
University of South Bohemia
Faculty of Science

České Budějovice, Czech Republic

Johannes Kepler University
Faculty of Engineering & Natural Sciences

Linz, Austria

Comparison of bioinformatics pipelines for eDNA
metabarcoding data analysis of fish populations in

Czech reservoirs

Bachelor Thesis

Rômulo Acácio dos Santos

Supervisor: RNDr. Petr Blabolil, Ph.D.

České Budějovice

2021

Bibliographical Detail

dos Santos R., 2021: Comparison of bioinformatic pipelines for eDNA metabarcoding data

analysis of fish populations in Czech reservoirs. Bc. Thesis, in English. – 201 p., Faculty

of Science, University of South Bohemia, České Budějovice, Czech Republic and Faculty of

Engineering and Natural Sciences, Johannes Kepler University, Linz, Austria.

Annotation

The aim of the study is a comparison of five distinct pipelines for environmental DNA (eDNA)

metabarcoding using data collected in three reservoirs (Klíčava, Římov, and Žlutice) in the

summer and autumn seasons. The results are analysed by comparing the number of reads

assigned, number of species detected, and ecological indices (alpha and beta diversity). Finally,

statistical analysis is applied to corroborate the results using analysis of variance (ANOVA),

post-hoc Tukey, and permutational multivariate analysis of variance (PERMANOVA).

Declaration

I hereby declare that I have worked on my bachelor‘s thesis independently and used only the

sources listed in the bibliography. I hereby declare that, in accordance with Article 47b of Act

No. 111/1998 in the valid wording, I agree with the publication of my bachelor thesis, in full

form to be kept in the Faculty of Science archive, in electronic form in publicly accessible

part of the STAG database operated by the University of South Bohemia in České Budějovice

accessible through its web pages.

Further, I agree to the electronic publication of the comments of my supervisor and thesis

opponents and the record of the proceedings and results of the thesis defense in accordance

with aforementioned Act No. 111/1998. I also agree to the comparison of the text of my thesis

with the Theses.cz thesis database operated by the National Registry of University Theses and a

plagiarism detection system.

In České Budějovice, April 13, 2021,

Signature

Abstract

Environmental DNA (eDNA) metabarcoding has been increasing in popularity as a method for

biodiversity monitoring in ecology. The number of new tools and pipelines developed every

year is increasing in parallel. However, a proper validation of the results must be conducted to

validate metabarcoding is a reliable method and avoid incorrect ecological assessment caused

by dissimilar results. The aim of this study is to make a comparison of eDNA metabarcoding

pipelines.

The study was conducted in three reservoirs in the Czech Republic (Klíčava, Římov, and

Žlutice) using data collected in the summer and autumn seasons. Samples plus negative and

positive controls were processed in the laboratory and sequenced. The 12S rRNA gene was

chosen as the genetic marker used as the short barcode DNA section. Five distinct pipelines

were selected to be compared. Anacapa, Barque, metaBEAT, MiFish, and SEQme comprises

the main tools used in eDNA metabarcoding. A reference database file was created by updating

the one developed by colleagues at the University of Hull with either sequences downloaded

from public databases or de novo sequences included to overcome the lack of or low-quality

sequences. Sequences representing fish species with possibility to be present in the reservoirs

were included.

Alpha (richness and Shannon index) and beta (Jaccard index) diversities ecological

indices together with number of species detected and number of reads assigned were used

in the comparison. ANOVA, post-hoc Tukey, and PERMANOVA were applied to analyze

the similarity of the results. Pipelines had high similarity with consistent statistical results.

Species assigned were also compared to species detected by conventional methods. Pipelines

demonstrated to have a higher sensitive in species detection than conventional methods. Finally,

the study indicated a similarity in the results, thus corroborating eDNA metabarcoding as a

reliable method for biomonitoring, which can help in taking decisions on wildlife management

and help to save our planet for current and future generations.

Acknowledgements

I would like to express my deepest gratitude to my family, Ana, and all my friends for their

patience, support, and love. I also would like to thank and express my gratitude to my super-

visor Petr Blabolil for guiding and supporting me, and for being an inpiration as a researcher.

A warmly thank to my professor Marta Vohnoutová, whose has supported, advised, and en-

couraged me throughout the period of my studies. Many thanks to my new friends resulted

from the friendship built during the Bioinformatics course, and to my brazilian "family" in

the Czech Republic. Finally, I would like to thank the colleagues from Fish Ecology Unit at

the Institute of Hydrobiology, Biology Centre CAS (www.fishecu.cz) and Evo Hull group at

University of Hull (www.evohull.org) for help with samples collection and laboratory process-

ing. The work was supported by the projects QK1920011 "Methodology of predatory fish

quantification in drinking-water reservoirs to optimize the management of aquatic ecosystems"

and MSM200961901 "The true picture of eDNA", and by the CAS within the program of the

Strategy AV 21 (VP21).

Contents

1 Introduction 1

2 Work Aims 5

3 Material and Methods 6
3.1 In the field and laboratory . 6

3.1.1 Study site . 6

3.1.2 eDNA sampling and laboratory processing 8

3.2 At the keyboard . 8

3.2.1 Reference database . 9

3.2.2 Read sequences curation and taxonomic classification 13

3.2.2.1 Anacapa . 14

3.2.2.2 Barque . 18

3.2.2.3 MetaBEAT . 21

3.2.2.4 MiFish . 24

3.2.2.5 SEQme . 28

3.2.3 Data Analysis . 31

4 Results 33
4.1 Number of sequence reads . 33

4.1.1 Number of sequence reads after each pipeline execution 33

4.1.2 Number of sequence reads assigned to pipelines, reservoirs, and seasons 34

4.2 Species detection and diversity . 35

4.2.1 Number of species detected . 35

4.2.2 Number of sequence reads assigned to species 37

4.2.3 Alpha diversity . 43

4.2.3.1 Species richness . 43

4.2.3.2 Shannon index . 45

4.2.4 Beta diversity . 48

4.2.4.1 Jaccard index . 48

4.2.5 Species detection consistency and inconsistency 50

4.2.6 Positive and negative controls detection 50

4.3 Execution time of the pipelines . 51

5 Discussion 52
5.1 Comparison of pipelines and conventional methods species detection 52

5.2 Alpha and beta diversities comparison . 54

5.3 Pipelines analogy and recommendations . 57

6 Conclusion 59

Bibliography 61

List of Tables 71

List of Figures 72

List of Source Codes 74

A Appendices 77

Introduction

Environmental DNA (eDNA) has been recently increasing in popularity in the field of molecular

ecology for monitoring the ecosystem biodiversity [Seymour, 2019]. Environmental DNA

consists of mutiple genomic DNA from different organisms found in a sample (water, soil,

etc.) collected from the environment [Taberlet, Coissac, Hajibabaei, & Rieseberg, 2012]. The

barcoding method was proposed by Hebert, Cywinska, Ball, and deWaard [2003] as a technique

of identification of single species by a genetic marker (barcode). The meta prefix was added

to the barcoding method to indicate a barcoding of multi-taxa identification. Metabarcoding

is a non-invasive technique derived from barcoding where all taxas in a sample are attempted

to be identified without capturing the organisms [Thomsen & Willerslev, 2015]. However,

multiple species identification adds an additional challenge as primers tend to amplify in

favor of some taxas, being more efficiently for some species over the others [Deagle, Jarman,

Coissac, Pompanon, & Taberlet, 2014]. In addition, closely related species may not have a high

variability in the DNA sequences, which could induce species to be identified in a lower level

as genus or family [Taberlet, Bonin, Zinger, & Coissac, 2018b]. The advances in technology

have improved the sequencing capabilities and reduced the cost per sample, providing a cost-

effective approach for biodiversity research [Reuter, Spacek, & Snyder, 2015; Taberlet, Coissac,

Pompanon, Brochmann, & Willerslev, 2012]. In addition, the reduced amount of people to

perform an eDNA metabarcoding study provides a labour-effective alternative to conventional

methods [Bohmann et al., 2014].

Fishes detection using eDNA metabarcoding was shown to outperform conventional

methods [Hänfling et al., 2016]. Each species of fish have distinct preferences for the habitat

they live, from the darker, colder, poorer in oxygen content, and higher in pressure deep water

zone to the lighter, warmer, richer in oxygen content, and lower in pressure in the region close

to surface [Kottelat & Freyhof, 2007]. Four different factors influence the characteristics and

presence of eDNA in freshwater ecosystems. First, fishes release a large amount of eDNA

in the habitat. Second, the eDNA can survive in freshwater for only a short period of time

(few weeks). Finally, transport and diffusion distances are influenced by the concentration

of eDNA and speed of the current [Taberlet, Bonin, Zinger, & Coissac, 2018d]. The four

aspects make eDNA metabarcoding an appropriate technique to assess the presence or the

absence of species in freshwater. However, environmental conditions (temperature, UV-B

1

radiation, microbial activity, etc.) can affect the eDNA degradation [Kasai, Takada, Yamazaki,

Masuda, & Yamanaka, 2020]. Among the conditions, temperature has the strongest influence

on degradation rate [Strickler, Fremier, & Goldberg, 2015]. Considering all the aspects, all

major habitats with sampling in the summer and autumn seasons (as in the winter the ice cover

would block the sampling) must be considered to maximize the detection of the species and to

analyse their influence in the final result of the study.

The data collected in the field is analysed in silico by using a sequence of specialized mod-

ules. A common pipeline workflow is composed of trimming, merging, filtering, dereplication,

clustering/inferring, and taxonomic assignment [Taberlet, Bonin, Zinger, & Coissac, 2018c]. In

the trimming step, low quality bases, adapters, and/or primers are removed from the sequences

[Martin, 2011; Bolger, Lohse, & Usadel, 2014]. In the merging step, paired reads (forward and

reverse), generated when sequencing both end in a Illumina sequencer machine to improve the

sequence quality and detect sequencing errors, are merged into a single sequence [Magoč &

Salzberg, 2011; Aronesty, 2013]. In the filtering step, reads with length below the threshold,

chimeric sequences, and/or sequences with the overall quality below the threshold are removed

[Rognes, Flouri, Nichols, Quince, & Mahé, 2016; Bolger et al., 2014]. In the dereplication

step, identical sequences are combined into a single one to avoid redundant comparison and

improve the speed, the number of reads in the group is annotated [Rognes et al., 2016]. In the

clustering/inferring step, related sequences are grouped into operational taxonomic unit (OTU)

or amplicon sequence variant (ASV) are inferred [Xiong & Zhan, 2018]. Finally, sequences

are assigned to a taxonomic level [Holovachov, Haenel, Bourlat, & Jondelius, 2017]. However,

different bioinformatics pipelines are being used for the high-throughput sequence data analysis

in different studies and this makes the studies hardly comparable.

A comparison of distinct approaches in each step of the bioinformatic data processing

must be performed to evaluate the importance of each stage of the pipeline in the final result. In

addition, divergent parameters of the same program would also contribute for different results

as demonstrated by Pauvert et al. [2019]. They also found that the more flexible the pipeline is,

the more taxa will be detected, but there will be more false positives (species detected in the

pipeline but not present in the study site). On the other hand, more specialized pipeline will

select more trustworthy taxa, but there will be more false negatives (species not detected in the

pipeline but present in the study site). A comparison of bioinformatic pipelines and the role of

each step in the analysis of the eDNA metabarcoding of fish populations in Czech reservoirs

has not been not fully conducted. Five distinct pipelines covering the main tools used in eDNA

metabarcoding were chosen to be compared.

Anacapa pipeline was developed at the University of California, USA, to process multilo-

cus metabarcode sequence data [Curd et al., 2019]. The Anacapa workflow starts by trimming

adapters, primers at the 3’ end, and any subsequent bases using Cutadapt [Martin, 2011].

FASTX-Toolkit is used to trim sequences based on quality score [Gordon, Hannon, et al., 2010].

2

Cutadapt is again used to trim any primer and subsequent bases [Martin, 2011]. DADA2 is

used to filter, trim, dereplicate, merge, remove chimeras, and infer amplicon sequence variant

[Callahan et al., 2016]. Bowtie 2 is used to perform a global alignment to the sequences

[Langmead & Salzberg, 2012]. Finally, Bayesian Lowest Common Ancestor (BLCA) method

with MUSCLE alignment is used to assign taxonomy and generate the bootstrap confidence

scores [Gao, Lin, Revanna, & Dong, 2017; Robert C. Edgar, 2004].

Barque pipeline was developed at the Laval University, Canada [Normandeau, n.d.]. The

pipeline annotates reads instead of Operational Taxonomic Unit (OTU) as the main difference.

The Barque workflow starts by using Trimmomatic to trim and filter raw reads [Bolger et al.,

2014]. Paired-end (PE) sequencing forward and reverse files are merged using FLASH [Magoč

& Salzberg, 2011]. A custom Python script is used to remove primers from 5’ and 3’ end of the

sequences. VSEARCH is used to dereplicate and remove chimeric sequences [Rognes et al.,

2016]. A custom Python script is used to merge identical reads and sum up for the unique

sequences the number of sequences found in each cluster created in the dereplication step.

Finally, VSEARCH is used to execute a global pairwise alignment between the reads and the

reference database for taxonomic assignment.

MetaBEAT pipeline is a metabarcoding and environmental DNA analysis tool developed

at the University of Hull, United Kingdom [Hahn & Lunt, n.d.]. The metaBEAT workflow

starts by trimming low quality bases from the sequences using Trimmomatic [Bolger et al.,

2014]. FLASH is used to merge forward and reverse reads [Magoč & Salzberg, 2011]. Identical

sequences are groupped (dereplicated), chimeras are removed, and a clustering of OTU is

performed using VSEARCH [Rognes et al., 2016]. Finally, BLAST is used to align the

sequences to the reference database for taxonomic assignment [Camacho et al., 2009].

MiFish pipeline was developed at the University of Tokyo, Japan, to be used with the

sequences amplified by the set of primers created by the same research group [Miya et al.,

2015; Sato, Miya, Fukunaga, Sado, & Iwasaki, 2018]. MiFish workflow starts by checking

the sequence quality using FastQC [Andrews et al., 2010]. Read sequences are trimmed using

DynamicTrim from SolexaQA package [Cox, Peterson, & Biggs, 2010]. Sequences are merged

using FLASH [Magoč & Salzberg, 2011]. A custom Perl script is used to remove sequences

with ambiguous bases represented by the letter N. Sequences are filtered based on length using

a custom Perl script. Primers sequences are removed by using TagCleaner [Schmieder, Lim,

Rohwer, & Edwards, 2010]. USEARCH is used to dereplicate (group identical sequences),

filter, and align the sequences [Robert C. Edgar, 2010]. Finally, sequences are aligned to the

reference database using BLAST for taxonomic assignment [Camacho et al., 2009].

SEQme pipeline was created by the SEQme private company and presented during the

metabarcoding and metagenomics workshop [SEQme, 2018]. SEQme workflow starts by

merging forward and reverse reads into single sequences using fastq-join [Aronesty, 2013].

FASTX-Toolkit command fastq_quality_filter is used to filter sequences based on quality

3

[Gordon, Hannon, et al., 2010]. Sequences are filtered based on length using command lines

read_fasta, grab, and write_fasta from Biopieces bioinformatic framework [Hansen, Oey,

Fernandez-Valverde, Jung, & Mattick, 2008]. USEARCH is used to dereplicate, remove

chimeras, and cluster OTU [Robert C. Edgar, 2010]. Finally, the taxonomic classification is

done by a Bayesian classifier from the Ribosomal Database Project (RDP) [Wang, Garrity,

Tiedje, & Cole, 2007].

4

Work Aims

The aim of this study was to compare the results of the taxonomic assignment of the eDNA

metabarcoding of five different pipelines. Sampling was conducted by the Institute of Hydrobi-

ology, Biology Centre CAS, in the summer and autumn seasons to evaluate the influence of

the water temperature in the final results. All major habitats were considered for sampling as

different fish species have distinct nature. The number of sequence reads for each step in the

workflow execution was counted to check any deviation from the average. The total number of

reads assigned to species for each pipeline was measured to evaluate the variation among the

pipelines. The total number of species detected in all pipelines, also known as gamma diversity,

was calculated to be compared with the list of species detected by conventional methods and

check the reliability of the results. The number of sequence reads assigned to each species was

measured to evaluate the relative abundance. The alpha diversity was computed to compare

detection among the pipelines. It describes the number of species (i.e. richness) detected in a

determined group such as pipeline. The inequality of the number of reads assigned between

species was assessed by applying the Shannon index in the alpha diversity. It was calculated to

check if the relation number of species detected and number of reads assigned between species

was similar between the groups. In addition to the alpha diversity, the beta diversity was also

considered as the species composition of two groups can be completely different even with

identical alpha diversities. It was computed to assure that the species composition of groups

were similar. The Jaccard index was used to calculate beta diversity, it considers only the

presence of species and ignore the number of reads assigned. Positive and negative controls

detection were checked to ensure data reliability. All these validations are essential to make

certain that the pipelines provide similar outcomes. These data are crucial for ecological studies.

For this reason, an incorrect ecological assessment by scientists, water and fisheries managers,

or nature protection agencies on creating effective protection of nature and wildlife could be

catastrophic. This study aim to improve conditions to keep natural heritage for our descendants

and somehow help to save the world.

5

Material and Methods

3.1 In the field and laboratory

3.1.1 Study site

The study was conducted in three reservoirs in the Czech Republic built as drinking water

storages and restricted to public access. The three reservoirs (Klíčava, Římov, and Žlutice)

possess different characteristics, but similar canyon-shape morphology with one main inflow

and one side bay (Table 3.1).

Parameter Klíčava Římov Žlutice

Trophic state oligotrophic eutrophic eutrophic

Dam geographical coordinates
50°3’52.166"N
13°56’2.356"E

48°51’0.257"N
14°29’27.409"E

50°5’12.113"N
13°7’36.681"E

Elevation above sea level [m] 294 470 509

Volume [mil.m3] 8.3 34 14

Flooded area [km2] 0.62 2.1 1.6

Maximum depth [m] 34 42 23

Average depth [m] 13 16 9

Table 3.1: Trophic state, geographical, and morphological parameters of studied reservoirs.

Fish communities in the reservoirs have been monitored by convetional methods repeat-

edly (benthic and pelagic gillnets, continuous electrofishing, trawling and other methods),

keeping a stability in the species detected and being dominated by cyprinid species (Table 3.2).

6

Species Klíčava Římov Žlutice

Lampetra planeri X

Acipenser baerii X

Anguilla anguilla X X X

Rutilus rutilus X X X

Chondrostoma nasus X

Squalius cephalus X X X

Alburnus alburnus X X X

Blicca bjoerkna X

Abramis brama X X X

Leuciscus idus X X

Leuciscus leuciscus X X X

Leuciscus aspius X X X

Scardinius erythrophthalmus X X X

Pseudorasbora parva X X X

Gobio gobio X X

Tinca tinca X X X

Hypophthalmichthys molitrix X

Hypophthalmichthys nobilis X

Ctenopharyngodon idella X X

Cyprinus carpio X X X

Carassius auratus X X X

Barbatula barbatula X

Esox Lucius X X X

Sander lucioperca X X X

Perca fluviatilis X X X

Gymnocephalus cernua X X X

Lepomis gibbosus X

Oncorhynchus mykiss X

Salmo trutta X

Coregonus maraena X

Silurus glanis X X X

Lota lota X X

Table 3.2: List of species detected by traditional methods by FishEcU members (www.fishecu.cz) in the studied
reservoirs in the last 3 years (2018, 2019, and 2020).

7

www.fishecu.cz

3.1.2 eDNA sampling and laboratory processing

The water sampling was conducted in the summer (August) and autumn (November/December)

seasons of 2018. The total number of samples collected in each reservoir in the summer

and autumn seasons was 29 and 30 in Klíčava; 38 and 35 in Římov; and 28 and 29 in Žlutice,

respectively. The distribution of sampling was design to cover all major habitats (littoral, surface,

deep water and inflows). The water was sampled in five locallities in Klíčava and Žlutice, and

eight localities in Římov, with intervals of approximately 1 km between the locallities to cover

the heterogeneity of species composition. One more locality was sampled for each reservoir

in a side bay. Water from both banks in the littoral region, from the surface of open water

(pelagic), and from deep layers (5, 10, and 20 meters dependent on the depth at the locality)

were collected. In Klíčava and Žlutice the samples were collected in all localities, whereas in

Římov deep water samples were only considered at the localities 1, 4, 6, and the side basin.

During the autumn campaign, water was not sampled at the locality 8 in Římov due to ice cover.

In addition, in Klíčava and Žlutice bays deep water samples were not collected in the summer

season.

Two liters of water were sampled at each locality and pre-filtered in the field to prevent

clogging from excessive seston. The water sampled was stored inside sterile labeled bottles

and kept cold inside a box with ice until being processed. Within 24 hours after sampling,

one litre of each sample was filtered through open filters in the laboratory [for details see

Blabolil et al., 2020]. Two field blanks were included in each sampling event and processed

together with the reservoir water samples. The Mu-DNA water protocol [Sellers, Muri, Gómez,

& Hänfling, 2018] was used to extract the DNA. PCR amplicons were produced using the

primers (forward ACTGGGATTAGATACCCC and reverse TAGAACAGGCTCCTCTAG)

designed by Riaz et al. [2011]. Negative (molecular grade water) and positive (Maylandia zebra

DNA 0.05 ng µl−1) controls were included during PCR to detect possible contamination and

inhibition. Finally, the sequencing library was generated from PCR amplicons and run on an

Illumina MiSeq sequencer. For methodological detail see Blabolil et al. [2020].

3.2 At the keyboard

All the analyses, from the reference database creation to the taxonomic classification and

statistical tests, were conducted in a Linux Ubuntu Mate Server computer with Intel Xeon CPU

E5-2620 v2 2.10 GHz x 12 and 24 GB RAM. A common pipeline workflow is described on

Figure 3.1.

8

Illumina FASTQ input data

Demultiplexing each sample into separate files

metaBEATBarqueAnacapa MiFish SEQme

Trimming low quality bases, adapters, and primers

Merging paired-end reads

Filtering based on read length, chimeras, and quality

Dereplication into unique sequences

Clustering OTU / Inferring ASV

Taxonomic assignment

Figure 3.1: Metabarcoding workflow for the pipelines.

3.2.1 Reference database

A custom reference database based on the molecular marker 12S rRNA gene was created by

adding de novo sequences and sequences from GenBank [Clark, Karsch-Mizrachi, Lipman,

Ostell, & Sayers, 2015] to the reference database developed at the University of Hull [Hänfling

et al., 2016] (Table 3.3). The reference database was created to represent all fish species detected

by conventional methods in the reservoirs where the samples were collected and additional

non-detected species that could possibly be present. De novo sequences were included to

overcome the lack of sequences for the 12S gene in public databases or species represented

by low-quality sequences [Weigand et al., 2019]. The de novo sequences were submitted to

9

the genbank NCBI database and can be found with the accession numbers from MW652796 to

MW652804.

Species Accession number

Lampetra planeri MW652804

Acipenser-sp. AY442351.1, AY544140.1

Lepomis gibbosus MF621724.1

Cottus poecilopus AB188187.1, AB188185.1, EU332750.1

Chondrostoma nasus MW652798

Cobitis elongatoides KF926686.1

Cobitis taenia MW652799, MW652800

Sabanejewia balcanica AY887776.1

Cyprinus carpio MW652797

Hypophthalmichthys nobilis MF180233.1

Aspius+Scardinius AB239597.1

Phoxinus phoxinus MW652802

Romanogobio albipinnatus MW652796

Rutilus rutilus AP010775.1

Proterorhinus marmoratus MT484059.1

Ameiurus nebulosus MF621733.1

Barbatula barbatula MW652803, MW652801

Gymnocephalus baloni AY372795.1

Oncorhynchus mykiss MF621750.1

Salvelinus fontinalis AF154850.1

Hucho hucho KM588351.1

Umbra krameri AY430269.1

Table 3.3: Sequences added to the reference database developed at the University of Hull.

The reference database was curated by keeping only sequences from the 12S gene locus,

removing redundant sequences, filtering sequences by length, and correcting taxonomically

mislabelled sequences. The curation process was done based on the descriptions from the

Curated reference databases github repository of the Evolutionary and Environmental Genomics

Group, University of Hull, United kingdom (https://github.com/HullUni-bioinformatics/Curate

d_reference_databases). VSEARCH version 2.14.2 [Rognes et al., 2016] was used to cluster

and remove redundant sequences. A variant of the UCLUST algorithm that maximize the speed

[Robert C. Edgar, 2010] was applied. A threshold of 100 % for the identity and the query cover

was applied for the sequences clustering. The reverse complement of the sequence was also

considered when clustering the sequences. Finally, the result was saved in a tab-separated file

with information about the clusters and used to discard redundant sequences from the reference

10

https://www.ncbi.nlm.nih.gov/nuccore/AY442351.1
https://www.ncbi.nlm.nih.gov/nuccore/AY544140.1
https://www.ncbi.nlm.nih.gov/nuccore/MF621724.1
https://www.ncbi.nlm.nih.gov/nuccore/AB188187.1
https://www.ncbi.nlm.nih.gov/nuccore/AB188185.1
https://www.ncbi.nlm.nih.gov/nuccore/EU332750.1
https://www.ncbi.nlm.nih.gov/nuccore/KF926686.1
https://www.ncbi.nlm.nih.gov/nuccore/AY887776.1
https://www.ncbi.nlm.nih.gov/nuccore/MF180233.1
https://www.ncbi.nlm.nih.gov/nuccore/AB239597.1
https://www.ncbi.nlm.nih.gov/nuccore/AP010775.1
https://www.ncbi.nlm.nih.gov/nuccore/MT484059.1
https://www.ncbi.nlm.nih.gov/nuccore/MF621733.1
https://www.ncbi.nlm.nih.gov/nuccore/AY372795.1
https://www.ncbi.nlm.nih.gov/nuccore/MF621750.1
https://www.ncbi.nlm.nih.gov/nuccore/AF154850.1
https://www.ncbi.nlm.nih.gov/nuccore/KM588351.1
https://www.ncbi.nlm.nih.gov/nuccore/AY430269.1
https://github.com/HullUni-bioinformatics/Curated_reference_databases
https://github.com/HullUni-bioinformatics/Curated_reference_databases

file (Source Codes A.1 and 3.1).

1 python Clustering.py reference_database.gb --num_threads 10

Source Code 3.1: Execution of the Source Code A.1.

A custom Python script (Python version 3.7.3 [Van Rossum & Drake, 2009]) was used to

discard sequences with length smaller than 200 bases (Source Codes A.2 and 3.2). MAFFT

version 7.310 [Katoh & Standley, 2013] was used to align the sequences using Smith-Waterman

algorithm local sequence alignment with 1,000 iterations to refine the alignment. Reverse

complement of divergent sequences was created as an attempt to improve the alignment quality

(Source Codes A.3 and 3.3). TrimAl version 1.4.rev15 [Capella-Gutiérrez, Silla-Martínez, &

Gabaldón, 2009] was used to remove large gaps in the sequences of the multiple alignment for

phylogenetic analyses (Source Codes A.4 and 3.4).

1 python Filter_by_Length.py reference_database.gb --threshold 200

Source Code 3.2: Execution of the Source Code A.2.

1 python Alignment.py reference_database.gb --program mafft --rank superkingdom

Source Code 3.3: Execution of the Source Code A.3.

1 python Trim_Alignment.py reference_database.aln

Source Code 3.4: Execution of the Source Code A.4.

SATIVA (https://github.com/amkozlov/sativa) was used to identify taxonomically mis-

labelled sequences [Kozlov, Zhang, Yilmaz, Glöckner, & Stamatakis, 2016]. The reference

database genbank file was used to create a taxonomy file (tab-separated text file) with accession

numbers in the first column and the taxonomic levels separated by semicolon in the second

column (from superkingdom to species). Previously aligned sequences trimmed by trimAl

together with the taxonomy file were used as input to sativa (Source Codes A.5 and 3.5).

Mislabelled sequences identified by SATIVA were removed from the reference database file

using a Python (Python version 3.7.3 [Van Rossum & Drake, 2009]) custom script (Source

Codes A.6 and 3.6).

1 python Sativa.py reference_database.gb reference_database.phy

11

https://github.com/amkozlov/sativa

Source Code 3.5: Execution of the Source Code A.5.

1 python Remove_Mislabelled.py reference_database.gb sativa.mis

Source Code 3.6: Execution of the Source Code A.6.

After correcting taxonomically mislabelled entries, MAFFT version 7.310 [Katoh &

Standley, 2013] and TrimAl version 1.4.rev15 [Capella-Gutiérrez et al., 2009] were again

used to align the database file and trim the sequences alignment (Source Codes A.3, 3.3, A.4

and 3.4). RAxML (Randomized Axelerated Maximum Likelihood) version 8.2.12 [Stamatakis,

2014] was used to infer a maximum likelihood phylogenetic tree from the aligned sequences.

The multi-threaded version of RAxML (raxmlHPC-PTHREADS-SSE3) was used in the tree

creation. In addition, the option for a rapid Bootstrap and a search for the best-scoring was

used. The tree was inferred using GTRGAMMA substitution model. The parsimony inference

seed for the generation of the starting tree was set to 765 and the seed to start the heuristic

search was set to 498 (seeds are used to obtain the same results every time the tree is created

using the same seeds). A total of 100 execution on different starting trees were used to build the

phylogenetic tree (Source Codes A.7 and 3.7). The new tree was used to check if the sequences

in the reference file reflect accurate relationships among the species, where closely related fishes

were grouped sharing a common ancestor [Pavlopoulos, Soldatos, Barbosa-Silva, & Schneider,

2010]. Finally, MAFFT version 7.310 [Katoh & Standley, 2013] was used to align the primer

sequences (forward ACTGGGATTAGATACCCC and reverse TAGAACAGGCTCCTCTAG)

to the sequences from the reference file (Source Codes A.3 and 3.8).

1 python Build_Tree.py reference_database.aln

Source Code 3.7: Execution of the Source Code A.7.

1 python Alignment.py reference_database.gb --program mafft --rank species --primers

↪→ primers.fasta

Source Code 3.8: Execution of the Source Code A.3 with the addition of primers in the alignment.

A manual curation was applied to the reference database based on the alignment. Se-

quences without any bases inside the primers amplification region (in the region between the

forward and reverse primers in the alignment) were removed from the database. Sequences

with identical subsequences for the region in between the primers were either discarded if

12

from the same species, or the name of the species were joined to avoid multiple different

species assigning a read sequence. In both cases only one sequence was kept to represent the

group (Table 3.4). Two Acipenser species with no identical subsequence between the primers,

Acipenser sturio and Acipenser ruthenus, were also represented as Acipenser-sp. as Acipenser

species were reassigned to genus level.

Species with identical subsequences Species representing the group

Acipenser gueldenstaedtii, Acipenser nudiventris, Acipenser stellatus,
and Huso huso

Acipenser-sp.

Coregonus lavaretus and Coregonus maraena Coregonus-sp.

Leuciscus idus and Leuciscus leuciscus L.idus+leuciscus

Blicca bjoerkna and Vimba vimba Blicca+Vimba

Leuciscus aspius, Pelecus cultratus, and Scardinius erythrophthalmus Aspius+Scardinius

Perca fluviatilis and Sander Lucioperca Sander+Perca

Table 3.4: List of species with identical subsequences in the region between the primers in the alignment and the
species that represents the group in the reference database after joining the identical sequences to a unique entry
in the reference file.

For methodological detail on how the curation process is done see the descriptions on the

Curated reference databases github repository from the University of Hull (https://github.com

/HullUni-bioinformatics/Curated_reference_databases). For the precise reproducibility of the

taxonomic classification analysis, the curated reference database and the python codes were

uploaded to a Github repository and are available by accessing https://github.com/RomuloAS/

eDNA_metabarcoding_pipelines_comparison.

3.2.2 Read sequences curation and taxonomic classification

Illumina MiSeq raw sequence reads were demultiplexed using a Python script developed

by the Evolutionary and Environmental Genomics Group at the University of Hull (http:

//www.evohull.org/). In addition, a custom Python script was created to automatize the process

for all files (Source Codes A.8, A.9 and 3.9). Demultiplexed files were submitted to NCBI

genbank database and can be downloaded using NCBI Sequence Read Archive accession

number PRJNA611963.

1 python Demultiplex.py FASTQ_files_folder/ Demultiplex_tables_folder/

Source Code 3.9: Execution of the Source Code A.9.

Before the pipelines being executed, adapters in the 3’ end of the read fragment were

removed using Cutadapt version 1.18 [Martin, 2011] (Source Codes A.10 and 3.10). The tables

13

https://github.com/HullUni-bioinformatics/Curated_reference_databases
https://github.com/HullUni-bioinformatics/Curated_reference_databases
https://github.com/RomuloAS/eDNA_metabarcoding_pipelines_comparison
https://github.com/RomuloAS/eDNA_metabarcoding_pipelines_comparison
http://www.evohull.org/
http://www.evohull.org/

with information about the adapters to demultiplex the FASTQ files and remove the adapter in

the 3’ end of the read sequence can be downloaded by accessing https://github.com/RomuloAS/

Github repository. In addition, FASTQ raw reads for each PCR product can be downloaded

under the accession number PRJNA611963.

1 python Remove_Adapter.py FASTQ_files_folder/ Demultiplex_tables_folder/

Source Code 3.10: Execution of the Source Code A.10.

Finally, the curated reference database was converted to FASTA format considering each

pipeline requirements for the description line (Source Code 3.11). An additional table with

taxonomic information was created for Anacapa and SEQme pipelines.

1 python genbank2Fasta.py reference_database.gb --pipeline anacapa --rank superkingdom

Source Code 3.11: Execution of the Source Code A.11.

3.2.2.1 Anacapa

The Anacapa eDNA toolkit (https://github.com/limey-bean/Anacapa) [Curd et al., 2019] from

the Univeristy of California was used to process the FASTQ files and to assign taxonomy to

sequence data (Source Codes 3.12 and 3.13). A full description about the installation process

of the pipeline and dependencies can be found on the Github repository. Forward, reverse, and

minimum length for the overlapping region files used in the execution of the Anacapa read

sequences curation script were created. Forward and reverse primer files (forward_primers.txt

and reverse_primers.txt) were filled out with the gene locus 12S in the description line and the

respective primer sequences (forward ACTGGGATTAGATACCCC and reverse TAGAACAG

GCTCCTCTAG) in the sequence data line. The minimum length for the overlapping region

file (metabarcode_loci_min_merge_length.txt) was set to 126 as the minimum overlap required

(LENGTH_12S="126").

1 bash anacapa_QC_dada2.sh -i path_to_input_data_folder -o path_to_output_data_folder -

↪→ d path_to_Anacapa_db -a nextera -t MiSeq -l -f forward_primers.txt -r

↪→ reverse_primers.txt -q 20 -m 90 -x 0 -y 0 -e

↪→ minimum_length_for_the_overlapping_region.txt

Source Code 3.12: Execution of the Anacapa read sequences curation script. For the complete script code see

https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/anacapa_QC_dada2.sh.

14

https://github.com/RomuloAS/
https://github.com/limey-bean/Anacapa
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/anacapa_QC_dada2.sh

1 bash anacapa_classifier.sh -o path_to_output_data_folder -d path_to_Anacapa_db -l -b

↪→ 1 -p 0.85 -n 1000

Source Code 3.13: Execution of the Anacapa taxonomic assignment script. For the complete script code see

https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/anacapa_classif ier.sh.

Cutadapt version 1.18 [Martin, 2011] was used to remove the nextera adapter and any

previous bases from the 5’ end of the sequences for R1 and R2 reads from paired-end (PE)

sequencing. Primer, nextera adapter, and any subsequent bases from to the 3’ end of the

sequence for R1 and R2 reads were also removed. A maximum error rate of 30 % (the number

of mismatches, insertions, and deletions in a match divided by the length of the adapter matching

region) was allowed (for details see https://github.com/limey-bean/Anacapa/blob/New-Master/

Anacapa_db/anacapa_QC_dada2.sh#L256-L258).

FASTX-Toolkit version 0.0.14 [Gordon, Hannon, et al., 2010] command line fastq_-

quality_trimmer was used to trim sequences based on quality using phred 33 quality score

(the lowest score starts at the position 33 of the ASCII table). Starting from the 3’ end of the

sequence, bases with quality below 20 were cut off until a base with quality equal or above the

threshold was found (if the stop condition was found in the first iteration, the sequence was

returned intact). After trimming the end of the sequence, sequences smaller than 90 bases were

discarded (for details see https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_d

b/anacapa_QC_dada2.sh#L261-L266).

Primers were removed from to the 5’ end of the reads for forward (R1) and reverse

(R2) sequences using Cutadapt version 1.18 [Martin, 2011]. A maximum error (mismatches,

insertions, and deletions) rate of 30 % calculated by dividing the number of errors by the number

of bases in the matching region was considered (for details see https://github.com/limey-bean/

Anacapa/blob/New-Master/Anacapa_db/anacapa_QC_dada2.sh#L270-L278).

A custom Python script was used to check if the sequences from forward (R1) and reverse

(R2) files matched (for details see https://github.com/limey-bean/Anacapa/blob/New-Maste

r/Anacapa_db/scripts/check_paired.py). Four output files were generated, two representing

sequences that matched from forward (R1) and reverse (R2) and two representing solitary

sequences from both forward (R1) and reverse (R2) files (for details see https://github.com/lim

ey-bean/Anacapa/blob/New-Master/Anacapa_db/anacapa_QC_dada2.sh#L327-L328).

DADA2 version 1.6.0 [Callahan et al., 2016] was used to filter, trim, dereplicate, and

merge the sequences. In addition, a sequence table analogous to an OTU table was constructed

and chimera sequences were removed. DADA2 was executed inside R language environment

version 3.4.3 [R Core Team, 2020] (for the R code see https://github.com/limey-bean/Anac

apa/blob/New-Master/Anacapa_db/scripts/dada2_unified_script.R). During the filtration and

trimming step, sequences with length smaller than 10 bases were removed. Sequences with

15

https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/anacapa_classifier.sh
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/anacapa_QC_dada2.sh#L256-L258
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/anacapa_QC_dada2.sh#L256-L258
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/anacapa_QC_dada2.sh#L261-L266
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/anacapa_QC_dada2.sh#L261-L266
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/anacapa_QC_dada2.sh#L270-L278
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/anacapa_QC_dada2.sh#L270-L278
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/scripts/check_paired.py
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/scripts/check_paired.py
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/anacapa_QC_dada2.sh#L327-L328
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/anacapa_QC_dada2.sh#L327-L328
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/scripts/dada2_unified_script.R
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/scripts/dada2_unified_script.R

any incidence of a N base (representing an ambiguity of any base according to the IUPAC

nomemclature code [Cornish-Bowden, 1985]) were also discarded. Additionally, reads with an

expected error allowed in the read higher than 2 were discarded. Sequences were also removed

if matched against the bacteriophage phix genome. Finally, sequence identifier from forward

(R1) and reverse (R2) sequences were compared and only when matching up the identifiers

the sequences were saved to the output data. The dereplicated data and error rates (errors

introduced by PCR amplification and sequencing) learned from the result after filtering and

trimming the sequences were used to apply the divisive amplicon denoising algorithm (dada)

and denoise the reads, resulting in inferred sequence variants in each sample. After applying

the inference algorithm, forward (R1) and reverse (R2) sequences were merged considering

a minimum length of 20 bases and a maximum of 2 mismatches in the overlap region. An

amplicon sequence variant (ASV) table was generated from the merged sequences (table similar

to an OTU table), where the rows represent the samples and columns represent the inferred

unique sample sequence. Finally, chimeras sequences were removed using consensus sequence

created across samples. DADA2 steps were applied for paired files and both forward (R1) and

reverse (R2) files representing unmerged sequences (for details see https://github.com/limey-b

ean/Anacapa/blob/New-Master/Anacapa_db/anacapa_QC_dada2.sh#L353-L362).

The previously converted reference database in FASTA format and a taxonomic ta-

ble generated in the conversion process (Source Code 3.11), where the first column has

the name of the read and the second column has taxonomic rank from superkingdom to

species separated by semicolon, were used to build the Bowtie 2 reference database us-

ing Bowtie 2 version 2.3.5.1 [Langmead & Salzberg, 2012] command line bowtie2-build

(Source Code 3.14). For a detailed description about Bowtie 2 reference database creation

see https://github.com/limey-bean/CRUX_Creating-Reference-libraries-Using-eXisting-too

ls/blob/master/Manual_addition_of_reads_to_CRUX.txt.

1 bowtie2-build -f 12S_.fasta ../12S_bowtie2_database/12S_bowtie2_index

Source Code 3.14: Bowtie database creation using the reference database in FASTA format and the taxonomic

table with the first column having the name of the read and the second column having taxonomic rank from

superkingdom to species separated by semicolon.

Bowtie 2 was used to perform a global alignment of the merged sequences in FASTA

format to the reference database. The alignment was executed in very sensitive mode, where

speed is given in exchange for sensivity and accuracy, being slower but more sensitive and

more accurate in the relation speed, sensitivity, and accuracy. Only alignments where the entire

read sequence is aligned (from one end to the other) without any bases being ignored in the

alignment were considered. For each read sequence a total of 100 distinct alignments were

considered. The result of the global alignment was saved in a SAM (Sequence Alignment/Map)

16

https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/anacapa_QC_dada2.sh#L353-L362
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/anacapa_QC_dada2.sh#L353-L362
https://github.com/limey-bean/CRUX_Creating-Reference-libraries-Using-eXisting-tools/blob/master/Manual_addition_of_reads_to_CRUX.txt
https://github.com/limey-bean/CRUX_Creating-Reference-libraries-Using-eXisting-tools/blob/master/Manual_addition_of_reads_to_CRUX.txt

format, which consists of a header section and a alignment section for each aligned sequence

[Li et al., 2009]. The header lines metadata, reference sequence dictionary, and information for

unaligned reads were suppressed. In addition, sequences that were rejected in the alignment to

the reference database were saved to a FASTA file. Finally, the rejected sequences were used

to perform a local alignment using the same parameters used to run the global alignment (for

details see https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/scripts/ru

n_bowtie2_blca.sh#L105-L110).

The global and local alignments were repeated for unmerged sequences, considering

together the forward and the reverse FASTA files. The sequences were aligned to the reference

database and saved in a SAM format. The header lines metadata, reference sequence dictionary,

and information for unaligned reads were ignored. Alignments where only a sequence from the

forward file or only a sequence from the reverse file was aligned alone to a particular sequence

in the reference database were ignored. Paired-end alignment when both a sequence from

the forward file and a sequence from the reverse file were aligned to a particular sequence in

the dabatase were considered when met the criteria for a concordant alignment for the pair of

sequences. An alignment was considered valid by the concordant alignment conditions when

either a sequence from the forward file was aligned in the 5’ end and the reverse complement

of the sequence from the reverse file was aligned in the 3’ or a sequence from the reverse

file was aligned in the 5’ end and the reverse complement of the sequence from the forward

file was aligned in the 3’ end. Additionally, the alignment was also considered valid when

the reverse complement of the sequence from the forward file was aligned in the 5’ end

and the sequence from the reverse file was aligned in the 3’ end. The very sensitive mode

was used in the alignment to maximize the sensitivity and accuracy in exchange of speed.

In addition, 100 distinct alignments for each sequence where the whole read sequence was

aligned to the reference database were considered. Sequences ignored in the previous step

were saved to a FASTA file. Finally, the sequences rejected in the preceding global alignment

were aligned using the same parameters but applying a local alignment algorithm (for details

see https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/scripts/run_bowti

e2_blca.sh#L129-L132).

Custom Python scripts were used to join the amplicon sequence variant (ASV) tables

resulted after DADA2 execution (Merged, unmerged, forward, and reverse files) in a unique

file. The first column represent the identifier of the ASV, the column names (from the second

to the last one) represent each sample identifier, and each cell of the table represent the

number of sequences in the group of the amplicon sequence variant for the intersection ASV

and sample identifiers (for details see https://github.com/limey-bean/Anacapa/blob/New-M

aster/Anacapa_db/scripts/merge_asv1.py). A detailed version of the previous table was also

created, with the inclusion of 3 columns for merged, only forward, and only reverse sequences

identified in samples and 3 columns for the number of sequences for merged, forward, reverse

17

https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/scripts/run_bowtie2_blca.sh#L105-L110
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/scripts/run_bowtie2_blca.sh#L105-L110
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/scripts/run_bowtie2_blca.sh#L129-L132
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/scripts/run_bowtie2_blca.sh#L129-L132
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/scripts/merge_asv1.py
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/scripts/merge_asv1.py

identified in each sample (for details see https://github.com/limey-bean/Anacapa/blob/New

-Master/Anacapa_db/scripts/merge_asv.py). In addition, information from Bowtie results (if

single or multiple hit, global or local alignment, the maximum percent identity from the

alignments, and the sequence length) were included in the detailed version of the table (for

details see https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/scripts/appe

nd_bowtie_to_summary.py).

Taxonomy was assigned to Bowtie SAM alignment result using a custom Python script.

