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The Self-balancing E-bike - Construction 
and Control 

Abstrakt 

Tato práce se primárně soustředí na řešení samovyvažování se 
modelu jízdního kola. Nejprve jsou představeny různé možnosti 
řešení problému samovyvažování. Jeden z mechanismů je vy­
brán a následně detailně popsán a implementován na reálném 
modelu jízdního kola se setrvačníkem. Dále je namodelován, 
navrhnut a vytvořen mechanický model prototypu včetně elektron­
iky. Nakonec je provedena kalibrace a prostudováno několik způ­
sobů filtrace signálů. 

Klíčová slova: samovyvažovací model jízdního kola, reakční kolo, 
gyroskop, obrácené kyvadlo, Kalmanův filtr; odhad postoje; IMU; 
AHRS; Kvaternion; stat-spcae model; PID regulátor; komplemen­
tární filtr; kalibrace gyroskop; kalibrace akcelerometru. 

The Self-balancing E-bike - Construction 
and Control 

Abstract 

This project is mainly about a self-balancing bicycle. Firstly, the 
various possibilities of balancing a bicycle are discussed. Secondly, 
one mechanism of these possibilities is chosen to be further stud­
ied and applied in a real robot which is balancing a bicycle with 
a reaction wheel. Thirdly, a proposed prototype of a mechanical 
model and electrical components is modeled, designed, and inves­
tigated. Fourthly, calibration and different kinds of filtering like, 
complementary filters, and Kalman filters are deeply studied. 

Keywords: self-balancing bicycle model, reaction wheel, gyro­
scope, inverted pendulum, Kalman Filter; attitude estimation; 
IMU; AHRS; quaternions; stat-space model; PID controller; com­
plementary filter; calibrating gyro; calibrating accelerometer. 
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List of abbreviations 

S B M B Self-balancing Motor Bike 
L E D Lighe Emitting Diode 
M E M S Micro-electromechanical System 
I M U Instrumental Measurement Unit 
G P E Gyroscopic Precession Effec 
B L D C Brushless DC electric motor 
IC Integrated Circuit 
U A V Unmanned Aerial Vehicles 
E K F Extended Kalman Filter 
U K F Unscented Kalman Filter 
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K F Kalman Filter 
E r K F Error State Kalman Filter 
L Q R Linear Quadratic Regulator 
PID Proportional Integrator Derivative 



1 Introduction 

Two-wheeled vehicles (bicycles) have been used since 1817. Since that time, two-
wheeled vehicles have gone through different stages of development. Additionally, 
in the late 19th century, Electrical motors have been implemented in two-wheeled 
vehicles. Such vehicles have been named motorbikes. 

Even though driving motorbikes or bicycles could be interesting and adventur­
ous for some people, it might be dangerous for others. In addition, many people 
who did not learn to drive bicycles in their childhood, find it extremely difficult, 
embarrassing, and even sometimes impossible for them to learn it when they get 
older. Therefore, a self-balancing robot might be somehow helpful for those who 
did not have the chance to learn when they were young, with the case that the two-
wheeled vehicles could be modified to function as a learning device. Furthermore, 
hazardous accidents happen every year causing injuries, permanent disabilities, and 
death. Thus, more stable two-wheeled vehicles might decrease the number of ac­
cidents and so the number of injuries and death rate. Moreover, Moreover, from 
the modeling, practical and experimental control point of view, the self-balancing 
bicycle is a nice challenge for control engineers. 

At the beginning of the 21st century, a lot of effort has been focused on the system 
of self-driving cars (four-wheeled vehicles). In the case of motorbikes, however, 
a self-driving system might not be useful unless there is a system that balances 
the two-wheeled vehicles. The two-wheeled vehicle might have their preferences 
over four-wheeled vehicles. These preferences can be summarized in size, energy 
consummation, crowding, and adventure. 

Furthermore, engaging the new cutting-edge technology in our daily uses devices 
has been an essential thing to facilitate our life with less effort and, of course, less 
cost. One of these technologies is data acquisition, signal processing, calibration, 
and filtering. Without this accuracy of processing, sensors would have their own 
flaws, errors, and probably damages, to property or even personal life. Therefore, 
getting data from sensors is not as easy as it sounds, and it surely requires some 
techniques and approaches in order to to get accurate signal results that will ensure 
functionality and safety. Some of these techniques are filtering and combining results 
of two or three sensors for getting the targeted output precisely, usually known 
as sensor fusion, 

One of the best chances to apply and translate electronics knowledge, mechanical 
knowledge, and coding knowledge into reality is to be engaged with a real practical 
mechatronics project. Such a project can combine all knowledge and backgrounds 
together in order to produce a mechatronics system with our eyes open to the prac-
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tical issues, errors, and flaws that usually are not taken into account in theory. 
The previous motivations have been a good spark for me to put more effort to 

make analytical research on the different possibilities of balancing two-wheeled vehi­
cles, proposing a prototype of a self-balancing robot, designing an initial model for 
the robot, constructing a 3D prototype, study different possibles of getting clean pre­
cise output results of sensors, model the plant, design the controller and implement 
it to the whole system. 
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2 Possibilities of stabilizing bicycles 

Each vehicle driven on the road must be somehow stabilized and running in a safe 
mood. Four-wheeled vehicles and three-wheeled vehicles are normally stabilized 
by the wheels, but for two-wheeled vehicles, this is not the case. Each two-wheeled 
vehicle must be, therefore stabilized either by the driver himself or by another mech­
anism. In order for the two-wheeled vehicle to be autonomous not only does it need 
a system for driving it safely and intelligently, but also it must have an engineering 
system that enables it to be stabilized. There are different possibilities by which the 
two-wheeled vehicle (bicycle) can be stabilized. Some of these engineering ideas are 
as follows: 

The idea of a self-balancing robot can be implemented on bicycles with different 
mechanisms. The reaction wheel, however, is considered one of the most suitable 
methods due to its straightforwardness, functionality, and robustness. The reaction 
wheel mechanism relies on the principle of an inverted pendulum. A n inverted 
pendulum is a pendulum with the exception that its center of mass is above its pivot 
and thus should be stabilized [1][2][3][4]. Figure 2.1 shows the idea of stabilizing the 
cart's inverted pendulum. 

2.1 A reaction wheel 

Figure 2.1: Cart inverted pendulum 
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The concept of the reaction wheel control is basically controlling a spinning mo­
tor that is connected to a wheel with calculated inertia. Then, the motor accelerates 
or decelerates with the possibility of rotating in both directions depending on the 
requirements. This motion of the wheel creates a reaction torque based on the law 
of conservation of momentum and thus enables to control of the bicycle. The ad­
vantages of using such a mechanism can be summarized in low price, simplicity, and 
absence of ground reaction. While the disadvantages are high energy consummation 
and limited torque amounts[l]. One efficient prototype, that harnesses and utilizes 
this idea, is called M U R A T A BOY[3][5]. It is shown in Figure 2.2. 

Figure 2.2: M U R A T A B O Y prototype 

2.2 Gyroscopic Stabilisation 

Gyroscopes as systems or sensors(MEMS) are one of the most useful devices in 
the engineering world. They have different implementations such as in cameras, 
helicopters, balancing vehicles, and spacecrafts[6]. A simple gyroscope system with 
its components is illustrated in figure 2.3. 

Figure 2.3: A simple gyroscope 
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Gyroscopes can as well be implemented for balancing bicycles in different forms 
and methods, some of which are: 

2.2.1 A gyroscope, its axis is parallel to the driving wheels' axes 
This stabilizing method is based on the gyroscopic precession effect (GPE). It ba­
sically uses two motors. The first motor is a high-speed B L D C motor for rotating 
the rotor of the gyroscope. The second motor is a D C servo-motor for moving the 
gimbal when required and so balancing the bicycle [7] [8]. More illustrated details are 
in figure 2.4. 

Figure 2.4: A balancing bicycle gyroscope 

The advantages of using this method compared to the reaction wheel method, 
are more stability, efficiency, and accuracy. Furthermore, since the rotor rotates 
at a very high speed, it provides a very stable movement. In the case of changing 
the angle of the gimbal, the reaction balance torque will be very huge, and so very 
precise and balanced. [7] 

This method has been implemented in the Gyro-X-1967 prototype as shown in 
figure 2.5[9]. Now this prototype is preserved in Lane Motor Museum 

Figure 2.5: Gyro-X Car prototype 
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2.2.2 Two gyroscopes their axes are perpendicular to the driving 
wheels axes 

This mechanism is based on two gyroscopes that rotate in different directions with 
constant velocity. When the vehicle tilts (rolls) to the right or to the left, there 
is a gyroscope sensor that sends a signal to the motor and so rotating the gimbal up­
ward or downward. When the gimbal rotates, it rebalances the bicycle again[10][ll]. 
Figure 2.6 shows the principal working of a couple of gyroscopes[12]. 

Figure 2.6: Couple gyroscopes 

This method of stabilizing is considered the most accurate and stable among all 
methods mentioned in this project. Therefore, it has been implemented in a real-
world self-balanced motorbike prototype called CI by Lit Motors Company. The 
prototype is illustrated in figure 2.7[12] 

Figure 2.7: CI prototype by Lit Motors 
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2.3 A torque applied on the steering handlebar 

This mechanism basically balances the bicycle by an external force or torque that 
is applied directly to the steering handlebar. The external force can be in the form of 
an electric linear actuator [13]. The external torque can be in the form of a rotational 
motor. [14] 

The advantages of such a mechanism are lightness and low power consumption. 
On the other hand, the disadvantag less stable system and a lack of robustness 
when the tilt angle is large. Figure 2.8 shows an actuator that balances the bicycle 
by balancing the steering handlebar. 

