagram to

integrate the risk management tasks within the agile workflow.

Hypothesis

We believe that implementing more accurate risk analysis at the beginning of

agile iteration could help to identify possible user stories that increase the risk of

failure and therefore should be changed or avoided.

9

Our hypothesis is base on the following aspects:

• The literature shows that agile software development is not considering

strong practices related to risk management. One of the highest risks

within an agile project is the need of back track functionalities that were

not necessary to implement or represent a high risk for the project and /or

the final product.

• Users demand more and more functionality that the agile team has to

divide into iterations.

• We assume the existence of analogy between FMEA and Software

engineering projects development that allows us to merge the concepts

that aims to quantify risks effect and tolerance.

 10

3 Methodology
Based on principle of analogy, we will apply some of the already existing risk

management techniques into the new area of Agile approach in Software

Development in order to improve the quality assurance, for example to minimize

those initial requirements, which would have later recognized as unfeasible. Our

methodology is based on a thoughtful synthesis of agile methods and risk

management methods.

The methodology of this dissertation is based on the literature review,

analysis of current methodologies and/or tools that allows the author to develop a

metamodel for new agile risk management strategy.

The literature review goal is to find a gap in agile software development in

terms of risk management processes. In general we could say there are enough

tools to synchronize agile approach and risk management practices; however a

formal definition is required for a successful integration of both concepts.

The dissertation intends to generate a metamodel proposal to integrate Risk

management basic activities with SCRUM and XP practices. The modeling

strategy is based on the GOPRR metamodel. MetaEdit+ is used as the modeling

tool.

A validation of the metamodel is executed creating corresponding data models

based on regular scenarios of real projects.

Motivation

There is extensive research on software project quality assurance and project

success forecasting. However, the real application of these methodologies and

concepts found still did not provide respectable results.

The last CHAOS reports (Standish Group, 2013) show of slightly increasing in

the success rate of software projects. These reports also show interesting data

1
1

regarding the issues that compromise the success of a project. Time continues

being the most critical aspect in terms of overruns.

Most of the factors analyzed and presented in the Chaos report correspond to

the concepts part of the SQuaRE (Software product Quality Requirements and

Evaluation) (International Standard Organization (ISO), 2011). These are the

concepts that we rely on their compatibility with some of the risk management

practices used in engineering, as it is FMEA (Stamatis, 2003).

Thesis structure

First chapter is devoted to the introduction following by the intention of the

thesis and the goals and sub goals identified. Other topics described in this

section are related to the methodology implemented for this thesis and brief

concepts that will be described more in general in the following sections.

The second section describes the areas and concepts related to this area. This

chapter is divided into four sections:

1. Quality assurance: Basic concepts of quality n disk management

practices are presented in this section. Highlighting the relevant

concepts for the purpose of this study.

2. Agile software development: Agile manifesto and its foundation is

explained. Even that there are many agile development methodologies,

this thesis focus strictly in the two more popular and world wide used:

SCRUM and Extreme Programming (XP).

3. Agile risk management: As described in the goals of this thesis, our

intention is to identify the implicit practices of risk management within

SCRUM and XP.

 12

4. Metamodeling: This last section explains the concept of metamodeling

and its purpose. General steps in the process of creating a new

metamodel are also presented in this section.

The third chapter is an analysis of the literature research findings. The

section presents an analysis of the methods explained and the reasoning in order

to focus the thesis on some of these methods.

The fourth chapter is devoted to the implementation of the quality assurance

and risk management concepts into agile development. The section explains how

these concepts are compatible with the agile approach and how the integration of

them are suitable for agile iterations. The section concludes with a graphical

representation of the metamodel proposal and implementation model for a given

scenario.

The fifth chapter contains a summary of the dissertation and interpretation of

the results achieved.

The last section of the thesis presents conclusions and suggestions for further

studies.

At the end of the dissertation provides an overview of the sources used in this

work, list of abbreviations, list of figures, list of tables.

Limitations and threats

We assumed that the proposed method that will be described in detail, finds its

place on software development teams that are familiar with the agile

technologies and understand the concepts and processes of risk management.

This study aims the areas where project manager and scrum master take action.

The operators implementing user stories work only on the model according to the

presented definition.

Its application in the correct use does not pose high demands on resources

(finance, human resources) and its implementation for its relative simplicity does

not generate significant additional cost to the firm.

1
3

This thesis is limited to the design and verification of the metamodel to

integrate risk management into SCRUM and XP. It may need modifications in

order to be implemented in a different agile methodology.

We assume that the metamodel described below may have been already

developed by some other person/institution. At the moment of the conclusion of

this study we did not recognize any similar work aiming the same goals. Related

works are mentioned in the literature review and or cited in other sections of this

document.

Related topics that are not contained in the work

The areas of project management, risks management and agile software

development are very extensive. Therefore, we feel the need delineate the content

of this study and specify the topics that do not correspond to the scope. The

exclusion of these topics does not affect the achievement of the proposed goals.

This study do not include areas/topics like:

• Detailed description of classic software development. Not about classic

development.

• Additional agile approaches and practices like: Adaptive Software

Development (ASD), Agile Unified Process (AUP), Crystal Clear, Dynamic

systems development method (DSDM), Essential Unified Process (EssUP),

Feature Driven Development (FDD), Lean Software Development (LSD).

• Description and or implementation of risk management in other areas

than software development.

 14

4 Literature review
This section introduces the theoretical elements that support this thesis. The

selection of concepts is based on the goals intended to achieve and previously

described. As a result, there are three areas to explore: quality assurance, risk

management practices for software development and agile methodologies.

Section 2.1 introduces quality management concepts and describes de

SQuaRE model for software development quality assurance. The sections

presents risk management processes and the findings of their implementation in

the software development industry.

Section 2.2 describes agile software development approach. The sections

introduces

Section 2.3 and 2.4 have been developed with the intention of present the

combination of agile software development and risk management practices.

There have been several investigations about how agile development can

coexist with classic practices in order to assure quality.

At last there is a description of metamodel and modeling concepts with the

purpose of the development of this thesis.

4.1 Quality assurance

Quality assurance has been the focus of many studies (Příbrsky ́, Kvantifikovany ́

přístup k jakosti informačního zabezpečení pro podporu evaluace informačních

technologií, 2012), (Boehm B. , 1991), (Project Management Institute PMI, 2013),

(International Standard Organization (ISO), 2011), (Standish Group, 2013) for a

long time. Several techniques, frameworks and models have been defined with

the intention to assure success in software project and deliver quality final

product according to the user expectations. This section explores the basic

concepts of quality and its relation with software development.

 15

4.1.1 Definition of Quality

Project management as a science discusses the aspects influencing the

development and success of any project. (Project Management Institute PMI,

2013)

These aspects define a triangle as shown in the figure No. 1

Fig. 1. Project management triangle

• Scope: Defines in terms of software engineering the functionalities so

called requirements of the final product. Later on, we will see how this

definition is transform in agile terms and reflects more the relationship

with the user/client.

• Cost: is not necessarily expressed in a specific currency and amount. This

aspect of project describes the resources necessary for the execution or

itself. Usually the budget or the cost is defined or calculated by the

product owner, which habitually is not the business analyst or the project

manager.

• Time: This aspect refers to the desired or already agreed time of execution

and expected release date. Regularly the team uses several tools for time

estimation in order to plan releases based on the complexity of the

requirements. When the time is fixed, the number of requirements or

functionalities to be included within a release should be adjusted to the

available time.

Time

Time

Cost

Quality

Scope

 16

Not surprisingly Quality is in the very middle of the triangle. The three aspects

explained before have a big impact in the quality of the project and its final

product.

The project team and specially the project manager have the not-so-easy task

to “play” with the vertices of the triangle to agree with the stakeholders each of

these aspects. The goal is to achieve a more realistic and achievable distribution,

which may not be according to every stakeholder demands. However, it should

guarantee a higher rate of success and quality product.

Despite the fact that the triangle may allow the reduction of one or two of the

vertices, the concept of quality (in the middle) remains as the core of the triangle.

Meaning that any change in any of the vertices will immediately have a n impact

in the quality.

Why is not quality one of the vertices? Simple, it is in the best interest of all

stakeholders and development team to achieve a quality product.

The reasons may seem very obvious: organizations, whether are of commercial

nature, academia or any other field, are directly affected by the information

systems that operation within their processes.

As explained in (Příbrsky ́, Kvantifikovany ́ přístup k jakosti informačního

zabezpečení pro podporu evaluace informačních technologií, 2012) information

systems affect directly and/or indirectly all the processes of any organization.

Operational processes are usually controlled or even completely automated by

technological tools that manage all the data and workflows involved.

Administrative and/or managerial processes are equally affected by

information system within a business. Communications are digital and reporting

or decision tools are used on a daily basis.

Keeping in mind the strong relationship between IS and business process,

there is no question that organizations require high quality tools to guarantee

their daily operation and satisfactory results. Regardless the nature of the

business or operation, every product owners expects to have a reliable

 17

technological solution that allows them to improve the response to their clients

and provide full support to employees (users) or operators tasks.

Fig. 2. Organization of SQuaRE series of International Standards

What does it define a product project quality?

ISO is highly recognized for their purpose to guarantee quality in process,

services and products. The organization publishes standards for almost

everything including software.

The SQuaRE model also known as ISO/IEC 25010:2011 (International

Standard Organization (ISO), 2011) defines a framework for assuring quality in

computer systems and software in use.

The standard is divided in five sections to cover all the areas related to the

production and use of software:

 18

1. Quality Requirements: Covers de definition of functional and non-

functional quality requirements based on quality models and quality

measures.

2. Quality Management: This section supports the definition of conditions

and models for the management of the requirements, specification and

evaluation of software product quality.

3. Quality Model: Presents models for quality software, in terms of use,

internal and external structure.

4. Quality Measurement: Defines quality measures for software and its

use. Provides guidance for the use of quality measure elements.

5. Quality Evaluation: This section aims to support the evaluation of the

quality software. It provides guidance and requirements necessary for

the evaluation of the quality. Its intention is to help the evaluation

actions of developers, testers and users.

According to the standard the quality of a product is defined by the following

characteristics who defines set of attributes for each category:

• Functionality: Set of attributes related to the functions and their

specific properties. These functions response to certain needs. Among

the attributes regarding functionality we can find: Accuracy, security,

interoperability, functionality compliance and others.

• Reliability: Set of attributes related to the stability of the software

within certain environment for an expected period of time. Among

these attributes we find: Maturity, fault tolerance, recoverability and

reliability compliance.

• Usability: Set of attributes that evaluate the effort needed to use the

software. These attributes are sourced by final user point of view in

 19

terms of: Understandability, Operability, Learnability and other

aspects related to the user interaction with the software.

• Efficiency: Set of attributes regarding the relation between the

performance level of the software and the resources needed. This

section focused in time and resources behavior.

• Maintainability: This set of attributes refers to the elements that

evaluate the effort required for extending, amending and modifying the

software. Among these elements we find: Analyzability, Changeability,

Stability, Testability.

• Portability: ISO in its revision: ISO/IEC 9126-1: 2001 incorporates the

same software quality characteristics with some amendments.

Portability has been split into transferability and compatibility

(including interoperability)

• Transferability: These attributes refer to the ability to transfer the

software from one environment to another one. Among the attributes

we find: Adaptability, Installability and transferability compliance.

• Compatibility: These attributes are relates to capacity of one or more

software components to share the same environment with efficiency.

The attributes evaluated in this section are coexistence and

interoperability.

• Security: This section covers the aspects related to the protection of the

operability of the system and its data. Among the attributes we find:

Confidentiality, integrity, authenticity, accountability and others.

 20

Fig. 3. Software quality model categories and attributes

4.1.2 Risk management

Risk management embraces all the processes related to the identification,

analysis and mitigation of dangerous events, known as risks that may affect the

expected results of a project. (Project Management Institute PMI, 2013)

Risk management is not an independent discipline; it is a part of the whole

project management strategy. As a consequence, risk management processes are

directly connected with the additional processes of the project development.

As we have mentioned before, the key steps to be developed for risk

management are identification and response.

These significant steps have subsidiary steps that may vary according to the

situation or business. According to (Boehm B. , 1991) risk management main

processes are more specified and imply: identification of the risks, analysis of

 21

risks to evaluate and prioritize them according to their possible occurrence and

impact, planning of mitigation and contingency actions, tracking of risks as the

project unfolds, and control of risk responses.

Barry W Boehm known as the father of the software risk management

proposed a model in 1991 which distinguish two principal steps, each one divided

in sub-steps as it follows risk assessment, which implies risk identification,

analysis, prioritization; and risk control, which implies risk management

planning, solution and monitoring.

The types of risks considered by Boehm are: personnel shortcomings,

unrealistic schedules and budgets, wrong development, extra development,

unstable requirements, shortfalls in externally components and tasks, and forced

computer-science capabilities. He also proposed a scale for the probability of

occurrence of risks and according to this scale; the impact of the risk can be

evaluated (Boehm B. , 1991)

Another valuable risk management model is the one proposed by The

Software Engineering Institute (SEI); they defined a framework (Higuera &

Haimes, 1996) based on three groups of practices: software risk evaluation, based

on three groups of practices: software risk evaluation, continuous risk

management and risk management team. SEI has defined a risk taxonomy,

which classifies a risk into several categories: requirements risks, design risks,

coding and testing risks, contract risks and resources risks. What distinguishes

this approach from the others is the team risk management, which defines

methodologies, processes and tools for developing working relationships between

customers and suppliers. As a summary, we can say that the most fundamental

aspects of risk management that should be present in any project are: risk

identification, analysis of occurrence, and measurement of the negative effect in

case of occurrence and plan of a mitigation plan. A minimal of documentation is

required in order to avoid improvised response actions.

In my opinion risk management practices are natural and therefore seem to

be easy to implement. For some industries it is crucial to follow risk driven

processes. However, software industry still finds challenging the implementation

 22

of these processes. Mainly because there is still the idea that quality cost is

higher since it requires additional resources, people and time.

In the previous paragraphs we have presented the general definition of risk

management from the perspective of project management. Following the initial

motivation of this work, it is necessary to analyze the elements of risk

management and its potential integration with the agile practices.

4.1.3 Practices and tools for quality assurance

The aim of this section is to explore some of the most well known quality

practices. These methods and/or tools have been applied in the software industry

to classic development projects. The idea in order to achieve my goals is to

identify the elements of these techniques that may coexist with agile software

development methods.