A Bayesian Lowest Common Ancestor (BLCA) method [Gao et al., 2017] with MUSCLE

(MUltiple Sequence Comparison by Log-Expectation) alignment [Robert C. Edgar, 2004]

was applied. The previously converted curated reference database FASTA file and taxonomy

table were used in the BLCA script. Only alignments with a sequence identity equal to 100 %

and a query cover (the percentage of bases included in the alignment from the total of bases

in the query sequence) equal or higher than 85 % were considered in the assignment. The

boostrapping iteration was repeated 1,000 times [Efron, 1979]. The result was saved to a table

with the sequence identifier, taxonomic rank, the percentage probability of each taxonomic

rank being correctly assigned to the query sequence, and the identifier of the sequence from the

database involved in the alignment (for details see https://github.com/limey-bean/Anacapa/blob

/New-Master/Anacapa_db/scripts/blca_from_bowtie.py).

A custom Python script was used to add the BLCA result to the previously created brief

and detailed tables (for details see https://github.com/limey-bean/Anacapa/blob/New-Maste

r/Anacapa_db/scripts/append_blca_to_summary.py). Finally, a custom R script (R language

environment version 3.4.3 [R Core Team, 2020]) was used to keep only taxonomic ranks with a

taxonomy confidence level of at least 60 %, removing any taxonomic rank below the threshold,

and to group by identical taxonomic ranks while summing up their values (for the R code

see https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/scripts/sum_blca_f

or_R_by_taxon.R).

3.2.2.2 Barque

Barque pipeline version 1.7.2 [Normandeau, n.d.] (https://github.com/enormandeau/barque)

was used with commands being executed in parallel using GNU parallel version 20201122

[Tange, 2020]. The configuration file is described on Source Code 3.14. Primer table was filled

out with the respective forward and reverse primer sequences (forward ACTGGGATTAGAT

ACCCC and reverse TAGAACAGGCTCCTCTAG), an amplicon size of 90 and 110 for the

minimum and maximum, respectively, the reference database name, and a threshold of 100 %

required for the species identity in the assignment.

Trimmomatic version 0.36 [Bolger et al., 2014] was used for trimming and filtering the

reads. Bases with quality below 20 starting from the 5’ end of the read were cut off until a base

with the quality equal or above 20 being found. Bases with quality below 20 starting from the 3’

18

https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/scripts/merge_asv.py
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/scripts/merge_asv.py
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/scripts/append_bowtie_to_summary.py
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/scripts/append_bowtie_to_summary.py
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/scripts/blca_from_bowtie.py
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/scripts/blca_from_bowtie.py
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/scripts/append_blca_to_summary.py
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/scripts/append_blca_to_summary.py
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/scripts/sum_blca_for_R_by_taxon.R
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/scripts/sum_blca_for_R_by_taxon.R
https://github.com/enormandeau/barque

end of the read were cut off until a base with the quality equal or above 20 being found. Starting

at the 5’ end and moving one base each time, when the average quality of a group (window)

of 20 bases dropped below the threshold of 20, the sequence was cut off from the rightmost

base within the group with quality equal or above the threshold (ignoring the last position that

is always removed) to the 3’ end. All reads with length smaller than 90 were removed. Bases at

the 3’ end of the read were cut off regardless of quality and only 126 bases were kept (for details

see https://github.com/enormandeau/barque/blob/master/01_scripts/util/trimmomatic.sh).

Forward (R1) and reverse (R2) reads from paired-end (PE) sequencing were merged

using FLASH (Fast Length Adjustment of SHort reads) version 1.2.11 [Magoč & Salzberg,

2011] with a minimum required overlap of 15 bases and a maximum expected overlap of 126

bases between the two sequences. Overlaps longer than 126 were still considered, but the

maximum allowed mismatch ratio (ratio between the number of mismatches and overlap) was

calculated over the maximum overlap rather than the overlap between the sequences (for details

see https://github.com/enormandeau/barque/blob/master/01_scripts/02_merge.sh).

A custom Python script was used to remove primers (forward ACTGGGATTAGATACC

CC and reverse TAGAACAGGCTCCTCTAG) from both ends of the sequences with maximum

number of mismatches between primer and sequence equal to 2 (sequences with higher number

of differences were discarded) and only keeping the sequences when both primers were found.

A reverse complement of the sequence was created if primer was found in the reverse order.

In addition, sequences shorter than 90 and larger than 110 bases after removing primers were

discarded (for details see https://github.com/enormandeau/barque/blob/master/01_scripts/util/

split_amplicons_one_file.py). Finally, the files were converted from FASTQ to FASTA format

(for details see https://github.com/enormandeau/barque/blob/master/01_scripts/util/fastq_to_f

asta.py).

VSEARCH version 2.14.2 [Rognes et al., 2016] was used to group identical sequences

(sequences with the same nucleotide in each position and same length), while keeping only

one sequence representing the group. During the full length dereplication sequences smaller

than 20 bases were discarded. Grouped sequences were written in a file sorted by decreasing

abundance with the header of the first sequence. The number of sequences found in each cluster

(abundance) was also written at the end of the respective FASTA header line. Finally, the width

of the lines of the new FASTA files were not wrapped (for details see https://github.com/enorm

andeau/barque/blob/master/01_scripts/05_chimeras.sh#L23-L25).

VSEARCH [2016] was also used to remove chimeric sequences. Chimera detection

was performed without using a reference database. Chimeric, non-chimeric, and borderline

sequences were outputted to the respective FASTA file without wrapping the line width (for

details see https://github.com/enormandeau/barque/blob/master/01_scripts/05_chimeras.sh#L

30-L33). After removing chimeric sequences, VSEARCH [2016] was used to convert the

curated reference database FASTA file to a binary UDB database file in order to speed up

19

https://github.com/enormandeau/barque/blob/master/01_scripts/util/trimmomatic.sh
https://github.com/enormandeau/barque/blob/master/01_scripts/02_merge.sh
https://github.com/enormandeau/barque/blob/master/01_scripts/util/split_amplicons_one_file.py
https://github.com/enormandeau/barque/blob/master/01_scripts/util/split_amplicons_one_file.py
https://github.com/enormandeau/barque/blob/master/01_scripts/util/fastq_to_fasta.py
https://github.com/enormandeau/barque/blob/master/01_scripts/util/fastq_to_fasta.py
https://github.com/enormandeau/barque/blob/master/01_scripts/05_chimeras.sh#L23-L25
https://github.com/enormandeau/barque/blob/master/01_scripts/05_chimeras.sh#L23-L25
https://github.com/enormandeau/barque/blob/master/01_scripts/05_chimeras.sh#L30-L33
https://github.com/enormandeau/barque/blob/master/01_scripts/05_chimeras.sh#L30-L33

searching. Sequences smaller than 20 bases were discarded and the new UDB file was saved

with the same name with the addition of the suffix .vsearchdb (for details see https://github.c

om/enormandeau/barque/blob/master/01_scripts/06_vsearch.sh#L23). A custom Python script

was used to convert from the VSEARCH [2016] unique FASTA format to the Barque FASTA

format, where the header was changed to a sequence identification and the number of sequences

found in each cluster (for details see https://github.com/enormandeau/barque/blob/master/01_s

cripts/util/fasta_format_non_chimera.py).

Reads surviving previous steps were compared to the reference database by using a

global pairwise alignment implemented in VSEARCH [2016]. The previously converted UDB

database was used in the global alignment, using 10 CPU cores to arrange the sequences. Low-

complexity sequences (simple sequence repeats [Orlov & Potapov, 2004]) were not masked in

both the read sequences and the reference database sequences. A threshold of 100 % for the

sequence identity was used (the number of matching nucleotides is divided by the alignment

length minus terminal gaps, which are gaps filling the whole extension of the alignment in

either 5’, 3’ or both ends) when aligning the query sequence to the reference database. A

threshold of 85 % for the sequence query cover was used (the percentage of the read sequence

included in the alignment with the sequence in the reference database) when aligning the query

sequence to the reference database. After pairwise alignment, the search was stopped when

either 20 alignments met the accept criteria of having 100 % for the sequence identity and

85 % for the sequence query cover, or 20 alignments did not meet the accept criteria. The

best 20 hits between query sequences and the reference database sorted by decreasing identity

were written to the output files. The result of the global alignment was written to a file in a

twelve fields blast like format, where each line is a match between the query sequence and

the reference database sequence. Sequences from the reference database were written to a

FASTA file if matched at least one query sequence. The width of the lines of the new FASTA

files were not wrapped and sequences smaller than 20 bases were discarded (for details see

https://github.com/enormandeau/barque/blob/master/01_scripts/06_vsearch.sh#L45-L50).

Tables with read counts per sample at species, genus, and phylum level, and a table

showing multiple hits (read sequences that cannot be unambiguously classified to just one

species and were assigned to all the possibilities [Normandeau, n.d.]) were generated using a

custom Python script (for details see https://github.com/enormandeau/barque/blob/master/01_s

cripts/07_summarize_results.py). A table with number of reads dropout after each step was

generated using a custom shell script (for details see https://github.com/enormandeau/barqu

e/blob/master/01_scripts/08_summarize_read_dropout.sh). A graphical representation figure

showing the dropout was generated using a R script executed in R version 3.6.1 [R Core Team,

2020] (for details see https://github.com/enormandeau/barque/blob/master/01_scripts/util/crea

te_read_dropout_figure.R).

A FASTA file with the 1,000 most frequent non-annotated sequences for all samples and

20

https://github.com/enormandeau/barque/blob/master/01_scripts/06_vsearch.sh#L23
https://github.com/enormandeau/barque/blob/master/01_scripts/06_vsearch.sh#L23
https://github.com/enormandeau/barque/blob/master/01_scripts/util/fasta_format_non_chimera.py
https://github.com/enormandeau/barque/blob/master/01_scripts/util/fasta_format_non_chimera.py
https://github.com/enormandeau/barque/blob/master/01_scripts/06_vsearch.sh#L45-L50
https://github.com/enormandeau/barque/blob/master/01_scripts/07_summarize_results.py
https://github.com/enormandeau/barque/blob/master/01_scripts/07_summarize_results.py
https://github.com/enormandeau/barque/blob/master/01_scripts/08_summarize_read_dropout.sh
https://github.com/enormandeau/barque/blob/master/01_scripts/08_summarize_read_dropout.sh
https://github.com/enormandeau/barque/blob/master/01_scripts/util/create_read_dropout_figure.R
https://github.com/enormandeau/barque/blob/master/01_scripts/util/create_read_dropout_figure.R

FASTA files with unique non-chimeric sequences, FASTA files with unique non-annotated

sequences, and lists with identification of annotated sequences for each sample were generated

(for details see https://github.com/enormandeau/barque/blob/master/01_scripts/09_get_most_f

requent_non_annotated_sequences.sh). Fasta files were created with all sequences involved

in a multiple hit (sequences from the reference database and read sequences that cannot be

unambiguously classified) using a custom Python script (for details see https://github.com/eno

rmandeau/barque/blob/master/01_scripts/12_extract_multiple_hit_sequences.py).

3.2.2.3 MetaBEAT

FASTQ raw read data was processed and taxonomy assigned using a docker (version 19.03.6)

container [Merkel, 2014] of the metaBEAT pipeline version 0.97.10 (https://github.com/HullU

ni-bioinformatics/metaBEAT) [Hahn & Lunt, n.d.]. Data processing workflow was done using

a jupyter notebook [Kluyver et al., 2016] based on Hänfling et al. [2016] workflow (Source

Code A.13).

The list of FASTQ file names was parsed and used to create a tab-separated text file

where the first, second, third, fourth, and fifth columns represents the file name, forward

(R1) file path, reverse (R2) file path, length of the forward primer, and length of the reverse

primer, respectively (Source Code A.13). The previously created file was parsed (for details

see https://github.com/HullUni-bioinformatics/metaBEAT/blob/v0.97.10/scripts/DEVEL/met

aBEAT_global.py#L1722-L1779).

Trimmomatic version 0.32 [Bolger et al., 2014] was used for quality trimming using

phred 33 (quality zero starting with the character 33 in the ascii table [Cock, Fields, Goto,

Heuer, & Rice, 2009]) quality score and 10 CPU cores of the computer. Log files showing

information about the execution were generated. Bases were cut off until a base with the quality

equal or above 20 being found for both 5’ end and 3’ end. The average quality of a group

(window) of 5 bases was assessed. Starting at the 5’ end of the sequence, when the average of a

window dropped below 20, the quality inside the window was checked and the sequence was

cut off from the rightmost base within the group with quality equal or above the threshold to

the 3’ end (the last position is always removed and ignored on cheking). The sequences were

shortened to a length of 110 bases cutting off the 3’ end. Read sequences smaller than 90 bases

were discarded. The first 18 bases (primer size) were cropped out of the reads for the forward

(R1) and reverse (R2) files (for details see https://github.com/HullUni-bioinformatics/metaBE

AT/blob/v0.97.10/scripts/DEVEL/metaBEAT_global.py#L2135-L2177).

FLASH (Fast Length Adjustment of SHort reads) version 1.2.11 [Magoč & Salzberg,

2011] was used to merge forward (R1) and reverse (R2) reads from paired-end (PE) next-

generation sequencing. A maximum overlap of 106 (expected in 90 % of read pairs) was

applied (the ratio between the number of mismatches and overlap was calculated based on

maximum overlap instead of the real overlap of the sequences). A total of 10 CPU cores working

21

https://github.com/enormandeau/barque/blob/master/01_scripts/09_get_most_frequent_non_annotated_sequences.sh
https://github.com/enormandeau/barque/blob/master/01_scripts/09_get_most_frequent_non_annotated_sequences.sh
https://github.com/enormandeau/barque/blob/master/01_scripts/12_extract_multiple_hit_sequences.py
https://github.com/enormandeau/barque/blob/master/01_scripts/12_extract_multiple_hit_sequences.py
https://github.com/HullUni-bioinformatics/metaBEAT
https://github.com/HullUni-bioinformatics/metaBEAT
https://github.com/HullUni-bioinformatics/metaBEAT/blob/v0.97.10/scripts/DEVEL/metaBEAT_global.py#L1722-L1779
https://github.com/HullUni-bioinformatics/metaBEAT/blob/v0.97.10/scripts/DEVEL/metaBEAT_global.py#L1722-L1779
https://github.com/HullUni-bioinformatics/metaBEAT/blob/v0.97.10/scripts/DEVEL/metaBEAT_global.py#L2135-L2177
https://github.com/HullUni-bioinformatics/metaBEAT/blob/v0.97.10/scripts/DEVEL/metaBEAT_global.py#L2135-L2177

in parallel were adopted to merge the sequences. Phred 33 quality score was considered when

choosing the base with the higher quality when a mismatch was found and for taking the higher

quality of the two bases in the overlap to be saved to the merged file. The new sequences were

saved to files using the prefix of the trimmed file and compressed using the gzip format. The

merged reads, forward (R1) reads after the trimming process, and forward (R1) unmerged reads

were combined into a single file, keeping only sequences with length between 85 and 127,

which is a length of 106 bases, but allowing a deviation of 20 %. A csv table file with the number

of reads after each previous step was created (for details see https://github.com/HullUni-bioin

formatics/metaBEAT/blob/v0.97.10/scripts/DEVEL/metaBEAT_global.py#L2244-L2444).

All samples FASTA files were merged into a single data and a global clustering was

performed using VSEARCH version 1.1.0 [Rognes et al., 2016] applying a variant of the

UCLUST algorithm [Robert C. Edgar, 2010]. A threshold of 100 % for the identity was

considered when clustering the sequences. In addition, both strands (sequence and reverse

complement) were taken into consideration. The clustering process was executed using 10 CPU

cores working in parallel. A FASTA file was created with representative sequences (centroid)

for each cluster. Clustering results were saved in a 10 columns tab-separated uclust-like format

with the information about the clusters. The uclust-like format file was parsed and denovo

operational taxonomic units (OTU) biom tables, both in tab-separated value format and biom

format, were created (for details see https://github.com/HullUni-bioinformatics/metaBEAT/blo

b/v0.97.10/scripts/DEVEL/metaBEAT_global.py#L2452-L2500). Finally, VSEARCH version

1.1.0 [Rognes et al., 2016] was used to remove chimeric sequences. The sequences were

compared to the curated reference database FASTA file. Chimeric and non-chimeric sequences

were saved to the respective FASTA file (Source Code A.13).

A tab-separated text file containing the list of nonchimeras FASTA files was created

(Source Code A.13). The first, second, and third columns represent the name of the file,

the format, and the path to the file, respectively. The newly text file was parsed (for details

see https://github.com/HullUni-bioinformatics/metaBEAT/blob/v0.97.10/scripts/DEVEL/m

etaBEAT_global.py#L1722-L1779). VSEARCH version 1.1.0 [2016] was used to cluster

sequences for each FASTA file. A method based on the UCLUST algorithm [Robert C. Edgar,

2010] created to maximize the speed was used in the clustering process. A threshold of 100 %

for the identity was applied and both strands of the sequence were considered. During the

clustering execution 10 CPU cores working in parallel were used. New FASTA files were

created with the clustered sequences, keeping only the centroid sequences representing the

clusters. A tab-separated file with information about the clusters (uclust-like format) were also

generated. In addition, The number of sequences in each cluster was counted and two new

FASTA files for each sample were created representing centroid sequences with clusters of size

above or equal 3 and clusters of size smaller than the threshold. Finally, a csv table file with

information about the clustering was created with the identity threshold, the total number of

22

https://github.com/HullUni-bioinformatics/metaBEAT/blob/v0.97.10/scripts/DEVEL/metaBEAT_global.py#L2244-L2444
https://github.com/HullUni-bioinformatics/metaBEAT/blob/v0.97.10/scripts/DEVEL/metaBEAT_global.py#L2244-L2444
https://github.com/HullUni-bioinformatics/metaBEAT/blob/v0.97.10/scripts/DEVEL/metaBEAT_global.py#L2452-L2500
https://github.com/HullUni-bioinformatics/metaBEAT/blob/v0.97.10/scripts/DEVEL/metaBEAT_global.py#L2452-L2500
https://github.com/HullUni-bioinformatics/metaBEAT/blob/v0.97.10/scripts/DEVEL/metaBEAT_global.py#L1722-L1779
https://github.com/HullUni-bioinformatics/metaBEAT/blob/v0.97.10/scripts/DEVEL/metaBEAT_global.py#L1722-L1779

clusters, the threshold for removing small size cluster, the number of cluster after removing

small size cluster, and the number of sequences that represent clusters of size above or equal

the threshold (for details see https://github.com/HullUni-bioinformatics/metaBEAT/blob/v0.97.

10/scripts/DEVEL/metaBEAT_global.py#L2340-L2393).

After filtering the centroids, all FASTA sample files were joined into a unique global file

and VSEARCH version 1.1.0 [Rognes et al., 2016] was used to cluster the sequences. A similar

algorithm to UCLUST [Robert C. Edgar, 2010] modified to maximize the speed was executed

in 10 CPU cores working in parallel for clustering, with a identity of 100 %. Both sequence and

reverse complement of the sequence were considered. A FASTA file and a tab-separated text

file (uclust-like format) with information about the clusters was generated. The uclust-like file

was parsed and denovo operational taxonomic units (OTU) biom tables were created in TSV

and biom formats (for details see https://github.com/HullUni-bioinformatics/metaBEAT/blob/

v0.97.10/scripts/DEVEL/metaBEAT_global.py#L2452-L2500).

Biopython [Cock, Antao, et al., 2009] "NcbiblastxCommandline" interface to the BLAST+

suite version 2.2.28+ [Camacho et al., 2009] command line blastn (nucleotide query compared

to a nucleotide database) was used to align the sequences from the global FASTA file to the

BLAST database. A total of 10 CPU cores (–threads 10) working in parallel were used in

the alignment. The first 50 hits for each sequence alignment that were smaller or equal than

an E-value (a value calculated based on query sequence length, length of the database, and

alignment score that symbolize the number of hits expected to be found by chance) [Fassler

& Cooper, 2011] of 1×10−20 were saved to an output file in an extensible markup language

(XML) format, a text file that use custom tags to represent the data [Bray, Paoli, Sperberg-

McQueen, Maler, Yergeau, et al., 2000] (for details see https://github.com/HullUni-bioinformat

ics/metaBEAT/blob/v0.97.10/scripts/DEVEL/metaBEAT_global.py#L2560-L2588).

The result from BLAST alignment was parsed using Biopython [Cock, Antao, et al.,

2009] "NCBIXML" parser and filtered. Alignments were filtered out if bit score (the space to

search before fiding an identical or better score by chance) was smaller than 80, query coverage

(percentage of the read sequence aligned to the database) was smaller than 85 %, sequence

identity (how identical are the sequences aligned, based both in the number of mismatches and

length of the sequence) was smaller 100 %, and if bit score was smaller than the maximum

value of the bit score for the alignments of the sequence [Fassler & Cooper, 2011]. The

taxonomic identifier from the species involved in the hits were extracted. After, the taxtastic suite

version 0.8.5 (https://github.com/fhcrc/taxtastic) [Fred Hutchinson Cancer Research Center,

Computational Biology, n.d.] was used to summarize the taxonomic information in a table

representing the taxonomic lineages for the taxonomic identifiers. In addition, the taxonomic

rank of hits based on the lowest common ancestor (LCA) method was determined (when

multiple hits to different species happens in the alignment, the closest taxonomic rank level

mutually shared by the hits is assigned to the sequence). Finally, three pair of files (tab-separated

23

https://github.com/HullUni-bioinformatics/metaBEAT/blob/v0.97.10/scripts/DEVEL/metaBEAT_global.py#L2340-L2393
https://github.com/HullUni-bioinformatics/metaBEAT/blob/v0.97.10/scripts/DEVEL/metaBEAT_global.py#L2340-L2393
https://github.com/HullUni-bioinformatics/metaBEAT/blob/v0.97.10/scripts/DEVEL/metaBEAT_global.py#L2452-L2500
https://github.com/HullUni-bioinformatics/metaBEAT/blob/v0.97.10/scripts/DEVEL/metaBEAT_global.py#L2452-L2500
https://github.com/HullUni-bioinformatics/metaBEAT/blob/v0.97.10/scripts/DEVEL/metaBEAT_global.py#L2560-L2588
https://github.com/HullUni-bioinformatics/metaBEAT/blob/v0.97.10/scripts/DEVEL/metaBEAT_global.py#L2560-L2588
https://github.com/fhcrc/taxtastic

table and biom formats) were generated. One with the number of clusters for each taxonomic

rank in each sample identifier, another with the number of reads for each taxonomic rank in

each sample identifier, and the last one with the number of reads sequences in each cluster for

each cluster identifier in each sample identifier (for details see https://github.com/HullUni-bio

informatics/metaBEAT/blob/v0.97.10/scripts/DEVEL/metaBEAT_global.py#L2590-L2630).

3.2.2.4 MiFish

The publicly available bioinformatics MiFish pipeline (https://doi.org/10.5061/dryad.54v2

q) [Miya et al., 2015; Sato et al., 2018] was used for the data processing and taxonomic

assignments. Forward (R1) and reverse (R2) FASTQ files of all samples were merged in two

unique records and the sequence quality was assessed by the program FastQC version 0.11.9

[Andrews et al., 2010] (Source Code 3.15). Read sequences were trimmed to the longest

contiguous subsequence for which bases quality were greater than 20 using DynamicTrim.pl

version 1.13 from SolexaQA software package [Cox et al., 2010] (Source Code 3.16).

1 fastqc *fastq

Source Code 3.15: Example of execution of the tool used by the MiFish J01_Fastqc.sh script (https://doi.org/10.5

061/dryad.54v2q).

1 perl DynamicTrim.pl input_file.fastq -h 20 -d output_directory

Source Code 3.16: Example of execution of the tool used by the MiFish J02_TailTrimming.sh script (https:

//doi.org/10.5061/dryad.54v2q).

Forward (R1) and reverse (R2) reads from paired-end (PE) sequencing were merged using

FLASH (Fast Length Adjustment of SHort reads) version 1.2.11 [Magoč & Salzberg, 2011]

considering both "innie" (overlap between the 3’ end of the forward sequence and 5’ end of

the reverse sequence) and "outie" (overlap between the 5’ end of the forward sequence and 3’

end of the reverse sequence) orientations. A minimum overlap of 15 bases between R1 and R2

sequences was required. For the maximum overlap a upper limit of 150 bases was expected.

For overlaps longer than 150, the ratio between the number of mismatches and overlap was

calculated over the maximum overlap option ignoring the overlap of the alignment. Merged

FASTQ files were saved using the same sample name as prefix inside a new folder for the

merged sequences (Source Code 3.17). Sequences with at least one ambiguous base represented

by the letter N (which could be any nucleotide according to the IUPAC nomenclature code

[Cornish-Bowden, 1985]) were removed (Source Code 3.18). Sequences with length smaller

than 90 bases or larger than 150 bases (120 ± 30) were also removed (Source Code 3.19).

24

https://github.com/HullUni-bioinformatics/metaBEAT/blob/v0.97.10/scripts/DEVEL/metaBEAT_global.py#L2590-L2630
https://github.com/HullUni-bioinformatics/metaBEAT/blob/v0.97.10/scripts/DEVEL/metaBEAT_global.py#L2590-L2630
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q

1 flash input_file_R1.fastq.trimmed input_file_R2.fastq.trimmed -O -m 15 -M 150 -o

↪→ prefix_name -d output_directory

Source Code 3.17: Example of execution of the tool used by the MiFish J03_PE_read_assembly.sh script

(https://doi.org/10.5061/dryad.54v2q). The options -O (–allow-outies), -m (–min-overlap), and -M (–max-overlap)

were included to the original version of the script.

1 perl Fastq_Nread_trim.pl input_file.fastq >output_file.Ntrimmed.fastq

Source Code 3.18: Example of execution of the tool used by the MiFish J04_RemoveN.sh script (https:

//doi.org/10.5061/dryad.54v2q). The custom Perl script Fastq_Nread_trim.pl can be found on https://doi.org/10

.5061/dryad.54v2q.

1 perl check_seq_length_MiFish.pl input_file.fastq >output_file.MiFish.fastq

Source Code 3.19: Example of execution of the tool used by the MiFish J05_Length_check_MiFish.sh script

(https://doi.org/10.5061/dryad.54v2q). The custom Perl script check_seq_length_MiFish.pl can be found on

https://doi.org/10.5061/dryad.54v2q.

TagCleaner version 0.16 [Schmieder et al., 2010] was used to remove primers sequences

(forward ACTGGGATTAGATACCCC and reverse TAGAACAGGCTCCTCTAG). The

forward primer was applied in the original direction (-tag5 ACTGGGATTAGATACCCC),

whereas the reverse primer was applied using the reverse complement direction of the primer

sequence (-tag3 CTAGAGGAGCCTGTTCTA). During the execution the status was printed to

the terminal. The FASTQ files were transformed into FASTA format and saved in a new folder

after removing primers. Reads not matching the primer sequences at either end were filtered

out, with a maximum allowed mismatches of 4 bases at the 5’ end and also the 3’ end. Finally,

log files were generated showing for each primer all different number of mismatches found

between the primer and the read sequences (from zero to the maximum detected). For each

different number of mismatch, the number of sequences and the percentage of sequences found

were also informed (Source Code 3.20). For the original data and all the files resulted from the

previous steps, the number of reads was counted and saved in a text file (Source Code 3.21).

1 perl tagcleaner.pl -verbose -fastq input_file.fastq -out_format 1 -out output_file.

↪→ MiFish_processed -nomatch 3 -mm3 4 -mm5 4 -tag3 CTAGAGGAGCCTGTTCTA -tag5

↪→ ACTGGGATTAGATACCCC

2

3 perl tagcleaner.pl -verbose -fastq input_file.fastq -out_format 1 -stats

↪→ output_directory -out output_file.MiFish_processed -nomatch 3 -mm3 4 -mm5 4 -

↪→ tag3 CTAGAGGAGCCTGTTCTA -tag5 ACTGGGATTAGATACCCC > output_file.log

25

https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q

Source Code 3.20: Example of execution of the tool used by the MiFish J06_Primer_removal_MiFish.sh script

(https://doi.org/10.5061/dryad.54v2q).

1 ls *MiFish_processed.fasta | sort -d | sed s/'.*\/'//g | sed s/'.MiFish_processed.

↪→ fasta'//g >> output_file_NAMES.txt

2

3 grep -c '^>' *MiFish_processed.fasta | sort -d | sed s/'.*:'//g >>

↪→ output_file_READ_counts.txt

Source Code 3.21: Example of execution of the tools used by the MiFish J07_Processed_read_counter.sh script

(https://doi.org/10.5061/dryad.54v2q).

Sequences having the same length and same nucleotides in each position were grouped

(dereplicated) using USEARCH version 11.0.667 [Robert C. Edgar, 2010], keeping only one

sequence representing the group. Dereplicated sequences were sorted by a decreasing order

considering the cluster abundance and saved to FASTA files with the number of sequences for

the cluster being written at the FASTA header. Sequences with the cluster size smaller than 10

was extracted and a new FASTA file was created to save cluster size sequences smaller than

the threshold. Sequences were sorted by cluster size using USEARCH [2010] and saved to a

new FASTA file, discarding sequences with size smaller than 10. A global pairwise alignment

implemented in USEARCH [2010] was used to compare the FASTA file containing sequences

with cluster size smaller than 10 and the FASTA file containing sequences with cluster size equal

or higher than 10. The sequences were only compared in the forward orientation. A threshold

of 99 % for the sequence identity (99 % identical) was used when aligning the sequences.

In addition, the information about the sequences that matched were saved in a USEARCH

cluster format, a tab-separated text file with 10 fields. The size of the cluster with less than

10 sequences that resulted in a identity of 99 % or higher was summed up to the size of the

cluster with 10 or more sequences involved in the alignment. The smaller group was summed

up to the larger cluster and a new text file was generated with the header of the larger cluster

and the new size. Additionally, a new FASTA file was generated after changing the header of

the dereplicated FASTA file with new clusters sizes. The uc_size_fas_integrator.pl and uc_-

size_processor.pl scripts were slightly modified from the original version to deal with illumina

header special characters, /$OTUname/ on fas_integrator and /$otuname/ on processor were

changed to /\Q$OTUname\E/ and /\Q$otuname\E/, respectively. Finally, the new FASTA file

was sorted by cluster size using USEARCH [2010] and a new FASTA file was created (Source

Code 3.22).

1 usearch -fastx_uniques input_file.fasta -fastaout output_file.derep.fasta -sizeout

26

https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q

2 perl size_extracter_def.pl output_file.derep.fasta > output_file.derep.size.fasta

3 usearch -sortbysize output_file.derep.fasta -fastaout output_file.sizetrim.derep.

↪→ fasta -minsize 10

4 usearch -usearch_global output_file.derep.size.fasta -db output_file.sizetrim.derep.

↪→ fasta -strand plus -id 0.99 -uc output_file.size.uc

5 perl uc_size_processor.pl output_file.size.uc > output_file.rempd.otunmsz.txt

6 perl uc_size_fas_integrator.pl output_file.sizetrim.derep.fasta output_file.rempd.

↪→ otunmsz.txt > output_file.sizetrim.sum.fasta

7 usearch -sortbysize output_file.sizetrim.sum.fasta -fastaout output_file.sizetrim.sum.

↪→ fasta

Source Code 3.22: Example of execution of the tools used by the MiFish J10_Uclust_derep_trim.sh script

(https://doi.org/10.5061/dryad.54v2q). The options -derep_fulllength and -output from the original script

USEARCH version were renamed to -fastx_uniques and -fastaout, respectively, in the USEARCH version 11.0.667

used to execute the pipeline. Custom Perl scripts size_extracter_def.pl, uc_size_processor.pl, and uc_size_fas_-

integrator.pl can be found on https://doi.org/10.5061/dryad.54v2q.

After being processed, reads were aligned to the reference database using the command

line blastn (nucleotide query compared to a nucleotide database) from NCBI BLAST+ suite

(Basic Local Alignment Search Tool) version 2.10.0+ [Camacho et al., 2009]. The read query

sequence was compared to the reference database using a threshold of 100 % for the sequence

identity (the original 97 % was changed to 100 %), returning the first 5 hits that were smaller

or equal than an E-value of 0.00001. The output file name was informed and the results were

saved in a tabular format with information about the id of the sequence in the reference database

involved in the match, percentage of identity, alignment length, number of mismatches, number

of gap openings, expect value (e-value represents the number of hits expected to be found

by chance and it is calculated based on query sequence length, length of the database, and

alignment score), bit score (the size of the database that would make the alignment being

found by chance), and the aligned part of query sequence [Fassler & Cooper, 2011] (Source

Code 3.23).

1 blastn -query input_file.fasta -db reference_database -max_target_seqs 5 -

↪→ perc_identity 100 -evalue 0.00001 -outfmt "7 sseqid pident length mismatch

↪→ gapopen evalue bitscore qseq" -out blastn_res.txt -html

Source Code 3.23: Example of execution of the tool used by the MiFish J11_Blastn.sh script (https://doi.org/10.5

061/dryad.54v2q).

The result was parsed and a new file was generated with the list of hits from the BLAST

result (cluster size in the first column, followed by the species information or no hit in the

second column, and the query sequence identifier information in the third column). Hits for the

same species were summed up and new file was generated (species information or not hit in the

27

https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q

first column, cluster size in the second one, and sequence for hits or sequence identifier for no

hit in the third column). Finally, the LOD (logarithm of the odds) score was calculated. The

LOD score was calculated to compare the genetic linkage (likelihood of two genetic loci being

linked) between the sequences involved in a hit [Risch, 1992] (Source Code 3.24). LOD score

files were parsed and a list with all species detected was created (Source Code 3.25). Finally, a

table with samples identifier in the first column, the species names as columns, and the number

of reads classified in the cells intersection representing species classified for the sample was

created (Source Code 3.26).

1 perl blastres_parser_v5.pl input_file > blastn.deprep.list.txt

2 perl blastres_parse_counter_v4.pl blastn.deprep.list.txt > blastn.deprep.counts.txt

3 perl blastres_parser_LODs_v2.pl input_file > blastn.LODlist.txt

Source Code 3.24: Example of execution of the tools used by the MiFish J12_Blastres_counts.sh script

(https://doi.org/10.5061/dryad.54v2q). Custom Perl scripts blastres_parser_v5.pl, blastres_parse_counter_-

v4.pl, and blastres_parser_LODs_v2.pl can be found on https://doi.org/10.5061/dryad.54v2q.

1 less -f blastn.LODlist.txt | awk -F "\t" '{print $2}' >> specieslist.temp.txt

2 less -f specieslist.temp.txt | grep -v '^No hits found.*' | sort | uniq > specieslist.

↪→ txt

Source Code 3.25: Example of execution of the tools used by the MiFish J13_Allspecies_list_make.sh script

(https://doi.org/10.5061/dryad.54v2q).

1 perl allsamples_nameprinter_v1.pl specieslist.txt >> species_table.tsv

2 perl allsamples_species.counter_v2.pl blastn.deprep.counts.txt specieslist.txt >>

↪→ species_table.tsv

Source Code 3.26: Example of execution of the tools used by the MiFish J14_Allsamples_table_make.sh script

(https://doi.org/10.5061/dryad.54v2q). Custom Perl scripts allsamples_nameprinter_v1.pl and allsamples_-

species.counter_v2.pl can be found on https://doi.org/10.5061/dryad.54v2q.

3.2.2.5 SEQme

The metabarcoding data analysis was presented by the SEQme private company during the

Microbiome and Metagenome Data analysis workshop [SEQme, 2018]. A python script

was created to automatize each step of the analysis (Source Code A.14). Forward (R1) and

reverse (R2) reads from paired-end (PE) sequencing were merged using fastq-join version 1.3.1

[Aronesty, 2013]. Sequences were verified if the forward identifier and the reverse identifier

matched up from the beginning of the header to the space character (Illumina reads use space

28

https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q

before the read number, which is 1 for forward or 2 for reverse in a paired-end sequencing).

Everything after the space was ignored in the verification. Overlapping sequences with a

number of mismatches higher than 15 % were discarded. A minimum overlap of 15 bases

between the forward and the reverse sequences was required. Three new files were generated

after merging the reads, one for the merged sequences and two (forward and reverse) for not

merged sequences (for details see Source Code A.14 line 46).

Command line fastq_quality_filter from FASTX-Toolkit version 0.0.14 [Gordon, Hannon,

et al., 2010] was used for quality filtering of the reads. Fastq files use one symbol per quality

value. The quality score value plus the phred type defines the symbol used to represent the

quality. For a score equal to zero and a phred 33 a exclamation (!) mark is used, because

exclamation has the code 33 in the ASCII table [Cock, Fields, et al., 2009]. Read sequences

with less than 50 % of the bases having quality higher or equal to 20 for phred 33 were discarded

(for details see Source Code A.14 lines 47 and 48). Command line fastq_to_fasta from FASTX-

Toolkit version 0.0.14 [Gordon, Hannon, et al., 2010] was used for the conversion of the FASTQ

files to FASTA format (for details see Source Code A.14 line 49).

Command lines read_fasta, grab, and write_fasta from Biopieces bioinformatic framework

version 2.0 [Hansen et al., 2008] were used to remove short and long sequences. First of all, the

FASTA files were read using read_fasta, which results in the sequence identifier, nucleotides

sequence, and the sequence length. Secondly, the result was filtered using the grab command

line with the option -e, which evaluates the key (sequence length), the operator (>= and <=),

and the value (value to be kept). Sequences shorter than 90 and larger than 150 were discarded.

Finally, the sequences were saved to a FASTA file using the command line write_fasta without

being printed to the terminal (for details see Source Code A.14 lines from 50 to 53).

USEARCH version 11.0.667 [Robert C. Edgar, 2010] was used to dereplicate sequences

with identical length and nucleotide composition. The sequences were grouped and only one

sequence having the cluster size at the end of the respective FASTA header line was kept to

represent the group. The unique sequences were saved to a FASTA file following a decreasing

order of abundance. A tab-separated text file in a USEARCH cluster format with 10 fields was

created with the information about clusters and sequences that matched. Finally, the sequence

identifier was renamed to "Uniq" followed by a integer representing the position in the FASTA

file (for details see Source Code A.14 lines from 54 to 56).

After the dereplication step, closely related sequences with 97 % of identity were clustered

into operational taxonomic units (OTU) using UPARSE [Robert C Edgar, 2013] OTU clustering

algorithm from USEARCH version 11.0.667 [Robert C. Edgar, 2010]. Chimeric sequences

were also removed during the clustering step. Fasta output file were saved with the OTU

sequences without the number of sequences for the cluster in the sequence identifier. Finally,

the sequence identifier was renamed to "Otu" followed by a integer representing the position in

the FASTA file (for details see Source Code A.14 lines 57 and 58).

29

Reads resulted after removing short and long sequences were mapped to OTUs with the

highest identity higher or equal than a threshold of 97 % using USEARCH version 11.0.667

[2010]. The sequences were mapped to the corresponding FASTA OTU file. If a tie was found,

the first OTU in the increasing order was taken. The OTU identifiers and the number of reads

mapped to each OTU were saved to an OTU table file in QIIME classic format, a tab-separated

text with the header representing the OTU identifier in the first column (#OTU ID) and read

sequences identifier in each remaining columns. The header is followed by a unique OTU

identifier in each new line in the first column and the number of sequences in the OTU for

each read sequences identifier in the remaining columns. The information of mapping were

also saved to a map file, a tab-separated text file where the first column represents the read

sequence identifier and the second column represents the OTU identifier (for details see Source

Code A.14 lines from 59 to 61).

The Ribosomal Database Project (RDP) classifier version 2.11 [Wang et al., 2007] was

used for the taxonomic classification of the read sequences. The RDP classifier is a naïve

Bayesian classifier that assigns data into labeled classes based on Bayes theorem (probability of

an event happening based on prior observed data) assuming independence of the features [Rish

et al., 2001; Puga, Krzywinski, & Altman, 2015]. The classifier uses all possible subsequences

of 8 bases as features [Wang et al., 2007]. The curated reference database FASTA and the

hierarchical taxonomy information files previously generated using a custom Python script

(Source Code 3.11) were used to train the classifier (Source Code 3.27). The result was saved

to a new folder named "Classifier". A classifier properties file was created inside the new folder

to set the path to each respective file (Source Code 3.28).

1 classifier train -o Classifier -s reference_database.fasta -t reference_database\

↪→ _taxid.txt

Source Code 3.27: Trainning classifier using the reference database and the taxonomic table.

1 # Sample ResourceBundle properties file

2 bergeyTree=bergeyTrainingTree.xml

3

4 probabilityList=genus_wordConditionalProbList.txt

5

6 probabilityIndex=wordConditionalProbIndexArr.txt

7

8 wordPrior=logWordPrior.txt

9

10 classifierVersion=RDP Naive Bayesian rRNA Classifier Version 2.5, May 2012

Source Code 3.28: Classifier properties file.

30

The RDP classifier trained with the curated database was used to classify the OTUs

to species level. For each sequence, all subsequences of 8 bases were created. In each

bootstrap iteration (resampling the dataset) [Efron, 1979], 150 subsequences (comprising all

subsequences) were used to calculate the joint probability. The boostrapping step was repeated

100 times. The number of times a taxonomic rank was classified out of all iterations were used

to estimate the confidence level [Wang et al., 2007]. The result was saved to tab-delimited

text files with the first column representing the OTU identifier followed by taxonomic rank

name, taxonomic rank, and the confidence level for each taxonomic rank from superkingdom to

species level. In addition, taxonomic hierarchical tab-delimited files showing only taxonomic

rank with 100 % of confidence were also created (for details see Source Code A.14 lines from

66 to 68). Finally, for each sample all OTUs with 100 % of confidence in species level were

parsed. For each OTU having 100 %, the number of sequences in the cluster was parsed from

the OTU file. OTUs classified to the same species were summed up and a tab-delimited text

file was created with species in the first column, sample identifiers as columns, and the number

of reads classified put in the cell intersection between each species and sample (for details see

Source Code A.14 lines from 508 to 590).

3.2.3 Data Analysis

The number of sequence reads after each step in the workflow of the pipelines execution

was counted using a python script (Source Codes 3.29 and A.15). Data analyses were con-

ducted inside R language environment version 3.6.3 [R Core Team, 2020]. A threshold was

applied in each sample to remove false positive species assignment where the number of

reads assigned fell below 0.1 % considering the sample total of reads [Hänfling et al., 2016]

(Source Code A.16). A custom R script was used to create new tables for data analysis (Source

Codes A.17 and A.18). Number of reads was calculated by aggregating and summing up the

values for pipelines, reservoirs and seasons. The same was applied to obtain the number of

species (Source Code A.19).

1 python Count_Reads.py path_to_folder fastq "new file row name" --

↪→ pattern_of_the_file_name_to_be_searched

Source Code 3.29: Execution of the Source Code A.15.

Alpha and beta diversity were calculated using Vegan community ecology package version

2.5-6 [Oksanen et al., 2019]. For the alpha diversity richness the number of species was counted

(Source Code A.20). The alpha diversity describe the number of species in a determined group

[Whittaker, 1972]. The shannon index, which accounts not only for the richness of species but

also the number of reads for each one (the higher the richness and the evenness, the higher the

31

index) [Shannon, 1948], was calculated using diversity function from Vegan package [Oksanen

et al., 2019] (Source Code A.21). In addition to the alpha diversity, which considers only

the diversification within a particular group, the beta diversity also quantifies the difference

in species composition from one group to another [Whittaker, 1972]. The beta diversity was

calculated using vegdist function from Vegan package [Oksanen et al., 2019]. The Jaccard

index, which accounts for the presence or absence of species among groups [Koch, 1957], was

the method used to compute the dissimilarity indices, with the smallest and the largest showing

the most and the least similar distances between two groups, respectively (Source Code A.22).

An analysis of variance (ANOVA) and post-hoc Tukey tests were performed to test

whether the difference in alpha diversity among the groups was statistically significant and

compare the diversity of each group against each other. Functions aov, anova, and TukeyHSD

from R language version 3.6.3 [R Core Team, 2020] stats package were used to perform the

analysis of variance and calculate Tukey’s Honest Significant Difference (Source Codes A.20

and A.21). Regarding beta diversity, adonis function from Vegan package [Oksanen et al.,

2019] was used to perform a permutational multivariate analysis of variance (PERMANOVA)

to test whether the species composition among the groups had statistically significant difference.

Finally, cmdscale function from stats package in R language version 3.6.3 [R Core Team,

2020] was used to apply the principal coordinates analysis (PCoA) method to better represent

the distances and relationships among pipelines dissimilarity indices in a low-dimensional

visualization (Source Code A.22).

For each pipeline, it was calculated the percentage of assigned reads to Maylandia zebra

based on the initial total of reads from demultiplexed samples used as the input data. An

ANOVA test was applied using the anova function from R language version 3.6.3 [2020] stats

package to test wether pipelines had a statistically significant difference for the detection of

the positive control. The TukeyHSD function from stats package was also used to perform a

Tukey test to assess the statistical significant difference between each pair of pipelines (Source

Code A.23).

32

Results

4.1 Number of sequence reads

4.1.1 Number of sequence reads after each pipeline execution

From the 220 samples, including positive and negative controls, collected in Klíčava, Římov,

and Žlutice in autumn and in summer, sequencing the libraries with Illumina Miseq generated

22.46 million raw sequence reads. Out of the reads, 93.08 % (20,910,517 reads) remained after

demultiplexing. The demultiplexed reads were used as the input data. With the execution of

the pipelines, 85.95 % (19,307,168 reads on average, ranged from 18,513,853 to 20,910,517)

remained after trimming, 81.81 % (18,377,199 reads on average, ranged from 17,145,436

to 19,384,073) after merging, 75.92 % (17,054,961 on average, ranged from 13,876,672 to

18,271,442) after filtering and chimera removal, and 46.33 % (10,407,476 on average, ranged

from 8,940,480 to 11,112,721) were assigned to species after applying a false positive se-

quence threshold of 0.1 % to remove for each sample any read frequencies below the threshold

(Table 4.1).

