
B R N O U N I V E R S I T Y O F T E C H N O L O G Y

U N I V E R S I T A D E G L I S T U D Í D E L L ' A Q U I L A

M A T H E M A T I C A L E N G I N E E R I N G

L A U R E A S P E C I A L I S T I C A I N I N G E G N E R I A M A T E M A T I C A

H E U R I S T I C A L G O R I T H M S I N O P T I M I Z A T I O N

A U T H O R : Č E N Ě K Š A N D E R A

S U P E R V I S O R : J A N R O U P E C

P R O J E C T S U P E R V I S O R : B R U N O R U B I N O

2007/2008

Acknowledgement

First and foremost, I w o u l d like to thank my whole family because this thesis w o u l d have never
been complete without their unlimited support and never-ending belief. M y great thank also goes
to my supervisor Jan Roupec who has opened me the door to the astonishing wor ld of heuris
tic methods and to my consultant Pavel Popela for his enthusiasm during our discussions about
stochastic programming.

i

Statement

I declare that this is an original thesis and is entirely my own work and wherever I used the ideas
of other writers, I acknowledge the source in every instance.

Čeněk Šandera

i i

Abstract

This thesis deals wi th a stochastic programming and determining probability distributions which
cause extreme optimal values (maximal or minimal) of an objective function. The probability dis
tribution is determined by heuristic method, especially by genetic algorithm, where whole popula
tion approximates the desired distribution. The first parts of the thesis describe mathematical and
stochastic programming in general and also there are described various heuristic methods with
emphasis on genetic algorithms. The goal of the diploma thesis is to create a program which tests
the algorithm on linear and quadratic stochastic models.

i i i

Contents

Introduction v i

1 Stochastic programming 1
1.1 Optimization 1
1.1.1 General mathematical formulation 1
1.1.2 Linear programming 2
1.1.3 Quadratic programming 3
1.2 Stochastic programming 4
1.2.1 General mathematical formulation 4
1.2.2 Linear two-stage stochastic programming 6
1.2.3 Quadratic two-stage stochastic programming 7
1.2.4 Solving the stochastic programs 8
1.2.5 Monte Carlo approximation of stochastic programs 8
1.3 A n analysis of extreme cases 8
1.3.1 Determination of a confidence interval 9
1.3.2 Minimax approach 12

2 Heuristic methods 14
2.1 H i l l Cl imbing Algori thm 15
2.2 Tabu search 15
2.3 Simulated annealing 16
2.4 Ant colony optimization 16
2.5 Bees optimization 17
2.6 Evolutionary Algorithms 17
2.6.1 Genetic algorithms 19
2.7 Various implementations of genetic algorithms 22
2.7.1 Representation of chromosomes 22
2.7.2 Size of populations 23
2.7.3 Initial population 24
2.7.4 Fitness function 24
2.7.5 Parent selection 24
2.7.6 Crossover 25
2.7.7 Mutation 26
2.7.8 Integration offsprings into a population 26
2.7.9 Termination criteria 27

3 Algorithms for determining boundaries of stochastic programming models 28
3.1 Classical genetic algorithm 28
3.2 A n approach based on modified genetic algorithm 29

iv

4 Testing the algorithm 31
4.1 Models 31
4.1.1 Linear stochastic two-stage model 31
4.1.2 Quadratic stochastic two-stage model 33
4.2 Monte Carlo investigating of confidence interval 35
4.3 Distribution of the fitness functions in the whole populations 37
4.4 Evaluating of populations 40
4.5 Computer implementation 42
4.6 Algori thm for searching minimal distributions 43
4.7 Algori thm for searching the maximal distributions 46

5 Conclusion 49

A Distributions of chromosome fitnesses 50

B Data for evaluating populations 51
B . l M o d e l l 51
B. 2 M o d e l IV 52

C Searching for a minimum 54
C. l Evolution of the objective function 54
C.2 Evolution of distributions 55
C. 3 Final distributions with minimal value 56

D Searching for the maximum 57
D. l Evolution of the searching for maximal value 57
D.2 Evolution of maximal distributions 58
D.3 Final distributions with maximal value 59

Index 60

v

Introduction

The main topic of this diploma thesis are heuristic algorithms. Heuristic algorithms are amazing
artificial instruments which allow us to deal wi th the most complicated and most challenging prob
lems of the present days. A special subclass of these algorithms inspirited by Darwin's Theory of
Evolution is called genetic algorithms and it has many interesting application. Engineers, scien
tists and designers, all over the wor ld , are engaged every day i n problems of determining the best
possible configuration for their machines, theories or inventions. Genetic algorithms can help with
a very large class of problems which are solved by classical analytical methods very hardly. The
main difference between classical and heuristic method is in expected solution. Every man who
solve arbitrary problem wants to obtain the best possible solution but in the real life there are usu
ally sufficient to know a solution which is just very close to the optimal one and this is exactly the
place where heuristic methods rule. Nobody can assure an obtaining even very good solution by
this way but there is empirically proved that there exists some special heuristic method for every
k ind of optimization problem.

In this thesis we apply the genetic algorithms to problems of stochastic programming. The sto
chastic programming an is interesting way how to define and solve optimization problems with
random coefficients. Every process in the wor ld is influenced by great amount of various ran
dom events and if we want to model whichever real system we have to somehow deal wi th these
randomnesses. M a n y times the random influences are omitted or considered to be neglected but
this way is not the right one in general. Stochastic programming is designed for problems where
the results, obtained by classical mathematical programming, are incorrect and can let us to make
completely wrong decisions. It is also very useful to know an impact of the randomness in the
investigated model and to know which series of random events is the most positive and which one
is the worst for us. So the thesis deals wi th determining these boundaries and investigating how
the optimal solution of stochastic programs is changed under different probability distributions.
There w i l l be implemented a special genetic algorithm which can give us the answers for all these
questions.

The outcome of the thesis is to prepare an implementation of the genetic algorithm and apply it to
several different mathematical models. This algorithm is created in programming language Python
and it was chosen because of its property to easily extend and change the program's structure.
Genetic algorithms have many different forms and settings and the thesis' outcome is also to find
the most appropriate implementation for given problems.

v i

1 Stochastic programming

1.1 Optimization

Optimization or mathematical programming is part of mathematics which deals with finding the
best possible solution of prescribed function under the given conditions. This concept has many
applications, for instance, i n distribution of goods and resources, engineering systems design, f i
nancial planning, manpower and resource allocation, manufacturing of goods, or in sequencing
and scheduling of tasks. M a n y optimization problems are very large and the time needed for a
testing all possible solutions, even on contemporary supercomputers, can take years of computing
power. This is the reason why many mathematicians focus on a development of algorithms which
can dramatically reduce computing time.

1.1.1 General mathematical formulation

After studying many optimization problems we can say that most of the optimization problem
have similar structure. So we can generalize them and write in proper mathematical form. The
main part of this form is so-called objective function. This function describes how quality the so
lution is. The goal of a optimization procedure is to find a solution which gives extreme value of
this objective function. The extremes can be either maximal or minimal objective value and each
problem of finding a maximum can be simply transformed to a problem of finding a minimum
and vice versa, therefore, for simplification, in the further text we consider just problem to deter
mine min imum value of an objective function. A domain of an objective function is called search
space and is restricted by number of constraints. There are either equality or inequality constraints
and each solution has to satisfy all of them. The set of solutions which satisfy all constraints are
called feasible set and its members are so called candidate solutions. The general mathematical
formulation is

min{/(x)}
xeX

subject to: |
gi(x) < 0 J

Where / : R " —> R is an objective function, x is n-dimensional variable vector, g, : R " —> R, for
i = 1 , . . . , m, are constraints which define feasible space X .

Alternatively instead of minxex{f(x)} we can use xmi„ e argmin^cJ/Xx)}1 to emphasise that we are
not looking just for an extremal value of objective function, but we mainly need to know values of
variables which this extreme caused.

1 a r g m i n ^ l / M) e \x e X\f(x) < /(y),Vy e X)

1

If all variables are required to be integers then the problem is called integer programming. A
special class of integer programming is binary integer programming where the unknown variables
has to be numbers 0 or 1.

1.1.2 Linear programming

A special case of mathematical programming is linear programming. A l l equations and inequali
ties in mathematical model of the problem have to be linear with respect to the variables represent
ing a solution. Each linear program can be expressed in this canonical form

min \c\X\ + C2X2 + . . . + c„x„)
(x1,x2,...,xn)eX

subject to:
flnxi + a12x2 + • • • + alnxn < b\ \ (12)

« 2 l X i + fl22*2 + • • • + Cl2nX„ < & 2

(%TYi\3C\ ~\~ $-tyi'2.3C'2L ' ' ' &Tftn%n — font

this notation can be simplified by using matrix and vectors
min{cTx}
xeX

subject to: I (1 3)

Ax < b
xeXcK"

Where c T 6 R " is a transpose constant n-dimensional vector, x is vector of n variables, A is a con
stant matrix [fli ;] for i = 1 , . . . , m and / = 1 , . . . , n and b is m-dimensional constant vector represent
model's constraints.

Linear models have many useful properties which make their solution easier. It is one of the most
studied topic in the mathematical programming, many real-life problems can be transformed into
an appropriate linear form and solved by some of known efficient algorithms. The most known nu
merical algorithms is Simplex algorithm cite [17634] developed by George Dantzig 2 in 1947. This
algorithm is based on very important property called convexity. Each feasible space of a linear
programming problem can be geometrically represented as convex polyhedron and the extreme
values (maximum or minimum) of the objective function can arise only in one of its vertices. The
simplex algorithm therefore just numerically looks for the vertices and checks if there is an ex
treme of the function. Linear models assure that if an algorithm finds any point of local extreme
than it is the point of global extreme also. Because there is just one point of local maximum or
local minimum in linear programming and this point clearly has to be the global extreme also.
This properties dramatically reduce a number of tested points and allow us to solve models with
thousands of variables and constraints.

2 American mathematician, (* November 8th, 1914 - tMay 13th, 2005)

2

file:///c/X/

Figure 1.1 Example of a feasible set
i n a linear programming

The Figure 1.1 shows an example of graphical expression of two-dimensional linear programming.
The red area is convex polyhedron which represent a set of candidate solutions and it is restricted
by three linear conditions gi,gi, g3 and by requirements x\ > 0 and xi > 0. The area is a feasible set
and has to contain the desired solution of the problem.

Figure 1.2 Example of an objective
function in linear programming

The Figure 1.2 shows the feasible set from the figure 1.1 with an example of a linear objective
function f(x\, xi). It is easy to see that because of the linearity the extreme value (the yellow point)
has to occur exactly in one of the corners of the feasible set.

1.1.3 Quadratic programming

If the objective function is polynomial of second degree and constrains are linear than the opti
mization problem is called quadratic programming. This model has many application, for instance,

3

widely used portfolio investment strategy by Harry M a r k o w i t z 3 [22] and because of its importance
there exist several efficient algorithms for exact solving. The general mathematical formulation for
quadratic programming is

where x is a variable vector, c is a constant cost of the linear part and H is a constant symmetric
matrix which determines a cost of the quadratic part of the model.

A behaviour of the model highly depends on character of matrix H. The easiest case of quadratic
programming arises if the matrix H is positive definite (or negative definite for maximization
problem). In this case the objective function is convex and the optimal solution is unique. The
Markowitz portfolio optimization is usually of this type. If H is semi-definite than the objective
function is still convex, but solution cannot be unique. In case with H indefinite the objective func
tion has a saddle and therefore is non-convex. This type of quadratic programming is the most
difficult one and its solution takes a lot of time by specialized quadratic solvers.

1.2 Stochastic programming

Usually mathematical models are built as representation of some real life problem and an objective
function or constraints are determined by some observations or experiments. Therefore coeffi
cients used in mathematical model like this are set to some typical values and the model is called
deterministic model. Often it is sufficient and a model built by this way describes system behav
iour very precisely. But there is a large class of problems which cannot be modelled just by using
static coefficients and we have to consider influence of uncertainty. This concept is called stochas
tic programming and typical application can be found in financial planning, where these models
can describe trends for stocks and they help to determine how much should be invested. A n
other applications are, for instance, i n biology for modelling animal behaviour or i n engineering
for optimizing dimensions of designed products. Stochastic programs are much more complicated
for solving than corresponding deterministic problems, so there should be some good reason to
choose the stochastic form, but many times we don't know if deterministic models are sufficient to
describe a problem properly , and therefore the only way how to model it is to use the stochastic
programming.

1.2.1 General mathematical formulation

The uncertainty in mathematical programming is modelled by theory of random variables. Each
variable can has arbitrary distribution of probability and can occur wherever in the model. Very
detailed description can be found in [5]. So generally we have

3 American economist, Nobel prize 1990, (* August 24th, 1927)

subject to:
Ax < b

(1.4)

x G X c R'

4

min {/(a:, £)}
* e X (|)

subject to:
gi(x,Z)<0, toxi = l,...,m
x e X(|) c R " almost surely

(1.5)

Where £ is random vector defined on the probability space (H, E , P), objective function / : H x R " —>
R is measurable function for each decision X G R " which has to belong to feasible set X .

There are several ways how to understand the goal of optimization. Clearly the best value of an
objective function is reached if we wait for values of random variables and optimize model accord
ing to them. This k ind of optimizing is called wait-and-see, but unfortunately we have to usually
optimize model before realizations of random events, so what we actually want is minimize ob
jective functions for each possible realization. In the other words, model is changed to finding
minimal expectation value of an objective function under the given random variable. This solution
is called here-and-now.

min {E!.f{x, I))

subject to:
gi(x,Z)<0, forz = l , . . . , m
x e X(|) c R " almost surely

(1.6)

The fundamental idea behind the stochastic programming is a recourse problem. We can divide
the model into two parts. The first part is before taking a place of random event and the second one
is after that. In the first part (so-called first stage) we don't know how the model is going to behave
and we have to take a decision under uncertainty. In the second part (so-called second stage) taking
a decision is much easier because we have already observed random events and we know exact
values of them. A decision taken after observing random events is called recourse and its purpose
is to correct mistakes and inaccuracies caused by decision taken in the first stage. In fact, the second
stage is just a deterministic model without any uncertainties. The goal of optimizing models like
this is to find values for the first stage which minimize objective function for each recourse. In
mathematical way, the second stage is replaced by expectation value of recourse function under
the given probability distribution. The described model is called two-stage model with recourse
and can be generalized into multi-stage model. In multi-stage model random events don't take
place in one time and before each set of events some decision has to be taken. So the general
formula of multistage stochastic program with recourse is

K
min {q0(x0) + Y Eg | Q T (% i i , . . . ,xT-i,li,llf.. . , £ T) } , (1.7)

* o e X (£) ~i

where Q T is a recourse function at stage T > 1 given by

Q T (Z O / - " / * T - I , £ I , . . . , £ T) = mm{qT(xT)\gT(x0,...,xT,£T) < 0}

5

indicating that the optimal recourse action xT at time T depends on the previous decisions and
realizations £j observed before the stage T , i.e.