Figure 2.8: Balancing a bicycle by an actuator 
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3 Construction, prototyping, assembly 

From the previous methods of motorbike controlling mentioned in chapter 2, the 
reaction wheel method is chosen to be further studied, analyzed, and performed. 
For this method, multiple electrical and mechanical components will be needed to 
do the job. The idea in this prototype is that a self-balancing motorbike or (SBMB) 
will be able to stabilize itself with the help of a reaction wheel that is connected to 
a D C motor. When the bike detects any kind of tilt or disturbance, S B M B should 
be able to detect these changes and upon them take proper action by the reaction 
wheel motor. Angle detection is achieved by fusing an accelerometer, gyroscope, 
and magnetometer. A l l these sensors are inserted in the MPU-9250. In addition, 
there are two other motors that are responsible for moving and steering. These 
motors are controlled by a smartphone via a Bluetooth module. Figure 3.1 shows 
the overall schema from the upper compact level point of view. 

Figure 3.1: Scheme of electrical components 

16 



3.1 Assembly 

The S B M B system is based on a controlling approach. In other words, it requires all 
essential components for successful feedback control. So, it needs a microcontroller, 
appropriate sensors, actuators, and a well-designed system that will facilitate the 
controlling approach namely the center of mass position. Figure 3.2 shows the chart 
or the circle of a successfully controlled mechatronics system. 

Figure 3.2: The Circle of a successful controlled mechatronics system 

Moreover, to successfully accomplish such a system, a lot of mechanical and 
electrical components are needed. The multiple main electrical and mechanical 
components are illustrated in the following table. 

Table 3.1: Electrical and mechanical components 
The component The number 
Arduino nano 2 

Li-ion batteries 4 
Bluetooth module 1 

Motors 3 
Motor driver 1 

Switch 1 
M P U 9250 1 

Wheels 2 
Reaction wheel 1 

Bearings 2 
Shafts 2 
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3.2 Construction 

Two 3D prototypes are designed for the purpose of construction, both are done in 
Inventor. The first one is in figure 3.3 and the second one is in figure 3.4 

3.2.1 Prototype A 

reaction wheel 

back wheel 

Figure 3.3: Bicycle 3D design A 
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3.2.2 Prototype B 

Figure 3.4: Bicycle 3D design B 
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4 Actuators and sensors 

Actuators and sensors are the devices required in any machine to recognize what 
happens in the surrounding environment and therefore react to the action accord­
ingly and properly. 

4.1 Actuators and motor drivers 

4.1.1 Actuators 
An actuator is a transducer that converts one form of energy to another. For ex­
ample, the electric motor is considered to be an actuator because it converts the 
electric energy to mechanical transnational or rotational energy. There are many 
types of actuators as eclectic, pneumatic, and hydraulic. 

In this project, only eclectic actuators have been used as a source of energy 
transformation. Three electric motors are used. The first motor is a servo motor 
for enabling the bike to turn left and right. The second motor is a dc motor for 
allowing the bike to move forward and backward. The third motor is a dc motor 
that is connected to the reaction wheel for the balancing process of the whole bike. 
The three motors are shown in figure 4.1 [15] 

Figure 4.1: The drive motor, the reaction wheel motor, and the steering motor 
respectively 
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4.1.2 Motor drivers 
Motor drivers are devices that are used for controlling motors. Different types of 
motors have different ways of driving. For DC motors, H-Bridge is preferably used 
due to its simplicity and low cost. The H-Bridge that is used for driving the dc 
motors is L293D. Figure 4.2 shows the principal working of H-Bridge and L293D. 
H-Bridge's functional principle is that it has electrical switches that are controlled 
by microcontrollers' P W M signals. And by these signals, the motor is driven direc-
tionally and quantitatively[16] 

Figure 4.2: L293D motor driver, schema of H-Bridge working principal 

4.2 Sensors and sensor fusion 

Sensors are instruments that allow the detection of an expected change in the con­
tiguous environment. The considerable development of technologies in ICs has led 
to a revolutionary contribution to the manufacturing sensors world. Nowadays, the 
trend and the most used sensors are smart and soft sensors, in which hardware 
sensing is neglected. In other words, a soft and smart sensor is an instrument that 
involves a microprocessor that is capable of doing mathematical operations so that 
it can produce the required output signals of interest with less noise. [17] 

4.2.1 MEMS and MPU9250 
M E M S or Microelectromechanical systems are small devices that combine electri­
cal and mechanical components in the form of ICs to do advanced and completed 
microscopic tasks. [18] 

I M U or Inertial Measurement Unit is a M E M S device that combines multiple 
sensors in order to determine the orientation of an object with respect to a specific 
frame. IMUs sensors can vary from one type to another depending on the sensors 
inserted, but most of them include sensors that can detect angular rate, the earth's 
magnetic field, and gravitational acceleration. The most important applications of 
IMUs are in planes, satellites, and UAVs[19]. 
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MPU9250 sensor is an I M U sensor that includes 3 sensors, an accelerometer, 
a magnetometer, and gyrometer. Each sensor detects the change in three axes 
X Y Z , so in total, this device outputs 9 signals. Every three signals are on one axis. 
Figure 4.3 shows how the MPU9250 sensor looks like. 

Figure 4.3: MPU9250 sensor 

Accelerometers 

An accelerometer is an instrument that can measure linear or gravitational 
accelerations. There are different types of accelerometers like M E M S capacitive 
accelerometers, piezoresistive accelerometers, and piezoelectric accelerometers. The 
one that is used in MPU9250 is a M E M S capacitive accelerometer. Its working 
principle is based on this, a mass is placed between springs. The mass, depending 
on the action, moves to one side or another. A change, that occurs in the mass, will 
result in a change in the capacitance. This change is recorded as a G-Force. Figure 
4.4 illustrates the working principle of M E M S capacitive accelerometers. [19] [20] 

Figure 4.4: M E M S capacitive accelerometer working principal 

The only drawback of using accelerometers alone is that the output results are 
not highly accurate and their noise is high. Therefore, for applications that need 
more precise angle detection for example roll and pitch, then other techniques should 
be used. Using an accelerometer alone can be used to find roll and pitch angles but 

22 



only in 2D. The formulas for calculating roll and pitch angles by accelerometer 
readings follows: 

0 = a r c t a n 2 - ^ ^ (4.1) 
accz 

# = arctan2 — (4.2) 
acCy + accj 

where <f> is roll angle, 9 is pitch angle, accx accy accz are accelerometer 
readings in X, Y, and Z respectively. These Euler angles' equations are derived 
according to these documents. [21] [22] A Simulink model is done for calculating the 
roll and pitch angle. It is added to the appendix. In figure 4.5, a plot draws the 
results of Euler angles of the Simulink model. From the plot, it can be noticed that 
the noise is high and the accuracy is decent. 

Figure 4.5: Roll and pitch angles by accelerometer 

Gyroscopes 

Gyroscopes are instruments used to detect angular rate and therefore enabling to 
know angular velocity and displacement. Its working principle is based on the Cori-
olis effect as shown in Fig. 4.6 In which, when there is a mass moving in a particular 
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direction with velocity illustrated by the red arrow, and an external angular rate 
is applied represented by the blue curved arrow, these two effects will produce the 
Coriolis force represented by the blue arrow which will result in a change in capaci­
tance. This change is then processed and translated as the angular rate. [19] [20] [23] 

Figure 4.6: Gyro working principle 

Gyroscopes give the angular rate. Therefore, the integration of it gives the 
angular displacement. In figure 4.8, the plot shows the roll and pitch angles. Since 
we are dealing with discrete integration, it keeps drifting, making it inefficient for 
long-term angle measuring. From the plot, it is noticed that the roll angle is drifting 
downward while the pitch angle is drifting upward. 

Magnetometers 

Magnetometers are scientific sensors that are used to detect the earth's magnetic 
field. One common method used in manufacturing magnetometers is hall effect 
magnetometers. The hall effect working principle simply states that, when we have 
a conductive plate and there is a current running, the current will flow straight from 
one side to another, but when the conductive plate comes across a magnetic field, 
the electrons will deflect to one side of the plate and the other side will be positively 
charged, and so a voltage will be created between the plates. Figure 4.7 shows the 
working principle of hall effect sensors. [24] [25] 

Values of roll and pitch got by accelerometer can be used with magnetometer 
signal in the 3 axes X , Y , and Z to get the value of Yaw. The equation of yaw in 
this paper[26] was used in my Simulink model. The results of the Simulink model 
can be noticed in figure 4.9. We can see no matter how we rotate the body in the 
yaw axis, the roll and pitch angle ate stable. 

4.2.2 Sensors calibration 
Sensors are the detective instruments that let the device recognize the change in the 
environment. Therefore, the accuracy of these devices is highly preferred. However, 
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Magnetic Field 

Figure 4.7: Hall effect principle 

Roll and Pich Angles by Gyroscope 
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Figure 4.8: Roll and pitch angles by gyroscope 
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Figure 4.9: Roll and pitch angles by accelerometer and magnetometer 

this is not usually the case, especially when the errors are prohibitive. So, sometimes 
a process that is called calibration is required for more precise output results. 