Data Processing Steps Anacapa Barque MetaBEAT MiFish SEQme *

Total from original data 22,464,147 22,464,147 22,464,147 22,464,147 22,464,147

Total after demultiplexing 20,910,517 20,910,517 20,910,517 20,910,517 20,910,517

Trimmed and filtered 19,095,153 18,632,248 18,513,853 20,910,517 19,384,070

Merged 18,944,446 18,619,523 17,792,519 17,145,436 19,384,073

Filtered and chimera removed 18,271,442 17,889,794 17,782,513 13,876,672 17,454,382

Assigned 10,676,765 11,112,721 10,347,227 8,940,480 10,960,189

Unassigned (original data) 11,787,382 11,351,426 12,116,920 13,523,667 11,503,958

Unassigned (demultiplexed data) 10,233,752 9,797,796 10,563,290 11,970,037 9,950,328

Table 4.1: Number of reads after each step on data processing, including positive and negative controls.
* SEQme pipeline applies merging before trimming.

33

4.1.2 Number of sequence reads assigned to pipelines, reservoirs, and
seasons

The average number of sequence reads assigned to species taking into account all pipelines was

7,821,428, excluding positive and negative controls. The pipeline with the highest number of

sequence reads was Barque with 8,410,037, whereas MiFish assigned the lowest amount with

6,820,393 reads (Table 4.2).

Pipeline Number of reads

Anacapa 7,816,625

Barque 8,410,037

MetaBEAT 7,859,744

MiFish 6,820,393

SeqME 8,200,342

Table 4.2: Number of reads assigned to species for each pipeline, excluding positive and negative controls.

The average number of sequence reads assigned to all pipelines in each reservoir was

1,205,830 in Klíčava, 4,994,656 in Římov, and 1,620,942 in Žlutice. Regarding seasons,

2,330,853 and 5,490,575 were the number of sequence reads on average assigned in autumn

and summer, respectively. When considering pipelines, reservoirs, and seasons together, the

number of sequence reads assigned ranged from 113,122 (in the MiFish pipeline in Klíčava in

autumn) to 3,610,686 (in the Barque pipeline in Římov in summer) (Table 4.3).

Autumn Summer

Klíčava 152,115 1,027,223

Římov 1,748,946 3,207,005

Žlutice 509,967 1,171,369

(a) Anacapa

Autumn Summer

Klíčava 139,839 1,125,257

Římov 1,826,973 3,610,686

Žlutice 535,515 1,171,767

(b) Barque

Autumn Summer

Klíčava 129,156 1,060,167

Římov 1,697,086 3,417,605

Žlutice 452,972 1,102,758

(c) MetaBEAT

Autumn Summer

Klíčava 113,122 916,496

Římov 1,490,978 2,927,711

Žlutice 432,617 939,469

(d) MiFish

Autumn Summer

Klíčava 135,439 1,230,336

Římov 1,729,903 3,316,388

Žlutice 559,636 1,228,640

(e) SEQme

Table 4.3: Number of reads assigned to species considering pipelines, reservoirs, and seasons, excluding positive
and negative controls.

34

4.2 Species detection and diversity

4.2.1 Number of species detected

From a total of 58 species in the reference library, 37 species were detected considering all

pipelines (Table 4.4), excluding Maylandia zebra positive control, and 21 were not detected in

any of them (Table 4.5). A few species were removed from the detections after applying a false

positive threshold to discard read frequencies below 0.1 % of the total of reads assigned in the

sample (Table 4.6).

Family Species

Petromyzontidae Lampetra planeri

Acipenseridae Acipenser-sp.

Anguillidae Anguilla anguilla

Centrarchidae Lepomis gibbosus

Cottidae
Cottus gobio, Cottus poecilopus, Abramis brama, Alburnus alburnus, Barbus barbus,
Carassius auratus, Carassius carassius, Chondrostoma nasus, Ctenopharyngodon idella

Cyprinidae

Cyprinus carpio, Gobio gobio, Hypophthalmichthys molitrix, Hypophthalmichthys nobilis,
Aspius+Scardinius, L.idus+leuciscus, Phoxinus phoxinus, Pseudorasbora parva, Rhodeus
amarus, Rutilus rutilus, Squalius cephalus, Tinca tinca, Blicca+Vimba

Esocidae Esox lucius

Gasterosteidae Gasterosteus aculeatus

Nemacheilidae Barbatula barbatula

Percidae Gymnocephalus cernua, Sander+Perca

Salmonidae
Coregonus-sp., Oncorhynchus mykiss, Salmo trutta, Salvelinus fontinalis, Thymallus
thymallus

Siluridae Silurus glanis

Table 4.4: Species in the reference library detected in at the least one of the pipelines.

35

Family Species

Centrarchidae Micropterus salmoides

Clupeidae Alosa alosa

Cobitidae Cobitis elongatoides, Cobitis taenia, Misgurnus fossilis, Sabanejewia balcanica

Cyprinidae Leucaspius delineatus, Romanogobio albipinnatus

Gobiidae
Neogobius melanostomus, Pomatoschistus minutus, Ponticola kessleri, Proterorhinus
marmoratus

Ictaluridae Ameiurus melas, Ameiurus nebulosus

Lotidae Lota lota

Percidae Gymnocephalus baloni

Petromyzontidae Petromyzon marinus

Pleuronectidae Platichthys flesus

Salmonidae Hucho hucho, Salmo salar

Umbridae Umbra krameri

Table 4.5: Species in the reference library not detected in any of the pipelines.

Pipeline Species

Anacapa Romanogobio albipinnatus, Squalius cephalus, Gymnocephalus cernua

Barque Leucaspius delineatus

metaBEAT Leucaspius delineatus, Squalius cephalus, Gymnocephalus cernua, Lampetra planeri

MiFish Lampetra planeri, Leucaspius delineatus

SEQme Lampetra planeri, Lota lota, Neogobius melanostomus

Table 4.6: Species removed from the pipeline detections after discarding number of reads assigned smaller than a
threshold of 0.1 % of the total of reads in the sample.

The number of species detected was 32 in Anacapa and metaBEAT, and 33 in Barque,

MiFish, and SEQme pipelines. The total of species detected in each reservoir was 21, 34, and

23 in Klíčava, Římov, and Žlutice, respectively, whereas 36 species were detected in autumn

and 26 in summer. When considering pipelines, reservoirs, and seasons together, the number of

species detected ranged from 10 (Anacapa and SEQme pipelines in Klíčava in summer) to 29

(Barque, MiFish, and SEQme pipelines in Římov in autumn) (Table 4.7).

36

Autumn Summer

Klíčava 15 10

Římov 27 18

Žlutice 19 11

(a) Anacapa

Autumn Summer

Klíčava 16 12

Římov 29 22

Žlutice 20 12

(b) Barque

Autumn Summer

Klíčava 15 11

Římov 28 21

Žlutice 19 11

(c) MetaBEAT

Autumn Summer

Klíčava 16 12

Římov 29 21

Žlutice 20 12

(d) MiFish

Autumn Summer

Klíčava 17 10

Římov 29 19

Žlutice 18 11

(e) SEQme

Table 4.7: Number of species detected considering pipelines, reservoirs, and seasons, excluding positive and
negative controls.

4.2.2 Number of sequence reads assigned to species

Based on the number of sequence reads assigned to each species in all pipelines divided by the

number of pipelines (average) without positive and negative controls, Rutilus rutilus had the

largest number with 2,437,600 reads on average, followed by Sander+Perca with 2,128,746

reads on average. By contrast, the smallest number was assigned to Lampetra planeri with

50 reads on average (the species was detected only in Anacapa with 248 reads), followed by

Barbus barbus with 697 reads on average (Figure 4.1).

37

Silurus glanis
Cottus poecilopus

Cottus gobio
Coregonus-sp.

Salmo trutta
Salvelinus fontinalis

Oncorhynchus mykiss
Thymallus thymallus

Lepomis gibbosus
Gymnocephalus cernua

Sander+Perca
Gasterosteus aculeatus

Esox lucius
Barbatula barbatula
Carassius carassius

Carassius auratus
Cyprinus carpio

Barbus barbus
Ctenopharyngodon idella

Hypophthalmichthys nobilis
Hypophthalmichthys molitrix

Tinca tinca
Rhodeus amarus

Gobio gobio
Pseudorasbora parva

Aspius+Scardinius
L.idus+leuciscus

Abramis brama
Blicca+Vimba

Alburnus alburnus
Squalius cephalus

Chondrostoma nasus
Rutilus rutilus

Phoxinus phoxinus
Anguilla anguilla

Acipenser-sp.
Lampetra planeri

0 1000000 2000000

No Transformation

64 2048 65536 2097152

Logarithm 2

Figure 4.1: Average of number of reads assigned to species considering all pipelines where the error bars indicate
the standard deviations, excluding positive and negative controls. The left plot shows the data without axis
transformations, whereas the right plot shows the data with logarithm base 2 transformation applied to x axis

For each pipeline, the largest and smallest number of sequence reads assigned to species

was determined. Rutilus rutilus (2,498,382 reads) and Lampetra planeri (248 reads) were

found in Anacapa; Rutilus rutilus (2,341,339 reads) and Barbus barbus (708 reads) in Barque;

Rutilus rutilus (2,225,684 reads) and Barbus barbus (671 reads) in metaBEAT; Rutilus rutilus

(1,873,906 reads) and Barbus barbus (593 reads) in MiFish; and Rutilus rutilus (3,248,689

reads) and Acipenser-sp. (483 reads) in SEQme (Figure 4.2).

38

Anacapa Barque MetaBEAT MiFish SEQme

Silurus glanis
Cottus poecilopus

Cottus gobio
Coregonus-sp.

Salmo trutta
Salvelinus fontinalis

Oncorhynchus mykiss
Thymallus thymallus

Lepomis gibbosus
Gymnocephalus cernua

Sander+Perca
Gasterosteus aculeatus

Esox lucius
Barbatula barbatula
Carassius carassius

Carassius auratus
Cyprinus carpio

Barbus barbus
Ctenopharyngodon idella

Hypophthalmichthys nobilis
Hypophthalmichthys molitrix

Tinca tinca
Rhodeus amarus

Gobio gobio
Pseudorasbora parva

Aspius+Scardinius
L.idus+leuciscus

Abramis brama
Blicca+Vimba

Alburnus alburnus
Squalius cephalus

Chondrostoma nasus
Rutilus rutilus

Phoxinus phoxinus
Anguilla anguilla

Acipenser-sp.
Lampetra planeri

3248689

812172

203043

50761

12690

3172

793

198

50

12

3
1

Figure 4.2: Number of reads assigned to species for each pipeline, excluding positive and negative controls.

Regarding reservoirs, the largest and smallest amounts on average in all pipelines were

assigned to Sander+Perca (394,679 reads) and Blicca+Vimba (525 reads) in Klíčava, Rutilus

rutilus (1,489,246 reads) and Lampetra planeri (50 reads) in Římov, and Rutilus rutilus (598,052

reads) and Gasterosteus aculeatus (618 reads) in Žlutice (Figure 4.3).

39

Klíčava Římov Žlutice

Silurus glanis
Cottus poecilopus

Cottus gobio
Coregonus-sp.

Salmo trutta
Salvelinus fontinalis

Oncorhynchus mykiss
Thymallus thymallus

Lepomis gibbosus
Gymnocephalus cernua

Sander+Perca
Gasterosteus aculeatus

Esox lucius
Barbatula barbatula
Carassius carassius

Carassius auratus
Cyprinus carpio

Barbus barbus
Ctenopharyngodon idella

Hypophthalmichthys nobilis
Hypophthalmichthys molitrix

Tinca tinca
Rhodeus amarus

Gobio gobio
Pseudorasbora parva

Aspius+Scardinius
L.idus+leuciscus

Abramis brama
Blicca+Vimba

Alburnus alburnus
Squalius cephalus

Chondrostoma nasus
Rutilus rutilus

Phoxinus phoxinus
Anguilla anguilla

Acipenser-sp.
Lampetra planeri

1489246

372312

93078

23270

5818

1454

364

91

23

6
2

Figure 4.3: For each reservoir, average of number of reads assigned to species considering all pipelines, excluding
positive and negative controls.

Regarding seasons, Rutilus rutilus (549,523 reads) had the largest number of sequence

reads assigned to species in autumn, while Lampetra planeri (50 reads) had the smallest number.

In summer the largest number of sequence reads was assigned to Rutilus rutilus (1,888,077

reads) and the smallest was assigned to Cottus poecilopus (102 reads) (Figure 4.4).

40

Autumn Summer

Silurus glanis
Cottus poecilopus

Cottus gobio
Coregonus-sp.

Salmo trutta
Salvelinus fontinalis

Oncorhynchus mykiss
Thymallus thymallus

Lepomis gibbosus
Gymnocephalus cernua

Sander+Perca
Gasterosteus aculeatus

Esox lucius
Barbatula barbatula
Carassius carassius

Carassius auratus
Cyprinus carpio

Barbus barbus
Ctenopharyngodon idella

Hypophthalmichthys nobilis
Hypophthalmichthys molitrix

Tinca tinca
Rhodeus amarus

Gobio gobio
Pseudorasbora parva

Aspius+Scardinius
L.idus+leuciscus

Abramis brama
Blicca+Vimba

Alburnus alburnus
Squalius cephalus

Chondrostoma nasus
Rutilus rutilus

Phoxinus phoxinus
Anguilla anguilla

Acipenser-sp.
Lampetra planeri

1888077

472019

118005

29501

7375

1844

461

115

29

7
2

Figure 4.4: For each season, average of number of reads assigned to species considering all pipelines, excluding
positive and negative controls.

When considering pipelines, reservoirs, and seasons together, Rutilus rutilus (1,614,121

reads) had the largest number of sequence reads. It was detected in the SEQme pipeline, in

the Římov reservoir in summer. The same species also had the second largest number with

1,113,465 reads. It was detected in the same reservoir and season but in the Anacapa pipeline.

As for the smallest number of sequence reads, Barbatula barbatula (176 reads) was detected in

MiFish in Římov in Summer, whereas Oncorhynchus mykiss with 195 reads was found in the

same pipeline, resevoir, and season (Figure 4.5).

41

Klíčava Římov Žlutice

A
utum

n
Sum

m
er

Ana
ca

pa

Barq
ue

M
eta

BEAT

M
iFish

SEQme

Ana
ca

pa

Barq
ue

M
eta

BEAT

M
iFish

SEQme

Ana
ca

pa

Barq
ue

M
eta

BEAT

M
iFish

SEQme

Silurus glanis
Cottus poecilopus

Cottus gobio
Coregonus-sp.

Salmo trutta
Salvelinus fontinalis

Oncorhynchus mykiss
Thymallus thymallus

Lepomis gibbosus
Gymnocephalus cernua

Sander+Perca
Gasterosteus aculeatus

Esox lucius
Barbatula barbatula
Carassius carassius

Carassius auratus
Cyprinus carpio

Barbus barbus
Ctenopharyngodon idella

Hypophthalmichthys nobilis
Hypophthalmichthys molitrix

Tinca tinca
Rhodeus amarus

Gobio gobio
Pseudorasbora parva

Aspius+Scardinius
L.idus+leuciscus

Abramis brama
Blicca+Vimba

Alburnus alburnus
Squalius cephalus

Chondrostoma nasus
Rutilus rutilus

Phoxinus phoxinus
Anguilla anguilla

Acipenser-sp.
Lampetra planeri

Silurus glanis
Cottus poecilopus

Cottus gobio
Coregonus-sp.

Salmo trutta
Salvelinus fontinalis

Oncorhynchus mykiss
Thymallus thymallus

Lepomis gibbosus
Gymnocephalus cernua

Sander+Perca
Gasterosteus aculeatus

Esox lucius
Barbatula barbatula
Carassius carassius

Carassius auratus
Cyprinus carpio

Barbus barbus
Ctenopharyngodon idella

Hypophthalmichthys nobilis
Hypophthalmichthys molitrix

Tinca tinca
Rhodeus amarus

Gobio gobio
Pseudorasbora parva

Aspius+Scardinius
L.idus+leuciscus

Abramis brama
Blicca+Vimba

Alburnus alburnus
Squalius cephalus

Chondrostoma nasus
Rutilus rutilus

Phoxinus phoxinus
Anguilla anguilla

Acipenser-sp.
Lampetra planeri

1614121

403530

100882

25220

6305

1576

394

98

24

6
2

Figure 4.5: Number of reads assigned to species considering pipelines, reservoirs, and seasons, excluding positive
and negative controls.

42

4.2.3 Alpha diversity

4.2.3.1 Species richness

The alpha diversity species richness describes the number of species in a single group (a

group could be a pipeline, reservoir, or season). Considering pipelines, reservoirs, and seasons

together, the alpha diversity ranged from 10 to 29 (Figure 4.6). The smallest richness was

detected in the Anacapa and SEQme pipelines in the Klíčava reservoir both in the summer

season, whereas the largest richness was detected in the Barque, MiFish, and SEQme pipelines

in the Římov reservoir in the autumn season.

Klíčava Autumn Klíčava Summer Římov Autumn Římov Summer Žlutice Autumn Žlutice Summer

10

15

20

25

Sp
ec

ie
s

ri
ch

ne
ss Pipelines

Anacapa

Barque

MetaBEAT

MiFish

SEQme

Figure 4.6: Alpha diversity species richness considering pipelines, reservoirs, and seasons, excluding positive and
negative controls.

For each pipeline, the alpha diversity species richness was determined. In Anacapa it

ranged from 10 to 27; in Barque and in MiFish it ranged from 12 to 29; in metaBEAT it ranged

from 11 to 28; and in SEQme it ranged from 10 to 29. In the Anacapa and SEQme pipelines the

smallest was observed only in Klíčava, whereas in Barque, metaBEAT, and MiFish the smallest

richness was observed in Klíčava and Žlutice, all in the summer season. In contrast, the largest

was observed in Římov in autumn (Figure 4.7). The number of species between the pipelines

were similar (ANOVA: F4,25 = 0.080, p = 0.988).

43

Anacapa Barque MetaBEAT MiFish SEQme

10

15

20

25
Sp

ec
ie

s
ri

ch
ne

ss

Figure 4.7: Alpha diversity species richness considering pipelines, excluding positive and negative controls.
Median values (thick lines), upper and lower quartiles (boxes), maximum and minimum values (whiskers) and
outlier (full circle) are shown.

Regarding reservoirs, in Klíčava it ranged from 10 to 17; in Římov it ranged from 18 to

29; and in Žlutice it ranged from 11 to 20. The smallest was detected in Anacapa and SEQme

in Klíčava; in Anacapa in Římov; and in Anacapa, metaBEAT, and SEQme in Žlutice; all in

the summer season. The largest was detected in SEQme in Klíčava; in Barque, MiFish, and

SEQme in Římov; and in Barque and MiFish in Žlutice; all in the autumn season (Figure 4.8).

Klíčava Římov Žlutice

10

15

20

25

Sp
ec

ie
s

ri
ch

ne
ss

Figure 4.8: Alpha diversity species richness considering reservoirs, excluding positive and negative controls.
Median values (thick lines), upper and lower quartiles (boxes), maximum and minimum values (whiskers) are
shown.

A statistical test showed a statistically significant difference between the richness of

the reservoirs (ANOVA: F2,27 = 22.737, p < 0.05). In addition, a post-hoc Tukey showed a

statistically significant difference between Římov and Klíčava (p-value adjusted < 0.05), and

44

between Římov and Žlutice (p-value adjusted < 0.05), whereas it showed a similarity between

Klíčava and Žlutice (p-value adjusted = 0.522).

For the seasons, it ranged from 15 to 29 in autumn and it ranged from 10 to 22 in summer.

In autumn, the smallest richness was detected in Anacapa and metaBEAT in Klíčava, whereas

in summer the smallest was observed in the Anacapa and SEQme pipelines in the Klíčava

reservoir. The largest richness was detected in Barque, MiFish, and SEQme in Římov in

Autumn, whereas in Barque in Římov in the summer season (Figure 4.9). A statistical test

between the seasons showed a statistically significant difference between the richness of autumn

and summer (ANOVA: F1,28 = 14.018, p < 0.05).

Autumn Summer

10

15

20

25

Sp
ec

ie
s

ri
ch

ne
ss

Figure 4.9: Alpha diversity species richness considering seasons, excluding positive and negative controls. Median
values (thick lines), upper and lower quartiles (boxes), maximum and minimum values (whiskers) are shown.

4.2.3.2 Shannon index

In addition to the richness, the alpha diversity Shannon index also take into consideration if

the number of sequence reads assigned is evenly distributed among all species (evenness). The

higher the richness and the evenness, the higher the index. For a richness of 37, which is the

total number of species (richness) detected in all pipelines in all reservoirs in the summer and

autumn seasons, the diversity calculation would result a shannon index of 3.61 if all species

had the number of reads equally distributed (evenness). Considering pipelines, reservoirs, and

seasons together, the Shannon indices ranged from 1.395 to 2.425 (Figure 4.10). The smallest

shannon index was detected in Anacapa in the Římov reservoir in the summer season, whereas

the largest was detected in the MiFish pipeline in the Římov reservoir in the autumn season.

45

Klíčava Autumn Klíčava Summer Římov Autumn Římov Summer Žlutice Autumn Žlutice Summer

1.50

1.75

2.00

2.25
Sh

an
no

n
in

de
x Pipelines

Anacapa

Barque

MetaBEAT

MiFish

SEQme

Figure 4.10: Alpha diversity shannon index considering pipelines, reservoirs, and seasons, excluding positive and
negative controls.

For each pipeline, the shannon index was determined. In Anacapa it ranged from 1.395

(in Římov in summer) to 2.236 (in Římov in autumn); in Barque it ranged from 1.594 (in

Žlutice in summer) to 2.424 (in Římov in autumn); in metaBEAT it ranged from 1.582 (in

Žlutice in summer) to 2.379 (in Římov in autumn); in MiFish it ranged from 1.597 (in Žlutice in

summer) to 2.425 (in Římov in autumn); in SEQme it ranged from 1.407 (in Římov in summer)

to 2.359 (in Římov in autumn) (Figure 4.11). The Shannon indices between the pipelines were

similar (ANOVA: F4,25 = 0.272, p = 0.893).

Anacapa Barque MetaBEAT MiFish SEQme

1.50

1.75

2.00

2.25

Sh
an

no
n

in
de

x

Figure 4.11: Alpha diversity shannon index considering pipelines, excluding positive and negative controls.
Median values (thick lines), upper and lower quartiles (boxes), maximum and minimum values (whiskers) and
outlier (full circle) are shown.

Regarding reservoirs, in Klíčava it ranged from 1.543 to 1.929; in Římov it ranged from

1.395 to 2.425; and in Žlutice it ranged from 1.45 to 2.086. The smallest shannon index was

46

detected in Anacapa in the summer season in all reservoirs. The largest was detected in SEQme

in Klíčava; in MiFish in Římov; and in Barque in Žlutice; all in the autumn season (Figure 4.12).

The Shannon indices between the reservoirs were not statistically significant different (ANOVA:

F2,27 = 1.726, p = 0.197).

Klíčava Římov Žlutice

1.50

1.75

2.00

2.25

Sh
an

no
n

in
de

x

Figure 4.12: Alpha diversity shannon index considering reservoirs, excluding positive and negative controls.
Median values (thick lines), upper and lower quartiles (boxes), maximum and minimum values (whiskers) are
shown.

For each season, in autumn it ranged from 1.807 to 2.425 and in summer it ranged from

1.395 to 1.73. In autumn the smallest shannon index was detected in metaBEAT in Klíčava,

whereas the largest was detected in MiFish in Římov. In summer the smallest shannon index

was detected in Anacapa in Římov, whereas the largest was detected in MiFish in Římov

(Figure 4.13). A statistical test between the seasons showed a statistically significant difference

between the shannon indices of autumn and summer (ANOVA: F1,28 = 53.149, p < 0.05).

47

Autumn Summer

1.50

1.75

2.00

2.25
Sh

an
no

n
in

de
x

Figure 4.13: Alpha diversity shannon index considering seasons, excluding positive and negative controls. Median
values (thick lines), upper and lower quartiles (boxes), maximum and minimum values (whiskers) are shown.

4.2.4 Beta diversity

4.2.4.1 Jaccard index

The beta diversity compares the species composition (diversity) among different groups, as two

groups can have identical alpha diversity (richness), but different species composition. The

Jaccard index only considers presence or absence of the species to measure the dissimilarity

among groups without considering the number of sequence reads assigned (relative abundance).

The index range from 0 % for identical composition to 100 % for completely different com-

position. Considering pipelines, reservoirs, and seasons together, the Jaccard dissimilarity

indices ranged from 0.053 to 0.971. The highest similarity (dissimilarity of 0.053) was detected

between Barque and metaBEAT pipelines both in Římov in the summer season. In contrast, the

smallest similarity (dissimilarity of 0.971) was detected between Barque in Římov in summer

and MiFish in Klíčava in autumn (Figure 4.14).

48

-0.25

0.00

0.25

-0.
6

-0.
4

-0.
2 0.0 0.2

PCoA1[38.31 %]

PC
oA

2[
21

.5
7

%
]

Reservoir Season
Klíčava Autumn

Klíčava Summer

Římov Autumn

Římov Summer

Žlutice Autumn

Žlutice Summer

Pipeline
Anacapa

Barque

MetaBEAT

MiFish

SEQme

Figure 4.14: Beta diversity Jaccard index considering pipelines, reservoirs, and seasons, excluding positive and
negative controls. The X axis indicates a variance of 38.31 % in the data observed in the X direction, whereas the
Y axis represents a variance of 21.57 % in the Y direction.

Regarding pipelines, the strongest similarity was detected between Barque and metaBEAT

(dissimilarity of 0.065) and the weakest was detected between MiFish and SEQme (dissimilarity

of 0.373) (Table 4.8). For reservoirs, 0.507 was the dissimilarity distance between Klíčava

and Žlutice, 0.77 between Klíčava and Římov, and 0.725 between Římov and Žlutice. Finally,

0.706 was the dissimilarity between autumn and summer.

Anacapa Barque MetaBEAT MiFish

Barque 0.20

MetaBEAT 0.23 0.07

MiFish 0.33 0.19 0.15

SEQme 0.29 0.30 0.33 0.37

Table 4.8: Beta diversity Jaccard dissimilarity indices considering pipelines.

A test showed a statistically significant similarity between the pipelines (PERMANOVA:

F4,25 = 0.277, R2 = 0.042, p = 0.998). Regarding Reservoirs, the test showed a statistically

significant difference (PERMANOVA: F2,27 = 7.365, R2 = 0.353, p < 0.05). When considering

each pair, a pairwise test showed a statistically significant difference between all pairs of

reservoirs (pairwise PERMANOVA: p < 0.05). For seasons, a statistically significant difference

was showed between autumn and summer (PERMANOVA: F1,28 = 8.630, R2 = 0.236, p <

0.05).

49

4.2.5 Species detection consistency and inconsistency

From a total of 37 species detected, 4 species were detected in only one pipeline. Out of the 4,

three were detected in Anacapa and one in SEQme. In contrast, 29 species were detected in all

pipelines. Regarding reservoirs, 11 species were detected in only one reservoir, two in Klíčava

and 9 in Římov. In contrast, 15 were detected in all reservoirs. Regarding seasons, 12 species

were detected in only one season, with 11 in autumn and only one (Lepomis gibbosus) in the

summer season. In contrast, 25 were detected in both seasons.

When considering pipelines, reservoirs, and seasons together, only one species was

detected just once (Lampetra planeri), in Anacapa in Římov in the autumn season. In contrast,

5 species were detected in all pipelines, reservoirs, and seasons (Abramis brama, Cyprinus

carpio, Esox lucius, Rutilus rutilus, and Sander+Perca) (Figure 4.5).

4.2.6 Positive and negative controls detection

Regarding positive and negative controls, after removing for each sample any potential false

readings of the total of reads demultiplexed where the number of reads assigned were smaller

than a threshold of 0.1 %, only reads from the positive controls were assigned to species.

Sequences from the postive controls were only assigned to Maylandia zebra (species used as

control) in all pipelines.

Based on the number of reads after demultiplexing as total, the percentage of assigned

reads to the positive control ranged from 70.11 % to 96.76 %, with 91.2 % for the median and

87.20 % for the mean (Figure 4.15).

Klíčava Autumn Klíčava Summer Římov Autumn Římov Summer Žlutice Autumn Žlutice Summer

70

80

90

Pe
rc

en
ta

ge
of

as
si

gn
ed

re
ad

s

Pipelines
Anacapa

Barque

MetaBEAT

MiFish

SEQme

Figure 4.15: Percentage of assigned reads to the positive control Maylandia zebra based on the initial total of
reads (demultiplexed reads) used as the input data.

The smallest percentage was detected in the MiFish pipeline in the Žlutice reservoir in the

summer season, whereas the highest percentage was detected in the Anacapa pipeline in Klíčava

50

in summer. A statistical test showed a statistically significant difference in the percentages of

positive control detection among the pipelines (ANOVA: F4,25 = 1549.3, p < 0.05). In addition,

a post-hoc Tukey showed a strong statistically significant difference in the percentages between

each pair of pipelines (Tukey: p < 0.05).

For each pipeline, in Anacapa the percentage of assigned reads to the positive control

ranged from 96.23 % to 96.76 %; in Barque it ranged from 90.76 % to 91.47 %; in metaBEAT

it ranged from 82.83 % to 84.66 %; in MiFish it ranged from 70.11 % to 72.4 %; in SEQme it

ranged from 92.49 % to 94.31 %. All pipelines showed no variance greater than 5.

4.3 Execution time of the pipelines

The execution time for each pipeline was determined, seconds were not considered. In the

Anacapa pipeline the time of execution was 2 hours and 59 minutes. In Barque it was 21

minutes. In metaBEAT the time was 12 hours and 45 minutes. The MiFish pipeline run time

was 1 hour and 51 minutes. Finally, the execution time of SEQme pipeline was 23 minutes.

51

Discussion

This study is the first comparison of the entire workflow of five distinct eDNA metabarcoding

pipelines. The number of reads after each step in the pipelines execution, the total number

of reads assigned, the number of species detected, the number of sequence reads assigned to

species, and community indices were compared. High similarities and consistent statistical re-

sults were found despite different approaches. The main differences were in MiFish considering

the number of reads assigned and in Acanapa considering the number of true positive species

detected. The alpha and beta diversity demonstrated very similar results among the pipelines.

The results from the pipelines were also compared to the fish community composition detected

by conventional methods. Metabarcoding demonstrated to be very efficient in species detection

performing better than conventional methods when considering the number of species detected.

All species observed in conventional methods were detected in at least one of the pipelines (Lota

lota was detected in SEQme, but discarded after removing sequences with frequencies below

0.1 % threshold). Finally, autumn outperformed summer in the number of species detected, but

summer had a higher number of reads assigned in total.

5.1 Comparison of pipelines and conventional methods species

detection

The outputs of the pipelines were highly similar in both number of species detected and species

composition. Anacapa resulted the most dissimilar detections among the pipelines. Three

species were only detected in Anacapa, Lampetra planeri, Gasterosteus aculeatus, and Cottus

poecilopus. With exception of Barque, before discarding detections where the number of reads

assigned were smaller than 0.1 % of the total of reads in the sample [Hänfling et al., 2016;

Lawson Handley et al., 2019], Lampetra planeri was present in all pipelines in Římov in

autumn. However, after applying the threshold only the Anacapa pipeline preserved the species.

Lampetra planeri was also detected in conventional methods in Římov, which corroborate the

species as a true positive. On the other hand, Gasterosteus aculeatus is probably a false positive

as the species is only present in the east region of the Czech Republic and in the northern district

near Liberec [IUCN, 2018]. Cottus poecilopus is probably a misinterpretation of Cottus gobio

as Cottus poecilopus. Five species were not detected in Anacapa, but detected in at least one of

52

the pipelines. Alburnus alburnus and Aspius+Scardinius are common species in the reservoirs,

but not detected in the pipeline. Squalius cephalus was not detected in Anacapa, but it was also

not present in metaBEAT. Equivalent behaviour happened for Hypophthalmichthys molitrix,

it was not detected in Anacapa and SEQme. The Anacapa pipeline uses DADA2 [Callahan

et al., 2016] to infer Amplicon Sequence Variants (ASV) instead of Operational taxonomic unit

(OTU) clustering. DADA2 ASV inference was demonstrated to be less sensitive in species

detection than clustering algorithms (USEARCH [Robert C. Edgar, 2010] and VSEARCH

[Rognes et al., 2016]), the latter should be preferred when sensitivity on species detection is the

goal [Pauvert et al., 2019]. The BLCA classifier [Gao et al., 2017] applied after DADA2 was

set to 60 % of confidence to diminish the number of false negatives. However, the precision

given in exchange of sensitivity increases the possibility of false positives [Pauvert et al., 2019].

The combination of a less sensitive algorithm and a lower confidence score resulted on false

positives and negatives. The confidence could be reduced to attempt the detection of species

not detected.

Barque and MiFish pipelines were identical in number and composition of the species

detected. One distinction was found when the detections in different reservoirs and seasons were

considered as Carassius auratus was removed from MiFish in summer in Římov after applying

the threshold (0.1 %) to remove species with low number of detections. Barque and MiFish have

in common the alignment-based approach used for the taxonomic assignment and they both

ignore the creation of Operational Taxonomic Unit (OTUs) or Amplicon Sequence Variants

(ASV). The intermediate steps did not influence in the species composition detected, but only

in the number of reads assigned. MetaBEAT pipeline had almost identical species composition

as Barque, the only difference is the nondetection of Squalius cephalus. The species detected in

each reservoir and season were also equal in both pipelines. With exception of the taxonomic

assignment, which is done using BLAST [Camacho et al., 2009], the metaBEAT pipeline has an

identical selection of programs as Barque, with additional python scripts and slightly different

parameters used in both pipelines.

For the SEQme pipeline, the species composition detected was also analogous to Barque

and Mifish detections, with the addition of Gymnocephalus cernua detected in SEQme and the

reduction of Hypophthalmichthys molitrix not detected in the pipeline. SEQme was the unique

pipeline to detected Lota lota, but the species was removed when applying the 0.1 % threshold.

Lota lota was detected by conventional methods within the last 3 campaigns (2018, 2019, and

2020) in Římov and Žlutice, but each time only one specimen was detected. The eDNA of

rare species, because of the small number of specimen, is found in low concentration in the

environment [Sepulveda et al., 2019]. In addition, Lota lota has nocturnal habits and prefer

cold temperatures [Eick, 2013; Blabolil et al., 2018]. Therefore, sampling considering these

characteristics would increase the possibility of detection. Besides SEQme, Gymnocephalus

cernua was also detected in Anacapa and metaBEAT, but it was likewise removed when

53

applying the threshold due to the low number reads assigned to this species. Hybrids resulted of

artificial spawning of Hypophthalmichthys molitrix and Hypophthalmichthys nobilis are frequent

[Nosova, Kipen, Tsar, & Lemesh, 2020], which may cause misinterpretation. SEQme pipeline

rely on RDP classifier [Wang et al., 2007], a naïve Bayesian machine learning approach, for the

taxonomic classification. Machine learning was demonstrated to outperform alignment-based

approaches with higher species-level accuracy and lower number of false-positives [O’Rourke,

Bokulich, Jusino, MacManes, & Foster, 2020; Bokulich et al., 2018]. Although having similar

species composition, the same similarity was not present in the number of reads assigned to

species. The amount detected in SEQme for Alburnus alburnus was lower when compared

to Barque, metaBEAT, and MiFish, as the species was only detected in Římov in the autumn

season.

Seven species not observed by conventional methods in the last three years (2018, 2019,

and 2020) were detected in all pipelines (Barbus barbus, Carassius carassius, Cottus gobio,

Phoxinus phoxinus, Rhodeus amarus, Salvelinus fontinalis, and Thymallus thymallus). Barbus

barbus and Carassius carassius were already caught by conventional methods in the past in

2007 in Klíčava and 2003 in Římov, respectively. These two species were detected in the

pipelines in the same reservoirs (Klíčava and Římov) at very low reads proportions, less than

0.1 % of the total of reads assigned. Barbus barbus was detected in two sampling locality,

whereas Carassius carassius was detected in only one. The other five unrecorded species were

detected in higher proportion of reads assigned. Cottus gobio and Phoxinus phoxinus are present

in habitats difficult to be captured by conventional methods, Rhodeus amarus has a small size

hard to be observed, Salvelinus fontinalis is dependent on restocking, and Thymallus thymallus

is a rare species with preference for running currents [Blabolil et al., 2020]. In addition, eDNA

could have been washed from the catchment and new species are introduced with stocking as

contamination of predatory species stocked every year.

Only Maylandia zebra was detected in PCR positive controls. In the negative controls,

there was no detection of any species, which indicates no contamination during the process

[Taberlet, Bonin, Zinger, & Coissac, 2018a]. Anacapa pipeline, with 96.49 on average, had

the largest number of reads assigned to Maylandia zebra positive control, whereas MiFish,

with 71.33 on average, had the lowest. Although having the highest number of possibles false

negatives detected, the percentage of positive control detected in Anacapa demonstrates a

consistency in the number reads assigned to species. On the other hand, MiFish had the lowest

number reads assigned in general, which was also reflected on positive control detections.

5.2 Alpha and beta diversities comparison

The alpha and beta diversities were statistically similar among the pipelines. The Alpha

diversity was calculated to evaluate the similarity in the number of species identified and the beta

54

diveristy was calculated to check the species composition among the pipelines, as identical alpha

diversities can have completely different species compositions [Whittaker, 1972]. The number

of species detected in the pipelines (32 in Anacapa and metaBEAT, and 33 in Barque, MiFish,

and SEQme) was similar to the number of species observed by conventional methods in the last

three years (2018, 2019, and 2020) in all reservoirs (29 when considering L.idus+leuciscus,

Aspius+Scardinius, and Sander+Perca joined and 32 without considering the joining). The

beta diversity species composition was statistically similar among the pipelines and traditional

methods. However, although having similar species compositions, seven species were not

identified by conventional methods, but detected in all pipelines. In addition, when pipelines

are considered together, all species detected by conventional methods were also detected in

the pipelines (Lota lota was detected in SEQme, but removed after applying threshold). A few

species were missed in each one when considering the pipelines individually. Environmental

DNA (eDNA) metabarcoding was demonstrated to be highly sensitive in detecting common

and rare species [Valentini et al., 2016; Hänfling et al., 2016]. A threshold (0.1 %) to remove

possible false positive detections discarded potential true positives, a smaller percentage for the

threshold could be considered.

The number of reads assigned was also considered to evaluate the alpha diversity using

Shannon index calculation [Shannon, 1948]. The Shannon indices among the pipelines were

statistically similar. Pipelines applying alignment-based approach for taxonomic assignment,

Barque, metaBEAT, and MiFish, were comparable in number of reads assigned to each species.

With exception of Squalius cephalus not detected in metaBEAT, the detection followed a pattern,

with the highest, middle, and lowest assigned to Barque, metaBEAT and MiFish, respectively.

Pipelines that apply a Bayesian classifier for taxonomic assignment, Anacapa and SEQme, also

presented a pattern in the detection between the pipelines. For example, Alburnus alburnus

species not detected in Anacapa, similarly in SEQme the detection was much lower than

alignment-based pipelines.

The number of species observed in each reservoir by the pipelines were higher than

conventional methods. Římov had the largest (34), folowed by Žlutice (23), and Klíčava had

the lowest (21). The fish community composition is dependent on lake morphology and trophic

state, the higher is the area, volume, and trophic state the higher is the fish population [Mehner,

Diekmann, Brämick, & Lemcke, 2005; Willemsen, 1980]. The number of species detected

in each reservoir confirms the pattern. Římov the largest reservoir, with the largest volume,

and eutrophic trophic state detected the highest number of species. Žlutice, which had the

second highest number of species observed, is the second in area and volume, and also have

an eutrophic state. Finally, the smallest reservoir with an oligotrophic state, Klíčava detected

the lowest number of species. Environmental DNA has a decay rate faster in oligotrophic than

eutrophic [Eichmiller, Best, & Sorensen, 2016], which could contribute to a lower detection in

Klíčava. The number of reads assigned in each reservoir also followed the same arrangement,

55

the highest to Římov, Žlutice in the middle, and the lowest to Klíčava.

Pipelines detected all species obeserved by conventional methods in Římov. In Žlutice two

species (Hypophthalmichthys molitrix and Anguilla anguilla) were not detected in the pipelines

but observed using traditional methods. In Klíčava three (Alburnus alburnus, L.idus+leuciscus,

and Carassius auratus) were not detected. Hypophthalmichthys molitrix and Anguilla anguilla

were detected in small number in Žlutice by conventional methods. Because of the small

number, the eDNA is found in low concentration [Sepulveda et al., 2019], which increases

the possibility of being missed in the sampling and molecular processing [Kelly, Shelton, &

Gallego, 2019]. The same for Alburnus alburnus, L.idus+leuciscus, and Carassius auratus,

which were detected in small quantity by conventional methods in Klíčava. The number of

species not detected in each reservoir by conventional methods but detected for the first time

by the pipelines was 5 in Klíčava, 8 in Římov, and 6 in Žlutice (Gasterosteus aculeatus and

Cottus poecilopus detected only in Anacapa pipeline were not considered). A higher number of

species detected in the pipelines supports the higher sensitivity in species detection by eDNA

metabarcoding than conventional methods [Valentini et al., 2016; Hänfling et al., 2016].

Regarding seasons, 36 out of 37 species detected in total were observed in the autumn

season and 26 in summer. Only Lepomis gibbosus was not detected in autumn, but in the

summer season. Fishes are ectothermic (cold-blooded) animals dependent on the environment

to regulate their body temperature [van de Pol, Flik, & Gorissen, 2017]. They are very sensitive

to changes in temperature and can sense even really small variations [Bardach & Bjorklund,

1957]. Each species has a temperature range preference, which can have an influence in the

physiology, bioenergetic, and behaviour of the species [Leuven et al., 2011]. The eDNA

detection probability is influenced by the preferred temperature range, which says when the

species is more active, the higher the activity the higher the detection, therefore the season

of sampling directly affects the detection probability of the environmental DNA [de Souza,

Godwin, Renshaw, & Larson, 2016]. The detection of Lepomis gibbosus only in the summer

season corroborates the preference of the species for higher water temperature and being

more active in the warm season [Blabolil et al., 2020]. Higher number of species detected

in autumn can be explained by the influence that the temperature and UV radiation have on

environmental DNA (eDNA) degradation. The eDNA in colder temperatures persist for longer

time as demonstrated by Strickler et al. [2015]. The degradation is caused by either direct

action of temperature or indirect by exonuclease and microbial activity. In addition, it was also

demonstrated that UV radiation can direct affect the degradation or indirect influence the impact

of the temperature. With the exception of Carassius carassius, which can tolerate temperatures

ranging from 2 ◦C to 38 ◦C, most of the species (lamprey, sturgeon, trout, whitefish, etc) detected

only in the autumn season can not tolerate high temperatures and have preference for cold water

[Leuven et al., 2011]. Finally, autumn has a higher discharge resulting in higher eDNA washing

from upstream [Blabolil et al., 2020].

56

Although showing higher number of species detected in the autumn season, both the

total number of reads and the number of reads assigned was higher in the summer season. The

number of reads assigned to species in the summer season was more than twice the number

assigned in autumn. The reservoirs are dominated by cyprinid species, which in general prefer

warm water and are more active in the summer season [Cherry, Dickson, Cairns Jr., & Stauffer,

1977; Cherry & Cairns, 1982]. The number of reads in the summer season was inflated by a

huge detection of abundant common cyprinid species in the reservoirs.

5.3 Pipelines analogy and recommendations

In the present study, all pipelines were statistically high similar in the alpha and beta diversities.

They were also consistent in terms of the number of reads assigned and the number of species

detected. The choice on which one should be used for eDNA metabarcoding data analysis is

driven by the goal of the project. A study when the aim is to detect the number of different

species in a study site could even have the step of OTU or ASV creation ignored as demonstrated

by Barque result. A complete reference database including all species possibly to be present in

the study site must be created, otherwise the lack of sequences could result in potential false

negatives [Schenekar, Schletterer, Lecaudey, & Weiss, 2020]. On the other hand, studies not

requiring taxonomic identification, where the only need is the categorization of groups of related

individuals based on sequence similarity, for example for microbial communities diversity where

most of microbial diversity was not identified yet [Lladó Fernández, Větrovský, & Baldrian,

2019; Locey & Lennon, 2016], must apply the OTU or ASV creation step. Two approaches

(OTU and ASV) were developed to group related sequences while minimizing errors caused

by PCR and sequencing that could lead to false misassignment [Nearing, Douglas, Comeau,

& Langille, 2018]. An operational taxonomic unit (OTU) is a cluster of similar sequences,

often clustered with a threshold of 97 %, to avoid errors which could create slightly different

sequences that could be interpreted as a separate taxonomic unit [Robert C. Edgar & Flyvbjerg,

2015; Huse, Welch, Morrison, & Sogin, 2010]. However, OTU tends to overestimate species

richness by creating a number of OTUs higher than real [Barnes et al., 2020]. An amplicon

sequence variants (ASV) applies an approach for correcting amplicon errors, which is more

effective on creating the real composition of the community [Callahan et al., 2016; Pauvert

et al., 2019]. Considering the two methods, when the sensitivity on species detection must

be maximized an OTU approach must be considered, the number of species is overestimated

with possible false positives generated, but a larger number of species is detected. On the other

hand, ASV should be considered when composition of the community is the goal, but ignoring

possible false negatives generated.