XT = X T { X Q , . . . , X T - I , ^ I , . . . , ^ T) , T > 1

1.2.2 Linear two-stage stochastic programming

A n important special case of a stochastic programming is linear two-stage stochastic programming
model with recourse. This model is combination of deterministic linear model and stochastic two-
stage model. Mathematical formulation of stochastic linear program with fixed recourse is

mm{cTx + Ef(Q(x,m
xeX ^

subject to:
Ax<b

x>0
where

Q(x, E) = mm{qTy\ Wy > h{E) - T($x, y>0}
y

(1.8)

where E, is a random variable and £ is its one concrete observation. The function Q(x, £) represents
the second-stage decision.

In particular, if the second stage program is always feasible, than we speak about complete fixed
recourse given by fixed recourse matrix W.

Linear stochastic models have some useful properties, like deterministic linear models, and there
fore it is very often studied and applied area of stochastic programming models.

Figure 1.3 A n example of a feasible
set wi th stochastic linear constraints

The Figure 1.3 shows an example of graphical expression of two-dimensional stochastic program
ming. The feasible set (the red area) is given by three linear constraints gi,gl

2,g3 arid requirements
x\ > 0 and X2 > 0. The model contains one random variable which can have three different re
alizations with the same probabilities. Each random value determines different constrain gl

2 and
therefore there are three possible feasible sets which have to be taken into account.

6

f(x^2)

Figure 1.4 A n example of an objective function in stochastic linear
programming

The Figure 1.4 shows the feasible sets from the Figure 1.3 with an example of a linear objective
function f{x\,%2). For each feasible set wi th the same objective function there exists different min
imal value highlighted by the yellow points. This example shows complicatednesses of solving
stochastic programs in general, because just one random parameter can change solutions and op
timal values very dramatically.

1.2.3 Quadratic two-stage stochastic programming

Another important stochastic model is derived from quadratic programming. Objective functions
in the both stages are quadratic and its constrains are linear.

The H and G are symmetric matrices which determine coefficients for quadratic members i n the
objective function.

subject to:
Ax<b

x>0
where

> (1.9)

7

1.2.4 Solving the stochastic programs

A solution of a stochastic program is highly dependent on the probability distribution of random
events. If we consider discrete distribution of two-stage programs with just a few possible real
izations we can transform the problem to exact deterministic equivalent form and compute the
solution by using classical algorithms of mathematical programming. For instance, let's suppose
the random variable £ can assume just three different values (£i, £ 3) wi th given probabilities
(pi, Pi, P3).
Hence the stochastic programming problem

mm{E&(x,m (1.10)

can be transformed into deterministic equivalent form

min{pi f{x, + p2f(x, £ 2) + p 3 /(*, £ 3) } (1.11)
xeX

Evident drawback of this approach is a growing size of equivalent problem for random values with
many different realizations. Even for a few tens of realizations the equivalent deterministic model
can be unsolvable in acceptable time. Moreover random variables with continuous distribution
function cannot be expressed by this way and involve computing of n-dimensional integral for the
exact solution of expectation value. These drawbacks lead us to another method to determine the
optimal solution.

1.2.5 Monte Carlo approximation of stochastic programs

Because the exact solution of stochastic models involves a lot of computing resources we should
focus on approximation methods. Well known approximation is Monte Carlo method. It is based
on a simple idea to approximate continuous distribution by a few randomly generated scenarios.
By one scenario is meant one set of realizations of the random variables occur in the model. One
scenario completely determine behaviour of the system in one specific combination of random
events. Each scenario has its own probability and if the random events are independents then
the probability is given as product of all member's probabilities contained in the set. So in the
Monte Carlo method we just need to know how large problems we are able to solve and than by n
randomly generated scenarios £j solve the approximating problem

minjpi fix, + p2f(x, &) + ...+ fnfix, £„)}. (1.12)
xeX

By repetition of this approach we can eliminate random deviations and more precisely estimate
the real expectation value.

1.3 A n analysis of extreme cases

If we deal wi th a problem of stochastic programming and we want to make a decision based on our
computation we usually need to know as many information about randomness contained in our

8

model as possible. Unfortunately there exist many problems with random coefficients where we
know almost nothing about their distribution function, variance, expectation value or any other
useful statistic characteristic. Many engineers have to design their products with given reliability,
power plants need to be prepared for extreme demands and bank managers need to predict the
biggest losses on the stock market. Random influences in these problems are hardly described
by any of the aforementioned statistic characteristic and the only what we can usually do is to
estimate some of them by expert analysis. So if an engineer, a power plant or a bank manager
wants to determine what is the worst random influence for his model then he can just to find
a set of scenarios with the worst objective function value to approximate the worst probability
distribution which can occur. Another approach can be determine confidence interval for objective
function values as a lower and upper bound wi th certain probability.

1.3.1 Determination of a confidence interval

For random variable t defined on probability space (H, E , P), the confidence interval is interval
(a, b) which contains prescribed amount of its realizations. Therefore confidence interval satisfies
equality

where P is a probability function, £ is realization of random variable E, and the expression 1 - a is
called confidence coefficient. The number a, so-called confidence level, can be also interpreted as
probability of being realization £ out of the interval.

For determining the confidence interval of an objective function in stochastic programs, Mak, Mor
ton and Wood proposed [3] relatively simple computational approach based on the Monte Carlo
algorithm.

Let's consider stochastic optimization problem in the form

where / is the objective function, x is vector if decision variables from feasible set X . Also we
introduce associated approximating problem SP„

P(a < I < b) = 1 - a,

with

x* € argmin \Ef(x, £
xeX

with

9

4 e a rgmini - Y f{x,ll) \,
xex [n £ f J

where i = l,...,n are independent identically distributed (i.i.d.) random variables from the
distribution of £.

By solving approximating deterministic problem i n the form SP n we get candidate solution x and
we can define optimality gap as Ef(x, £) - z*. In fact, the optimality gap is the difference in objec
tive functions between a candidate solution and the optimal solution. This method requires only
mi ld assumptions: f(x, t) has finite mean and variance, i . i .d. observations of t can be generated,
instances of SP n can be solved for sufficiently large n to yield "good" bounding information, and
fix, I) can be evaluated exactly for specific values of x and realizations of t-

Upper bounds

Suppose we can find a good but suboptimal solution x e X for stochastic program SP. Therefore
we can estimate Ef(x, E.) via the standard sample mean estimator

U(n) = \t f{x, (1.13)
n t—i

J=I

where E},..., £ n are i . i .d. from the distribution £. This estimator is unbiased estimator of the true
value of a suboptimal solution x, i.e. the upper bound can be expressed as

EU(n) = Efix,l)>z*,

and another important property of the estimator follows from the Central limit theorem.

Theorem 1 (Central limit theorem)

Let X\, X2, • • •, X„ be a set ofn independent and identically distributed random variables having finite values
of mean ji and variance o2 > 0. And let the S„ be a sum of n random variables given by S„ = X\ + X2 +
... + Xn, now we can define

Sn - n\i
Z n —

o^fn

Than the distribution ofZn converges in distribution towards the standard normal distribution NiO, 1) as n
increase to infinity. This means that for every z e R

l i m P \ n J! < z
n—>oo C7

= O(z),

where O(z) is cumulative distribution function of NiO, 1) and Xn = Sn/n = (Xi + X2 + . . . + Xn)/n is the
sample mean.

10

Thus by using the Central limit theorem we can deduce

yfh[U{n) - Ef(x, l)\ N(0, a\) as n -> co

where o\ = var/(£, £).

Lower bound
For lower bounds of the optimal solution z* we can use identically independent distributed random
variables E}, E,2,..., ln from the distribution I and we can say

Ez* = E min
xeX

This inequality comes from
^ n . n

z* = mv\Ef(x,£,) = m i n E - / f(x,ll) > E m i n - / f(x,ll)
xeX J ' xeX n *—iJ

 xex n *—iJ

1=1 1=1
and together wi th aforementioned upper bound and batch processing it can give us a confidence
interval.

A confidence interval construction

Let tA, • • •, tm be i . i .d. batches of random vectors, for i = 1 , . . . , n\. We define an optimal value of
approximating problem wi th z'th batch of random variable as

z;' = m m i y / (x , ^ ') .
xeX n *—i

;=i

and an estimate for lower bound based on approximated optimal values

1
L(n}) = - Y z : . (1.14)

Than according to the Central limit theorem we have

yjni [L(ni) - Ez*n] => N(0, o1) as n\ —> oo

where a2 - varz*.

Let tn-i,a satisfy P(T n < tn-\A) = 1 - a, where the random variable Tn has a ^-distribution with n-1
degrees of freedom. Let s?(n;) denotes the standard sample variance estimator of a?, let nu be a
number of observations used to estimate Ef(x, I), and define

i=l
< z .

11

tn,-l,aSl(nl)
£ l = F —

hence the confidence interval for estimating EL(ni) is [L(n/) - £/,L(n/) + £/] and analogically for
estimating EU(nu) we defined

tnu-l,aSu{flu)
eu = =

and the confidence interval is therefore [U(nu) - E\, U(nu) + £„]. The upper bound estimator is
computed using stream of observation E},..., and is independent on the stream used for the
lower bound estimate. By using all of these facts and Boole's inequality we have

P(L(n/) -e}< Ez*n < z* < Ef{x,l) < U{nu) + eu) = P({l(n}) - e} < Ez*n\

n {Ez*n < z*\ n [z* < Ef(x, £)) n {Ef(x, 1) < U(nu) + £„})

= 1 - P({L(n;) - si > Ez*n\ n \Ez*n > z*\ n {z* > Ef(x, £))

n{Ef(x,£)>U(nu) + eu})

> i - p(i(m) - £/ > E z ;) - P (E z ; > z*) - P(Z* > E/(%, D)
-F(Ef(x,£)>U(nu) + eu)

« l - a - 0 - 0 - a = l - 2a

Therefore, the formula

[L (n ;) - £ ; , a (n M) + £M] (1.15)

is (1 - 2a)-level confidence interval for the objective function values of the investigated problem.

We can also construct (1 - 2a)-level confidence interval for an optimality gap at x in the form

[0, U(nu) - L(ni) + it + eu].

Due to sampling error we may actually observe U(nu) < L{n{) therefore for more conservative
confidence interval is better to use

[0, [U(nu) - L(ni)]+ + €! + eu],

where [y]+ - max{i/,0}.

N o w we are able to estimate boundaries of an objective function for stochastic programming prob
lem. Because the computation of the boundaries are based on statistical methods the resultant
interval is given with certain probability. It means, the boundaries do not cover all values of an
objective function, but just certain part given by a chosen confidence level a.

1.3.2 Minimax approach

Another approach how to determine boundaries for stochastic program with unknown probability
distribution is so-called minimax approach. It is based on a finding probability distribution which
realizes an extreme of the following model

12

min max fix,
xeX PeP

where IP is a set of all "appropriate" distributions. Even though, we don't know an exact form of
the probability distribution we can sometimes have information about its support, about values
of some its moments or about any other its characteristics. Therefore the IP is set of probability
distributions which satisfy all of these known properties.

There exist a few results for special stochastic models which simplify or even exactly solve the
minimax problem. For instance, according to [4], if we consider a model with convex objective
function, set IP contain probability distributions defined on convex subset Q c E " and with finite
expectation value then we can say that the "worst" distribution is discrete and concentrate in at
most n + 1 boundary points of Q.

In general, theoretical analysis of the minimax stochastic problems is very difficult topic. Theorems
and other theoretical results usually involve many conditions and cannot be generalized. But there
can be absolutely different method of computing a solution and the method can be applied for
very wide class of minimax stochastic models. The method is special heuristics - concretely genetic
algorithms.

13

2 Heuristic methods

A n optimization deals wi th finding extreme values for a solving problem. But for many real life
problems it is very difficult to find an appropriate mathematical form which can be exactly solved
by any of known and efficient algorithm. There are classes of problems which mathematicians
study for tens or hundreds of years and still are not efficiently solvable. Due to the growing com
putational power of modern computers we can try to solve these problems by using "brute force".
Many optimization tasks can be interpreted as searching for the best possible configuration of stud
ied model. Thus for an exact solution we can just construct every possibilities one by one, compute
their properties and after that choose the most appropriate one. Drawbacks of this approach are
obvious. Let's consider the most famous problem of combinatorial optimization, The Travelling
Salesman Problem (TSP).

For a given number of cities and given costs of travelling between each two of them we need to
find the cheapest way with visiting each city exactly once and get back to the starting point. In
other words, the TSP problem deals with searching for the combination of cities with the cheapest
total cost. By using the brute force approach we need to explore number of possibilities which
is increased with a growing number of cities. Exactly for TSP problem with n cities and given
starting point we need to compute costs for (n - 1)! possible ways. By considering symmetry we
can reduce the number of searching space to l/2(n - 1)! possibilities, but just for 60 cities it gives
about 10 8 0 combinations and for 100 cities it is even about 10 1 6 0 combinations and that is practically
impossible to explore with contemporary computers.