The idea of all the tools and techniques presented here is to identify possible

risk that may occur during the project in order to plan activities that could

mitigate the unexpected effects that could affect the project/product.

CMMI (Capability Maturity Model Integration)

CMMI believes that “early and aggressive” detection is necessary if the

stakeholders want to avoid extra effort and costs. This is the natural motivation

for risk management, the earlier the better.

CMMI divides the risk management activities in 3 parts: 1) Definition of risk

management strategy, 2) Identification and analysis of risks and 3)

Implementation of risk mitigation plans if required. The focus area of CMMI is

the project; however they specified that it could be applied to organizational

risks.

CMMI recognizes the inherit risk management practices in Agile methods:

“In Agile environments, some risk management activities are inherently

embedded in the agile method used. For example, some technical risks can be

 23

addressed by encouraging experimentation (early “failures”) or by executing a

“spike” outside of the routine iteration” (CMMI Product Team , 2010)

However, the SEI insists that the risk management approach is more

systematic but could be implemented in the life cycle of an agile method. CMMI

for development does not specify in detail how this integration could be possible.

In (Glazer H. D., 2008) there is a comparison there is a comparison of CMMI

and Agile methods and the complementary aspects of both approaches. An

interesting call for action is done for both specialists in CMMI and Agile to

improve the approach in areas that the other is strong. The main problem

addressed in CMMI is its generality or neutrality. It can be applied to almost any

situation that involves software development. The information provided by the

SEI is sometimes confusing depending on the level of expertise and perception of

the receiver.

The situations identified where agile experts should learn from CMMI are many,

for my purpose is important to point out risk management, measurement and

analysis. As Glazer mentioned:

“CMMI provides a path for the effective use of processes, measurement, training, and

improvement.”

This is exactly the key to quality assurance in a project. In my opinion these four

activities (Effective use of processes, measurement, training and improvement)

are the core of successful projects.

CMMI for development proposes three groups of activities for risk management

as follows (CMMI Product Team , 2010):

Prepare for Risk management, this first group's purpose is to establish a risk

management strategy that will define the steps to follow in order to identify,

categorize, evaluate and control risks. The activities in this group are:

1. Determine risk sources and categories: These sources could be internal or

external. The typical categories could be risks related to project phases, technical

performance or types of products. A deliverable of this activity could be the risk

taxonomy.

 24

2. Define risk parameters: In this activity the idea is to identify the

parameters that will be used to evaluate, qualify and prioritize risks. One

technique that could be used here is FMEA (Failure mode effect analysis)

(Banerjee, 1995).

3. Establish the risk management strategy: Final activity and core of this

group. This strategy includes among other elements, the methods and tools to be

used for risk management main processes. Also includes the classification and

categorization of risks as well as the mitigation techniques to be used and the

risk measures.

Identify and Analyze Risks, is the second group of activities proposed by the

CMMI. The aim of this group is to determine the importance of risks identified.

Therefore, the activities are to 1) identify and 2) prioritize risks.

The methods suggested by CMMI to identify risks include examination of

each element of the project work breakdown structure, consult experts, examine

projects related or for similar products where risk management activities have

been conducted.

CMMI proposes sub practices for identifying risks. It is necessary to perform a

review of environmental elements that affect the project, as well as the elements

of the project plan and the work breakdown structure. The objective is to identify

risk related to cost, schedule, requirement and performance. As a last step all the

risks should documented. This should include the surrounding conditions,

context, stakeholder associated and consequences for each risk.

In order to evaluate and prioritize risks, it is necessary to perform risk

analysis. The evaluation process proposed by CMMI includes the measurement of

likelihood, impact and severity of each risk. This method is equivalent to the Risk

Priority Number calculation defined by FMEA explained before.

The third group of activities in CMMI is Mitigate Risks which objective is to

reduce the negative impact that risks could have on the expected results of the

project. For this purpose it is necessary to establish for which risk it is worth a

 25

mitigation action, this is decided after assigning levels of tolerance to each risk.

These risks selected are included in the mitigation plan and for each of them

should be assigned a responsible person and a mitigation activity depending of

the type of risk. The possible mitigation activities are avoidance, control,

transfer, monitoring or acceptance (not taking action)

The implementation of the mitigation plan is a continuous activity during the

project. The risk should be monitored periodically and if necessary the risk

mitigation plan should be updated.

Zachman framework is an extensive framework for enterprise architecture

(Zachman J. , 2008) The framework is a combination of natural classifications.

The intention is to combine the answers to interrogatives What, How, When,

Who, Where and Why. It also includes a second classification postulated by

ancient Greek philosophy: Identification, Definition, Representation,

Specification, Configuration and Instantiation.

The author of the framework insists that it is not a methodology but a

“structure whereas a methodology is a process” The structure provides definition,

classification not a set of steps to follow as a process does.

The first published version of the model included only 3 columns: Data

Function and Network. It is important to note that the Zachman framework uses

diagrams like Chen Diagram, Bachman diagram and IMS-Root Segment diagram

for each descriptive representation. Each of these representations corresponds to

a cell, result of columns that represent the Interrogatives and the rows that

represent the Transformations). The intention of Zachman is to use primitive

models to describe each aspect of the enterprise.

Since the first version of the Zachman framework in 1987, there have been

eight releases. Zachman updated the framework to guarantee the use of only

primitive models in the representations. Also additional columns were added to

represent responsibility, timing and motivation; aspects related to enterprise

architecture. Please note that initially the framework was conceived only for

 26

Information Systems Architecture. Also there was a slight change in the column

Network (Where) to make the framework international, initially the framework

supported only U.S.

The current version 3.0 is a 6x6 matrix that contains the 36 concepts to

describe almost anything. It offers the possibility to look from six different

perspectives represented by each row: Executive, Business Mgmt., Architect,

Engineer, Technician and User perspective. Besides a dramatic change in the

graphics, the last version of the framework changes its name adding a subtitle:

The enterprise ontology. There are already many frameworks for enterprises that

describe methodologies based on the Zachman framework. This situation made

the academics to suggest a new name that entitles the framework as ontology

(Zachman J. , 2011).

The figure 4. shows the current version of the Zachman framework: The

enterprise ontology.

Even all the updates done in the past 28 years the original Zachman theory

remains.

“All descriptive representations can be expressed in terms of Things and Relationships”1

The logic also remains; the schema is bi-dimensional interrogatives against

transformations. And in each cell there is a primitive model that represents the

enterprise models’ words.

2 K. Beck, Extreme Programming Explained. 2nd ed. 2005. p.42

 27

Fig. 4. The Zachman framework

PMBOK (Project Management Book of Knowledge) – includes two chapters

dedicated to quality assurance: Quality Management and Risk Management

(Project Management Institute PMI, 2013). The PMBOK published by the Project

Management Institute is a complete guideline for project management of any

nature. It is not strictly connected to software development, however it suits

many aspects of a software project in general.

Quality management chapter introduces the processes related to planning,

performing and controlling quality assurance. Some of the processes covered in

PMBOK are explained in more detailed in this document (e.g. Six Sigma, ISO

standards) The PMI analyzes quality management for both, the project and the

final product. Any issue that affects any of these two aspects may have serious

consequences for any of the stakeholders.

 28

As for any of the knowledge areas described in the PMBOK, quality

management defines a group of processes. Each process is formed by a set of

inputs, tools and outputs.

Fig. 5. Project Quality Management Overview

• Quality Planning: PMBOK establishes that every project should include

plan quality. The aim is to identify the quality standards and regulations

relevant to the project. The inputs for this process are: documents that

describe the quality policy of the organization, the scope of the project and

the relevant standards that may apply to the final product. The main

output of the quality planning is the quality management plan, which

describes the implementation of the quality policy and quality standards.

This document is usually highly detailed and should be part or an input for

the general project plan.

• Quality Assurance: Refers to the execution of all the planned tasks to

guarantee the project and the final product will comply with the quality

standards. This process uses different tools and techniques that should be

 29

performed early in the project. Some of these techniques are: Cause and

Effect diagram, Pareto chart, Statistical sampling. The tools to be used

and the results to be measure are generally responsibility of the project

management team. The output of this process is quality action, which

refers to any possible improvement, change or action to take in order to

guarantee efficiency in the project.

• Quality Control: This last process described in the chapter of quality

assurance in the PMBOK, refers to the control measures to take over the

quality activities planned and their results. This process has two

objectives: to identify possible failures in the process or the product quality

to suggest possible actions and to validate that all the quality standards

have been met and the output comply with the requirements of the

stakeholders. The inputs for this process include the project management

plan that as mentioned before, the quality plan is also part of it. Other

documents that include quality metrics, checklists and product

specifications and deliverables, are also used as input for quality control.

The output of the quality control is formed by documents that present and

validate the results of the project and quality activities. Change requests

can also be output of this process in case there is a quality requirement not

met that demands an action. All the updates affect directly the project

plan; therefore an update of this document is also expected as an output of

this process.

Risk management chapter (Project Management Institute PMI, 2013)

introduces the processes related to planning, measure and controlling possible

risks in a project. The processes included in this section have as goal to decrease

the impact of possible failures y identifying them prior to occurrence and

planning response actions in case it is needed. The figure 6 shows the detailed

structured proposed by PMI for risk management processes. As described in

quality management chapter, risk management processes also are conformed by

a set of inputs, tool and outputs.

 30

Fig. 6. Project Risk Management Overview

 31

The processes of this knowledge area covered the same mentioned previously

in section 2.1.2.

• Plan Risk Management: This process defines how risk management

will be implemented in the project. The output is the risk management

plan, which contains all the tasks and responsibilities of the risk

management team and the project manager.

• Identify Risks: This process aim is to list the possible risk that may

affect the project and describe their behavior. The tools used for tis

process include informal techniques like brainstorming and expert

judgment as well as some more formal like diagramming tools and

SWOT analysis.

• Perform Qualitative Risk Analysis: This process analyzes the

probability of occurrence and impact of the risk in order to prioritize

them for further action. The tools used in this process

• Perform Quantitative Risk Analysis: This method is based on the

prioritization in the previous process. The aim of this process is to

quantify the effect of the already risks identified. For this purpose the

project manager should use the documents that describe the project

plan, budget and schedule, as well as the risks register and other

documents that describe the environmental conditions of the project.

The output of this process represents updates in the project documents

with probabilistic analysis and risk priority updates. The methods used

in this process depend on which and how much data is available.

Graphical representations, probabilistic analysis and modeling tools

can be used. However, in case of lack of data, expert judgment is the

tool to be used to analyze the possible quantitative effect of each risk.

• Plan Risk Response: The goal is to prepare response action for each risk

identified. The process should help to assign a strategy of response to

each risk depending on the priority and the quantitative effect already

calculated in the previous process. The PMBOK considers not only the

negative risks but also the positive ones. The strategies of response for

 32

negative risks include: Avoid, Transfer, Mitigate and Accept. While the

responses for the positive risks could be: Enhance, Exploit, Share and

Accept. Generally the suggested tool for this analysis is expert

judgment. The output of this process represents several updates in the

project documents. Depending on the action planned; the scope, the

schedule and the allocation of resources would need adjustment.

• Control Risk: This process has many sub-processes: tracking identified

risks, implementing the planned response action, identifying new risks

and evaluating the risk plan. The inputs for this process include the

risk plan and register as well as the work performance reports. The

methods used for these processes include analysis of performance, risk

audits, periodical meetings and risk reassessment. The general the

output of this phase are the different updates to the project documents

involving: change requests, project plan updates, risk register and

response plan updates.

The PMBOK covers all the phases of risk management and clarify the

different activities that should be implemented. This approach suggest and

extensive use of documentation, planning and analysis. Depending on the project

and its size, the PMBOK suggestion may demand a lot of resources for risk

management activities.

Six (Six Sigma) is a business management strategy which aim is to increase at

maximum the percentage of defect-free products. Motorola originated this

strategy and is in continuous development and research by the Motorola

University.

Six sigma considers a defect any output that does not meet the customer

specifications; just exactly as the other methods I have been studying. The focus

of this strategy is to achieve quantifiable financial return from any project. Six

sigma defines a special structure of roles: Executive leader (CEO), Champion,

 33

Master Black Belt, Black Belt, Green Belt and Yellow Belt. Each of these roles is

responsible for the implementation and execution of six sigma. Especially Black

belts who should devote 100% of their time for six sigma project execution.

The origin of Sig sigma is statistical, is based on a standard deviation. The

idea is to reduce it till the point where the product is within the limits of

customer requirements. A sigma level measure the level of efficiency, level 6 is

equal to 99.999966%, which means that from a million units 3.4 will have defects.

Six sigma follows two types of methodologies: DMAIC which aim are existing

business process and DMADV used for new product development.

Each letter of these two acronyms represents one of the phases of the

methodology: (DMAIC) Define the project requirements, Measure key aspect of

the current process, Analyze the existing data to find out the root-cause of

defects, Improve the current process, and Control to ensure that defects will be

prevented before happening. (DMADV) Define the design according to the

customer expectations, Measure parameters for design and CTQ (Critical to

Quality), Analyze to create a feasible high-level design, Design based on the data

collected, Verify the design and implement the production process.

Six sigma uses additional quality management tools as the ones we have

explained before, FMEA, 5 Whys, Root-cause analysis, etc.

FMEA (Failure Mode and Effect Analysis) is used to identify potential

failures within a system, evaluating their effects, which mean to rank their

severity and occurrence. The purpose is to recommend possible actions to prevent

these failures from reaching the customer/user. (Stamatis, 2003)

A failure is considered any error or defect in any part of the system, which

affects the customer. The effects are the consequences of a failure during the

operation of the product.

Severity is defined according to the harm produced to the customer or the

seriousness of the effect on the functionality. There is a correlation between effect

and severity; if the effect is critical then severity is high and vice versa.

 34

The process FMEA is evolutionary and includes application of several

technologies and methods. The aim is a quality product with the minimum of

failures, prioritizing the customer requirements; partly the reason of agile

methodologies as well.

Severity (SEV): The first step in a risk analysis is to quantify the severity of the

effects; they are evaluated on a scale of 1 to 10 with 10 being most severe. The

ranking is shown in Table 1 (Stamatis, 2003).

RANK DESCRIPTION

Dangerous (10) Failure affects safety or government

regulations with alarm

Very High (8) The product is inoperable with loss of

primary function.

High (7) The product is operable, but at the reduced

level of performance

Moderate (6) The product is operable, but the item (s)

from the comfort or convenience is

inoperable.