Accelerometer calibration 

Ideally speaking, the three axes in the accelerometer should be aligned 90° from 
each other, but due to manufacturing errors, it is common that an accelerometer 
will have non-orthogonality errors. In addition, no matter how much expensive the 
accelerometer is, it will have some bias. For these factors, calibration is needed for 
more trustworthy results. Not to forget mentioning that also removing bias can also 
be done by estimation, but calibration is more straightforward. [27] [28] The equation 
used for calibration is as follows: 

dx \ I Sn S\2 Sis \ ( dXraw ~ bx 

ay \ — \ S21 S22 S23 I I dXraw — by 
0>z J \ S31 S32 S31 J \ ClXraw ~ bz 

(4.3) 

where the calibrated measurements, S matrix is scale-factor and 
nonorthogonaliy corrections, axraw a-Yraw a-Zraw are are the raw measurements, and 
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bx by bz are the bias corrections. 
For the calibration, multiple readings are taken from the accelerometer in dif­

ferent positions. The more reading there are, the more accurate is the calibration. 
One side note, when taking the measurement values, the sensor should be as steady 
as possible. This process is done within Matlab the code is in the appendix. The 
results are compared in figure 4.10 and figure 4.11. Figure 4.9 scatters the raw and 
the calibrated values in 3D, while figure 4.10 plots the data in X Y plane. 

3D Scatter Plot of Acclormeter Data 
* Raw Values 
* Calibrated Values 

Figure 4.10: Comparison of raw and calibrated values in 3D 
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Figure 4.11: Comparison of raw and calibrated values in X Y plane 

Magnetometer calibration 

Calibrating the magnetometer is an essential step in any sensor. The errors are 
caused either by soft iron distortions or hard iron distortions. Soft iron distortion 
is usually caused by paramagnetic materials or ferrous metals like iron and steel. 
Hard iron distortions or biases are caused by magnets or high-current wires. Soft 
iron distortions or hard iron distortions are not the only reason why calibration 
is required. Calibration is also needed for axes' misalignment [29] [30]. 

Applicationly speaking, it is good to keep the magnetometer far from magnets 
or magnetized metals. So that errors can be mitigated. For doing the calibration, 
firstly we take raw values from all sides. In other words, we rotate the sensor in 
360° multiple times in all axes directions. And then magcal function in M A T L A B 
is used so that we can get the A matrix and the b vector. Then we can apply this 
equation for getting the calibrated values: 

mcaUh = A {mmeas - bx) (4.4) 

where mcaub is the calibrated magnetometer vector, mmeas is the measured mag­
netometer vector, bx is the hard iron corrections vector, and A is 3 * 3 matrix that 
represents soft iron, scale factor, and misalignment correction. 

After that, we can compare raw and calibrated values. The Matlab script for 
calibration is included in Appendix. The results of calibration are in Figures 4.12 
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and 4.13. It is noticeable that the calibrated values are centered around the zero 
value. 

XYZ Scatter Plot of Magnetometer Data 

* Raw Values 
Calibrated Values 

50 

YfaT] -50 . 5 0 X[MT] 

Figure 4.12: Comparison of raw and calibrated values in 3D 

4.2.3 Sensor fusion 
Sensor fusion or a multi-sensor system is a method that basically combines more 
than one sensor for a better perception and a more stable performance. Depending 
on results from a separate sensor cannot always be guaranteed. A single-sensor 
system can sometimes lead to catastrophic results, especially if the application field 
requires more sensitivity and precision. Therefore, sensor fusion is an essential step 
in such applications. In addition, research and development in this field have become 
a key goal for many companies. In other words, sensor fusion is a rapidly evolving 
field that will play a role in the cutting-edge technologies that will lead the world of 
manufacturing. [31] [32] Figure 4.14 shows the fundamental concept of sensor fusion 
where multiple inputs are entered into the system. Then these data are processed 
to give output results. 

The drawback of using individual sensors can be summarized in suffering from 
limited range, performance degradation under certain environmental conditions or 
limited field of view [33]. To look at it from a human point of view. Then, using 
individual sensors is like a human who has senses like taste, smell, touch, and hearing, 
but his brain cannot process and analyze what happens in the environment. So, 
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Figure 4.13: Comparison of raw and calibrated values in X Y plane 

I would describe sensor fusion as a progressive advanced approach that enables the 
device to perceive and sense the surroundings with higher efficiency and fewer errors. 

The biggest advantage of sensor fusion is that it makes the device more intelli­
gent, controllable, and reliable. However, using multiple sensors can be costly and 
complex to implement or understand. 

Figure 4.14: Basic concept of sensor fusion[32] 
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Complementary filter 

For simply advanced applications, the complementary filter is a good choice. Its 
basic idea is to compare two sensors and harness the best accurate measured values 
from any. As discussed and noticed before from graphs, individual use of sensors 
is not reliable. For example, the accelerometer alone is only good when the system 
is stable. So it is good when at rest which means for long time measurements. While 
the gyroscope is only good in the short time because it relies on integration and since 
we deal with digital systems, what is known as drift takes place as illustrated in 
figure 4.8. As a result, the trick is how to depend on an accelerometer for long-time 
measurements and also how to depend on a gyroscope for short-time measurements. 
And that is why the complementary filter exists. [34] [35] [36]. 

Since accelerometer measurements are highly affected by vibrations, a low pass 
filter will be needed to overcome or overpass the high-frequency signals, while for 
eliminating the drift effect, a high pass filter will be needed as illustrated in fig 
4.15. [35] 

Figure 4.15: Block diagram of digital complementary filter system [36] 

The equation used for the complementary filter is as follows: 

0 n + l = <f)acC)n . a + (1 - a) (0„ + T . (j)gyr0tn) (4.5) 

where <ftn+i is the current angle estimate, <f>acc,n is the measurement from the 
accelerometer, a is a constant between (0,1), <ftn is the previous angle estimate, T 
is the sample rate, and 4>gyro,n is the measurement form gyroscope. 

The a constant determines which sensor we tend to rely more on upon. When a 
is close to zero it means we trust the gyro measurements and when it its is close to 
the one we trust more accelerometer measurements. Typically a is a number that 
is close to 0 because the accelerometer is used only as a support for compensating 
the gyro drift. 

Figure 4.20 shows the results got by the complementary filter. The Simulink 
model is included in Appendix. 
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Kaiman filter 2D 

The Kaiman filter is an optimal estimation algorithm for measuring estimate states 
of the system from some measurements[37]. Kaiman filter is basically an observer 
that estimates a state than cannot be directly measured. It only depends on current 
and previous measurements. Therefore, one advantage of using the Kaiman filter 
is that they only need low memory. [38] Kaiman filters do not function as other 
sensors which only clean up the data. Rather, they combine, process, and estimate 
the data. [39] Kaiman filter's main parts are prediction and estimation. Prediction 
and estimation equations are illustrated in figure 4.16 

Prediction 
Update 

p-kc' 
CP-CT + R 

xk =$1 +Kk(yk - C x J 

Pk = (I-KkC)P; 

Figure 4.16: Kalman filter illustration. Prediction and estimation equations[39] 

where Xk~ is the priori estimate of x at time step k, is the priori estimate of 
the error at time step k, Q is the process variance, y& is the actual measured state, 
Xk-hat is the posteri estimate of x at time step k, P^is the posteri estimate of the 
error at time step k, Kk is the Kalman gain at time step k, and R is the measurement 
variance. 

The graph in figure 4.16 explains the Kalman filter from the probability dis­
tribution point of view. Kalman filter procedure occurs in this manner. Firstly, 
the initial state estimate curve takes place. Then, the predicted state estimate in 
the blue curve occurs. After that, the measurement curve in orange is calculated. 
And finally, the optimal state estimate represented by the green curve is the mul­
tiplication result of the measurement Gaussian curve (in orange) and the Gaussian 
predicted state estimate curve (in blue). 

There are many types and algorithms of Kalman filters. They vary in implemen­
tations depending on their applied use. However, they all share the same principle 
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of prediction and estimation calculation. These types are either linear models or 
non-linear models. The more we tend to non-linear models, the more expensive 
the computational cost is. Figure 4.17 highlights some of Kalman filter types, use, 
assumed distribution, and costs. 

Sta te E s t i m a t o r M o d e l 
A s s u m e d 

d i s t r i b u t i o n C o m p u t a t i o n a l cos t 

Kalman filter [KF( Linear Gaussian Low 

Extended Kalman filter (EKFj Locolly linear Gaussian Low [if the Jacobians need to be 

computed analytically) 

Medium (if the Jacobians can be 

computed numerically! 

Unscented Kalman filter (UKF) Nonlinear Gaussian Medium 

Particle filter (PF) Nonlinear Non-Gaussian High 

Figure 4.17: Some of Kalman filter types[39][40][41] 

A stand-alone accelerometer or stand-alone gyroscope can be good to a certain 
level, but for a more 2D accurate system that can precisely give good angle results, 
the Kalman filter is an ideal choice where tilt angle, roll-pitch-yaw angles can be 
measured. [42] Roll, symbolized by 0, is the rotation around the front-to-back axis 
(also known as north axis). Pitch, symbolized by 8, is the rotation around the side-
to-side axis (also known as the east axis). Yaw, symbolized by ip, is the rotation 
around the vertical axis (also known as the down axis) as shown in figure 4.18. 
These angles are then fed back to the controller in order to do a certain controlling 
task in aviation, or automobile. 
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Figure 4.18: Roll pitch and yaw angles[43] 

A Kalman filter for 2D orientation is implemented in Simulink. It is included in 
the appendix. It basically takes data from the gyroscope and accelerometer, merge 
them together, and processes them based on the Kalman filter approach. The graph 
in figure 4.20 shows the results of the roll angle. 

Kalman filter 3D 

Fusing two sensors namely the accelerometer and gyroscope is a great success. How­
ever, it only applies to 2D applications. As soon as, the application starts to move in 
a third dimension, then it is affected and not accurate. Not only that but it is also 
disturbed by linear acceleration and any trivial vibrations. The problem point of 
view is that the system is only defined within two frames of reference. Therefore, 
the solution would be to add a third frame of reference namely the earth's magnetic 
field by a magnetometer. [44] [38] One limitation of using Kalman filters is that it 
is only successful for linear systems, which is not usually the case. For non-linear 
systems, a modified version of the Kalman filter known as the Extended Kalman 
Filter is needed to be used. [45] 

Moving from sensor fusion with two sensors to sensor fusion with three sensors 
is a huge jump that requires such an algorithm that would tackle the problem. This 
problem can be solved with E K F which is intended for non-linear systems. And 
for more accuracy and better behavior, the quaternion four-dimensional number 
is introduced. [46] [47] The equation of this system is defined like this: 
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q = <?o + qi * i + Q2 * j + <?3 * k (4.6) 

which can be understood as an extension of complex numbers, but in this case, 
it has one real number and three imaginary numbers. 