A requirement of solving the problems wi th rapidly increasing searching space leads to develop
ment of new methods which doesn't explore whole space but just its certain subset. There are many
ways how to choose the searching subspace and some of them aren't based on well-developed
mathematical theory but are inspired by intuition or observing a real life. These methods are called
heuristics4" and usually cannot guarantee obtaining the optimal solution for a modelled problem.
Effectiveness of heuristic methods highly depends on a solved problem and adjustment method's
coefficients. But if we know that a certain class of problems is solvable by a certain class of heuristic
methods then we can dramatically reduce computing time and solve the problem in very efficient
way. Many heuristic algorithms can guarantee non decreasing quality of the solutions obtained
during the searching process, some algorithms can be successfully applied to very wide class of
problems and other algorithms are designed just for specific problems. A choosing the most ef
ficient algorithm for particular problem is a difficult topic and one should perform several tests
before taking the final decision. A modern research i n heuristic methods is very progressive and
it is concentrate in a development of new methods, improving the known ones as wel l as investi
gation of theoretical and mathematical properties. By combining of some algorithms there can be
introduce brand new one with some useful properties or by applying other algorithms in sequence
we can iteratively improve the obtained solution. The algorithms can be described according to
their strategy and a motivation of exploring the searching space.

4 Due to Archimedes famous exclamation "Eureka!" (I've found it!).

14

2.1 H i l l Cl imbing Algori thm

Very intuitive approach for finding extreme values is inspired by hill climbing [7]. Let's suppose
we are interesting i n finding maximal value of any discrete function and let's suppose we've ran
domly chosen one point from the search space. So the only what we need to do is to determine
values of all points in a neighbourhood of our chosen point and move to the point with highest
obtained value. This simple procedure is repeated as many times as there exists any higher value
in the actual neighbourhood. A s same as h i l l climber is able to find a top of a h i l l by this approach
we are able to find a top of the objective function i n some neighbourhood of our chosen point. In
general, we cannot f ind the highest point in the whole searching space but just in some its sub
set. The methods which explore neighbourhoods are called local search methods and they are
designed just for finding local extremes. Sometimes it is exactly what we need (e.g. if we just want
to improve the candidate solution), but many times we need to know global function's extreme.
If the objective function is not convex, i.e. has more than one peak, we can increase probability
of finding the global extreme by repetition of the algorithms with different starting points. The
same motivation can also be used for exploring continuous function, the method is called gradient
ascent method and it doesn't determine values in neighbourhood (because there aren't no con
crete neighbourhood points i n continuous functions) but it deals with gradient of the function and
moves in the direction with the highest slope. The h i l l climbing algorithm is, i n fact, deterministic,
the only random influence can occur just in choosing the initial point.

2.2 Tabu search

Classical local search methods, as h i l l climbing, moves from a solution to a neighbourhood solution
when the objective function value of new solution is higher than the actual one. There can occur
a problem how to deal wi th situation where the highest value of neighbourhood point is equal
to the actual value. Let's suppose we design an algorithm to accept points with the same value
and we move there. The problem arises when in the neighbourhood is not any higher value and
therefore we have to move back to the initial point because the highest obtained value from the
actual neighbourhood is right there. This causes that the algorithm never stops because we w i l l all
the time move between two point in a cycle. To design an algorithm without acceptation points
with same value is not beneficial method because there cannot arise a cycle and therefore we cannot
be able to f ind the best possible solution. One simple approach, how to deal wi th the problems like
this, is called tabu search and it is based on i n maintenance a list wi th a few last visited points [13].
So the algorithm explores neighbourhood of the actual point and checks whether the point, where
it wants to move, is in the tabu list or not. If the new point is in the tabu-list the algorithm omits
this point and checks another one. Thus the algorithm moves to the new point just i n case that this
point is not appeared i n the tabu-list. If the new point is accepted the tabu list is updated by the
last visited point. This prevents the method from doing an infinite cycles. But it is impractical to
maintain list of al l visited points, because the checking whether a point is contained there can take
a lot of computing time and so we usually maintain list wi th just a few last points. The number
of points in the tabu-list can hardly influence a behaviour of the algorithm. The more numbers in

15

the list the longer cycles we can avoid. Therefore we need to find a compromise between length of
the tabu-list and supposed length of cycles. The tabu-list can also help in situations where i n the
neighbourhood are more equal highest values and we don't know which one to choose (therefore
we can try one and if we come back we try the other one because of the tabu-list).

2.3 Simulated annealing

Optimization by simulated annealing is inspired by annealing metallurgy [15]. If any metal ma
terial is heated (because of forming, forging, etc.) and subsequently cooled off then atoms can get
stuck i n some inappropriate position and therefore there can arise some defects. For avoiding these
defects there exist a method called annealing which controls decreasing temperature and therefore
lets more time to atoms to find more appropriate configuration with a lower energy.

This method is from class of stochastic algorithm what means that there is some random influence
and each run of the same algorithm can give different solutions. The randomness is contained
in decision whether the actual point is moved or not. A t the beginning we choose initial point
and compute its objective function value, after that we choose some point from the neighbour
hood, compute its value and decide if we move there or not. The decision is based on probability
function where the main importance has so-called temperature. Before a start of the algorithm
we choose a value of the initial temperature and during the process we decrease its value which
simulates cooling i n the annealing. Whole search space represents cooling metal and the moving
point is an atom what search for place with the lowest energy. So after choosing point from the
neighbourhood we decide according to the actual temperature value whether the new point is ap
propriate as a new position. For higher temperature there is higher probability of moving point.
So on the beginning of the algorithm, when the temperature is the highest, the moving of the point
is almost random and almost doesn't depend on objective function values. After the each iteration
the temperature is decreased and the probability of the moving more depends on the values in
the explored points than on the temperature. Before the finishing of the algorithm the decision
whether to move depends just on the objective function value and therefore the point moves just
to the position with better energy value. A rate of cooling is not constant and the faster solution
converges the faster temperature decreases. The algorithm is i n fact h i l l climbed algorithm with
possibilities move to point wi th lower values. The main advantages are wider explored search
space and possibility to avoid a stagnation in a local extreme.

2.4 Ant colony optimization

Many inspirations come from nature. The nature is able to handle very difficult optimization prob
lems and that's why many scientists observe its behaviour. By observing how ants search foods
in anthill's surroundings we can introduce an interesting optimization approach [10]. A t the be
ginning each ant leaves the anthill in a random direction and looks for food. A s soon as it finds
something it returns back to the colony. During the whole searching the ant lays down pheromone
trail to know how to gets back. The strength of the pheromone gradually vanish and if the ant
spends a long time by searching it can vanish completely. O n the contrary if the ant finds a food

16

soon then during the going back it lays down further pheromones what means that the trail has
much stronger smell. Other ants, which haven't found any food yet, still randomly pass through
the anthill's surroundings and if they cross the pheromone trail they follow it because they can
suppose any food on its end. The more ants follow the trail and more ants go back with some
food, the more pheromones are on the trail and therefore more further ants w i l l use this way for
transport the food to the colony. So this is the approach how ants find the shortest way from an
anthill to the closest food source. Hence in the ant colony optimization algorithm the search spaces
is analogy for anthill's surroundings, several moving points represent the ants and the objective
function values determine amount of the food i n some place. Each point i n the search space have
a variable value determining the level of pheromone left by ants which passed through it. In each
algorithm iteration the pheromone level either increases if any ant passes through the point or de
creases otherwise. Great advantage of this algorithm is in real-time problems, where the search
space is changed during the optimization. The ants are able to react to a changing environment
very quickly and still give very good solutions.

2.5 Bees optimization

Another highly biologically inspired optimization algorithm is based on behaviour of a bees colony
[16]. When a colony of honey bees look for food (pollen or nectar) they can spread over long dis
tance 5 in many different directions and due to their inherent algorithms they are able to concentrate
on the places with more flowers whereas on the places with less food there are much less number
of bees.

The optimization algorithm starts with letting the artificial bees out from the beehive i n random
directions, it means the algorithm generates certain number of bees in random places over the
search space. Each bee explores its neighbourhood and remembers the place with the best objective
function value which it has found. Each of the artificial bees also knows the place with the best
value which has been discovered by any of the bee from the colony. Thus each bee remembers two
places, the first one is its own maximum and the second one is maximum from the whole colony. In
the real wor ld the sharing of information about colony maximum is done by some kind of "dance".
When the bees with a food come back to beehive they start to dance and the others bees are able
to recognize where is the food source and how big it is. The bees further explore the search space
in a direction compounds from the own and from the colony maximum and therefore they can
concentrate on the places with the most of a nectar or a pollen.

2.6 Evolutionary Algorithms

The most known class of biologically inspired optimization algorithms is so-called evolutionary
algorithms. This approach is based on theory of evolution discovered in the 19th century by French
scientist Lamarck 6 who tried to explain the animal's adaptation to their environment as inheritance

A honey bees can extend itself up to 14km from their beehive
Jean-Baptiste Pierre Antoine de Monet, Chevalier de Lamarck (*August 1,1744 - tDecember 18,1829)

17

features which the parents used the most. For instance, if some animal use certain muscles then
they become stronger whereas other muscles which are not very used become weaker. Thus the
offspring of the parents with certain stronger muscles has the same part stronger also and the
nonuse parts gradually atrophy.

Another approach for describing an evolution was introduced by English scientist D a r w i n 7 who
described adaptation as a consequence of natural selection. The theory of the natural selection
claims that if there are more individuals i n the environment with limited food sources, then there
arise a competition among the individuals and only the best ones can survive. Therefore if there
exist any inheritable variation which helps to the individual be faster, stronger, etc. then the indi
vidual is more likely to survive and have a child wi th the same variation.

Neither Lamarck's nor Darwin's theory weren't considered to be sufficiently accurate and they
cannot explain every variations and adaptations which were observed in the nature. The missing
link was brought by Austrian monk and scientist Gregor M e n d e l 8 by his famous experiments with
genetics of plants. According to his laws of inheritance every inheritable feature is coded in chro
mosomes. Each chromosome contains genes which are compound from two alleles. These laws
are designed for sexual reproduction and during the crossover a new offspring gets from each par
ent one allele for each gene. The new chromosome is compound from genes which can be either
homozygous (both alleles are same) or heterozygous (the alleles are different). A phenotype is
a real property of an organism which is coded by the certain genes (for example, colour of eyes,
height, . . .) . Therefore the phenotype of the new gene is determined by the two alleles inherited
from the parent's genes. There are three types of alleles: dominant, recessive and codominant. The
recessive allele cannot influence the phenotype if it is in pair wi th a dominant one, the recessive
phenotype arise only when both new alleles are recessive. If the two dominant alleles are together
in a new gene and the new phenotype is different from the phenotypes of each dominant allele
then we speak about codominat alleles.

The Figure 2.1 shows so-called Punnett 9 square which describes four possibilities of crossover flow
ers with given genes. Both flowers has a gene which determines a colour of their blooms in the
form Bb. This means that gene has two alleles, the B is dominant and determines red colour of
the bloom and the b allele is recessive and determines violet blooms. So all combinations with
dominant allele B have red blooms and just one possibility where two recessive alleles b appear
has violet colour.

For surviving of species the inherited variance and mutations have to be appropriate for current
environment. By Darwin's theory this requirement can be kept when the parents for crossover are
chosen according to their abilities. It means that just the most adapted individuals can find a part
ner for crossover. There exist many different kinds of parter selection, e.g. one male wi th many fe
males or faithful pairs of parents. The selection depends on a lifestyle of the species, some animals
live in colonies others live alone and they meet possible partners very rarely. Theory of selection
is very important for evolution and for keeping gene diversity i n the population. The populations

7 Charles Robert Darwin ^February 12,1809 - tApri l 19,1882)
8 Gregor Johann Mendel (* July 20,1822 - tjanuary 6,1884)
9 British geneticist Reginald Crundall Punnett (*June 20,1875 - tjanuary 3,1967)

18

@
B b

Orb
B O

BB

©
Bb

*2?
b e

Bb
®

bb
Figure 2.1 Punnett square describing
dominant and recessive alleles

with small gene diversity can be very wel l adapted for actual environment but if something is
changed (temperature, food sources, enemies, . . .) then the species cannot be able to survive.

2.6.1 Genetic algorithms

The optimization algorithm inspired by the theory of evolution and genetic biology have become
popular in the early 1970s when John H o l l a n d 1 0 has published his book where defined a framework
for using evolution as an optimization method.

The main idea of genetic algorithms is to encode all possible solutions into chromosomes and
by simulating crossovers and natural selections find the best solution [8]. More precisely genetic
algorithms have an iterative character, as same as many others heuristic methods, and it means that
the solution is not obtained just i n one run of the algorithm but it is gradually enhanced during
repetition of the same algorithms steps. A n d unfortunately, the genetic algorithms, as wel l as the
theory of evolution, is too rich and too diversified to have a general description form which can
describe all possible realizations. But there exists [2]a form which can describe the most usual
types of genetic algorithms implementation.

Genetic algorithm is a stochastic heuristic algorithm contains following operators and parameters:

G A = (N , P , / , 0 , Q , ^ , T) (2.1)

where P is a population which contains N individuals and because of the population is changed
during the algorithm then the actual state i n time t is defined by

P(t) = {si ,s 2 , . . . ,s N } .

John Henry Holland, American scientist and Professor of Psychology and Professor of Electrical Engineering and Com
puter Science (* 2 February 1929)

19

Each member (individual) s,-, for i = 1 , . . ,,N is sequence or set of real numbers (also very often
integer numbers) of fixed length n which represent a solution of the problem. Therefore we can
write Si € S c R" . Where S is set of all possible individuals.

/ is a fitness function which maps individuals to real numbers / : S —>]R

© is parent selection operator which select u individuals from population P

©:P^{PlfP2,...,Pu}

Q is set of genetic operators includes crossover operator Q c , mutation operator D.m and another
operators dependent on solving problem or concrete implementation. A l l these operators generate
v new individuals {offspring) from the set of selected parents.

Q = {Q c, Clm,. . . ,Q0ptional} : \P\>Pi>- • • ,Pn) —> {0\,02l... ,Ov}.

W is deletion operator which removes r selected individuals from the actual population and after
that the r new offspring are added to keep the size of the population constant. Therefore

P(t + 1) = P(t) \ W(P(t)) U {O l 7 0 2 / . . . , Or}.

