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The Self-balancing E-bike - Construction
and Control

Abstrakt

Tato práce se primárně soustředí na řešení samovyvažování se
modelu jízdního kola. Nejprve jsou představeny různé možnosti
řešení problému samovyvažování. Jeden z mechanismů je vy-
brán a následně detailně popsán a implementován na reálném
modelu jízdního kola se setrvačníkem. Dále je namodelován,
navrhnut a vytvořen mechanický model prototypu včetně elektron-
iky. Nakonec je provedena kalibrace a prostudováno několik způ-
sobů filtrace signálů.

Klíčová slova: samovyvažovací model jízdního kola, reakční kolo,
gyroskop, obrácené kyvadlo, Kalmanův filtr; odhad postoje; IMU;
AHRS; Kvaternion; stat-spcae model; PID regulátor; komplemen-
tární filtr; kalibrace gyroskop; kalibrace akcelerometru.

The Self-balancing E-bike - Construction
and Control

Abstract

This project is mainly about a self-balancing bicycle. Firstly, the
various possibilities of balancing a bicycle are discussed. Secondly,
one mechanism of these possibilities is chosen to be further stud-
ied and applied in a real robot which is balancing a bicycle with
a reaction wheel. Thirdly, a proposed prototype of a mechanical
model and electrical components is modeled, designed, and inves-
tigated. Fourthly, calibration and different kinds of filtering like,
complementary filters, and Kalman filters are deeply studied.

Keywords: self-balancing bicycle model, reaction wheel, gyro-
scope, inverted pendulum, Kalman Filter; attitude estimation;
IMU; AHRS; quaternions; stat-space model; PID controller; com-
plementary filter; calibrating gyro; calibrating accelerometer.
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1 Introduction

Two-wheeled vehicles (bicycles) have been used since 1817. Since that time, two-
wheeled vehicles have gone through different stages of development. Additionally,
in the late 19th century, Electrical motors have been implemented in two-wheeled
vehicles. Such vehicles have been named motorbikes.

Even though driving motorbikes or bicycles could be interesting and adventur-
ous for some people, it might be dangerous for others. In addition, many people
who did not learn to drive bicycles in their childhood, find it extremely difficult,
embarrassing, and even sometimes impossible for them to learn it when they get
older. Therefore, a self-balancing robot might be somehow helpful for those who
did not have the chance to learn when they were young, with the case that the two-
wheeled vehicles could be modified to function as a learning device. Furthermore,
hazardous accidents happen every year causing injuries, permanent disabilities, and
death. Thus, more stable two-wheeled vehicles might decrease the number of ac-
cidents and so the number of injuries and death rate. Moreover, Moreover, from
the modeling, practical and experimental control point of view, the self-balancing
bicycle is a nice challenge for control engineers.

At the beginning of the 21st century, a lot of effort has been focused on the system
of self-driving cars (four-wheeled vehicles). In the case of motorbikes, however,
a self-driving system might not be useful unless there is a system that balances
the two-wheeled vehicles. The two-wheeled vehicle might have their preferences
over four-wheeled vehicles. These preferences can be summarized in size, energy
consummation, crowding, and adventure.

Furthermore, engaging the new cutting-edge technology in our daily uses devices
has been an essential thing to facilitate our life with less effort and, of course, less
cost. One of these technologies is data acquisition, signal processing, calibration,
and filtering. Without this accuracy of processing, sensors would have their own
flaws, errors, and probably damages, to property or even personal life. Therefore,
getting data from sensors is not as easy as it sounds, and it surely requires some
techniques and approaches in order to to get accurate signal results that will ensure
functionality and safety. Some of these techniques are filtering and combining results
of two or three sensors for getting the targeted output precisely, usually known
as sensor fusion,

One of the best chances to apply and translate electronics knowledge, mechanical
knowledge, and coding knowledge into reality is to be engaged with a real practical
mechatronics project. Such a project can combine all knowledge and backgrounds
together in order to produce a mechatronics system with our eyes open to the prac-
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tical issues, errors, and flaws that usually are not taken into account in theory.
The previous motivations have been a good spark for me to put more effort to

make analytical research on the different possibilities of balancing two-wheeled vehi-
cles, proposing a prototype of a self-balancing robot, designing an initial model for
the robot, constructing a 3D prototype, study different possibles of getting clean pre-
cise output results of sensors, model the plant, design the controller and implement
it to the whole system.
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2 Possibilities of stabilizing bicycles

Each vehicle driven on the road must be somehow stabilized and running in a safe
mood. Four-wheeled vehicles and three-wheeled vehicles are normally stabilized
by the wheels, but for two-wheeled vehicles, this is not the case. Each two-wheeled
vehicle must be, therefore stabilized either by the driver himself or by another mech-
anism. In order for the two-wheeled vehicle to be autonomous not only does it need
a system for driving it safely and intelligently, but also it must have an engineering
system that enables it to be stabilized. There are different possibilities by which the
two-wheeled vehicle (bicycle) can be stabilized. Some of these engineering ideas are
as follows:

2.1 A reaction wheel
The idea of a self-balancing robot can be implemented on bicycles with different
mechanisms. The reaction wheel, however, is considered one of the most suitable
methods due to its straightforwardness, functionality, and robustness. The reaction
wheel mechanism relies on the principle of an inverted pendulum. An inverted
pendulum is a pendulum with the exception that its center of mass is above its pivot
and thus should be stabilized [1][2][3][4]. Figure 2.1 shows the idea of stabilizing the
cart’s inverted pendulum.

Figure 2.1: Cart inverted pendulum

11



The concept of the reaction wheel control is basically controlling a spinning mo-
tor that is connected to a wheel with calculated inertia. Then, the motor accelerates
or decelerates with the possibility of rotating in both directions depending on the
requirements. This motion of the wheel creates a reaction torque based on the law
of conservation of momentum and thus enables to control of the bicycle. The ad-
vantages of using such a mechanism can be summarized in low price, simplicity, and
absence of ground reaction. While the disadvantages are high energy consummation
and limited torque amounts[1]. One efficient prototype, that harnesses and utilizes
this idea, is called MURATA BOY[3][5]. It is shown in Figure 2.2.

Figure 2.2: MURATA BOY prototype

2.2 Gyroscopic Stabilisation
Gyroscopes as systems or sensors(MEMS) are one of the most useful devices in
the engineering world. They have different implementations such as in cameras,
helicopters, balancing vehicles, and spacecrafts[6]. A simple gyroscope system with
its components is illustrated in figure 2.3.

Figure 2.3: A simple gyroscope
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Gyroscopes can as well be implemented for balancing bicycles in different forms
and methods, some of which are:

2.2.1 A gyroscope, its axis is parallel to the driving wheels’ axes
This stabilizing method is based on the gyroscopic precession effect (GPE). It ba-
sically uses two motors. The first motor is a high-speed BLDC motor for rotating
the rotor of the gyroscope. The second motor is a DC servo-motor for moving the
gimbal when required and so balancing the bicycle[7][8]. More illustrated details are
in figure 2.4.

Figure 2.4: A balancing bicycle gyroscope

The advantages of using this method compared to the reaction wheel method,
are more stability, efficiency, and accuracy. Furthermore, since the rotor rotates
at a very high speed, it provides a very stable movement. In the case of changing
the angle of the gimbal, the reaction balance torque will be very huge, and so very
precise and balanced.[7]

This method has been implemented in the Gyro-X-1967 prototype as shown in
figure 2.5[9]. Now this prototype is preserved in Lane Motor Museum

Figure 2.5: Gyro-X Car prototype
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2.2.2 Two gyroscopes their axes are perpendicular to the driving
wheels axes

This mechanism is based on two gyroscopes that rotate in different directions with
constant velocity. When the vehicle tilts (rolls) to the right or to the left, there
is a gyroscope sensor that sends a signal to the motor and so rotating the gimbal up-
ward or downward. When the gimbal rotates, it rebalances the bicycle again[10][11].
Figure 2.6 shows the principal working of a couple of gyroscopes[12].