Low (5) The product is operable at a reduced level

of operation.

Very low (4) Most customers notice failures

Minor relevancy (3) Minor customers notice the defects.

Very minor relevancy (2) Demanding customers notice failures.

None (1) No effect

Table 1. FMEA-Risk Severity Ranking

 35

Occurrence: Represents a remote likelihood that customers experience the failure

effect. The Table 2 defines the value of the occurrence, where intermediate values

are assumed to obtain immediate superior, and if it is ignored failure probability

must assume an occurrence is equal to 10.

Table 2. FMEA-Occurrence criteria

Detection: Is the rank corresponding to the probability that the current control

will detect causes of failure modes before the product leaves the manufacturing

area. It's very important not assume low probabilities just because the occurrence

is low; these two rankings may or not may be correlated. Complete ranking is

shown in Table 3.

Probability of occurrence Percentage of failure Rank

Very high: Failure is almost unavoidable.

1 in 2 ≥ 10

1 in 3 9

High: repetitive incidents 1 in 8 8

1 in 20 7

Moderate: occasional incidents

1 in 80 6

1 in 400 5

1 in 2000 4

Low: Relatively few incidents

1 in 15.000 3

1 in 150.000 2

Remote: The incident is unlikely 1 in 1.500.000≤ 1

 36

Rank Description

Very High (1) Remote possibility that the product will be delivered. The defect is

functionally obvious and detected

High (2-5) The defect is obvious identified

Moderate (6-8) The defect is easily detected

Low (9) High likelihood that the product would be delivered with the defect

Very low (10) Item is usually not checked and will be delivered with the defect

Table 3. FMEA-Detection ranking

Risk Priority Number: Known as RPN, defines the priority of the failure. In

FMEA the goal is always to reduce RPN through a reduction in severity,

occurrence and detection. The risk priority number (RPN) is the mathematical

product of the severity, occurrence and detection:

RPN = S * O * D

Recommended action: There is no point to do FMEA analysis without a

recommended action.

Typical recommendations may be:

• No action at this time (Tolerate)

• Add built-in detection devices (Increase detection or predictability)

• Provide alternatives to the design (Avoid before occurrence)

• Add a redundant subsystem (Tolerate with Action)

• Response action to effect (Mitigation)

 37

FMEA in software development

Even that FMEA was originally created for assessing risk related to hardware,

there are several studies that confirm its use in software development (Banerjee,

1995) (Bicchierai , Bucci, Nocentini, & Vicario, 2012) (Lauritsen & Stålhane,

2005)

In Lauritsen they propose to use FMEA in the agile development. They

specify two types of FMEA: Functional and Detailed. Functional FMEA refers to

requirements definition phase. Detailed FMEA is used between the design and

coding activities. The disadvantage of this proposal is the addition of extra

activities to the workflow, instead of integrating the FMEA concepts within the

current workflow. This may seems as lack of agility in this proposal. The

advantage is the potential use of the FMEA results to easily create test cases.

Banerjee became the base reference of the FMEA in software development.

This paper concludes that FMEA brings several advantages to the development

process, mainly accurate effort estimation and quality assurance.

4.2 Agile software development

My intention is to introduce the concept of agile software focusing on the

elements that are base for the development of this thesis and the ones we

consider as the most relevant to the achievement of the goals established above.

In 2001, the agile manifesto became the official start of a new age of

development that would try to improve software development. The agile

manifesto consists of a set of principles that define a new approach of

development with different priorities, as it is customer satisfaction over strict

planning. The manifesto specifies the capability of adjusting to continuous

changes, which may affect the whole project or just a requirement (Awad, 2005)

 38

Agile manifesto requires high quality staff; project managers, designers,

developers and even customers should have skills that allow producing rapid

quality deliveries and reducing the time spent on planning and documentation.

Agile methodologies arose from the need for a faster response to client

satisfaction, which includes late changes acceptance and tangible results as early

as possible.

There are many different agile methods, which promote the general principles

of the agile manifesto. Most of them divide the tasks in small groups known as

iterations. Each iteration will be following the main phases of classical software

development, but in a shorter time. Most popular agile software development

methods are Scrum, Crystal, Dynamic System Development, Feature Driven

Development and Extreme programming.

Despite the popularity of all these methods and some others, there are still

some critics related to agile practices that may compromise the success of a

project. The biggest limitation of agile methodologies is their implementation in

large development groups (Turk, France, & Rumpe, 2002). The rate of success of

lightweight methodologies in groups of more than 20 developers is still

remarkably low.

Another limitation of agile methodologies is the considerable reduction of

documentation. Agile methodologies required more time for coding than for

planning or documenting. This may result in faults that could be hard to identify

by external reviewers. The other problem not having a standard method of

communication, documentation, is the misunderstanding that could take place

during the project, due to the different points of view and perception that

stakeholders may have.

Clear and precise communication is the key of success of any project. In agile

development project communications is a crucial point as there are no standards

that control the flow of information. Preferred method of communication in agile

development is face-to-face meetings. This makes agile practices, not a suitable

 39

option for teams, which are distributed; this situation has become more common

in the last years.

In my opinion, agile methodologies require a group of characteristics that

depend much more on people than on processes or methods. Therefore, the staff

required for an agile project has to be exceptional.

Agile development methodologies recognize people as the drivers of project

success, counting with skillful people. It is necessary to point out that, when the

success of a project depends on a person's behavior, the risks are bigger and with

a higher probability of occurrence.

4.2.1 SCRUM

Scrum is defined as a framework to agile software development in order to reach

a common goal (final product). The framework works very well together with

other methodologies as well. (Sutherland & Schwaber, 2011)

Scrum challenges the concepts of classical development as waterfall. Scrum is

actually the most popular agile approach for software development.

The basic principles of Scrum are: transparency, inspection and adaption.

• Transparency: Specifies a common language and share status of the

project among the participants.

• Inspection: Regular inspection by skillful participants in order to

identify unexpected variances.

• Adaption: As mentioned before, one of the principles of agile software

development is the ability to adaption and high tolerance to changes.

Scrum follows this principle, specifying that if inspection shows a

probability of unacceptable results, the current process should be

adjusted.

Scrum defines a set of roles, artifacts and meetings that are integrated in the

core of the methodology, the Sprint. The Sprint is defined as a period of time

where the scrum team should focus on a group of tasks to be developed. Everyone

involved or affected by the project is identified with a role, as it is product owner,

 40

development team, scrum master and stakeholders. Some authors may consider

manager also a role in scrum projects.

Scrum also defines a set of events that are used to guarantee the

implementation of the three principles mentioned before. These events are:

• Sprint Planning Meeting

• Daily Scrum

• Sprint Review

• Sprint Retrospective

Sprint: As mentioned before this event is the core of the Scrum methodology.

It is time limited and a release increment is expected as a result. The scope of the

Sprint as well as the participants, are defined at the beginning of the Sprint and

remains the same till the end. If changes are required in the product, the new

requirements are reserve for the next Sprint. During the Sprint planning

meeting it is define the work to be developed during the Sprint. Also, during this

meeting it is decide how the functionalities chosen will be developed. The

functionalities may be split in tasks and assigned to the developers. If the team

considers that the expected results will not be met on time, the functionalities

may be negotiated with the project owner and move to the next Sprint.

Daily Scrum: This event happens everyday of a Sprint. It is a meeting

schedule for only 15 min with the development team. The goal of this meeting is

to plan the work for the next 24 hours and identify possible issue that may affect

the plan schedule. The responsible person for calling the meeting is the Scrum

Master however the entire development team is responsible for conducting the

meeting. Basically, every person should answer three questions during the

meeting:

• What was done?

• What will be done?

• Are there any open issues/obstacles?

 41

The daily scrum helps to increase the possibility of achieving the Sprint goal.

The team is involved in the progress of the planned release increment and

informed about the status every day.

Sprint Review: During this meeting the development team and the product

owner discusses the increment delivered. The development team informs and

shows what has been done. The backlog is discussed in order to track progress

and identify future work. Therefore, the output of this meeting is the update of

the backlog and a potential list of functionalities to include in the next Sprint.

Sprint Retrospective: This meeting takes place after the Sprint review and it’s

an internal evaluation of team performance during the last Sprint. The Scrum

Master and the development team identify opportunities of improvement in

terms of processes, communications and tools.

The figure 7 (Ambler, 2008) shows the life cycle of Scrum. In this graph we

can see when each of the events explained above happen.

Fig. 7. SCRUM Life Cycle

 42

Scrum and risk management

None of these roles is explicitly responsible for any risk management activity

(identification, measure or control). However, we would like to analyze how their

defined functions may include or guarantee the implementation of risk

management in the projects.

The product owner is responsible for the development of the product backlog,

which contains the full list of functions/requirements that should be included in

the software in development. He / She should guarantee that every member of

the development team is aware of the product backlog and understands it. The

product owner is also responsible for organizing this backlog in order to achieve

the goals according to the plan and the agreement with stakeholders.

One of the functions of the product owner is to turn the issues in the backlog

into features to be developed (Pekka, Outi, Jussi, & Juhani, 2010). This action

shows an intention of addressing the risks related to the product performance. As

explained in (Nelson, Taran, & Hinojosa, 2008) the agile processes tend to be

mitigation strategies for risks, however the prioritization of tasks is not always

considering the risks that may have been informally identified.

Development team members are responsible for the product development.

Nevertheless, the team members participate actively in other processes as

backlog updates, effort and time estimations, as well as identifying impediments

that may compromise the agile development. Again as with the product owner,

the team is not explicitly responsible for identifying, measuring or controlling

risks. Even though, it could be considered the intention of identifying

impediments as an informal task to list risks.

The Scrum Master is the person responsible for “cleaning the path” for the

development team. His / Her function is to address all the impediments that may

affect the labor of the development team, jeopardize the goals and therefore, the

success of the project. This interesting role approximates the process of risk

 43

mitigation, considering that the impediments have been identified previously

informally and correspond to the definition of risk.

Stakeholders and managers are all the people affected by the project from the

client as well as vendor side.

Usually the process that supports the idea that SCRUM is a risk driven

methodology is considered only as a mitigation process where risky tasks are

prioritized. As explained in (Nelson, Taran, & Hinojosa, 2008) risks are not

tracked or managed explicitly.

4.2.2 Extreme programming

Extreme programming (XP) is one of the methods more used for the agile

approach. XP is a lightweight style of programming which purpose is to take all

the classic elements of software development to the extreme, starting from the

people involved in the project. Kent Beck known as the originator of this

methodology considers XP as a social change that focus on the excellent practice

of programming techniques communication and teamwork (Beck, Extreme

Programming Explained: Embrace Change, 2004)

The most distinguishable difference between XP and other methodologies is

the periodicity and size of development cycles. XP works with short cycles and

continuous feedback to the user. Behind this difference there are some others

that make this approach possible. XP encourages incremental planning and

design, which makes the whole plan to evolve during the project. An XP team

should trust each other skills and keep a clear oral communication during the

whole project. XP projects are open to continuous changes in requirements, due

to the short releases and incremental design it becomes less costly to integrate

these changes.

XP is based on a set of practices divided in two groups the primary and the

corollary practices. In general all the practices are very natural and are an

extension of common sense for success. However, the corollary practices are not

possible to implement without the full abstraction of the primary practices.

 44

A big part of the primary practices are dedicated to people, motivated and

skillful teams develop successful projects. Basic needs of team member can be

easily achieved and could have a high positive impact on the flow of the project.

Good communication is the key for teamwork; keeping the team sitting together

saving the space for each one’s privacy allows people to work in a confortable

environment counting with each other support if needed.

Taking the previous concept to the “extreme” as XP requires, brings up the

idea of pair programming.

“Write all production programs with two people sitting at one machine”2

As we say in Spanish: “Dos cabezas piensan mejor que una”. Two heads think

better than one. This practice is just an extreme of this saying. A noticeable

aspect is that pair programming keeps members concentrate on programming. It

can be tiring as this couldn’t be performed for extensive hours but the level of

productivity is higher than programming alone. Here is important to respect each

other’s ideas and personal space. Pairs should rotate from time to time to

promote the interchange of new ideas and make all members be part of the

process.

Divide and conquer another well-known saying takes us to the next practice of

XP: User stories.

XP suggest separating the user requirements into independent user

functionalities. A simple sample would be: “Provide the option to generate a zip

file containing all the individual task reports for a given project”.

Following the team should estimate the time required for development. The

stories should be written on separate cards indicating a short title and the time

estimated for development. All cards should be placed in a wall visible for the

team all the time.

As soon as a considerable group of user stories have been collected, the team

can plan the next iteration. XP suggests short cycles, weekly. The week should

2 K. Beck, Extreme Programming Explained. 2nd ed. 2005. p.42

 45

start by choosing the most important stories according to user interests.

Afterwards, the team should write unit tests that will be performed when the

stories are developed. Each story can be broken into tasks to be assigned to

individuals and make more precise estimations.

Incremental design is an important aspect of XP methodology. The whole

team and each member should invest time in design every day. The key is to

start with enough design to get going. The same applies for planning,

architecture and management. There is one exception and it is for testers, in

classic development testing is left at the end. In XP testing should take place as

early as possible.

According to Beck (Beck, Extreme Programming Explained: Embrace Change,

2004) the corollary practices are not possible the corollary practices are not

possible while the primary practices have not been implemented, assimilated and

well adopted by the entire team. Basically primary practices are pre-conditions

for the implementation of corollary practices.

Some of the important corollary practices include:

Real customer involvement: Customer should be one more of the team

members. Agile manifesto established as a high priority customer satisfaction

(Beck, Grenning, Martin, & Beedle, 2001). This is only possible with continuous

communication between the team and customer. Regular feedbacks should

support the incremental design in order to achieve the customer expected result.

Incremental deployment: As a consequence of an iterative process, there

should be incremental deployment. The suggestion is to start with little

functionalities are ready to handle and deploy them.

Low index of staff rotation: XP requires a team well formed that can cooperate

with good communication and more importantly that trust each other’s. This is

possible when the teams have enough time to get to know each other and get

used to each ones behavior and way of work. That doesn’t mean the teams should

be static, a reasonable index of rotation is also beneficial for spread knowledge

and experience.

 46

Root cause analysis: The idea is to eliminate the defects and also the cause of

them. XP process for this situation is to write a test that demonstrates the defect,

write a unit test as small as possible to reproduce the defect, fix the system and

find out the cause of the defect. Beck mentioned the use of Taiichi Ohno 5 whys

exercise finds the defect cause. This simple exercise of asking 5 times “why” could

be used for risk identification. We will explore this exercise later in this thesis.