T is terminate criterion which maps set of all populations to the decision variable which says
whether the actual population meets the target of the optimization and therefore whether it should
be terminated

T : {P} —> {true, false}.

The parent selection operator © and the set of operators Q are usually stochastic whereas the
reduction operators W is usually deterministic.

The fundamental idea of G A is existence of chromosome. The conception of the chromosome is not
strictly defined and can be very various. Each individual contains at least one chromosome which
defined qualitative properties of the represented solution and the individual can also contains any
further information dependent on algorithm implementation. The chromosome is compound of
genes which are in computer implementation usually real or integer numbers and therefore the
chromosome can be considered as a vector of the genes. In more general implementation the
chromosomes can be also graph or any other theoretical structure.

If we consider an optimization problem of finding the global minimum of objective function /

x o p t e argmin{/(x)}, (2.2)
xeS

than we can formulate that the goal of the genetic algorithm is to find the closest chromosome from
the set of all possible chromosomes S to the one which represents the optimal value x o pt-

The stochastic character of crossover and mutation operators are realized by probabilities Pc, Pm.
The application of mutation operator on certain chromosome x has to be realized in such a way

20

l i m Clm(x) = x.
Pm Ô

The probability of crossover Pc gives for each chromosome (in general, for each individual in the
population) its probability of selecting by operator O. The value Pc is therefore for each chromo
some different and it depends on a fitness function value. More precisely, the selecting probability
depends on individual's contribution to improving whole population. This contribution (so-called
fitness) is non-negative real number determined by mapping function F

F : P -> R +

and it has to satisfies

/(* i)</(* 2)=>F(* i)>F(* 2) .

Of course, this implication is used only for minimizing optimization problem. The relation be
tween values of the objective function and the fitness function are usually linear but it is not nec
essary condition and the relation can be any arbitrary general function. We can formulate the
normalized contribution as

TO -
 m

and it is obvious that

0 < F'{x) < 1 Vx e P,

£ V (x) = l .
xeP

The normalized contribution is very often interpreted as the selection probability for a crossover
each chromosome

Pc(x) = F'(x).

Therefore this value gives a measure for representation certain genetic information i n the next
generation (in the next iteration step of the genetic algorithm). A n application of the Pc value is
realized by implementation of selection operator 0 .

A basic scheme of the genetic algorithm can be following:

21

1 G e n e r a t i n g i n i t i a l p o p u l a t i o n (u s u a l l y r a n d o m l y) .
2 Computing the f i t n e s s v a l u e s f o r each chromosome.
3 Parents s e l e c t i o n and g e n e r a t i n g new o f f s p r i n g .
4 Computing the f i t n e s s f u n c t i o n f o r the new o f f s p r i n g and crea te a

new g e n e r a t i o n w i t h them.
5 M u t a t i o n and new e v a l u a t i n g mutated i n d i v i d u a l s .
6 I f the t e r m i n a t i o n c r i t e r i a i s not s a t i s f i e d than repeat the

a l g o r i t h m s i n c e the s tep 3 .
7 As the r e s u l t of the a l g o r i t h m i s c o n s i d e r e d the i n d i v i d u a l w i t h

the bes t f i t n e s s v a l u e .

This scheme is just a basic idea of the genetic algorithms. Many different implementation can
appear in a real applications and some certain steps can be omitted, added or modified. There is no
exact framework for the genetic algorithms but the main inspiration (selecting parents, crossover,
mutation) is usually the same and real applications vary in some specific implementation details.

2.7 Various implementations of genetic algorithms

When we decide to apply genetic algorithms for solving any optimization problem we need to
deal wi th many implementations details. For particular problem there can be many possibilities
which can solve it but there can be also many implementations which are not very useful for the
problem and even can cause that we are not able to find appropriate solution at all . There are no
general rules which can say whether to use some specific implementation for a specific problem.
For creating a concrete algorithm which can solve the given problem we have to prepare set of test
for deciding how the algorithm should be implemented. There are a lot of various possibilities
which we should take into account.

2.7.1 Representation of chromosomes

The chromosomes are very fundamental part of genetic algorithms and because of many important
parts are related to them it is very useful to focus on their computer representations. There can be
many different ways how to encoded the solutions into chromosome representation and because
of the different representations have the different properties we should choose the one which is
the most appropriate for our problem and for our computing demands. The main differences
between various classes of evolutionary algorithms are mostly given by representations of the
chromosomes. Usually as a genetic algorithm is called such a class of evolutionary algorithms
which uses binary coded chromosomes.

Binary chromosome is usually represented as a vector of binary variables (i.e. the variable which
can have either value 0 or 1). A n encoding a solution into binary variables can cause a few prob
lems. Clearly the easiest encoding is for problems where we need to represent some decision
variables. Well known example of the decision problem is so called Knapsack problem where we

22

know the total weight of the knapsack and for given set of items with known weights we have to
decide whether the item is in the knapsack or not.

A little bit more difficult encoding is for representing integer numbers. The usual transformation
of the numbers into binary based system has disadvantage which is called Hamming barrier. If we
consider a seeking for an optimal solution which is equal to decimal numbers 64io = O 1 O O O O O O 2 and
if the population contains just chromosomes represented number 63io = O O I I I I I I 2 , we can see that
their binary representations have almost al l genes different and therefore it is almost impossible to
change the value into the optimal one by classical genetic operators. This problem is solved by so-
called Gray code which can encoded every two integer numbers n and n +1 into binary sequences
which differs exactly in one bit. For encoding real numbers into binary chromosomes can be used
a way where we choose accuracy of the sought solution and transform the real value problem into
a integer one. For instance, if we look for a real number wi th two decimal places precision we can
use for encoding integer numbers and their values divided by 100.

There can be some encoding which can extend the properties of the chromosomes. A n interesting
extension is so-called shades coding and it deals with multiploid chromosomes. In fact, multiploid
chromosome means that there is more than one value for the one gene. Each gene has "inside" a
few values and they determine the "outside" value for the gene. For instance a gene with values
(1,1,0) inside has the outside value equal to 1 and a gen with (0,0,0) behaves as gene with value 0.
The shade extension means that there is not strictly given which internal combinations has outside
value 1 and which have 0, for a few combinations of inside values is the outside given randomly
and therefore the chromosomes have more variabilities and adaptabilities. The set of genes with
random outcome is called a shadow zone.

Another way of encoding the chromosomes is to represent numbers by some relevant type in com
puter. It means that if we operate wi th integer numbers we can use an integer variable as a gene.
This let us to avoid the demanding encoding and every computations wi th the chromosomes are
easier. Encoding with non-binary variable is not called genetic algorithm but they are general
evolutionary algorithm. This k ind of algorithms behave a little bit different because the genes
in chromosomes created by classical crossover do not change their concrete values. For similar
properties as the regular genetic algorithms there should be designed special classes of operators.

2.7.2 Size of populations

The important parameter of genetic algorithm is size of a population. The number of chromo
somes can very dramatically influence the behaviour of the algorithm. If we choose the number
very high then the population have a few advantages. With higher probability there can be chro
mosomes which produce the desired solution and whole population has higher diversity. The high
diversity means that the population can avoid to stuck in some local extreme and also it can have
higher adaptability for non-regular searching space. A drawback of the high number of chromo
somes is the time needed to process it. Obviously the bigger size of a population the longer time
is needed for evaluating all chromosomes and it can cause a big trouble in case with very time
demanding fitness function. The high diversity i n the population also cause that the algorithm

23

have to converge much slower and therefore an obtaining a solutions is more complicated. So for
choosing an appropriate size of a population we have to consider the computation resources and
also we need to have some idea how the objective function looks like. The more complicated the
function is the more population diversity is needed. There is verified by experiments that for most
of real problems it is sufficient to choose the size of population between 50 a 200 chromosomes.

2.7.3 Initial population

A run of the genetic algorithm starts with initialization a population. This initial population is the
first approximation of the solution and the algorithm gets first information about the searching
space. Mostly there are used two main ways how to generate the initial population. The first
approach is to generate it completely randomly and the second one is to use some already known
solutions which have been obtained by another heuristic methods. The random approach can
cover most of the searching space but we can risk to get inappropriate genetic information which
cannot be crossover to optimal solution. O n the other side if we don't have any useful informations
about the characteristic of a searching space it is the only way how to deal wi th it and moreover
genetic algorithms have been designed exactly for that kinds of problems. Sometimes it can take
a lot of generations before the algorithm finds any quality genetic material and therefore it is very
useful to combine both approaches and put into randomly generated population a few known and
quality chromosomes. To generate a population in regular w a y i.e. the chromosomes w o u l d cover
a space in the same distances, can be dangerous because the regularity in the chromosomes can
coincide with regularity i n the searching space and therefore we w o u l d lose a lot from diversity.

2.7.4 Fitness function

The fitness function can evaluate al l chromosomes and assign them relevant values. The easiest
way of defining this function is to use an objective function of the dealing problem. Sometimes, an
implementation of the algorithm, involves modifying the objective function, for instance if the used
computer framework is programmed only for searching minima or if it is able to work just wi th
normalized function. The fitness function can depend on used operators like crossover or mutation
because theses operators can produce invalid chromosomes which cannot be able to decode or it
is not possible to use in the model. Usually if we deal wi th creating invalid chromosomes we
have three fundamental possibilities how to solve the problems. A t first we can erase the invalid
chromosome and try to generate new one as long as it is not a val id one, another possibility is
to transform it into its val id equivalent and the last main possibility is to use fitness function to
artificially decrease its fitness value and therefore increasing a probability of automatically erasing
in some further generation. It can be sometimes useful to keep the invalids in a population because
there is some possibility that by crossover two invalid chromosomes can be arisen the optimal one.

2.7.5 Parent selection

Evolutionists says that the probability of crossover two individuals increase with their abilities.
In other words the better the individual is the higher probability it has for crossover. The same

24

principle is also the main idea of a parent selection i n genetic algorithms. When an algorithm
selects a pair of parents it mostly looks at their fitnesses or ordering based on them. The important
role also plays a randomness, because there w o u l d be high tendency to degenerating a population
without this influence. So among fundamental selections belongs these strategies

• Ranking selection is used for sequences of chromosomes ordered according to their fitness func
tion values and parents are selected randomly in such a way that the highest probability have
the individual wi th highest fitness function. In fact, the probability of selecting z'th chromosome
form the population of size N is given by

p ' (s - } = m T T y 1 = 1 N

• Tournament selection is inspirited by selection in the nature. If some males want the same
female they usually have to fight because of proving their qualities. The same principle is
used for selecting the partners for crossover in this strategy. There are randomly chosen a few
individuals from the whole population and then the one of them which has the highest fitness
is considered for a crossover.

• Proportional selection is a selection based on normalized fitness function and therefore the
chromosomes can have value Fn e [0,1]. The value of Fn can be interpreted as probability of
selection Pc and therefore it is easy to generate random numbers from interval [0,1] and by
them to decide which chromosomes should be crossovered.

2.7.6 Crossover

A crossover is used for creating new individuals from the parents chromosomes wi th preservation
certain parts of their genetic information. Usually the chromosomes have fixed length and there
fore crossover can be performed as a selecting corresponding gene from some of the parents. The
most used crossover are

• One-point crossover means that we find out a number of genes N in the chromosome and then
randomly choose integer number n less than the length N and the new chromosome is created
as a composition of the first n genes from one parent and the last (N -n) genes from the second
one. This can keep an important genetic information and at the same time it provides variability
needed to successful run of the algorithm.

• Multi-point crossover provides more variability because there are chosen more divided points
and therefore it can more changed the informations contained i n the sequences of genes.

• Uniform crossover is the most variable operator because it can provide arbitrary combinations
of the parent's genes. Each new gene has the same probability for obtaining the information
from either first or second parent. In fact the uniform crossover is limit case of a multi-point
crossover.

25

These crossovers cannot be used just for binary chromosomes but they are useful for each chro
mosomes with fixed length. The chosen crossover highly influence performance of the algorithm
because it is main part of the approach of an investigating the search space.

2.7.7 Mutation

A mutation is one of the most important operators i n genetic algorithms. During each generation
we choose a few chromosomes and we change them some of their genes therefore the mutations
is logical complement to searching strategy. Crossovers cause an investigating of solutions which
has been arisen as certain combinations of already known solutions and on the contrary a muta
tion gives us an instrument how to investigate solution which are not able to get as a result of
crossovers. Mostly a mutation is perform by random change of given number of genes i n selected
chromosomes. There are a lot another approaches which are used for some specials chromosomes,
for instance for binary chromosomes is possible apply so-called inversion mutation which invert
value (from 0 to 1 and vice versa) in selected genes.

The number of selected chromosomes for mutation is usually very small (about 2%of population
size) because an algorithm with high number of mutants loses its evolutionary properties and
becomes a random heuristic. But moreover the properties of mutations can be adapted for an evo
lution of a fitness function during an algorithm run, what means if the population does't have any
improving during the last few generation then the number of selected chromosomes or mutation
ratio is going to be increased because of obtaining new genetic material for successful running of
the algorithm.

2.7.8 Integration offsprings into a population

After a creating new offsprings we have to some how decide which original chromosomes w o u l d
be better to replace by the newly created ones. Mostly used strategy says that the new population
would be composed from the best chromosomes of the original population and also of the best
from new offsprings. Therefore both sets of chromosomes are ordered into a one and just first N
individuals are considered as a new generation, the rest of the set is erased. If a set of offsprings
is as large as whole populations then as an integration strategy can be used a replacement of all
original chromosomes by the new offsprings.

Integration have a significant influence for determining a direction of a searching through the feasi
ble space because it decides which chromosomes are used as a parents and which one are doomed.
The high ratio of new chromosomes in a population can be dangerous for keeping an important
genetic information because it is often very useful to have some certain chromosome i n the popu
lation for longer time and therefore increase its probability for crossover with the right individual .
A n d on the other side the low ratio causes low modification in genetic material i n the population
and therefore the algorithm can tend to stuck i n a local extreme.