Figure 2.6: Couple gyroscopes

This method of stabilizing is considered the most accurate and stable among all
methods mentioned in this project. Therefore, it has been implemented in a real-
world self-balanced motorbike prototype called C1 by Lit Motors Company. The
prototype is illustrated in figure 2.7[12]

Figure 2.7: C1 prototype by Lit Motors
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2.3 A torque applied on the steering handlebar
This mechanism basically balances the bicycle by an external force or torque that
is applied directly to the steering handlebar. The external force can be in the form of
an electric linear actuator[13]. The external torque can be in the form of a rotational
motor.[14]

The advantages of such a mechanism are lightness and low power consumption.
On the other hand, the disadvantages are a less stable system and a lack of robustness
when the tilt angle is large. Figure 2.8 shows an actuator that balances the bicycle
by balancing the steering handlebar.

Figure 2.8: Balancing a bicycle by an actuator
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3 Construction, prototyping, assembly

From the previous methods of motorbike controlling mentioned in chapter 2, the
reaction wheel method is chosen to be further studied, analyzed, and performed.
For this method, multiple electrical and mechanical components will be needed to
do the job. The idea in this prototype is that a self-balancing motorbike or (SBMB)
will be able to stabilize itself with the help of a reaction wheel that is connected to
a DC motor. When the bike detects any kind of tilt or disturbance, SBMB should
be able to detect these changes and upon them take proper action by the reaction
wheel motor. Angle detection is achieved by fusing an accelerometer, gyroscope,
and magnetometer. All these sensors are inserted in the MPU-9250. In addition,
there are two other motors that are responsible for moving and steering. These
motors are controlled by a smartphone via a Bluetooth module. Figure 3.1 shows
the overall schema from the upper compact level point of view.

Figure 3.1: Scheme of electrical components
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3.1 Assembly
The SBMB system is based on a controlling approach. In other words, it requires all
essential components for successful feedback control. So, it needs a microcontroller,
appropriate sensors, actuators, and a well-designed system that will facilitate the
controlling approach namely the center of mass position. Figure 3.2 shows the chart
or the circle of a successfully controlled mechatronics system.

Construction

Sensors and 
FiltersActuators

Controller

Figure 3.2: The Circle of a successful controlled mechatronics system

Moreover, to successfully accomplish such a system, a lot of mechanical and
electrical components are needed. The multiple main electrical and mechanical
components are illustrated in the following table.

Table 3.1: Electrical and mechanical components
The component The number
Arduino nano 2

Li-ion batteries 4
Bluetooth module 1

Motors 3
Motor driver 1

Switch 1
MPU 9250 1

Wheels 2
Reaction wheel 1

Bearings 2
Shafts 2
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3.2 Construction
Two 3D prototypes are designed for the purpose of construction, both are done in
Inventor. The first one is in figure 3.3 and the second one is in figure 3.4

3.2.1 Prototype A

Figure 3.3: Bicycle 3D design A
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3.2.2 Prototype B

Figure 3.4: Bicycle 3D design B
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4 Actuators and sensors

Actuators and sensors are the devices required in any machine to recognize what
happens in the surrounding environment and therefore react to the action accord-
ingly and properly.

4.1 Actuators and motor drivers

4.1.1 Actuators
An actuator is a transducer that converts one form of energy to another. For ex-
ample, the electric motor is considered to be an actuator because it converts the
electric energy to mechanical transnational or rotational energy. There are many
types of actuators as eclectic, pneumatic, and hydraulic.

In this project, only eclectic actuators have been used as a source of energy
transformation. Three electric motors are used. The first motor is a servo motor
for enabling the bike to turn left and right. The second motor is a dc motor for
allowing the bike to move forward and backward. The third motor is a dc motor
that is connected to the reaction wheel for the balancing process of the whole bike.
The three motors are shown in figure 4.1[15]

Figure 4.1: The drive motor, the reaction wheel motor, and the steering motor
respectively

20



4.1.2 Motor drivers
Motor drivers are devices that are used for controlling motors. Different types of
motors have different ways of driving. For DC motors, H-Bridge is preferably used
due to its simplicity and low cost. The H-Bridge that is used for driving the dc
motors is L293D. Figure 4.2 shows the principal working of H-Bridge and L293D.
H-Bridge’s functional principle is that it has electrical switches that are controlled
by microcontrollers’ PWM signals. And by these signals, the motor is driven direc-
tionally and quantitatively[16]

Figure 4.2: L293D motor driver, schema of H-Bridge working principal

4.2 Sensors and sensor fusion
Sensors are instruments that allow the detection of an expected change in the con-
tiguous environment. The considerable development of technologies in ICs has led
to a revolutionary contribution to the manufacturing sensors world. Nowadays, the
trend and the most used sensors are smart and soft sensors, in which hardware
sensing is neglected. In other words, a soft and smart sensor is an instrument that
involves a microprocessor that is capable of doing mathematical operations so that
it can produce the required output signals of interest with less noise.[17]

4.2.1 MEMS and MPU9250
MEMS or Microelectromechanical systems are small devices that combine electri-
cal and mechanical components in the form of ICs to do advanced and completed
microscopic tasks.[18]

IMU or Inertial Measurement Unit is a MEMS device that combines multiple
sensors in order to determine the orientation of an object with respect to a specific
frame. IMUs sensors can vary from one type to another depending on the sensors
inserted, but most of them include sensors that can detect angular rate, the earth’s
magnetic field, and gravitational acceleration. The most important applications of
IMUs are in planes, satellites, and UAVs[19].
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MPU9250 sensor is an IMU sensor that includes 3 sensors, an accelerometer,
a magnetometer, and gyrometer. Each sensor detects the change in three axes
XYZ, so in total, this device outputs 9 signals. Every three signals are on one axis.
Figure 4.3 shows how the MPU9250 sensor looks like.

Figure 4.3: MPU9250 sensor

Accelerometers

An accelerometer is an instrument that can measure linear or gravitational
accelerations. There are different types of accelerometers like MEMS capacitive
accelerometers, piezoresistive accelerometers, and piezoelectric accelerometers. The
one that is used in MPU9250 is a MEMS capacitive accelerometer. Its working
principle is based on this, a mass is placed between springs. The mass, depending
on the action, moves to one side or another. A change, that occurs in the mass, will
result in a change in the capacitance. This change is recorded as a G-Force. Figure
4.4 illustrates the working principle of MEMS capacitive accelerometers.[19][20]

Figure 4.4: MEMS capacitive accelerometer working principal

The only drawback of using accelerometers alone is that the output results are
not highly accurate and their noise is high. Therefore, for applications that need
more precise angle detection for example roll and pitch, then other techniques should
be used. Using an accelerometer alone can be used to find roll and pitch angles but
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only in 2D. The formulas for calculating roll and pitch angles by accelerometer
readings are as follows:

ϕ = arctan 2 accy
accz

(4.1)

θ = arctan 2 − accx
acc2y + acc2z

(4.2)

where ϕ is roll angle, θ is pitch angle, accx accy accz are accelerometer
readings in X, Y, and Z respectively. These Euler angles’ equations are derived
according to these documents.[21] [22] A Simulink model is done for calculating the
roll and pitch angle. It is added to the appendix. In figure 4.5, a plot draws the
results of Euler angles of the Simulink model. From the plot, it can be noticed that
the noise is high and the accuracy is decent.

Figure 4.5: Roll and pitch angles by accelerometer

Gyroscopes

Gyroscopes are instruments used to detect angular rate and therefore enabling to
know angular velocity and displacement. Its working principle is based on the Cori-
olis effect as shown in Fig. 4.6 In which, when there is a mass moving in a particular
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direction with velocity illustrated by the red arrow, and an external angular rate
is applied represented by the blue curved arrow, these two effects will produce the
Coriolis force represented by the blue arrow which will result in a change in capaci-
tance. This change is then processed and translated as the angular rate.[19][20][23]

Figure 4.6: Gyro working principle

Gyroscopes give the angular rate. Therefore, the integration of it gives the
angular displacement. In figure 4.8, the plot shows the roll and pitch angles. Since
we are dealing with discrete integration, it keeps drifting, making it inefficient for
long-term angle measuring. From the plot, it is noticed that the roll angle is drifting
downward while the pitch angle is drifting upward.

Magnetometers

Magnetometers are scientific sensors that are used to detect the earth’s magnetic
field. One common method used in manufacturing magnetometers is hall effect
magnetometers. The hall effect working principle simply states that, when we have
a conductive plate and there is a current running, the current will flow straight from
one side to another, but when the conductive plate comes across a magnetic field,
the electrons will deflect to one side of the plate and the other side will be positively
charged, and so a voltage will be created between the plates. Figure 4.7 shows the
working principle of hall effect sensors. [24][25]

Values of roll and pitch got by accelerometer can be used with magnetometer
signal in the 3 axes X, Y, and Z to get the value of Yaw. The equation of yaw in
this paper[26] was used in my Simulink model. The results of the Simulink model
can be noticed in figure 4.9. We can see no matter how we rotate the body in the
yaw axis, the roll and pitch angle ate stable.