Trimming, merging and filtering demonstrated small variations in the number of sequences

after each step, but the number for each pipeline are still statistically similar. Besides the

57

clustering step, the quality control curation also help to correct errors created during PCR and

sequencing (e.g., low-quality, adapter contamination, small sequences), which could lead to

false positive and negatives in taxonomic assignment, and has a significant impact on the final

result [He et al., 2020]. Although the steps of quality control had an influence in the final number

of reads assigned, there is still no consensus wether the read counts reflects the abundance

and biomass, even though studies already pointed out the correlation between them [Lamb

et al., 2019; Muri et al., 2020; Hänfling et al., 2016]. Regarding the taxonomic assignment,

two different methods were used by the pipelines, alignment-based classification and Bayesian

classifier. The number of species and species composition were statistically similar among the

pipelines. However, machine learning Bayesian classifiers were more sensitive to detect rare

species. For this reason, machine learning should be considered when rare species must be

detected. Considering the execution time of the pipelines, Barque and SEQme were the fastest

pipelines (in both pipelines the jobs are done in parallel), completing the execution in less

than 23 minutes, which is approximately five times faster than MiFish, eight times faster than

Anacapa, and more than 33 times faster than metaBEAT. However, Barque applies a alignment-

based method for taxonomic assignment, which may be too slow if the number of sequences (in

the database and reads) and the length of the sequences are huge [Wangensteen & Turon, 2017;

Zielezinski, Vinga, Almeida, & Karlowski, 2017]. Therefore, SEQme is preferable when a vast

volume of data must be analysed and time must be taking into consideration. Finally, there is

no optimal pipeline, in the best scenario we should run more than one simultaneously to extract

the quality of each one (i.e, species composition, number of reads assigned, and detection of

rare species), and apply a post-processing to compare the results.

58

Conclusion

This study demonstrated high similarity in the results of five distinct pipelines concerning the

number of species detected, number of reads assigned, and species composition. The similarity

was corroborated by consistent statistical results. The data are essential for ecological studies,

different pipelines having dissimilar results would lead to incorrect ecological assessment that

could have very serious consequences, as the information is used for taking decisions on wildlife

management. This research will help to speed up the validation of eDNA metabarcoding as a

reliable method for biodiversity monitoring. As a consequence, traditional methods that use

mostly invasive and destructive sampling will be used less often and save animals.

Environmental DNA (eDNA) metabarcoding has several advantages over conventional

methods. First of all, it is a non-invasive technique, thus stress or death is not caused in contrast

with conventional methods. In addition, the technique demonstrated to be more sensitive with a

higher detection probability than conventional methods. Metabarcoding is also more efficient

in detecting rare species and in recognizing species that are difficult to distinguish by even

an experienced taxonomist [Elbrecht, Vamos, Meissner, Aroviita, & Leese, 2017; Harper

et al., 2019]. However, eDNA metabarcoding has also disadvantages compared to conventional

methods and problems that need to be solved in the technique. First of all, eDNA metabarcoding

can not be used to collect several informations of a specimen, such as life stage, size, weight,

sex ratio, hybrids, fish condition, or age structure. Environmental DNA metabarcoding also

needs more research wether read counts could be correlated to abundance and biomass, but

studies already found a possible correlation [Muri et al., 2020; Hänfling et al., 2016]. In

addition, although being a cost-effective method, laboratory and sequencing costs are still

high. Furthermore, primer bias, PCR inhibitors and errors introduced in PCR amplification

and sequencing could cause a misinterpretation of the data, thus application of more primers is

recommended. Finally, relativelly fast eDNA degradation in the environment (depending on

the particularity of the environment) and in the sample processing could lead to a inaccurate

species detection [Elbrecht et al., 2017; Harper et al., 2019].

Other problems can get in the way during a eDNA metababarcoding analysis. Species

sequences are underrepresented in public databases or represented by low-quality sequences

[Weigand et al., 2019]. In the present study, the DNA of a few species not present in public

databases were sequenced and included in the reference library. Although the genetic marker

59

is chosen to have a distinction between all species in the study site, sometimes it can not

distinguish related species. The current one used in the research can not distinguish perch

and pikeperch, Coregonus and Acipensers, thus more genetic markers should be used. Other

sequencing technology (e.g., Oxford Nanopore technology) could also be used to get longer

reads and help distinguishing related species and increase the precision of the taxonomic

identification [Santos, van Aerle, Barrientos, & Martinez-Urtaza, 2020; Doorenspleet, Jansen,

Oosterbroek, & Nijland, 2021]. In addition, internal positive control (IPC) is recommended to

deal with the PCR inhibition problem [Goldberg et al., 2016].

With the increase in the popularity of eDNA metabarcoding, new pipelines are being

developed really fast. However, validation and comparison of the results between the pipelines

is rare. For future perspectives, new pipelines can be included in the comparison, such as PEMA

[Zafeiropoulos et al., 2020] and BIOCOM-PIPE [Djemiel et al., 2020]. In addition, pipelines

are almost in totality command line tools without graphical interface. Pipelines could be more

user-friendly and flexible in terms of tools to be chosen with either web or native GUI (graphical

user interface) for both the metabarcoding bioinformatics workflow (e.g., SLIM [Dufresne,

Lejzerowicz, Perret-Gentil, Pawlowski, & Cordier, 2019]) and post-processing statistical data

analysis (e.g., TaxonTableTools [Macher, Beermann, & Leese, 2021], ranacapa [Kandlikar

et al., 2018]). There is also a new trend toward using machine learning algorithms in eDNA

metabarcoding [Cordier et al., 2018; Nugent & Adamowicz, 2020].

More information could be targeted in future eDNA research beyond biodiversity. Popu-

lation genetics studies could be conducted using eDNA, such as analysis of haplotypes, deep

genetic diversity, sex chromosome, interaction between species [Sigsgaard et al., 2020; Adams

et al., 2019; Djurhuus et al., 2020]. The genetic marker used in the study is vertebrate-specific,

thus the data could be used to analyse other vertebrate groups present in the reservoirs. Human

DNA signal may help to find places with illegal activity (e.g., poachers, swimming people).

Endangered, invasive, and rare species could be monitorated using eDNA metarcoding follow-

ing the IUCN red list of threatened species (https://www.iucnredlist.org/). The same list may

be used to check for endangered and invasive species that were missed in the pipelines. Even

operational taxonomic unit (OTU) or amplicon sequence variant (ASV) could be sufficient

indicators of diversity in samples without assigning a taxonomic rank to sequences. Finally, the

comparison of the pipelines helped to validate eDNA metabarcoding as a reliable method. The

outcomes of this study will be restructured and submitted in a scientific journal, thus supporting

wildlife conservation and protecting our planet for future generations.

60

https://www.iucnredlist.org/

Bibliography

Adams, C. I., Knapp, M., Gemmell, N. J., Jeunen, G.-J., Bunce, M., Lamare, M. D., & Tay-

lor, H. R. (2019). Beyond Biodiversity: Can Environmental DNA (eDNA) Cut It as a

Population Genetics Tool? Genes, 10(3). doi:10.3390/genes10030192

Andrews, S. et al. (2010). FastQC: a quality control tool for high throughput sequence data.

Retrieved December 23, 2020, from https://www.bioinformatics.babraham.ac.uk/projects/

fastqc/

Aronesty, E. (2013). Comparison of sequencing utility programs. The open bioinformatics

journal, 7(1).

Bardach, J. E. & Bjorklund, R. G. (1957). The Temperature Sensitivity of Some American

Freshwater Fishes. The American Naturalist, 91(859), 233–251. doi:10.1086/281982

Barnes, C. J., Rasmussen, L., Asplund, M., Knudsen, S. W., Clausen, M.-L., Agner, T., &

Hansen, A. J. (2020). Comparing DADA2 and OTU clustering approaches in studying

the bacterial communities of atopic dermatitis. Journal of Medical Microbiology, 69(11),

1293–1302. doi:https://doi.org/10.1099/jmm.0.001256

Blabolil, P., Duras, J., Jůza, T., Kočvara, L., Matěna, J., Muška, M., . . . Peterka, J. (2018).

Assessment of burbot Lota lota (L. 1758) population sustainability in central European

reservoirs. Journal of Fish Biology, 92(5), 1545–1559. doi:https://doi.org/10.1111/jfb.

13610

Blabolil, P., Harper, L., Říčanová, Š., Sellers, G., Di Muri, C., Jůza, T., . . . Hänfling, B.

(2020). Environmental DNA metabarcoding uncovers environmental correlates of fish

communities in spatially heterogeneous freshwater habitats. doi:10.22541/au.159284919.

96257497

Bohmann, K., Evans, A., Gilbert, M. T. P., Carvalho, G. R., Creer, S., Knapp, M., . . . de Bruyn,

M. (2014). Environmental DNA for wildlife biology and biodiversity monitoring. Trends

in Ecology & Evolution, 29(6), 358–367. doi:https://doi.org/10.1016/j.tree.2014.04.003

Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R., . . . Gre-

gory Caporaso, J. (2018). Optimizing taxonomic classification of marker-gene amplicon

sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome, 6(1), 90. doi:10.

1186/s40168-018-0470-z

61

https://dx.doi.org/10.3390/genes10030192
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://dx.doi.org/10.1086/281982
https://dx.doi.org/https://doi.org/10.1099/jmm.0.001256
https://dx.doi.org/https://doi.org/10.1111/jfb.13610
https://dx.doi.org/https://doi.org/10.1111/jfb.13610
https://dx.doi.org/10.22541/au.159284919.96257497
https://dx.doi.org/10.22541/au.159284919.96257497
https://dx.doi.org/https://doi.org/10.1016/j.tree.2014.04.003
https://dx.doi.org/10.1186/s40168-018-0470-z
https://dx.doi.org/10.1186/s40168-018-0470-z

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina

sequence data. Bioinformatics, 30(15), 2114–2120. doi:10.1093/bioinformatics/btu170

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F., et al. (2000). Extensible

markup language (XML) 1.0. W3C recommendation October.

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P.

(2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature

Methods, 13(7), 581–583. doi:10.1038/nmeth.3869

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden,

T. L. (2009). BLAST+: architecture and applications. BMC Bioinformatics, 10(1), 421.

doi:10.1186/1471-2105-10-421

Capella-Gutiérrez, S., Silla-Martínez, J. M., & Gabaldón, T. (2009). trimAl: a tool for automated

alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25(15), 1972–

1973. doi:10.1093/bioinformatics/btp348

Cherry, D. S. & Cairns, J. (1982). Biological monitoring part V—Preference and avoidance

studies. Water Research, 16(3), 263–301. doi:https://doi.org/10.1016/0043-1354(82)

90189-0

Cherry, D. S., Dickson, K. L., Cairns Jr., J., & Stauffer, J. R. (1977). Preferred, Avoided,

and Lethal Temperatures of Fish During Rising Temperature Conditions. Journal of the

Fisheries Research Board of Canada, 34(2), 239–246. doi:10.1139/f77-035

Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2015). GenBank.

Nucleic Acids Research, 44(D1), D67–D72. doi:10.1093/nar/gkv1276

Cock, P. J. A., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., . . . de Hoon,

M. J. L. (2009). Biopython: freely available Python tools for computational molecular biol-

ogy and bioinformatics. Bioinformatics, 25(11), 1422–1423. doi:10.1093/bioinformatics/

btp163

Cock, P. J. A., Fields, C. J., Goto, N., Heuer, M. L., & Rice, P. M. (2009). The Sanger FASTQ

file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants.

Nucleic Acids Research, 38(6), 1767–1771. doi:10.1093/nar/gkp1137

Cordier, T., Forster, D., Dufresne, Y., Martins, C. I. M., Stoeck, T., & Pawlowski, J. (2018). Su-

pervised machine learning outperforms taxonomy-based environmental DNA metabarcod-

ing applied to biomonitoring. Molecular Ecology Resources, 18(6), 1381–1391. doi:https:

//doi.org/10.1111/1755-0998.12926

Cornish-Bowden, A. (1985). Nomenclature for incompletely specified bases in nucleic acid

sequences: rcommendations 1984. Nucleic Acids Research, 13(9), 3021–3030. doi:10.

1093/nar/13.9.3021

Cox, M. P., Peterson, D. A., & Biggs, P. J. (2010). SolexaQA: At-a-glance quality assessment

of Illumina second-generation sequencing data. BMC bioinformatics, 11, 485. doi:10.

1186/1471-2105-11-485

62

https://dx.doi.org/10.1093/bioinformatics/btu170
https://dx.doi.org/10.1038/nmeth.3869
https://dx.doi.org/10.1186/1471-2105-10-421
https://dx.doi.org/10.1093/bioinformatics/btp348
https://dx.doi.org/https://doi.org/10.1016/0043-1354(82)90189-0
https://dx.doi.org/https://doi.org/10.1016/0043-1354(82)90189-0
https://dx.doi.org/10.1139/f77-035
https://dx.doi.org/10.1093/nar/gkv1276
https://dx.doi.org/10.1093/bioinformatics/btp163
https://dx.doi.org/10.1093/bioinformatics/btp163
https://dx.doi.org/10.1093/nar/gkp1137
https://dx.doi.org/https://doi.org/10.1111/1755-0998.12926
https://dx.doi.org/https://doi.org/10.1111/1755-0998.12926
https://dx.doi.org/10.1093/nar/13.9.3021
https://dx.doi.org/10.1093/nar/13.9.3021
https://dx.doi.org/10.1186/1471-2105-11-485
https://dx.doi.org/10.1186/1471-2105-11-485

Curd, E. E., Gold, Z., Kandlikar, G. S., Gomer, J., Ogden, M., O’Connell, T., . . . Meyer,

R. S. (2019). Anacapa Toolkit: An environmental DNA toolkit for processing multilocus

metabarcode datasets. Methods in Ecology and Evolution, 10(9), 1469–1475. doi:https:

//doi.org/10.1111/2041-210X.13214

de Souza, L. S., Godwin, J. C., Renshaw, M. A., & Larson, E. (2016). Environmental DNA

(eDNA) Detection Probability Is Influenced by Seasonal Activity of Organisms. PLOS

ONE, 11(10), 1–15. doi:10.1371/journal.pone.0165273

Deagle, B. E., Jarman, S. N., Coissac, E., Pompanon, F., & Taberlet, P. (2014). DNA metabar-

coding and the cytochrome c oxidase subunit I marker: not a perfect match. Biology

Letters, 10(9), 20140562. doi:10.1098/rsbl.2014.0562

Djemiel, C., Dequiedt, S., Karimi, B., Cottin, A., Girier, T., El Djoudi, Y., . . . Terrat, S. (2020).

BIOCOM-PIPE: a new user-friendly metabarcoding pipeline for the characterization of

microbial diversity from 16S, 18S and 23S rRNA gene amplicons. BMC Bioinformatics,

21(1), 492. doi:10.1186/s12859-020-03829-3

Djurhuus, A., Closek, C. J., Kelly, R. P., Pitz, K. J., Michisaki, R. P., Starks, H. A., . . . Breitbart,

M. (2020). Environmental DNA reveals seasonal shifts and potential interactions in a

marine community. Nature Communications, 11(1), 254. doi:10.1038/s41467- 019-

14105-1

Doorenspleet, K., Jansen, L., Oosterbroek, S., & Nijland, R. (2021). Accurate long-read eDNA

metabarcoding of North Sea fish using Oxford Nanopore sequencing. ARPHA Conference

Abstracts, 4, e65550. doi:10.3897/aca.4.e65550

Dufresne, Y., Lejzerowicz, F., Perret-Gentil, L. A., Pawlowski, J., & Cordier, T. (2019). SLIM: a

flexible web application for the reproducible processing of environmental DNA metabar-

coding data. BMC Bioinformatics, 20(1), 88. doi:10.1186/s12859-019-2663-2

Edgar, R. C. [Robert C]. (2013). UPARSE: highly accurate OTU sequences from microbial

amplicon reads. Nature methods, 10(10), 996–998. doi:10.1038/nmeth.2604

Edgar, R. C. [Robert C.]. (2004). MUSCLE: multiple sequence alignment with high accuracy

and high throughput. Nucleic Acids Research, 32(5), 1792–1797. doi:10.1093/nar/gkh340

Edgar, R. C. [Robert C.]. (2010). Search and clustering orders of magnitude faster than BLAST.

Bioinformatics, 26(19), 2460–2461. doi:10.1093/bioinformatics/btq461

Edgar, R. C. [Robert C.] & Flyvbjerg, H. (2015). Error filtering, pair assembly and error

correction for next-generation sequencing reads. Bioinformatics, 31(21), 3476–3482.

doi:10.1093/bioinformatics/btv401

Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics,

7(1), 1–26.

Eichmiller, J. J., Best, S. E., & Sorensen, P. W. (2016). Effects of Temperature and Trophic

State on Degradation of Environmental DNA in Lake Water. Environmental Science &

Technology, 50(4), 1859–1867. doi:10.1021/acs.est.5b05672

63

https://dx.doi.org/https://doi.org/10.1111/2041-210X.13214
https://dx.doi.org/https://doi.org/10.1111/2041-210X.13214
https://dx.doi.org/10.1371/journal.pone.0165273
https://dx.doi.org/10.1098/rsbl.2014.0562
https://dx.doi.org/10.1186/s12859-020-03829-3
https://dx.doi.org/10.1038/s41467-019-14105-1
https://dx.doi.org/10.1038/s41467-019-14105-1
https://dx.doi.org/10.3897/aca.4.e65550
https://dx.doi.org/10.1186/s12859-019-2663-2
https://dx.doi.org/10.1038/nmeth.2604
https://dx.doi.org/10.1093/nar/gkh340
https://dx.doi.org/10.1093/bioinformatics/btq461
https://dx.doi.org/10.1093/bioinformatics/btv401
https://dx.doi.org/10.1021/acs.est.5b05672

Eick, D. (2013). Habitat preferences of the burbot (Lota lota) from the River Elbe: an experi-

mental approach. Journal of Applied Ichthyology, 29(3), 541–548. doi:https://doi.org/10.

1111/jai.12110

Elbrecht, V., Vamos, E. E., Meissner, K., Aroviita, J., & Leese, F. (2017). Assessing strengths and

weaknesses of DNA metabarcoding-based macroinvertebrate identification for routine

stream monitoring. Methods in Ecology and Evolution, 8(10), 1265–1275. doi:https:

//doi.org/10.1111/2041-210X.12789

Fassler, J. & Cooper, P. (2011, July 14). BLAST® Help [Internet]: BLAST Glossary (N. C.

for Biotechnology Information (US), Ed.). Bethesda (MD).

Fred Hutchinson Cancer Research Center, Computational Biology. (n.d.). TAXTASTIC. Re-

trieved January 9, 2021, from https://github.com/fhcrc/taxtastic

Gao, X., Lin, H., Revanna, K., & Dong, Q. (2017). A Bayesian taxonomic classification method

for 16S rRNA gene sequences with improved species-level accuracy. BMC Bioinformatics,

18(1), 247. doi:10.1186/s12859-017-1670-4

Goldberg, C. S., Turner, C. R., Deiner, K., Klymus, K. E., Thomsen, P. F., Murphy, M. A., . . .

Taberlet, P. (2016). Critical considerations for the application of environmental DNA

methods to detect aquatic species. Methods in Ecology and Evolution, 7(11), 1299–1307.

doi:https://doi.org/10.1111/2041-210X.12595

Gordon, A., Hannon, G. et al. (2010). Fastx-toolkit. Retrieved December 20, 2020, from

http://hannonlab.cshl.edu/fastx_toolkit/index.html

Hahn, C. & Lunt, D. (n.d.). metaBEAT - metaBarcoding and Environmental DNA analysis Tool.

Retrieved January 3, 2021, from https://github.com/HullUni-bioinformatics/metaBEAT

Hänfling, B., Lawson Handley, L., Read, D. S., Hahn, C., Li, J., Nichols, P., . . . Winfield,

I. J. (2016). Environmental DNA metabarcoding of lake fish communities reflects long-

term data from established survey methods. Molecular Ecology, 25(13), 3101–3119.

doi:https://doi.org/10.1111/mec.13660

Hansen, M. A., Oey, H., Fernandez-Valverde, S., Jung, C.-H., & Mattick, J. S. (2008). Biopieces:

a bioinformatics toolset and framework. Retrieved December 20, 2020, from http://www.

biopieces.org/

Harper, L., Buxton, A. S., Rees, H. C., Bruce, K., Brys, R., Halfmaerten, D., . . . Hänfling, B.

(2019). Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater

ponds. Hydrobiologia, 826(1), 25–41. doi:10.1007/s10750-018-3750-5

He, B., Zhu, R., Yang, H., Lu, Q., Wang, W., Song, L., . . . Lang, J. (2020). Assessing the

Impact of Data Preprocessing on Analyzing Next Generation Sequencing Data. Frontiers

in Bioengineering and Biotechnology, 8, 817. doi:10.3389/fbioe.2020.00817

Hebert, P. D. N., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications

through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological

Sciences, 270(1512), 313–321. doi:10.1098/rspb.2002.2218

64

https://dx.doi.org/https://doi.org/10.1111/jai.12110
https://dx.doi.org/https://doi.org/10.1111/jai.12110
https://dx.doi.org/https://doi.org/10.1111/2041-210X.12789
https://dx.doi.org/https://doi.org/10.1111/2041-210X.12789
https://github.com/fhcrc/taxtastic
https://dx.doi.org/10.1186/s12859-017-1670-4
https://dx.doi.org/https://doi.org/10.1111/2041-210X.12595
http://hannonlab.cshl.edu/fastx_toolkit/index.html
https://github.com/HullUni-bioinformatics/metaBEAT
https://dx.doi.org/https://doi.org/10.1111/mec.13660
http://www.biopieces.org/
http://www.biopieces.org/
https://dx.doi.org/10.1007/s10750-018-3750-5
https://dx.doi.org/10.3389/fbioe.2020.00817
https://dx.doi.org/10.1098/rspb.2002.2218

Holovachov, O., Haenel, Q., Bourlat, S. J., & Jondelius, U. (2017). Taxonomy assignment

approach determines the efficiency of identification of OTUs in marine nematodes. Royal

Society Open Science, 4(8), 170315. doi:10.1098/rsos.170315

Huse, S. M., Welch, D. M., Morrison, H. G., & Sogin, M. L. (2010). Ironing out the wrinkles

in the rare biosphere through improved OTU clustering. Environmental Microbiology,

12(7), 1889–1898. doi:https://doi.org/10.1111/j.1462-2920.2010.02193.x

IUCN. (2018). Gasterosteus aculeatus. The IUCN Red List of Threatened Species. Retrieved

June 4, 2021, from https://www.iucnredlist.org/species/8951/58295405

Kandlikar, G., Gold, Z., Cowen, M., Meyer, R., Freise, A., Kraft, N., . . . Curd, E. (2018).

ranacapa: An R package and Shiny web app to explore environmental DNA data with

exploratory statistics and interactive visualizations [version 1; peer review: 1 approved,

2 approved with reservations]. F1000Research, 7(1734). doi:10.12688/f1000research.

16680.1

Kasai, A., Takada, S., Yamazaki, A., Masuda, R., & Yamanaka, H. (2020). The effect of

temperature on environmental DNA degradation of Japanese eel. Fisheries Science, 86(3),

465–471. doi:10.1007/s12562-020-01409-1

Katoh, K. & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version

7: Improvements in Performance and Usability. Molecular Biology and Evolution, 30(4),

772–780. doi:10.1093/molbev/mst010

Kelly, R. P., Shelton, A. O., & Gallego, R. (2019). Understanding PCR Processes to Draw

Meaningful Conclusions from Environmental DNA Studies. Scientific Reports, 9(1),

12133. doi:10.1038/s41598-019-48546-x

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., . . . de-

velopment team, J. (2016). Jupyter Notebooks – a publishing format for reproducible

computational workflows. In F. Loizides & B. Scmidt (Eds.), Positioning and Power in

Academic Publishing: Players, Agents and Agendas (pp. 87–90). IOS Press.

Koch, L. F. (1957). Index of Biotal Dispersity. Ecology, 38(1), 145–148.

Kottelat, M. & Freyhof, J. (2007). Handbook of European freshwater fishes. Publications

Kottelat.

Kozlov, A. M., Zhang, J., Yilmaz, P., Glöckner, F. O., & Stamatakis, A. (2016). Phylogeny-

aware identification and correction of taxonomically mislabeled sequences. Nucleic Acids

Research, 44(11), 5022–5033. doi:10.1093/nar/gkw396

Lamb, P. D., Hunter, E., Pinnegar, J. K., Creer, S., Davies, R. G., & Taylor, M. I. (2019). How

quantitative is metabarcoding: A meta-analytical approach. Molecular Ecology, 28(2),

420–430. doi:https://doi.org/10.1111/mec.14920

Langmead, B. & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature

Methods, 9(4), 357–359. doi:10.1038/nmeth.1923

65

https://dx.doi.org/10.1098/rsos.170315
https://dx.doi.org/https://doi.org/10.1111/j.1462-2920.2010.02193.x
https://www.iucnredlist.org/species/8951/58295405
https://dx.doi.org/10.12688/f1000research.16680.1
https://dx.doi.org/10.12688/f1000research.16680.1
https://dx.doi.org/10.1007/s12562-020-01409-1
https://dx.doi.org/10.1093/molbev/mst010
https://dx.doi.org/10.1038/s41598-019-48546-x
https://dx.doi.org/10.1093/nar/gkw396
https://dx.doi.org/https://doi.org/10.1111/mec.14920
https://dx.doi.org/10.1038/nmeth.1923

Lawson Handley, L., Read, D. S., Winfield, I. J., Kimbell, H., Johnson, H., Li, J., . . . Hänfling,

B. (2019). Temporal and spatial variation in distribution of fish environmental DNA in

England’s largest lake. Environmental DNA, 1(1), 26–39. doi:https://doi.org/10.1002/

edn3.5

Leuven, R., Hendriks, A., Huijbregts, M., Lenders, H., Matthews, J., & Velde, G. V. D. (2011).

Differences in sensitivity of native and exotic fish species to changes in river temperature.

Current Zoology, 57(6), 852–862. doi:10.1093/czoolo/57.6.852

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., . . . 1000 Genome Project

Data Processing Subgroup. (2009). The Sequence Alignment/Map format and SAMtools.

Bioinformatics, 25(16), 2078–2079. doi:10.1093/bioinformatics/btp352

Lladó Fernández, S., Větrovský, T., & Baldrian, P. (2019). The concept of operational taxonomic

units revisited: genomes of bacteria that are regarded as closely related are often highly

dissimilar. Folia Microbiologica, 64(1), 19–23. doi:10.1007/s12223-018-0627-y

Locey, K. J. & Lennon, J. T. (2016). Scaling laws predict global microbial diversity. Proceedings

of the National Academy of Sciences, 113(21), 5970–5975. doi:10.1073/pnas.1521291113

Macher, T.-H., Beermann, A. J., & Leese, F. (2021). TaxonTableTools: A comprehensive,

platform-independent graphical user interface software to explore and visualise DNA

metabarcoding data. Molecular Ecology Resources. doi:https://doi.org/10.1111/1755-

0998.13358

Magoč, T. & Salzberg, S. L. (2011). FLASH: fast length adjustment of short reads to improve

genome assemblies. Bioinformatics, 27(21), 2957–2963. doi:10.1093/bioinformatics/

btr507

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing

reads. EMBnet.journal, 17(1), 10–12. doi:10.14806/ej.17.1.200

Mehner, T., Diekmann, M., Brämick, U., & Lemcke, R. (2005). Composition of fish commu-

nities in German lakes as related to lake morphology, trophic state, shore structure and

human-use intensity. Freshwater Biology, 50(1), 70–85. doi:https://doi.org/10.1111/j.

1365-2427.2004.01294.x

Merkel, D. (2014). Docker: Lightweight Linux Containers for Consistent Development and

Deployment. Linux J. 2014(239).

Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J. Y., Sato, K., . . . Iwasaki, W. (2015).

MiFish, a set of universal PCR primers for metabarcoding environmental DNA from

fishes: detection of more than 230 subtropical marine species. Royal Society Open Science,

2(7), 150088. doi:10.1098/rsos.150088

Muri, C. D., Handley, L. L., Bean, C. W., Li, J., Peirson, G., Sellers, G. S., . . . Hänfling,

B. (2020). Read counts from environmental DNA (eDNA) metabarcoding reflect fish

abundance and biomass in drained ponds. Metabarcoding and Metagenomics, 4, e56959.

doi:10.3897/mbmg.4.56959

66

https://dx.doi.org/https://doi.org/10.1002/edn3.5
https://dx.doi.org/https://doi.org/10.1002/edn3.5
https://dx.doi.org/10.1093/czoolo/57.6.852
https://dx.doi.org/10.1093/bioinformatics/btp352
https://dx.doi.org/10.1007/s12223-018-0627-y
https://dx.doi.org/10.1073/pnas.1521291113
https://dx.doi.org/https://doi.org/10.1111/1755-0998.13358
https://dx.doi.org/https://doi.org/10.1111/1755-0998.13358
https://dx.doi.org/10.1093/bioinformatics/btr507
https://dx.doi.org/10.1093/bioinformatics/btr507
https://dx.doi.org/10.14806/ej.17.1.200
https://dx.doi.org/https://doi.org/10.1111/j.1365-2427.2004.01294.x
https://dx.doi.org/https://doi.org/10.1111/j.1365-2427.2004.01294.x
https://dx.doi.org/10.1098/rsos.150088
https://dx.doi.org/10.3897/mbmg.4.56959

Nearing, J. T., Douglas, G. M., Comeau, A. M., & Langille, M. G. I. (2018). Denoising the De-

noisers: an independent evaluation of microbiome sequence error-correction approaches.

PeerJ, 6, e5364–e5364. 5364[PII]. doi:10.7717/peerj.5364

Normandeau, E. (n.d.). Environmental DNA metabarcoding analysis. Retrieved December 3,

2020, from https://github.com/enormandeau/barque

Nosova, A. Y., Kipen, V. N., Tsar, A. I., & Lemesh, V. A. (2020). Differentiation of Hybrid

Progeny of Silver Carp (Hypophthalmichthys molitrix Val.) and Bighead Carp (H. nobilis

Rich.) Based on Microsatellite Polymorphism. Russian Journal of Genetics, 56(3), 317–

323. doi:10.1134/S1022795420030126

Nugent, C. M. & Adamowicz, S. J. (2020). Alignment-free classification of COI DNA barcode

data with the Python package Alfie. Metabarcoding and Metagenomics, 4, e55815.

doi:10.3897/mbmg.4.55815

O’Rourke, D. R., Bokulich, N. A., Jusino, M. A., MacManes, M. D., & Foster, J. T. (2020).

A total crapshoot? Evaluating bioinformatic decisions in animal diet metabarcoding

analyses. Ecology and Evolution, 10(18), 9721–9739. doi:https://doi.org/10.1002/ece3.

6594

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., . . . Wagner, H.

(2019). vegan: Community Ecology Package. R package version 2.5-6.

Orlov, Y. L. & Potapov, V. N. (2004). Complexity: an internet resource for analysis of DNA

sequence complexity. Nucleic Acids Research, 32(suppl_2), W628–W633. doi:10.1093/

nar/gkh466

Pauvert, C., Buée, M., Laval, V., Edel-Hermann, V., Fauchery, L., Gautier, A., . . . Vacher,

C. (2019). Bioinformatics matters: The accuracy of plant and soil fungal community

data is highly dependent on the metabarcoding pipeline. Fungal Ecology, 41, 23–33.

doi:https://doi.org/10.1016/j.funeco.2019.03.005

Pavlopoulos, G. A., Soldatos, T. G., Barbosa-Silva, A., & Schneider, R. (2010). A reference

guide for tree analysis and visualization. BioData Mining, 3(1), 1. doi:10.1186/1756-

0381-3-1

Puga, J. L., Krzywinski, M., & Altman, N. (2015). Bayes’ theorem. Nature Methods, 12(4),

277–278. doi:10.1038/nmeth.3335

R Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing. Vienna, Austria.

Reuter, J. A., Spacek, D. V., & Snyder, M. P. (2015). High-Throughput Sequencing Technologies.

Molecular Cell, 58(4), 586–597. doi:https://doi.org/10.1016/j.molcel.2015.05.004

Riaz, T., Shehzad, W., Viari, A., Pompanon, F., Taberlet, P., & Coissac, E. (2011). ecoPrimers:

inference of new DNA barcode markers from whole genome sequence analysis. Nucleic

Acids Research, 39(21), e145–e145. doi:10.1093/nar/gkr732

67

https://dx.doi.org/10.7717/peerj.5364
https://github.com/enormandeau/barque
https://dx.doi.org/10.1134/S1022795420030126
https://dx.doi.org/10.3897/mbmg.4.55815
https://dx.doi.org/https://doi.org/10.1002/ece3.6594
https://dx.doi.org/https://doi.org/10.1002/ece3.6594
https://dx.doi.org/10.1093/nar/gkh466
https://dx.doi.org/10.1093/nar/gkh466
https://dx.doi.org/https://doi.org/10.1016/j.funeco.2019.03.005
https://dx.doi.org/10.1186/1756-0381-3-1
https://dx.doi.org/10.1186/1756-0381-3-1
https://dx.doi.org/10.1038/nmeth.3335
https://dx.doi.org/https://doi.org/10.1016/j.molcel.2015.05.004
https://dx.doi.org/10.1093/nar/gkr732

Risch, N. (1992). Genetic linkage: interpreting lod scores. Science, 255(5046), 803–804. doi:10.

1126/science.1536004

Rish, I. et al. (2001). An empirical study of the naive Bayes classifier. In IJCAI 2001 workshop

on empirical methods in artificial intelligence (Vol. 3, 22, pp. 41–46).

Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: a versatile open

source tool for metagenomics. PeerJ, 4, e2584. doi:10.7717/peerj.2584

Santos, A., van Aerle, R., Barrientos, L., & Martinez-Urtaza, J. (2020). Computational methods

for 16S metabarcoding studies using Nanopore sequencing data. Computational and

Structural Biotechnology Journal, 18, 296–305. doi:https://doi.org/10.1016/j.csbj.2020.

01.005

Sato, Y., Miya, M., Fukunaga, T., Sado, T., & Iwasaki, W. (2018). MitoFish and MiFish

Pipeline: A Mitochondrial Genome Database of Fish with an Analysis Pipeline for

Environmental DNA Metabarcoding. Molecular Biology and Evolution, 35(6), 1553–

1555. doi:10.1093/molbev/msy074

Schenekar, T., Schletterer, M., Lecaudey, L. A., & Weiss, S. J. (2020). Reference databases,

primer choice, and assay sensitivity for environmental metabarcoding: Lessons learnt

from a re-evaluation of an eDNA fish assessment in the Volga headwaters. River Research

and Applications, 36(7), 1004–1013. doi:https://doi.org/10.1002/rra.3610

Schmieder, R., Lim, Y. W., Rohwer, F., & Edwards, R. (2010). TagCleaner: Identification and

removal of tag sequences from genomic and metagenomic datasets. BMC Bioinformatics,

11(1), 341. doi:10.1186/1471-2105-11-341

Sellers, G. S., Muri, C. D., Gómez, A., & Hänfling, B. (2018). Mu-DNA: a modular universal

DNA extraction method adaptable for a wide range of sample types. Metabarcoding and

Metagenomics, 2, e24556. doi:10.3897/mbmg.2.24556

Sepulveda, A. J., Schabacker, J., Smith, S., Al-Chokhachy, R., Luikart, G., & Amish, S. J. (2019).

Improved detection of rare, endangered and invasive trout in using a new large-volume

sampling method for eDNA capture. Environmental DNA, 1(3), 227–237. doi:https :

//doi.org/10.1002/edn3.23

SEQme. (2018). Microbiome and Metagenome Data analysis workshop. České Budějovice,

Czech Republic.

Seymour, M. (2019). Rapid progression and future of environmental DNA research. Communi-

cations Biology, 2(1), 80. doi:10.1038/s42003-019-0330-9

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical

Journal, 27(3), 379–423. doi:10.1002/j.1538-7305.1948.tb01338.x

Sigsgaard, E. E., Jensen, M. R., Winkelmann, I. E., Møller, P. R., Hansen, M. M., & Thomsen,

P. F. (2020). Population-level inferences from environmental DNA—Current status and

future perspectives. Evolutionary Applications, 13(2), 245–262. doi:https://doi.org/10.

1111/eva.12882

68

https://dx.doi.org/10.1126/science.1536004
https://dx.doi.org/10.1126/science.1536004
https://dx.doi.org/10.7717/peerj.2584
https://dx.doi.org/https://doi.org/10.1016/j.csbj.2020.01.005
https://dx.doi.org/https://doi.org/10.1016/j.csbj.2020.01.005
https://dx.doi.org/10.1093/molbev/msy074
https://dx.doi.org/https://doi.org/10.1002/rra.3610
https://dx.doi.org/10.1186/1471-2105-11-341
https://dx.doi.org/10.3897/mbmg.2.24556
https://dx.doi.org/https://doi.org/10.1002/edn3.23
https://dx.doi.org/https://doi.org/10.1002/edn3.23
https://dx.doi.org/10.1038/s42003-019-0330-9
https://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://dx.doi.org/https://doi.org/10.1111/eva.12882
https://dx.doi.org/https://doi.org/10.1111/eva.12882

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of

large phylogenies. Bioinformatics, 30(9), 1312–1313. doi:10.1093/bioinformatics/btu033

Strickler, K. M., Fremier, A. K., & Goldberg, C. S. (2015). Quantifying effects of UV-B, tem-

perature, and pH on eDNA degradation in aquatic microcosms. Biological Conservation,

183, 85–92. Special Issue: Environmental DNA: A powerful new tool for biological

conservation. doi:https://doi.org/10.1016/j.biocon.2014.11.038

Taberlet, P., Bonin, A., Zinger, L., & Coissac, E. (2018a). DNA amplification and multiplexing.

Environmental DNA. Oxford: Oxford University Press. doi:10.1093/oso/9780198767220.

003.0006

Taberlet, P., Bonin, A., Zinger, L., & Coissac, E. (2018b). DNA metabarcode choice and design.

Environmental DNA. Oxford: Oxford University Press. doi:10.1093/oso/9780198767220.

003.0002

Taberlet, P., Bonin, A., Zinger, L., & Coissac, E. (2018c). DNA metabarcoding data analysis.

Environmental DNA. Oxford: Oxford University Press. doi:10.1093/oso/9780198767220.

003.0008

Taberlet, P., Bonin, A., Zinger, L., & Coissac, E. (2018d). Freshwater ecosystems. Environmen-

tal DNA. Oxford: Oxford University Press. doi:10.1093/oso/9780198767220.003.0012

Taberlet, P., Coissac, E., Hajibabaei, M., & Rieseberg, L. H. (2012). Environmental DNA.

Molecular Ecology, 21(8), 1789–1793. doi:https://doi.org/10.1111/j.1365-294X.2012.

05542.x

Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., & Willerslev, E. (2012). Towards

next-generation biodiversity assessment using DNA metabarcoding. Molecular Ecology,

21(8), 2045–2050. doi:https://doi.org/10.1111/j.1365-294X.2012.05470.x

Tange, O. (2020). GNU Parallel 20201122 (’Biden’). Zenodo. doi:10.5281/zenodo.4284075

Thomsen, P. F. & Willerslev, E. (2015). Environmental DNA – An emerging tool in conservation

for monitoring past and present biodiversity. Biological Conservation, 183, 4–18. Special

Issue: Environmental DNA: A powerful new tool for biological conservation. doi:https:

//doi.org/10.1016/j.biocon.2014.11.019

Valentini, A., Taberlet, P., Miaud, C., Civade, R., Herder, J., Thomsen, P. F., . . . Dejean, T.

(2016). Next-generation monitoring of aquatic biodiversity using environmental DNA

metabarcoding. Molecular Ecology, 25(4), 929–942. doi:https://doi.org/10.1111/mec.

13428

van de Pol, I., Flik, G., & Gorissen, M. (2017). Comparative Physiology of Energy Metabolism:

Fishing for Endocrine Signals in the Early Vertebrate Pool. Frontiers in Endocrinology,

8, 36. doi:10.3389/fendo.2017.00036

Van Rossum, G. & Drake, F. L. (2009). Python 3 Reference Manual. Scotts Valley, CA:

CreateSpace.

69

https://dx.doi.org/10.1093/bioinformatics/btu033
https://dx.doi.org/https://doi.org/10.1016/j.biocon.2014.11.038
https://dx.doi.org/10.1093/oso/9780198767220.003.0006
https://dx.doi.org/10.1093/oso/9780198767220.003.0006
https://dx.doi.org/10.1093/oso/9780198767220.003.0002
https://dx.doi.org/10.1093/oso/9780198767220.003.0002
https://dx.doi.org/10.1093/oso/9780198767220.003.0008
https://dx.doi.org/10.1093/oso/9780198767220.003.0008
https://dx.doi.org/10.1093/oso/9780198767220.003.0012
https://dx.doi.org/https://doi.org/10.1111/j.1365-294X.2012.05542.x
https://dx.doi.org/https://doi.org/10.1111/j.1365-294X.2012.05542.x
https://dx.doi.org/https://doi.org/10.1111/j.1365-294X.2012.05470.x
https://dx.doi.org/10.5281/zenodo.4284075
https://dx.doi.org/https://doi.org/10.1016/j.biocon.2014.11.019
https://dx.doi.org/https://doi.org/10.1016/j.biocon.2014.11.019
https://dx.doi.org/https://doi.org/10.1111/mec.13428
https://dx.doi.org/https://doi.org/10.1111/mec.13428
https://dx.doi.org/10.3389/fendo.2017.00036

Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naive Bayesian Classifier for

Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Applied and

Environmental Microbiology, 73(16), 5261–5267. doi:10.1128/AEM.00062-07

Wangensteen, O. S. & Turon, X. (2017). Metabarcoding Techniques for Assessing Biodiversity

of Marine Animal Forests. In S. Rossi, L. Bramanti, A. Gori, & C. Orejas (Eds.), Ma-

rine animal forests: The ecology of benthic biodiversity hotspots (pp. 445–473). Cham:

Springer International Publishing. doi:10.1007/978-3-319-21012-4_53

Weigand, H., Beermann, A. J., Čiampor, F., Costa, F. O., Csabai, Z., Duarte, S., . . . Ekrem, T.

(2019). DNA barcode reference libraries for the monitoring of aquatic biota in Europe:

Gap-analysis and recommendations for future work. Science of The Total Environment,

678, 499–524. doi:https://doi.org/10.1016/j.scitotenv.2019.04.247

Whittaker, R. H. (1972). Evolution and measurement of species diversity. TAXON, 21(2-3),

213–251. doi:https://doi.org/10.2307/1218190

Willemsen, J. (1980). Fishery-aspects of eutrophication. Hydrobiological Bulletin, 14(1), 12–21.

doi:10.1007/BF02260268

Xiong, W. & Zhan, A. (2018). Testing clustering strategies for metabarcoding-based investi-

gation of community–environment interactions. Molecular Ecology Resources, 18(6),

1326–1338. doi:https://doi.org/10.1111/1755-0998.12922

Zafeiropoulos, H., Viet, H. Q., Vasileiadou, K., Potirakis, A., Arvanitidis, C., Topalis, P., . . .