26

2.7.9 Termination criteria

If we study a problem and we have any presumptions about the desired solution we can construct
a termination criteria for satisfying them. If we know approximated value of the solution or if we
just want to reach some given value then the decision when the algorithm should stop is obvious.
The more difficult situation is when we don't have any information and therefore we don't know
whether the algorithm has found the global optimum. Mostly used criteria are based on number
of generations thus we let the algorithm works for e.g. 30, 100 or 200 generations and then we
stop it without any respect to behaviour of the algorithm i n the final moment. Another approaches
are based on investigating variations among the chromosomes or on a rate of evolution the fitness
function.

There are no general rule which can decide which operators and criteria we should apply. The
important thing about the implementation of genetic algorithm is at the beginning choose a robust
implementation and after obtaining some insight to the behaviour of the problem we can try to
apply more specific modification and set their constants to an appropriate values. Each heuristic
method involves a lot of time of testing but there exists more than one implementation which can
solve particular problem. Thus the time spent by looking for a functional heuristic can give us very
beneficial satisfaction.

27

3 Algorithms for determining boundaries of stochastic
programming models

Problems in stochastic programming are traditionally solve by an exact analytical approach. H o w
ever using this traditional approach involves many efforts and many highly theoretical analysis. If
the problem contains some non-linearity or if the feasible set is not convex then it becomes almost
unsolvable by the analytical way. Therefore there is a place for using alternative methods which
can help us with finding the solution almost without theoretical investigating. These methods can
be aforementioned heuristic methods which are able to solve very large class of problems but they
cannot assure successful finding of the optimal solution. That is w h y for every particular problem
is needed to prepare a set of tests which tries how quality solutions is the method able to gives.

3.1 Classical genetic algorithm

We deal wi th a problem of determining boundaries in a stochastic programming model. There
can be used several heuristic methods and the most straightforward way is to use the genetic al
gorithms. Therefore problem of finding a distribution of probability with the worst or with the
best values of objective function can be interpreted as finding a set of samples which the distri
bution approximate. In the terms of genetic algorithms we can consider one chromosome to be
a set of particular samples of random variables from the studied model. Thus in the beginning
of the algorithm there is generated population of chromosomes and their fitness function values
are computed by solving approximated stochastic problem. For instance if we consider stochastic
problem with random variables vector £

which represents n different observations of the random variable t arid its fitness function is given

After a first initialization of the population (usually random initialization) every chromosome is
evaluated and than with standard rules of genetic algorithms we apply parents selecting, crossover
and others genetic operators. A n d because there are selected a few chromosomes with the best
fitness function values and they produce new chromosomes by applying a crossover then if the
algorithm integrate into a population just the offspring with high fitness value then we should
still get better and better solutions. The output of the algorithm is a set of chromosomes with the

m m
xeX

{Et{f{x,l)j\

we can define chromosome as

chromosome; = {£0,i, ,

by

28

best fitness function value therefore it is the set with either the highest or with the lowest objective
function value in approximation of the stochastic problem.

This algorithm is very straightforward and can be easily applied into existing genetic algorithm
framework. But it has a drawback in a number of necessary evaluating. In each generation there
are N chromosomes and each of them represent n random samples. Thus after g generations we
have to solve g • N approximations of stochastic optimization programs wi th n samples. In general,
optimization problems are very time consuming, especially if they are not linear. A time needed for
solving an optimization problem highly depend on size of the model, it means the higher number
of samples n the more time is necessary for a computing. Unfortunately this relation is not linear
but mostly is exponential what causes the problem unsolvable for large values of n.

3.2 A n approach based on modified genetic algorithm

Another approach which allows decrease a number of solving approximated stochastic programs
has been developed by Jan Roupec and Pavel Popela 1 1 i n [1]. This algorithm is based on genetic
algorithms but for obtaining a solution it doesn't exploit just chromosomes but it uses whole pop
ulation. The main idea is that each chromosome represents exactly one realization of a random
variable occurring in the model and whole population represent the approximation of the random
variable distribution. Therefore the goal is to find the chromosomes such that the expression

is minimal. This expression is just deterministic approximation of the stochastic optimization prob
lem and can be called fitness of the population. The chromosome, is one realization of the random
vector, therefore if the model contains, for instance, four random variables then

The main difference between classical genetic algorithm and this modified version is in computing
fitness function for chromosomes. The classical computing fitness function is independent on the
rest of population and if the value has been computed then it is fixed during whole process. In the
modified version, the fitness function for each chromosome is dependent on the computed fitness
value of the actual population and moreover the fitness of the chromosomes is varying in a time.

Therefore for evaluating chromosomes we need to compute

chromosome; = & = £?, £?, £?) .

and for each chromosome compute its fitness value in the following form

Both of them works at Brno University of Technology, Czech Republic.

29

/ziness(chromosomej) = f(xmi„, chromosome,) = f{xmi„, E,i). (3.2)

This formula comes from the opinion that if the population has low fitness then most of the chro
mosomes contained in it have the low fitness also. A n d similarly, if the population has high fitness
value then the chromosomes should have the high fitness too. In fact it means that each chro
mosome is important part of the population and the better is the chromosome the better is whole
population. Therefore we can suppose that if we select a set of the best chromosomes and crossover
them thus next generation w i l l contains chromosomes wi th better fitness value and therefore whole
population w i l l have better fitness value.

A n scheme of the modified genetic algorithm is

1 Generate i n i t i a l p o p u l a t i o n .
2 Compute the f i t n e s s v a l u e f o r whole p o p u l a t i o n .
3 By u s i n g p o p u l a t i o n f i t n e s s v a l u e compute the f i t n e s s v a l u e s f o r

each chromosome.
4 S e l e c t parents a c c o r d i n g t o t h e i r f i t n e s s v a l u e s .
5 By a p p l y i n g c r o s s o v e r generate new o f f s p r i n g .
6 E v a l u a t e new o f f s p r i n g and i n t e g r a t e them i n t o the new g e n e r a t i o n .
7 Mutate s e l e c t e d i n d i v i d u a l s and compute t h e i r f i t n e s s f u n c t i o n .
8 I f the t e r m i n a t i o n c r i t e r i a i s not s a t i s f i e d than repeat the

a l g o r i t h m s i n c e the s tep 4 .
9 The r e s u l t of the a l g o r i t h m i s the se t of a l l chromosomes

r e p r e s e n t d i s t r i b u t i o n of random v a r i a b l e s .

There are several ways how to evaluate new offspring and mutants. We can either use xm{n which
we have already computed from the population or we can compute new x m i n from original pop
ulation together with the new offspring. We w i l l deal wi th this topic in the further chapters. In
one generation we need to solve one or two approximated stochastic programs, it is at most 2 • g
(g is number of generations) computations and therefore this approach markedly decrease compu
tations demands in comparison with classical genetic algorithm and allow us to deal wi th larger
problems. Another important thing is a possible connection between the algorithm and some gen
eral optimization languages. If we have already prepared models in any of that languages, (like
G A M S 1 2 , A M P L 1 3) we can just easily create a framework for the genetic algorithm and the evalu
ating of population and chromosomes can be yielded to relevant solver. This can save a lot of time
and allow us to avoid possible errors caused by further remodelling.

http:/ / www.gams.com
http:/ / www.ampl.com

30

http://www.gams.com
http://www.ampl.com

4 Testing the algorithm

The algorithm proposed in [1] and described i n the chapter 3.2 is a heuristic algorithm and it means
that we are not sure whether it's going to f ind the solution or not. It is designed on assumption that
better populations have chromosomes with better fitness function. If we want to use this algorithm
we should prepare a few tests to verify or disprove our ideas.

4.1 Models

For a verifying the algorithm we bui ld several models and apply it to them. In other words, we try
to find the probability distributions which cause the worst and the best objective function values
for given model. For this purpose we establish following models.

4.1.1 Linear stochastic two-stage model

This model has been adopted from [1] and it describes melting control problem in the suitable
furnace (cupola, induced, or eletric-arc). It is real model with real data and it is described by two-
stage linear stochastic model with recourse

This model represents dependence between decision how many tons x of material is given into
a furnace and a final cost impacted by random utilization. We need to produce given number of
alloys (Iron, FeSi-1, Steel, . . .) wi th given amount of charging material (carbon, manganese, silicon,
chromium). After putting the material x into a furnace some random losses appear. These losses
are defined for each charging material by uniform probability distributions. If the losses exceed
given boundaries during the melting we need to compensate it by adding another alloys which
are usually more expensive than materials from the first place. The goal of this model is to decide
how many tons of the cheap materials should be melted to minimizing adding alloys in the second
expensive stage.

The vector x represents first-stage decision for tonnage of materials (Iron, Spinput, FeSi-1, FeSi-2,
Al loy-1 , Alloy-2, Al loy-3 , SiC, Steel-1, Steel-2, Steel-2) and

subject to:
0 < x < b

Q(x,e) = mm{qJys}
(4.1)

subject to:
h < T\Aix + A2xf < u2

0<ys, s = 1 , . . . , S

31

c T = (60.0,129.0,130.0,122.0,200.0,260.0,238.0,160.0,42.0,40.0,39.0)

is cost of each material. The second-stage decision, the tonnage of the alloys (A-C, A - M n , A-S i ,
A-Cr) , is represent by ys (symbol s is used for denoting that the value is dependent on a random
realization £ s) and

is its cost. The matrices

A, =

(5 0
0.947 4.737

0
0

(800,1500,1900,4000)

0 0 0 18.75
63.158 9.474 34.737 0

0.5 0.125 0.125^
0.947 0.316 0.316

3.124 21.429 64.286 60.000 25.714 42.857 35.714 42.857 0

[0 10 0 0 0

and

A2 =

(100
0
0
0

20

2 1 1 \
70 0 6
10 60 1
4 0 40

0 0

describe amount of charging materials in the alloys. The columns are representation for the input
materials (Iron, Spinput, ...) and the rows are charging materials (A-C, A - M n , A - S i , A-Cr) . The
boundaries for an amount of the first-stage input materials are determined by vector

b = (oo, CO, CO, CO, CO, CO, CO, 0.01,0.10, 0.10, 0.10)

and for the second-stage there are the amounts unbounded (all bounderies are equal to infinity).

The random impacts are determined by diagonal matrix with coefficients T,- wi th prescribed prob
ability distributions.

0 0 0 N
Ll
0
0
0

0
0

0
0

0

0
0

The output alloys have have prescribed amount of charging materials given by lower boundary

h = (3,1.35,2.7,0.3)

and by upper boundary

« 2 = (3.5,1.65,3.0,0.45).

There are three variations of the described linear stochastic model testing which we use for the
algorithm. The differences among them are realized just in probability distributions and therefore
all aforementioned data are val id for each of them.

32

Model I

The first model contains four random variables with uniform distribution

TI = U(0.734,0.866)
T 2 = 11(0.902,0.998)
T 3 = 11(0.672,0.733)
T 4 = U(0.972,1.000)

and therefore the matrix 7̂ can have whichever combination of the values. This model is the most
simple one because the variables are independent and they create a convex set (a four dimensional
hyperrectangle).

Model II

In the second model we fix variables T 3 and T 4 for easier imagination and we set the first two
variables according to the following formula

(TI - 0.8)2 + (T 2 - 0.932)2 < 0.0662

T 3 = 0.7
T 4 = 1.0

The set of possible realizations now create a circle with center i n [0.8,0.932] and radius equal 0.066.
The set is still convex but the variables are not independent.

Model III

There are again fixed variables T 3 and T 4 i n the third model and the non-fixed variables create a set
in a shape of a "cross".

TI G 17(0.778,0.822) and T 2 G 17(0.902,0.998)
TI G LJ(0.734,0.866) and T 2 G 11(0.934,0.966)

T 3 = 0.7
T 4 = 1.0

4.1.2 Quadratic stochastic two-stage model

For more precisely testing we introduce a quadratic model with three random influences. This
model is not based on real application, as the previous one, and it is imposes just for testing pur
poses. The model can be written in the following form

m i n J x\ + 2x\ + \x\ + 2xi + x2 - x3 + V " p s Q(xi , x2, x3, <f) i ,
(x-i^x^eX I Z J—l I

where the recourse function is defined as

33

0 . 7 3 4 0 . 8 0 0 0 . 8 6 6 T L 0 . 7 3 4 0 . 7 7 8 0 . 8 2 2 0 . 8 6 6 T i

The set of possible realizations of The set of possible realizations of
the random variables in M o d e l II the random variables in M o d e l III

Figure 4.1

Q{xi,xlr x 3 / <f) = m i n \y\ + 2y\ + 5y\ + 3i/i - 1 / 2 + 1/3}
(1/1,1/2,1/3)6^1 ' ' '

with conditions

xx H1X2 H2X3 -17i/i ~5y2 - 8 4 y 3 < -479
£ 3 x i + x 2 - 1 / 1 + 2 1 / 2 - 1 / 3 <-54 .

and x i , x 2 / x 3 / i/i, y 2 , 1 / 3 > 0.

The random influence is realized by three random variables £j and according to their definition we
can introduce next three models

Model IV

The set of possible realizations of the fourth model is a three dimensional hyperrectangle with
uniform probability distributions such that

£ i € l I (- 9 . 0 , -3.0)
£ 2 e l l (- 1 3 . 0 , -7.0)
£ 3eir(-12.0,-2.0).

Thus the set is convex and all the variables are independent.

Model V
The Model V contains just two random variables (£ 1 is fixed) and it is alternation for the M o d e l II,
therefore the set is a circle with center in the point [-10,-7] with radius equals to 3.0.

£ 1 = 6.0
(£ 2 + 10.0)2 + (£ 3 + 7.0)2 < 3.02 .

34

The set is convex but the variables are not independent.

Model VI

In the last model we introduce an alternative to the M o d e l III and the set of possible realizations
can be called as a "cross".

£ 1 = 6.0
£ 2 e (-13.0, -7.0) and £ 3 e (-10.0, -4.0)

or £ 2 G (-11.0, -9.0) and £ 2 e (-12.0, -2.0) .

This set is not convex and the random variables are not independent.