4.2.2 Sensors calibration
Sensors are the detective instruments that let the device recognize the change in the
environment. Therefore, the accuracy of these devices is highly preferred. However,
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Figure 4.7: Hall effect principle

Figure 4.8: Roll and pitch angles by gyroscope
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Figure 4.9: Roll and pitch angles by accelerometer and magnetometer

this is not usually the case, especially when the errors are prohibitive. So, sometimes
a process that is called calibration is required for more precise output results.

Accelerometer calibration

Ideally speaking, the three axes in the accelerometer should be aligned 900 from
each other, but due to manufacturing errors, it is common that an accelerometer
will have non-orthogonality errors. In addition, no matter how much expensive the
accelerometer is, it will have some bias. For these factors, calibration is needed for
more trustworthy results. Not to forget mentioning that also removing bias can also
be done by estimation, but calibration is more straightforward.[27][28] The equation
used for calibration is as follows: ax

ay
az

 =

 S11 S12 S13

S21 S22 S23

S31 S32 S31

 aXraw − bx
aXraw − by
aXraw − bz


(4.3)

where ax ay az are the calibrated measurements, S matrix is scale-factor and
nonorthogonaliy corrections, aXraw aY raw aZraw are are the raw measurements, and
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bx by bz are the bias corrections.
For the calibration, multiple readings are taken from the accelerometer in dif-

ferent positions. The more reading there are, the more accurate is the calibration.
One side note, when taking the measurement values, the sensor should be as steady
as possible. This process is done within Matlab the code is in the appendix. The
results are compared in figure 4.10 and figure 4.11. Figure 4.9 scatters the raw and
the calibrated values in 3D, while figure 4.10 plots the data in XY plane.

Figure 4.10: Comparison of raw and calibrated values in 3D
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Figure 4.11: Comparison of raw and calibrated values in XY plane

Magnetometer calibration

Calibrating the magnetometer is an essential step in any sensor. The errors are
caused either by soft iron distortions or hard iron distortions. Soft iron distortion
is usually caused by paramagnetic materials or ferrous metals like iron and steel.
Hard iron distortions or biases are caused by magnets or high-current wires. Soft
iron distortions or hard iron distortions are not the only reason why calibration
is required. Calibration is also needed for axes’ misalignment[29][30].

Applicationly speaking, it is good to keep the magnetometer far from magnets
or magnetized metals. So that errors can be mitigated. For doing the calibration,
firstly we take raw values from all sides. In other words, we rotate the sensor in
3600 multiple times in all axes directions. And then magcal function in MATLAB
is used so that we can get the A matrix and the b vector. Then we can apply this
equation for getting the calibrated values:

mcalib = A (mmeas − bx) (4.4)
where mcalib is the calibrated magnetometer vector, mmeas is the measured mag-

netometer vector, bx is the hard iron corrections vector, and A is 3 ∗ 3 matrix that
represents soft iron, scale factor, and misalignment correction.

After that, we can compare raw and calibrated values. The Matlab script for
calibration is included in Appendix. The results of calibration are in Figures 4.12
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and 4.13. It is noticeable that the calibrated values are centered around the zero
value.

Figure 4.12: Comparison of raw and calibrated values in 3D

4.2.3 Sensor fusion
Sensor fusion or a multi-sensor system is a method that basically combines more
than one sensor for a better perception and a more stable performance. Depending
on results from a separate sensor cannot always be guaranteed. A single-sensor
system can sometimes lead to catastrophic results, especially if the application field
requires more sensitivity and precision. Therefore, sensor fusion is an essential step
in such applications. In addition, research and development in this field have become
a key goal for many companies. In other words, sensor fusion is a rapidly evolving
field that will play a role in the cutting-edge technologies that will lead the world of
manufacturing.[31][32] Figure 4.14 shows the fundamental concept of sensor fusion
where multiple inputs are entered into the system. Then these data are processed
to give output results.

The drawback of using individual sensors can be summarized in suffering from
limited range, performance degradation under certain environmental conditions or
limited field of view [33]. To look at it from a human point of view. Then, using
individual sensors is like a human who has senses like taste, smell, touch, and hearing,
but his brain cannot process and analyze what happens in the environment. So,
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Figure 4.13: Comparison of raw and calibrated values in XY plane

I would describe sensor fusion as a progressive advanced approach that enables the
device to perceive and sense the surroundings with higher efficiency and fewer errors.

The biggest advantage of sensor fusion is that it makes the device more intelli-
gent, controllable, and reliable. However, using multiple sensors can be costly and
complex to implement or understand.

Figure 4.14: Basic concept of sensor fusion[32]
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Complementary filter

For simply advanced applications, the complementary filter is a good choice. Its
basic idea is to compare two sensors and harness the best accurate measured values
from any. As discussed and noticed before from graphs, individual use of sensors
is not reliable. For example, the accelerometer alone is only good when the system
is stable. So it is good when at rest which means for long time measurements. While
the gyroscope is only good in the short time because it relies on integration and since
we deal with digital systems, what is known as drift takes place as illustrated in
figure 4.8. As a result, the trick is how to depend on an accelerometer for long-time
measurements and also how to depend on a gyroscope for short-time measurements.
And that is why the complementary filter exists.[34][35][36].

Since accelerometer measurements are highly affected by vibrations, a low pass
filter will be needed to overcome or overpass the high-frequency signals, while for
eliminating the drift effect, a high pass filter will be needed as illustrated in fig
4.15.[35]

Figure 4.15: Block diagram of digital complementary filter system [36]

The equation used for the complementary filter is as follows:

ϕn+1 = ϕacc,n . α + (1− α) (ϕn + T . ϕgyro,n) (4.5)
where ϕn+1 is the current angle estimate, ϕacc,n is the measurement from the

accelerometer, α is a constant between (0,1), ϕn is the previous angle estimate, T
is the sample rate, and ϕgyro,n is the measurement form gyroscope.

The α constant determines which sensor we tend to rely more on upon. When α
is close to zero it means we trust the gyro measurements and when it its is close to
the one we trust more accelerometer measurements. Typically α is a number that
is close to 0 because the accelerometer is used only as a support for compensating
the gyro drift.

Figure 4.20 shows the results got by the complementary filter. The Simulink
model is included in Appendix.
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Kalman filter 2D

The Kalman filter is an optimal estimation algorithm for measuring estimate states
of the system from some measurements[37]. Kalman filter is basically an observer
that estimates a state than cannot be directly measured. It only depends on current
and previous measurements. Therefore, one advantage of using the Kalman filter
is that they only need low memory.[38] Kalman filters do not function as other
sensors which only clean up the data. Rather, they combine, process, and estimate
the data.[39] Kalman filter’s main parts are prediction and estimation. Prediction
and estimation equations are illustrated in figure 4.16

Figure 4.16: Kalman filter illustration. Prediction and estimation equations[39]

where x̂k− is the priori estimate of x at time step k, P−
kk

is the priori estimate of
the error at time step k, Q is the process variance, yk is the actual measured state,
xk−hat is the posteri estimate of x at time step k, Pkis the posteri estimate of the
error at time step k, Kk is the Kalman gain at time step k, and R is the measurement
variance.

The graph in figure 4.16 explains the Kalman filter from the probability dis-
tribution point of view. Kalman filter procedure occurs in this manner. Firstly,
the initial state estimate curve takes place. Then, the predicted state estimate in
the blue curve occurs. After that, the measurement curve in orange is calculated.
And finally, the optimal state estimate represented by the green curve is the mul-
tiplication result of the measurement Gaussian curve (in orange) and the Gaussian
predicted state estimate curve (in blue).

There are many types and algorithms of Kalman filters. They vary in implemen-
tations depending on their applied use. However, they all share the same principle
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of prediction and estimation calculation. These types are either linear models or
non-linear models. The more we tend to non-linear models, the more expensive
the computational cost is. Figure 4.17 highlights some of Kalman filter types, use,
assumed distribution, and costs.