Pafilis, E. (2020). PEMA: a flexible Pipeline for Environmental DNA Metabarcoding

Analysis of the 16S/18S ribosomal RNA, ITS, and COI marker genes. GigaScience, 9(3).

giaa022. doi:10.1093/gigascience/giaa022

Zielezinski, A., Vinga, S., Almeida, J., & Karlowski, W. M. (2017). Alignment-free sequence

comparison: benefits, applications, and tools. Genome Biology, 18(1), 186. doi:10.1186/

s13059-017-1319-7

70

https://dx.doi.org/10.1128/AEM.00062-07
https://dx.doi.org/10.1007/978-3-319-21012-4_53
https://dx.doi.org/https://doi.org/10.1016/j.scitotenv.2019.04.247
https://dx.doi.org/https://doi.org/10.2307/1218190
https://dx.doi.org/10.1007/BF02260268
https://dx.doi.org/https://doi.org/10.1111/1755-0998.12922
https://dx.doi.org/10.1093/gigascience/giaa022
https://dx.doi.org/10.1186/s13059-017-1319-7
https://dx.doi.org/10.1186/s13059-017-1319-7

List of Tables

3.1 Trophic state, geographical, and morphological parameters of studied reservoirs. 6

3.2 List of species detected by traditional methods by FishEcU members (www.fis

hecu.cz) in the studied reservoirs in the last 3 years (2018, 2019, and 2020). . 7

3.3 Sequences added to the reference database developed at the University of Hull. 10

3.4 List of species with identical subsequences in the region between the primers in

the alignment and the species that represents the group in the reference database

after joining the identical sequences to a unique entry in the reference file. . . 13

4.1 Number of reads after each step on data processing, including positive and

negative controls. 33

4.2 Number of reads assigned to species for each pipeline, excluding positive and

negative controls. 34

4.3 Number of reads assigned to species considering pipelines, reservoirs, and

seasons, excluding positive and negative controls. 34

4.4 Species in the reference library detected in at the least one of the pipelines. . . 35

4.5 Species in the reference library not detected in any of the pipelines. 36

4.6 Species removed from the pipeline detections after discarding number of reads

assigned smaller than a threshold of 0.1 % of the total of reads in the sample. 36

4.7 Number of species detected considering pipelines, reservoirs, and seasons,

excluding positive and negative controls. 37

4.8 Beta diversity Jaccard dissimilarity indices considering pipelines. 49

71

www.fishecu.cz
www.fishecu.cz

List of Figures

3.1 Metabarcoding workflow for the pipelines. 9

4.1 Average of number of reads assigned to species considering all pipelines where

the error bars indicate the standard deviations, excluding positive and negative

controls. The left plot shows the data without axis transformations, whereas the

right plot shows the data with logarithm base 2 transformation applied to x axis 38

4.2 Number of reads assigned to species for each pipeline, excluding positive and

negative controls. 39

4.3 For each reservoir, average of number of reads assigned to species considering

all pipelines, excluding positive and negative controls. 40

4.4 For each season, average of number of reads assigned to species considering all

pipelines, excluding positive and negative controls. 41

4.5 Number of reads assigned to species considering pipelines, reservoirs, and

seasons, excluding positive and negative controls. 42

4.6 Alpha diversity species richness considering pipelines, reservoirs, and seasons,

excluding positive and negative controls. 43

4.7 Alpha diversity species richness considering pipelines, excluding positive and

negative controls. Median values (thick lines), upper and lower quartiles

(boxes), maximum and minimum values (whiskers) and outlier (full circle) are

shown. 44

4.8 Alpha diversity species richness considering reservoirs, excluding positive

and negative controls. Median values (thick lines), upper and lower quartiles

(boxes), maximum and minimum values (whiskers) are shown. 44

4.9 Alpha diversity species richness considering seasons, excluding positive and

negative controls. Median values (thick lines), upper and lower quartiles

(boxes), maximum and minimum values (whiskers) are shown. 45

4.10 Alpha diversity shannon index considering pipelines, reservoirs, and seasons,

excluding positive and negative controls. 46

72

4.11 Alpha diversity shannon index considering pipelines, excluding positive and

negative controls. Median values (thick lines), upper and lower quartiles

(boxes), maximum and minimum values (whiskers) and outlier (full circle) are

shown. 46

4.12 Alpha diversity shannon index considering reservoirs, excluding positive and

negative controls. Median values (thick lines), upper and lower quartiles

(boxes), maximum and minimum values (whiskers) are shown. 47

4.13 Alpha diversity shannon index considering seasons, excluding positive and

negative controls. Median values (thick lines), upper and lower quartiles

(boxes), maximum and minimum values (whiskers) are shown. 48

4.14 Beta diversity Jaccard index considering pipelines, reservoirs, and seasons,

excluding positive and negative controls. The X axis indicates a variance of

38.31 % in the data observed in the X direction, whereas the Y axis represents

a variance of 21.57 % in the Y direction. 49

4.15 Percentage of assigned reads to the positive control Maylandia zebra based on

the initial total of reads (demultiplexed reads) used as the input data. 50

73

List of Source Codes

3.1 Execution of the Source Code A.1. 11

3.2 Execution of the Source Code A.2. 11

3.3 Execution of the Source Code A.3. 11

3.4 Execution of the Source Code A.4. 11

3.5 Execution of the Source Code A.5. 11

3.6 Execution of the Source Code A.6. 12

3.7 Execution of the Source Code A.7. 12

3.8 Execution of the Source Code A.3 with the addition of primers in the alignment. 12

3.9 Execution of the Source Code A.9. 13

3.10 Execution of the Source Code A.10. 14

3.11 Execution of the Source Code A.11. 14

3.12 Execution of the Anacapa read sequences curation script. For the complete

script code see https://github.com/limey-bean/Anacapa/blob/New-Master/Anac

apa_db/anacapa_QC_dada2.sh. 14

3.13 Execution of the Anacapa taxonomic assignment script. For the complete script

code see https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_d

b/anacapa_classifier.sh. 14

3.14 Bowtie database creation using the reference database in FASTA format and

the taxonomic table with the first column having the name of the read and the

second column having taxonomic rank from superkingdom to species separated

by semicolon. 16

3.15 Example of execution of the tool used by the MiFish J01_Fastqc.sh script

(https://doi.org/10.5061/dryad.54v2q). 24

3.16 Example of execution of the tool used by the MiFish J02_TailTrimming.sh

script (https://doi.org/10.5061/dryad.54v2q). 24

3.17 Example of execution of the tool used by the MiFish J03_PE_read_assembly.sh

script (https://doi.org/10.5061/dryad.54v2q). The options -O (–allow-outies),

-m (–min-overlap), and -M (–max-overlap) were included to the original version

of the script. 24

74

https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/anacapa_QC_dada2.sh
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/anacapa_QC_dada2.sh
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/anacapa_classifier.sh
https://github.com/limey-bean/Anacapa/blob/New-Master/Anacapa_db/anacapa_classifier.sh
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q

3.18 Example of execution of the tool used by the MiFish J04_RemoveN.sh script

(https://doi.org/10.5061/dryad.54v2q). The custom Perl script Fastq_Nread_-

trim.pl can be found on https://doi.org/10.5061/dryad.54v2q. 25

3.19 Example of execution of the tool used by the MiFish J05_Length_check_-

MiFish.sh script (https://doi.org/10.5061/dryad.54v2q). The custom Perl script

check_seq_length_MiFish.pl can be found on https://doi.org/10.5061/dryad.54

v2q. 25

3.20 Example of execution of the tool used by the MiFish J06_Primer_removal_-

MiFish.sh script (https://doi.org/10.5061/dryad.54v2q). 25

3.21 Example of execution of the tools used by the MiFish J07_Processed_read_-

counter.sh script (https://doi.org/10.5061/dryad.54v2q). 26

3.22 Example of execution of the tools used by the MiFish J10_Uclust_derep_trim.sh

script (https://doi.org/10.5061/dryad.54v2q). The options -derep_fulllength and

-output from the original script USEARCH version were renamed to -fastx_-

uniques and -fastaout, respectively, in the USEARCH version 11.0.667 used

to execute the pipeline. Custom Perl scripts size_extracter_def.pl, uc_size_-

processor.pl, and uc_size_fas_integrator.pl can be found on https://doi.org/10.5

061/dryad.54v2q. 26

3.23 Example of execution of the tool used by the MiFish J11_Blastn.sh script

(https://doi.org/10.5061/dryad.54v2q). 27

3.24 Example of execution of the tools used by the MiFish J12_Blastres_counts.sh

script (https://doi.org/10.5061/dryad.54v2q). Custom Perl scripts blastres_-

parser_v5.pl, blastres_parse_counter_v4.pl, and blastres_parser_LODs_v2.pl

can be found on https://doi.org/10.5061/dryad.54v2q. 28

3.25 Example of execution of the tools used by the MiFish J13_Allspecies_list_-

make.sh script (https://doi.org/10.5061/dryad.54v2q). 28

3.26 Example of execution of the tools used by the MiFish J14_Allsamples_table_-

make.sh script (https://doi.org/10.5061/dryad.54v2q). Custom Perl scripts

allsamples_nameprinter_v1.pl and allsamples_species.counter_v2.pl can be

found on https://doi.org/10.5061/dryad.54v2q. 28

3.27 Trainning classifier using the reference database and the taxonomic table. . . 30

3.28 Classifier properties file. 30

3.29 Execution of the Source Code A.15. 31

A.1 VSEARCH clustering to remove redundant sequences. 77

A.2 Discard sequences smaller than the threshold. 79

A.3 Alignment of the sequences using a multiple alignment algorithm. 81

A.4 Alignment trimming to remove poorly aligned regions. 88

A.5 Identify taxonomically mislabelled sequences. 90

75

https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q
https://doi.org/10.5061/dryad.54v2q

A.6 Remove from the genbank file mislabelled sequences identified by the sativa

algorithm. 97

A.7 Build phylogenetic tree from a multiple alignment file. 99

A.8 FASTQ demultiplexer developed by the Evolutionary and Environmental Ge-

nomics Group at the University of Hull (http://www.evohull.org/). 102

A.9 Demultiplexer automatization for all files inside a folder. 107

A.10 Remove adapter from the 3’ end of the read fragment. 110

A.11 Convert genbank format to FASTA format and create a taxonomic table if

pipeline is either Anacapa or SEQme. 114

A.12 Barque configuration file modified according to the project data. 124

A.13 metaBEAT workflow jupyter notebook. 128

A.14 SEQme pipeline workflow. 128

A.15 Count the number of sequence reads for each FASTA/FASTQ file in a folder

based on pattern provided. 144

A.16 Remove assignments where the number of reads assigned falls below a threshold

of 0.1 % of the total of reads assigned for the sample. 147

A.17 Functions to create tables. 148

A.18 Create tables. All tables for each pipeline are joined in a unique file, the control

samples are removed and new tables are created, a table with only control

sample is created, a detailed version of the joined table is also created, and

cumulative tables are created. 164

A.19 Calculate the number of reads and species, and create charts for pipelines,

reservoirs, and season. 166

A.20 Calculate alpha diversity species richness and create charts for pipelines, reser-

voirs, and season. 179

A.21 Calculate alpha diversity shannon index and create charts for pipelines, reser-

voirs, and season. 186

A.22 Calculate beta diversity Jaccard dissimilarity indices and create a chart for

pipelines, reservoirs, and season. 194

A.23 Calculate positive control Maylandia zebra detection and create a chart showing

the difference between pipelines. 198

76

http://www.evohull.org/

Appendices

1 #!/usr/bin/env python3

2 import os

3 import argparse

4 import subprocess

5 from Bio import SeqIO

6 from tqdm import tqdm

7 from multiprocessing import cpu_count

8

9 """Clustering sequences and removing redundancy from the file.

10

11 Removing redundancy by clustering sequences with vsearch.

12 """

13

14 def getArguments():

15 """Get arguments from terminal

16

17 This function gets arguments from terminal via argparse

18

19 Returns

20 -------------

21 arguments: Namespace

22 Namespace object with all arguments

23 """

24

25 num_threads = cpu_count() - 2

26 if num_threads < 1:

27 num_threads = 1

28

29 parser = argparse.ArgumentParser(

30 description='Removing redundancy from the gb file.')

31 parser.add_argument('gb', type=argparse.FileType('r'),

32 help='genbank file .gb')

33 parser.add_argument('-n', '--num_threads', nargs='?', type = int,

34 const=num_threads, default=num_threads,

35 help="Number of threads to be executed in parallel.")

77

36

37 return parser.parse_args()

38

39 def gb2fasta(gb):

40 """Convert genbank file to fasta.

41

42 This function converts a file in a genbank

43 format to a file in a fasta file format.

44

45 Parameters

46 -------------

47 gb: io.TextIOWrapper

48 Genbank file

49

50 Returns

51 -------------

52 fasta: str

53 Name of the new fasta file

54

55 """

56

57 base = os.path.basename(gb.name)

58 name = os.path.splitext(base)[0]

59

60 fasta = "{}.fasta".format(name)

61 SeqIO.convert(gb, "genbank", fasta, "fasta")

62

63 return fasta

64

65 def clustering(fasta, num_threads):

66 """Clustering sequences with VSEARCH

67

68 This function uses VSEARCH suite to

69 cluster the sequences using the cluster_fast

70 algorithm.

71

72

73 Parameters

74 -------------

75 fasta: str

76 Fasta file name

77 num_threads: int

78 Number of threads to be used

79 """

80

81 vsearch = "vsearch -threads {num_threads} --cluster_fast {fasta}" \

78

82 " --strand both --uc cluster.uc --id 1 --query_cov 1"

83 subprocess.call(vsearch.format(num_threads = num_threads,

84 fasta = fasta) , shell=True)

85

86 def removing_redundancy(gb):

87 """Removing redundancy from genbank file after

88 clustering sequences

89

90 This function parses the uc file generated

91 after clustering the sequences to discard

92 the sequences from the original file.

93

94

95 Parameters

96 -------------

97 gb: io.TextIOWrapper

98 Genbank file

99 """

100

101 with open("cluster.uc") as cluster:

102 gb_all_data = SeqIO.index(gb.name, "genbank")

103

104 base = os.path.basename(gb.name)

105 name = os.path.splitext(base)[0]

106

107 gb_c_name = "{}_c.gb".format(name)

108 with open(gb_c_name, "w") as gb_c:

109 for uc in tqdm(cluster, desc="Removing redundancy"):

110 if uc[0] == "C":

111 row = uc.split("\t")

112 print(gb_all_data.get_raw(row[-2]).decode(),

113 file=gb_c, end="")

114

115

116 if __name__ == "__main__":

117 args = getArguments()

118 fasta = gb2fasta(args.gb)

119 clustering(fasta, args.num_threads)

120 print()

121 removing_redundancy(args.gb)

Source Code A.1: VSEARCH clustering to remove redundant sequences.

1 #!/usr/bin/env python3

2 import os

79

3 import argparse

4 from Bio import SeqIO

5 from tqdm import tqdm

6

7 """

8 Filter sequences by length and exclude all the outliers.

9

10 Find all sequences with length lower than threshold, and

11 remove them from the genbank file.

12 """

13

14 def getArguments():

15 """Get arguments from terminal

16

17 This function gets arguments from terminal via argparse

18

19 Returns

20 -------------

21 arguments: Namespace

22 Namespace object with all arguments

23 """

24

25 parser = argparse.ArgumentParser(

26 description='Filter sequences by length and exclude all the outliers.')

27 parser.add_argument('gb', type=argparse.FileType('r'),

28 help='genbank file .gb')

29 parser.add_argument('-t', '--threshold', nargs='?', const=100,

30 default=100, type = int,

31 help="Threshold for removing the sequences, default: 100")

32

33 return parser.parse_args()

34

35 def filter_by_length(gb, threshold):

36 """Filter sequences by length and exclude all the outliers

37

38 This function removes all sequences with sequence length

39 lower than the threshold.

40

41 Parameters

42 -------------

43 gb : io.TextIOWrapper

44 Genbank file

45

46 threshold : int

47 Threshold value

48 """

80

49

50 gb_all_data = SeqIO.index(gb.name, "genbank")

51 gb_new_data = []

52

53 base = os.path.basename(gb.name)

54 name = os.path.splitext(base)[0]

55

56 gb_l_name = "{}_l.gb".format(name)

57 for acession in tqdm(gb_all_data,

58 desc="Removing sequences smaller than {}".format(threshold)):

59

60 record = gb_all_data.get(acession)

61 if len(record.seq) > threshold:

62 gb_new_data.append(record)

63

64 SeqIO.write(gb_new_data, gb_l_name, "genbank")

65

66

67 if __name__ == "__main__":

68 args = getArguments()

69 filter_by_length(args.gb, args.threshold)

Source Code A.2: Discard sequences smaller than the threshold.

1 #!/usr/bin/env python3

2 import os

3 import pathlib

4 import argparse

5 import tempfile

6 import datetime

7 from tqdm import tqdm

8 from Bio import SeqIO

9 from Bio import Entrez

10 from ete3 import NCBITaxa

11 from Bio.Align.Applications import *

12 from multiprocessing import cpu_count

13

14 """

15 Sequences Alignment:

16

17 Align sequences by group of sequences

18 based on taxonomic rank chosen (example: species).

19

20 A file with primers can be provided to be included

21 in the alignment.

81

22

23 Multiple sequence alignment program can be chosen.

24 """

25

26 CHOICES_P = ["mafft", "clustalo", "muscle", "all"]

27

28 CHOICES_R = ["superkingdom", "kingdom", "phylum",

29 "subphylum", "superclass", "class",

30 "subclass", "order", "suborder",

31 "family", "subfamily", "tribe",

32 "genus", "species", "all"]

33

34 CHOICES_S = ["taxdump", "ncbi"]

35

36 LINEAGES = {}

37

38 PATH_MAIN = "{}_alignments/".format(datetime.datetime.now().strftime("%d%m%Y_%H%M%S")

↪→)

39

40 LOG = "{}Alignment.log".format(PATH_MAIN)

41

42

43 def getArguments():

44 """Get arguments from terminal

45

46 This function gets arguments from terminal via argparse

47

48 Returns

49 -------------

50 arguments: Namespace

51 Namespace object with all arguments

52 """

53

54 num_threads = cpu_count() - 2

55 if num_threads < 1:

56 num_threads = 1

57

58 parser = argparse.ArgumentParser(

59 description="Alignment of sequences from a genbank"\

60 " file based on taxonomic rank.")

61 parser.add_argument("gb", type=argparse.FileType("r"),

62 help="genbank file (.gb)")

63 parser.add_argument("-p", "--program", nargs="*", default=["mafft"],

64 choices=CHOICES_P, type = lambda s : s.lower(),

65 help="Multiple sequence alignment program, default: mafft")

66 parser.add_argument("-r", "--rank", nargs="*", default=["species"],

82

67 choices=CHOICES_R, type = lambda s : s.lower(),

68 help="Taxonomic classification rank to be used"\

69 " to separate the groups, default: species")

70 parser.add_argument("-s", "--source", nargs="?", const="taxdump", default="taxdump

↪→ ",

71 choices=CHOICES_S, type = lambda s : s.lower(),

72 help="Source to be used to collect"\

73 " the info about the taxonomic rank, default: taxdump")

74 parser.add_argument("-pr", "--primers", type=argparse.FileType("r"),

75 help="A fasta file with primers")

76 parser.add_argument("-sp", "--species_from_file", action="store_true",

77 help="Should the species name from file"\

78 " be used or be collected from NCBI/taxdump?")

79 parser.add_argument('-n', '--num_threads', nargs='?', type = int,

80 const=num_threads, default=num_threads,

81 help="Number of threads to be executed in parallel.")

82

83 return parser.parse_args()

84

85 def get_tax_lineage(taxonid, source):

86 """Return taxonomy lineage information

87

88 This function uses Biopython library to connect NCBI database

89 and search for taxonomy information or ete3 to download

90 taxdump file and search the information locally.

91

92 Parameters

93 -------------

94 taxonid : string

95 Taxonomic id of the species

96 source : string

97 Source to be used to collect the info about the taxonid

98

99 Returns

100 -------------

101 lineage: dict

102 Species lineage

103

104 """

105

106 if taxonid not in LINEAGES:

107 if source == "taxdump":

108 ncbi_taxdump = NCBITaxa()

109 lineage_ids = ncbi_taxdump.get_lineage(taxonid)

110 ranks = ncbi_taxdump.get_rank(lineage_ids)

111 names = ncbi_taxdump.get_taxid_translator(lineage_ids)

83

112 lineage = {ranks[i]:names[i] for i in lineage_ids}

113

114 LINEAGES[taxonid] = lineage

115 return LINEAGES[taxonid]

116

117 while True:

118 data = ""

119 try:

120 Entrez.email = "Your.Name.Here@example.org"

121 handle = Entrez.efetch(id = taxonid, db = "taxonomy", retmode = "xml")

122 data = Entrez.read(handle)

123 handle.close()

124 except Exception as e:

125 with open(LOG, "a") as log:

126 print("Error when searching information about {}".format(taxonid),

127 file=log)

128

129 if data:

130 break

131

132 lineage = {d["Rank"]:d["ScientificName"] for d in data[0]["LineageEx"]}

133 lineage[data[0]["Rank"]] = data[0]["ScientificName"]

134 LINEAGES[taxonid] = lineage

135

136

137 return LINEAGES[taxonid]

138

139 def read_sequences(gb, rank, source, species_from_file):

140 """Read the genbank file and parse the sequences

141 for the taxonomic rank

142

143 This function uses Biopython library to scan the genbank file

144 and parse the sequences for the taxonomic rank.

145

146 Parameters

147 -------------

148 gb : io.TextIOWrapper

149 A genbank file

150 rank: string

151 Taxonomic rank

152 source : string

153 Source to be used to collect the info about the taxonid

154 species_from_file: bool

155 Indicate if species name from file should be used

156

157 Returns

84

158 -------------

159 sequences: dictionary

160 A dictionary with key representing ranks and values

161 representing sequences in fasta format with species name

162 as the header of the sequence

163

164 """

165

166 print("Rank: {}".format(rank))

167 sequences = {}

168 for r in tqdm(gb, desc="Reading sequences"):

169 record = gb.get(r)

170 for feature in record.features:

171 if feature.type == "source" and \

172 "taxon" in feature.qualifiers["db_xref"][0]:

173 taxonid = feature.qualifiers["db_xref"][0].split(":")[1]

174

175 lineage = get_tax_lineage(taxonid, source)

176

177 if species_from_file:

178 lineage["species"] = record.features[0].qualifiers["organism"][0]

179 else:

180 if "species" not in lineage:

181 lineage["species"] = record.features[0].qualifiers["organism"][0]

182

183 try:

184 if lineage[rank] not in sequences:

185 sequences[lineage[rank]] = [">{}_{}\n{}".format(

186 lineage["species"].replace(" ", "_"),

187 record.id, record.seq)]

188 else:

189 sequences[lineage[rank]].append(">{}_{}\n{}".format(

190 lineage["species"].replace(" ", "_"),

191 record.id, record.seq))

192 except:

193 with open(LOG, "a") as log:

194 print("\nRank '{}' not found for organism '{}', taxonid '{}'".format(

195 rank, lineage["species"], taxonid), file=log)

196

197 return sequences

198

199 def alignment(sequences, program, rank, primers, num_threads):

200 """Sequences alignment using the program chosen by rank level.

201

202 This function uses either MAFFT, Clustal omega, or Muscle

203 to perform a multiple alignment for each group

85

204 of sequences in the rank(s) chosen.

205

206 Parameters

207 -------------

208 sequences : dictionary

209 A dictionary with sequences

210 program: string

211 Program to be used to align the sequences

212 rank: string

213 Taxonomic rank

214 primers: list

215 A list of primers to be included in the alignment

216 num_threads: int

217 Number of threads to be used

218

219 """

220

221 print("Program: {}".format(program))

222 path_alignments = "{}{}_alignments/{}".format(PATH_MAIN, program, rank)

223 pathlib.Path(path_alignments).mkdir(parents=True, exist_ok=True)

224

225 for seq in tqdm(sequences, desc="Alignment"):

226 with tempfile.NamedTemporaryFile(mode="w") as temp:

227 temp.write("\n".join(primers + sorted(sequences[seq])))

228 temp.seek(0)

229

230 path_seq = "{}/{}".format(path_alignments, seq.replace(" ", "_"))

231 pathlib.Path(path_seq).mkdir(parents=True, exist_ok=True)

232

233 try:

234 if program == "clustalo":

235 cmdline = ClustalOmegaCommandline(

236 infile=temp.name,

237 outfile="{}/{}.aln".format(path_seq,

238 seq.replace(" ", "_")),

239 guidetree_out="{}/{}.tree".format(path_seq,

240 seq.replace(" ", "_")),

241 force=True,

242 threads = num_threads

243)

244 cmdline()

245

246 elif program == "mafft":

247 cmdline = MafftCommandline(input=temp.name, treeout=True,

248 localpair=True, maxiterate=1000,

249 adjustdirectionaccurately=True,

86

250 thread = num_threads)

251 stdout, stderr = cmdline()

252 os.rename("{}.tree".format(temp.name), "{}/{}.tree".format(path_seq,

↪→
253 seq.replace(" ", "_")))

254 with open("{}/{}.aln".format(path_seq,

255 seq.replace(" ", "_")), "w") as align:

256 print(stdout, file=align)

257

258 elif program == "muscle":

259 cmdline = MuscleCommandline(input=temp.name,

260 clwout="{}/{}.clw".format(path_seq,

261 seq.replace(" ", "_")),

262 fastaout="{}/{}.fa".format(path_seq,

263 seq.replace(" ", "_")),

264 htmlout="{}/{}.html".format(path_seq,

265 seq.replace(" ", "_")),

266 msfout="{}/{}.msf".format(path_seq,

267 seq.replace(" ", "_")),

268 phyiout="{}/{}.phy".format(path_seq,

269 seq.replace(" ", "_")),

270 tree1="{}/{}_1.tree".format(path_seq,

271 seq.replace(" ", "_")),

272 tree2="{}/{}_2.tree".format(path_seq,

273 seq.replace(" ", "_"))

274)

275

276 cmdline()

277

278 except Exception as e:

279 if os.listdir(path_seq) == []:

280 os.rmdir(path_seq)

281 with open(LOG, "a") as log:

282 print("{species}: {error}".format(

283 species=seq, error=e), file=log)

284 continue

285

286

287 if __name__ == "__main__":

288 args = getArguments()

289

290 pathlib.Path(PATH_MAIN).mkdir(parents=True, exist_ok=True)

291 gb = SeqIO.index(args.gb.name, "genbank")

292 with open(LOG, "w"): pass

293

294 primers = []

87

295 if args.primers:

296 try:

297 primers = [">{}\n{}".format(r.description.replace(" ", "_"), r.seq)

298 for r in SeqIO.parse(args.primers, "fasta")]

299 except:

300 with open(LOG, "a") as log:

301 print("Fasta primers not found!! " +

302 "Continuing without primers", file=log)

303

304 ranks = args.rank

305 if "all" in args.rank:

306 ranks = CHOICES_R[:-1]

307

308 programs = args.program

309 if "all" in args.program:

310 programs = CHOICES_P[:-1]

311

312 for rank in ranks:

313 sequences = read_sequences(gb, rank, args.source,

314 args.species_from_file)

315 for program in programs:

316 alignment(sequences, program, rank, primers, args.num_threads)

Source Code A.3: Alignment of the sequences using a multiple alignment algorithm.

1 #!/usr/bin/env python3

2 import os

3 import argparse

4 import tempfile

5 import subprocess

6 from Bio import SeqIO

7 from tqdm import tqdm

8

9 """

10 Trim alignment to remove large gaps in both extremities

11 of the sequences for building the phylogenetic tree.

12 The new trimmed alignment should not be used as a

13 reference to map reads.

14 """

15

16 def getArguments():

17 """Get arguments from terminal

18

19 This function gets arguments from terminal via argparse

20

88

21 Returns

22 -------------

23 arguments: Namespace

24 Namespace object with all arguments

25 """

26

27 parser = argparse.ArgumentParser(

28 description="Trim alignment to remove large gaps in the" +

29 " extremities of the sequences for building the tree.")

30 parser.add_argument('aln', type=argparse.FileType('r'),

31 help='alignment file')

32

33 return parser.parse_args()

34

35 def trim_alignment(aln):

36 """Trim the alignment to remove large gaps

37

38 This function uses trimal to remove large gaps from the

39 multiple alignment sequences.

40

41 Parameters

42 -------------

43 aln: io.TextIOWrapper

44 Alignment file

45 """

46

47 base = os.path.basename(aln.name)

48 name = os.path.splitext(base)[0]

49

50 trimal = "trimal -in {} -gappyout > {}_t.aln".format(aln.name, name)

51 subprocess.call(trimal , shell=True)

52

53 def convert2Phy(aln):

54 """Convert Alignment to PHYLIP's format

55

56 This function uses biopython package to read an alignment file,

57 remove the name of the species (only accession number is kept),

58 and convert it to PHYLIP's format.

59

60 Parameters

61 -------------

62 aln: io.TextIOWrapper

63 Alignment file

64 """

65

66 base = os.path.basename(aln.name)

89

67 name = os.path.splitext(base)[0]

68

69 aln_t = "{}_t.aln".format(name)

70 phy = "{}.phy".format(name)

71

72 with open(aln_t) as aln_file:

73 aln_f = aln_file.read().split(">")

74

75 for i in range(len(aln_f)):

76 if aln_f[i]:

77 aln_s = aln_f[i].split("_")

78 aln_f[i] = aln_s[-1]

79 if not aln_f[i][0].isalpha():

80 aln_f[i] = "_".join(aln_s[-2:])

81

82 with tempfile.NamedTemporaryFile(mode='w') as temp:

83 temp.write(">".join(aln_f))

84 temp.seek(0)

85

86 SeqIO.convert(temp.name, "fasta", phy, "phylip-relaxed")

87

88

89

90 if __name__ == "__main__":

91 args = getArguments()

92 trim_alignment(args.aln)

93 convert2Phy(args.aln)

Source Code A.4: Alignment trimming to remove poorly aligned regions.

1 #!/usr/bin/env python3

2 import os

3 import csv

4 import pathlib

5 import argparse

6 import datetime

7 import subprocess

8 from Bio import SeqIO

9 from Bio import Entrez

10 from tqdm import tqdm

11 from ete3 import NCBITaxa

12

13 """

14 The SATIVA Algorithm is used for taxonomically

15 mislabelled sequences identification and to

90

16 suggest corrections.

17 """

18

19 CHOICES_S = ["ncbi", "taxit", "taxdump"]

20

21 TAX_LEVELS = ["superkingdom","phylum","class","order","family","genus","species"]

22 LINEAGES = {}

23

24 PATH_MAIN = "{}_sativa/".format(datetime.datetime.now().strftime("%d%m%Y_%H%M%S"))

25 PATH_TO_SATIVA_TAX = "{PATH_MAIN}Sativa.tax".format(PATH_MAIN=PATH_MAIN)

26 PATH_TO_SATIVA = "sativa/"

27

28 PATH_TO_TAXID = "{PATH_INFORMED}/TaxIDS.txt"

29 PATH_TO_TAXA = "{PATH_INFORMED}/Taxa.csv"

30 PATH_TO_DB = "{PATH_INFORMED}/ncbi_taxonomy.db"

31

32 def getArguments():

33 """Get arguments from terminal

34

35 This function gets arguments from terminal via argparse

36

37 Returns

38 -------------

39 arguments: Namespace

40 Namespace object with all arguments

41 """

42

43 parser = argparse.ArgumentParser(

44 description="Identification of taxonomically"\

45 " mislabelled sequences")

46 parser.add_argument("gb", type=argparse.FileType("r"),

47 help="genbank format file (.gb)")

48 parser.add_argument("phy", type=argparse.FileType("r"),

49 help="PHYLIP multiple sequence alignment format file (.phy)")

50 parser.add_argument("-s", "--source", nargs="?", const="taxdump", default="taxdump

↪→ ",

51 choices=CHOICES_S, type = lambda s : s.lower(),

52 help="Source to be used to collect"\

53 " the info about the taxonomic rank, default: taxdump")

54 parser.add_argument('-p', '--path_to_sativa', nargs='?', type = str,

55 const=PATH_TO_SATIVA, default=PATH_TO_SATIVA,

56 help="Path to sativa code.")

57 parser.add_argument('-t', '--path_to_taxid_files', nargs='?', type = str,

58 const=PATH_MAIN, default=PATH_MAIN,

59 help="Path to taxit files.")

60

91

61 return parser.parse_args()

62

63 def download_and_install_sativa():

64 """Check if sativa is installed

65

66 This function checks if the path to sativa exists

67 and if sativa was installed.

68

69 """

70

71 print("Downloading sativa ...")

72 subprocess.call("git clone --recursive" \

73 " https://github.com/"\

74 "amkozlov/sativa.git {path_to_sativa}".format(

75 path_to_sativa=PATH_TO_SATIVA),

76 shell=True)

77

78 print("Installing sativa ...")

79 subprocess.call("bash {path_to_sativa}/install.sh".format(

80 path_to_sativa=PATH_TO_SATIVA),

81 shell=True)

82

83 def get_tax_lineage(taxonid, source, tax_rank_id={}):

84 """Return taxonomy lineage information

85

86 This function uses either Biopython library to connect

87 NCBI database and search for taxonomy information

88 or searches the information locally by using ete3 taxdump

89 file or taxit program to create sql version of it.

90

91 Parameters

92 -------------

93 taxonid : string

94 Taxonomic id of the species

95 source : string

96 Source to be used to collect the info about the taxonid

97 tax_rank_id: dict

98 Taxonomic rank and id

99

100 Returns

101 -------------

102 lineage: dict

103 Species lineage

104

105 """

106

92

107 if taxonid not in LINEAGES:

108 if source == "taxdump":

109 ncbi_taxdump = NCBITaxa()

110 lineage_ids = ncbi_taxdump.get_lineage(taxonid)

111 ranks = ncbi_taxdump.get_rank(lineage_ids)

112 names = ncbi_taxdump.get_taxid_translator(lineage_ids)

113 lineage = {ranks[i]:names[i] for i in lineage_ids}

114

115 LINEAGES[taxonid] = lineage

116 return LINEAGES[taxonid]

117

118 if source == "taxit":

119 lineage = {level:tax_rank_id[tax_rank_id[

120 taxonid][level]]["tax_name"]

121 for level in TAX_LEVELS}

122

123 LINEAGES[taxonid] = lineage

124 return LINEAGES[taxonid]

125

126

127 while True:

128 data = ""

129 try:

130 Entrez.email = "Your.Name.Here@example.org"

131 handle = Entrez.efetch(id = taxonid, db = "taxonomy", retmode = "xml")

132 data = Entrez.read(handle)

133 handle.close()

134 except Exception as e:

135 with open(LOG, "a") as log:

136 print("Error when searching information about {}".format(taxonid),

137 file=log)

138

139 if data:

140 break

141

142 lineage = {d["Rank"]:d["ScientificName"] for d in data[0]["LineageEx"]}

143 lineage[data[0]["Rank"]] = data[0]["ScientificName"]

144 LINEAGES[taxonid] = lineage

145

146

147 return LINEAGES[taxonid]

148

149 def parse_taxID(gb):

150 """Parse taxon ids from genbank file

151

152 This function uses Biopython library to parse

93

153 taxon ids and create a file with them.

154

155 Parameters

156 -------------

157 gb: io.TextIOWrapper

158 Genbank file

159

160 """

161 tax_ids = set()

162 gb = SeqIO.index(gb.name, "genbank")

163

164 for r in tqdm(gb, desc="Reading sequences"):

165 record = gb.get(r)

166 taxonid = record.features[0].qualifiers["db_xref"][0].split(":")[1]

167 tax_ids.add(taxonid)

168

169 with open(PATH_TO_TAXID, "w") as out_taxids:

170 out_taxids.write("\n".join(tax_ids))

171

172 def taxit():

173 """Download a create taxonomic database using taxit

174

175 This function executes taxit to download taxonomy database

176 and creates a table with the taxonomic lineages.

177 """

178

179 print("Downloading database ...")

180 subprocess.call("taxit new_database {PATH_TO_DB} -p {PATH_DOWNLOAD}".format(

181 PATH_TO_DB=PATH_TO_DB,

182 PATH_DOWNLOAD=PATH_MAIN) , shell=True)

183

184 print("Creating tax table ...")

185 subprocess.call("taxit taxtable {PATH_TO_DB}".format(PATH_TO_DB=PATH_TO_DB) +

186 " -f {PATH_TO_TAXID}".format(PATH_TO_TAXID=PATH_TO_TAXID) +

187 " -o {PATH_TO_TAXA}".format(PATH_TO_TAXA=PATH_TO_TAXA),

188 shell=True)

189

190 print("DONE!")

191

192 def parse_taxa():

193 """Parse taxonomic information from Taxa.csv

194

195 This function opens Taxa.csv file to parse

196 tax id and lineage rank.

197

198 Returns

94

199 -------------

200 tax_rank_id: dict

201 Taxonomic rank and id

202 """

203

204 with open(PATH_TO_TAXA) as taxa_input:

205 taxa = csv.DictReader(taxa_input)

206 tax_rank_id = {row["tax_id"]:row for row in taxa}

207

208 return tax_rank_id

209

210 def tax4Sativa(gb, source, tax_rank_id={}):

211 """Generate a taxonomic file for sativa

212 using NCBI, taxa.csv from taxit, or taxdump with ete3

213

214 This function creates a file with the taxon id,

215 and the tax levels for ech taxon id.

216

217 Parameters

218 -------------

219 gb: io.TextIOWrapper

220 Genbank file

221 source : string

222 Source to be used to collect the info about the taxonid

223 tax_rank_id: dict

224 Taxonomic rank and id

225 """

226

227 sativa_taxes = []

228

229 gb = SeqIO.index(gb.name, "genbank")

230

231 for r in tqdm(gb, desc="Creating Sativa.tax"):

232 record = gb.get(r)

233 taxonid = record.features[0].qualifiers["db_xref"][0].split(":")[1]

234 lineage = get_tax_lineage(taxonid, source, tax_rank_id)

235

236 sativa_tax = "{}\t".format(record.id)

237 for level in TAX_LEVELS:

238 if level not in lineage:

239 sativa_tax += "unknown;"

240 continue

241

242 sativa_tax += "{};".format(lineage[level])

243

244 sativa_taxes.append(sativa_tax[:-1])

95

245

246 with open("{PATH_TO_SATIVA_TAX}".format(

247 PATH_TO_SATIVA_TAX=PATH_TO_SATIVA_TAX

248), "w") as sativa_tax_output:

249 sativa_tax_output.write("\n".join(sativa_taxes))

250

251 def sativa(phy):

252 """Run sativa for identification of taxonomically

253 mislabelled sequences

254

255 This function executes SATIVA algorithm to identify

256 taxonomically mislabelled sequences.

257

258 phy: io.TextIOWrapper

259 PHYLIP multiple sequence alignment format

260 """

261

262 print("SATIVA ...")

263 subprocess.call("python {PATH_TO_SATIVA}/sativa.py".format(

264 PATH_TO_SATIVA=PATH_TO_SATIVA) +

265 " -s {PATH_TO_PHY} -t {PATH_TO_SATIVA_TAX}".format(

266 PATH_TO_PHY=phy.name, PATH_TO_SATIVA_TAX=PATH_TO_SATIVA_TAX) +

267 " -x zoo -n 12S -o {PATH_MAIN}sativa_result/".format(

268 PATH_MAIN=PATH_MAIN) +

269 " -T 10 -v" , shell=True)

270 print("DONE!")

271

272

273 if __name__ == "__main__":

274 args = getArguments()

275

276 pathlib.Path("{PATH_MAIN}sativa_result/".format(

277 PATH_MAIN=PATH_MAIN)).mkdir(

278 parents=True, exist_ok=True)

279 PATH_TO_SATIVA = args.path_to_sativa

280

281 if not os.path.isfile("{path_to_sativa}/sativa.py".format(

282 path_to_sativa=PATH_TO_SATIVA)):

283 download_and_install_sativa()

284

285 if args.source == "ncbi":

286

287 tax4Sativa(args.gb, args.source)

288 sativa(args.phy)

289

290 elif args.source == "taxit":

96

291

292 PATH_TO_TAXID = "{PATH_INFORMED}/TaxIDS.txt".format(

293 PATH_INFORMED=args.path_to_taxid_files)

294 PATH_TO_TAXA = "{PATH_INFORMED}/Taxa.csv".format(

295 PATH_INFORMED=args.path_to_taxid_files)

296 PATH_TO_DB = "{PATH_INFORMED}/ncbi_taxonomy.db".format(

297 PATH_INFORMED=args.path_to_taxid_files)

298

299 if not os.path.isfile(PATH_TO_TAXA):

300 parse_taxID(args.gb)

301 taxit()

302

303 tax_rank_id = parse_taxa()

304 tax4Sativa(args.gb, args.source, tax_rank_id)

305 sativa(args.phy)

306

307 elif args.source == "taxdump":

308

309 tax4Sativa(args.gb, args.source)

310 sativa(args.phy)

Source Code A.5: Identify taxonomically mislabelled sequences.

1 #!/usr/bin/env python3

2 import os

3 import argparse

4 from Bio import SeqIO

5 from tqdm import tqdm

6

7 """

8 Remove mislabelled sequences identified by Sativa algorithm.

9

10 All the sequences identified by Sativa are removed from

11 the genbank file.

12 """

13

14 def getArguments():

15 """Get arguments from terminal

16

17 This function gets arguments from terminal via argparse

18

19 Returns

20 -------------

21 arguments: Namespace

22 Namespace object with all arguments

97

23 """

24

25 parser = argparse.ArgumentParser(

26 description="Remove mislabelled sequences.")

27 parser.add_argument("gb", type=argparse.FileType("r"),

28 help="genbank file (.gb)")

29 parser.add_argument("mis", type=argparse.FileType("r"),

30 help="file with mislabelled sequences" \

31 " resulted after running sativa (.mis)")

32

33 return parser.parse_args()

34

35 def parse_mis(mis):

36 """Read file.mis and parse all sequences which need

37 to be removed.

38

39 This function parses the acession numbers in file.mis

40 that should be removed from the genbank file.

41

42 Parameters

43 -------------

44 mis : io.TextIOWrapper

45 Sativa mislabelled sequences file

46

47 Returns

48 -------------

49 acession_numbers: list

50 List of acession numbers

51 """

52

53 acession_numbers = {m.split("\t")[0]:m.split("\t")[4] for m in mis

54 if not m.startswith(";")}

55

56 return acession_numbers

57

58 def remove_mislabelled(gb, acession_numbers):

59 """Remove mislabelled sequences from genbank file

60

61 This function removes from the genbank file all

62 sequences found by Sativa algorithm.

63

64 Parameters

65 -------------

66 gb : io.TextIOWrapper

67 Genbank file

68

98

69 acession_numbers : list

70 List of acession numbers to be removed

71

72 """

73

74 gb_all_data = SeqIO.index(gb.name, "genbank")

75

76 base = os.path.basename(gb.name)

77 name = os.path.splitext(base)[0]

78

79 gb_m_name = "{}_m.gb".format(name)

80 with open(gb_m_name, "w") as gb_c:

81 for acession in tqdm(gb_all_data, desc="Removing mislabelled from genbank"):

82 if not acession in acession_numbers:

83 print(gb_all_data.get_raw(acession).decode(),

84 file=gb_c, end="")

85

86

87 if __name__ == "__main__":

88 args = getArguments()

89 acession_numbers = parse_mis(args.mis)

90 remove_mislabelled(args.gb, acession_numbers)

Source Code A.6: Remove from the genbank file mislabelled sequences identified by the sativa algorithm.

1 #!/usr/bin/env python3

2 import os

3 import argparse

4 import datetime

5 import subprocess

6 from ete3 import PhyloTree, TreeStyle

7

8 """

9 Build Phylogenetic Tree using raxmlHPC-PTHREADS-SSE3

10

11 From the alignment in fasta format and tree in newick format,

12 a pdf with the tree and alignment (side by side) will be generated.

13 """

14

15 RAXML = ("raxmlHPC-PTHREADS-SSE3 -f a -m GTRGAMMA"

16 " -n {output_file} -p 765 -s {input_file}"

17 " -T 10 -x 498 -N 100")

18

19 CHOICES_F = ["pdf", "svg", "png", "jpg"]

20

99

21 def getArguments():

22 """Get arguments from terminal

23

24 This function gets arguments from terminal via argparse

25

26 Returns

27 -------------

28 arguments: Namespace

29 Namespace object with all arguments

30 """

31

32 parser = argparse.ArgumentParser(

33 description="Build the Phylogenetic Tree and save it in a file.")

34 parser.add_argument("aln", type=argparse.FileType("r"),

35 help="alignment file")

36 parser.add_argument("-f", "--format", nargs="?", const="jpg", default="jpg",

37 choices=CHOICES_F, type = lambda s : s.lower(),

38 help="Format to save the phylogenetic tree, default: jpg")

39 parser.add_argument('-s', '--show', action='store_true',

40 help='Show ETE tree Browser')

41

42 return parser.parse_args()

43

44 def raxml(aln, basename):

45 """Build a phylogenetic tree based on alignment provided

46 using raxmlHPC-PTHREADS-SSE3

47

48 This function executes RAxML program the create a

49 phylogenetic tree using GTRGAMMA substitution model

50

51 Parameters

52 -------------

53 aln: io.TextIOWrapper

54 Alignment file

55 basename: string

56 Basename of the original alignment file

57 """

58

59 print("Building tree ...")

60 output_file = "{BASENAME}.raxml".format(BASENAME=basename)

61

62 subprocess.call(RAXML.format(output_file=output_file,

63 input_file=aln.name),

64 shell=True)

65 print("RAxML DONE!")

66

100

67 def build_tree(aln, tree, basename, show, output_format):

68 """Build phylogenetic tree from files

69

70 This function creates a file with the phylogenetic tree and alignment

71 from the fasta multiple alignment file and the tree in newick format.