- 4 . 0

- 7 . 0

- 1 0 . 0

-13.0 - 1 0 . 0 -7.0

The set of possible realizations of
the random variables in M o d e l V

- 2 . 0

- 4 . 0

- 1 0 . 0

- 1 2 . 0

-13.0 -11 .0 -9.0 -7.0 X
The set of possible realizations of
the random variables in M o d e l VI

Figure 4.2

4.2 Monte Carlo investigating of confidence interval

A s we have seen i n the chapter 1.3.1 there exists a Monte Carlo approach based on statistic meth
ods how to determine a confidence interval for stochastic programming problems. Therefore for
analysing the problem we have to find upper and lower bounds and determine the confidence
interval (formula 1.15) by them.

35

For determining the upper bounds we need to generate nu random samples, find some suboptimal
solution x and by them compute objective function values for the each of the randomly generated
sample. A s an upper bound is subsequently used standard mean estimator defined in formula
1.13.

The lower bounds involve much more of computing power because according to the formula 1.14
there is computed n\ approximated optimization problems and their values are used for standard
mean estimating. Each approximated optimization problem is compound from n randomly gener
ated samples.

Clearly the confidence interval (formula 1.15) is given by these boundaries and we can just correct
them by standard errors gained from the numbers n\ (respectively nu) and desired confidence level
(1 - a) .

There is the table 4.1 wi th results of upper bounds computed for all models. There has been used
suboptimal solutions x which have been computed as a result of approximated problem for 20
randomly generated scenarios. Thus suboptimal solutions for the linear models are

xi = (0, 0.03080168, 0.02255713, 0, 0.02114842, 0, 0, 0.01, 0, 0, 0)
% = (0, 0.03, 0.03452594, 0, 0.0220179, 0, 0, 0.01, 0, 0, 0)

Jem = (0, 0.03, 0.03490856, 0, 0.02106134, 0, 0, 0.01, 0, 0, 0)

and for the quadratic models are

xw = (11.2215016, 9.39082217
xv = (8.09398534, 9.37849905

xvi = (8.47495486, 1.60872814

A s a confidence level 1-a has been chosen level 0.995.

nu = 10 nu = 50 nu = 100

model Q Su Q + £u Q Su Q + £u Q Su Q + Su

I 41.232 6.294 47.528 42.386 2.589 44.976 41.880 1.873 43.753

II 37.148 0.053 37.211 37.171 0.026 37.197 37.172 0.016 37.188

III 37.170 0.032 37.202 37.165 0.014 37.179 37.155 0.011 37.166

IV 255.56 78.72 345.08 279.91 40.60 320.51 263.35 20.87 284.22

V 168.70 16.67 185.38 174.76 12.51 187.27 172.69 8.74 181.43

VI 229.88 153.26 383.14 200.15 33.20 233.35 212.79 28.45 241.29

Table 4.1

The estimates of the lower bounds for al l models are i n the table 4.2 and there has been used value
n = 20 (n represents a number of generated samples in the approximated model). The confidence
level is the same like for the upper bound estimating, therefore (1 - a) = 0.995.

• 10" 9 , 6.59765259)
• 10" 9 , 6.95608609)
• 10" 8 , 6.77029895)

36

m = 10 ni = 50 m = loo

model I £~i I-El I £~l l-£i I £i l-£i

I 41.990 1.398 40.592 41.929 0.387 41.542 42.163 0.391 41.772

II 37.148 0.024 37.124 37.152 0.013 37.138 37.150 0.008 37.142

III 37.025 0.032 36.993 37.018 0.012 37.005 37.028 0.007 37.021

IV 185.14 25.48 159.66 193.16 9.29 183.87 188.07 5.98 182.08

V 125.21 3.40 121.81 129.04 2.37 126.67 128.97 1.46 127.50

VI 165.42 23.56 141.85 160.78 7.80 152.97 158.32 5.10 153.21

Table 4.2

So the confidence interval for each model can be taken from these two tables in the form [L - l\, U + eu].

4.3 Distribution of the fitness functions in the whole populations

The tested algorithm described i n the chapter 3.2 used two kinds of fitness functions which are
interconnected together. The more important one is the fitness function of the whole population,
the algorithm is designed to find an extreme values of this function and the fitness functions of
particular chromosomes are, more or less, just auxiliary. But if we deal wi th solving an srbitrary
problem then it is usually very useful to investigate it as much as possible and therefore we have
decided to analyse distribution of particular chromosome fitness i n different populations.

For a graphical representation of all distributions we need to generate data which cover almost
all possibilities i n the searching space. We can either generate populations and chromosomes in
regular distances or we can try to generate them absolutely randomly. The regular data have disad
vantage that their pattern can appear i n the results and therefore it may cause wrong conclusions.

So we have generated 30000 random populations with given fixed number of scenarios. For all
of the populations we computed their fitness function as wel l as fitness functions for each of their
chromosome. For the resultant chart we have to choose only the populations which have fitness
function in some small interval a find out the distribution of all of their chromosomes. For an
obtaining the probability distribution we need to normalised the data in such a way that the sum
of all values is equal to one. This have to be done for each interval i n a range of the population
fitness function. We have executed this investigation for M o d e l I and M o d e l IV and for all numbers
of scenarios between 1 and 29.

Model I

H o w to read the charts. The row with population fitness value shows a probability distribution
of appearing certain chromosome fitness. For instance, the Figure 4.3 describe populations with
two chromosomes, the row with a value equals to 40 says that the population with this fitness

37

can have chromosomes with fitness values in the interval [35,37] or in the [43,45] and all points of
these intervals have approximately same probability equal to c.c.a. 0.1. The value of probability is
expressed by a color intensity which is shown in the color bar on the right side.

1.0

Distribution of 2 samples in the Linear model
O.y
0.S

0.7

0.':"

0.5

0.4

0.3

0.2

0.1

0.0

Figure 4.3 The distribution i n the
populations wi th two chromosomes

If we consider the approximated linear problem with two scenarios we can observe that the lowest
population fitness value is in the case when the scenarios have the same fitnesses, therefore the
two scenarios are in the some point. A n d on the contrary, the highest fitness of population comes
when the scenarios have very different fitnesses, the first one has the highest possible value and
the second one has the lowest one.

The Figure 4.4 shows probability distributions in populations contain 16 chromosomes and it says
similar results like i n the populations with two chromosomes. The populations with the low fitness
have their chromosomes concentrated mostly in the part wi th lower chromosomes fitness. A n d
the highest populations tend to have chromosomes divided into two parts, one wi th high and the
second one with low fitness. Another examples are shown i n the appendix A .

The populations with a higher number of chromosomes have very similar distributions and the
higher number of scenarios the more fuzzy is the resultant chart. It means that the weight of the
one particular chromosome is decreasing wi th increasing the size of population. In other words,
one particular chromosome cannot change a fitness of a large population very much.

The probability distributions in the quadratic M o d e l IV are a bit complicated than the linear one.
The Figure 4.5 shows populations with five chromosomes. The distributions change shape during

Model IV

38

Distribution of 16 samples in the Linear model It

Fitness of chromosomes

Figure 4.4 The distribution i n the
populations with 16 chromosomes

Figure 4.5 The distribution i n the
populations with 5 chromosomes

increasing population fitness and also very rapidly change the width of its support. But it is val id
that the lesser number of low chromosome fitness the higher fitness the population has.

The Figure 4.6 shows distributions of population with 14 chromosomes and it is very similar for
every charts with higher number of chromosomes i n a population. The distributions preserve the
shape of growing population fitness, what means that in the higher population fitness there are
chromosomes with higher fitnesses also.

39

Distribution of 14 samples in the Quadratic model

Fitness of chromosomes

0.32

0.2S

0.24

0.20

0.16

0.12

0.0S

0.04

0.00

Figure 4.6 The distribution i n the
populations with 14 chromosomes

This analysis shows that there exist some dependence between population fitness and fitnesses
of their chromosomes and therefore a using of the heuristic algorithms based on this property is
reasonable and we can suppose to get some useful results.

4.4 Evaluating of populations

One of the main characteristics of the genetic algorithms is that each chromosome has its own
fitness function value. The tested algorithm is based on the idea that we can compute xm[n from the
formula 3.1 and subsequently we can use this value for an evaluating each chromosome (formula
3.2). But there can arise a problem with evaluating chromosomes after the reproductions and
mutations. Let's have a look at the situation when we have a population with n chromosomes and
we have evaluated them, selected parents and created m new offsprings. N o w we have at least two
possibilities how to determine fitnesses for the new offsprings.

• We can use the xm[n which we have computed from the population of the n original chromo
somes

• or we can determine a new value xm[n by computation it from the population of n chromosomes
together with m new offsprings together.

The main advantage of the first approach is a saving computations resources because to compute
the solution of the problem with n + m samples can take considerable amount of time. The main
advantage of the second approach is an accuracy. The first approach can give values which are
not correct because the xm[n used for computation is determine for another set of scenarios and

40

therefore values based on it can mistake us. For taking the decision which approach should be
used there has been prepared a test which can help us with it.

The test says us how much the fitness function values computed by these two approaches differ. So
for the M o d e l I (the linear model) and M o d e l IV (the quadratic model) we've randomly generated
500 populations with n chromosomes and we have computed corresponding value x°mhy. By this
computed value we have determined fitness function values for each of the chromosomes and
also for m another randomly generated offsprings. Further step is to compute xl

min given by a
population of all the chromosomes together (therefore from n + m scenarios) and based on this new
value we determine new fitness values for all them.

Thus we have two sets of fitness values related to the two investigated approaches. In the algorithm
the computed fitness values are used for deciding which of the new offspring should be integrated
into a proper population. A n d because of many integration strategies depend on the order of the
chromosomes we should also investigate how much modified are the ordered populations. In
other words, if the ordered set of chromosomes evaluated by the first approach is the same or
similar as ordered set evaluated by the second approach.

We have tested all populations between 2 and 20 and we have compared differences in ordering
and fitnesses with number of offsprings. The resultant data are shown in the appendix B. Some
typical results are shown in the figure 4.7. The left figure shows a histogram of differences between
ordering (it means position^ -position^ and the right one shows a histogram of differences between
fitness (i.e. fitnesso - fitnessi). The figures are computed for population with 16 chromosomes and
8 new offsprings in the M o d e l I.

Ordering differences for population with 16 chromosomes end S offsprings

10r

Fitness differences for a population with 16 chromosomes and 8 offsprings
i i

The differences in the order The differences in the fitness

Figure 4.7

So after a consideration of all these facts we have decided to implement the first approach which
use the o ld x ^ i n because it saves a lot of computing time and the caused inaccuracies are not so
important, especially the orders are almost the same.

41

4.5 Computer implementation

For testing an algorithm we have created a computer script written i n scripting language Python
on operating system Linux. There are several ways for developing the algorithms. It is usually
considered that the most intuitive and most extensible way for representing an algorithm is an
object representation 1 4 and therefore we have chosen it also. The program have no graphical user
interface and it is fully controlled by text files. A running of the program involves installed python
interpret and its library for solving optimization problems OpenOpt [6].

There has been developed ful l evolutionary algorithm allows us easily extend and modify it. A t
the beginning, the whole algorithm has to be compose of the components which are appended in
the modules. The chromosomes are represented as vectors of real numbers and all operators are
designed just for them.

A calling of the program is realized by text file and there is shown a simple example

galg=CGenet i cAlgor i thm()

d e f i n i t i o n of Chromosome
galg.setParameters(chromosome=COneScenario,

numberOfChromosomes=30)

d e f i n i t i o n of r e p r o d u c t i o n
g a l g . s e t P a r a m e t e r s (s e l e c t P a r e n t s = b e s t W i t h O t h e r s ,

se lectParentsParameter=-[' c o u p l e s ' : 15},
crossover=uni formCrossover ,
i n t e g r a t e O f f s p r i n g s = b e t t e r I n t e g r a t i o n)

d e f i n i t i o n of e v a l u a t i o n
galg.setParameters(evaluateChromosome=putX)
g a l g . s e t P a r a m e t e r s (e v a l u a t e P o p u l a t i o n = e v a l u a t e)

d e f i n i t i o n of comparing between two chromosomes
galg .setParameters(compare=minimize)

d e f i n i t i o n of m u t a t i o n
g a l g . s e t P a r a m e t e r s (s e l e c t M u t a n t s = u n i f o r m ,

selectMutantsParameter=-['number' : 1},
mutate=changeNComp,
mutateParameter=-['gens' :2})

d e f i n i t i o n of t e r m i n a t i o n
g a l g . s e t P a r a m e t e r s (t e r m i n a t e = g e n e r a t i o n T e r m i n a t e ,

Object-oriented programming

42

terminateParameter=-[' l a s t G e n e r a t i o n ' : 30},
terminateParameterFunct ion=generat ionTerminateParam)

g a l g . r u n A l g o r i t h m ()
p r i n t g a l g . g e t B e s t ()

There is created an object g a l g which represents a genetic algorithm, it takes operators and their
parameters by its method . setParameters . A running is executed by method g a l g . r u n A l g o r i thm ()
and we can get the computed results by another method g a l g . g e t B e s t () . Obviously there has to
be imported a few modules with the operators, it is omitted here because of its unimportance. Let's
remark the lines with # are comments and they are not needed for algorithm run.

The whole script is saved into a text file and easily executed from the command line $python f i l e . py.

4.6 Algori thm for searching minimal distributions
The implementation of an algorithm which should find the distribution of chromosomes with min
imal fitness value can be considered as genetic algorithm with typical operators. Textbooks and
other resources usualy say that the typical implementation is based on

• The initial population is randomly generated.

• The selected parents have mostly high fitness value.

• The crossover is uniform.

• Chromosomes for mutation are selected randomly and uniformly

• Mutation changes selected genes by new ones randomly generated

• The offspring wi th high fitness are integrated into the population instead of chromosomes with
low fitness value.

So this algorithm was implemented for Model I and its coefficients was set to some typical values
(chromosomes in a population=30, number of offsprings=15, mutated chromosomes=l and num
ber of mutated genes=2). For an obtaining the results wi th lower random influence we ran the
algorithm 30 times with 50 generations in one run.