Figure 4.17: Some of Kalman filter types[39][40][41]

A stand-alone accelerometer or stand-alone gyroscope can be good to a certain
level, but for a more 2D accurate system that can precisely give good angle results,
the Kalman filter is an ideal choice where tilt angle, roll-pitch-yaw angles can be
measured.[42] Roll, symbolized by ϕ, is the rotation around the front-to-back axis
(also known as north axis). Pitch, symbolized by θ, is the rotation around the side-
to-side axis (also known as the east axis). Yaw, symbolized by ψ, is the rotation
around the vertical axis (also known as the down axis) as shown in figure 4.18.
These angles are then fed back to the controller in order to do a certain controlling
task in aviation, or automobile.
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Figure 4.18: Roll pitch and yaw angles[43]

A Kalman filter for 2D orientation is implemented in Simulink. It is included in
the appendix. It basically takes data from the gyroscope and accelerometer, merge
them together, and processes them based on the Kalman filter approach. The graph
in figure 4.20 shows the results of the roll angle.

Kalman filter 3D

Fusing two sensors namely the accelerometer and gyroscope is a great success. How-
ever, it only applies to 2D applications. As soon as, the application starts to move in
a third dimension, then it is affected and not accurate. Not only that but it is also
disturbed by linear acceleration and any trivial vibrations. The problem point of
view is that the system is only defined within two frames of reference. Therefore,
the solution would be to add a third frame of reference namely the earth’s magnetic
field by a magnetometer.[44][38] One limitation of using Kalman filters is that it
is only successful for linear systems, which is not usually the case. For non-linear
systems, a modified version of the Kalman filter known as the Extended Kalman
Filter is needed to be used.[45]

Moving from sensor fusion with two sensors to sensor fusion with three sensors
is a huge jump that requires such an algorithm that would tackle the problem. This
problem can be solved with EKF which is intended for non-linear systems. And
for more accuracy and better behavior, the quaternion four-dimensional number
is introduced.[46][47] The equation of this system is defined like this:
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q = q0 + q1 ∗ i+ q2 ∗ j + q3 ∗ k (4.6)
which can be understood as an extension of complex numbers, but in this case,

it has one real number and three imaginary numbers.
AHRS or Attitude and Heading Reference System play a pivotal role in many

applications like robotics, navigation, aviation, and human-machine analysis. Due
to its precision, it is preferably used. It depends on 3 sensors, where each sensor
is three axes X,Y, and Z.[48]

With the help of the Navigation Toolbox in MathWorks, multiple filters can be
used for orientation detection based on quaternion like ahrsfilter. A code is done in
Matlab for this detection for getting roll, pitch, and yaw. It is included in Appendix.
The graph in figure 4.19 shows angles of roll pitch and yaw.

Figure 4.19: Orientations in MPU-9250 sensor[49]

An experiment of different methods to detect angles

Figure 4.21 compares the experimental results of different methods for getting the
roll angle. The experiment was done on an MPU 9250 sensor that is connected
to a microcontroller and fixed on a box as shown in figure 4.20. The first method
detects the angle with a stand-alone accelerometer, while the second method detects

35



by a stand-alone magnetometer. The third method is achieved by a complementary
filter, combining an accelerometer and magnetometer. The fourth and fifth ones are
by Kalman filters. One is in 2D (Accelerometer + Gyroscope) and the other one
is in 3D (Accelerometer + Gyroscope + Magnetometer).

The results that can be interpreted from figure 4.21 is that using an accelerometer
alone can lead to noisy detected signals while using a gyro alone causes drifted
results. The complementary filter and Kalman 2D results are quite similar. They
are good in 2D applications, but as soon as there is a linear acceleration the results
start to be noisy. Kalman 3D plot as shown in the figure is quite stable with less
error and more precision even under linear acceleration.

The orientation and visualization of the 3D motion are also achieved in Simulink
as shown in figure 4.22 with different animations. The code for the different methods
as well as the orientation of the angles are included in the attachments.

Figure 4.20: Orientations in MPU-9250 sensor
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Figure 4.21: Orientations in MPU-9250 sensor

Figure 4.22: Orientations in MPU-9250 sensor
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4.2.4 Worthwhile theoretical and practical notes
Alignment

Not all sensors in IMU are aligned. Therefore, it is important to first align the sensors
before processing the data to the NDE coordinate system. As noticed in figure 4.23
the axis of the accelerometer-gyroscope is different from the magnetometer in MPU-
9250. The accelerometer and the gyroscope axis need to be swapped and/or inverted
to match the magnetometer axis.

Figure 4.23: Orientations in MPU-9250 sensor[49]

Discrete Euler

When working with microcontrollers, we need to discretize the system. The previous
prediction and estimate equation is for continuous systems. Therefore, discretizing
the system is an important step that should be taken into consideration. The fol-
lowing equation illustrates how to discretize an equation in a continuous system:

ẋ(t) = Ax(t) + B u (4.7)
is discretized like this:

x(K + 1) = x (k) + Ts ∗ (Ax (k) + Bu) (4.8)

Quaternion over Euler angles

Quaternion system is preferred over Euler angles due to its more accuracy in 3D
orientation visualization which is not vulnerable to bugs, gimbal lock, and other
issues. The Euler method or a three-by-three matrix method is more intuitive to
understand; however, it is in danger of gimbal lock. Gimbal lock is the case known
when two axes of orientation are lined up which leads to one degree of freedom
loss. Figure 4.24 shows the gimbal lock case. [50] All in all, the quaternion is more
accurate but less intuitive and more computationally expensive.
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Figure 4.24: Gimbal lock case[50]

EKF vs. ErKF

Kalman filters are sufficiently good for linear systems, but neither the environment
model nor the process is usually linear. Therefore, in such cases, KF is replaced
by EKF which is quite efficient for nonlinear systems. The ahrsfilter in Matlab
is based on ErKF which is also used for non-linear systems. The mean difference
between EKF and ErKF is that ErKF uses a technique where the error in the states
is estimated using a Kalman filter, rather than the state itself. While in EKF the
states are directly measured. Experiments have proven that ErKF is very robust
method and effective.[51]

Other notes

• Matrix operations are computationally costly.

• Filtering the sensors might be good before implementing them in KF.

• It is important to carefully initialize state estimate xhat, error covarinace ma-
trix P , and noise covariance matrices R and Q.

• When programming Arduino in Simulink, there is an option of Running in IO,
before the implementation and the code generation, which can save a lot of
time instead of generating code each time with each modification.

• When working in Matlab or Simulink, all data mat files and functions must
be in the same folder.
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5 Control strategies and stability

5.1 PID controllers

5.1.1 Introduction
Proportional-integral-derivative is one of the most commonly used control strategies
in the industry. Even though PID is a relatively old method compared with the
new ones, it is still a leading control strategy that occupies 90-95% of the control
industrial application. This dominance over the other control strategies can be
summarized in this points[52]:

• PID is intuitively easy to grasp. It only requires a basic understanding of the
working principle. In other words, it is not mathematically complicated.

• Its historical background, and early usage have led it to be a standard and
a reference over time in the control theory.

• The appearance of digital control has facilitated the way into recognizable and
remarkable improvements in the field. As the engineering main goal is to reach
a better performance with less time, complexity, and price. Digital control has
hugely helped PID in adaption, self-tuning, and gaining scheduling.

• It is always better to keep developing, modifying, and enhancing a strategy
(well-known solution) in which you have solid knowledge, rather than starting
in new strategy from scratch.

5.1.2 Fundamentals
A PID controller is basically a feedback controller strategy in which a desired value
is given in order to be reached. Its main important factor is to precisely, roughly
speaking, adjust/determine PID parameters to reach an optimum required value in
a process known as parameters’ tuning [53]. The PID controller, from how its name
sounds, has three main parameters as shown in figure 5.1

So the controller part of the whole system can be mathematically represented
by the following equation:

u(t) = Kpe(t) +Ki

∫ t

0

e(t)dt+ kd
de(t)

dt
(5.1)
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where u(t) is the output of PID, Kp is the proportional gain, k(i) is the integration
gain, k(d) is the derivative gain, e(t) is the error which is the difference between
output y(t) and required value τ(t).[54]

Figure 5.1: PID controller in time domain

Each term of the PID controller has a practical influence and a technical mean-
ing[55]:

• The proportional part. It is proportional to the error. It speeds up the dy-
namic of response. In other words, it gets the system to the interned require-
ment as fast as possible, however, using it alone if not tuned properly can lead
to instability.