72

73 Parameters

74 -------------

75 aln: string

76 Alignment string in fasta format

77 tree: string

78 Tree string in newick format

79 basename: string

80 Basename of the original alignment file

81 show: boolean

82 Show ETE tree browser (yes/no)

83 output_format: string

84 Format of the output

85 """

86

87 if tree[-1] != ";":

88 genetree = PhyloTree("{};".format(tree))

89 else:

90 genetree = PhyloTree(tree)

91

92 ts = TreeStyle()

93 ts.show_leaf_name = False

94

95 new_tree = "{BASENAME}_Tree.{FORMAT}".format(

96 BASENAME=basename,

97 FORMAT=output_format)

98 new_tree_aln = "{BASENAME}_Tree_aln.{FORMAT}".format(

99 BASENAME=basename,

100 FORMAT=output_format)

101

102 if show:

103 genetree.render(new_tree, tree_style=ts)

104 genetree.link_to_alignment(aln)

105 genetree.render(new_tree_aln, tree_style=ts)

106 genetree.show(tree_style=ts)

107 else:

108 genetree.render(new_tree, tree_style=ts)

109 genetree.link_to_alignment(aln)

110 genetree.render(new_tree_aln, tree_style=ts)

111

112 if __name__ == "__main__":

101

113 args = getArguments()

114

115 basename = os.path.splitext(os.path.basename(

116 args.aln.name))[0]

117

118 raxml(args.aln, basename)

119

120 tree_file = "RAxML_bestTree.{BASENAME}.raxml".format(

121 BASENAME=basename)

122

123 aln = args.aln.read()

124 with open(tree_file) as tree_file:

125 tree = tree_file.read()

126

127 build_tree(aln, tree, basename, args.show, args.format)

Source Code A.7: Build phylogenetic tree from a multiple alignment file.

1

2 ## THe script searches for barcodes in forward and reverse reads

3 ## that are not at the start of the read, but instead it looks for the bcs

4 ## in the first 30 bases (this can be changed by changing the variable 'search_until'.

↪→
5

6 import sys

7 import gzip

8 from Bio import SeqIO

9 import time

10

11 def find_bcs(readpair, sample_data, search_until):

12

13 # print("checking: \n%s\n%s" %(readpair[1],readpair[5]))

14

15

16 #Try forward orientation, i.e. foward barcode in forwared read and reverse barcode

↪→ in reverse read

17 for sample in sample_data:

18

19 startindex = -1;

20 endindex = -1;

21 forw = sample_data[sample]['bcs'][0].upper()

22 reve = sample_data[sample]['bcs'][1].upper()

23 # print "trying: %s\t%s" %(forw,reve)

24 if forw in readpair[1][:search_until]:

25 startindex = readpair[1].index(forw)

102

26 # print "found forward %s -> %s" %(forw, startindex)

27 if reve in readpair[5][:search_until]:

28 endindex = readpair[5].index(reve)

29 # print "found reverse %s -> %s" %(reve,endindex)

30 break

31

32 if startindex >= 0 and endindex >= 0:

33 # print "forward assigned to sample: %s\n" %sample

34 readpair[1] = readpair[1][startindex+len(forw):]

35 readpair[3] = readpair[3][startindex+len(forw):]

36 readpair[5] = readpair[5][endindex+len(reve):]

37 readpair[7] = readpair[7][endindex+len(reve):]

38 sample_data[sample]['seqs']['R1'].extend(readpair[:4])

39 sample_data[sample]['seqs']['R2'].extend(readpair[4:])

40

41 # print "\n%s\n%s" %(readpair[1],readpair[5])

42 return

43

44 else:

45

46 #Try reverse orientation, i.e. foward barcode in reverse read and reverse barcode

↪→ in forward read

47 # print "try reverse\n%s\n%s" %(readpair[1],readpair[5])

48 for sample in sample_data:

49 startindex = -1;

50 endindex = -1;

51 #assign barcodes in opposite order

52 forw = sample_data[sample]['bcs'][1].upper()

53 reve = sample_data[sample]['bcs'][0].upper()

54 # print "trying: %s\t%s" %(forw,reve)

55 if forw in readpair[1][:search_until]:

56 startindex = readpair[1].index(forw)

57 # print "found forward %s -> %s" %(forw, startindex)

58 if reve in readpair[5][:search_until]:

59 endindex = readpair[5].index(reve)

60 # print "found reverse %s -> %s" %(reve,endindex)

61 break

62

63 if startindex >= 0 and endindex >= 0:

64 # print "reverse assigned to sample: %s\n" %sample

65 readpair[1] = readpair[1][startindex+len(forw):]

66 readpair[3] = readpair[3][startindex+len(forw):]

67 readpair[5] = readpair[5][endindex+len(reve):]

68 readpair[7] = readpair[7][endindex+len(reve):]

69 sample_data[sample]['seqs']['R1'].extend(readpair[:4])

70 sample_data[sample]['seqs']['R2'].extend(readpair[4:])

103

71 # print "\n%s\n%s" %(readpair[1],readpair[5])

72 return

73 else:

74 # print "no proper hit\n"

75 return readpair

76 # sample_data['invalid']['R1'].extend(readpair[:4])

77 # sample_data['invalid']['R2'].extend(readpair[4:])

78

79 # print "\n%s\n%s" %(readpair[1],readpair[5])

80

81

82 def touch_files():

83

84 for sample in sample_data:

85 fh1 = open(target+'/'+sample+'.R1.fastq','w')

86 fh2 = open(target+'/'+sample+'.R2.fastq','w')

87 fh1 = open(target+'/invalid.R1.fastq','w')

88 fh2 = open(target+'/invalid.R2.fastq','w')

89

90 def write_out(reads=0):

91

92 for sample in sorted(sample_data):

93 if len(sample_data[sample]['seqs']['R1']) > 0:

94 fh1 = open(target+'/'+sample+'.R1.fastq','a')

95 fh2 = open(target+'/'+sample+'.R2.fastq','a')

96 # for seq in sample_data[sample]['seqs']:

97 # fh.write(seq+'\n')

98 for i in range(len(sample_data[sample]['seqs']['R1'])):

99 fh1.write(sample_data[sample]['seqs']['R1'][i]+"\n")

100 fh2.write(sample_data[sample]['seqs']['R2'][i]+"\n")

101 fh1.close()

102 fh2.close()

103 sample_data[sample]['count'] += len(sample_data[sample]['seqs']['R1'])

104 sample_data[sample]['seqs']['R1'] = []

105 sample_data[sample]['seqs']['R2'] = []

106 if reads:

107 print("%s\t%i read pairs (%.2f %%)" %(sample, sample_data[sample]['

↪→ count']/4, (float(sample_data[sample]['count'])/4)/reads*100))

108 # else:

109 # print "no valid reads found for sample '%s'" %sample

110

111

112 if len(invalid_recs['R1']) > 0:

113 fh1 = open(target+'/invalid.R1.fastq','a')

114 fh2 = open(target+'/invalid.R2.fastq','a')

115 for i in range(len(invalid_recs['R1'])):

104

116 fh1.write(invalid_recs['R1'][i]+"\n")

117 fh2.write(invalid_recs['R2'][i]+"\n")

118 invalid_recs['count'] += len(invalid_recs['R1'])

119 invalid_recs['R1'] = []

120 invalid_recs['R2'] = []

121

122 fh1.close()

123 fh2.close()

124 if reads:

125 print("\ninvalid\t%i read pairs (%.2f %%)\n" %(invalid_recs['count']/4, (

↪→ float(invalid_recs['count'])/4)/reads*100))

126

127 if reads:

128 print("total number of read pairs processed: %i" %reads)

129

130 def process_pairs(f1, f2, sample_data, invalid_recs, search_until):

131 """Interleaves two (open) fastq files.

132 """

133 count = 0

134 touch_files()

135 while True:

136 lines = []

137 line = f1.readline()

138 if line.strip() == "":

139 break

140 lines.append(line.strip())

141

142 for i in range(3):

143 lines.append(f1.readline().strip())

144

145 for i in range(4):

146 lines.append(f2.readline().strip())

147

148 temp = find_bcs(lines, sample_data, search_until)

149 if temp:

150 invalid_recs['R1'].extend(temp[:4])

151 invalid_recs['R2'].extend(temp[4:])

152 count+=1

153 if (count % 100000) == 1:

154 print("["+time.strftime("%c")+"] - %i read pairs processed" %(count/2*2))

155 write_out(0)

156 return count

157

158

159

160

105

161 search_until = 30

162

163 if not len(sys.argv) == 5:

164 print("Expecting 4 arguments\n")

165 sys.exit()

166

167

168 print(sys.argv[1])

169 file1 = sys.argv[2]

170 file2 = sys.argv[3]

171 target = sys.argv[4]

172

173 print(sys.version)

174

175 fh = open(sys.argv[1],'r')

176 sample_data = {}

177

178 for l in fh:

179 print(l)

180 cols = l.strip().split("\t")

181 sample = cols[1]

182 bcs = cols[2].split(":")

183 sample_data[sample] = {'count': 0, 'bcs':[], 'seqs':{ 'R1': [], 'R2': []}}

184 sample_data[sample]['bcs'] = bcs

185

186

187 readcount = 0

188 invalid_recs = {'count':0, 'R1':[], 'R2':[]}

189

190 if file1[-2:] == "gz":

191 import gzip

192 with gzip.open(file1, 'rt') as f1:

193 with gzip.open(file2, 'rt') as f2:

194 readcount = process_pairs(f1, f2, sample_data, invalid_recs, search_until)

195 else:

196 with open(file1) as f1:

197 with open(file2) as f2:

198 readcount = process_pairs(f1, f2, sample_data, invalid_recs, search_until)

199 f1.close()

200 f2.close()

201

202 write_out(readcount)

Source Code A.8: FASTQ demultiplexer developed by the Evolutionary and Environmental Genomics Group at the

University of Hull (http://www.evohull.org/).

106

http://www.evohull.org/

1 #!/usr/bin/env python3

2 import os

3 import sys

4 import csv

5 import glob

6 import shutil

7 import pathlib

8 import argparse

9 import datetime

10 import subprocess

11 from pathlib import Path

12

13 """Demultiplex fastq files in a folder.

14

15 For each fastq file inside the folder,

16 collect the information from the table and

17 demultiplex it to new files.

18 """

19

20 PATH_RESULT = "{}_Demultiplexed".format(datetime.datetime.now().strftime("%d%m%Y_%H%M

↪→ %S"))

21

22 LOG = "{}/Demultiplex_error.log".format(PATH_RESULT)

23

24 DEMULTIPLEXING = "python demultiplex_obi_Sep_2017.py {TSV} {R1} {R2} {folder_to_save}

↪→ "

25

26 def getArguments():

27 """Get arguments from terminal

28

29 This function gets arguments from terminal via argparse

30

31 Returns

32 -------------

33 arguments: Namespace

34 Namespace object with all arguments

35 """

36

37 parser = argparse.ArgumentParser(

38 description="Demultiplex FASTQ files"\

39 " using the information from the table")

40 parser.add_argument("folder_fastq", type=str,

41 help="A folder with FASTQ files")

42 parser.add_argument("folder_tables", type=str,

43 help="A folder with CSV/TSV table files")

107

44

45 return parser.parse_args()

46

47 def demultiplexing(fastq_file, folder_tables):

48 """Demultiplex FASTQ file.

49

50 For each pair R1 R2, this function uses the table

51 provided to demultiplex the fastq files.

52

53 fastq_file: str

54 fastq file name

55

56 folder_tables: str

57 Path to folder with csv/tsv files

58 """

59

60 file_name = os.path.basename(fastq_file)

61 base_name = file_name.split("_")[0]

62

63 table_name = "{dirname}/{name}*".format(dirname=folder_tables,

64 name=base_name)

65

66 table = glob.glob(table_name)

67

68 if not table:

69 raise Exception("{table} table not found".format(

70 table=table))

71

72 table = table[0]

73

74 path_tsv = "{dirname}/TSV/".format(dirname=PATH_RESULT)

75 Path(path_tsv).mkdir(parents=True, exist_ok=True)

76 tsv_file = "{path_tsv}{table_name}.tsv".format(

77 path_tsv=path_tsv, table_name=base_name)

78

79 with open(tsv_file, "w+") as output_tsv:

80 with open(table) as input_table:

81 table = input_table.read()

82 sniffer = csv.Sniffer()

83 dialect = sniffer.sniff(table)

84

85 table = table.rstrip().lstrip().split("\n")

86 csv.writer(output_tsv, delimiter='\t').writerows(

87 csv.reader(table, delimiter=dialect.delimiter))

88

89

108

90 path_demultiplexed = "{dirname}/{name}".format(

91 dirname=PATH_RESULT, name=base_name)

92

93 Path(path_demultiplexed).mkdir(parents=True, exist_ok=True)

94

95 subprocess.run(DEMULTIPLEXING.format(TSV=tsv_file,

96 R1=fastq_file,

97 R2=fastq_file.replace("R1", "R2"),

98 folder_to_save=path_demultiplexed),

99 shell=True,

100 stderr=sys.stderr,

101 stdout=sys.stdout)

102

103

104 if __name__ == "__main__":

105 args = getArguments()

106

107 Path(PATH_RESULT).mkdir(parents=True, exist_ok=True)

108

109 fastq_files = []

110 fastq_files.extend(glob.glob("{folder}*R1*.fastq.gz".format(

111 folder=args.folder_fastq)))

112

113 for fastq_file in fastq_files:

114 try:

115 demultiplexing(fastq_file, args.folder_tables)

116 except Exception as e:

117 with open(LOG, "a") as log:

118 print("{}\n".format(e), file=log)

119

120 raw_reads = "{dirname}/raw_reads".format(dirname=PATH_RESULT)

121 Path(raw_reads).mkdir(parents=True, exist_ok=True)

122

123 print("\nMOVING to raw reads folder")

124 fastq_demultiplexed = []

125 fastq_demultiplexed.extend(sorted(glob.glob("{dirname}/**/*.fastq".format(

126 dirname=PATH_RESULT), recursive=True)))

127

128 fastq_files = {}

129 for fastq_file in fastq_demultiplexed:

130 file_name = os.path.basename(fastq_file)

131 if file_name not in fastq_files:

132 fastq_files[file_name] = [fastq_file]

133 else:

134 fastq_files[file_name].append(fastq_file)

135

109

136 mv = "mv {fastq_file} {raw_reads}"

137 cat = "cat {files} > {raw_reads}/{file_name}"

138 for file_name, fastq_file in fastq_files.items():

139 if len(fastq_files[file_name]) == 1:

140 subprocess.run(mv.format(fastq_file=fastq_files[file_name][0],

141 raw_reads=raw_reads),

142 shell=True, stderr=sys.stderr,

143 stdout=sys.stdout)

144 else:

145 subprocess.run(cat.format(files=" ".join(fastq_files[file_name]),

146 raw_reads=raw_reads,

147 file_name=file_name),

148 shell=True, stderr=sys.stderr,

149 stdout=sys.stdout)

150

151

152 print("REMOVING invalid files and temporary folders")

153 rm = "rm {raw_reads}/invalid*"

154 subprocess.run(rm.format(raw_reads=raw_reads), shell=True,

155 stderr=sys.stderr, stdout=sys.stdout)

156

157 folders = glob.glob("{PATH_RESULT}/*".format(PATH_RESULT=PATH_RESULT))

158 for folder in folders:

159 path = pathlib.PurePath(folder)

160 if path.name != "raw_reads" \

161 and path.name != "TSV":

162 shutil.rmtree(folder)

163

164 print("ZIPPING files")

165 gzip = "gzip {raw_reads}/*.fastq"

166 subprocess.run(gzip.format(raw_reads=raw_reads), shell=True,

167 stderr=sys.stderr, stdout=sys.stdout)

Source Code A.9: Demultiplexer automatization for all files inside a folder.

1 #!/usr/bin/env python3

2 import os

3 import glob

4 import argparse

5 import datetime

6 import pandas as pd

7 from Bio.Seq import Seq

8 from pathlib import Path

9 from multiprocessing.dummy import Pool

10 from subprocess import run, check_output

110

11 from multiprocessing import Process, cpu_count

12

13 """Remove adapters from fasta(q) files

14

15 From a list of files inside a folder,

16 it removes adapters from the 5', 3'

17 or both sides.

18 """

19

20 DATETIME = datetime.datetime.now().strftime("%d%m%Y_%H%M%S")

21 PATH_RESULT = "{DATETIME}_Remove_Adapter".format(DATETIME=DATETIME)

22 CUTADAPT = "cutadapt {SIDE_ADAPTER}-o {OUTPUT} {INPUT}"

23

24 CHOICES_S = ["a", "b", "g"]

25

26 COMMANDS = {}

27

28 def getArguments():

29 """Get arguments from terminal

30

31 This function gets arguments from terminal via argparse

32

33 Returns

34 -------------

35 arguments: Namespace

36 Namespace object with all arguments

37 """

38

39 num_threads = cpu_count() - 2

40 if num_threads < 1:

41 num_threads = 1

42

43 parser = argparse.ArgumentParser(

44 description="Remove adapters from fasta(q) files")

45 parser.add_argument("folder_fastaq", type=str,

46 help="A folder with fasta(q) files")

47 parser.add_argument("folder_demultiplex", type=str,

48 help="A folder with tables with" \

49 " information about demultiplex adapters. "\

50 "Table files must have an identical name as fasta(q)")

51 parser.add_argument("-n", "--num_threads", nargs="?", type = int,

52 const=num_threads, default=num_threads,

53 help="Number of threads to be executed in parallel.")

54 parser.add_argument("-s", "--side", nargs="?", const="a",

55 default="a", choices=CHOICES_S,

56 type = lambda s : s.lower(),

111

57 help="Side of the sequence to cut the adapter"\

58 ", default: a (3' side) ")

59

60 return parser.parse_args()

61

62 def parse_demultiplex_files(demultiplex_files):

63 """Parse demultiplex files to get adapters.

64

65 For each demultiplex table, parse the id of

66 the file and the adapter in normal and reverse

67 direction

68

69 demultiplex_files: list

70 List with tables demultiplex info

71

72 Returns

73 -------------

74 demultiplex: dataframe

75 pandas dataframe with demultiplex adapters info

76 """

77

78 demultiplex = pd.DataFrame()

79

80 for demultiplex_file in demultiplex_files:

81 demultiplex = demultiplex.append(pd.read_csv("{DEMULTIPLEX_FILE}".format(

82 DEMULTIPLEX_FILE = demultiplex_file),

83 sep = None, header = None,

84 engine = 'python')

85)

86

87 return demultiplex

88

89 def remove_adapters(fastaq_files, demultiplex, side, num_threads):

90 """Remove adapters out of the fasta(q) files.

91

92 From a list of fasta(q) files, this function

93 removes adapters of the 5' end, 3' end

94 or both sides.

95

96 fastaq_files: list

97 List of fasta(q) files

98 demultiplex: dataframe

99 Pandas dataframe with demultiplex info

100 side: str

101 Side of the sequence to remove adapters

102 num_threads: int

112

103 Number of threads for the multithreading

104 """

105

106 for fastaq_file in fastaq_files:

107 file_name = Path(fastaq_file).stem

108 base_name = file_name.split(".")[0]

109

110 adapters = set(demultiplex.loc[demultiplex.iloc[:,1] == base_name,

111 2].values.flatten().tolist())

112

113 side_adapter = ""

114 for adapter in adapters:

115 adapter = adapter.split(":")[0]

116

117 if side == "a":

118 side_adapter += "-{SIDE} {ADAPTER} ".format(

119 SIDE = side,

120 ADAPTER = str(Seq(adapter).reverse_complement()))

121

122 continue

123

124 side_adapter += "-{SIDE} {ADAPTER} ".format(

125 SIDE = side,

126 ADAPTER = adapter)

127

128 COMMANDS["{BASE_NAME} R1".format(

129 BASE_NAME = base_name)] = CUTADAPT.format(

130 SIDE_ADAPTER = side_adapter,

131 OUTPUT = "{PATH_RESULT}/Sequences/{BASE_NAME}"\

132 "_L001_R1_001.fastq.gz".format(

133 PATH_RESULT = PATH_RESULT,

134 BASE_NAME = base_name),

135 INPUT = fastaq_file)

136

137 COMMANDS["{BASE_NAME} R2".format(

138 BASE_NAME = base_name)] = CUTADAPT.format(

139 SIDE_ADAPTER = side_adapter,

140 OUTPUT = "{PATH_RESULT}/Sequences/{BASE_NAME}"\

141 "_L001_R2_001.fastq.gz".format(

142 PATH_RESULT = PATH_RESULT,

143 BASE_NAME = base_name),

144 INPUT = fastaq_file.replace("R1", "R2"))

145

146 pool = Pool(num_threads)

147 for returncode in pool.imap(execute_command, COMMANDS):

148 if returncode:

113

149 print("command failed: {}".format(returncode))

150

151

152 def execute_command(base_name):

153 """Execute command

154

155 This function executes command on terminal.

156

157 base_name: str

158 base_name of the fastq file

159 """

160

161 print(COMMANDS[base_name])

162 with open("{PATH_RESULT}/Logs/{BASE_NAME}.log".format(

163 PATH_RESULT = PATH_RESULT,

164 BASE_NAME = base_name), "a") as log_file:

165 run(COMMANDS[base_name], shell=True, stderr=log_file, stdout=log_file)

166

167 if __name__ == "__main__":

168 args = getArguments()

169

170 # Reading fastq files

171 fastaq_files = sorted(glob.glob("{folder}/*R1*.fast*".format(

172 folder=args.folder_fastaq)))

173 demultiplex_files = sorted(glob.glob("{folder}/*.tsv".format(

174 folder=args.folder_demultiplex)))

175 side = args.side

176 num_threads = args.num_threads

177

178 # Parsing demultiplex files info

179 demultiplex = parse_demultiplex_files(demultiplex_files)

180

181 # Creating folders

182 Path(PATH_RESULT).mkdir(parents=True, exist_ok=True)

183 Path("{PATH_RESULT}/Logs".format(PATH_RESULT = PATH_RESULT)).mkdir(

184 parents=True, exist_ok=True)

185 Path("{PATH_RESULT}/Sequences".format(PATH_RESULT = PATH_RESULT)).mkdir(

186 parents=True, exist_ok=True)

187

188 # Removing adapters

189 remove_adapters(fastaq_files, demultiplex, side, num_threads)

Source Code A.10: Remove adapter from the 3’ end of the read fragment.

1 #!/usr/bin/env python3

114

2 import os

3 import csv

4 import pathlib

5 import argparse

6 import datetime

7 import subprocess

8 from Bio import SeqIO

9 from tqdm import tqdm

10 from Bio import Entrez

11 from ete3 import NCBITaxa

12

13 """

14 Convert genbank format to fasta format to be used

15 in the pipelines execution.

16

17 Additionally to the conversion,

18 a taxonomy table with accession number +

19 superkingdom,phylum,class,order,family,genus,species

20 is created when converting for Anacapa pipeline

21 and taxid table is created when converting

22 for SEQme pipeline.

23

24 """

25

26 CHOICES_S = ["ncbi", "taxit", "taxdump"]

27

28 CHOICES_R = ["superkingdom", "phylum", "class",

29 "order", "family", "genus",

30 "species", "all"]

31

32 CHOICES_P = ["anacapa", "barque", "metabeat",

33 "mifish", "seqme", "none", "all"]

34

35 PATH_MAIN = "{}_genbank2Fasta/".format(

36 datetime.datetime.now().strftime("%d%m%Y_%H%M%S"))

37

38 LOG = "{}genbank2Fasta_error.log".format(PATH_MAIN)

39

40 PIPELINES_OUTPUT_FASTA = {"none": ">{species_}_{id}\n{seq}",

41 "anacapa": ">{id}\n{seq}",

42 "barque": ">{phylum}_{species_}\n{seq}",

43 "metabeat": ">{id}|{taxonid}|{species}\n{seq}",

44 "mifish": ">gb|{id}|{species_}\n{seq}",

45 "seqme": (">{id}\t{superkingdom};{kingdom};"

46 "{phylum};{class};{order};"

47 "{family};{genus};{species}\n{seq}")}

115

48

49 PIPELINES_OUTPUT_TAX = {"anacapa": ("{id}\t{superkingdom};{phylum};"

50 "{class};{order};{family};"

51 "{genus};{species}")}

52

53 LINEAGES = {}

54

55 TAXONOMIC_RANK = {"superkingdom": 0, "kingdom": 1, "phylum": 2,

56 "class": 3, "order": 4, "family": 5,

57 "genus": 6, "species": 7}

58 TAXONOMIC_HIERARCHY = {"kingdom": "superkingdom", "phylum": "kingdom",

59 "class": "phylum", "order": "class", "family": "order",

60 "genus": "family", "species": "genus"}

61

62 PATH_TO_TAXID = "{PATH_INFORMED}/TaxIDS.txt"

63 PATH_TO_TAXA = "{PATH_INFORMED}/Taxa.csv"

64 PATH_TO_DB = "{PATH_INFORMED}/ncbi_taxonomy.db"

65

66

67 def getArguments():

68 """Get arguments from terminal

69

70 This function gets arguments from terminal via argparse

71

72 Returns

73 -------------

74 arguments: Namespace

75 Namespace object with all arguments

76 """

77

78 parser = argparse.ArgumentParser(

79 description="Conversion from genbank to fasta format "\

80 "to be used in the execution of the pipeline(s).")

81 parser.add_argument("gb", type=argparse.FileType("r"),

82 help="genbank file (.gb)")

83 parser.add_argument('-sp', '--species_from_file', action='store_true',

84 help="Should it use species"\

85 " from file or download it from NCBI?")

86 parser.add_argument("-p", "--pipeline", nargs="*", default=["none"],

87 choices=CHOICES_P, type = lambda s : s.lower(),

88 help="Pipeline convertion format, default: none")

89 parser.add_argument("-r", "--rank", nargs="*", default=["superkingdom"],

90 choices=CHOICES_R, type = lambda s : s.lower(),

91 help="Taxonomic classification rank to be used"\

92 " to separate the groups, default: superkingdom")

93 parser.add_argument("-s", "--source", nargs="?", const="taxdump",

116

94 default="taxdump", choices=CHOICES_S,

95 type = lambda s : s.lower(),

96 help="Source to be used to collect"\

97 " the info about the taxonomic rank, default: taxdump")

98 parser.add_argument('-t', '--path_to_taxid_files', nargs='?', type = str,

99 const=PATH_MAIN, default=PATH_MAIN,

100 help="Path to taxit files.")

101

102 return parser.parse_args()

103

104 def parse_taxID(gb):

105 """Parse taxon ids from genbank file

106

107 This function uses Biopython library to parse

108 taxon ids and create a file with them.

109

110 Parameters

111 -------------

112 gb: io.TextIOWrapper

113 Genbank file

114

115 """

116

117 tax_ids = set()

118

119 for r in tqdm(gb, desc="Reading sequences"):

120 record = gb.get(r)

121 taxonid = record.features[0].qualifiers["db_xref"][0].split(":")[1]

122 tax_ids.add(taxonid)

123

124 with open(PATH_TO_TAXID, "w") as out_taxids:

125 out_taxids.write("\n".join(tax_ids))

126

127 def taxit():

128 """Download a create taxonomic database using taxit

129

130 This function executes taxit to download taxonomy database

131 and creates a table with the taxonomic lineages.

132 """

133

134 print("Downloading taxit database ...")

135 subprocess.call("taxit new_database {PATH_TO_DB} -p {PATH_DOWNLOAD}".format(

136 PATH_TO_DB=PATH_TO_DB,

137 PATH_DOWNLOAD=PATH_MAIN) , shell=True)

138

139 print("Creating tax table ...")

117

140 subprocess.call("taxit taxtable {PATH_TO_DB}".format(PATH_TO_DB=PATH_TO_DB) +

141 " -f {PATH_TO_TAXID}".format(PATH_TO_TAXID=PATH_TO_TAXID) +

142 " -o {PATH_TO_TAXA}".format(PATH_TO_TAXA=PATH_TO_TAXA),

143 shell=True)

144

145 def parse_taxa():

146 """Parse taxonomic information from Taxa.csv

147

148 This function opens Taxa.csv file to parse

149 tax id and lineage rank.

150

151 Returns

152 -------------

153 tax_rank_id: dict

154 Taxonomic rank and id

155 """

156

157 with open(PATH_TO_TAXA) as taxa_input:

158 taxa = csv.DictReader(taxa_input)

159 tax_rank_id = {row["tax_id"]:row for row in taxa}

160

161 return tax_rank_id

162

163 def get_tax_lineage(taxonid, source, tax_rank_id={}):

164 """Return taxonomy lineage information

165

166 This function uses either Biopython library to connect

167 NCBI database and search for taxonomy information

168 or searches the information locally by using ete3 taxdump

169 file or taxit program to create sql version of it.

170

171 Parameters

172 -------------

173 taxonid : string

174 Taxonomic id of the species

175 source : string

176 Source to be used to collect the info about the taxonid

177 tax_rank_id: dict

178 Taxonomic rank and id

179

180 Returns

181 -------------

182 lineage: dict

183 Species lineage

184

185 """

118

186

187 if taxonid not in LINEAGES:

188 if source == "taxdump":

189 ncbi_taxdump = NCBITaxa()

190 lineage_ids = ncbi_taxdump.get_lineage(taxonid)

191 ranks = ncbi_taxdump.get_rank(lineage_ids)

192 names = ncbi_taxdump.get_taxid_translator(lineage_ids)

193 lineage = {ranks[i]:names[i] for i in lineage_ids}

194

195 LINEAGES[taxonid] = lineage

196 return LINEAGES[taxonid]

197

198 if source == "taxit":

199 lineage = {level:tax_rank_id[tax_rank_id[

200 taxonid][level]]["tax_name"]

201 for level in CHOICES_R[:-1]}

202

203 LINEAGES[taxonid] = lineage

204 return LINEAGES[taxonid]

205

206

207 while True:

208 data = ""

209 try:

210 Entrez.email = "Your.Name.Here@example.org"

211 handle = Entrez.efetch(id = taxonid, db = "taxonomy", retmode = "xml")

212 data = Entrez.read(handle)

213 handle.close()

214 except Exception as e:

215 with open(LOG, "a") as log:

216 print("Error when searching information about {}".format(taxonid),

217 file=log)

218

219 if data:

220 break

221

222 lineage = {d["Rank"]:d["ScientificName"] for d in data[0]["LineageEx"]}

223 lineage[data[0]["Rank"]] = data[0]["ScientificName"]

224 LINEAGES[taxonid] = lineage

225

226

227 return LINEAGES[taxonid]

228

229 def read_sequences(gb, pipeline, rank, source, species_from_file, tax_rank_id={}):

230 """Read the genbank file and parse the sequences

231 based on the taxonomic rank

119

232

233 This function uses Biopython library to scan the genbank file

234 and parse the sequences based on the taxonomic rank.

235

236 Parameters

237 -------------

238 gb : io.TextIOWrapper

239 A genbank file

240 pipeline: string

241 The pipeline format of the fasta format

242 rank: string

243 Taxonomic rank

244 source : string

245 Source to be used to collect the info about the taxonid

246 species_from_file: bool

247 Indicate if species name from file should be used

248 tax_rank_id: dict

249 Taxonomic rank and id

250

251 Returns

252 -------------

253 sequences: dictionary

254 A dictionary with key representing ranks and values

255 representing sequences in fasta format with species name

256 as the header of the sequence

257 tax_tables: dictionary

258 A dictionary with key representing ranks and values

259 representing taxonomic tables if the pipeline

260 is either anacapa or seqme

261

262 """

263

264 sequences = {}

265 tax_tables = {}

266 sequence_info = {}

267 taxid_table = {}

268

269 for r in tqdm(gb, desc="Reading sequences"):

270 record = gb.get(r)

271 tax = []

272

273 sequence_info["id"] = record.id

274 sequence_info["seq"] = record.seq

275

276 for feature in record.features:

277 if feature.type == "source" and \

120

278 "taxon" in feature.qualifiers["db_xref"][0]:

279 taxonid = feature.qualifiers["db_xref"][0].split(":")[1]

280 sequence_info["taxonid"] = taxonid

281

282 lineage = get_tax_lineage(taxonid, source, tax_rank_id)

283

284 if species_from_file:

285 lineage["species"] = record.features[0].qualifiers[

286 "organism"][0].lstrip().rstrip()

287 else:

288 if "species" not in lineage:

289 lineage["species"] = record.features[0].qualifiers[

290 "organism"][0].lstrip().rstrip()

291

292 lineage["species_"] = lineage["species"].replace(" ", "_")

293 sequence_info.update(lineage)

294

295 if pipeline in "anacapa":

296 tax = PIPELINES_OUTPUT_TAX[pipeline].format(**sequence_info)

297 elif pipeline == "seqme":

298

299 for lin in lineage:

300 if lin not in TAXONOMIC_RANK:

301 continue

302

303 if lineage[rank] not in taxid_table:

304 taxid_table[lineage[rank]] = [

305 {"Eukaryota":"0*Eukaryota*-1*0*superkingdom"},

306 {"Eukaryota": 0}, 1

307]

308 tax.append(taxid_table[lineage[rank]][0]["Eukaryota"])

309

310 if lineage[lin] not in taxid_table[lineage[rank]][0]:

311 taxid_table[lineage[rank]][1][

312 lineage[lin]] = taxid_table[lineage[rank]][2]

313 taxid_table[lineage[rank]][0][

314 lineage[lin]] = "{number}*{tax}*{b_tax}"\

315 "*{taxid}*{lineage}".format(

316 number=taxid_table[lineage[rank]][2],

317 tax=lineage[lin],

318 b_tax=taxid_table[lineage[rank]][1][lineage[

319 TAXONOMIC_HIERARCHY[lin]]],

320 taxid=TAXONOMIC_RANK[lin],

321 lineage=lin)

322

323 taxid_table[lineage[rank]][2] += 1

121

324 tax.append(taxid_table[lineage[rank]][0][lineage[lin]])

325

326 tax = "\n".join(tax)

327

328 try:

329 sequence = PIPELINES_OUTPUT_FASTA[pipeline].format(**sequence_info)

330

331 if lineage[rank] not in sequences:

332 sequences[lineage[rank]] = [sequence]

333 if tax:

334 tax_tables[lineage[rank]] = [tax]

335 else:

336 sequences[lineage[rank]].append(sequence)

337 if tax:

338 tax_tables[lineage[rank]].append(tax)

339

340 except:

341 with open(LOG, "a") as log:

342 print("\nRank '{}' not found for organism '{}', taxonid '{}'".format(

343 rank, lineage["species"], taxonid), file=log)

344

345 return sequences, tax_tables

346

347 def save_fasta(sequences, pipeline, rank):

348 """Save sequences to file

349

350 This function saves each group of sequence

351 in the dictionary to fasta file format

352 based on rank grouping.

353

354 sequences : dictionary

355 A dictionary with sequences

356 pipeline: string

357 The pipeline format of the fasta format

358 rank: string

359 Taxonomic rank

360

361 """

362

363 path_fasta = "{}{}/{}".format(PATH_MAIN, pipeline, rank)

364 pathlib.Path(path_fasta).mkdir(parents=True, exist_ok=True)

365

366 for seq in tqdm(sequences, desc="Saving FASTA"):

367 with open("{PATH_FASTA}/{FASTA_NAME}.fasta".format(

368 PATH_FASTA=path_fasta,

369 FASTA_NAME=seq.replace(" ", "_")

122

370), "w") as fasta_file:

371 fasta_file.write("\n".join(sequences[seq]))

372

373 def save_tax_tables(tax_tables, pipeline, rank):

374 """Save tax tables to file

375

376 This function saves each group of tax table

377 in the dictionary to a text file

378 based on rank grouping. Tax tables are

379 only created if the pipeline variable

380 is equal to anacapa or seqme.

381

382 tax_tables : dictionary

383 A dictionary with tax tables

384 pipeline: string

385 The pipeline format of the fasta format

386 rank: string

387 Taxonomic rank

388

389 """

390

391 path_tax_tables = "{}{}/{}".format(PATH_MAIN, pipeline, rank)

392 pathlib.Path(path_tax_tables).mkdir(parents=True, exist_ok=True)

393

394 for tax_table in tqdm(tax_tables, desc="Saving tax table"):

395 with open("{PATH_TAX_TABLE}/{TAX_TABLE_NAME}.txt".format(

396 PATH_TAX_TABLE=path_tax_tables,

397 TAX_TABLE_NAME=tax_table.replace(

398 " ", "_")

399), "w") as tax_table_file:

400 tax_table_file.write("\n".join(tax_tables[tax_table]))

401

402

403 if __name__ == "__main__":

404 args = getArguments()

405

406 pathlib.Path(PATH_MAIN).mkdir(parents=True, exist_ok=True)

407 gb = SeqIO.index(args.gb.name, "genbank")

408 with open(LOG, "w"): pass

409

410 tax_rank_id = {}

411 if args.source == "taxit":

412

413 PATH_TO_TAXID = "{PATH_INFORMED}/TaxIDS.txt".format(

414 PATH_INFORMED=args.path_to_taxid_files)

415 PATH_TO_TAXA = "{PATH_INFORMED}/Taxa.csv".format(

123

416 PATH_INFORMED=args.path_to_taxid_files)

417 PATH_TO_DB = "{PATH_INFORMED}/ncbi_taxonomy.db".format(

418 PATH_INFORMED=args.path_to_taxid_files)

419

420 if not os.path.isfile(PATH_TO_TAXA):

421 parse_taxID(gb)

422 taxit()

423

424 tax_rank_id = parse_taxa()

425

426 ranks = args.rank

427 if "all" in args.rank:

428 ranks = CHOICES_R[:-1]

429

430 pipelines = args.pipeline

431 if "all" in args.pipeline:

432 pipelines = CHOICES_P[:-1]

433

434 for pipeline in pipelines:

435 print("Pipeline: {}".format(pipeline))

436 for rank in ranks:

437 print("Rank: {}".format(rank))

438

439 sequences, tax_tables = read_sequences(gb, pipeline,

440 rank, args.source,

441 args.species_from_file,

442 tax_rank_id)

443

444 save_fasta(sequences, pipeline, rank)

445 if tax_tables:

446 save_tax_tables(tax_tables, pipeline, rank)

Source Code A.11: Convert genbank format to FASTA format and create a taxonomic table if pipeline is either

Anacapa or SEQme.

1 #!/bin/bash

2

3 # Modify the following parameter values according to your experiment

4 # Do not modify the parameter names or remove parameters

5 # Do not add spaces around the equal (=) sign

6 # It is a good idea to try to run Barque with different parameters

7

8 # Global parameters

9 NCPUS=10 # Number of CPUs to use. A lot of the steps are parallelized (int, 1+)

10 PRIMER_FILE="02_info/primers.csv" # File with PCR primers information

124

11

12 # Skip data preparation and rerun only from vsearchp

13 SKIP_DATA_PREP=0 # 1 to skip data preparation steps, 0 to run full pipeline (

↪→ recommended)

14

15 # Filtering with Trimmomatic

16 CROP_LENGTH=126 # Cut reads to this length after filtering. Just under amplicon

↪→ length

17

18 # Merging reads with flash

19 MIN_OVERLAP=15 # Minimum number of overlapping nucleotides to merge reads (int, 1+)

20 MAX_OVERLAP=126 # Maximum number of overlapping nucleotides to merge reads (int, 1+)

21

22 # Extracting barcodes

23 MAX_PRIMER_DIFF=2 # Maximum number of differences allowed between primer and sequence

↪→ (int, 0+)

24

25 # Running or skipping chimera detection

26 SKIP_CHIMERA_DETECTION=0 # 0 to search for chimeras (RECOMMENDED), 1 to skip chimera

↪→ detection

27 # or use already created chimera cleaned files

28

29 # vsearch

30 MAX_ACCEPTS=20 # Accept at most this number of sequences before stoping search (int,

↪→ 1+)

31 MAX_REJECTS=20 # Reject at most this number of sequences before stoping search (int,

↪→ 1+)

32 QUERY_COV=0.85 # At least that proportion of the sequence must match the database (

↪→ float, 0-1)

33

34 # Filters

35 MIN_HIT_LENGTH=90 # Minimum vsearch hit length to keep in results (int, 1+)

36 MIN_HITS_SAMPLE=1 # Minimum number of hits a species must have in at least one sample

37 # to keep in results (int, 1+)

38 # Non-annotated reads

39 NUM_NON_ANNOTATED_SEQ=1000 # Number of unique most-frequent non-annotated reads to

↪→ keep (int, 1+)

40

41 # OTUs

42 SKIP_OTUS=1 # 1 to skip OTU creation, 0 to use it

43 MIN_SIZE_FOR_OTU=20 # Only unique reads with at least this coverage will be used for

↪→ OTUs

Source Code A.12: Barque configuration file modified according to the project data.

125

1 import os

2 import glob

3 import datetime

1 initial_time = datetime.datetime.now()

2

3 os.chdir("/home/working/12S/")

4 os.getcwd()

1 !mkdir trimming

1 cd trimming

1 files = glob.glob("../../raw_reads/*.fastq.gz")

2 files = set([f.split("/")[-1].split("_")[0] for f in files])

3 files = sorted(files)

4

5 with open("Sample_accessions.tsv", "w") as sample_accessions:

6 sample_accessions.write("SampleID\n" + "\n".join(files))

1 %%bash

2

3 for a in $(cat Sample_accessions.tsv | grep "SampleID" -v)

4 do

5 R1=$(ls -1 ../../raw_reads/$a* | grep "_L001_R1_001.fastq")

6 R2=$(ls -1 ../../raw_reads/$a* | grep "_L001_R2_001.fastq")

7

8 echo -e "$a\tfastq\t$R1\t$R2\t18\t18"

9 done > Querymap.txt

1 %%bash

2

3 metaBEAT_global.py \

4 -Q Querymap.txt \

5 --trim_qual 20 \

6 --trim_minlength 90 \

7 --merge \

8 --product_length 106 \

9 --read_crop 110 \

10 --forward_only \

11 --length_filter 106 \

12 --length_deviation 0.2 \

13 -m 12S -n 10 -v \

14 -@ your_email@gmail.com &> log_trim

1 cd ../

1 !mkdir chimera_detection

126

1 cd chimera_detection

1 %%bash

2

3 #Write REFmap

4 for file in $(ls -1 ../../supplementary_data/reference_DBs/* | grep "

↪→ reference_database.gb$")

5 do

6 echo -e "$file\tgb"

7 done >> REFmap.txt

1 %%bash

2

3 metaBEAT_global.py \

4 -R REFmap.txt \

5 -f \

6 -@ your_email@gmail.com

1 %%bash

2

3

4 for a in $(cut -f 1 ../trimming/Querymap.txt)

5 do

6 if [-s ../trimming/$a/$a_trimmed.fasta]

7 then

8 echo -e "\n### Detecting chimeras in $a ###\n"

9 mkdir $a

10 cd $a

11 vsearch --uchime_ref ../../trimming/$a/$a_trimmed.fasta --db ../refs.fasta \

12 --nonchimeras $a-nonchimeras.fasta --chimeras $a-chimeras.fasta &> log

13 cd ..

14

15 else

16 echo -e "$a is empty"

17 fi

18 done

1 cd ..

1 !mkdir non-chimeras

1 cd non-chimeras/

1 %%bash

2

3 #Write REFmap

4 for file in $(ls -1 ../../supplementary_data/reference_DBs/* | grep "

↪→ reference_database.gb$")

127

5 do

6 echo -e "$file\tgb"

7 done >> REFmap.txt

1 %%bash

2

3 #Querymap

4 for a in $(ls -l ../chimera_detection/ | grep "^d" | perl -ne 'chomp; @a=split(" ");

↪→ print "$a[-1]\n"')

5 do

6 if ["$a" != "GLOBAL"]

7 then

8 echo -e "$a-nc\tfasta\t../chimera_detection/$a/$a-nonchimeras.fasta"

9 fi

10 done > Querymap.txt

1 %%bash

2

3 metaBEAT_global.py \

4 -Q Querymap.txt \

5 -R REFmap.txt \

6 --blast --min_ident 1 --min_ali_length 0.85 \

7 --cluster --clust_match 1 --clust_cov 3 \

8 -m 12S -n 10 \

9 -E -v \

10 -@ your_email@gmail.com \

11 -o metaBEAT_1.0 &> log_assignment

1 final_time = datetime.datetime.now()

2 total_time = final_time - initial_time

3

4 with open("Time.txt", "w") as total_time_file:

5 total_time_file.write("Total time to run the pipeline: {TOTAL_TIME}\n".format(

6 TOTAL_TIME=total_time))

Source Code A.13: metaBEAT workflow jupyter notebook.

1 #!/usr/bin/env python3

2 import os

3 import sys

4 import glob

5 import argparse

6 import datetime

7 import numpy as np

8 import pandas as pd

9 from tqdm import tqdm

128

10 from pathlib import Path

11 from functools import partial

12 from multiprocessing.dummy import Pool

13 from multiprocessing import Process, cpu_count

14 from subprocess import run, check_output, DEVNULL, STDOUT

15

16 """SeqME pipeline for metabarcoding detection.