AHRS or Attitude and Heading Reference System play a pivotal role in many 
applications like robotics, navigation, aviation, and human-machine analysis. Due 
to its precision, it is preferably used. It depends on 3 sensors, where each sensor 
is three axes X , Y , and Z.[48] 

With the help of the Navigation Toolbox in MathWorks, multiple filters can be 
used for orientation detection based on quaternion like ahrsfilter. A code is done in 
Matlab for this detection for getting roll, pitch, and yaw. It is included in Appendix. 
The graph in figure 4.19 shows angles of roll pitch and yaw. 

Figure 4.19: Orientations in MPU-9250 sensor[49] 

An experiment of different methods to detect angles 

Figure 4.21 compares the experimental results of different methods for getting the 
roll angle. The experiment was done on an M P U 9250 sensor that is connected 
to a microcontroller and fixed on a box as shown in figure 4.20. The first method 
detects the angle with a stand-alone accelerometer, while the second method detects 
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by a stand-alone magnetometer. The third method is achieved by a complementary 
filter, combining an accelerometer and magnetometer. The fourth and fifth ones are 
by Kalman filters. One is in 2D (Accelerometer + Gyroscope) and the other one 
is in 3D (Accelerometer + Gyroscope + Magnetometer). 

The results that can be interpreted from figure 4.21 is that using an accelerometer 
alone can lead to noisy detected signals while using a gyro alone causes drifted 
results. The complementary filter and Kalman 2D results are quite similar. They 
are good in 2D applications, but as soon as there is a linear acceleration the results 
start to be noisy. Kalman 3D plot as shown in the figure is quite stable with less 
error and more precision even under linear acceleration. 

The orientation and visualization of the 3D motion are also achieved in Simulink 
as shown in figure 4.22 with different animations. The code for the different methods 
as well as the orientation of the angles are included in the attachments. 

Microcontroller 

IMU sensor 

Figure 4.20: Orientations in MPU-9250 sensor 
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Roll Angle with Different Filters 
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Figure 4.21: Orientations in MPU-9250 sensor 

Figure 4.22: Orientations in MPU-9250 sensor 
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4.2.4 Worthwhile theoretical and practical notes 

Alignment 

Not all sensors in I M U are aligned. Therefore, it is important to first align the sensors 
before processing the data to the N D E coordinate system. As noticed in figure 4.23 
the axis of the accelerometer-gyroscope is different from the magnetometer in M P U -
9250. The accelerometer and the gyroscope axis need to be swapped and/or inverted 
to match the magnetometer axis. 

Orientation Axis for Magnetometer Orientation Axis for Accelerometer and Gyroscope 

Figure 4.23: Orientations in MPU-9250 sensor[49] 

Discrete Euler 

When working with microcontrollers, we need to discretize the system. The previous 
prediction and estimate equation is for continuous systems. Therefore, discretizing 
the system is an important step that should be taken into consideration. The fol­
lowing equation illustrates how to discretize an equation in a continuous system: 

x(t) = Ax(t) + Bu (4.7) 

is discretized like this: 

x(K + l)=x(k)+Ts* (Ax (k) + Bu) (4.8) 

Quaternion over Euler angles 

Quaternion system is preferred over Euler angles due to its more accuracy in 3D 
orientation visualization which is not vulnerable to bugs, gimbal lock, and other 
issues. The Euler method or a three-by-three matrix method is more intuitive to 
understand; however, it is in danger of gimbal lock. Gimbal lock is the case known 
when two axes of orientation are lined up which leads to one degree of freedom 
loss. Figure 4.24 shows the gimbal lock case. [50] A l l in all, the quaternion is more 
accurate but less intuitive and more computationally expensive. 
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Figure 4.24: Gimbal lock case[50] 

EKF vs. ErKF 

Kalman filters are sufficiently good for linear systems, but neither the environment 
model nor the process is usually linear. Therefore, in such cases, K F is replaced 
by E K F which is quite efficient for nonlinear systems. The ahrsfilter in Matlab 
is based on E r K F which is also used for non-linear systems. The mean difference 
between E K F and E r K F is that E r K F uses a technique where the error in the states 
is estimated using a Kalman filter, rather than the state itself. While in E K F the 
states are directly measured. Experiments have proven that E r K F is very robust 
method and effective. [51] 

Other notes 

• Matrix operations are computationally costly. 

• Filtering the sensors might be good before implementing them in K F . 

• It is important to carefully initialize state estimate Xhat, error covarinace ma­
trix P, and noise covariance matrices R and Q. 

• When programming Arduino in Simulink, there is an option of Running in 10, 
before the implementation and the code generation, which can save a lot of 
time instead of generating code each time with each modification. 

• When working in Matlab or Simulink, all data mat files and functions must 
be in the same folder. 
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5 Control strategies and stability 

5.1 PID controllers 

5.1.1 Introduction 
Proportional-integral-derivative is one of the most commonly used control strategies 
in the industry. Even though PID is a relatively old method compared with the 
new ones, it is still a leading control strategy that occupies 90-95% of the control 
industrial application. This dominance over the other control strategies can be 
summarized in this points[52]: 

• PID is intuitively easy to grasp. It only requires a basic understanding of the 
working principle. In other words, it is not mathematically complicated. 

• Its historical background, and early usage have led it to be a standard and 
a reference over time in the control theory. 

• The appearance of digital control has facilitated the way into recognizable and 
remarkable improvements in the field. As the engineering main goal is to reach 
a better performance with less time, complexity, and price. Digital control has 
hugely helped PID in adaption, self-tuning, and gaining scheduling. 

• It is always better to keep developing, modifying, and enhancing a strategy 
(well-known solution) in which you have solid knowledge, rather than starting 
in new strategy from scratch. 

5.1.2 Fundamentals 
A PID controller is basically a feedback controller strategy in which a desired value 
is given in order to be reached. Its main important factor is to precisely, roughly 
speaking, adjust/determine PID parameters to reach an optimum required value in 
a process known as parameters' tuning [53]. The PID controller, from how its name 
sounds, has three main parameters as shown in figure 5.1 

So the controller part of the whole system can be mathematically represented 
by the following equation: 
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where u(t) is the output of PID, Kp is the proportional gain, k(i) is the integration 
gain, k(d) is the derivative gain, e(t) is the error which is the difference between 
output y(t) and required value r(t).[54] 

p WpeCt} 1 
4 

Jo Jo • z. 

D K M t ) I D K M t ) 

"CO 
ftecess 

y ( 0 

Figure 5.1: PID controller in time domain 

Each term of the PID controller has a practical influence and a technical mean­
ing [5 5]: 

• The proportional part. It is proportional to the error. It speeds up the dy­
namic of response. In other words, it gets the system to the interned require­
ment as fast as possible, however, using it alone if not tuned properly can lead 
to instability. 

• The integration part. It basically integrated the error, helping it gradually to 
reach zero offsets. Using it alone can make lagging and delays for the system. 

• The derivative part. It basically restrains the system from moving too quickly 
in the beginning, and if it overpasses the required point, it will get it back. If 
not used properly, it can cause undesired high frequency. 

Merging two or all of these terms together is just a task that requires knowledge 
of the system (plant) in order to be chosen properly. After selecting a specific two 
or three terms controller then it's a matter of tuning. 

There are many tuning approaches that can be used in tuning PID controllers. 
The most known three ones are heuristic tuning, rule-based tuning, and Model-
based tuning. Depending on the purpose, knowledge of the plant, and experience, 
the method can be chosen. [56] 
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5.2 State-space control 

5.2.1 Introduction 
State-space control, or what is often referred to in the literature as modern control 
theory, is a time-domain approach in which the system can have multiple inputs and 
multiple outputs. It is a more complicated approach that requires a deep under­
standing of the system as well as the approach. This type of approach can lead to 
a more stable system. With that being said, this approach is costly either due to the 
need for more sensors or due to its requirement for a more capable microcontroller 
to do the estimation of the non-sensored states by the observer. [57]. 

Mathematically speaking, the state-space representation can be defined in terms 
of matrices in this form: 

where equation 5.2 is called state equation, and equation 5.3 is called output 
equation, 
x ... is the state vector 
x ... derivative of the state vector with respect to time 
y ... output vector 
u ... input or control vector 
A ... system matrix 
B ... input matrix 
C ... output matrix 
D ... feed-forward matrix 

5.2.2 Controllability and observability 
A system is said to be fully controllable, if it is possible to transfer the system from 
any initial state x(to) to any desired state x(t) in specified finite time by a control 
vector u(t). In other words, if any of the state variables is independent of the control 
input u(t), there would be no possible way to bring the system to that desired state 
and so then the system is uncontrollable. To check controllability of any system 
then 

• the rank of Qc should have the same value of the order of the matrix A . 

• or determinant of of Qc should not be equal to 0. 

x = Ax + Bu 

y = Cx + Du (5.3) 

Qc = [B : AB : ... : A^B] (5.4) 
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If the system is in the controllable canonical form then, the system is always 
controllable. Likewise, A system is said to be fully observable, if every state x(to) 
can be identified by measurement of outputs y(t) over a finite time interval. For any 
system to be observable then 

• the rank of Qa should have the same value of the order of the matrix A . 