• The integration part. It basically integrated the error, helping it gradually to
reach zero offsets. Using it alone can make lagging and delays for the system.

• The derivative part. It basically restrains the system from moving too quickly
in the beginning, and if it overpasses the required point, it will get it back. If
not used properly, it can cause undesired high frequency.

Merging two or all of these terms together is just a task that requires knowledge
of the system (plant) in order to be chosen properly. After selecting a specific two
or three terms controller then it’s a matter of tuning.

There are many tuning approaches that can be used in tuning PID controllers.
The most known three ones are heuristic tuning, rule-based tuning, and Model-
based tuning. Depending on the purpose, knowledge of the plant, and experience,
the method can be chosen.[56]

41



5.2 State-space control

5.2.1 Introduction
State-space control, or what is often referred to in the literature as modern control
theory, is a time-domain approach in which the system can have multiple inputs and
multiple outputs. It is a more complicated approach that requires a deep under-
standing of the system as well as the approach. This type of approach can lead to
a more stable system. With that being said, this approach is costly either due to the
need for more sensors or due to its requirement for a more capable microcontroller
to do the estimation of the non-sensored states by the observer.[57].

Mathematically speaking, the state-space representation can be defined in terms
of matrices in this form:

ẋ = Ax+Bu (5.2)

y = Cx+Du (5.3)
where equation 5.2 is called state equation, and equation 5.3 is called output

equation,
x ... is the state vector
ẋ ... derivative of the state vector with respect to time
y ... output vector
u ... input or control vector
A ... system matrix
B ... input matrix
C ... output matrix
D ... feed-forward matrix

5.2.2 Controllability and observability
A system is said to be fully controllable, if it is possible to transfer the system from
any initial state x(t0) to any desired state x(t) in specified finite time by a control
vector u(t). In other words, if any of the state variables is independent of the control
input u(t), there would be no possible way to bring the system to that desired state
and so then the system is uncontrollable. To check controllability of any system
then

• the rank of Qc should have the same value of the order of the matrix A.

• or determinant of of Qc should not be equal to 0.

Qc = [B : AB : ... : An−1B] (5.4)
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If the system is in the controllable canonical form then, the system is always
controllable. Likewise, A system is said to be fully observable, if every state x(t0)
can be identified by measurement of outputs y(t) over a finite time interval. For any
system to be observable then

• the rank of Qo should have the same value of the order of the matrix A.

• or determinant of of Qo should not be equal to 0.

Qo = [C : CA : ... : CAn−1]T (5.5)
The practical importance of having an observable system is that if any of the states
cannot be measured for any reason(cost, no possibility), then these states can be
estimated by the observer if designed and parameterized accurately.[55][57][58]

5.2.3 Control strategies
A- Pole-placement method[59][55]

In the pole-placement approach, we have the choice freedom of the poles. The
method is not very intuitive in presence of high-order systems. Since it is a state-
feedback control then the control input is defined as:

u = −Kx (5.6)

in which u is the input, k is the control vector, and x is the state vector.

Figure 5.2: State_feedback control

B- LQR[59][55]
Linear quadratic regulator (LQR) is the optimal theory of the pole placement

approach. It takes into consideration performance (states) and actuator effect. Its
drawback is that it could be computationally expensive for high-dimensional sys-
tems.

In LQR approach, there are two matrices of cost functions which are Q and R.
Q is the penalization given to the stats, while R is the penalization given to the
inputs(actuators).
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5.3 Modeling and controling

5.3.1 The plant
For creating the model we need to derive the equations of motion. This equation
can be derived from Lagrangian mechanics or classic mechanics. The equation, that
will be derived here, is based on classical mechanics.[60][61][62] Figure 5.3 can give
a glimpse of how the equations will be driven. Basically for balancing the motorbike
we need to formulate the equation of rotational motion around points A and B.

Figure 5.3: Free body diagram of the reaction wheel for balancing the wheel

The parameters of the model are defined like this:
θ ... angle of the bike
ϕ ... angle of the reaction wheel
m1 ... mass of the bike
m2 ... mass of the wheel
I1 ... bike moment of inertia at the center of body
I2 ... wheel moment of inertia at the center of wheel
τm ... torque of DC motor
l1 ... distance to the center of body
l2 ... distance to the center of wheel
g ... acceleration of gravity
v0 ... voltage applied v0 = U
i ... electric current
Rm ... motor resistance
lm ... motor inductance
k ... electrical and mechanical constant of the motor
ω ...angular velocity of motor
τe ... electric torque of motor = k.i
τd ... static friction
b ... viscous coefficient
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The first equation will be the equation of motion around Point A:

[I1 +m1l
2
1 + I2 +m2(l1 + l2)

2]θ̈ = [m1l1 +m2.(l1 + l2)]gsin(θ)− τm (5.7)

The second equation will be the equation of motion around Point B:

I2θ̈ + I2ϕ̈ = τm (5.8)
The third part of the equations is the electrical equations and mechanical ones

that represent the DC motor:

v0 = Rmi+ lm
di

dt
+ kω (5.9)

τe = τm + bω + τd (5.10)
The system now based on the equations above can be represented with 4 states.

But for sake of simplicity, the system is simplified and reduced to be represented by
only 3 states which are, the position of bike (θ), angular velocity of bike ( ˙theta), and
angular velocity of motor (ϕ̇ = ω). So after manipulating with equations (5.7-10),
and after substituting:

It = [I1 +m1l
2
1 + I2 +m2(l1 + l2)

2] (5.11)

M = [m1l1 +m2.(l1 + l2)] (5.12)
Then the main differential equations of the state-space model will be:

θ̈ =
Mgl sin(θ)

It
− kU

RmIt
+

k2ω

RmIt
(5.13)

ω̇ =
kU

RmI2
− k2ω

RmI2
− Mgl sin(θ)

It
+

kU

RmIt
− k2ω

RmIt
(5.14)

so from equations (5.13-14), the equations of each state are as follows:

x1 = θ ⇒ ẋ1 = θ̇ = x2 (5.15)

x2 = θ̇ ⇒ ẋ2 = θ̈ =
Mgl sin(x1)

It
− kU

RmIt
+
k2x3
RmIt

(5.16)

x3 = ω ⇒ ẋ3 = ω̇ = [
k

RmI2
+

k

RmIt
]U − [

k2

RmI2
+

k2

RmIt
]x3 −

Mgl sin(x1)
It

(5.17)

The system is non-linear and it can be stabilized around the equilibrium point.
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5.3.2 linearization a non-linear system
Control theory can tackle linear systems ideally and perfectly. However, once the
system is non-linear, then it is another case that would require other techniques.
Since control theory is perfectly fine with linear systems, then we can linearize non-
linear systems around the equilibrium point. And this is basically what is needed
for balancing the bicycle, which is balancing the bicycle when the angle is just 0 or
close.

The non-linear state-space system of the bicycle model, based on previous de-
riving, is represented in this form:

ẋ =

 ẋ1
ẋ2
ẋ3

 =

 θ̇

θ̈
ω̇

 =

 x2
Mgl sin(x1)

It
− kU

RmIt
+ k2x3

RmIt

( k
RmI2

+ k
RmIt

)U − ( k2

RmI2
+ k2

RmIt
)x3 − Mgl sin(x1)

It


(5.18)

Then we equalize equation 5.18 to zero, to find the equilibrium point. After
solving the equations then the point of equilibrium is when:

U∗ = [0] (5.19)
x∗ = [0, 0, 0] (5.20)

Now Jacobian matrix can be found from equation (5.18)

δẋ =

 0 1 0
Mgl cos(x1)

It
0 ( k2

RmI2
)

−Mgl cos(x1)
It

0 −k2

RmIt
− k2

RmI2

 δx+

 0
− k

RmIt
k

RmI2
− k

RmIt

 δu (5.21)

After substituting U∗ and x∗ to equation(5.21), then the model state-space rep-
resentation will be:

δẋ =

 0 1 0
Mgl
It

0 k2

RmI2

−Mgl
It

0 −k2

RmIt
− k2

RmI2

 δx+

 0
− k

RmIt
k

RmI2
− k

RmIt

 δu (5.22)

For simplicity, and since all parameters of equation (5.22), are fixed constant
values, then I would assume that:

a =
Mgl

It
; b =

k2

RmI2
; c = −Mgl

It
; d =

−k2

RmIt
− k2

RmI2
; e = − k

RmIt
; f =

k

RmI2
− k

RmIt
(5.23)

Then the equation (5.22) would be in this form:

δẋ =

 0 1 0
a 0 b
c 0 d

 δx+

 0
e
f

 δu (5.24)
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And after substituting all parameter values we get:

δẋ =

 0 1 0
26.9187 0 0.0219
−26.9187 0 −0.0694

 δx+

 0
−0.5712
1.8130

 δu (5.25)

The time-domain modeling as two states, three states, and four states is included
in the attachments.