17

18 For each sample fastq pair of files:

19

20 .Joining paired-ends (fastq-join)

21 .Quality filtering (fastx_toolkit)

22 .Removing too short and too long sequences (Biopieces)

23 .Clustering (USEARCH v10.0.240)

24 .Creating an OTU table (USEARCH v10.0.240)

25 .Alpha diversity & normalization (USEARCH v10.0.240)

26 .Identifying OTUs by classifier (RDPTools)

27

28 """

29

30 PATH_CLASSIFIER = "Classifier/rRNAClassifier.properties"

31

32 DATETIME = datetime.datetime.now().strftime("%d%m%Y_%H%M%S")

33

34 PATH_RESULT = "{DATETIME}_SeqME".format(DATETIME=DATETIME)

35 PATH_FASTQ_JOINED = "{PATH_RESULT}/Fastq_Joined"

36 PATH_QUALITY_FILTERED = "{PATH_RESULT}/Fastq_Quality_Filtered"

37 PATH_FASTA = "{PATH_RESULT}/Fasta"

38 PATH_FASTA_REMOVED_SHORT_LONG_SEQ = "{PATH_RESULT}/Fasta_Removed_Short_Long_Seq"

39 PATH_UNIQUES = "{PATH_RESULT}/Fasta_Uniques"

40 PATH_OTUS_FASTA = "{PATH_RESULT}/Fasta_OTUs"

41 PATH_OTUS_TABLE = "{PATH_RESULT}/Table_OTUs"

42 PATH_OTUS_TABLE_NORMALIZE = "{PATH_RESULT}/Table_OTUs_Normalized"

43 PATH_ALPHA_DIVERSITY = "{PATH_RESULT}/Table_Alpha_Diversity"

44 PATH_OTU_IDENTIFIED = "{PATH_RESULT}/Table_OTUs_identified"

45

46 FASTQ_JOIN = "fastq-join -v ' ' -p 15 -m 15 {R1} {R2} -o {FASTQ_OUTPUT}"

47 FASTQ_QUALITY_FILTER = "fastq_quality_filter -i {FASTQ_INPUT}"\

48 " -Q33 -q 20 -p 50 -o {FASTQ_OUTPUT}"

49 FASTQ_TO_FASTA = "fastq_to_fasta -i {FASTQ_INPUT} -o {FASTA_OUTPUT}"

50 FASTA_REMOVE_SHORT_LONG_SEQ = "read_fasta -i {FASTA_INPUT}" \

51 " | grab -e 'SEQ_LEN >= 90'"\

52 " | grab -e 'SEQ_LEN <= 150'"\

53 " | write_fasta -x -o {FASTA_OUTPUT}"

54 FASTA_CLUSTER_UNIQUES = "usearch -fastx_uniques {FASTA_INPUT}"\

55 " -fastaout {FASTA_OUTPUT} -uc {UC_OUTPUT}"\

129

56 " -sizeout -relabel Uniq"

57 FASTA_CLUSTER_OTU = "usearch -cluster_otus {FASTA_INPUT}"\

58 " -otus {FASTA_OUTPUT} -relabel Otu"

59 FASTA_CREATE_OTU_TABLE = "usearch -otutab {FASTA_INPUT}"\

60 " -otus {FASTA_OTU_INPUT} -otutabout"\

61 " {OTU_OUTPUT} -mapout {MAP_OUTPUT}"

62 OTU_NORMALIZE = "usearch -otutab_rare {OTU_INPUT} -sample_size"\

63 " 5000 -output {OTU_OUTPUT}"

64 ALPHA_DIVERSITY = "usearch -alpha_div {OTU_INPUT}"\

65 " -output {ALPHA_OUTPUT}"

66 OTU_IDENTIFY = "classifier classify -t {CLASSIFIER}"\

67 " -c 1 -w 150 -o {TABLE_OUTPUT}"\

68 " -h {HIER_OUTPUT} {FASTA_INPUT}"

69

70 GUNZIP = "gunzip {folder}/*.gz"

71

72 COUNT_READS = "echo $(cat {fastq}|wc -l)/4|bc"

73

74 THRESHOLDS = np.round(np.arange(0.1, 1.01, 0.01), 2)

75

76 CHOICES_R = ["superkingdom", "kingdom", "phylum",

77 "class", "order", "family", "genus",

78 "species"]

79

80

81 def getArguments():

82 """Get arguments from terminal

83

84 This function gets arguments from terminal via argparse

85

86 Returns

87 -------------

88 arguments: Namespace

89 Namespace object with all arguments

90 """

91

92 num_threads = cpu_count() - 2

93 if num_threads < 1:

94 num_threads = 1

95

96 parser = argparse.ArgumentParser(

97 description="SeqME pipeline for Metabarcoding")

98 parser.add_argument("folder_fastq", type=str,

99 help="A folder with fastq files")

100 parser.add_argument("-t", "--threshold", nargs="?", const=1, default=1,

101 choices=THRESHOLDS, type = float,

130

102 help="Specify the minimum threshold"\

103 " to the taxonomy rank be kept, default: 1")

104 parser.add_argument("-o", "--only_joining", nargs="?", const="",

105 default="", type = str,

106 help="Inform folder - Only the final joining of"\

107 " the results is done")

108 parser.add_argument("-n", "--num_threads", nargs="?", type = int,

109 const=num_threads, default=num_threads,

110 help="Number of threads to be executed in parallel")

111 parser.add_argument("-no", "--normalized", action="store_true",

112 help="Use normalized data")

113 parser.add_argument("-r", "--rank", nargs="?", const="species", default="species",

114 choices=CHOICES_R, type = lambda s : s.lower(),

115 help="Lowest taxonomic classification rank"\

116 " to be in the result, default: species")

117

118 return parser.parse_args()

119

120 def join_paired_ends(fastq_file, base_name):

121 """Join paired-end Illumina data.

122

123 From a pair forward (R1) and reverse (R2),

124 this function creates the command line

125 to merge the pair of files into a single

126 sequence using fastq-join.

127

128 fastq_file: str

129 fastq file

130 base_name: str

131 fastq file base name

132

133 Returns

134 -------------

135 command: tuple

136 A tuple with name, command and log

137 """

138

139 # Output file name

140 output_file_name = "{}_\%.fastq".format(base_name)

141

142 # Folder to be saved

143 fastq_output = "{PATH_FASTQ_JOINED}/{FASTQ_OUTPUT}".format(

144 PATH_FASTQ_JOINED=PATH_FASTQ_JOINED,

145 FASTQ_OUTPUT= output_file_name

146)

147

131

148 return ("Joining paired ends: {file_name}".format(file_name=base_name),

149 "{PATH_FASTQ_JOINED}/{base_name}.log".format(

150 PATH_FASTQ_JOINED=PATH_FASTQ_JOINED,

151 base_name=base_name),

152 FASTQ_JOIN.format(R1=fastq_file,

153 R2=fastq_file.replace("R1", "R2"),

154 FASTQ_OUTPUT=fastq_output)

155)

156

157 def quality_filtering(base_name):

158 """Quality filtering of fastq file.

159

160 From a fastq file, this function creates the

161 command line to remove low quality nucleotides.

162

163 base_name: str

164 fastq file base name

165

166 Returns

167 -------------

168 command: tuple

169 A tuple with name, command and log

170 """

171

172 # Output and joined file names

173 output_file_name = "{}.fastq".format(base_name)

174 joined_file_name = "{}_join.fastq".format(base_name)

175

176 # Joined file path

177 joined_file_path = "{PATH_FASTQ_JOINED}/{FASTQ_INPUT}".format(

178 PATH_FASTQ_JOINED=PATH_FASTQ_JOINED,

179 FASTQ_INPUT= joined_file_name

180)

181

182 # Folder to be saved

183 fastq_output = "{PATH_QUALITY_FILTERED}/{FASTQ_OUTPUT}".format(

184 PATH_QUALITY_FILTERED=PATH_QUALITY_FILTERED,

185 FASTQ_OUTPUT= output_file_name

186)

187

188 return ("Quality filtering: {file_name}".format(file_name=base_name),

189 "{PATH_QUALITY_FILTERED}/{base_name}.log".format(

190 PATH_QUALITY_FILTERED=PATH_QUALITY_FILTERED,

191 base_name=base_name),

192 FASTQ_QUALITY_FILTER.format(FASTQ_INPUT=joined_file_path,

193 FASTQ_OUTPUT=fastq_output)

132

194)

195

196 def convert_fastq_to_fasta(base_name):

197 """Convert fastq to fasta.

198

199 From a fastq file, this function converts fastq

200 to fasta format.

201

202 base_name: str

203 fastq file base name

204

205 Returns

206 -------------

207 command: tuple

208 A tuple with name, command and log

209 """

210

211 # Output and input file names

212 input_file_name = "{}.fastq".format(base_name)

213 output_file_name = "{}.fasta".format(base_name)

214

215 fastq_input = "{PATH_QUALITY_FILTERED}/{FASTQ_INPUT}".format(

216 PATH_QUALITY_FILTERED=PATH_QUALITY_FILTERED,

217 FASTQ_INPUT= input_file_name

218)

219 fasta_output = "{PATH_FASTA}/{FASTA_OUTPUT}".format(

220 PATH_FASTA=PATH_FASTA,

221 FASTA_OUTPUT= output_file_name

222)

223

224 return ("Converting fastq to fasta: {file_name}".format(file_name=base_name),

225 "{PATH_FASTA}/{base_name}.log".format(

226 PATH_FASTA=PATH_FASTA,

227 base_name=base_name),

228 FASTQ_TO_FASTA.format(FASTQ_INPUT=fastq_input,

229 FASTA_OUTPUT=fasta_output)

230)

231

232 def remove_short_long_seq(base_name):

233 """Remove too short and too long sequences.

234

235 From a fasta file, this function removes

236 too short and too long sequences.

237

238 base_name: str

239 fastq file base name

133

240

241 Returns

242 -------------

243 command: tuple

244 A tuple with name, command and log

245 """

246

247 # Output and input file names

248 fasta_file_name = "{}.fasta".format(base_name)

249

250 fasta_input = "{PATH_FASTA}/{FASTA_INPUT}".format(

251 PATH_FASTA=PATH_FASTA,

252 FASTA_INPUT= fasta_file_name

253)

254 fasta_output = "{PATH_FASTA_REMOVED_SHORT_LONG_SEQ}/{FASTA_OUTPUT}".format(

255 PATH_FASTA_REMOVED_SHORT_LONG_SEQ=PATH_FASTA_REMOVED_SHORT_LONG_SEQ,

256 FASTA_OUTPUT= fasta_file_name

257)

258

259 return ("Removing short and long seq: {file_name}".format(file_name=base_name),

260 "{PATH_FASTA_REMOVED_SHORT_LONG_SEQ}/{base_name}.log".format(

261 PATH_FASTA_REMOVED_SHORT_LONG_SEQ=PATH_FASTA_REMOVED_SHORT_LONG_SEQ,

262 base_name=base_name),

263 FASTA_REMOVE_SHORT_LONG_SEQ.format(FASTA_INPUT=fasta_input,

264 FASTA_OUTPUT=fasta_output)

265)

266

267 def cluster_uniques(base_name):

268 """Cluster uniques sequences (dereplication).

269

270 From a fasta file, this function finds a set

271 of unique sequences in the file.

272

273 base_name: str

274 fastq file base name

275

276 Returns

277 -------------

278 command: tuple

279 A tuple with name, command and log

280 """

281

282 # Output and input file names

283 fasta_file_name = "{}.fasta".format(base_name)

284 uc_file_name = "{}.uc".format(base_name)

285

134

286 fasta_input = "{PATH_FASTA_REMOVED_SHORT_LONG_SEQ}/{FASTA_INPUT}".format(

287 PATH_FASTA_REMOVED_SHORT_LONG_SEQ=PATH_FASTA_REMOVED_SHORT_LONG_SEQ,

288 FASTA_INPUT= fasta_file_name

289)

290 fasta_output = "{PATH_UNIQUES}/{FASTA_OUTPUT}".format(

291 PATH_UNIQUES=PATH_UNIQUES,

292 FASTA_OUTPUT= fasta_file_name

293)

294 uc_output = "{PATH_UNIQUES}/{UC_OUTPUT}".format(

295 PATH_UNIQUES=PATH_UNIQUES,

296 UC_OUTPUT= uc_file_name

297)

298

299 return ("Clustering uniques (Dereplication): {file_name}".format(file_name=

↪→ base_name),

300 "{PATH_UNIQUES}/{base_name}.log".format(

301 PATH_UNIQUES=PATH_UNIQUES,

302 base_name=base_name),

303 FASTA_CLUSTER_UNIQUES.format(FASTA_INPUT=fasta_input,

304 FASTA_OUTPUT=fasta_output,

305 UC_OUTPUT=uc_output)

306)

307

308 def cluster_otus(base_name):

309 """Cluster OTUs.

310

311 From a fasta file, this function does a OTU

312 clustering. Chimeras are also filtered

313 during this step.

314

315 base_name: str

316 fastq file base name

317

318 Returns

319 -------------

320 command: tuple

321 A tuple with name, command and log

322 """

323

324 # Output and input file names

325 fasta_file_name = "{}.fasta".format(base_name)

326

327 fasta_input = "{PATH_UNIQUES}/{FASTA_INPUT}".format(

328 PATH_UNIQUES=PATH_UNIQUES,

329 FASTA_INPUT= fasta_file_name

330)

135

331 fasta_output = "{PATH_OTUS_FASTA}/{FASTA_OUTPUT}".format(

332 PATH_OTUS_FASTA=PATH_OTUS_FASTA,

333 FASTA_OUTPUT= fasta_file_name

334)

335

336 return ("Clustering OTUs: {file_name}".format(file_name=base_name),

337 "{PATH_OTUS_FASTA}/{base_name}.log".format(

338 PATH_OTUS_FASTA=PATH_OTUS_FASTA,

339 base_name=base_name),

340 FASTA_CLUSTER_OTU.format(FASTA_INPUT=fasta_input,

341 FASTA_OUTPUT=fasta_output)

342)

343

344 def create_otu_tables(base_name):

345 """Create OTU tables.

346

347 From a fasta file, this function creates

348 an OTU table with the identification of which

349 OTU the sequence belongs to, and number of sequences

350 for each OTU.

351

352 base_name: str

353 fastq file base name

354

355 Returns

356 -------------

357 command: tuple

358 A tuple with name, command and log

359 """

360

361 # Output and input file names

362 fasta_file_name = "{}.fasta".format(base_name)

363 otu_file_name = "{}.otu".format(base_name)

364 map_file_name = "{}.map".format(base_name)

365

366 fasta_input = "{PATH_FASTA_REMOVED_SHORT_LONG_SEQ}/{FASTA_INPUT}".format(

367 PATH_FASTA_REMOVED_SHORT_LONG_SEQ=PATH_FASTA_REMOVED_SHORT_LONG_SEQ,

368 FASTA_INPUT= fasta_file_name

369)

370 fasta_otu_input = "{PATH_OTUS_FASTA}/{FASTA_OTU_INPUT}".format(

371 PATH_OTUS_FASTA=PATH_OTUS_FASTA,

372 FASTA_OTU_INPUT= fasta_file_name

373)

374 otu_output = "{PATH_OTUS_TABLE}/{OTU_OUTPUT}".format(

375 PATH_OTUS_TABLE=PATH_OTUS_TABLE,

376 OTU_OUTPUT= otu_file_name

136

377)

378 map_output = "{PATH_OTUS_TABLE}/{MAP_OUTPUT}".format(

379 PATH_OTUS_TABLE=PATH_OTUS_TABLE,

380 MAP_OUTPUT= map_file_name

381)

382

383 return ("Creating OTU tables: {file_name}".format(file_name=base_name),

384 "{PATH_OTUS_TABLE}/{base_name}.log".format(

385 PATH_OTUS_TABLE=PATH_OTUS_TABLE,

386 base_name=base_name),

387 FASTA_CREATE_OTU_TABLE.format(FASTA_INPUT=fasta_input,

388 FASTA_OTU_INPUT=fasta_otu_input,

389 OTU_OUTPUT=otu_output,

390 MAP_OUTPUT=map_output)

391)

392

393 def normalize_otu_tables(base_name):

394 """Normalize OTU tables.

395

396 From a fasta file, this function

397 normalizes all samples.

398

399 base_name: str

400 fastq file base name

401

402 Returns

403 -------------

404 command: tuple

405 A tuple with name, command and log

406 """

407

408 # Output and input file names

409 otu_file_name = "{}.otu".format(base_name)

410

411 otu_input = "{PATH_OTUS_TABLE}/{OTU_INPUT}".format(

412 PATH_OTUS_TABLE=PATH_OTUS_TABLE,

413 OTU_INPUT= otu_file_name

414)

415 otu_output = "{PATH_OTUS_TABLE_NORMALIZE}/{OTU_OUTPUT}".format(

416 PATH_OTUS_TABLE_NORMALIZE=PATH_OTUS_TABLE_NORMALIZE,

417 OTU_OUTPUT= otu_file_name

418)

419

420 return ("Normalizing OTU tables: {file_name}".format(file_name=base_name),

421 "{PATH_OTUS_TABLE_NORMALIZE}/{base_name}.log".format(

422 PATH_OTUS_TABLE_NORMALIZE=PATH_OTUS_TABLE_NORMALIZE,

137

423 base_name=base_name),

424 OTU_NORMALIZE.format(OTU_INPUT=otu_input,

425 OTU_OUTPUT=otu_output)

426)

427

428 def calculate_alpha_diversity(base_name):

429 """Calculate alpha diversity.

430

431 From a fasta file, this function calculates

432 the alpha diversity.

433

434 base_name: str

435 fastq file base name

436

437 Returns

438 -------------

439 command: tuple

440 A tuple with name, command and log

441 """

442

443 # Output and input file names

444 otu_file_name = "{}.otu".format(base_name)

445 alpha_file_name = "{}.alpha".format(base_name)

446

447 otu_input = "{PATH_OTUS_TABLE_NORMALIZE}/{OTU_INPUT}".format(

448 PATH_OTUS_TABLE_NORMALIZE=PATH_OTUS_TABLE_NORMALIZE,

449 OTU_INPUT= otu_file_name

450)

451 alpha_output = "{PATH_ALPHA_DIVERSITY}/{ALPHA_OUTPUT}".format(

452 PATH_ALPHA_DIVERSITY=PATH_ALPHA_DIVERSITY,

453 ALPHA_OUTPUT= alpha_file_name

454)

455

456 return ("Calculating alpha diversity: {file_name}".format(file_name=base_name),

457 "{PATH_ALPHA_DIVERSITY}/{base_name}.log".format(

458 PATH_ALPHA_DIVERSITY=PATH_ALPHA_DIVERSITY,

459 base_name=base_name),

460 ALPHA_DIVERSITY.format(OTU_INPUT=otu_input,

461 ALPHA_OUTPUT=alpha_output)

462)

463

464 def identify_otu_by_classifier(base_name):

465 """Identify OTU by classifier.

466

467 From a fasta file, this function identifies

468 taxonomy rank for each OTU using a Naive Bayes

138

469 classifier.

470

471 base_name: str

472 fastq file base name

473

474 Returns

475 -------------

476 command: tuple

477 A tuple with name, command and log

478 """

479

480 # Output and input file names

481 fasta_file_name = "{}.fasta".format(base_name)

482 hier_file_name = "{}.hier".format(base_name)

483 table_file_name = "{}.csv".format(base_name)

484

485 fasta_otu_input = "{PATH_OTUS_FASTA}/{FASTA_OTU_INPUT}".format(

486 PATH_OTUS_FASTA=PATH_OTUS_FASTA,

487 FASTA_OTU_INPUT= fasta_file_name

488)

489 hier_output = "{PATH_OTU_IDENTIFIED}/{HIER_OUTPUT}".format(

490 PATH_OTU_IDENTIFIED=PATH_OTU_IDENTIFIED,

491 HIER_OUTPUT= hier_file_name

492)

493 table_output = "{PATH_OTU_IDENTIFIED}/{TABLE_OUTPUT}".format(

494 PATH_OTU_IDENTIFIED=PATH_OTU_IDENTIFIED,

495 TABLE_OUTPUT= table_file_name

496)

497

498 return ("Identifying OTU by classifier: {file_name}".format(file_name=base_name),

499 "{PATH_OTU_IDENTIFIED}/{base_name}.log".format(

500 PATH_OTU_IDENTIFIED=PATH_OTU_IDENTIFIED,

501 base_name=base_name),

502 OTU_IDENTIFY.format(CLASSIFIER=PATH_CLASSIFIER,

503 TABLE_OUTPUT=table_output,

504 HIER_OUTPUT=hier_output,

505 FASTA_INPUT=fasta_otu_input)

506)

507

508 def join_results(base_names, threshold, normalized, rank_to_stop):

509 """Join the results in one unique csv file.

510

511 From the list of fastq files, this function joins

512 them and create a unique file with the taxonomic rank

513 and the number of reads.

514

139

515 base_names: list

516 List with base names of fastq files

517 threshold: float

518 Minimum threshold to the taxonomy rank be kept

519 normalized: bool

520 Use normalized data

521 rank_to_stop: str

522 Taxonomic rank to stop searching

523 """

524

525 # Initialize dataframe

526 df = pd.DataFrame()

527

528 otus_identified = sorted(glob.glob(

529 "{PATH_OTU_IDENTIFIED}/*.csv".format(

530 PATH_OTU_IDENTIFIED=PATH_OTU_IDENTIFIED)))

531

532 for otu_identified in tqdm(otus_identified, desc="Joining results in a unique file

↪→ "):

533 try:

534 file_name = os.path.basename(otu_identified)

535 base_name = os.path.splitext(file_name)[0]

536

537 with open("{PATH_OTU_IDENTIFIED}/{TABLE}.csv".format(

538 PATH_OTU_IDENTIFIED=PATH_OTU_IDENTIFIED,

539 TABLE=base_name

540)) as table_file:

541 table = table_file.readlines()

542

543 if not normalized:

544 otu_path = "{PATH_OTUS_TABLE}/{OTU}.otu".format(

545 PATH_OTUS_TABLE=PATH_OTUS_TABLE,

546 OTU=base_name

547)

548 else:

549 otu_path = "{PATH_OTUS_TABLE_NORMALIZE}/{OTU}.otu".format(

550 PATH_OTUS_TABLE_NORMALIZE=PATH_OTUS_TABLE_NORMALIZE,

551 OTU=base_name

552)

553

554 with open(otu_path) as otu_file:

555 df = df.append(pd.read_table(otu_file, index_col=0,

556 names=[base_name], skiprows=1))

557

558 for line in table:

559 line = line.split("\t")

140

560 otu_id = line[0]

561

562 for i in range(len(line)-1, 1, -3):

563 value = float(line[i])

564 rank = line[i-1]

565 tax = line[i-2]

566

567 if value >= threshold:

568 df.rename(index={otu_id:tax}, inplace=True)

569 break

570

571 if rank == rank_to_stop.lower():

572 break

573

574 if otu_id in df.index:

575 df.drop(otu_id, inplace=True)

576

577 except Exception as e:

578 with open("{PATH_RESULT}/{DATETIME}_join_results.log".format(

579 PATH_RESULT=PATH_RESULT,

580 DATETIME=DATETIME),

581 "a") as log:

582 print(e, file=log)

583

584 df.index.name = "TAX"

585 df = df.groupby(df.index).sum()

586 df.sort_index(axis=1, inplace=True)

587 df.sort_index().to_csv("{PATH_RESULT}/{DATETIME}_SeqME.tsv".format(

588 PATH_RESULT=PATH_RESULT,

589 DATETIME=DATETIME),

590 sep="\t")

591

592 def initialize_paths():

593 """Initialize Paths

594

595 This function initilizes paths to

596 the results of each step of the pipeline.

597 """

598

599 global PATH_FASTQ_JOINED, PATH_QUALITY_FILTERED, PATH_FASTA, \

600 PATH_FASTA_REMOVED_SHORT_LONG_SEQ, PATH_UNIQUES, \

601 PATH_OTUS_FASTA, PATH_OTUS_TABLE, PATH_OTUS_TABLE_NORMALIZE, \

602 PATH_ALPHA_DIVERSITY, PATH_OTU_IDENTIFIED

603

604 PATH_FASTQ_JOINED = PATH_FASTQ_JOINED.format(PATH_RESULT=PATH_RESULT)

605 PATH_QUALITY_FILTERED = PATH_QUALITY_FILTERED.format(PATH_RESULT=PATH_RESULT)

141

606 PATH_FASTA = PATH_FASTA.format(PATH_RESULT=PATH_RESULT)

607 PATH_FASTA_REMOVED_SHORT_LONG_SEQ = PATH_FASTA_REMOVED_SHORT_LONG_SEQ.format(

608 PATH_RESULT=PATH_RESULT)

609 PATH_UNIQUES = PATH_UNIQUES.format(PATH_RESULT=PATH_RESULT)

610 PATH_OTUS_FASTA = PATH_OTUS_FASTA.format(PATH_RESULT=PATH_RESULT)

611 PATH_OTUS_TABLE = PATH_OTUS_TABLE.format(PATH_RESULT=PATH_RESULT)

612 PATH_OTUS_TABLE_NORMALIZE = PATH_OTUS_TABLE_NORMALIZE.format(

613 PATH_RESULT=PATH_RESULT)

614 PATH_ALPHA_DIVERSITY = PATH_ALPHA_DIVERSITY.format(

615 PATH_RESULT=PATH_RESULT)

616 PATH_OTU_IDENTIFIED = PATH_OTU_IDENTIFIED.format(PATH_RESULT=PATH_RESULT)

617

618 def create_folders():

619 """Create folders

620

621 This function create folders to

622 the results of each step of the pipeline

623 """

624

625 Path(PATH_RESULT).mkdir(parents=True, exist_ok=True)

626 Path(PATH_FASTQ_JOINED).mkdir(parents=True, exist_ok=True)

627 Path(PATH_QUALITY_FILTERED).mkdir(parents=True, exist_ok=True)

628 Path(PATH_FASTA).mkdir(parents=True, exist_ok=True)

629 Path(PATH_FASTA_REMOVED_SHORT_LONG_SEQ).mkdir(parents=True, exist_ok=True)

630 Path(PATH_UNIQUES).mkdir(parents=True, exist_ok=True)

631 Path(PATH_OTUS_FASTA).mkdir(parents=True, exist_ok=True)

632 Path(PATH_OTUS_TABLE).mkdir(parents=True, exist_ok=True)

633 Path(PATH_OTUS_TABLE_NORMALIZE).mkdir(parents=True, exist_ok=True)

634 Path(PATH_ALPHA_DIVERSITY).mkdir(parents=True, exist_ok=True)

635 Path(PATH_OTU_IDENTIFIED).mkdir(parents=True, exist_ok=True)

636

637 def execute_command(base_name):

638 """Execute command

639

640 This function executes command from terminal.

641

642 base_name: str

643 Base name of the fastq file

644 """

645

646 for command in commands[base_name]:

647 print(command[0])

648 with open(command[1], "a") as log_file:

649 run(command[2], shell=True, stderr=log_file, stdout=log_file)

650

651

142

652 if __name__ == "__main__":

653 args = getArguments()

654

655 initial_time = datetime.datetime.now()

656

657 # Unzipping compressed files

658 run(GUNZIP.format(folder=args.folder_fastq),

659 shell=True, stdout=DEVNULL, stderr=STDOUT)

660

661 # Reading fastq files

662 fastq_files = sorted(glob.glob("{folder}/*R1*.fastq".format(

663 folder=args.folder_fastq)))

664 base_names = []

665 commands = {}

666 reads = {}

667

668 if args.only_joining:

669 PATH_RESULT = args.only_joining

670 initialize_paths()

671 else:

672 initialize_paths()

673

674 for fastq_file in tqdm(fastq_files, desc="Reading fastq files"):

675 file_name = os.path.basename(fastq_file)

676 base_name = file_name.split("_")[0].split(".R1")[0]

677 base_names.append(base_name)

678

679 output = check_output(COUNT_READS.format(

680 fastq=fastq_file), shell=True)

681 reads[base_name] = int(output)

682

683 commands[base_name] = [join_paired_ends(fastq_file, base_name),

684 quality_filtering(base_name),

685 convert_fastq_to_fasta(base_name),

686 remove_short_long_seq(base_name),

687 cluster_uniques(base_name),

688 cluster_otus(base_name),

689 create_otu_tables(base_name),

690 normalize_otu_tables(base_name),

691 calculate_alpha_diversity(base_name),

692 identify_otu_by_classifier(base_name)]

693

694 if args.only_joining:

695 if Path(args.only_joining).exists():

696 join_results(base_names, args.threshold, args.normalized, args.rank)

697 else:

143

698 print("Folder '{FOLDER}' does not exist".format(

699 FOLDER=args.only_joining))

700

701 raise SystemExit(0)

702

703 # Creating folders

704 create_folders()

705

706 # Running commands

707 num_threads = args.num_threads

708

709 pool = Pool(num_threads)

710 for returncode in pool.imap(execute_command, commands):

711 if returncode:

712 print("command failed: {}".format(returncode))

713

714

715 join_results(base_names, args.threshold, args.normalized, args.rank)

716

717 final_time = datetime.datetime.now()

718 total_time = final_time - initial_time

719 print("\nTotal time to run the pipeline: {TOTAL_TIME}\n".format(

720 TOTAL_TIME=total_time))

Source Code A.14: SEQme pipeline workflow.

1 #!/usr/bin/env python3

2 import os

3 import sys

4 import pathlib

5 import argparse

6 import datetime

7 import pandas as pd

8 from tqdm import tqdm

9 from pathlib import Path

10 from subprocess import check_output

11 from collections import defaultdict

12

13 """Count reads from fasta or fastq inside the folder and

14 create a csv file.

15

16 For each fasta or fastq inside the folder informed count

17 the number of reads and create a table where the row name

18 is informed and column names are parsed from the files.

19 """

144

20

21 DATETIME = datetime.datetime.now().strftime("%d%m%Y_%H%M%S")

22

23 PATH_RESULT = "{DATETIME}_Count_Reads".format(DATETIME=DATETIME)

24

25 FASTA_COUNT_READS = '{Z}grep -c ">" {FASTA}'

26 FASTQ_COUNT_READS = "echo $({Z}cat {FASTQ}|wc -l)/4|bc"

27

28 CHOICES_F = ['fastq', 'fasta']

29

30 def getArguments():

31 """Get arguments from terminal

32

33 This function gets arguments from terminal via argparse

34

35 Returns

36 -------------

37 arguments: Namespace

38 Namespace object with all arguments

39 """

40

41 parser = argparse.ArgumentParser(

42 description="Count reads from FASTA or FASTQ files")

43 parser.add_argument("folder_fastaq", type=str,

44 help="A folder with FASTA or FASTQ files")

45 parser.add_argument("extension", type = lambda s : s.lower(),

46 choices=CHOICES_F, help="Files extension")

47 parser.add_argument("row_name", type=str,

48 help="Row name of the new table created")

49 parser.add_argument("pattern", type=str,

50 help="A pattern to identify files to be parsed")

51 parser.add_argument("-seqme", action='store_true',

52 help="Are the files from SeqME pipeline?")

53

54 return parser.parse_args()

55

56 def count_reads(fastaq_files, row_name, pattern, extension, seqme):

57 """Count the reads from FASTA/Q files and create a table

58

59 From the list of FASTA or FASTQ files, this function

60 counts the number of reads and create a csv table with

61 the row name informed and column names are parsed

62 from files.

63

64 fastaq_files: list

65 List with FASTA or FASTQ files

145

66 row_name: str

67 Row name

68 pattern: str

69 Pattern for the identification of files

70 extension: str

71 Extension of files

72 seqme: bool

73 Boolean if files are from SeqME

74 """

75

76 # Initialize dataframe

77 df = pd.DataFrame()

78 seqme_count = defaultdict(int)

79

80 for fastaq_file in tqdm(fastaq_files, desc="Counting reads"):

81 file_name = os.path.basename(fastaq_file)

82 base_name = file_name.replace(pattern, "")

83

84 if seqme:

85 with open(fastaq_file) as fastaq:

86 fasta = list(filter(None, fastaq.read().split(">")))

87

88 for sequence in fasta:

89 base_name = sequence.split("|")[0]

90 seqme_count[base_name] = seqme_count[base_name] + 1

91

92 continue

93

94 z = ""

95 if pathlib.Path(fastaq_file).suffix == ".gz":

96 z = "z"

97

98 try:

99 if extension == "fasta":

100 output = check_output(FASTA_COUNT_READS.format(

101 Z=z,

102 FASTA=fastaq_file),

103 shell=True)

104 elif extension == "fastq":

105 output = check_output(FASTQ_COUNT_READS.format(

106 Z=z,

107 FASTQ=fastaq_file),

108 shell=True)

109 except:

110 output = 0

111

146

112 df.loc[row_name, base_name] = int(output)

113

114 if seqme:

115 df = pd.DataFrame(seqme_count, index=[row_name,])

116

117 df.sort_index(axis=1).to_csv(

118 "{PATH_RESULT}/{DATETIME}_Count_Reads.tsv".format(

119 PATH_RESULT=PATH_RESULT,

120 DATETIME=DATETIME),

121 sep="\t")

122

123 if __name__ == "__main__":

124 args = getArguments()

125

126 Path(PATH_RESULT).mkdir(parents=True, exist_ok=True)

127

128 fastaq_files = Path(args.folder_fastaq).rglob(

129 "*{PATTERN}*".format(PATTERN=args.pattern))

130

131 count_reads(fastaq_files, args.row_name, args.pattern, args.extension, args.seqme)

Source Code A.15: Count the number of sequence reads for each FASTA/FASTQ file in a folder based on pattern

provided.

1 library(rChoiceDialogs)

2 library(data.table)

3

4 # Threshold of 0.1%

5 # It needs to be divided by 100 in R

6 threshold = 0.001

7

8 # Get table file names

9 tables.path = list.files(rchoose.dir(caption = "Choose tables directory"), pattern =

↪→ "*.tsv", full.names = TRUE ,recursive = TRUE)

10

11 for (file.name in tables.path) {

12

13 # Parse base name and dir name

14 base.name = basename(file.name)

15 dir.name = dirname(file.name)

16

17 # Read file

18 dat = read.csv(file.name, sep = '\t', header=T, row.names = 1, check.names=F)

19 # Remove last column "taxomomy" if you did not remove it#

20 # dat = dat[, !colnames(dat) %in% "taxomomy",]

147

21

22 # Transpose data

23 dat = as.data.frame(t(dat))

24

25 # Create 'datt': a proportion reads data frame#

26 datt = dat / dat$Total

27 datt[is.na(datt)] <- 0

28

29 # Apply threshold to proportions of datt to dat#

30 dat[datt < threshold] = 0

31

32 # Calculate assigned

33 dat$Assigned = rowSums(dat[, !colnames(dat) %in% c("Unassigned", "Assigned", "Total

↪→ ")])

34

35 # Calculate unassigned

36 dat$Unassigned = dat$Total - dat$Assigned

37

38 # Transpose back

39 dat = as.data.frame(t(dat))

40

41 # Remove species that sum zero

42 dat = dat[rowSums(dat) > 0,]

43

44 # Export dataframe to CSV

45 file.result.name <- paste(dir.name, '/Filtered_', base.name, sep = "")

46 fwrite(x=dat, file=file.result.name, sep = "\t", row.names = T)

47 }

Source Code A.16: Remove assignments where the number of reads assigned falls below a threshold of 0.1 % of

the total of reads assigned for the sample.

1 library(docstring)

2 library(data.table)

3 library(tidyverse)

4 library(collections)

5 library(taxize)

6 library(zeallot)

7

8 auto.increment = function(variable){

9 #' "Auto" increment 1 to the variable

10 #'

11 #' @description This function adds 1 to the variable.

12 #'

13 #' @param variable numeric.

148

14 #' @usage auto.increment(variable)

15 #' @return It returns the variable after adding 1 to it.

16 #' @details The input must be a numeric.

17 #' @examples

18 #' auto.increment(variable)

19

20 # Get name of the variable

21 name = deparse(substitute(variable))

22

23 # Get value of the variable

24 value = get(name)

25

26 # Sum 1 to the value

27 value = value + 1

28

29 # Assign new value to a global variable with the same name

30 # Auto-increment

31 assign(name, value, envir = .GlobalEnv)

32

33 # Return new value

34 return(value)

35 }

36

37 modify.column.names <- function(column.names){

38 #' Modify column names

39 #'

40 #' @description This function modifies the column names.

41 #'

42 #' It adds the name of the pipeline at the end, and it formats the

43 #' reservoir and season names.

44 #'

45 #' @param column.names list

46 #' @usage modify.column.names(column.names)

47 #' @return It returns the new name.

48 #' @details The input must be a list.

49 #' @examples

50 #' modify.column.name(column.names)

51

52 # Create a dictionary for reservoirs

53 reservoirs <- dict()

54 reservoirs$set("K", "Klí£ava")

55 reservoirs$set("R", "�ímov")

56 reservoirs$set("Z", "�lutice")

57

58 # Create a dictionary for seasons

59 seasons <- dict()

149

60 seasons$set("S", "Summer")

61 seasons$set("W", "Autumn")

62

63 new.column.names <- lapply(column.names, function(column.name) {

64 # Get reservoir

65 reservoir = reservoirs$get(toupper(substring(column.name, 1, 1)))

66

67 # Get season

68 season = seasons$get(toupper(substring(column.name, 2, 2)))

69

70 # Get extra info

71 extra.info = substring(column.name, 3)

72

73 # Join all info in a vector

74 info = c(reservoir, season, extra.info, table.name)

75

76 # Remove empty element in the vector

77 info = info[info != ""]

78

79 # Join reservoir, season, extra info, and pipeline name.

80 new.name = paste(info, collapse = " ")

81

82 # Return the new name

83 return(new.name)

84 })

85

86 # Return new column names

87 return(new.column.names)

88 }

89

90 create.tables.all.pipelines.detailed <- function(){

91 #' Create Table All Pipelines Detailed

92 #'

93 #' @description This function creates a detailed version of the

94 #' table using all pipelines.

95 #'

96 #' @usage create.tables.all.pipelines.detailed()

97 #' @return It does not return anything.

98 #' @examples

99 #' create.tables.all.pipelines.detailed()

100

101 # Remove TAX column and rows Total, Assigned and Unassigned

102 table = all.pipelines.reduced.no.controls

103 table$TAX = NULL

104 table = table[!(row.names(table) %in% c("Total", "Assigned", "Unassigned")),]

105 table = as.data.frame(t(table))

150

106

107 # Transform the name of the rows as the first column

108 table = tibble::rownames_to_column(table, "Reservoir_Season_Pipeline")

109 rownames(table) = table$Reservoir_Season_Pipeline

110 table = table %>% separate(Reservoir_Season_Pipeline, c("Reservoir", "Season", "

↪→ Pipeline"), " ")

111

112 # Assign table name

113 assign("all.pipelines.detailed", table, envir = .GlobalEnv)

114

115 # Write tsv file

116 file = paste(TABLES.DETAILED, "/All_Pipelines_detailed.csv", sep = "")

117 fwrite(x=table, file=file, sep = "\t", row.names = T)

118

119 }

120

121 create.tables.ranacapa.metadata <- function(table, table.name, reduced){

122 #' Create Tables Ranacapa Metadata

123 #'

124 #' @description This function creates a metadata table

125 #' to be used with Ranacapa statistical analyses.

126 #'

127 #' @param table dataframe.

128 #' @param table.name name for the new table.

129 #' @param reduced True if it is reduced or False if not.

130 #' @usage create.tables.ranacapa.metadata(table, table.name, reduced)

131 #' @return It does not return anything.

132 #' @examples

133 #' create.tables.ranacapa.metadata(ranacapa, "metadata", T)

134

135 # Create new dataframes

136 columns <- c("Sample", "Sample_or_Control", "Reservoir", "Season", "Pipeline")

137 ###

138 metadata <- data.frame(matrix(ncol = length(columns), nrow = 0))

139 colnames(metadata) <- columns

140

141 # Get the name of the columns

142 columns = colnames(table)[colnames(table) != "sum.taxonomy"]

143

144 # For each column name

145 # Get reservoir, season, pipeline and sample_or_control

146 for (column in columns) {

147

148 column.info = str_split(column, "\\.", n = Inf, simplify = FALSE)

149

150 # Extract info

151

151 reservoir = column.info[[1]][1]

152 season = column.info[[1]][2]

153 info = column.info[[1]][3]

154 pipeline = column.info[[1]][4]

155

156 # Check if it is sample or control

157 sample_or_control = "control"

158 if (str_detect(info, ".*[0-9].*")) {

159 sample_or_control = "sample"

160 }

161

162 if(reduced){

163 pipeline = column.info[[1]][3]

164 sample_or_control = "sample"

165 }

166

167 # Add row to the dataframe

168 metadata = rbind(metadata, list(Sample = column,

169 Sample_or_Control = sample_or_control,

170 Reservoir = reservoir,

171 Season = season,

172 Pipeline = pipeline),

173 stringsAsFactors = FALSE)

174

175 }

176

177 # Write tsv file

178 file = paste(TABLES.RANACAPA, "/", table.name, ".txt", sep = "")

179 fwrite(x=metadata, file=file, sep = "\t", row.names = F)

180 }

181

182 create.tables.ranacapa <- function(table, table.name, reduced){

183 #' Create Tables Ranacapa

184 #'

185 #' @description This function creates a table to be used with

186 #' Ranacapa statistical analyses.

187 #'

188 #' @param table dataframe.

189 #' @param table.name name for the new table.

190 #' @param reduced True if it is reduced or False if not.

191 #' @usage create.tables.ranacapa(table, table.name, reduced)

192 #' @return It does not return anything.

193 #' @examples

194 #' create.tables.ranacapa(all.pipelines, "my_new_table", T)

195

196 # Create initial dataframes

152

197 ranacapa = table[!(row.names(table) %in% c("Total", "Assigned", "Unassigned")),]

198

199 # Get row names

200 tax = rownames(ranacapa)

201

202 # Change column name

203 colnames(ranacapa)[which(names(ranacapa) == "TAX")] <- "sum.taxonomy"

204

205 # Get taxonomic information

206 tax.info = classification(tax, db='gbif', rows = 1)

207

208 # Change tax from only species by phylum to species

209 for (species in ranacapa$sum.taxonomy) {

210 info = tax.info[[species]]

211 phylum.to.species = paste(info[info$rank == "phylum",]$name,

212 info[info$rank == "class",]$name,

213 info[info$rank == "order",]$name,

214 info[info$rank == "family",]$name,

215 info[info$rank == "genus",]$name,

216 info[info$rank == "species",]$name,

217 sep = ";")

218

219 ranacapa$sum.taxonomy[ranacapa$sum.taxonomy == species] = phylum.to.species

220 }

221

222 # Create metadata

223 file.name = paste(table.name, "_metadata", sep = "")

224 create.tables.ranacapa.metadata(ranacapa, file.name, reduced)

225

226 # Write tsv file

227 file = paste(TABLES.RANACAPA, "/", table.name, ".txt", sep = "")

228 fwrite(x=ranacapa, file=file, sep = "\t", row.names = F)

229

230 }

231

232 create.table.joined.reduced <- function(tables){

233 #' Create Table Joined Reduced for all Pipelines

234 #'

235 #' @description This function creates a table joining all pipelines

236 #' in a unique table for each tuple reservoir and season. It also

237 #' removes controls.

238 #'

239 #' @param tables vector with name each table variable.

240 #' @usage create.table.joined.reduced(tables)

241 #' @return It does not return anything.

242 #' @details The input must be a vector with the names

153

243 #' of the tables.

244 #' @examples

245 #' create.table.joined.reduced(tables)

246

247 # Create new dataframe

248 columns <- c("TAX")

249 all.pipelines.reduced.no.controls <- data.frame(matrix(ncol = length(columns), nrow

↪→ = 0))

250 colnames(all.pipelines.reduced.no.controls) <- columns

251

252 # For each table

253 for (table.name in tables) {

254

255 # Assign table name

256 assign("table.name", table.name, envir = .GlobalEnv)

257

258 # Get table

259 table = get(table.name)

260

261 # Remove control Mayland zebra

262 table = table[!(row.names(table) %in% "Maylandia zebra"),]

263

264 # Collect control names

265 control.names = colnames(table[,! grepl("\\d", colnames(table))])

266

267 # Remove control columns

268 table = table[,!(colnames(table) %in% control.names)]

269

270 # Create vector with the combination of the reservoir and the season

271 reservoirs.seasons = c("KS", "KW", "RS", "RW", "ZS", "ZW")

272

273 for (reservoir.season in reservoirs.seasons){

274

275 # Sum up columns matching reservoir.season variable pattern

276 row.sums = rowSums(table[, grepl(reservoir.season, colnames(table))])

277

278 # Remove columns matching reservoir.season variable pattern

279 table = table[, ! grepl(reservoir.season, colnames(table))]

280

281 # Add column where the name is the pattern from reservoir.season variable

282 table[, reservoir.season] = row.sums

283 }

284

285 # Rename table columns

286 table = table %>% dplyr::rename_all(modify.column.names)

287

154

288 # Transform the name of the rows as the first column

289 table = tibble::rownames_to_column(table, "TAX")

290

291 # Merge table with the dataframe

292 all.pipelines.reduced.no.controls = merge(all.pipelines.reduced.no.controls,

293 table, by="TAX", all=TRUE)

294 }

295

296 # Set NA as zero

297 all.pipelines.reduced.no.controls[is.na(all.pipelines.reduced.no.controls)] <- 0

298

299 # Set indexes as tax

300 rownames(all.pipelines.reduced.no.controls) <- all.pipelines.reduced.no.controls$

↪→ TAX

301

302 # Get row names

303 tax = rownames(all.pipelines.reduced.no.controls)

304

305 # Put Total, Assigned and Unassigned to the end

306 tax = tax[which(!tax %in% c("Total", "Assigned", "Unassigned"))]

307 tax = c(tax, c("Total", "Assigned", "Unassigned"))

308 all.pipelines.reduced.no.controls = all.pipelines.reduced.no.controls[tax,]

309

310 # Sort columns and keep TAX at the beginning

311 columns = sort(colnames(all.pipelines.reduced.no.controls))

312 columns = columns[which(!columns %in% "TAX")]

313 columns = c("TAX", columns)

314 all.pipelines.reduced.no.controls = all.pipelines.reduced.no.controls[, columns]

315

316 # Assign to a global variable

317 assign("all.pipelines.reduced.no.controls", all.pipelines.reduced.no.controls,

318 envir = .GlobalEnv)

319

320 # Write tsv file

321 fwrite(x=all.pipelines.reduced.no.controls, file=paste(TABLES.JOINED.REDUCED,

322 "/all_pipelines_reduced_no_

↪→ control.tsv",

323 sep = ""),

324 sep = "\t",

325 row.names = F)

326

327 }

328

329 create.table.joined <- function(tables) {

330 #' Create Table Joined for all Pipelines

331 #'

155

332 #' @description This function creates a table joining all pipelines

333 #' in a unique table.