• or determinant of of QQ should not be equal to 0. 

Q0=[C:CA: ... : CAn~l\T (5.5) 

The practical importance of having an observable system is that if any of the states 
cannot be measured for any reason(cost, no possibility), then these states can be 
estimated by the observer if designed and parameterized accurately. [55] [57] [58] 

5.2.3 Control strategies 
A- Pole-placement method[59] [55] 

In the pole-placement approach, we have the choice freedom of the poles. The 
method is not very intuitive in presence of high-order systems. Since it is a state-
feedback control then the control input is defined as: 

u = —Kx (5.6) 

in which u is the input, k is the control vector, and x is the state vector. 

State-Feedback controller 

lift) 
x(f) = Ax(t) 4- Htt(t) x(t) 

Figure 5.2: State feedback control 

B- LQR[59][55] 
Linear quadratic regulator (LQR) is the optimal theory of the pole placement 

approach. It takes into consideration performance (states) and actuator effect. Its 
drawback is that it could be computationally expensive for high-dimensional sys­
tems. 

In L Q R approach, there are two matrices of cost functions which are Q and R. 
Q is the penalization given to the stats, while R is the penalization given to the 
inputs(actuators). 
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5.3 Modeling and controling 

5.3.1 The plant 
For creating the model we need to derive the equations of motion. This equation 
can be derived from Lagrangian mechanics or classic mechanics. The equation, that 
will be derived here, is based on classical mechanics. [60] [61] [62] Figure 5.3 can give 
a glimpse of how the equations will be driven. Basically for balancing the motorbike 
we need to formulate the equation of rotational motion around points A and B. 

Figure 5.3: Free body diagram of the reaction wheel for balancing the wheel 

The parameters of the model are defined like this: 
9 ... angle of the bike 
<fi ... angle of the reaction wheel 
mi ... mass of the bike 
m 2 ... mass of the wheel 
11 ... bike moment of inertia at the center of body 
12 ... wheel moment of inertia at the center of wheel 
rm ... torque of D C motor 
11 ... distance to the center of body 
12 ... distance to the center of wheel 
g ... acceleration of gravity 
Vq ... voltage applied vO = U 
% ... electric current 
Rm ... motor resistance 
lm ... motor inductance 
k ... electrical and mechanical constant of the motor 
u ...angular velocity of motor 
Te ... electric torque of motor = k.i 
Td ... static friction 
b ... viscous coefficient 
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The first equation will be the equation of motion around Point A : 

[Ji + mxl\ + I2 + 77i2(Zi + kf]0 = [miZi + m2.(h + l2)\gsin{0) - rm (5.7) 

The second equation will be the equation of motion around Point B: 

he + J 20 = rm (5.8) 

The third part of the equations is the electrical equations and mechanical ones 
that represent the DC motor: 

di 
v0 = Rmi + lm— + ku (5.9) 

Te = Tm + bu + rd (5.10) 

The system now based on the equations above can be represented with 4 states. 
But for sake of simplicity, the system is simplified and reduced to be represented by 
only 3 states which are, the position of bike (0), angular velocity of bike (theta), and 
angular velocity of motor (0 = u). So after manipulating with equations (5.7-10), 
and after substituting: 

It = [h + mxl\ + I2 + m2(h + l2)2} (5.11) 

M = [mi/i + m 2 . ( / i + /2)] (5.12) 

Then the main differential equations of the state-space model will be: 

= Mglsm(9) _ _kU_ + Jfu_ 
It Rmh Rmh 

Qj - k U _ k2°° _ M g l S I N ^ ) +

 k U _ k2°° ( 5 14) 
Rmh Rmh h Rmh Rmh 

so from equations (5.13-14), the equations of each state are as follows: 

xx = 0 ^ ±\ = 9 = x2 (5.15) 

• •• Mgl sin(xi) kU k2xz x2 = 9^x2 = 9 = — — + — — (5.16) 
J-t J^mJ-t J^mJ-t 

r k k 1TT , k2 k2

 n M5f/sin(xi) . 1 W , 
x3 = u =• x3 = u = [— + —}U - [— + —]x3 - V (5.17) 

J^mJ-2 J^mJ-t *Wnl2 J^mJ-t J-t 

The system is non-linear and it can be stabilized around the equilibrium point. 
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5.3.2 linearization a non-linear system 
Control theory can tackle linear systems ideally and perfectly. However, once the 
system is non-linear, then it is another case that would require other techniques. 
Since control theory is perfectly fine with linear systems, then we can linearize non­
linear systems around the equilibrium point. And this is basically what is needed 
for balancing the bicycle, which is balancing the bicycle when the angle is just 0 or 
close. 

The non-linear state-space system of the bicycle model, based on previous de­
riving, is represented in this form: 

x 
x\ \ 

1 = 1 
%3 J I CO 

( x2 
Mgl s i n ( z i ) 

h 
kU _|_ fc2Z3 

Rmh Rmlt 
2 i-2 s Mgl sin ( s i ) 

\ 

/ 
(5.18) 

Then we equalize equation 5.18 to zero, to find the equilibrium point. After 
solving the equations then the point of equilibrium is when: 

U* = [0] 

x* = [0, 0, 0] 

(5.19) 

(5.20) 

Now Jacobian matrix can be found from equation (5.18) 

5x 
( 0 1 

Mgl cos(rri) q 

0 
k2 

\ 

\ 
Mgl cos(rri) 0 

Rml, 
k2 k2 

Rmh ) 

5x + Rmlt 
k k 

Rmll Rmh 

5u (5.21) 

After substituting U* and x* to equation(5.21), then the model state-space rep­
resentation will be: 

Sx 
0 1 

Mgl n 

/* 
Mgl _mgi n 

/* Rmh 

0 
k2 

k2 k2 

0 
5x + Rmh 

k k 

5u (5.22) 

Rmh Rmh Rmh 

For simplicity, and since all parameters of equation (5.22), are fixed constant 
values, then I would assume that: 

•; c 
Mgl , -k2 k2 

; a = —— ——; e 
Mgl_h 

h Rml2 h Rmh Rmh 

Then the equation (5.22) would be in this form: 

0 1 0 
5x — I a 0 b | 5x + 

c 0 d 

Rmlt Rmh Rmh 
(5.23) 

(5.24) 
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And after substituting all parameter values we get: 

0 1 0 
Sx= | 26.9187 0 0.0219 | 5x + | -0.5712 | 8u (5.25) 

-26.9187 0 -0.0694 

The time-domain modeling as two states, three states, and four states is included 
in the attachments. 

5.3.3 Discretizing a continuous system 
Since our world is not continuously ideal and since we usually deal with digital 
systems like computers and microcontrollers, then discretization is a very important 
step. There are many techniques for how discretizing a system. One approach is to 
design a controller and then discretize it. Another approach is to discretize the plant 
and then design a discrete controller as shown in figure 5.4. 

Design 

Continous 
Controller 

Discretize 

Continous 
Plant 

Discrete 
Controller 

Discretize 

Discrete 
Plant 

Design 

Figure 5.4: Approaches of discretizing a system 

The discretization of the state space model is done according to the same prin­
ciple in equation 4.8. 

Figure 5.5 shows the output results of all three states of the model when the 
initial condition is [0.1,0,0], and sample time Ts = 0.01s. The figure shows a com­
parison of the continuous and the discrete state-space model of the self-balancing 
motorbike model after linearizing and around the equilibrium point. The model 
is attached with state space model 3 states folder. 
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State-space model of the bike 

State 1 (Continous) 
• State 2 (Continous) 
• State 3 (Continous) 
• State 1 (Discrete) 
• State 2 (Discrete) 
• State 3 (Discrete) 

0 
Offset=0 

0.5 1.5 
Time [s] 

2.5 

Figure 5.5: The output results of the continuous and discrete state-space model 

5.3.4 Experimental results of the PID SBMB closed-loop control 
The S B M B 3D model is shown in figure 6.1. The balancing of the S B M B prototype 
is accomplished in the Simulink environment as shown in figure 5.6. The closed-
loop control includes multiple steps. Firstly, getting data from the I M U sensor. 
Secondly, including the calibrated model for the accelerometer and magnetometer. 
Thirdly, merging all data together with a 3D Kalman filter and getting quaternion 
data. Fourthly, converting from quaternion to roll, pitch, and yaw angles. In my 
case, only a roll angle was needed. Fifthly, feeding back the roll angle with the 
required value to the controller. Lastly, controlling the P W M of the motor will lead 
to controlling the reaction wheel motor voltage. And Controlling the voltage will 
lead to controlling the reaction wheel's angular velocity. And by all of that, we 
are in the end capable of giving required angular momentum that will stabilize the 
bike. The PID parameters that are used in the bicycle prototype are based more 
on experimental tuning. The PID values that were of the closed-loop control are 
as follows Kp = 40, Ki = 0.001, and kd = 0.1 The potential of the prototype to 
control is around 5° in both directions. The results of the required angle and the 
controlled one are shown in figure 5.7. The figure also in parallel shows the P W M 
value given to the motor at the same time of the balancing. 
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Figure 5.6: PID closed-loop control of the bike in Simulink 

Experimental results of the PIP controller for the bike 

40 50 
Time [s] 

Figure 5.7: Results of the bike closed-loop PID control 
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6 Final product of the SBMB prototype 

Figure 7.1 shows the final form of the S B M B prototype. The figure shows the me­
chanical and electrical aspects of the prototype. The mechanical side is represented 
by the body, reaction wheel, wheels, joints, bearings, and mechanism for steering. 
And the electrical components are microcontrollers, motors, I M U sensor, batteries, 
Bluetooth module, and motor driver. 