Shrinking teams: As soon as the team is synchronized it will be possible to

identify which members’ participation is not required for a project. Keeping

teams as small as possible contributes to eliminate the waste and form new

teams for other projects and increase these members' efficiency.

Daily deployment: New software should be put into production every day. This

contributes in two ways; to reduce the gaps between what the user see and what

is in the developer’s desk. And complies with the XP theory of small and frequent

releases of functional software.

Shared code: All members of the team are encouraged to change any part of

the code if necessary. For this practice is necessary to have a well-formed team

with a sense of collective responsibility. This may reduce the risk of a low truck

factor risk of a low truck factor (Torchiano, Ricca, & Marchetoo, 2011)

XP is an extreme implementation of the classic phases of software

development. By extreme it refers to extracting the maximum value of each

element in the minimum time possible. Each iteration of XP includes all the

required phases of software development.

Every iteration starts with a planning meeting where the development team

collects the user requirements and defined the user stories. Each user story

corresponds to each feature the user desire to have in the system. Each feature is

divided into engineering tasks, which should be assigned to a developer. Initial

estimation of time is defined and the implementation starts. For each

engineering task a unit test is written, when the test is passed the task is

considered finished. Afterwards, the user performs test for each user. At the end

of the iteration, the programmers deliver functional software that is accepted by

 47

the client. A new planning meeting resumes the cycle and all the phases are

repeated once again. The figure 8 illustrates the extreme programming general

process within one iteration. The length of one XP iteration is between 1 to 3

weeks.

Fig. 8. XP Activity diagram of XP iteration

 48

Extreme programming is not limited to a development workflow. It is better

know as a set of practices that comply with the agile manifesto. Practices that we

have explained previously.

4.3 Agile risk management practices

There have been many discussions regarding which aspects of risk management

are already included in the agile methods. Most of the analysis done, (Boehm B. ,

2002), (Nyfjord, Integrating Risk Management with Software Development: State

of Practice, 2008), (Nyfjord, Commonalities in risk management and agile process

models, 2007), (Moran, 2014) conclude that there should be a mix of plan-driven

and agile methods, in order to increase the probabilities of success. The intention

of this article is to analyze each aspect of risk management and their presence

within agile methodologies.

As mentioned before, risk is defined as an unexpected event that may

compromise the quality of the project and therefore, jeopardize the success of the

project. Both types of methodologies; risk management models and agile

development methods recognize the same definition of risk. Only with some

exceptions that may consider risk also as a positive event and an opportunity of

progress and improvement. This positive conception of risk is present in the SEI

model (Von Scoy, 1992)

Regarding the methods used to store all the risk management information

during a project, there are some differences between methodologies. Classic risk

management suggests different models that include risk management

documentation. Collection, classification, analysis and response to risk is

recorded in structured documents for the purpose of experience collection that

could be used as a reference tool for future decisions. Agile models reduce the

documentation as much as possible; thus, the risks identified are not kept in any

repository. Most of the information regarding risk management processes is

displayed on walls or boards (workspace) and consulted during the progress

meetings.

 49

As part of the main risk management activities is the analysis of certain

aspects as risk probability, impact and priority. All these characteristics

determine the mitigation or tolerance decisions that could be taken for each risk

identified. It is clear that classic risk management methodologies follow

structured models, which qualified and quantified the aspects mentioned above.

Some methods like the one proposed by SEI have a defined taxonomy to classify

the risks. In contrast, agile methodologies do not describe any specific risk

classification or estimation. During the progress meetings in agile development,

risk identification is done intuitively, severity is based on team knowledge and

experience, and usually there is no formal quantification of any aspect of the

risks.

The main purpose of risk management is to eliminate risks or transform them

into acceptable (tolerable uncertainty), in order to make decisions with less

subjectivity. Therefore, the impact and the probability of occurrence of risk

should be measured.

While risk management models define clear stages of risk assessment, agile

methodologies do not describe any risk management phases within their

activities and processes. All decisions regarding the action to be taken are based

on team member’s opinion. Agile teams do not use any metrics to evaluate and/or

determine the risk impact and probability of occurrence.

4.4 Metamodel vs. Model

The definition of every model is based on a specific language, a set of rules and

processes. This language is represented as a metamodel. Graphically represented

the metamodel indicates the model elements, properties, relationships and rules.

In this section we introduce the concepts of metamodeling and graphical

representation that were used for the development of this dissertation.

The process to define a metamodel covers the following steps (Picka, 2004),

(MetaCase, 2014):

• Define the basic concepts: Every language is defined by its syntax and

semantics. For modeling purpose the same concepts applied. The basic

 50

concepts defined in a metamodel correspond to the description,

conditions, constraints, models and theories that would be part of the

language and should be possible to represent them graphically. In this

phase the metamodel author should identify the objects that act in the

model.

• Design of model symbols: In software engineering the use of graphic

tool become the preferred option for communication among

stakeholders or member of a development team. The description of the

symbols to be used in a model is defined by the metamodel. Each of the

objects previously identified should be graphically represented. These

symbols will be then use for models that will aid the communication of

requirements, processes and rules between the members of a project

team. The design of these symbols is up to the author of the metamodel.

However, it is advice to keep some consistency and relation with the

description of the object within the metamodel.

• Define properties: The properties of each object, as in a class diagram,

represent the attributes that characterize the static structure of the

language concepts. Each property has a defined data type and can be

part of the relationship with another object or external source.

• Define relationships and roles: The behavior is described by the

relationships between objects. Roles describe the relationship ends and

its direction. This step is necessary to define the bindings between all

the elements of the metamodel.

• Define rules: As in any language, there are certain rules defined for the

combination of the elements. In metamodeling, these rules can be

related to bindings, cardinality, etc.

The concepts used in this document are based on the GOPRR metamodeling

concepts. (Kelly, Towards a Comprehensive MetaCASE and CAME Environment:

Conceptual, Architectural, Functional and Usability Advances in MetaEdit+,

 51

1997) Kelly described the structured required for a metamodel with five basic

elements, which have been previously described:

• Objects

• Properties

• Relationships

• Roles

Later in 2013 in (Kelly & Pohjonen, Dynamic Symbol Templates and Ports in

MetaEdit+, 2013) introduced the concept of port making GOPRR in GOPPRR.

Ports are additional connection points to objects, where semantics of roles have

different definition.

Metamodeling is used to define a new language for modeling new

methodologies.

 52

5 Discussion
5.1 Analysis of existing methods

There are several studies that intend to analyze the integrations of agile

methodologies with classic development practices in order to assure quality. One

of the most interesting samples is (Nyfjord, Towards integrating agile

development and risk management, 2008)

The two critical aspects that affect users in classic development are delivery

time of functional software and the variable requirements. The long periods of

development do not consider the possible changes in the environment that may

inquire and adjustment in requirements. Therefore these two issues are entirely

related. Classic development lacks capacity of adaptability to new requirements.

Usually these “late” changes are very expensive for the client and the team.

XP is a good method to attack the first situation, long periods of development

are exchange for short iterations, which result on functional software, which

could be checked and approved by users.

Additionally XP offers a group of practices that are not strictly connected with

a workflow and can be implemented easily for any type of project.

SCRUM focuses on system flexibility in a constantly changing environment.

This approach facilitates the team to receive and process voluble requirements.

For this reason and the already studied cases like (Marcal, De Freitas, Soares, &

Belchior, 2007) and (Kiniberg, 2007) we consider XP and SCRUM guarantee

better approach for successful projects. The opportunity of research is the

integration of these combined methodologies with formal practices of risk

management.

There are several samples of research towards comparing and combining XP

and CMMI. Studies at the University of Pernambuco, Brazil (Santana, 2009)

analyze the elements from both technologies that analyze the elements from both

technologies that were implemented in two companies with the intention of

 53

merging these two technologies. The authors insist on a false impression when

current studies try to map practices of CMMI into Agile approaches. It is not

clear how CMMI and Agile could be merged in order to improve the company

processes.

Other studies like (Martisson, 2003) claim that XP and CMMI are

complementary tools. XP defines how to develop software, while CMMI guides

trough what to do from an organizational level. In terms of risk management

practices there is not enough evidence of merging practices of these two

technologies to improve the identification, measurement and control of risks

during the project.

In regards to Zachman framework there is evidence of research towards using

Zachman classification for software development. In (Stoll & Wall, 2009) it is

assumed that Zachman framework describes the software development

organization and the customer. This approach could be valid for identifying root-

cause risk from an organizational point of view.

Most of the literature found in risk management using the Zachman

framework was focused on the construction field not the software industry. The

nature of this framework requires extended documentation; this fact makes the

method incompatible with any agile method.

FMEA and agile development has not been addressed extensively. However, due

to nature of this technique we can say that fits accordingly the agile approach.

The effort, documentation and time required can be easily integrated in an agile

team. However, its implementation cannot be performed independently to the

iterations. FMEA concepts should be integrated within the agile terms of the

iteration. This thesis presents a proposal to integrate the mentioned concepts

with the agile practices and processes.

Outlining a model for integration of risk management and agile software

development has been the purpose of certain research as in (Nyfjord, Towards

integrating agile development and risk management, 2008). However, the

solution proposed in this research does not construct a specific language to be

 54

used as a tool for modeling and documenting risk management process within a

agile development project.

My intention with this thesis is to propose an abstraction of the two most well

know practices of agile development: XP and SCRUM. This combination has been

already addressed in other studies and applied in many institutions in Europe

(Jensen & Zilmer, 2003), (Mar & Schwaber, 2002) however my approach is

different. The main focus would be the risk identification and metrics applicable

for these methodologies. This outlines two main objectives (1) Formal description

of already existing risk management processes into agile methodologies and (2) to

approximate a better implementation of risk management activities suitable for

XP and SCRUM.

Recent statistics show how these two methodologies have become the

preferred selected by most organizations that need to develop with less planning

and documentation; which is the case of many institutions in the Czech Republic

(Buchalcevová, 2009) and in general all around the globe (Ambler, 2008).

The combination of these two practices requires metrics for validating the

performance of their coexistence in order to be able to implement a risk

management process like FMEA (Stamatis, 2003), which could be applicable for

both.

The next steps are towards a definition of the tasks that should be used to

cover the main processes of risk management (identification, evaluation and

control) within extreme programming projects. Therefore, is necessary to identify

which principles, metrics and processes for existing classic risk management (i.e.

Impact, occurrence, severity) can be adopted by the extreme programming

methodology.

Regarding risk management, agile development methodologies do not provide

sufficient guidelines to meet the primary activities of risk management (Levine,

2005). However, a mix between traditional and agile methods is entirely possible

and necessary in order to make decisions regarding the response to the

 55

uncertainty of a project (Boehm B. , 2002). Actions to mitigate or define the risk

tolerance require the use of measures that quantify the impact and probability of

occurrence of a risk. To merge risk management and agile development, we have

chosen extreme programming as an example. Three risk management activities

should be included within the extreme programming basic process: Risk

identification, risk association to engineering tasks and risk measurement. As

agile methodologies do not provide any metrics to quantify the risk effect and

occurrence, it is necessary to find already existing and suitable practices for these

processes.

From my point of view, there are still blurred areas in the agile approach,

especially in terms of quality assurance and risk evaluation. As Boehm implied it

is needed to combine the agile approach with some of the plan-driven

characteristics.

The reasons for what we have chosen this area of research are the continuous

development and increase in popularity within the European industry and the

lack of formal research. Due to the recent popularity of agile methods, more

companies and development teams are interested in their implementation.

However, there is still a lack of formality as well as discrepancies between

authors regarding its definition in certain aspects, as it is quality assurance.

 56

6 Solution - Elaboration of hypothesis
According to the hypothesis established in section 1.2 the aim is to evaluate the

risk associated to user stories and their engineering tasks. The purpose is to

support the decision of inclusion of the ET within a Sprint according to the risk

impact and necessary response.

We have seen in the available literature that agile approaches do not

formalize the activities related to risk evaluation and quantification of their

impact.

The concept of short iterations used in agile approaches gives the opportunity

to include risk evaluation during the whole project development and not only at

the beginning. This represents an advantage since the risks identified in

previous Sprint can represent a change for the next Sprint in order to avoid

unexpected failures.

The challenge of this study is to find the activities and practices from risk

management that comply with the agile manifesto and do not jeopardize the agile

nature of a team implementing SCRUM and/or XP methodologies.

FMEA has been widely used in project of a different nature than software

development, showing excellent results for risk prioritization.

As expected the origins of FMEA are in the military field. The original goal

was to have a process to evaluate the effect of equipment failures, with successful

cases of use in NASA. Therefore, manufacture is where FMEA finds most of its

applications.

One of the recognized uses of FMEA is in air traffic management (Raspotnig

& Opdahl, 2012) where combined techniques of FMEA and sequence diagrams

result in a more accurate visualization of error propagation.

Variations of the FMEA technique have been developed by different

companies and institutions whit the intention of accommodate failure evaluation

to their process. One well-known case is the one of FORD where now they have

 57

their own FMEA handbook specifically with FORD concepts (Ford Motor

Company, 2008)

The following table (Table No. 5) Shows the FMEA form used in beer brewery.