5.3.3 Discretizing a continuous system
Since our world is not continuously ideal and since we usually deal with digital
systems like computers and microcontrollers, then discretization is a very important
step. There are many techniques for how discretizing a system. One approach is to
design a controller and then discretize it. Another approach is to discretize the plant
and then design a discrete controller as shown in figure 5.4.

Design

1

Discretize

1Continous
Plant

Discretize

2

Continous
Controller

2

Design

Discrete  
Plant

Discrete  
Controller

Figure 5.4: Approaches of discretizing a system

The discretization of the state space model is done according to the same prin-
ciple in equation 4.8.

Figure 5.5 shows the output results of all three states of the model when the
initial condition is [0.1, 0, 0], and sample time Ts = 0.01s. The figure shows a com-
parison of the continuous and the discrete state-space model of the self-balancing
motorbike model after linearizing and around the equilibrium point. The model
is attached with state space model 3 states folder.
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Figure 5.5: The output results of the continuous and discrete state-space model

5.3.4 Experimental results of the PID SBMB closed-loop control
The SBMB 3D model is shown in figure 6.1. The balancing of the SBMB prototype
is accomplished in the Simulink environment as shown in figure 5.6. The closed-
loop control includes multiple steps. Firstly, getting data from the IMU sensor.
Secondly, including the calibrated model for the accelerometer and magnetometer.
Thirdly, merging all data together with a 3D Kalman filter and getting quaternion
data. Fourthly, converting from quaternion to roll, pitch, and yaw angles. In my
case, only a roll angle was needed. Fifthly, feeding back the roll angle with the
required value to the controller. Lastly, controlling the PWM of the motor will lead
to controlling the reaction wheel motor voltage. And Controlling the voltage will
lead to controlling the reaction wheel’s angular velocity. And by all of that, we
are in the end capable of giving required angular momentum that will stabilize the
bike. The PID parameters that are used in the bicycle prototype are based more
on experimental tuning. The PID values that were of the closed-loop control are
as follows Kp = 40, Ki = 0.001, and kd = 0.1 The potential of the prototype to
control is around 50 in both directions. The results of the required angle and the
controlled one are shown in figure 5.7. The figure also in parallel shows the PWM
value given to the motor at the same time of the balancing.
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Figure 5.6: PID closed-loop control of the bike in Simulink

Figure 5.7: Results of the bike closed-loop PID control
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6 Final product of the SBMB prototype

Figure 7.1 shows the final form of the SBMB prototype. The figure shows the me-
chanical and electrical aspects of the prototype. The mechanical side is represented
by the body, reaction wheel, wheels, joints, bearings, and mechanism for steering.
And the electrical components are microcontrollers, motors, IMU sensor, batteries,
Bluetooth module, and motor driver.

Figure 6.1: Final form of the SBMB prototype
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7 Conclusion

Summary

In this project, an analytical study of the different possibilities of balancing a two-
wheeled vehicle has been accomplished. A proposed prototype is suggested with its
different electrical and mechanical components.

The common different options, in which a bicycle can be automatically balanced
discussed by this project are, by a reaction wheel, by the gyroscopic effect precession,
or by a torque applied in the steering handlebar. The reaction wheel mechanism
depends on the concept of the inverted pendulum. Its advantages are simplicity and
robustness, while its disadvantage is more energy-consuming. GPE method can be
applied in different forms and in different ways of balancing. Among all mechanisms
mentioned, GPE method is considered the most robust but at the same time the
most consuming method for energy. The torque applied to the steering handlebar
method can be done by a rotational motor or an actuator. Its main advantage is,
that it is the least method that consumes energy; however, it is not very stable.

The method that is chosen to continue further with is the reaction wheel method.
To get a feedback signal from the sensors, an investigation of different methods and
approaches to detecting the angle has been approached. The different methods are
summarized in the following paragraph.

For detecting the angle, IMU 9250 sensor is selected. IMU sensor include 3
sensors which are an accelerometer, magnetometer, and gyro. Each sensor of those
can detect in the directions x,y, and z. Therefore, there can be different scenarios
and methods of harnessing and getting advantage of the sensors. For example,
when using an accelerometer alone to detect the angle, then the results show a lot
of noise in the short-term change. Secondly, when using gyro alone, the error keeps
accumulating due to its dependence on discrete integration. So the drift effect
is quite noticeable. To get the most out of each sensor then they can be combined.

Sensor fusion is a technique where more than one sensor can be merged to get
more correct precise output results. For this application, three different methods
are used. Firstly, a complementary filter between the gyro and accelerometer yields
better results. The basic idea of the technique is to make the result depend on the
accelerometer in long-term changes, and depend on the gyro in short-term changes.
Secondly, Kalman filter between gyro and accelerometer. The difference between the
complementary filter and the Kalman filter is that the α constant has to be chosen
upfront in the complementary filter, while in the Kalman filter, it is automatically
changed by the method. In my case, both of the methods have shown quite similar
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results. Merging two sensors is only enough for 2D applications for example a pen-
dulum. However, when there is a need for 3D applications like drones, or balancing
bicycles with a reaction wheel, then a third frame of reference is required.

The last sensor fusion method that is investigated is merging the three sensors
together which are the accelerometer, gyro, and magnetometer. This method is ac-
curately correct but costly. It can be used for AHRS applications and also for the
bicycle balancing prototype. Results of the roll, pitch, and yaw angle are shown
with different animations.

Of course not all sensors are ideal, so calibrations to the sensors are also achieved
with different models.

The two 3D models are designed within Inventor. The models include the body
of the vehicle, wheels, and other mechanical components. The model is printed then
with 3D printing machines.

All in all, the bicycle prototype is controlled with a reaction wheel as an actuator
of balancing which is driven by a DC motor, and the detection of the angle is ac-
complished with an IMU sensor using a 3D Kalman filter. To close the loop with the
controller, a PID is chosen and used for the balancing and the bicycle is controlled
by a mobile through the communication of a Bluetooth module. Modeling the plant
with a state-space model and its LQR feedback controller is also investigated in this
project.

Further improvements and suggestions

A suggestion that can be investigated further is to control the reaction wheel with
a motor that has a feedback signal, for example, of an encoder or tachometer. Then
the states of the plant according to the model studied, are all available and the
whole system can be controlled with LQR or other techniques and compared with
PID strategies.

Also, for sake of simplicity or complexity, the plant model can be remodeled
with two or four states depending on purpose and accuracy and therefore can be
investigated and compared in reality.

Moreover, all parameters of the model are either taken as information from the
supplier or approximated. So once the whole model is available with all signals, it
would be good to do parameter estimation to all parameters to be more accurate of
the model.

Furthermore, this whole process was done with Matlab and Arduino. So, it
would be nice if the same techniques are investigated further with different software
and hardware to make comparisons, and reach optimal results with more efficiency
and less cost.

All in all, improvements of the whole system are still open in all its different
aspects which are design, control, sensors, actuators, modeling, filtering, coding,
theory, practice, and so on. So I would say for anyone who wants to push him-
self/herself forward, and continue further in this project with such a project, it
is really attractive with challenge and enjoyment.
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Appendix
• 2D Drawings: Main components.

• Card Schematic and Connections.