Figure 6.1: Final form of the S B M B prototype 
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7 Conclusion 

Summary 

In this project, an analytical study of the different possibilities of balancing a two-
wheeled vehicle has been accomplished. A proposed prototype is suggested with its 
different electrical and mechanical components. 

The common different options, in which a bicycle can be automatically balanced 
discussed by this project are, by a reaction wheel, by the gyroscopic effect precession, 
or by a torque applied in the steering handlebar. The reaction wheel mechanism 
depends on the concept of the inverted pendulum. Its advantages are simplicity and 
robustness, while its disadvantage is more energy-consuming. G P E method can be 
applied in different forms and in different ways of balancing. Among all mechanisms 
mentioned, G P E method is considered the most robust but at the same time the 
most consuming method for energy. The torque applied to the steering handlebar 
method can be done by a rotational motor or an actuator. Its main advantage is, 
that it is the least method that consumes energy; however, it is not very stable. 

The method that is chosen to continue further with is the reaction wheel method. 
To get a feedback signal from the sensors, an investigation of different methods and 
approaches to detecting the angle has been approached. The different methods are 
summarized in the following paragraph. 

For detecting the angle, I M U 9250 sensor is selected. I M U sensor include 3 
sensors which are an accelerometer, magnetometer, and gyro. Each sensor of those 
can detect in the directions x,y, and z. Therefore, there can be different scenarios 
and methods of harnessing and getting advantage of the sensors. For example, 
when using an accelerometer alone to detect the angle, then the results show a lot 
of noise in the short-term change. Secondly, when using gyro alone, the error keeps 
accumulating due to its dependence on discrete integration. So the drift effect 
is quite noticeable. To get the most out of each sensor then they can be combined. 

Sensor fusion is a technique where more than one sensor can be merged to get 
more correct precise output results. For this application, three different methods 
are used. Firstly, a complementary filter between the gyro and accelerometer yields 
better results. The basic idea of the technique is to make the result depend on the 
accelerometer in long-term changes, and depend on the gyro in short-term changes. 
Secondly, Kalman filter between gyro and accelerometer. The difference between the 
complementary filter and the Kalman filter is that the a constant has to be chosen 
upfront in the complementary filter, while in the Kalman filter, it is automatically 
changed by the method. In my case, both of the methods have shown quite similar 
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results. Merging two sensors is only enough for 2D applications for example a pen­
dulum. However, when there is a need for 3D applications like drones, or balancing 
bicycles with a reaction wheel, then a third frame of reference is required. 

The last sensor fusion method that is investigated is merging the three sensors 
together which are the accelerometer, gyro, and magnetometer. This method is ac­
curately correct but costly. It can be used for AHRS applications and also for the 
bicycle balancing prototype. Results of the roll, pitch, and yaw angle are shown 
with different animations. 

Of course not all sensors are ideal, so calibrations to the sensors are also achieved 
with different models. 

The two 3D models are designed within Inventor. The models include the body 
of the vehicle, wheels, and other mechanical components. The model is printed then 
with 3D printing machines. 

A l l in all, the bicycle prototype is controlled with a reaction wheel as an actuator 
of balancing which is driven by a DC motor, and the detection of the angle is ac­
complished with an I M U sensor using a 3D Kalman filter. To close the loop with the 
controller, a PID is chosen and used for the balancing and the bicycle is controlled 
by a mobile through the communication of a Bluetooth module. Modeling the plant 
with a state-space model and its L Q R feedback controller is also investigated in this 
project. 

Further improvements and suggestions 

A suggestion that can be investigated further is to control the reaction wheel with 
a motor that has a feedback signal, for example, of an encoder or tachometer. Then 
the states of the plant according to the model studied, are all available and the 
whole system can be controlled with L Q R or other techniques and compared with 
PID strategies. 

Also, for sake of simplicity or complexity, the plant model can be remodeled 
with two or four states depending on purpose and accuracy and therefore can be 
investigated and compared in reality. 

Moreover, all parameters of the model are either taken as information from the 
supplier or approximated. So once the whole model is available with all signals, it 
would be good to do parameter estimation to all parameters to be more accurate of 
the model. 

Furthermore, this whole process was done with Matlab and Arduino. So, it 
would be nice if the same techniques are investigated further with different software 
and hardware to make comparisons, and reach optimal results with more efficiency 
and less cost. 

A l l in all, improvements of the whole system are still open in all its different 
aspects which are design, control, sensors, actuators, modeling, filtering, coding, 
theory, practice, and so on. So I would say for anyone who wants to push him­
self/herself forward, and continue further in this project with such a project, it 
is really attractive with challenge and enjoyment. 
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• Card Schematic and Connections. 
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I. Calibrating IMU-9250 Magnetometer in MATLAB 

c l e a r a l l 
c l c 
% Z a i d A l - D a i l a m i 
% 22 8 2022 
% C a l i b r a t i n g t h e Magnetometer 

%% 
a = a r d u i n o ( ' COM3', 'MegaAdk', ' L i b r a r i e s ' . , ' I 2 C ' ) ; 
f s = 100; % Sample Rate i n Hz 
imu = 
mpu9250(a,'SampleRate',f s ,'OutputFormat', ' m a t r i x ' ) ; 

%% G e t t i n g raw v a l u e s so we can c a l i b r a t e i t 
% move t h e s e n s r o 360 i n a l l d i r e c t i o n f o r g e t t i n g raw 
d a t a 
t i c ; 
s t o p T i m e r = 50; 
i = 1 
w h i l e ( t o c < s t o p T i m e r ) 

[accel.,gyro,mag] = r e a d ( i m u ) ; 
mag_x = mean(mag(:,1)); 
mag_y = mean(mag(:,2)); 
mag_z = mean(mag(:,3)); 
m a g _ x x ( i ) = mag_x; 
ma g _ y y ( i ) = mag_y; 
m a g _ z z ( i ) = mag_z; 
i = i + l 

end 

mag_xyz_raw = [mag_xx ' j mag_yy', mag_zz'] 

% we t h e n sace d a t a : 
% s a v e raw_mag mag_xyz 
% s a v i n g d a t a as t e x t f i l e so i t can be useed i n 
magnetometer program o r 
% d i r e c t l y we can use magcal f u n c t i o n i n m a t l a b 
% d l m w r i t e ( " r a w _ v a l u e s . t x t " , m a g _ x y z ) 

%% L o a d i n g t h e d a t a , and comparing raw v a l u e s w i t h 
c a l i b r a t e d ones: 

l o a d raw_mag 
mag_xyz_raw = mag_xyz; 

[A,B,EXPMFS] = magcal(mag_xyz_raw); 

C a l i b r a t e d _ V a l = (mag_xyz_raw - B)*A; 

% 2D p l o t : 
% X,Y: 
f i g u r e 
p l o t ( m a g _ x y z _ r a w ( : , 1 ) j m a g _ x y z _ r a w ( : , 2 ) , ' b * ' ) ; 
h o l d on; 
p l o t ( C a l i b r a t e d _ V a l ( : , 1 ) , C a l i b r a t e d _ V a l ( : , 2 ) / r * ' ) ; 
legend("Raw V a l u e s " , " C a l i b r a t e d V a l u e s " ) ; 
t i t l e ( " X Y Magnetometer Data") 
x l a b e l ( " { \ i t X [\muT]}") 
y l a b e l ( " { \ i t Y [\muT]}") 
g r i d on 
x l i m ( [ - 6 0 6 0 ] ) 
yli.m{[-6<d ,6<d]) 

% 3D p l o t : 
f i g u r e 
p l o t 3 ( m a g _ x y z _ r a w ( : , 1 ) , mag_xyz_raw(:, 2)jmag_xyz_raw(:,3 
)/'*b") 
h o l d on 
p l o t 3 ( C a l i b r a t e d _ V a l ( : J l ) J C a l i b r a t e d _ V a l ( 2 ) . C a l i b r a t e 
d _ V a l ( : , 3 ) , " * r " ) 
x l a b e l ( " { \ i t X [\muT]}") 
y l a b e l ( " { \ i t Y [\muT]}") 
z l a b e l ( " { \ i t Z [\muT]}") 
legend("Raw V a l u e s " , " C a l i b r a t e d V a l u e s " ) ; 
t i t l e ( " X Y Z S c a t t e r P l o t o f Magnetometer Data") 
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II. Calibrating IMU-9250 Accelerometer in MATLAB 

c l e a r a l l 
c l c 
% Z a i d A l - D a i l a m i 
% 22 8 2022 
% C a l i b r a t i n g t h e A c c e l o r o m e t e r 

%% 
a = arduino('COM3', 'MegaAdk', ' L i b r a r i e s ' , ' I 2 C ' ) ; 
f s = 100; % Sample Rate i n Hz 
imu = 
mpu9250(a,'SampleRate',fs, 'OutputFormat', ' m a t r i x ' ) ; 

%% For g e t t i n g Raw v a l u e s one by one ( v a l u e vy v a l u e 
w i t h c h a n g i n g p o s i t i o n o f IMU): 
t i c ; 
s t o p T i m e r = 1; 
a c c e l R e a d i n g s = [ ] ; 
w h i l e ( t o c < s t o p T i m e r ) 

[ a c c e l , g y r o , m a g ] = r e a d ( i m u ) ; 
a c c e l R e a d i n g s = [ a c c e l R e a d i n g s ; a c c e l ] ; 

end 
a c c e l = m e a n ( a c c e l R e a d i n g s ) 

%% B and M a r e v a l u e s o f m a t r i c e s got from magneto 
program a f t e r e n t e r i n g Raw v a l u e s : 
% B and M a r e t h e v a l u e s o f o f m a t r i c e s a f t e r 
c a l i b r a t i o n 
B = [-0.060484;0.100788;0.925356]; 
M = [1.010725,-0.001955, 0.000323;... 