The team divided the form in process and defined potential failures for each

process step (e.g. Preparing the wort, Mixing content till ingredients solved, etc)

Effects S C Failure
Mode

Causes Preventive Action O Detection Action D RPN R/D

Process Element: Sterilisation
Function: Sterilise all of the equipment and then rinse with clean water and allow to dry
[5% Indian Pale Ale
Beer] 40 pints of
beer is scapped

8 Equipment
is

[Instructions] Initial State: 13/03/2013

not
sterilised

Ambiguous methodolo-

[5% Indian Pale Ale
Beer]

9 gy Use of good quality
brew kit

2 Instructions are 3 54

Beer makes the party ingredients read thoroughly
goers unwell before

commenc-
[5% Indian Pale Ale
Beer]

7 Shop owner /
supplier

ing brewing

Beer taste has a
bitterness

 advice

to it
[5% Indian Pale Ale
Beer]

9 [Instructions] Initial State: 13/03/2013

Beer is too gaseous
(bad)

 Metric / imperial

[5% Indian Pale Ale
Beer]

9 weights and volumes Use of good quality
brew kit

2 Directions are
read

2 36

Beer aroma is poor
(e.g.

 not specified (including ingredients and re-read at

vinegary) U.S. imperial) each stage of
the

[5% Indian Pale Ale
Beer]

8 Shop owner /
supplier

brewing process

Beer is not ready for advice
Gavin's 40th birthday
party

[5% Indian Pale Ale
Beer]

7 Measuring devices
at

Beer is cloudy/hazy Gavin's home
display both

 imperial & metric
units

 [Brewer] Initial State: 13/03/2013
 Fails to sterilise

container
 used to carry water Instructions clearly

express
3 none 10 270

 that all equipment
needs to

 be sterilised
 [Brewer] Initial State: 13/03/2013
 Does not wash hands
 beforehand Common sense /

hygiene
3 none 10 270

 [Instructions] Initial State: 13/03/2013
 Insufficient detail about
 alternative ingredients Use of good quality

brew kit
2 Instructions are 5 90

 (does & don'ts) ingredients read thoroughly

 before
commenc-

 Shop owner /
supplier

ing brewing

 advice

 [Steriliser] Initial State: 13/03/2013
 insufficent concentra- Quantity is specified

in the
3 Sterilising solution 4 108

 tion / ratios instructions has a strong
smell

 Instructions specify
imperial

 and metric weights
and vol-

 umes

 58

 [Home] Initial State: 13/03/2013

 Poor air quality (micro

 organisms present) Controlled
environment

3 none 10 270

 [Brewer] Initial State: 13/03/2013
 Washes out sterilising

flu-
 id too early Instructions clearly

express
3 Sterilising solution 2 54

 that all equipment
needs to

has a strong
smell

 be sterilised
 [Water] Initial State: 13/03/2013
 Domestic supply quality Water quality is

assured by
2 none 10 180

 is contaminated (micro water board

 organisms present) Revision State: 20/03/2013
 2 Beer clarity and 8 {144} Robbins, Gavin,

Penkridge, FMEA
Facilitator / Trainer smell are

checked
 during the sec-

 onadary
fermenta-

 tion stage 22/03/2013

 in revision

[5% Indian Pale Ale
Beer]

8 Steriliser
not ful-

[Brewer] Initial State: 13/03/2013

Beer tastes of
detergent

ly rinsed
from

Does not rinse
equipment properly

[5% Indian Pale Ale
Beer]

8 equipment Instructions clearly
express

3 Sterilising solution 2 48

Beer is not ready for that all equipment
needs to

has a strong
smell

Gavin's 40th birthday
party

 be sterilised

[5% Indian Pale Ale
Beer]

8 [Brewer] Initial State: 13/03/2013

40 pints of beer is
scapped

 Forgets to rinse equip- Instructions clearly
express

2 Sterilising solution 2 32

 ment properly that all equipment
needs to

has a strong
smell

 be sterilised
 Past experiences

with simi-

 lar brew kits that are
being

 drank with gusto!
Process Element: Preparing the Wort
Characteristics: Place Malt & Hops container into warm water for a time of >= 5 mins +5
[5% Indian Pale Ale
Beer]

6 Malt &
Hops

[Instructions] Initial State: 13/03/2013

Brewing process takes not warmed Ambiguous methodolo-

longer than required sufficiently gy

[5% Indian Pale Ale
Beer]

7 Use of good quality
brew kit

2 Instructions are 3 42

Beer is watery ingredients read thoroughly

 before
commenc-

[5% Indian Pale Ale
Beer]

6 Shop owner /
supplier

ing brewing

Alcohol content is not
as

 advice

per product description [Kettle] Initial State: 13/03/2013
 Thermostat failure TPM on all devices 2 Visual inspection 1 14

 [Brewer] Initial State: 13/03/2013
 Impatientience / care- Past experiences

with similar
3 none 10 210

 lessness or
inexperience

brew kits that are
being

 drank with gusto!
 Instructions supplied

with
 each brewing kit &

can be
 downloaded from

the
 internet
 Revision State: 20/03/2013
 3 Regular referral

to the
5 {105} Robbins, Gavin,

Penkridge, FMEA

 59

instructions Facilitator / Trainer
 03/04/2013
 in revision

Table 4. FMEA form real example (Gavin Robbins Ltd., 2013)

Several studies have been developed proving that FMEA finds its application

also in the Agriculture sector. Existing methods for risk assessments have been

also combined with FMEA in order to guarantee more accuracy.

T.H. Varzakas from the Technological Educational Institute of Kalamata in

Greece has several use cases of FMEA in Agriculture. In all of them the main

emphasis is on the quantification of risk assessment by determining the RPN per

identified processing hazard.

In (Varzakas, et.al., 2010) there is a comparison of ISO22000 analysis with

HACCP over pistacchio processing and packaging. The processes of salting and

roasting, hand grading of split nuts to remove defects and debris, packaging and

storage or shipping, drying of split and non-split nuts to 5-7% moisture as well as

dumping of nuts and conveying over an air leg to remove debris were identified

as the ones with the highest RPN (280, 240, 147, 144, 130, respectively).

As FMEA suggests, corrective action were taken, depending on the level of

tolerance of the identified risks. Following these actions RPN was calculated

again obtaining significantly lower values.

Other methods were also applied, like the Ishikawa (Cause and Effect or Tree

diagram). The results corroborated the validity of conclusions derived from risk

assessment and FMEA. Therefore, the author considered that the incorporation

of FMEA analysis within the ISO22000 system of a pistachio processing plant is

considered essential.

In (Arvanitoyannis and Varzakas, 2008) as in the previous one a combination

of the Failure Mode and Effect Analysis (FMEA) and ISO 22000 was applied for

risk assessment, this time in salmon manufacturing processes.

Critical Control points were identified and implemented in the cause and

effect diagram (also known as Ishikawa, tree diagram and fishbone diagram).

 60

The processes with highest RPN identified were: Fish receiving,

casing/marking, blood removal, evisceration, filet-making cooling/freezing, and

distribution (252, 240, 210, 210, 210, 210, 200 respectively). As in the previous

example the authors recalculated the RPN after the corrective actions were

taken. The result once more shows that the incorporation of FMEA analysis

within the ISO 22000 is anticipated to prove advantageous to industrialists, state

food inspectors, and consumers.

The University of Bonn, Germany also has carried out studies of FMEA in

Agriculture. In (Gödderz, 2007) the motivation to apply FMEA were the strong

regulations of the government and other organizations related to hazard control

in agrofood. Quality assurance becomes the aim of these regulations. The authors

considered that FMEA could be an appropriate tool to enable animal health

services to support farmers to fulfill these requirements. The paper presents a

computer aided FMEA tool, which includes elements of the HACCP concept. The

tool allows documenting efforts made to meet the claims of quality assurance and

simultaneously provides gathered knowledge in form of a knowledge data base

supporting the advisory service to solve concrete problems on farm. During the

study, it was discovered that FMEA allows proving the execution of these

procedures for health certification and health insurance purposes according to

the demands of EU-regulations and distributive trade.

6.1 Analogy

The FMEA is an analysis of potential failures or mal function in a system. It was

originally intended for use in the military institutions and projects from NASA.

As many of the other risk assessment methodologies, it became popular in the

manufacturing and service industries.

The use of FMEA in software development started timidly some decades ago

however there are more actual studies, which analyze its implementation, like

(Ern, Nguyen, & Noll), (Chang, 2013), (Bicchierai , Bucci, Nocentini, & Vicario,

2012)

 61

(Ern, Nguyen, & Noll) is based on the theory that the effects considered in

FMEA analysis are only the anticipated ones. They explain that unexpected

effects during the project are not approached by FMEA. They proposed a Java

based solution to inject and AADL model as input to generate a matrix of effects.

However, their final implementation remains in the construction and hardware

field.

Our intention with this study is to propose an iterative use of the FMEA as

part of the process of an agile project, by nature iterative. Not only for identifying

failures in the final product but also possible obstacles that may affect the

development of the project itself.

This iterative analysis of risk will allow the team to consider update of the

risk register after every iteration or Sprint.

We would like to evaluate the relationship between the concepts of FMEA and

Software risk management previously described separately:

Failure: According to FMEA a failure is described as any malfunction in a

system. In Software engineering, especially in the agile approaches, a failure can

be described as fail to meet any of the functional or nonfunctional requirements.

Samples of failures in a software project can be divided in two categories, the

one related to the final product and the failures related to the project

management.

Sub categories of failures/risks related to final product operation include:

• User interfaces fails to meet user expectation and/or needs

• Compatibility issues with external systems or subsystems

• Functionalities not included

• Time and/or budget exceeded

Sub categories of failures/risks related to project management include:

 62

• Overestimated release increment

• Truck factor (see section 4.2.2) (Torchiano, Ricca, & Marchetoo, 2011)

• Change of requirements

• Technical failure in the systems used for development

• Human communication errors

Effect: The definition of a risk effect is given by the consequences of its

occurrence. This effect may or not affect the final user. However, it has an effect

for at least some of the stakeholders or the development team. The consequences

can be categorized as: process, operation, product, user or government

regulations. The question to ask in order to identify the possible effects would be:

What happens if the risk becomes a failure? Historical data as well as expert

judgment can be consulted to identify effects. It is important to evaluate not only

the internal consequences but also the consequences related to the environment

where the product/project is develop/used. Generally a consequence of a risk is

the proof performance of the product or a dependent subsystem.

6.2 Metamodeling Agile Risk Management

In order to fulfill the metamodel generation, the following steps should be

completed:

1. Identify the elements that correspond to objects within the agile risk

management activities.

2. Identify the properties of each element (object)

3. Define the relationships between objects according to risk management

workflow activities

4. Define roles for the relationships previously established.

5. Represent graphically the structure based on GOPRR

6. Define scenarios for validation of metamodel

7. Prepare models for validation.

 63

6.2.1 Identification of objects and properties

In order to identify the objects of the metamodel we have to keep on mind the

three areas covered by this study: Software development, Risk Management and

Agile development practices.

Software development in essence requires a life cycle, which guarantee a final

product according to the user, needs. The life cycle or development processes

considered in this thesis are strictly agile methodologies (XP and SCRUM).

Therefore, all the objects and properties to be identified are concepts related to

the agile approach. No waterfall concepts have been taken into consideration for

the metamodel.

6.2.1.1 Risk management concepts

The risk management concepts identified for the metamodel correspond to the

base requirements of risk management idea. These concepts are not strictly

attached to a particular method. The intention is to guarantee that the model

covers the basic activities of risk management. However, some particular

properties from FMEA have been implemented in the model. As mentioned, in

section 2.4, due to the nature of FMEA we consider this method to be ideally

compatible with the agile development approach.

Objects to model

• Risk: Principal object that represents the already identify and defined

uncertainty.

• Cause: Describes the origin of the risk. It may correspond to an event or

characteristic. The source of the cause can be internal or external.

• Response: Planned action to be taken in case the risk occurs. Each risk

should have at least one response action planned, depending risk effect. In

some cases the response can be undefined if the risk is considered

tolerable.

 64

FMEA concepts to be implemented as properties

• Severity: Measure to quantify the level of impact that has the risk

occurrence.

• RPN: The priority that will be assigned to each risk in order to be

addressed. Depending on this measure the team should plan an action to

avoid the risk.

• Occurrence: This measure is to find out the probability of occurrence of a

risk.

• Detection rank: This measurement indicates how possible is to detect the

risk at an early stage, before it becomes an issue.

6.2.1.2 Agile development concepts

• Backlog: Base directory of all the requirements of the final product.

• User story: Individual functionality described as the user expresses it.

• Engineering task: Precise task to be programmed by and assigned

developer. A user story may be split into several engineering tasks.

• Sprint: Iteration given in a restricted period of time where a group of

engineering tasks are developed, tested and implemented. After each

Sprint, a piece of functional software should be delivered and presented to

the user.

• Increment: Represent the set of user stories completed in a Sprint and

previous ones. It is an object set of user stories already completed. The

whole set of functionalities related to the user stories should be in usable

state. The decision of product release is up to the product owner.

• Test scenario: For each engineering task there is a test case defined. A

user story is considered completed where all the test cases have been

successful.

• Velocity: Refers to the calculated amount of work that a team can

compromise for a Sprint. This rate is calculated based on the complexity

rate assigned to each user stories. The number of engineering tasks

 65

derived from a user story is a clear parameter of the effort required. The

history of the velocity provides information to evaluate the amount of work

capable to handle by the team.

Concept Object
decomposition Property decomposition

Risk RMrisk NA
Cause NA RMrisk:cause
Response RMaction NA
Severity NA RMrisk:sR
Occurrence NA RMrisk:oR
Detection NA RMrisk:dR
RPN NA RMrisk:rpnR

User story ADuserStory NA
Engineering
task ADengineeringTask NA

Sprint ADiteration NA

Increment
setObjects:
ADiteration NA

Test scenario ADuserTest NA

Velocity NA
ADuserStory:developmentEffort
ADengineeringTask:developmentEffort

Table 5. Concept mapping

6.3 Concept to object

The concept describe in the previous section have been discomposed as objects or

properties. The mapping is described in the Table No. 4

The concepts related to risk management are named starting with RM. The

concepts related to agile development (Scrum and XP) are named starting with

AD.

The concepts related to risk management are named starting with RM.

 66

6.4 Graphic representation

The tool used for the graphical representation of the metamodel was

MetaEdit+ version 4.0. by MetaCase. MetaEdit Plus is a Domain-Specific

Modeling (DSM) environment. (MetaCase, 2014)

The tool provides all the necessary options to developers for modeling design.

The tools support the metamodel creation, its concepts, rules, notations,

diagrams and code generators.

MetaEdit+ provides support for multiple metamodels and allows automatic

update of model when the metamodel changes. It also support code generator

debugger.

The figure 16. shows the metamodel diagram created with MetaEdit+

The symbol editor allows the developers to design their our model symbols or

import them in several graphic formats.

Concepts were implemented in the model. Following, the description of the model

objects and its properties:

6.4.1.1 ADIteration

• Semantics: Represents a Sprint in SCRUM or iteration in XP. As

described before, it is a time box element where developers should

develop a set of functionalities ready for use.

• Attributes: Each iteration has a code for identification (ID). Besides ID

additional attributes are defined:

o startDate and endDate: The iteration is timeboxed, therefore it

has a start and end date

o length: Number of weeks predefined for the iteration.

o developmentPoints: Depending on length and the effort

calculated for each ET, the iteration would have a number of

 67

points to be developed. The number of points per ET is estimated

based on complexity. This estimation is assigned as

developmentEffort in ADEngineeringTask

o Velocity: The time necessary to complete the assigned ET in the

iteration.