• Main codes: Matlab, Simulink, and Arduino.
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I. Calibrating IMU-9250 Magnetometer in MATLAB 
 

68 
 

clear all 
clc 
% Zaid Al-Dailami 
% 22 8 2022  
% Calibrating the Magnetometer 
 
%% 
a = arduino('COM3', 'MegaAdk', 'Libraries', 'I2C'); 
fs = 100; % Sample Rate in Hz    
imu = 
mpu9250(a,'SampleRate',fs,'OutputFormat','matrix'); 
 
 
%% Getting raw values so we can calibrate it 
% move the sensro 360 in all direction for getting raw 
data 
tic; 
stopTimer = 50; 
i = 1 
while(toc<stopTimer) 
    [accel,gyro,mag] = read(imu); 
    mag_x = mean(mag(:,1)); 
    mag_y = mean(mag(:,2)); 
    mag_z = mean(mag(:,3)); 
    mag_xx(i) = mag_x; 
    mag_yy(i) = mag_y; 
    mag_zz(i) = mag_z; 
    i=i+1 
end 
 
mag_xyz_raw = [mag_xx', mag_yy',mag_zz'] 
 
% we then sace data: 
%save raw_mag mag_xyz 
% saving data as text file so it can be useed in 
magnetometer program or 
% directly we can use magcal function in matlab 
%dlmwrite("raw_values.txt",mag_xyz)   
 

%% Loading the data, and comparing raw values with 
calibrated ones: 
 
load raw_mag 
mag_xyz_raw = mag_xyz; 
 
 
[A,B,EXPMFS] = magcal(mag_xyz_raw); 
 
Calibrated_Val = (mag_xyz_raw - B)*A; 
 
 
% 2D plot: 
% X,Y: 
figure 
plot(mag_xyz_raw(:,1),mag_xyz_raw(:,2),'b*'); 
hold on; 
plot(Calibrated_Val(:,1),Calibrated_Val(:,2),'r*'); 
legend("Raw Values","Calibrated Values"); 
title("XY Magnetometer Data") 
xlabel("{\it X [\muT]}") 
ylabel("{\it Y [\muT]}") 
grid on 
xlim([-60 60]) 
ylim([-60,60]) 
 
% 3D plot: 
figure 
plot3(mag_xyz_raw(:,1),mag_xyz_raw(:,2),mag_xyz_raw(:,3
),"*b") 
hold on 
plot3(Calibrated_Val(:,1),Calibrated_Val(:,2),Calibrate
d_Val(:,3),"*r") 
xlabel("{\it X [\muT]}") 
ylabel("{\it Y [\muT]}") 
zlabel("{\it Z [\muT]}") 
legend("Raw Values","Calibrated Values"); 
title("XYZ Scatter Plot of Magnetometer Data")



II. Calibrating IMU-9250 Accelerometer in MATLAB 
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clear all 
clc 
% Zaid Al-Dailami 
% 22 8 2022  
% Calibrating the Accelorometer 
 
%% 
a = arduino('COM3', 'MegaAdk', 'Libraries', 'I2C'); 
fs = 100; % Sample Rate in Hz    
imu = 
mpu9250(a,'SampleRate',fs,'OutputFormat','matrix'); 
 
 
%% For getting Raw values one by one (value vy value 
with changing position of IMU): 
tic; 
stopTimer = 1; 
accelReadings=[]; 
while(toc<stopTimer) 
    [accel,gyro,mag] = read(imu); 
    accelReadings = [accelReadings;accel]; 
end 
accel = mean(accelReadings) 
 
%% B and M are values of matrices got from magneto 
program after entering Raw values: 
% B and M are the values of of matrices after 
calibration 
B = [-0.060484;0.100788;0.925356];     
M = [1.010725,-0.001955, 0.000323;... 
     -0.001955,0.998625,0.001641;... 
     0.000323,0.001641,1.055832]; 
 
%% Comparing raw values and calibrated ones: 
%load raw values 
load raw_values 
 
% Getting calibrated values 
for i=1:length(raw_values) 

    cal_values(:,i)= M*(raw_values(i,:)'-B); 
end 
cal_values = cal_values'; 
 
% 2D plots: 
% X,Y: 
plot(raw_values(:,1),raw_values(:,2),'b*'); 
hold on; 
plot(cal_values(:,1),cal_values(:,2),'r*'); 
legend("Raw Values","Calibrated Values"); 
title("XY Accelerometer Data") 
xlabel("X [m/s^2]") 
ylabel("Y [m/s^2]") 
grid on 
% Y,Z: 
figure 
plot(raw_values(:,2),raw_values(:,3),'b*') 
hold on 
plot(cal_values(:,2),cal_values(:,3),'r*') 
legend("Raw Values","Calibrated Values") 
title("YZ Accelerometer Data") 
xlabel("Y [m/s^2]") 
ylabel("Z [m/s^2]") 
grid on 
 
% 3D plots: 
figure 
plot3(raw_values(:,1),raw_values(:,2),raw_values(:,3),'
b*'); 
hold on; 
plot3(cal_values(:,1),cal_values(:,2),cal_values(:,3),'
r*'); 
title("3D Scatter Plot of Acclormeter Data") 
legend("Raw Values","Calibrated Values"); 
xlabel("X [m/s^2]") 
ylabel("Y [m/s^2]") 
xlabel("X [m/s^2]") 
zlabel("Z [m/s^2]") 
grid on



III. Kalman Filter 3D in MATLAB Visualization and Data Plotting 
 

70-71 

 
clear all 
clc 
% Zaid Al-Dailami 
% 22 8 2022 
% IMU 9250 in Matlab 
 
 
%% Setting the arduino: 
% ardinosetup 
a = arduino('COM3', 'MegaAdk', 'Libraries', 'I2C'); 
fs = 100; % Sample Rate in Hz    
imu = 
mpu9250(a,'SampleRate',fs,'OutputFormat','matrix'); 
 
 
%% Getting Data from IMU 9250, alligning orientaion of 
Accelerometer and Gyroscpe with Magnetometer, 
% Entering matrices that are used for calibration to 
get more accurate results 
 
% Values of B and M for calibrating accelerometer: 
(Caluclated) 
B = [-0.060484;0.100788;0.925356];     
M = [1.010725,-0.001955, 0.000323;... 
     -0.001955,0.998625,0.001641;... 
     0.000323,0.001641,1.055832]; 
 
% Values of A and B for calibrating magnetometer: 
(Calculated) 
A = [1.0004,0.0157,0.0156; 
    0.0157,1.0492,0.0909; 
    0.0156,0.0909,0.9610]; 
b = [1.2579  -10.3320   -5.5533]; 
 
% GyroscopeNoise and AccelerometerNoise is determined 
from datasheet and EX 
GyroscopeNoiseMPU9250 = 0.01/1; % GyroscopeNoise 
(variance value) in units of rad/s 

AccelerometerNoiseMPU9250 = 0.00061; % 
AccelerometerNoise(variance value)in units of m/s^2 
viewer = HelperOrientationViewer('Title',{'AHRS 
Filter'}); 
FUSE = ahrsfilter('SampleRate',imu.SampleRate, 
'GyroscopeNoise',GyroscopeNoiseMPU9250,'AccelerometerNo
ise',AccelerometerNoiseMPU9250); 
FUSE.LinearAccelerationNoise = 0.025; 
FUSE.MagnetometerNoise       = 0.1; 
 
stopTimer = 50; 
i = 1; 
tic; 
while(toc < stopTimer) 
    [accel,gyro,mag] = readSensorDataMPU9250(imu); 
    % Swapping x and y for Accel 
    accel_x = accel(:,2); 
    accel_y = accel(:,1); 
    accel_z = accel(:,3); 
    % Chagning Polariy of x and y 
    accel2 = [-accel_x,-accel_y,accel_z]; 
    % Calibrating Accelerometer  
    accel3= M*(accel2'-B); 
    accel3 =accel3'; 
 
    % Swapping x and y for Gyro 
    gyro_x = gyro(:,2); 
    gyro_y = gyro(:,1); 
    gyro_z = gyro(:,3); 
    gyro2 = [gyro_x,gyro_y,-gyro_z]*0.8; 
 
    % Calibrating Magnetometer 
    mag2 = (mag - b)*A; 
    mag_x = mag2(:,1); 
    mag_y = mag2(:,2); 
    mag_z = mag2(:,3); 
    mag2 = [mag_x,mag_y,mag_z]*0.02; 
     
    rotators = FUSE(accel3,gyro2,mag2); 
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    %Convert quarternion into Euler angles 
    eulFilt= euler(rotators,'ZYX','frame'); 
    eulFilt_Value(i,:) = mean(eulFilt); 
    i = i+1; 
     
    %3D Animation of the imu 9250 Sensor 
    for j = numel(rotators) 
        viewer(rotators(j)); 
    end 
 
end 
     
 
%% 
t = linspace(0,stopTimer,length(eulFilt_Value(:,1))); 
 