Because this model is a testing model we know its true boundaries. The lowest value of the popu
lation fitness is approximately 34 and the highest one is about 55. The mean of the function values
is almost 43. The figure 4.8 shows one typical evolution of the population fitness function with
respect to the number of generation. The 90%of the algorithm's runs gave results in the interval
(35.9; 36.8) so we can observe that the values found by the algorithm are relatively close to the
lower bound (bottom red line) but, on the other hand, they should be closer. By the results we
mean the best fitness population value obtained during the whole algorithm run and the 90%in-
terval is useful because we can omit accidentally too good and too bad runs.

43

Evolution of the basic minimal algorithm

o
CL

0
_ c

1 1 5 -
o
E
O

0 1 0 2 0 3 0 4 0 5 0
G e n e r a t i o n

Figure 4.8 Typical run of
the basic implementation.

Thus now we can try to enhance the algorithm by analysis and replacement some of the algorithm's
components. We can investigate the influence of the components if we change them for another
ones and observe differences i n the outcomes. Clearly it cannot be very precise because some
components can coincidently collaborate and by removing one of them we change a behaviour of
the another. But it can give us a first insight into the algorithm.

If we change the parent selection by random selection the outcome of the algorithms is almost not
changed, so we can suppose we cannot deal wi th the selection a lot. O n the other hand replacing an
integration of offsprings into the population by the random one cause that the outcomes oscillate
around the mean of the objective function and it means the the algorithm becomes practically
random and it lost almost al l advantages of evolutionary algorithms. In the same time, it means the
integration of offsprings can be important for the run. The switching off the mutation implies that
the outcomes are in the interval (36.7; 37.9) and therefore the mutation has positive influence for the
results and by using it we are able to obtain better fitness function. Therefore if we w o u l d enhance
the mutation then there exist a certain probability that the whole algorithm w o u l d be enhanced.
What we expect from a mutation is supplying the population by new genetic information and
moving the chromosomes to the new places.

We introduce new mutation operator, called Touch. Usual mutation replaces a few genes of the
chromosomes by new randomly generated ones, the operator Touch just takes a chromosome and
move it a little. Concretely, for our chromosomes wi th real numbers we just add a small number
to each of them and therefore it causes that the whole chromosome is a little moved i n the search
ing space. Our implementation involves one parameter distance which decides how long distance
should be between the original and the new chromosome.

8enenew = ^ ^ ^ o r i g i n a i + r a n d o m (- l , 1) * distance, Vgene e chromosome

44

This formula determines that the new chromosome lies in a sphere wi th radius distance and with
center in chromosomeOTi^nai. If we apply the operator to the chromosomes near a boundary of a
searching space it can happen that the moved chromosome is outside the space, so an important
part of the operator is checking whether it is located in the proper area and if not then correct
it. Usually if operators of crossover or mutation can produce invalid chromosomes we have two
way how to deal wi th it. Either we transform the invalid chromosome into the val id one or we
let it invalid and just penalize its fitness value. A n integration of invalid chromosomes into a
population was considered as an inappropriate because the fitness functions of a population and
each of its members partially depend on a position of al l particular chromosome i n a search space,
therefore a computing fitnesses from a population with invalids can give wrong results and can
negatively influence an algorithm's run. The repairing is implemented as a converting the invalid
chromosome into the geometrically closest val id one.

Evolution of the basic algorithm with the Touch operator

5 5

a .
a
a .

o

I 4 5 -
o
E
O

0 1 0 2 0 3 0 4 0
G e n e r a t i o n

Figure 4.9 Typical run of the implementation with the
operator Touch.

So by 30 runs of the basic implementation with the new mutation operator (the distance = 0.005
and 5 selected chromosomes in one generation) we obtain 90%of results in the interval (34.44;
34.66) and because of the real min imum is 34.3120 we can say that the new mutation changes the
algorithm very noticeably and it works correctly for the M o d e l I and moreover the sufficient results
are obtained even after 10th generation.

N o w we demonstrate the results of the implementation the Touch operator for the next five models
also.

I II m IV V IV

Real 34.312 36.807 36.741 77.762 87.846 82.303

Basic (35.85; 37.06) (36.93; 37.01) (36.85; 36.89) (116.40; 137.59) (103.95; 113.73) (106.05; 120.84)

Touch (34.44; 34.77) (36.75; 36.86) (36.76; 36.78) (77.77; 79.87) (87.89; 89.71) (82.85; 84.51)

Table 4.3

45

The table 4.3 compares the algorithm with usual mutation and the one wi th the Touch mutation,
for better comprehension i n the first line there are written the real lower bounds of the models and
the next two lines contain 90%intervals of results for particular implementations. We observe the
Touch mutation gives results almost on the lower bound and especially, for the quadratic models
give much better solution than the usual mutation.

It is also useful to know how the chromosomes move i n the searching space during the run of
the algorithm, so the figure 4.10 shows typical example how the distributions of 30 scenarios look
like after 30 generations. We know that in the first generation the chromosomes randomly and
uniformly cover whole searching space and after a few generation there is an apparent pattern of
gathering chromosomes together and on the end of the algorithm they are almost in the one point.

Chromosomes distribi-rtions in the Model II after 30th generation Chromosomes distribi-rtions in Model VI after 30th generation

The minimal distribution for the linear M o d e l II The minimal distribution
for the quadratic M o d e l VI

Figure 4.10

Examples of evolution of fitness function and distributions of chromosomes for the rest of the
models can be found in appendix C . l and C.3.

4.7 Algori thm for searching the maximal distributions

By using the same algorithm with the Touch mutation to search for a distribution wi th maximal
fitness function we obtain very disappointing results. By applying it to M o d e l I we get distributions
with value about 44 and it is very far away from the real maximum which is about 55. So we
conclude the algorithm for searching minimal values is useless for searching the maximal ones.
Therefore we have to change some operators and try to f ind better implementation.

The basic implementation, demonstrated i n the section above, works much better but again, like in
the previous implementation, it can give much closer results to the real boundaries. We know, from
the stochastic programming theory, the distributions with highest cost are usually concentrated in
several separated places. So we introduce new operator for integrating offspring into a population.

46

The classical integration is based on idea that the population should contain mostly chromosomes
with the highest possible fitness but it is not useful i n our implementation because the result of
whole algorithm depends on all chromosomes and not just on the best one. Therefore we modify
an offspring integration such that the chromosomes with average fitness are going to be removed
and consequently the population w i l l tend to separate into a few smaller crowds. This operator is
called Average Out and its precise definition is following.

• Join a population together with new offsprings into one ordered sequence.

• Choose a final ratio between the chromosomes wi th high and low fitnesses.

• Create the population of the lowest and highest chromosomes with respect to the chosen ratio.

If we have n equal to a number of the original chromosomes then we can easily implement the
ratio re [0,1] as preserving the first [r * n\ and the last (n - \ r * n\) chromosomes from the ordered
sequence 1 5.

The chosen ratio for our implementation is r = 0.9 what means that the population contains 90%of
low fitness chromosomes and 10%of the high ones. That is w h y we modify selecting parents op
erator to select almost all chromosomes with a high fitness. Therefore the new algorithm based
on the basic implementation with modified parent selection, Average Out integration and Touch
mutation gives results described by an evolution of the population fitness in the figure 4.11.

Evolution of the modified algorithm

5 5

z

j 50 -
i .

o
i .

u 40
.Li
e
V

O
3 5

Figure 4.11 Typical run of
modified implementation

For understanding the behavior of our new implementation we have applied it for all Models I-VI
and recorded the 90%intervals into the table 4.4.

the symbols [xj denote the integer part of number x

47

I II m IV V IV

Real 55.41 37.32 37.14 360.17 161.82 359.51

Basic (49.76; 52.48) (37.21; 37.23) (37.03; 37.11) (236.75; 276.03) (140.42; 146.98) (183.34; 233.17)

Average Out (50.46; 55.29) (37.25; 37.29) (37.10; 37.14) (354.35; 356.26) (150.93; 160.83) (262.88; 353.84)

Table 4.4

The clistribi-rtions in the Model III after 30th generation The distribution in the Model V after 30th generation

The maximal distribution The maximal distribution
for the linear M o d e l III for the quadratic Model V

Figure 4.12

Another examples of fitness function evolution and the chromosomes distributions for the rest of
the models can be found i n appendix D and D.3.

The results show an improvement against the algorithm with usual genetic operators, especially
for the quadratic models is the improvement very significant. The figure 4.12 shows final distrib
utions for the M o d e l III and Model V and it can be seen the algorithm is able to find extremes in
separate discrete points. For all of the models we are almost able to reach the real upper bound
in very few number of iterations and therefore the algorithm converges very quickly. A n example
of evolution the objective function in M o d e l I can be found in appendixD.2. A possible drawback
come from stagnation in local maxima because it sometimes happen that algorithm finds some
suboptimal solution and then it is not able to move to wherever else. This drawback can be solved
by repetition of the algorithm or increasing a number of mutations. Mostly the found suboptimal
solution is not very far from the optimal one and therefore it can be considered as a solution with
certain accuracy.

48

5 Conclusion

The goal of this diploma thesis was to introduce problems of stochastic programming and to show
how to solve them by modern heuristic methods. A s a particular problem has been chosen a
problem of determining boundaries for an objective function in mathematical models influenced
by random variables. We have developed a special computer program based on genetic algorithm
[1] and it has been tested and adjusted for particular linear and quadratic mathematical models.
A t first, each model has been investigated by classical Monte Carlo method [3] and determined
theoretical boundaries for each of them. The main idea of an applying genetic algorithms is to
consider a population of chromosomes as a representation for probability distribution occurring
in the given models and for obtaining an extreme values of their objective functions we need to
find the distribution which cause it. The algorithm has been divided into two separate parts. The
tested models contain from 2 to 4 randomnesses defined as independent as wel l dependent random
variables on convex and non-convex sets.

A dealing with a problem of determining the minimal objective function have led us to introduce a
special mutation operator, called Touch, which is designed for little modifications in genetic infor
mation contrary to usual mutation which can change chromosomes very dramatically. The results
obtained from this implementation are very promising because we are able to find the minimum
in just a few iterations. A determining the maximum value involved a developing of a new kind
of operator for integration offsprings into a population which removes chromosomes with average
fitness and therefore the population keeps big diversity. This operator has been called Average
Out and together with aforementioned operator Touch gives very good results. The probability
distributions with the maximal objective function are often concentrated in a few discrete points
and our algorithm has shown it is able to find them and stay very close to that solution up to end
of the running.

So the developed implementation of the algorithm works successfully for all of the tested models
and converges very quickly even for small populations. It is very important to have an algorithm
which does not need big populations because in the opposite case the evaluating can take a lot
of computing time and therefore it can become useless. The main conclusion of the thesis is that
we have found out the algorithm based on idea of approximating the probability distribution by
a population of chromosomes can give very good results and it can save a significant amount
of the expensive computing resources. Moreover the boundaries determined by classical Monte
Carlo method give us just a certain confidence interval whereas the boundaries obtained from our
algorithm can find almost the real extreme values and therefore it can describe the model in much
more accuracy way.

49

A Distributions of chromosome fitnesses

Distributions of particular chromosome fitnesses in popultions. The precise description can
found in section 4.3.

Distribution of 3 samples in the Linear model Distribution of 10 samples in the Linear model

Distribution of 24 samples in the Linear model Distribution of 3 samples in the Quadratic model I 0.5'T

0.4E

F i tness of c h r o m o s o m e s • o

Distribution of 8 samples in the Quadratic model

Fi tness of c h r o m o s o m e s

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Distribution of 2 5 samples in the Quadratic model
0 3 "

0.32

0.0:7

0.04

F i tness of c h r o m o s o m e s

50

B Data for evaluating populations

B . l M o d e l I

These tables contains data from the test i n section 4.4 for M o d e l I. Each row symbolize a popula
tion wi th given number n of chromosomes and columns symbolize number of new chromosomes
added to the population. Data i n the "ord" column represent ratio between all chromosomes and
those whose order was changed just by one place or stayed unchanged. The "fit" column gives
ratio for chromosomes whose fitness variation is in interval (-0.25,0.25).

1 2 3 4 5 6

n ord fit ord fit ord fit ord fit ord fit ord fit

2 0.98 0.71
3 0.99 0.90 0.98 0.84
4 0.99 0.96 0.98 0.93 0.98 0.92
5 1.00 0.98 0.99 0.95 0.98 0.96 0.97 0.94
6 0.99 0.97 0.99 0.97 0.99 0.97 0.98 0.96 0.98 0.96
7 0.99 0.98 0.98 0.96 0.98 0.96 0.98 0.96 0.98 0.95 0.97 0.95
8 0.99 0.98 0.98 0.98 0.98 0.97 0.98 0.97 0.98 0.97 0.97 0.96
9 1.00 0.99 0.99 0.98 0.99 0.97 0.98 0.97 0.97 0.97 0.97 0.97

10 1.00 0.99 0.99 0.98 0.99 0.98 0.98 0.98 0.98 0.97 0.98 0.98
11 1.00 1.00 0.99 0.99 0.99 0.99 0.98 0.99 0.98 0.98 0.98 0.98
12 1.00 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.98 0.99 0.98 0.98
13 0.99 1.00 0.98 0.99 0.98 0.99 0.98 0.98 0.98 0.99 0.98 0.98
14 0.99 0.99 0.99 0.99 0.98 0.99 0.98 0.99 0.97 0.98 0.98 0.99
15 0.99 1.00 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.99 0.97 0.98
16 0.99 1.00 0.99 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.97 0.99
17 1.00 1.00 0.99 1.00 0.99 0.99 0.99 0.99 0.98 0.99 0.98 0.99
18 1.00 1.00 0.99 1.00 0.99 0.99 0.99 0.99 0.98 1.00 0.98 0.99
19 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.98 1.00
20 1.00 1.00 0.99 1.00 0.99 0.99 0.99 1.00 0.98 0.99 0.98 0.99