• Symbol: Circle with arrow-end black filling – Text below the symbol

Fig. 9. ADIteration metamodel symbol

• Bindings: ADIteration has one defined binding to ADUserStory. The

relationship is described as: ADIteration consists of ADUserStory(s)

• Cardinality: M:N one or many (at least one) ADIteration consists of at

least one ADUserStory.

6.4.1.2 ADEngineeringTask

• Semantics: Represents each of the engineering tasks derivate from user

stories. An engineering task represents concrete task that developers

should do. The approach of these tasks is not necessary user oriented.

It corresponds to the translation of a user story into real programming

sub-tasks.

• Attributes: In addition to the attributes inherited from WorkUnit,

ADEngineeringtask defines an additional attributed called

developmentEffort. DevelopmentEffort correspond to calculated effort

IT-1

 68

required to complete the task. This attribute is also used to calculate

the total developmentPoints of a Sprint (ADIteration)

• Symbol: Rounded rectangle with dark green border and light green

filling. “Person” icon in dark blue on the right top corner.

Fig. 10. ADEngineeringTask metamodel symbol

• Bindings: ADEngineeringTask has inheritance relationship with

WorkUnit.

• Cardinality: ADEngineeringTask takes the cardinality defined for

WorkUnit: N:1 One or many Work Unit(s) belongs to one ADUserStory.

6.4.1.3 ADUserStory

• Semantics: Represents an agile “user requirement”. Each of the

functionalities required by the user is defined in natural language to be

later fragmented into single development tasks called engineering

tasks.

• Attributes: Identification code (ID) and additional attributes:

o Description: Corresponds to the text given or agree with the user

that describes the desired feature for the system.

 69

o Status: Describe the current status of the user story (e.g.

planned, in progress, developed, tested, release)

• Symbol: “Person” icon in dark blue. Please note the reference to the

UML symbol for User.

Fig. 11. ADUserStory metamodel symbol

• Bindings: ADUserStory has defined three bindings, one to ADUserTest,

one to ADIteration and one to WorkUnit.

Relationships are described as follows:

§ ADUserStory calls ADUserTest

§ ADUserStory has a set of WorkUnit (See cardinality)

§ ADUserStory belongs to ADIteration

• Cardinality:

§ 1:1 ADUserStory belongs ADIteration

§ 1:1 ADUserStory calls ADUserTest

§ 1:N ADUserStory has a set of WorkUnit (See cardinality)

US-1

 70

6.4.1.4 ADUserTest

• Semantics: Represents a testing component for each ET. An ET is

considered completed after successful UT.

• Attributes: Besides ID and description of the test, additional attributes

are defined:

o Status: Defines the current status of the test (e.g. developed, run,

not run, in development, planned)

o Success: Defines the result of the test run (e.g. failed, passed)

o TTC (Merunka, 2009): Unit that expresses the time required

measured by the number of days that are needed to complete the

test. It can be calculated as:

 TTC = MD / (team size * FTE team)

For example, if the task requires working 6 working MD (Man/day)

and the team are 3 workers who devote 50% to the project.

TTC = 6 / (3* 0.5) = 4 days

• Symbol: Orange diamond with an orange square in the middle and the

U letter. ID of the user test is written bellow the diamond.

Fig. 12. ADUserTest metamodel symbol

• Bindings: ADUsertest has one defined binding to ADUserStory. The

relationship is described as: ADUserStory calls ADUserTest

UT-1

 71

• Cardinality: 1:1 one ADUserStory calls one ADUserTest.

6.4.1.5 RMAction

• Semantics: Represents the risk response action to be taken in case of

risk occurrence.

• Attributes: RMAction inherits the attributes of WorkUnit.

• Symbol: Green diamond with a red triangle in the middle.

Identification text is underneath the diamond.

Fig. 13. RMAction metamodel symbol

• Bindings: RMaction has inheritance relationship with WorkUnit. No

new attributes are defined. RMaction also is bound to RMrisk.

 RMrisk calls RMaction

• Cardinality: ADEngineeringTask takes the cardinality defined for

WorkUnit: N:1 One or many Work Unit(s) belongs to one ADUserStory.

RMrisk and RMaction has cardinality 1:1

6.4.1.6 RMrisk

• Semantics: Represents the risk or potential failure identified.

RA-1

 72

• Attributes: Besides ID and description of the test, additional attributes

are defined based on FMEA concepts:

o oR: corresponds to the occurrence rank assigned to the risk.

o sR: corresponds to the severity rank assigned to the risk

o dR: corresponds to the detection rank assigned to the risk

o cause: description of the possible cause of the risk.

• Symbol: Red triangle. Identification text is written underneath the

triangle.

R-1

Fig. 14. RMrisk metamodel symbol

• Bindings: RMrisk is bound to RMaction. RMrisk calls RMaction

• Cardinality: 1 :1 RMrisk to RMaction

6.4.1.7 WorkUnit

• Semantics: Represents the risk or potential failure identified.

• Attributes: Besides ID and description of the test, additional attributes

are defined based on FMEA concepts:

 73

o oR: corresponds to the occurrence rank assigned to the risk.

o sR: corresponds to the severity rank assigned to the risk

o dR: corresponds to the detection rank assigned to the risk

o cause: description of the possible cause of the risk.

• Symbol: Green diamond. Identification text is underneath the diamond.

Fig. 15. WorkUnit metamodel symbol

• Bindings: WorkUnit is bound to ADUserStory. Also RMAction and

ADEngineering task have a inheritance relationship with WorkUnit

• Cardinality: 1 :N UserStory is a set of WorkUnit(s)

WU-1

 74

Fig. 16. Metamodel diagram for Agile Risk Management

 75

7 Verification and validation
Sprint integration: During the Sprint planning meeting the Scrum master

and development team discusses the user stories that will be included in the

Sprint. As part of the agile risk model integration, the scrum master should lead

questions that result in risk identification and can be easily associated to an

engineering task.

One of the elements evaluated during the Sprint planning meeting are the

obstacles that were present in the previous Sprint.

The intention of our model is to enforce the association of each risk, obstacles

or failure to an engineering task. Subsequently, based on the calculated impact of

the risk the team can prioritize the ET and/or plan new ETs as response to the

risk if necessary.

In order to identify risks the team should evaluate each of the user stories

from the backlog and address the potential risk for each one. For this purpose the

team can answer the following questions:

• What is the risk?

• Can the cause be identified?

• Can the risk be quantified?

These questions are inspired on and are a complement to the suggested questions

a SCRUM team should answer on each daily scrum meeting (Sutherland &

Schwaber, 2011).

“What did I do yesterday that helped the Development Team meet the Sprint Goal?

What will I do today to help the Development Team meet the Sprint Goal?

Do I see any impediment that prevents me or the Development Team from meeting the

Sprint Goal? ”

 76

The questions related to risks and its characteristics should not be address on

every daily SCRUM necessarily. However, this analysis should be performed at

least at the beginning and the end of each SPRINT.

The identified risk should be collected. For this purpose the team should

create an agile FMEA form to be used during the Sprint and updated during

daily Scrums.

Table 5 shows the example of the agile FMEA form used for the study case.

The form integrates the concepts of user stories and engineering task to a regular

FMEA form.

Table 6. Agile FMEA form

The first section of the form is used as identification panel also to connect the

form with corresponding Sprint.

Fields required are:

• Sprint number,

• Project name or ID,

• Scrum master responsible,

• FMEA number

• Dates of creation (Original version) and revision

Additional fields that are optional like:

 77

• Core team: Up to 6 participants with expertise for judgment. This

team will be responsible for the FMEA, not necessarily the entire team

of developers.

• Prepared by: This field is use in cases where the participant filling out

the form does not correspond to the scrum master.

• Page: Used to identify the page number of the current FMEA.

The core section of the form is used to list the failures (risks) identify and

perform the quantification and binding with user story(s).

• User story (US): This field corresponds to the user story to analyze. It

may be identified with a number or the full description can be added

here.

• Potential failure mode: Correspond to the identified risk associated to

the US. There may be more than one potential failure per user story. In

this case they will be listed in separate rows to be quantified and

monitor individually.

• Potential effect of failure: For each risk (potential failure) the potential

consequence should identify and registered. This consequence should be

measurable.

• SEV (Severity): As explained before the severity of the risk must be

calculated. SCRUM master and the FMEA team should follow the

classification described in Table 1. FMEA-Risk Severity Ranking.

• Potential cause of failure: In order to plan an action the possible cause

of the failure needs to be identified. This cause may be related or

 78

derivate form another User Story where in such case it is important to

identify the source US.

• OCC (Occurrence): The level of occurrence of the potential failure must

be quantified. Levels were described in Table 2. Occurrence criteria.

• Associated ET: Each US derives one or more engineering task. These

ET needs to be associated with the potential failures identified in order

to measure the impact and calculate the effort require to avoid/mitigate

the risk.

• Current control action: This field is used to indicate the control

processes in progress for the corresponding failure mode.

• DET (Detection): Detection rate as explained before, measures how

possible is the identification of the occurrence of the risk. Table 3.

shows the ranking for this measurement.

• RPN: The risk priority number a FMEA concept to quantify the risks

associated to each user story. Numeric value that should be updated

after response actions have been taken.

• Recommended action: According to the FMEA method for each

potential failure should be an action planned in case of occurrence or in

order to avoid the failure. This action depends on the level of tolerance

defined for the consequences of the failure.

 79

• Responsibility and Target Completion Date: This field will be used for

determining responsible(s) for the planned response action. Target

completion date could be determined in unit of effort required for the

action.

• Action results: All actions taken are evaluated, registered and SEV,

OCC and DET are recalculated. New RPN is achieved.

The team should be able to define the recommended action based on the

following categories:

Action Indicator Description

No action at this
time (Tolerate)

Severity is
considerable low
(1 or 2)

In the event of occurrence and detected by
user, the team should negotiate with the user if
it is necessary an action of correction

Add built-in
detection devices

Detection rate is
low (9-10) and
the severity is
medium (5-8).

The team should prepare an engineering task
that increases the detection of the risk. Base on
this detection requalification and the expected
severity of the risk, the recommended action
should be updated.

Provide
alternatives to the
design (Avoid
before occurrence)

Severity is high
(8-10) and
occurrence is
medium-high (4-
10)

The risk should be avoided. The team should
reconsider the user stories related to the risk
and plan a different solution. If possible avoid
the user stories that may increase the
occurrence of the risk.

Add a redundant
subsystem
(Mitigation)

In cases where
the occurrence is
high (7-10)

The team should plan the response action to
the effect. In some cases these requires new
engineering tasks/user stories to be
implemented.

Table 7. Response action according to FMEA parameters

Additionally the RPN should be used to identify possible user stories that may

comprise the entire project. User stories with high RPN should be carefully

analyzed and a concrete response action should be formulated.

 80

7.1 Model validation

7.1.1 Scenario

One of the concepts in XP related to risk management is the “Spike solution”.

This is a concept not so well documented but essentially created to find an

answer to unclear stories and provide a better estimation for the release

planning.

However, this method does not fully fulfill the risk management basic

activities. There is still a clear need for implementing the risk management

activities within the agile life cycle.

Where should the risk management activities be included? At least 3 main

activities should be present in each iteration: Identification, association of ETs to

risks identified and risk monitoring. The inclusion of these activities should not

run parallel to the release planning. They should be part of the release plan, the

risk prioritization should be considered at the moment of prioritizing ETs. The

process is illustrated in figure 17.

The activities related to risk management included in the cycle are executed

easily with the use of the FMEA form. The form allows us to record the identified

risk. Every of these risks recorded are associated to and specific engineering task.

The form allows us to estimate RPN for each risk and define development effort

necessary for each engineering task.

 81
Fig. 17. Agile iteration integrating RM activities

 82

7.1.2 Study case

A job portal provides us with a set of user stories used in of their sprints to

take as a sample. Some of the details have been hidden due to confidentiality

policy.

12972	

Incorporate	
 impression/click	
 tracking	
 on	

Recommended	
 Jobs	
 page	
 on	
 Core	

	
 	

12147	

Canonical	
 link	
 on	
 all	
 JSR	
 pages	

Currently,	
 Canonical	
 link	
 cannot	
 handle	
 special	
 characters.	

	

Examples:	
 	
 	

Keyword	
 search	
 with	
 “C++”,	
 Canonical	
 link	
 returns	
 the	
 following:	

	
 	
 	
 	
 	
 	
 	
 	
 <hidden	
 detail>	

Keyword	
 search	
 with	
 “R&D”,	
 Canonical	
 link	
 returns	
 the	
 following:	

	
 	
 	
 	
 	
 	
 	
 <hidden	
 detail>	

Keyword	
 search	
 with	
 “BJ’s”:	

	
 	
 	
 	
 	
 	
 	
 <hidden	
 detail>	

	

Participant’s	
 note:	
 	
 These	
 examples	
 are	
 special	
 characters	
 and	

should	
 be	
 handled	
 in	
 another	
 story	
 (maybe	
 next	
 sprint)	

13993	

IE	
 Search	
 Field	
 Hint	
 Text	
 Missing	

DEV00739931	
 	
 Story	
 8009:	
 	
 IE8	
 shows	
 no	
 description	
 text	
 inside	
 the	

keyword	
 search	
 boxes	

14172	

Improvement	
 story:	
 identify	
 benchmark	
 stories	
 for	

1,	
 3,	
 5,	
 8,	
 13	

	
 	

Table 8. Real sample of user stories from web job portal

Another sample of user stories is the given by a development team working on

a plug-in for Adobe Illustrator and InDesign. The plugin generates code bars

(EAN codes) to be implemented in the design of packages and labels.

 83

Fig. 18. Screenshot extracted from the project repository in GitHub

 84

Study case: Flexibarcode – Stolte Packaging
(http://www.flexibarcode.com/)

Case description: Plugin for Adobe Illustrator and InDesign
for creation and edition of bar codes in
packages and label design. Commercial
license.

Study context: JavaScript and Action Script.

Data sources: GitHub and personal interviews

Sample: 3 User stories – 13 Engineering tasks

4 User stories (not exposed)

Table 9. Flexibarcode Project Sample description

Table 10. Project Sample Flexibarcode: User stories and engineering Tasks

User story Engineering tasks

Add ISBN/ISSN text #16

- Define text format specification

- Prepare checksum calculation

- Identify and separate check digit

- Add checkbox for text option of ISBN code

- Modify createIllustrator.in protocol ISBN
to add parameter for ISBN code to pass in
JavaScript file.