% Plotting Roll Angle: 
figure 
plot(t,(eulFilt_Value(:,3)*180/pi)); 
xlabel("{\it Time [s]}"); 
ylabel("{\it Roll [Deg]}"); 
title("Plot of Time with Respect to Roll Change") 
grid on 
 
% Plotting Pitch Angle 
figure 
plot(t,(eulFilt_Value(:,2)*180/pi)-6); 
xlabel("{\it Time [s]}"); 
ylabel("{\it Pitch [deg]}"); 
title("Plot of Time with Respect to Pitch Change") 
grid on 
 
 
% Plotting Yaw Angle: 
figure 
plot(t,(eulFilt_Value(:,1)*180/pi)-116+38+4); 
xlabel("{\it Time [s]}"); 
ylabel("{\it Yaw [deg]}"); 

title("Plot of Time with Respect to Yaw Change") 
grid on 
 
 
% Plotting Roll Pitch Yaw together: 
figure 
plot(t,(eulFilt_Value(:,3)*180/pi),'b'); 
hold on 
plot(t,(eulFilt_Value(:,2)*180/pi)-6,'r'); 
hold on 
plot(t,(eulFilt_Value(:,1)*180/pi)-116+38+4,'c'); 
grid on 
legend("Roll","Pitch","Yaw") 
xlabel('{\it Time [s]}'); 
ylabel('{\it Angle [deg]}'); 
title("Plot of Time with Respect to Angle Change")
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function [roll_val,pitch_val,yaw] = 
fcn(roll,pitch,magx,magy,magz) 
 
Xm = magx*cos(pitch) - magy*sin(roll)*sin(pitch) + 
magz*cos(roll)*sin(pitch); 
Ym = magy*cos(roll) + magz*sin(roll); 
yaw = atan2(Ym,Xm) * 180 /pi; 
roll_val = roll*180/pi; 
pitch_val = pitch*180/pi; 
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Cyan = Complementary filter 

 

 

Light blue = Kalman Filter 
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Prediction funtion: 

function [x_hat_bar,P_bar] = Prediction(Gyro,x_hat,P,Q) 

t = 0.01 

A = [1 -t; 0 1] 

B = [t; 0] 

C = [1 0] 

x_hat_bar = A*x_hat + B*Gyro 

P_bar = A*P*A'+Q*t 

 

 

 

Update function: 

function [x_hat,P] = fcn(Accelorometer,x_hat_bar,P_bar,R) 

C = [1 0] 

K = P_bar*C'/ (C*P_bar*C'+R) 

x_hat = x_hat_bar + K*(Accelorometer-C*x_hat_bar) 

P = P_bar - K*C*P_bar 
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// Zaid Al-Dailami 
// Controlling moving and steering motor 
// 1.3.2022 
 
int pos = 90;    // variable to store the servo position 
char val; 
const int m1a = 7;  
const int m1b = 8;  
 
 
#include <Servo.h> 
Servo myservo;  // create servo object to control a servo 
  
//const int pwm1 = 9; 
 
void setup(){ 
  //pinMode(13,OUTPUT); 
  pinMode(m1a, OUTPUT);   
  pinMode(m1b, OUTPUT); 
  myservo.attach(9);  // attaches the servo on pin 9 to the servo 
object 
  Serial.begin(9600); 
   
} 
 
void loop() 
 
{ //digitalWrite(13,HIGH); 
  while (Serial.available() > 0) 
  { 
  val = Serial.read(); 
  Serial.println(val); 
  } 
    //digitalWrite(13,HIGH); 

   if( val == 'B') // Backward 
    {  
      digitalWrite(m1a, LOW); 
      digitalWrite(m1b, HIGH); 
    } 
     
   else if(val == 'F') // Forward 
    {  
      digitalWrite(m1a, HIGH); 
      digitalWrite(m1b, LOW); 
    } 
    
   else if (val == 'R' && pos <=140) //Right 
     { pos = pos + 1; 
       myservo.write(pos); 
       Serial.println(pos); 
       delay(5); 
 
     } 
      
   else if (val == 'L' && pos>= 40) //Left 
     { pos = pos - 1; 
      myservo.write(pos); 
      Serial.println(pos); 
      delay(5); 
     } 
      
     else if(val == 'I') //Forward Right 
    {  
      digitalWrite(m1a, HIGH); 
      digitalWrite(m1b, LOW); 
      if (pos <= 140) 
      { 
        pos = pos + 1; 
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        myservo.write(pos); 
        Serial.println(pos); 
        delay(5); 
      } 
    } 
 
     else if(val == 'J') //Backward Right 
    { 
    digitalWrite(m1a, LOW); 
    digitalWrite(m1b, HIGH); 
     if (pos <= 140) 
      { 
        pos = pos + 1; 
        myservo.write(pos); 
        Serial.println(pos); 
        delay(5); 
      } 
    } 
   else if(val == 'G') //Forward Left 
    { 
     digitalWrite(m1a, HIGH); 
     digitalWrite(m1b, LOW); 
      if (pos >= 40) 
      { 
        pos = pos - 1; 
        myservo.write(pos); 
        Serial.println(pos); 
        delay(5); 
      } 
    } 
  else if(val == 'H') //Backward Left 
    { 
    digitalWrite(m1a, LOW); 
    digitalWrite(m1b, HIGH); 

     if (pos >= 40) 
      { 
        pos = pos - 1; 
        myservo.write(pos); 
        Serial.println(pos); 
        delay(5); 
      }  
    } 
 
     
   else{ 
    digitalWrite(m1a, LOW); 
    digitalWrite(m1b, LOW); 
    delay(200); 
 } 
}
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clear all 
clc 
%% 
 
% Mechanical Parameters 
L1 = 0.03; %m Length From Cart Center of Mass to Point 
A 
L2 = 0.04; %m Length From Wheel Center of Mass to Point 
A 
m1 = 0.5; %kg Mass of Cart 
m2 = 0.1; %kg Mass of Reaction Wheel 
m3 = 0.08; %kg Mass of Motor 
I1 = 0.0001; %kg*m^2 Moment of Inertia of the Cart 
I2 = 46.263 * 1e-4; %kg*m^2 Moment of Inertia of 
Reaction Wheel 
I3 = 0.004;  %kg*m^2 Moment of Inertia of Motor 
g  = 9.81;   %accelration of gravity 
I11 = m1 * L1^2; 
I22 = m2 *(L1+L2)^2; 
I33 = m3 *(L1+L2)^2; 
MGL =  ((m1*L1)+(m2*(L1+L2))+(m3*(L1+L2)))*g; 
It = I1 + m1*L1^2 + I2 + m2*(L1+L2)^2 + I3 + 
m3*(L1+L2)^2 ; 
 
 
 
%Electrical Parameters for the chosen DC motor: 
% Free-run speed at 6 V: 1363 RPM 
% Free-run current at 6 V: 80 mA 
% Stall current at 6V: 900 mA 
% Stall torque at 6V: 0.8 kg·cm 
Free_Run_Speed = 1363*2*pi/60; %Rad/s 
Nominal_Voltage = 6; %V 
Stall_Current = 0.9; %A 
Free_Run_Current = 80*1e-3; %A 
Stall_Torque = 0.008; %kg.m 
R = Nominal_Voltage/Stall_Current; %Inner Resistence of 
motor 

CM = (Nominal_Voltage - (R*Free_Run_Current)) / 
Free_Run_Speed; %Konstant of the Motor(Electrical and 
Mechanical) 
 
 
a = MGL/It 
b = CM^2/(R*It) 
c = CM/(R*It) 
d = -CM^2/(R*I2) - CM^2/(R*It) 
e = CM/(R*I2) + CM/(R*It) 
 
A = [0           1         0; 
     a*cos(0)    0         b; 
    -a*cos(0)    0         d] 
B = [0; -c; e] 
C = eye(3) 
D = [0;0;0] 
 
 
controllbility = ctrb(A,B); 
if det(controllbility)==0 
    fprintf("System is not contollable") 
else 
    fprintf("System is contollable") 
end 
 
 
%Checking stability: 
stability = eig(A)  
 
%LQR Feedback Controller: 
Q = diag([10 1 1]); 
RR = 1; 
K = lqr(A,B,Q,RR) 
 
 
x_star = [0 0 0] 
u_Star = 0 
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