-0.001955,0.998625,0.001641;... 
0.000323,0.001641,1.055832]; 

%% Comparing raw v a l u e s and c a l i b r a t e d ones: 
% l o a d raw v a l u e s 
l o a d r a w _ v a l u e s 

% G e t t i n g c a l i b r a t e d v a l u e s 
f o r i = l : l e n g t h ( r a w _ v a l u e s ) 

c a l _ v a l u e s ( : , i ) = M * ( r a w _ v a l u e s ( i , : ) ' - B ) ; 
end 
c a l _ v a l u e s = c a l _ v a l u e s ' ; 

% 2D p l o t s : 
% X,Y: 
p l o t ( r a w _ v a l u e s ( : , 1 ) , r a w _ v a l u e s ( : , 2 ) , ' b * ' ) ; 
h o l d on; 
p l o t ( c a l _ v a l u e s ( : , 1 ) , c a l _ v a l u e s ( : , 2 ) , ' r * ' ) ; 
legend("Raw V a l u e s " , " C a l i b r a t e d V a l u e s " ) ; 
t i t l e ( " X Y A c c e l e r o m e t e r Data") 
x l a b e l ( " X [ m / s A 2 ] " ) 
y l a b e l ( " Y [ m / s A 2 ] " ) 
g r i d on 
% Y,Z: 
f i g u r e 
p l o t ( r a w _ v a l u e s ( : , 2 ) , r a w _ v a l u e s ( : , 3 ) , ' b * ' ) 
h o l d on 
p l o t ( c a l _ v a l u e s ( : , 2 ) , c a l _ v a l u e s ( : , 3 ) , ' r * ' ) 
legend("Raw V a l u e s " , " C a l i b r a t e d V a l u e s " ) 
t i t l e ( " Y Z A c c e l e r o m e t e r Data") 
x l a b e l ( " Y [ m / s A 2 ] " ) 
y l a b e l ( " Z [ m / s A 2 ] " ) 
g r i d on 

% 3D p l o t s : 
f i g u r e 
p l o t 3 ( r a w _ v a l u e s ( : , 1 ) , r a w _ v a l u e s ( : , 2 ) , r a w _ v a l u e s ( : , 3 ) , ' 
b * ' ) ; 
h o l d on; 
p l o t 3 ( c a l _ v a l u e s ( : , 1 ) , c a l _ v a l u e s ( : , 2 ) , c a l _ v a l u e s ( : , 3 ) , ' 

t i t l e ( " 3 D S c a t t e r P l o t o f A c c l o r m e t e r Data") 
legend("Raw V a l u e s " , " C a l i b r a t e d V a l u e s " ) ; 
x l a b e l ( " X [ m / s A 2 ] " ) 
y l a b e l ( " Y [ m / s A 2 ] " ) 
x l a b e l ( " X [ m / s A 2 ] " ) 
z l a b e l ( " Z [ m / s A 2 ] " ) 
g r i d on 
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III. Kalman Filter 3D in MATLAB Visualization and Data Plotting 

c l e a r a l l 
c l c 
% Z a i d A l - D a i l a m i 
% 22 8 2022 
% IMU 9250 i n M a t l a b 

%% S e t t i n g t h e a r d u i n o : 
% a r d i n o s e t u p 
a = arduino('COM3', 'MegaAdk', ' L i b r a r i e s ' , ' I 2 C ' ) ; 
f s = 100; % Sample Rate i n Hz 
imu = 
mpu9250(a,'SampleRate',fs, 'OutputFormat', ' m a t r i x ' ) ; 

%% G e t t i n g Data f r o m IMU 9250, a l l i g n i n g o r i e n t a i o n o f 
A c c e l e r o m e t e r and Gyroscpe w i t h Magnetometer, 
% E n t e r i n g m a t r i c e s t h a t a r e used f o r c a l i b r a t i o n t o 
get more a c c u r a t e r e s u l t s 

% V a l u e s o f B and M f o r c a l i b r a t i n g a c c e l e r o m e t e r : 
( C a l u c l a t e d ) 
B = [-0.060484;0.100788;0.925356]; 
M = [1.010725,-0.001955, 0.000323;... 

-0.001955,0.998625,0.001641;... 
0.000323,0.001641,1.055832]; 

% V a l u e s o f A and B f o r c a l i b r a t i n g magnetometer: 
( C a l c u l a t e d ) 
A = [1.0004,0.0157,0.0156; 

0.0157,1.0492,0.0909; 
0.0156,0.0909,0.9610]; 

b = [1.2579 -10.3320 -5.5533]; 

% G y r o s c o p e N o i s e and A c c e l e r o m e t e r N o i s e i s d e t e r m i n e d 
from d a t a s h e e t and EX 
GyroscopeNoiseMPU9250 = 0.01/1; % G y r o s c o p e N o i s e 
( v a r i a n c e v a l u e ) i n u n i t s o f r a d / s 

A ccelerometerNoiseMPU9250 = 0.00061; % 
A c c e l e r o m e t e r N o i s e ( v a r i a n c e v a l u e ) i n u n i t s o f m/s A2 
v i e w e r = H e l p e r O r i e n t a t i o n V i e w e r ( ' T i t l e ' , { ' A H R S 
F i l t e r ' } ) ; 
FUSE = a h r s f i l t e r ( ' S a m p l e R a t e ' , i m u . S a m p l e R a t e , 
'GyroscopeNoise',GyroscopeNoiseMPU9250,'AccelerometerNo 
i s e ' , A c c e l e r o m e t e r N o i s e M P U 9 2 5 0 ) ; 
F U S E . L i n e a r A c c e l e r a t i o n N o i s e = 0.025; 
FUSE.MagnetometerNoise = 0.1; 

s t o p T i m e r = 50; 
i = 1; 
t i c ; 
w h i l e ( t o c < s t o p T i m e r ) 

[ a c c e l , g y r o , m a g ] = readSensorDataMPU9250(imu); 
% Swapping x and y f o r A c c e l 
a c c e l _ x = a c c e l ( : , 2 ) ; 
a c c e l _ y = a c c e l ( : , l ) ; 
a c c e l _ z = a c c e l ( : , 3 ) ; 
% Chagning P o l a r i y o f x and y 
a c c e l 2 = [ - a c c e l _ x , - a c c e l _ y , a c c e l _ z ] ; 
% C a l i b r a t i n g A c c e l e r o m e t e r 
a c c e l 3 = M * ( a c c e l 2 ' - B ) ; 
a c c e l 3 = a c c e l 3 ' ; 

% Swapping x and y f o r Gyro 
g y r o _ x = g y r o ( : , 2 ) ; 
g y r o _ y = g y r o ( : , l ) ; 
g y r o _ z = g y r o ( : , 3 ) ; 
g y r o 2 = [ g y r o _ x , g y r o _ y , - g y r o _ z ] * 0 . 8 ; 

% C a l i b r a t i n g Magnetometer 
mag2 = (mag - b)*A; 
mag_x = m a g 2 ( : , l ) ; 
mag_y = mag2(:,2); 
mag_z = mag2(:,3); 
mag2 = [mag_x,mag_y,mag_z]*0.02; 

r o t a t o r s = FUSE(accel3,gyro2,mag2); 
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III. Kalman Filter 3D in MATLAB Visualization and Data Plotting 

% C o n v e r t q u a r t e r n i o n i n t o E u l e r a n g l e s 
e u l F i l t = e u l e r ( r o t a t o r S j ' Z Y X ' , ' f r a m e ' ) ; 
e u l F i l t _ V a l u e ( i j : ) = m e a n ( e u l F i l t ) ; 
i = 

%3D A n i m a t i o n o f t h e imu 9250 Sensor 
f o r j = n u m e l ( r o t a t o r s ) 

v i e w e r ( r o t a t o r s ( j ) ) ; 
end 

end 

%% 
t = l i n s p a c e ( 0 j s t o p T i m e r , l e n g t h ( e u I F i l t _ V a l u e ( : , 1 ) ) ) ; 

% P l o t t i n g R o l l A n g l e : 
f i g u r e 
p l o t ( t , ( e u l F i l t _ V a l u e ( : , 3 ) * 1 8 0 / p i ) ) ; 
x l a b e l ( " { \ i t Time [ s ] } " ) ; 
y l a b e l ( " { \ i t R o l l [ D e g ] } " ) ; 
t i t l e ( " P l o t o f Time w i t h Respect t o R o l l Change") 
g r i d on 

% P l o t t i n g P i t c h A n g l e 
f i g u r e 
p l o t ( t , ( e u l F i l t _ V a l u e ( : , 2 ) * 1 8 0 / p i ) - 6 ) ; 
x l a b e l ( " { \ i t Time [ s ] } " ) ; 
y l a b e l ( " { \ i t P i t c h [ d e g ] } " ) ; 
t i t l e ( " P l o t o f Time w i t h Respect t o P i t c h Change") 
g r i d on 

t i t l e ( " P l o t o f Time w i t h Respect t o Yaw Change") 
g r i d on 

% P l o t t i n g R o l l P i t c h Yaw t o g e t h e r : 
f i g u r e 
p l o t ( t , ( e u l F i l t _ V a l u e ( : J 3 ) * 1 8 0 / p i ) J ' b ' ) ; 
h o l d on 
p l o t ( t , ( e u l F i l t _ V a l u e ( : , 2 ) * 1 8 0 / p i ) - 6 , ' r ' ) ; 
h o l d on 
p l o t ( t , ( e u l F i l t _ V a l u e ( : , l ) * 1 8 0 / p i ) - 1 1 6 + 3 8 + 4 , ' c ' ) ; 
g r i d on 
l e g e n d ( " R o l l " , " P i t c h " , " Y a w " ) 
x l a b e l ( ' { \ i t Time [ s ] } ' ) ; 
y l a b e l ( ' { \ i t A n g l e [ d e g ] } ' ) ; 
t i t l e ( " P l o t o f Time w i t h Respect t o A n g l e Change") 