-Add new parameter in ISBN JavaScript
file for ISBN text

Add Vertical Shift and Horizontal Spacing
tags #52

- Add spacing field in interface

- Add Vertical Shift numeric field in pts

- Add spacing tag for readability

- Add vertical tag for code readability

Snap to output resolution #22

- Add numeric field in interface for ppi
resolution

- Transfer parameters of resolution to
createBarcodeform on each of the protocols
of the affected barcodes

- Implement new parameters in the
formula to calculate X dimension of the
narrowest bar.

 85

The same company developed a project management tool specifically for

artwork creation and print management projects. The tool is very customized

according to the type of clients the company has. It follows a specific workflow

and the business rules are very strict and not easy to find in other commercial

software tool. The development team for this project was in different location

(Yerevan, Armenia) and had restrictions in terms of access to the engineering

tasks. We had access to the user stories and the subsequent tasks derivated from

failures in the system. The tram worked following the SCRUM methodology,

product owners had an incremental delivery approximately every three weeks.

Key Summary Priority Status Resolution Created Due
Date

Description

PM-
39

Delete link for
uploaded files

Major Closed Fixed 01/04/2010
07:41

16-
Apr-10

During the flow when a file is being
uploaded, should be a link to delete it in
case of mistake.
Only the last file uploaded can be
deleted by the same person who upload
the file, and before clicking the button
SAVE.

PM-
41

New field in
packshot form

Minor Closed Fixed 01/04/2010
07:55

18-
May-
10

A new field for the "Material Code" is
needed in the "New Artwork" page of
the Packshot project.
This will be an optional field.

PM-
53

Color view per
task according
to status

Major Closed Fixed 10/05/2010
08:42

12-
May-
10

Each task (Packshot-artwork) should
change its color according to the status.

PM-
87

Delete artwork
link

Minor Closed Won't Fix 21/07/2010
13:58

26-Jul-
10

Account manager should be able to
delete an artwork from a project.
I create a task by mistake and I was
not able to find the link to delete the
task, only I found delist which has
completely different meaning.

PM-
118

Billing report Major Closed Fixed 01/02/2011
10:14

04-
Feb-11

--copy of my last email---

Dear Mr. Vasil,

I would like kindly to ask you to restart
the development of the billing report.

This chart will be per project. It should
be generated automatically every
month and also manually at any time
by supervisor.

Please find attached an example of this
report.
This is exactly the look that we
required.
It will be also good if the report can be
generated in two formats excel and pdf.
The name of the files should be
PROJECTNAME_OV_DDMMYY

The prices will be set up in the settings.

 86

As always I would like to ask you for
the estimation (time and cost).

Thank you for your help in advance.

Kind regards,

Sandra

PM-
135

New columns
in tasks list

Major Closed Fixed 23/05/2011
12:05

 We need to include in the AW (tasks)
list these columns:
-Brand
-Type of packaging
-Volume (Size)

PM-
136

File size note Major Closed Fixed 23/05/2011
12:07

 We need to see in the workflow section,
the size (KB/MB) of each file uploaded.
Please place it next to the date of
upload or name of file.

PM-
137

Comments
section

Major Closed Fixed 23/05/2011
12:09

 The comments related to a rejection
should be shown in one single comment
(paragraph)
Right now we have a comment saying
that someone rejected the task and
then separately is the comment.

Can the person who rejected made a
comment save it and then send on and
after that the system will show only one
comment with all the information.

PM-
138

Comments
upload

Major Closed Fixed 23/05/2011
12:09

 We need to have the option to upload a
file as part of a comment.

PM-
141

New workflow
link

Major Closed Fixed 23/05/2011
12:13

 We need a link to see the workflow of a
task from the edition page of it.

PM-
147

New report
filter

Major Closed Fixed 23/05/2011
12:24

 We need to be able to generate reports
per project.

PM-
149

link to LINKS Major Closed Fixed 23/05/2011
12:26

 We need a link to download the files
from the folder LINKS of each
task/project.

PM-
150

A user with
multiple roles

Minor Closed Fixed 23/05/2011
12:27

 When an user is created there should
be the option to choose which roles can
perform.
List of roles with check boxes is
required in the user creation panel.

In the login user should choose which
role will use for the current session.

Permissions should apply according to
the role selected.

PM-
151

Archiving
option

Major Closed Fixed 23/05/2011
12:28

 The projects completed should have the
option to be archived which means to
ZIP the folder and place it in a different
server.
The archived project shouldn't appear
tin the list of current projects of each
user.

 87

PM-
158

Applicator Major Closed Fixed 07/07/2011
13:04

 Applicator is a new characteristic of the
artwork.
It should be added in Settings following
the same structure like packaging type.
Content list is:
Shampoo
Conditioner
Shower Liquid
Bath
Liquid Soap

In the artwork definition should be
added as a new field to be filled out by
account anager durign the creation of
the task.
Also it will be required in the view of
the task, folder structure and list of
tasks.

PM-
162

File name Major Closed Fixed 17/08/2011
09:06

 AI and PDF files should be
automatically named following this
structure:

MA-Category-Brand-Applicator-
Variant-PackagingType-Volume-
MaterialCode-Version

Example: MA-Skin-Dove-Shampoo-
Coconut Milk-FL-250ml-8775738-
C0.pdf

PM-
165

New packshot
panel

Blocker Closed Fixed 17/08/2011
09:25

 A new characteristic should be added to
the tasks: Packshot development.

There will be an additional panel
Packshot for each task.
Packshots will have a separate
workflow:

1. Open
2. PS created (3 files should be
uploaded: ZIP (JPG,EPS,PNG), AI
open(with LINKS), PDF) <If one of this
is missing please alert the user>
3. Approved by PM
4. Proof sent to client
5. Proof approved/rejected by client
(Always assume 1 country for this
approval)
6. Completed

Name of file should be automatically
generated: PS-Category-Brand-
Applicator-Variant-PackType-Volume-
MaterialCode-Cycle
Description of packshot:

<Only one should be chose>
Creation of Master 3D model
(Standard-Complex)
Rendering of individual artworks
(Standard-Complex)

Color retouching <Text field> minutes
Digital color proofs <Text field>
(number of proofs done)

 88

PM-
166

Generic
Layout

Major Closed Fixed 17/08/2011
09:35

 There will be a new type of task:
Generic Layout

The Description remains the same as
artwork.

Workflow will be:
1.Open
2. Assigned
3. GL created (PDF and AI)
3. File Approved by PM
4. File sent for client approval
5.Approved/Rejected by Client
6. Proof sent to client
7. Proof approved/rejected by Client
(Always assume 1 country for this
approval)
6. Completed

It should be part of a project just like
another regular task.
AW tasks will be associated to one GL.

PM-
174

Permission for
desginer

Minor Closed Fixed 29/08/2011
12:30

 Designer have the right to reassign the
task to another designer

PM-
176

Workflow
flexible

Major Closed Fixed 29/08/2011
12:42

 The workflow should change in this
case:

E-proof approval: If in task description
has been chosen e-proof approval then
the workflow should include the steps
related to this proof.
If it hasn't been chosen, then the
workflow will be finished after the ZIP
is approved by client.

PM-
177

New step in
workflow

Major Closed Fixed 29/08/2011
12:43

 This step applies for the tasks with
artwork type.

Repro checked: Should be done before
uploading the outlined file and after
country approval. Designer/Supervisor
should click on it and send on the task.

PM-
195

LINKS list Major Closed Fixed 07/11/2011
15:05

 The files uploaded as LINKS should be
shown in a list of files. Each one should
have the option to edit and delete.
Designer and PM are allowed to upload,
edit and delete links.
When a LINK is edit, the old one
should be placed in the previous version
folder for LINKS.

PM-
196

Link to Tasks
list

Major Closed Fixed 07/11/2011
15:06

 Please add a link to Tasks list in the
PROJECT add/edit page.

PM-
197

Tasks view Major Closed Fixed 07/11/2011
15:10

 Designer should be able to see all the
tasks from a project where he/she has
at least one task assigned.

PM-
199

Individual
report

Critical Closed Fixed 13/12/2011
15:35

26-
Dec-11

The system should generate report per
task.
The look and the content should be as
the one in attachment.

PM-
265

Proofing panel Major Closed Fixed 29/03/2012
11:30

05-
Apr-12

It is required to have an additional
panel in the artwork workflow page for
proofing files.

Name of panel: Proofing

Uploads: ZIP file

Fields: The fields that actually we have
in the Edit AW page should be moved

 89

to this panel
-Proof required
-Kodak proofs
-Digital color proofs

PM-
266

Link to edit
task

Major Closed Fixed 29/03/2012
11:48

05-
Apr-12

Please add a link to the edit task page
in the workflow page

PM-
267

Link to edit
project

Major Closed Fixed 29/03/2012
11:49

05-
Apr-12

Please add a link to the edit project
page in the workflow page

PM-
268

Brief panel Major Closed Fixed 29/03/2012
14:58

 it is needed a panel to upload additional
files related to the artwork tasks.
Name: Brief
Upload: Multiple files at the same time
4 upload dialog boxes:
-Brief: Multiple files
-Master: Multiple files
-Old Artwork: Multiple files
-INCI: Multiple files

The folders already exist in the folder
structure

PM-
276

Search in
Projects

Major Closed Fixed 02/04/2012
11:56

13-
Apr-12

The search in project page should allow
to find by:
Material code
V number

And all the columns in the projects list
view.

PM-
277

Archive Major Closed Fixed 02/04/2012
12:53

13-
Apr-12

There should be a search function for
the projects archived.
This function should allow to find tasks
withing archived projects.

The criteria should be :
Material code
Brand
Vnumber
Project name
Variant

The results should be shown as the
tasks list, with the same columns + the
date of archive.

if its necessary the projects can be
archived without being zipped.

PM-
279

Financial
report

Major Closed Fixed 03/04/2012
09:44

17-
Apr-12

System should generate a cost report
like the one in the attachment.

PM-
280

Separation
prices panel

Major Closed Fixed 16/04/2012
14:09

23-
Apr-12

In settings is required to have
separation tab for the prices
It should look like in the attachment.

All prices are editable.

 90

PM-
324

Status report
update

Critical Closed Fixed 11/06/2012
12:51

20-
Jun-12

Please amend the following columns:

H: Change title to Volume instead of
Size
I: Start date should correspond to the
date when the task was created by AM.
J: End date change it to Last update
M: Filled the cell with the status color
that corresponds.

Add the Designer name column after
AM

Change the report title to Complete
<Project/Brand name> Status Update
instead of All Status Update.

For the status report we need two more
filters by AM and by Designer
The date filter should allow to choose
an specific date to generate the report.

PM-
325

Individual
report
generation

Major Closed Fixed 11/06/2012
12:56

25-
Jun-12

Please add the possibility to generate
the Individual reports by project or by
brand.

This means the system should generate
a ZIp that contains all the individual
reports for a given project or a given
brand.

PM-
330

Fields
restriction

Major Closed Fixed 19/06/2012
12:35

29-
Jun-12

Variant name and Project name should
not be longer than 10 characters
Cluster should not be longer than 4
characters

Table 11. Original user stories extract from JIRA repository

Study case: MIS – Stolte Packaging

Case description: Project Management System based on the
workflow for artwork development and
print management agency. Internal use.

Study context: .NET and SQL Server 2000

Data sources: Issue tracker used by the developers: JIRA
(http://dev.sflpro.com/) and personal
interviews with developers and project
owners.

Sample: 36 User stories – 156 Engineering tasks
estimated

Table 12. MIS Project description details

Due to easy access to information, time of development and low restrictions of

confidentiality we were able to work with the second sample mentioned above

 91

(Flexibarcode). The developer team for this project was in-house, this allows to

have permanent contact with the developers to get feedback regarding the

proposal. The development team allows us to partly implement the methodology

and track results.

In order to evaluate results the methodology was implemented only for some

parts of the projects. The team chose a group of user stories that will be

monitored using FMEA. We proceeded to compare the results of those User

stories that were tracked against the ones that were not part of our process.

The figure 19 shows an extract of the FMEA form used in the project.

 92

Fig. 19. FMEA agile project sample

 93

The user stories selected for FMEA use showed an interesting behavior. Most

of them showed consequences that may compromise the quality of the product

and the timing of the project. Therefore, some of them derivate in separate

stories. The developers were able to adjust the plan of the Sprint and schedule

first the most critic engineering tasks fitting to the desired length of the Sprint.

Developers found the tool very appropriate for fast planning and accurate

identification of additional engineering tasks.

8 Discussion of Results
This dissertation is dedicated to modeling risk management activities within

agile software development methodologies like SCRUM and XP.

The introduction outlines the motivations for the development of the model. The

introduction chapter includes the goals and sub goals defined for this study.

The main goal of this dissertation was to design a methodology style for risk

management process applied to agile development methods like SCRUM and XP

The literature review illustrate the necessary group of processes to ensure risk

management in a project. Risks should be identified, quantified and prioritize. A

risk response plan should be prepared, which correspond to the response actions

planned for each of the risk previously analyzed.

This work is quite unique due the following aspects:

• Uses GOPRR to combine FMEA and Agile software development

• The use of GOPPR guarantees a practical use. It is supported by a wide

variety of commercial tools. The one used for practical purposes in this

work was MetaEdit+ from Meta Case.

• The model is not fix to a specific type of project. The model is defined as

an ontology, which is not bonded to a specific type of software neither

 94

project. It is suitable to any development in any field where agile

methodologies as XP and SCRUM are applicable.

• The model was developed as a set of natural language pieces.

Programming can extend the soft definition of concepts.

We find a possibility of prioritization in case of lack of recourses. User stories

can be discarded cause of detection ranking or level of occurrence. Giving more

time for complex valuable stories or adding more stories to iteration.

Standard agile rely on the iteration concept for solving problems. This

implementation provides a complementary approach to track risks and failures.

9 Conclusion
9.1 Summary of dissertation

Reviewing the current state of agile risk management practices we have confirm

that the agile approach lacks of formal implementation of risk management

activities.

Common risk management practices in XP and SCRUM rely on the concept of

incremental development.

As per the goals defined for this thesis, they were fulfilled as follows:

• The agile practices that ensure quality software projects were identified

as follows:

o Principles in SCRUM of Inspection and adaptation. Regular

evaluation against expected results are part of the life cycle in a

SCRUM project. The SCRUM team is developing under the

principle that requirements may and will change at any moment.

o Sprint retrospective is also present in SCRUM projects. It

corresponds to an internal evaluation of the team performance in

terms of processes and communication.