7 8 9 10 11 12

n ord fit ord fit ord fit ord fit ord fit ord fit

8 0.96 0.97
9 0.98 0.98 0.97 0.97

10 0.98 0.98 0.98 0.98 0.98 0.97
11 0.98 0.98 0.98 0.98 0.97 0.98 0.98 0.98
12 0.98 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.98
13 0.98 0.99 0.98 0.99 0.97 0.98 0.97 0.98 0.97 0.98 0.96 0.98
14 0.97 0.98 0.98 0.99 0.97 0.99 0.96 0.98 0.96 0.98 0.96 0.98
15 0.98 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.96 0.98
16 0.98 0.99 0.97 0.99 0.97 0.98 0.97 0.99 0.96 0.98 0.97 0.98
17 0.98 0.99 0.98 0.99 0.98 0.99 0.97 0.99 0.97 0.98 0.97 0.99
18 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.97 0.99 0.97 0.99
19 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.97 0.99 0.97 0.99
20 0.98 0.99 0.98 0.99 0.98 0.99 0.97 0.99 0.97 0.99 0.97 0.99

51

13 14 15 16 17 18 19

n ord fit ord fit ord fit ord fit ord fit ord fit ord fit

14 0.96 0.98
15 0.96 0.98 0.96 0.98
16 0.96 0.98 0.96 0.98 0.96 0.98
17 0.96 0.99 0.97 0.99 0.96 0.99 0.96 0.98
18 0.97 0.99 0.97 0.99 0.97 0.99 0.97 0.99 0.96 0.99
19 0.97 0.99 0.97 0.99 0.97 0.99 0.97 0.99 0.96 0.99 0.96 0.99
20 0.97 0.99 0.97 0.99 0.96 0.99 0.96 0.99 0.96 0.98 0.96 0.99 0.96 0.99

B.2 M o d e l IV

In the tables for M o d e l IV the "ord" column gives ratio for variation in interval (-1,1) and the "fit'
column is ratio with respect to chromosomes with fitness variation in interval (-25,25)

1 2 3 4 5 6

n ord fit ord fit ord fit ord fit ord fit ord fit

2 0.99 0.64
3 0.99 0.62 0.96 0.50
4 0.98 0.68 0.95 0.56 0.95 0.58
5 0.98 0.76 0.97 0.63 0.95 0.59 0.93 0.63
6 0.99 0.86 0.96 0.72 0.95 0.61 0.95 0.64 0.93 0.58
7 0.98 0.89 0.97 0.74 0.95 0.70 0.95 0.67 0.93 0.66 0.92 0.62
8 0.98 0.92 0.96 0.79 0.95 0.75 0.95 0.70 0.93 0.67 0.93 0.66
9 0.98 0.90 0.96 0.84 0.96 0.75 0.94 0.73 0.94 0.70 0.94 0.71

10 0.98 0.92 0.96 0.85 0.95 0.81 0.95 0.75 0.95 0.73 0.94 0.74
11 0.98 0.94 0.97 0.89 0.96 0.84 0.95 0.77 0.95 0.79 0.93 0.75
12 0.98 0.95 0.96 0.92 0.96 0.84 0.95 0.79 0.94 0.79 0.94 0.77
13 0.98 0.97 0.97 0.94 0.95 0.83 0.96 0.82 0.95 0.83 0.93 0.79
14 0.98 0.97 0.97 0.94 0.96 0.91 0.95 0.85 0.94 0.83 0.93 0.79
15 0.98 0.97 0.97 0.95 0.96 0.91 0.96 0.90 0.95 0.87 0.94 0.83
16 0.98 0.99 0.97 0.97 0.96 0.93 0.95 0.91 0.94 0.86 0.94 0.84
17 0.98 0.98 0.97 0.96 0.96 0.94 0.96 0.91 0.95 0.88 0.94 0.86
18 0.98 0.98 0.97 0.98 0.96 0.95 0.96 0.91 0.95 0.91 0.94 0.89
19 0.98 0.99 0.97 0.98 0.96 0.95 0.95 0.95 0.95 0.91 0.95 0.89
20 0.98 0.99 0.97 0.98 0.96 0.96 0.96 0.93 0.95 0.92 0.94 0.90

52

7 8 9 10 11 12

n ord fit ord fit ord fit ord fit ord fit ord fit

8 0.92 0.63
9 0.93 0.67 0.92 0.63

10 0.92 0.70 0.92 0.70 0.90 0.65
11 0.93 0.70 0.92 0.69 0.91 0.68 0.90 0.67
12 0.93 0.75 0.92 0.74 0.92 0.73 0.90 0.70 0.90 0.68
13 0.92 0.76 0.92 0.77 0.92 0.73 0.92 0.72 0.90 0.72 0.90 0.71
14 0.92 0.79 0.93 0.78 0.92 0.77 0.90 0.74 0.89 0.73 0.90 0.73
15 0.93 0.79 0.93 0.83 0.92 0.79 0.91 0.79 0.89 0.76 0.90 0.78
16 0.93 0.84 0.93 0.83 0.92 0.79 0.91 0.77 0.91 0.80 0.91 0.81
17 0.94 0.83 0.93 0.83 0.92 0.83 0.91 0.82 0.91 0.80 0.90 0.79
18 0.93 0.86 0.92 0.84 0.92 0.86 0.91 0.84 0.92 0.82 0.91 0.81
19 0.93 0.89 0.93 0.85 0.93 0.86 0.92 0.85 0.91 0.83 0.91 0.85
20 0.94 0.90 0.93 0.86 0.92 0.87 0.92 0.86 0.91 0.83 0.90 0.82

13 14 15 16 17 18 19

n ord fit ord fit ord fit ord fit ord fit ord fit ord fit

14 0.89 0.70
15 0.90 0.74 0.89 0.73
16 0.90 0.77 0.88 0.74 0.89 0.75
17 0.90 0.80 0.91 0.76 0.90 0.78 0.87 0.75
18 0.90 0.79 0.89 0.78 0.89 0.80 0.86 0.74 0.88 0.77
19 0.89 0.83 0.89 0.80 0.89 0.82 0.89 0.82 0.88 0.79 0.87 0.77
20 0.89 0.82 0.89 0.81 0.90 0.81 0.89 0.80 0.88 0.82 0.87 0.80 0.87 0.78

53

C Searching for a minimum

There are examples of the algorithm behaviour during searching for the minimal objective function
value. A l l the data i n this chapter are related to the section 4.6.

C . l Evolution of the objective function

These examples decribe an evolution of the objective function for all the tested models.

E v o l u t i o n o f t h e r n i n i m u r n for M o d e l I E v o k i t i o n o f t h e m i n i m u m for M o d e l

E v o k i t i o n o f t h e m i n i m u m for M o d e l E v o k i t i o n of t h e m i n i m u m for M o d e l IV

E v o k i t i o n o f t h e m i n i m u m for M o d e l V E v o k i t i o n o f t h e m i n i m u m for M o d e l VI

54

C.2 Evolution of distributions

The examples in this section show distributions of chromosomes during a searching for the mini
mal objective function value in M o d e l VI.

The :l istri l : i .rt i :n in I-I-:--:l-=l . I .-.rth f i tness 112.12

^T3 3 3 3~~

The disthbLit ion in I -1-a= I . I . .rth f i tness 12G.Ü1

-TTE 3 3 3 " "

1 s t generation 2 n d generation

Th-a: : l ist i i l :Lrt i :n in I -1-:--:l-a=l .1 wi th f i tness I'.'IAI The distribLition in M o d e l VI w i th f i tness J f .

•TE ^T3 3 3 3~~ •T5 ^T3 3 3 ^ ~

3 r d generation 5 t h generation

The d ist r ibut ion in M o d e l VI w i th f ± n e s s 3 1 . 4 2 The distr ibut ion in M o d e l v'l w i th f i tness S 5 . 1 3

^T5 ^T3 3 3 3~~

7 t h generation 10 t h generation

55

C.3 Final distributions with minimal value

There are examples of distributions with lower objective function found by our implementation of
a genetic algorithm.

The d ist r ibut ion in M o d e l I w i th f i tness =:4.5i The distr ibut ion in M o d e l II with f i tness 3 6 . 8 2

TT7* ET75 ETSE 0 3

The d ist r ibut ion in M o d e l III w i th f i tness 3 6 . 7 5 The distr ibut ion in M o d e l IV w i th f i tness

- f i l l ET75 O S O E - T l — ^ n r a 5 — — ^

The d ist r ibut ion in M o d e l V w i th f i tness The distr ibut ion in M o d e l VI w i th f i tness 8 4 . 3 7

T l T3 3 ^

56

D Searching for the maximum

D . l Evolution of the searching for maximal value

These examples decribe evolution of the objective function during searching for maximal values.
(Al l data in this appendix are related to the section 4.7)

Evolution of the maxim for Model VI Evolution of the ma « im for Model II

Evolution of the maxim for Model III Evolution of the ma « im for Model IV

" T u 5 C -

Qenerstion

Evolution of the maxim for Model V Evolution of the maxim for Model VI

" T u S3 7u~
Qenerstion

~*& So

57

D.2 Evolution of maximal distributions

Examples of evolution of chromosomes during a searching for the maximum in M o d e l I.

The distribution in Model I with Fitness 42.53 The distribution in Model I with fitness 52.20

"TT73 !T75 !T7S tf&S HS2 CTSJ iTSE" "TT73 !T7S !T7S ST5IS ITffl trSI CTSE

1 s t generation 6 t h generation

The distribution in Model I with Fitness 53.51 The distribution in Model I with Fitness 53.14

1 1 t h generation 19 t h generation

The distribution in Model I with Fitness 53.24 The distribution in Model I with Fitness 53.12

25 t h generation 30 t h generation

58

D.3 Final distributions wi th maximal value

Examples of distributions with high objective function found by genetic algorithm.

59

Index

a
algorithm

deterministic 15
simplex 2
stochastic 16

algorithms
evolutionary 17

approximating problem 8, 9

b

brute force 14

c

candidate solution 1,10
chromosome 20
complete fixed recourse 6
confidence coefficient 9
confidence interval 9
confidence level 9
constraint 1
convexity

see convex polyhedron
convex polyhedron 2, 3

d

deterministic equivalent 8

i

feasible set 1
fitness 21
fitness function 20
fitness of a population 29
fixed recourse matrix 6

g
genes 20,23
genetic algorithm 19
gradient ascent 15

h
Hamming barrier 23
here-and-now 5
heuristic 14
hi l l climbing 15

i
individual 20
integration

Average Out 47

1

local search 15

m

method
Monte Carlo 8

minimax approach 12
model

deterministic 4
linear

see linear programming
multi-stage 5
stochastic

see stochastic programming
two-stage 5

n

normalized contribution 21

o

objective function 1
offspring 20
operator

crossover 20
deletion 20
mutation 20
parent selection 20

optimality gap 10

60

optimization 1
ant colony 16
bees 17

P
population 19
programming

binary 2
integer 2
linear 2
linear stochastic 6
mathematical

see optimization
quadratic 3
stochastic 4

r
recourse 5

s
scenario 8
search space 1
shadow zone 23
simulated annealing 16
stage

first 5
second 5

t
tabu search 15
terminate criterion 20
touch

mutation 44
travelling salesman problem

w
wait-and-see 5

61

References
[1] J. Roupec and R Popela, Scenario generation and analysis by heuristic algorithms (2007)
[2] J. Roupec, P h D Dissertation, V U T Brno, Fakulta strojního inženýrství, (2001).
[3] W. K. Mak, D. P. Morton, and R. K. Wood, Monte carlo bounding techniques for determining

solution quality in stochastic programs, Operations Research Letters
[4] J. Dupačová, Stochastické programování. (Československá redakce V N M O N , 1986).
[5] S. W. Wallace and P. Kai l , Stochastic Programming. (John Wiley & Sons, Inc., 1994).
[6] O. online documentation http://scipy.org/scipy/scikits/wiki/OpenOpt.
[7] C. R. Reeves, editor, Modern heuristic techniques for combinatorial problems (John Wiley & Sons,

Inc., N e w York, N Y , U S A , 1993).
[8] L. D. Chambers, Practical Handbook of Genetic Algorithms. (CRC Press, Inc., Boca Raton, FL,

U S A , 1995).
[9] L. D. Chambers, The Practical Handbook of Genetic Algorithms: Applications, Second Edition. (CRC

Press, Inc., Boca Raton, FL, U S A , 2000).
[10] M . Dorigo and C. Blum, Ant colony optimization theory: a survey, Theor. Comput. Sei. 344

(2005), no. 2-3, 243-278
[11] M . Dorigo, G . D . Caro, and L. M . Gambardella, Ant algorithms for discrete optimization, Artif.

Life 5 (1999), no. 2,137-172
[12] F. Glover and F. Laguna, Tabu Search. (Kluwer Academic Publishers, Norwel l , M A , U S A ,

1997).
[13] F. Glover, E. Taillard, and D. de Werra, A user's guide to tabu search, A n n . Oper. Res. 41 (1993),

no. 1-4,3-28
[14] Z. Michalewicz and D. B. Fogel, How to solve it: modern heuristics. (Springer-Verlag N e w York,

Inc., N e w York, N Y , U S A , 2000).
[15] P. J. M . Laarhoven and E. H . L. Aarts, editors, Simulated annealing: theory and applications

(Kluwer Academic Publishers, Norwel l , M A , U S A , 1987).
[16] P. Tarasewich and P. R. M c M u l l e n , Swarm intelligence: power in numbers, Commun. A C M 45

(2002), no. 8, 62-67
[17] S. A . Tarim, S. Manandhar, and T. Walsh, Stochastic constraint programming: A scenariobased

approach, Constraints 11 (2006), no. 1, 53-80
[18] A . Eichhorn and W. Römisch, Stochastic integer programming: Limit theorems and confidence in

tervals, Math. Oper. Res. 32 (2007), no. 1,118-135
[19] E. Polak and J. O. Royset, Efficient sample sizes in stochastic nonlinear programming, J. Comput.

A p p l . Math. 217 (2008), no. 2, 301-310
[20] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. (Addison-

Wesley Longman Publishing Co., Inc., Boston, M A , U S A , 1989).
[21] A . Schrijver, Theory of linear and integer programming. (John Wiley & Sons, Inc., N e w York, NY,

U S A , 1986).
[22] J. Dupačová, J. Hurt , and J. Štěpán, Stochastic Modeling in Ecomocics and Finance. (Kluwer

Academic Publisher, 2003).

62

http://scipy.org/scipy/scikits/wiki/OpenOpt