% P l o t t i n g Yaw A n g l e : 
f i g u r e 
p l o t ( t , ( e u l F i l t _ V a l u e ( : , l ) * 1 8 0 / p i ) - 1 1 6 + 3 8 + 4 ) ; 
x l a b e l ( " { \ i t Time [ s ] } " ) ; 
y l a b e l ( " { \ i t Yaw [ d e g ] } " ) ; 
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IV. Roll, pitch, and yaw by 

Display Acce urometer vlaues 

a tan 2 

roll 
Q 

Display Roll by Accelormeter 

accelororneljer 

Calibrate between -90 to +90 degree 

Ca I bratior value 
acceloromet 

'' • 

Dispplay ang Rates values 

>l , gyro Z-1 

Display Roll by Magnetometer 

gyro 
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V. Roll, pitch, and yaw by Accelerometer and magnetometer 

Roll 

ARDUINO 
Accel 

MPU9250 
Mag Field - i 

1" 

roll! 

pitch 1 

Calculating Roll and pitch 

mag_xyz mag_after_calib 

Mag neto_Cal i bration2 

Pitch 

roll 

pitch 

magx 

magy 

magz 

roll val 

pitchval 
fen 

yaw 

Yaw 

f u n c t i o n [ r o l l _ v a l , p i t c h _ v a l , y a w ] = 
f e n ( r o l l , p i t c h , m a g x , m a g y , magz) 

Xm = m a g x * c o s ( p i t c h ) - m a g y * s i n ( r o l l ) * s i n ( p i t c h ) + 
m a g z * c o s ( r o l l ) * s i n ( p i t c h ) ; 
Ym = m a g y * c o s ( r o l l ) + m a g z * s i n ( r o l l ) ; 
yaw = atan2(Ym,Xm) * 180 / p i ; 
r o l l _ v a l = r o l l * 1 8 0 / p i ; 
p i t c h _ v a l = p i t c h * 1 8 0 / p i ; 
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VI. Roll angle by Complementary Filter and Kalman Filter 2D 

Cyan = Complementary filter Light blue = Kalman Filter 
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VI. Roll angle by Complementary Filter and Kalman Filter 2D 

Prediction funtion: 

function [x_hat_bar,P_bar] = Prediction(Gyro,x_hat,P,Q) 

t = 0.01 

A = [1 -t; 0 1] 

B = [t; 0] 

C = [ 1 0 ] 

x_hat_bar = A*x_hat + B*Gyro 

P_bar = A*P*A'+Q*t 

Update function: 

function [x_hat,P] = fcn(Accelorometer,x_hat_bar,P_bar,R) 

C= [10] 

K = P_bar*C'/ (C*P_bar*C'+R) 

x_hat = x_hat_bar + K*(Accelorometer-C*x_hat_bar) 

P = P bar-K*C*P bar 
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VII. Kaiman Filter 3D, orientation, visualization, and controlling motor 
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VIII. Controlling steering and moving motor in Arduino 

// Zaid Al-Dailami 
// Controlling moving and steering motor 

//1.3.2022 

int pos = 90; // variable to store the servo position 
char val; 

const int m l a = 7; 
const int m l b = 8; 

#include <Servo.h> 

Servo myservo; // create servo object to control a servo 

//const int p w m l = 9; 

void setup(){ 
//pinMode(13,OUTPUT); 
p i n M o d e ( m l a , OUTPUT); 
pinMode(mlb, OUTPUT); 

myservo.attach(9); // attaches the servo on pin 9 to the servo 
object 

Serial.begin(9600); 

} 

void loop() 

{//digitalWrite(13,HIGH); 

while (Serial.availablef) >0) 

{ 

val = Serial. read(); 

Serial.println(val); 

} 
//digitalWrite(13,HIGH); 

if( val =='B')// Backward 

{ 
digitalWrite(mla, LOW); 
digitalWrite(mlb, HIGH); 

} 

else if(val == 'F') // Forward 

{ 
digitalWrite(mla, HIGH); 

digitalWrite(mlb, LOW); 
} 

else if (val == 'R' && pos <=140) //Right 
{ pos = pos + 1; 
myservo.write(pos); 
Serial.println(pos); 
delay(5); 

else if (val == 'L' && pos>= 40) //Left 

{ pos = pos -1; 

myservo.write(pos); 

Serial.println(pos); 

delay(5); 

} 

else if(val == T) //Forward Right 

{ 

dig i t a l W r i t e f m l a , HIGH); 

digi t a l W r i t e f m l b , LOW); 

if (pos <= 140) 

{ 
pos = pos + 1; 



VIII. Controlling steering and moving motor in Arduino 

myservo.write(pos); 
Serial.println(pos); 
delay(5); 

} 
} 

else if(val == 'J') //Backward Right 

{ 

digitalWrite(mla, LOW); 
digitalWrite(mlb, HIGH); 
if (pos <= 140) 

{ 
pos = pos + 1; 
myservo.write(pos); 
Serial.println(pos); 
delay(5); 

} 
} 
else if (val == 'G') //Forward Left 

{ 
digitafWrite(mla, HIGH); 

digitafWrite(mlb, LOW); 

if (pos >= 40) 

{ 
pos = pos -1; 
myservo.write(pos); 
Serial.println(pos); 
delay(5); 

} 
} 

else if(val == 'H') //Backward Left 

{ 

di g i t a l W r i t e f m l a , LOW); 
digitafWrite(mlb, HIGH); 

if (pos>= 40) 

{ 

pos = pos -1; 
myservo.write(pos); 
Serial.println(pos); 
delay(5); 

} 
} 

else{ 

digitalWrite(mla, LOW); 
digitalWrite(mlb, LOW); 
delay(200); 

} 
} 



IX. State-space model controlled (Continuous and discrete) 

c l e a r a l l 
c l c 
%% 

% M e c h a n i c a l Parameters 
L I = 0.03; %m Length From C a r t C e n t e r o f Mass t o P o i n t 
A 
L2 = 0.04; %m Length From Wheel C e n t e r o f Mass t o P o i n t 
A 
ml = 0.5; %kg Mass o f C a r t 
m2 = 0.1; %kg Mass o f R e a c t i o n Wheel 
m3 = 0.08; %kg Mass o f Motor 
11 = 0.0001; %kg*m A2 Moment o f I n e r t i a o f t h e C a r t 
12 = 46.263 * l e - 4 ; %kg*m A2 Moment o f I n e r t i a o f 
R e a c t i o n Wheel 
13 = 0.004; %kg*m A2 Moment o f I n e r t i a o f Motor 
g = 9.81; % a c c e l r a t i o n o f g r a v i t y 
111 = ml * L 1 A 2 ; 
122 = m2 * ( L 1 + L 2 ) A 2 ; 
133 = m3 * ( L 1 + L 2 ) A 2 ; 
MGL = ( ( m l * L l ) + ( m 2 * ( L l + L 2 ) ) + ( m 3 * ( L l + L 2 ) ) ) * g ; 
I t = I I + m l * L l A 2 + 12 + m 2 * ( L l + L 2 ) A 2 + 13 + 
m 3 * ( L l + L 2 ) A 2 ; 

% E l e c t r i c a l P a r a m e t e r s f o r t h e chosen DC motor: 
% F r e e - r u n speed a t 6 V: 1363 RPM 
% F r e e - r u n c u r r e n t a t 6 V: 80 mA 
% S t a l l c u r r e n t a t 6V: 900 mA 
% S t a l l t o r q u e a t 6V: 0.8 kg-cm 
Free_Run_Speed = 1 3 6 3 * 2 * p i / 6 0 ; %Rad/s 
N o m i n a l _ V o l t a g e = 6; %V 
S t a l l _ C u r r e n t = 0.9; %A 
F r e e _ R u n _ C u r r e n t = 8 0 * l e - 3 ; %A 
S t a l l _ T o r q u e = 0.008; %kg.m 
R = N o m i n a l _ V o l t a g e / S t a l l _ C u r r e n t ; % I n n e r R e s i s t e n c e o f 
motor 

CM = ( N o m i n a l _ V o l t a g e - ( R * F r e e _ R u n _ C u r r e n t ) ) / 
Free_Run_Speed; % K o n s t a n t o f t h e M o t o r ( E l e c t r i c a l and 
M e c h a n i c a l ) 

a = MGL/It 
b = C M A 2 / ( R * I t ) 
c = CM/(R*It) 
d = -CM A2/(R*I2) - C M A 2 / ( R * I t ) 
e = CM/(R*I2) + CM/(R*It) 

A = [0 1 0; 
a * c o s ( 0 ) 0 b; 

- a * c o s ( 0 ) 0 d] 
B = [0; - c ; e] 
C = e y e ( 3 ) 
D = [0;0;0] 

c o n t r o l l b i l i t y = c t r b ( A , B ) ; 
i f d e t ( c o n t r o l l b i l i t y ) = = 0 

f p r i n t f ( " S y s t e m i s not c o n t o l l a b l e " ) 
e l s e 

f p r i n t f ( " S y s t e m i s c o n t o l l a b l e " ) 
end 

% C h e c k i n g s t a b i l i t y : 
s t a b i l i t y = e i g ( A ) 

%LQR Feedback C o n t r o l l e r : 
Q = d i a g ( [ 1 0 1 1 ] ) ; 
RR = 1; 
K = l q r ( A J B j Q J R R ) 

x _ s t a r = [ 0 0 0] 
u S t a r = 0 
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State-space model controlled (Continuous and discrete) 
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