 95

o Mitigation of risks: This task is performed basically turning

issues into new features to develop.

o Real customer involvement in order to fulfill user requirements

and share continuous feedback on the ongoing development.

o Shared code responsibility among the team members. Collective

ownership is translated in collective knowledge reducing the risk

of truck factor.

The risk management activities identified n agile methodologies do not

follow formal implementation neither cover the basic three aspects of risk

management (identification, quantification/evaluation and

control/monitoring).

• A methodological approach for RM processes was proposed to be

applied in projects developed using XP practices and/or SCRUM

methodology. This approach uses the concepts of FMEA to identify,

quantify and control risks.

• The methodological approach proposed by this thesis includes few and

low effort activities to identify, track and measure risk. These activities

are easily added to the normal life cycle of iteration in an agile project.

• The existing method for quality assurance FMEA we supported by

several of the ideas compound in the agile approach. It can be

considered by nature an agile method.

The work presented in this document provides a formal framework for agile

teams to address risk management without jeopardizing the agile nature of the

project development.

9.2 Suggestions for further research

There may be a possibility of a quantitative model but this was not considered

during this thesis since we believe this goes against the agile approach.

 96

Future work is towards validation of the methodological approach defined in a

real case of study integrating the RM processes into an XP/SCRUM project.

Future project could be initiated as an extension of the presented work to be

applicable in other agile techniques as Adaptive Software Development, Agile

Unified Process, etc.

 97

10 List of abbreviations
IS – Information System

RM – Risk Management

FMEA – Failure Mode Effect Analysis

SW – Software

XP – Extreme programming

ET – Engineering task

SQUARE – Software product Quality Requirements and Evaluation

GOPRR – Graphs Object Properties Roles Relationships

SEI – Software Engineering Institute

CMMI – Capability Mature Model Integration

UT – User Test

11 List of Tables
Table 1. Risk Severity Ranking…………………………………………………...……34

Table 2. Occurrence criteria…………………………………………………….………35

Table 3. Detection ranking………………………………………………………...……36

Table 4. FMEA form real example……………………………………………..………59

Table 5. Concept mapping………………………………………………………………65

Table 6. Agile FMEA form………………………………………………………………76

Table 7. Response action according to FMEA parameters…………………………79

Table 8. Real sample of user stories from web job portal………………………….82

Table 9. Flexibarcode Project Sample description…………………………………..84

Table 10. Project Sample Flexibarcode: User stories and engineering Tasks…..84

Table 11. Original user stories extract from JIRA repository……………………..90

 98

Table 12. MIS Project description details……………………………………………90

12 List of Figures
Fig. 1. Projec management triangle………….…………...……………………………15

Fig. 2. Organization of SQuaRE series of International Standards…..……..……17

Fig. 3. Software quality model categories and attributes……...………...…………20

Fig. 4. The Zachman framework………………………………………………..………27

Fig. 5. Project Quality Management Overview………………………………………28

Fig. 6. Project Risk Management Overview………………………..…………………30

Fig. 7. SCRUM Life Cycle……………………………………………………………….41

Fig. 8. XP Activity diagram of XP iteration……………………..……………………47

Fig. 9. ADIteration metamodel symbol…………………..……………………………67

Fig. 10. ADEngineeringTask metamodel symbol……………………………………68

Fig. 11. ADUserStory metamodel symbol……………………….……………………69

Fig. 12. ADUserTest metamodel symbol………………………………………………70

Fig. 13. RMAction metamodel symbol…………………………………………………71

Fig. 14. RMrisk metamodel symbol……………………………………………………72

Fig. 15. WorkUnit metamodel symbol…………………………………………………73

Fig. 16. Metamodel diagram for Agile Risk Management……….…………………74

Fig. 17. Agile iteration integrating RM activities……………………………………81

Fig. 18. Screenshot extracted from the project repository in GitHub…………….83

Fig. 19. FMEA agile project sample……………………………………...…………….92

 99

13 Bibliography

Agile Alliance. (2013). The Twelve Principles of Agile Software. Retrieved March

6, 2013, from Agile Alliance: http://www.agilealliance.org/the-alliance/the-agile-

manifesto/the-twelve-principles-of-agile-software/

Ambler, S. (2008). The Agile System Development Life Cycle (SDLC). Retrieved

March 2012, from Ambysoft: http://www.ambysoft.com/essays/agileLifecycle.html

Awad, M. (2005). A Comparison between Agile and Traditional Software

Development Methodologies. Dissertation Thesis, University of Western

Australia, School of Computer Science and software Engineering.

Banerjee, N. (1995). Utilization of FMEA concept in software lifecycle

management. Software Quality Management. 1, pp. 219-230. Southampton:

Computational Mechanics Publications.

Beck, K. (2004). Extreme Programming Explained: Embrace Change (2nd Edition

ed.). Addison Wesley.

Beck, K., Grenning, J., Martin, R., & Beedle, M. (2001). agilemanifesto. Retrieved

2008, from Manifesto for Agile Software Development: http://agilemanifesto.org/

Bicchierai , I., Bucci, G., Nocentini, C., & Vicario, E. (2012). An Ontological

Approach to Systematization of SW-FMEA. In F. Ortmeier, & P. Daniel (Eds.),

Computer Safety, Reliability, and Security (Vol. 7612, pp. 173-184). Berlin:

Springer Berlin Heidelberg.

 100

Boehm, B. (2002). Get ready for Agile Methods, with Care. Computer , 35 (1), 64-

69.

Boehm, B. (1991). Software risk management: principles and practices. Software,

IEEE , 8 (1), 32-41.

Buchalcevová, A. (2009). Research of the Use of Agile Methodologies in the Czech

Republic. In Information Systems Development (pp. 51-64). New York: Springer

US.

Chang, K. (2013). A more general risk assessment methodology using a soft set-

based ranking technique. Soft Computing , 18 (1), 169-183.

Chow T., C. D. (2008). A Survey study of critical success factors in agile software

projects. Journal of Systems and Software , 81 (6), 961-971.

CMMI Product Team . (2010). CMMI® for Development, Version 1.3 . Carnegie

Mellon University. . Retrieved from http://www.sei.cmu.edu/reports/10tr033.pdf

Ern, B., Nguyen, V., & Noll, T. Characterization of Failure Effects on AADL

Models. LNCS 8153 (pp. 241-252). Berlin: Springer Verlag.

Fitsilis, P. (2008). Comparing PMBOK and Agile Project Management Software

Development Process. Advances in Computer and Information Sciences and

Engineering , 378-383.

 101

Ford Motor Company. (2008). FMEA Handbook version 4.1. Design Institute.

Dearborn: Ford Company.

Gavin Robbins Ltd. (2013, March). Process FMEA example. Retrieved June 11,

2014, from Professional FMEA Training, Facilitation & Software:

http://www.fmea.co.uk/example/index.html

Glazer, H. D. (2008). CMMI or Agile: Why Not Embrace Both! (CMU/SEI-2008-

TN-003). Carnegie Mellon University. Software Engineering Institute.

Glazer, H., Dalton, J., Anderson, D., Konrad, M. D., & Shrum, S. (2008). CMMI

or Agile: Why Not Embrace Both! Carnegie Mellon University. Pittsburgh:

Software Engineering Institute.

Higuera, R., & Haimes, Y. (1996). Software Risk Management Technical Report.

Carnegie Mellon University. Pittsburgh: Software Engineering Institute.

International Standard Organization (ISO). (2011). Systems and software

engineering -- Systems and software Quality Requirements and Evaluation

(SQuaRE) -- System and software quality models. ISO.

Jamieson, J. M., & Fallah, M. H. (2012). Agile Quality Management Techniques.

Software Quality Professional , 14 (2), 12.

Jensen, B., & Zilmer, A. (2003). Cross-Continent Development Using Scrum and

XP. 4th International Conference, XP 2003 (pp. 146-153). Berlin: Springer Berlin

Heidelberg.

 102

Kelly, S. (1997). Towards a Comprehensive MetaCASE and CAME Environment:

Conceptual, Architectural, Functional and Usability Advances in MetaEdit+.

Ph.D. Thesis, University of Jyvaskyla.

Kelly, S., & Pohjonen, R. (2013). Dynamic Symbol Templates and Ports in

MetaEdit+. SPLASH Workshop on Domain-Specific Modeling. Indianapolis,.

Kiniberg, H. (2007). Scrum and XP from the Trenches. Retrieved 2014, from

InfoQ:

http://wwwis.win.tue.nl/2R690/doc/ScrumAndXpFromTheTrenchesonline07-

31.pdf

Lauritsen, T., & Stålhane, T. (2005). Safety methods in software process

improvement. 12th European conference on Software Process Improvement (pp.

95-105). Berlin: Springer-Verlag Berlin.

Levine, L. (2005, May). Carnegie Mellon Software Engineering Institute.

Retrieved 2012, from Reflections on Software Agility and Agile Methods:

Challenges, Dilemmas, and the Way Ahead.:

http://www.sei.cmu.edu/library/assets/reflections.pdf

Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, K., & Shull, F. Empirical

Findings in Agile Methods. Second XP Universe and First Agile Universe

Conference Chicago, (pp. 197-207). Berlin: Springer Berlin Heidelberg.

Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, K., & Shull, F. (2002).

Empirical Findings in Agile Methods. Second XP Universe and First Agile

Universe Conference Chicago (pp. 197-207). Berlin: Springer Berlin Heidelberg.

 103

Marcal, A., De Freitas, B., Soares, F., & Belchior, A. (2007). Mapping CMMI

Project Management Process Areas to SCRUM Practices. Software Engineering

Workshop, 2007. SEW 2007. 31st IEEE (pp. 13-22). Columbia: IEEE.

Martisson, J. (2003). Maturing XP trought the CMM. Extreme Programming and

Agile Processes in Software Engineering. 2675, pp. 80-87. Genova: Springer

Berlin Heidelberg.

Merunka, V. (2009). Software Engineering. Prague.

MetaCase. (2014). MetaEdit+ 4.0 documentation updates. Retrieved January

2014, from MetaCase: http://www.metacase.com/support/40/manuals/

Moran, A. (2014). Agiles Risk Management. Zurich: Springer International

Publishing.

Nelson, C., Taran, G., & Hinojosa, L. (2008). Explicit Risk Management in Agile

Processes. Agile Processes in Software Engineering and Extreme Programming. 9,

pp. 190-201. Limerick: Springer Berlin Heidelberg.

Nyfjord, J. (2007). Commonalities in risk management and agile process models.

Proceedings of the 2nd International Conference on Software Engineering

Advances (ICSEA’07) (p. 18). France: IEEE Computer Society Press.

Nyfjord, J. (2008). Integrating Risk Management with Software Development:

State of Practice. Proceedings of The International MultiConference of Engineers

and Computer Scientists . 1, pp. 878-884. Hong Kong: Newswood Limited.

 104

Nyfjord, J. (2008). Towards integrating agile development and risk management.

Stockholm University, Faculty of Social Sciences, Department of Computer and

Systems Sciences. Kista: Institutionen för data- och systemvetenskap (tills m

KTH).

Příbrsky ́, M. (2012). Kvantifikovany ́ přístup k jakosti informačního zabezpečení

pro podporu evaluace informačních technologií. PhD Thesis, University of Life

Sciences in Prague, Department of Information Engieering, Prague.

Pekka, A., Outi, S., Jussi, R., & Juhani, W. (2010). Agile Software Development

Methods: A Comparative Review. In Agile Software Development (pp. 31-59).

Finland: Springer Berlin Heidelberg.

Picka, M. (2004). Metamodeling and development of information systems.

Agricultural Economics , 50, 65-70.

Project Management Institute PMI. (2013). A Guide to the Project Management

Body of Knowledge (PMBOK® Guide) (5th Edition ed.). Project Management

Institute.

Raspotnig, C., & Opdahl, A. (2012). Supporting Failure Mode and Effect

Analysis: A Case Study with Failure Sequence Diagrams. Requirements

Engineering: Foundation for Software Quality. 7195, pp. 117-131. Essen:

Springer Berlin Heidelberg.

Santana, C. G. (2009). Agile Software Development and CMMI: What We Do Not

Know about Dancing with Elephants. 10th International Conference, XP 2009,

Pula, Sardinia, Italy, May 25-29, 2009. Proceedings (pp. 124-129). Springer

Berlin Heidelberg.

 105

Stamatis, D. (2003). Failure Mode and Effect Analysis: FMEA from Theory to

Execution (2nd Edition ed.). Milwaukee: Amer Society for Quality.

Standish Group. (2013). CHAOS MANIFESTO 2013 - VersionOne. Retrieved 05

17, 2014, from VersionOne:

http://www.versionone.com/assets/img/files/CHAOSManifesto2013.pdf

Stoll, P., & Wall, A. (2009). Software engineering feauturing the Zachman

taxonomy. Mälardalen University, Computer Science and Electronics, Västerås.

Sutherland, J., & Schwaber, K. (2011, October). The SCRUM guide. The

Definitive Guide to Scrum: The rule sof the game. Retrieved March 2012, from

Scrum.org:

https://www.scrum.org/Portals/0/Documents/Scrum%20Guides/Scrum_Guide.pdf

Torchiano, M., Ricca, F., & Marchetoo, A. (2011). Is my project's truck factor low?:

theoretical and empirical considerations about the truck factor threshold. 2nd

International Workshop on Emerging Trends in Software Metrics (pp. 12-18).

New York: ACM.

Turk, D., France, R., & Rumpe, B. (2002). Limitations of Agile Software

Processes. Third International Conference on eXtreme Programming and Agile

Processes in Software Engineering.

Von Scoy, R. (1992). Software Development Risk: Opportunity, Not Problem.

Carnegie Mellon University. Pittsburgh: Software Engineering Institute.

 106

Wells, D. (2013, October). Extreme Programming. Retrieved 2014, from Extreme

Programming: A gentle introduction: http://www.extremeprogramming.org/

Zachman, J. (2008). About The Zachman Framework™. Retrieved 2014, from

Zachman International®: https://www.zachman.com/about-the-zachman-

framework

Zachman, J. (2011). The Zachman Framework Evolution. Retrieved 2014, from

Zachman International®: https://www.zachman.com/ea-articles-reference/54-the-

zachman-framework-evolution