334 #'

335 #' @param tables vector with name each table variable.

336 #' @usage create.table.joined(tables)

337 #' @return It does not return anything.

338 #' @details The input must be a vector with the names

339 #' of the tables.

340 #' @examples

341 #' create.table.joined(tables)

342

343 # Create new dataframe

344 columns <- c("TAX")

345 all.pipelines <- data.frame(matrix(ncol = length(columns), nrow = 0))

346 colnames(all.pipelines) <- columns

347

348 # For each table

349 for (table.name in tables) {

350

351 # Assign table name

352 assign("table.name", table.name, envir = .GlobalEnv)

353

354 # Get table

355 table = get(table.name)

356

357 # Rename table columns

358 table = table %>% dplyr::rename_all(modify.column.names)

359

360 # Transform the name of the rows as the first column

361 table = tibble::rownames_to_column(table, "TAX")

362

363 # Merge table with the dataframe

364 all.pipelines = merge(all.pipelines, table, by="TAX", all=TRUE)

365 }

366

367 # Set NA as zero

368 all.pipelines[is.na(all.pipelines)] <- 0

369

370 # Set indexes as tax

371 rownames(all.pipelines) <- all.pipelines$TAX

372

373 # Get row names

374 tax = rownames(all.pipelines)

375

376 # Put Total, Assigned and Unassigned to the end

377 tax = tax[which(!tax %in% c("Total", "Assigned", "Unassigned"))]

156

378 tax = c(tax, c("Total", "Assigned", "Unassigned"))

379 all.pipelines = all.pipelines[tax,]

380

381 # Sort columns and keep TAX at the beginning

382 columns = sort(colnames(all.pipelines))

383 columns = columns[which(!columns %in% "TAX")]

384 columns = c("TAX", columns)

385 all.pipelines = all.pipelines[, columns]

386

387 # Assign to a global variable

388 assign("all.pipelines", all.pipelines, envir = .GlobalEnv)

389

390 # Write tsv file

391 fwrite(x=all.pipelines, file=paste(TABLES.JOINED,

392 "/all_pipelines.tsv",

393 sep = ""),

394 sep = "\t",

395 row.names = F)

396

397 }

398

399 create.table.cumulative.reads <- function(tables){

400 #' Create Table Cumulative Reads

401 #'

402 #' @description This function creates a table showing the

403 #' cumulative summary by reads.

404 #'

405 #' It counts the number of reads for each tuple reservoir and season.

406 #'

407 #' @param tables vector with name each table variable.

408 #' @usage create.table.cumulative.reads(tables)

409 #' @return It does not return anything.

410 #' @details The input must be a dataframe table.

411 #' @examples

412 #' create.table.cumulative.reads(tables)

413

414 # Create new dataframe

415 columns <- c("Reservoir", "Season", "Assigned_Reads", "Pipeline")

416 cumulative.reads <- data.frame(matrix(ncol = length(columns), nrow = 0))

417 colnames(cumulative.reads) <- columns

418

419 # For each table

420 for (table.name in tables) {

421

422 # Get table

423 table = get(table.name)

157

424

425 # Count the number of reads detected for each pipeline

426 total = rowSums(table[,! colnames(table) %in% c("Reservoir", "Season")])

427

428 # Add row to the dataframe

429 cumulative.reads = rbind(cumulative.reads, list(Reservoir = table[,"Reservoir"],

430 Season = table[,"Season"],

431 Assigned_Reads = total,

432 Pipeline = rep(table.name,

433 times = 6,

434 length.out = NA,

435 each = 1)

436),

437 stringsAsFactors = FALSE)

438

439 }

440

441 # Assign to a global variable

442 assign("cumulative.reads", cumulative.reads, envir = .GlobalEnv)

443

444 # Reset indexes (row names)

445 rownames(cumulative.reads) <- NULL

446

447 # Write tsv file

448 fwrite(x=cumulative.reads, file=paste(TABLES.CUMULATIVE.READS,

449 "/","Cumulative_reads",

450 ".tsv", sep = ""),

451 sep = "\t",

452 row.names = F)

453

454 }

455

456 create.table.cumulative.species <- function(tables){

457 #' Create Table Cumulative Species

458 #'

459 #' @description This function creates a table

460 #' showing the cumulative summary by species.

461 #'

462 #' It counts the number of species for each tuple reservoir and season.

463 #'

464 #' @param tables vector with name each table variable.

465 #' @usage create.table.cumulative.species(tables)

466 #' @return It does not return anything.

467 #' @details The input must be a dataframe table.

468 #' @examples

469 #' create.table.cumulative.species(tables)

158

470

471 # Create new dataframe

472 columns <- c("Reservoir", "Season", "N_Species", "Pipeline")

473 cumulative.species <- data.frame(matrix(ncol = length(columns), nrow = 0))

474 colnames(cumulative.species) <- columns

475

476 # For each table

477 for (table.name in tables) {

478

479 # Get table

480 table = get(table.name)

481

482 # Convert to logical

483 logical = table[,! colnames(table) %in% c("Reservoir", "Season")] %>% mutate_all(

↪→ as.logical)

484

485 # Count the number of species detected for each pipeline

486 total = rowSums(logical %>% mutate_all(as.numeric))

487

488 # Add row to the dataframe

489 cumulative.species = rbind(cumulative.species, list(Reservoir = table[,"Reservoir"

↪→],

490 Season = table[,"Season"],

491 N_Species = total,

492 Pipeline = rep(table.name,

493 times = 6,

494 length.out = NA,

495 each = 1)

496),

497 stringsAsFactors = FALSE)

498

499 }

500

501 # Assign to a global variable

502 assign("cumulative.species", cumulative.species, envir = .GlobalEnv)

503

504 # Reset indexes (row names)

505 rownames(cumulative.species) <- NULL

506

507 # Write tsv file

508 fwrite(x=cumulative.species, file=paste(TABLES.CUMULATIVE.SPECIES,

509 "/","Cumulative_species",

510 ".tsv", sep = ""),

511 sep = "\t",

512 row.names = F)

513

159

514 }

515

516 create.table.detailed <- function(table.name){

517 #' Create Tables detailed

518 #'

519 #' @description This function creates a detailed version

520 #' of the original one.

521 #'

522 #' It creates a table where reservoir, season and species are the columns.

523 #'

524 #' @param table.name dataframe Where the indexes are species and

525 #' columns are reservoirs.

526 #' @usage create.table.detailed(table.name)

527 #' @return It does not return anything.

528 #' @details The input must be a dataframe table.

529 #' @examples

530 #' create.table.detailed(table.name)

531

532 # Get table without Unassigned, Assigned and Total

533 table = get(table.name)[! row.names(get(table.name)) %in% c("Unassigned", "Assigned

↪→ ", "Total"),]

534

535 # Create vector with the combination of the reservoir and the season

536 reservoirs.seasons = c("KS", "KW", "RS", "RW", "ZS", "ZW")

537

538 for (reservoir.season in reservoirs.seasons){

539

540 # Sum up columns matching reservoir.season variable pattern

541 row.sums = rowSums(table[, grepl(reservoir.season, colnames(table))])

542

543 # Remove columns matching reservoir.season variable pattern

544 table = table[, ! grepl(reservoir.season, colnames(table))]

545

546 # Add column where the name is the pattern from reservoir.season variable

547 table[, reservoir.season] = row.sums

548 }

549

550 # Transpose Dataframe

551 table = as.data.frame(t(table))

552

553 # Reorder dataframe by columns

554 table = table[,order(colnames(table))]

555

556 # Create new column season

557 seasons = c("Summer", "Autumn")

558 table = cbind(Season = seasons, table)

160

559

560 # Create new column Reservoir

561 reservoirs = c("Klí£ava", "Klí£ava", "�ímov", "�ímov", "�lutice", "�lutice")

562 table = cbind(Reservoir = reservoirs, table)

563

564 # Assign to a global variable

565 assign(table.name, table, envir = .GlobalEnv)

566

567 # Write tsv file

568 fwrite(x=table, file=paste(TABLES.DETAILED, "/",table.name, ".tsv", sep = ""),

569 sep = "\t", row.names = F)

570

571 }

572

573 keep.only.controls <- function(table){

574 #' Keep only Controls

575 #'

576 #' @description This function removes no controls from table

577 #' and keep only controls.

578 #'

579 #' It removes not control and keep D, E, F, N, P, and de.

580 #'

581 #' @param table dataframe where the indexes are species and

582 #' columns are reservoirs.

583 #' @usage keep.only.controls(table)

584 #' @return It does not return anything.

585 #' @details The input must be a dataframe table.

586 #' @examples

587 #' keep.only.controls(table)

588

589 # Collect control names

590 control.names = colnames(get(table)[, grepl("\\d", colnames(get(table)))])

591

592 # Remove control columns

593 assign(table, get(table)[,!(colnames(get(table)) %in% control.names)], envir =

↪→ .GlobalEnv)

594

595 # Write tsv file

596 fwrite(x=get(table), file=paste(TABLES.ONLY.CONTROLS, "/",table, ".tsv", sep = ""),

597 sep = "\t", row.names = T)

598 }

599

600 create.table.positive.control <- function(){

601 #' Create Table All Pipelines only positive control

602 #'

603 #' @description This function creates a table with only

161

604 #' positive control using all pipelines.

605 #'

606 #' @usage create.table.positive.control()

607 #' @return It does not return anything.

608 #' @examples

609 #' create.table.positive.control()

610

611 # Remove TAX column and rows Total, Assigned and Unassigned

612 table = all.pipelines

613 table$TAX = NULL

614 table = table[!(row.names(table) %in% c("Assigned", "Unassigned")),]

615 table = as.data.frame(t(table))

616

617 # Keep only Mayland Zebra

618 table = table[table["Maylandia zebra"] > 0, c("Total", "Maylandia zebra")]

619

620 # Correction of row names

621 rownames(table) = gsub(" P ", " ", rownames(table))

622

623 # Calculate percentage

624 table["Percentage_of_the_total"] = round(table["Maylandia zebra"] / table["Total"] *

↪→ 100, digits = 2)

625

626 # Transform the name of the rows as the first column

627 table = tibble::rownames_to_column(table, "Reservoir_Season_Pipeline")

628 rownames(table) = table$Reservoir_Season_Pipeline

629 table = table %>% separate(Reservoir_Season_Pipeline, c("Reservoir", "Season", "

↪→ Pipeline"), " ")

630

631 # Assign table name

632 assign("all.pipelines.only.positive.control", table, envir = .GlobalEnv)

633

634 # Write tsv file

635 file = paste(TABLES.ONLY.CONTROLS, "/All_Pipelines_only_positive_control.csv", sep

↪→ = "")

636 fwrite(x=table, file=file, sep = "\t", row.names = T)

637

638 }

639

640 remove.controls <- function(table){

641 #' Remove Controls

642 #'

643 #' @description This function removes controls from table.

644 #'

645 #' It removes index Mayland zebra and columns D, E, F, N, P, and de.

646 #'

162

647 #' @param table dataframe Where the indexes are species and

648 #' columns are reservoirs.

649 #' @usage remove.controls(table)

650 #' @return It does not return anything.

651 #' @details The input must be a dataframe table.

652 #' @examples

653 #' remove.controls(table)

654

655 # Remove Maylandia zebra

656 assign(table, get(table)[!(row.names(get(table)) %in% "Maylandia zebra"),], envir =

↪→ .GlobalEnv)

657

658 # Collect control names

659 control.names = colnames(get(table)[,! grepl("\\d", colnames(get(table)))])

660

661 # Remove control columns

662 assign(table, get(table)[,!(colnames(get(table)) %in% control.names)], envir =

↪→ .GlobalEnv)

663

664 # Write tsv file

665 fwrite(x=get(table), file=paste(TABLES.CONTROLS, "/",table, ".tsv", sep = ""),

666 sep = "\t", row.names = T)

667 }

668

669 read.tables <- function(tables.path){

670 #' Read Tables

671 #'

672 #' @description This function reads all tables from the vector

673 #'

674 #' From a vector of table paths, It reads each tsv file

675 #' and creates a dataframe for each one.

676 #'

677 #' The name of each variable is the name of each file without

678 #' extension.

679 #'

680 #' @param tables.path vector. A vector with paths to tables.

681 #' @usage read.tables(tables.path)

682 #' @return Return a vector with the names of the dataframes

683 #' for each table.

684 #' @details The input must be a vector with the paths to the tables

685 #' in tsv format.

686 #' @examples

687 #' read.tables(tables.path)

688 #' read.tables("PATH_TO_TABLE")

689

690 # Initialize tables variable

163

691 tables = c()

692

693 # For each file

694 for (file.name in tables.path) {

695

696 # Parse base name and dir name

697 base.name = basename(file.name)

698 dir.name = dirname(file.name)

699

700 # File name without extension

701 variable.name = tools::file_path_sans_ext(base.name)

702

703 # Read table and assign it to the variable.name

704 assign(variable.name, read.csv(file.name, sep = '\t', header=T, row.names = 1,

↪→ check.names=F), envir = .GlobalEnv)

705

706 # Add new element to the list of tables

707 tables = c(tables, variable.name)

708 }

709

710 return(tables)

711 }

Source Code A.17: Functions to create tables.

1 source("Create_Tables_Utils.R")

2 library(rChoiceDialogs)

3

4 # Number of the folder

5 folder.number = 3

6

7 # Folder variables

8 TABLES.JOINED = paste(auto.increment(folder.number), "_Joined", sep = "")

9 TABLES.JOINED.REDUCED = paste(auto.increment(folder.number), "_Joined_Reduced", sep =

↪→ "")

10 #TABLES.RANACAPA = paste(auto.increment(folder.number), "_Ranacapa", sep = "")

11 TABLES.CONTROLS = paste(auto.increment(folder.number), "_No_Controls", sep = "")

12 TABLES.ONLY.CONTROLS = paste(auto.increment(folder.number), "_Only_Controls", sep = "

↪→ ")

13 TABLES.DETAILED = paste(auto.increment(folder.number), "_Detailed", sep = "")

14 TABLES.CUMULATIVE.SPECIES = paste(auto.increment(folder.number), "_Cumulative_Species

↪→ ", sep = "")

15 TABLES.CUMULATIVE.READS = paste(auto.increment(folder.number), "_Cumulative_Reads",

↪→ sep = "")

16

164

17 # Set working directory to source file location

18 if(Sys.getenv("RSTUDIO") == "1"){

19 setwd(dirname(rstudioapi::getActiveDocumentContext()$path))

20 }else{

21 setwd(utils::getSrcDirectory()[1])

22 }

23

24 # Read files

25 # Get table file names

26 tables.path = list.files(rchoose.dir(caption = "Tables directory"), pattern = "*.tsv",

↪→ full.names = TRUE ,recursive = TRUE)

27

28 # Read tables

29 tables = read.tables(tables.path)

30

31 # Create folder to save the new file

32 dir.create(TABLES.JOINED, showWarnings = FALSE)

33 # Create table joined

34 create.table.joined(tables)

35

36 # Create folder to save the new files after removing controls

37 dir.create(TABLES.ONLY.CONTROLS, showWarnings = FALSE)

38 # Keep controls

39 # for (table in tables) {

40 # keep.only.controls(table)

41 # }

42 # Keep only positive control

43 create.table.positive.control()

44

45 # Create folder to save the new file

46 dir.create(TABLES.JOINED.REDUCED, showWarnings = FALSE)

47 # Create table joined reduced

48 create.table.joined.reduced(tables)

49

50 # Before the execution of ranacapa code below, modify the line:

51 # new.name = paste(info, collapse = " ")

52 # by

53 # new.name = paste(info, collapse = ".")

54

55 # Create folder to save the new file

56 #dir.create(TABLES.RANACAPA, showWarnings = FALSE)

57 # Create tables ranacapa

58 #create.tables.ranacapa(all.pipelines.reduced.no.controls, "ranacapa", T)

59

60 # Create folder to save the new files after removing controls

61 dir.create(TABLES.CONTROLS, showWarnings = FALSE)

165

62 # Remove controls

63 for (table in tables) {

64 remove.controls(table)

65 }

66

67 # Create folder to save the new files

68 dir.create(TABLES.DETAILED, showWarnings = FALSE)

69 # Create detailed version of the tables

70 for (table.name in tables) {

71 create.table.detailed(table.name)

72 }

73

74 # Create folder to save the new file

75 dir.create(TABLES.CUMULATIVE.SPECIES, showWarnings = FALSE)

76 # Create tables cumulative species

77 create.table.cumulative.species(tables)

78

79 # Create folder to save the new file

80 dir.create(TABLES.CUMULATIVE.READS, showWarnings = FALSE)

81 # Create tables cumulative reads

82 create.table.cumulative.reads(tables)

83

84 # Create table all pipelines detailed

85 create.tables.all.pipelines.detailed()

86

87 # Save R object

88 save.image("Tables.RData")

Source Code A.18: Create tables. All tables for each pipeline are joined in a unique file, the control samples are

removed and new tables are created, a table with only control sample is created, a detailed version of the joined

table is also created, and cumulative tables are created.

1 library(tidyverse)

2 library(ggplot2)

3 library(colorblindr)

4 library(tikzDevice)

5 library(xtable)

6 library(reshape2)

7 library(scales)

8 library(ggpubr)

9 library(gridExtra)

10

11 # Load R object

12 load("Tables.RData")

13

166

14 # Ignore scientific notation

15 options(scipen=10000)

16

17 # Read table

18 # dat = read.csv("Tables/All_Pipelines_detailed.csv", sep = '\t', header=T, row.names

↪→ = 1, check.names=F)

19 dat = all.pipelines.detailed

20

21 # Species order

22 species_order = c("Lampetra planeri", "Acipenser-sp.", "Anguilla anguilla", "Phoxinus

↪→ phoxinus", "Rutilus rutilus", "Chondrostoma nasus", "Squalius cephalus", "

↪→ Alburnus alburnus", "Blicca+Vimba", "Abramis brama", "L.idus+leuciscus", "

↪→ Aspius+Scardinius", "Pseudorasbora parva", "Gobio gobio", "Rhodeus amarus", "

↪→ Tinca tinca", "Hypophthalmichthys molitrix", "Hypophthalmichthys nobilis", "

↪→ Ctenopharyngodon idella", "Barbus barbus", "Cyprinus carpio", "Carassius

↪→ auratus", "Carassius carassius", "Barbatula barbatula", "Esox lucius", "

↪→ Gasterosteus aculeatus", "Sander+Perca", "Gymnocephalus cernua", "Lepomis

↪→ gibbosus", "Thymallus thymallus", "Oncorhynchus mykiss", "Salvelinus

↪→ fontinalis", "Salmo trutta", "Coregonus-sp.", "Cottus gobio", "Cottus

↪→ poecilopus", "Silurus glanis")

23 species_order = rev(species_order)

24

25 #### Count number of species/reads for each pipeline, reservoir, and season.

26

27 # Number of reads

28

29 # Average of all pipelines

30 ignored = dat[, !(colnames(dat) %in% c("Season", "Reservoir"))]

31 ignored = aggregate(. ~ Pipeline, data=ignored, FUN=sum)

32 ignored$Total = rowSums(ignored[, !(colnames(ignored) %in% c("Pipeline"))])

33 sum(ignored$Total) / length(unique(dat$Pipeline))

34

35

36 # Number of reads

37

38 # Pipeline

39 ignored = dat[, !(colnames(dat) %in% c("Season", "Reservoir"))]

40 ignored = aggregate(. ~ Pipeline, data=ignored, FUN=sum)

41 ignored$Total = rowSums(ignored[, !(colnames(ignored) %in% c("Pipeline"))])

42 ignored[c("Pipeline", "Total")]

43

44 # Export as latex table

45 print(xtable(ignored[c("Pipeline", "Total")]), booktabs=TRUE, file = "Number_of_reads

↪→ _by_Pipeline.tex")

46

47 # Reservoir

167

48 ignored = dat[, !(colnames(dat) %in% c("Pipeline", "Season"))]

49 ignored = aggregate(. ~ Reservoir, data=ignored, FUN=sum)

50 ignored$Total = rowSums(ignored[, !(colnames(ignored) %in% c("Reservoir"))])

51 # Use the code below to calculate the average for Reservoir or Season

52 ignored$Total = ignored$Total / length(unique(dat$Pipeline))

53 ignored[c("Reservoir", "Total")]

54

55 # Season

56 ignored = dat[, !(colnames(dat) %in% c("Pipeline", "Reservoir"))]

57 ignored = aggregate(. ~ Season, data=ignored, FUN=sum)

58 ignored$Total = rowSums(ignored[, !(colnames(ignored) %in% c("Season"))])

59 # Use the code below to calculate the average for Reservoir and Season

60 ignored$Total = ignored$Total / length(unique(dat$Pipeline))

61 ignored[c("Season", "Total")]

62

63 # Number of reads for pipeline, reservoir, and season together

64 total = dat

65 total$total = rowSums(total[, !(colnames(total) %in% c("Pipeline", "Reservoir", "

↪→ Season"))])

66 total = total[c("Pipeline", "Reservoir", "Season", "total")]

67 total

68 total[total$total == min(total$total),]

69 total[total$total == max(total$total),]

70

71 # Number of species

72

73 # Total

74 dim(dat[! colnames(dat) %in% c("Pipeline", "Reservoir", "Season")])

75

76 # Pipeline

77 ignored = dat[, !(colnames(dat) %in% c("Reservoir", "Season"))]

78 ignored = aggregate(. ~ Pipeline, data=ignored, FUN=sum)

79 ignored$Total = rowSums(ignored[, !(colnames(ignored) %in% c("Pipeline"))] != 0)

80 ignored[c("Pipeline", "Total")]

81

82 # Export as latex table

83 #print(xtable(ignored[c("Pipeline", "Total")]), booktabs=TRUE, file = "Number_of_

↪→ Species.tex")

84

85 # Reservoir

86 ignored = dat[, !(colnames(dat) %in% c("Pipeline", "Season"))]

87 ignored = aggregate(. ~ Reservoir, data=ignored, FUN=sum)

88 ignored$Total = rowSums(ignored[, !(colnames(ignored) %in% c("Reservoir"))] != 0)

89 ignored[c("Reservoir", "Total")]

90

91 # Season

168

92 ignored = dat[, !(colnames(dat) %in% c("Pipeline", "Reservoir"))]

93 ignored = aggregate(. ~ Season, data=ignored, FUN=sum)

94 ignored$Total = rowSums(ignored[, !(colnames(ignored) %in% c("Season"))] != 0)

95 ignored[c("Season", "Total")]

96

97 # Number of species for pipeline, reservoir, and season together

98 total = dat

99 total$total = rowSums(total[, !(colnames(total) %in% c("Pipeline", "Reservoir", "

↪→ Season"))] != 0)

100 total = total[c("Pipeline", "Reservoir", "Season", "total")]

101 total

102 total[total$total == min(total$total),]

103 total[total$total == max(total$total),]

104

105 ### Average number of reads per species

106

107 number_of_reads = colSums(dat[, !(colnames(dat) %in% c("Reservoir", "Season", "

↪→ Pipeline"))])

108 # Where 1 means to apply FUN to each row of df, 2 would mean to apply FUN to columns.

109 # min_of_reads = apply(dat[, !(colnames(dat) %in% c("Reservoir", "Season", "Pipeline

↪→ "))], 2, FUN=min)

110 st_dev = sapply(dat[, !(colnames(dat) %in% c("Reservoir", "Season", "Pipeline"))],

↪→ sd)

111 number_of_reads = round(number_of_reads / 5)

112 number_of_reads = data.frame(number_of_reads, st_dev)

113 number_of_reads$Species = rownames(number_of_reads)

114 number_of_reads[order(number_of_reads$number_of_reads),]

115

116 maximum = max(number_of_reads$number_of_reads)

117

118 # Create plots

119 p = ggplot(number_of_reads, aes(x = factor(Species, level = species_order), y =

↪→ number_of_reads)) +

120 geom_errorbar(aes(ymin = number_of_reads-st_dev, ymax = number_of_reads+st_dev),

↪→ alpha = 0.75) +

121 geom_point(aes(fill = number_of_reads), shape = 21, size = 2.5) +

122 xlab(NULL) +

123 ylab(NULL) +

124 theme(axis.text.x = element_text(angle = 0, size = 8, color = "black",

125 vjust = 1, hjust = 0.5),

126 axis.text.y = element_text(size = 8, color = "black", face = "italic"),

127 axis.title = element_text(size = 10, face = "plain"),

128 plot.margin = margin(10, 10, 10, 15),

129 plot.title = element_text(hjust = 0.5, size = 20, face = "bold",

130 margin = margin(10, 0, 10, 0)),

131 panel.background = element_rect(fill = 'white'),

169

132 panel.grid.major = element_line(colour = "lightgray", size = 0.3),

133 panel.grid.minor = element_line(colour = "lightgray", size = 0.1),

134 panel.border = element_rect(colour = "black", fill = NA, size = 0.5),

135 legend.position = "none"

136) + coord_flip() +

137 scale_fill_gradientn(limits = c(1, maximum),

138 expand = c(0, 0),

139 colors = rev(c("darkred", "red", "orange", "yellow", "green", "

↪→ lightgreen", "lightblue", "darkblue")),

140 name = NULL)

141

142 plog = ggplot(number_of_reads, aes(x = factor(Species, level = species_order), y =

↪→ number_of_reads)) +

143 geom_errorbar(aes(ymin = number_of_reads-st_dev, ymax = number_of_reads+st_dev),

↪→ alpha = 0.75) +

144 geom_point(aes(fill = number_of_reads), shape = 21, size = 2.5) +

145 xlab(NULL) +

146 ylab(NULL) +

147 theme(axis.text.x = element_text(angle = 0, size = 8, color = "black",

148 vjust = 1, hjust = 0.5),

149 axis.text.y = element_blank(),

150 axis.title = element_text(size = 10, face = "plain"),

151 plot.margin = margin(10, 10, 10, 0),

152 plot.title = element_text(hjust = 0.5, size = 20, face = "bold",

153 margin = margin(10, 0, 10, 0)),

154 panel.background = element_rect(fill = 'white'),

155 panel.grid.major = element_line(colour = "lightgray", size = 0.3),

156 panel.grid.minor = element_line(colour = "lightgray", size = 0.1),

157 panel.border = element_rect(colour = "black", fill = NA, size = 0.5),

158 legend.position = "none"

159) + scale_y_continuous(trans='log2') + coord_flip() +

160 scale_fill_gradientn(limits = c(1, maximum),

161 expand = c(0, 0),

162 colors=rev(c("darkred", "red", "orange", "yellow", "green", "

↪→ lightgreen", "lightblue", "darkblue")),

163 name = NULL)

164

165 # Add label on the right side of the plots

166 p = grid.arrange(p, top = text_grob("No Transformation", hjust = -0.25, vjust = 1.5,

↪→ just = "centre", size = 8, face = "plain"))

167 plog = grid.arrange(plog, top = text_grob("Logarithm 2", hjust = 0.5, vjust = 1.5,

↪→ just = "centre", size = 8, face = "plain"))

168

169 # Join plots

170 figure = ggarrange(p, plog, ncol = 2, nrow = 1, widths=c(1.65,1))

171 #figure = annotate_figure(figure, bottom = text_grob("Number of reads", hjust = 0,

170

↪→ size = 10, face = "plain"))

172

173 # Export ggplot to Latex

174 # factor(Species, level = species_order) to change the order based on phylogenetic

↪→ tree

175 tikz(file = "Number_of_reads_average_by_species.tex", width = 6, height = 5.5)

176 figure

177 dev.off()

178

179

180 ### Number of reads per species considering Pipeline

181 ignored = dat[, !(colnames(dat) %in% c("Reservoir", "Season"))]

182 ignored = aggregate(. ~ Pipeline, data=ignored, FUN=sum)

183

184 # For each pipeline

185 rownames(ignored) = ignored$Pipeline

186 pipelines = unique(ignored$Pipeline)

187 #ignored$Pipeline = NULL

188 for (pipeline in pipelines) {

189 print(sort(ignored[pipeline, !(colnames(ignored) %in% "Pipeline")]))

190 print("################")

191 }

192

193

194 # Export ggplot to Latex

195

196 # Convert to format of GGplot

197 number_of_reads = melt(ignored, id.vars='Pipeline')

198

199 # Calculate breaks

200 maximum = max(number_of_reads$value)

201 breaks = c(maximum)

202 while (tail(breaks, n=1) != 0) {

203 breaks = c(breaks, round(tail(breaks, n=1) / 4))

204 }

205 breaks = breaks[-length(breaks)]

206

207 # Convert zero to NA

208 number_of_reads[number_of_reads == 0] = NA

209

210 tikz(file = "Number_of_reads_by_pipelines_and_species.tex", width = 6.25, height = 5

↪→ .5)

211 ggplot(number_of_reads, aes(y=Pipeline, x=factor(variable, level = species_order),

↪→ fill=value)) +

212 geom_tile(color = "black", size = 0.5) +

213 xlab(NULL) +

171

214 ylab(NULL) +

215 theme(axis.text.x = element_blank(),

216 axis.text.y = element_text(size = 8, color = "black", face = "italic"),

217 axis.title = element_text(size = 10, face = "plain"),

218 axis.ticks.x = element_blank(),

219 plot.margin = margin(10, 10, 10, 20),

220 plot.title = element_text(hjust = 0.5, size = 20, face = "bold",

221 margin = margin(10, 0, 10, 0)),

222 panel.background = element_rect(fill = 'lightgray'),

223 panel.grid.major = element_line(colour = "white", size = 0.3),

224 panel.grid.minor = element_line(colour = "white", size = 0.1),

225 panel.border = element_rect(colour = "black", fill = NA, size = 0.5),

226 legend.key.size = unit(1, "cm"),

227 legend.position = "right",

228 legend.text = element_text(angle = 0, size = 6, color = "black",

229 face = "plain", vjust = 1, hjust = 1),

230 strip.text = element_text(size = 8, face = "plain", color = "black"),

231 strip.background = element_blank()

232) +

233 scale_x_discrete(expand = c(0, 0)) +

234 scale_y_discrete(expand = c(0, 0)) +

235 scale_fill_gradientn(limits=c(1,maximum),

236 breaks = breaks,

237 expand = c(0,0),

238 colors=rev(c("darkred", "red", "orange", "yellow", "green", "

↪→ lightgreen", "lightblue", "darkblue")),

239 na.value = 'white',

240 name = NULL,

241 trans = pseudo_log_trans(base = 2)) +

242 coord_flip() + facet_grid(~Pipeline, scales='free')

243 dev.off()

244 # Because trans = is applying log2, so breaks values are 2**number (exponential of 2)

245

246

247 ### Number of reads by species considering Reservoir

248 ignored = dat[, !(colnames(dat) %in% c("Pipeline", "Season"))]

249 ignored = aggregate(. ~ Reservoir, data=ignored, FUN=sum)

250

251 # For each reservoir

252 rownames(ignored) = ignored$Reservoir

253 reservoirs = unique(ignored$Reservoir)

254 #ignored$Reservoir = NULL

255 for (reservoir in reservoirs) {

256 print(sort(round(ignored[reservoir, !(colnames(ignored) %in% "Reservoir")] / length

↪→ (unique(dat$Pipeline)))))

257 print("################")

172

258 }

259

260

261 # Export ggplot to Latex

262

263 # Convert to format of GGplot

264 number_of_reads = melt(ignored, id.vars='Reservoir')

265 number_of_reads$value = round(number_of_reads$value / 5)

266

267 # Calculate breaks

268 maximum = max(number_of_reads$value)

269 breaks = c(maximum)

270 while (tail(breaks, n=1) != 0) {

271 breaks = c(breaks, round(tail(breaks, n=1) / 4))

272 }

273 breaks = breaks[-length(breaks)]

274

275 # Convert zero to NA

276 number_of_reads[number_of_reads == 0] = NA

277

278 tikz(file = "Number_of_reads_by_reservoirs_and_species.tex", width = 6.25, height = 5

↪→ .5)

279 ggplot(number_of_reads, aes(y=Reservoir, x=factor(variable, level = species_order),

↪→ fill=value)) +

280 geom_tile(color = "black", size = 0.5) +

281 xlab(NULL) +

282 ylab(NULL) +

283 theme(axis.text.x = element_blank(),

284 axis.text.y = element_text(size = 8, color = "black", face = "italic"),

285 axis.title = element_text(size = 10, face = "plain"),

286 axis.ticks.x = element_blank(),

287 plot.margin = margin(10, 10, 10, 20),

288 plot.title = element_text(hjust = 0.5, size = 20, face = "bold",

289 margin = margin(10, 0, 10, 0)),

290 panel.background = element_rect(fill = 'lightgray'),

291 panel.grid.major = element_line(colour = "white", size = 0.3),

292 panel.grid.minor = element_line(colour = "white", size = 0.1),

293 panel.border = element_rect(colour = "black", fill = NA, size = 0.5),

294 legend.key.size = unit(1, "cm"),

295 legend.position = "right",

296 legend.text = element_text(angle = 0, size = 6, color = "black",

297 face = "plain", vjust = 1, hjust = 1),

298 strip.text = element_text(size = 8, face = "plain", color = "black"),

299 strip.background = element_blank()

300) +

301 scale_x_discrete(expand = c(0, 0)) +

173

302 scale_y_discrete(expand = c(0, 0)) +

303 scale_fill_gradientn(limits=c(1,maximum),

304 breaks = breaks,

305 expand = c(0,0),

306 colors=rev(c("darkred", "red", "orange", "yellow", "green", "

↪→ lightgreen", "lightblue", "darkblue")),

307 na.value = 'white',

308 name = NULL,

309 trans = pseudo_log_trans(base = 2)) +

310 coord_flip() + facet_grid(~Reservoir, scales='free')

311 dev.off()

312 # Because trans = is applying log2, so breaks values are 2**number (exponential of 2)

313

314

315 ### Number of reads per species considering Season

316 ignored = dat[, !(colnames(dat) %in% c("Reservoir", "Pipeline"))]

317 ignored = aggregate(. ~ Season, data=ignored, FUN=sum)

318

319 # For each Season

320 rownames(ignored) = ignored$Season

321 seasons = unique(ignored$Season)

322 #ignored$Season = NULL

323 for (season in seasons) {

324 print(sort(round(ignored[season, !(colnames(ignored) %in% "Season")] / length(

↪→ unique(dat$Pipeline)))))

325 print("################")

326 }

327

328

329 # Export ggplot to Latex

330

331 # Convert to format of GGplot

332 number_of_reads = melt(ignored, id.vars='Season')

333 number_of_reads$value = round(number_of_reads$value / 5)

334

335 # Calculate breaks

336 maximum = max(number_of_reads$value)

337 breaks = c(maximum)

338 while (tail(breaks, n=1) != 0) {

339 breaks = c(breaks, round(tail(breaks, n=1) / 4))

340 }

341 breaks = breaks[-length(breaks)]

342

343 # Convert zero to NA

344 number_of_reads[number_of_reads == 0] = NA

345

174

346 tikz(file = "Number_of_reads_by_seasons_and_species.tex", width = 6.25, height = 5.5)

347 ggplot(number_of_reads, aes(y=Season, x=factor(variable, level = species_order), fill

↪→ =value)) +

348 geom_tile(color = "black", size = 0.5) +

349 xlab(NULL) +

350 ylab(NULL) +

351 theme(axis.text.x = element_blank(),

352 axis.text.y = element_text(size = 8, color = "black", face = "italic"),

353 axis.title = element_text(size = 10, face = "plain"),

354 axis.ticks.x = element_blank(),

355 plot.margin = margin(10, 10, 10, 20),

356 plot.title = element_text(hjust = 0.5, size = 20, face = "bold",

357 margin = margin(10, 0, 10, 0)),

358 panel.background = element_rect(fill = 'lightgray'),

359 panel.grid.major = element_line(colour = "white", size = 0.3),

360 panel.grid.minor = element_line(colour = "white", size = 0.1),

361 panel.border = element_rect(colour = "black", fill = NA, size = 0.5),

362 legend.key.size = unit(1, "cm"),

363 legend.position = "right",

364 legend.text = element_text(angle = 0, size = 6, color = "black",

365 face = "plain", vjust = 1, hjust = 1),

366 strip.text = element_text(size = 8, face = "plain", color = "black"),

367 strip.background = element_blank()

368) +

369 scale_x_discrete(expand = c(0, 0)) +

370 scale_y_discrete(expand = c(0, 0)) +

371 scale_fill_gradientn(limits=c(1,maximum),

372 breaks = breaks,

373 expand = c(0,0),

374 colors=rev(c("darkred", "red", "orange", "yellow", "green", "

↪→ lightgreen", "lightblue", "darkblue")),

375 na.value = 'white',

376 name = NULL,

377 trans = pseudo_log_trans(base = 2)) +

378 coord_flip() + facet_grid(~Season, scales='free')

379 dev.off()

380 # Because trans = is applying log2, so breaks values are 2**number (exponential of 2)

381

382

383 ### Number of reads by species considering pipeline, reservoir, Season

384 df = dat

385

386 # Remove columns and create a new column with row names

387 df$Pipeline = NULL

388 df$Reservoir = NULL

389 df$Season = NULL

175

390 df$Pipeline_Reservoir_Season = rownames(df)

391

392 # Export ggplot to Latex

393

394 # Convert to format of GGplot

395 number_of_reads = melt(df, id.vars='Pipeline_Reservoir_Season')

396

397 # Sort and check in the file created the largest and smallest value

398 write.csv(number_of_reads[order(number_of_reads$value),],

399 file = "LS.csv", row.names = FALSE)

400

401 # Calculate breaks

402 maximum = max(number_of_reads$value)

403 breaks = c(maximum)

404 while (tail(breaks, n=1) != 0) {

405 breaks = c(breaks, round(tail(breaks, n=1) / 4))

406 }

407 breaks = breaks[-length(breaks)]

408

409 # Convert zero to NA

410 number_of_reads[number_of_reads == 0] = NA

411 number_of_reads = number_of_reads %>% separate(Pipeline_Reservoir_Season, c("Pipeline

↪→ ", "Reservoir", "Season"), " ")

412

413 tikz(file = "Number_of_reads_by_PRS_and_species.tex", width = 6, height = 9.5)

414 ggplot(number_of_reads, aes(y=Season, x=factor(variable, level = species_order), fill

↪→ =value)) +

415 geom_tile(color = "black", size = 0.5) +

416 xlab(NULL) +

417 ylab(NULL) +

418 theme(axis.text.x = element_text(angle = 45, size = 8, color = "black",

419 vjust = 1, hjust = 1),

420 axis.text.y = element_text(size = 8, color = "black", face = "italic"),

421 axis.title = element_text(size = 10, face = "plain"),

422 plot.margin = margin(10, 10, 10, 20),

423 plot.title = element_text(hjust = 0.5, size = 20, face = "bold",

424 margin = margin(10, 0, 10, 0)),

425 panel.background = element_rect(fill = 'lightgray'),

426 panel.grid.major = element_line(colour = "white", size = 0.3),

427 panel.grid.minor = element_line(colour = "white", size = 0.1),

428 panel.border = element_rect(colour = "black", fill = NA, size = 0.5),

429 legend.key.size = unit(1, "cm"),

430 legend.position = "right",

431 legend.text = element_text(angle = 0, size = 6, color = "black",

432 face = "plain", vjust = 1, hjust = 1),

433 strip.text = element_text(size = 8, face = "plain", color = "black")

176

434) +

435 scale_x_discrete(expand = c(0, 0)) +

436 scale_y_discrete(expand = c(0, 0)) +

437 scale_fill_gradientn(limits=c(1,maximum),

438 breaks = breaks,

439 expand = c(0,0),

440 colors=rev(c("darkred", "red", "orange", "yellow", "green", "

↪→ lightgreen", "lightblue", "darkblue")),

441 na.value = 'white',

442 name = NULL,

443 trans = pseudo_log_trans(base = 2)) +

444 coord_flip() + facet_grid(Reservoir~Pipeline)

445 dev.off()

446 # Because trans = is applying log2, so breaks values are 2**number (exponential of 2)

447

448

449 ### Species detected only once or in all pipelines

450

451 # Get data and ignore Reservoir and Season columns

452 ignored = dat[, !(colnames(dat) %in% c("Reservoir", "Season"))]

453 # Sum up values by Pipeline

454 ignored = aggregate(. ~ Pipeline, data=ignored, FUN=sum)

455 # Make rownames the values in Pipeline column

456 rownames(ignored) = ignored$Pipeline

457 # Check if values are different from zero

458 ignored = ignored[, !(colnames(ignored) %in% c("Pipeline"))] != 0

459

460 # keep only columns summing up 1

461 names_only_once = colnames(ignored[,colSums(ignored) == 1])

462 # keep only columns summing up 5 (all pipelines)

463 names_in_all = colnames(ignored[,colSums(ignored) == 5])

464

465 # Show which pipeline detected species found just once

466 rowSums(ignored[,names_only_once])

467

468

469 ### Species detected only once or in all reservoirs

470

471 # Get data and ignore Pipeline and Season columns

472 ignored = dat[, !(colnames(dat) %in% c("Pipeline", "Season"))]

473 # Sum up values by Reservoir

474 ignored = aggregate(. ~ Reservoir, data=ignored, FUN=sum)

475 # Make rownames the values in Reservoir column

476 rownames(ignored) = ignored$Reservoir

477 # Check if values are different from zero

478 ignored = ignored[, !(colnames(ignored) %in% c("Reservoir"))] != 0

177

479

480 # keep only columns summing up 1

481 names_only_once = colnames(ignored[,colSums(ignored) == 1])

482 # keep only columns summing up 3 (all reservoirs)

483 names_in_all = colnames(ignored[,colSums(ignored) == 3])

484

485 # Show which reservoir detected species found just once

486 rowSums(ignored[,names_only_once])

487

488

489 ### Species detected only once or in all seasons

490

491 # Get data and ignore Pipeline and Reservoir columns

492 ignored = dat[, !(colnames(dat) %in% c("Pipeline", "Reservoir"))]

493 # Sum up values by Season

494 ignored = aggregate(. ~ Season, data=ignored, FUN=sum)

495 # Make rownames the values in Season column

496 rownames(ignored) = ignored$Season

497 # Check if values are different from zero

498 ignored = ignored[, !(colnames(ignored) %in% c("Season"))] != 0

499

500 # keep only columns summing up 1

501 names_only_once = colnames(ignored[,colSums(ignored) == 1])

502 # keep only columns summing up 2 (all seasons)

503 names_in_all = colnames(ignored[,colSums(ignored) == 2])

504

505 # Show which season detected species found just once

506 rowSums(ignored[,names_only_once])

507

508

509 ### Species detected only once or in pipelines, reservoirs and seasons together

510

511 df = dat

512

513 # Remove columns

514 df$Pipeline = NULL

515 df$Reservoir = NULL

516 df$Season = NULL

517

518 df = df != 0

519

520 # keep only columns summing up 1

521 names_only_once = colnames(df[,colSums(df) == 1])

522 # keep only columns summing up 30 (all combination)

523 names_in_all = colnames(df[,colSums(df) == 30])

524

178

525 # Show which pipeline,reservoir and season detected species found just once

526 rowSums(df[,names_only_once])

Source Code A.19: Calculate the number of reads and species, and create charts for pipelines, reservoirs, and

season.

1 library(vegan)

2 library(tidyr)

3 library(dplyr)

4 library(ggplot2)

5 library(colorblindr)

6 library(tidyverse)

7 library(tikzDevice)

8 library(xtable)

9 library(reshape2)

10 library(scales)

11 library(dataMaid)

12 library(nortest)

13 library(xtable)

14

15

16 # Set working directory to source file location

17 if(Sys.getenv("RSTUDIO") == "1"){

18 setwd(dirname(rstudioapi::getActiveDocumentContext()$path))

19 }else{

20 setwd(utils::getSrcDirectory()[1])

21 }

22

23 # Load data

24 load("Tables.RData")

25

26 ##### Statistical analyses using all.pipelines.detailed #####

27

28 ### ALPHA ###

29

30 # Remove columns Reservoir, Season and Pipeline

31 statistic = all.pipelines.detailed[,! colnames(all.pipelines.detailed) %in% c("

↪→ Reservoir", "Season", "Pipeline")]

32

33 # Alpha diversity: observed species

34 all.pipelines.detailed$Richness = rowSums(statistic > 0)

35

36 # Create column for Reservoir, Season and Pipeline together

37 all.pipelines.detailed = unite(all.pipelines.detailed, Reservoir_Season_Pipeline, c(

↪→ Reservoir, Season, Pipeline), remove=F, sep=" ")

179

38

39 # Create column for Reservoir and Season together

40 all.pipelines.detailed = unite(all.pipelines.detailed, Reservoir_Season, c(Reservoir,

↪→ Season), remove=F, sep=" ")

41

42 # Create column for Reservoir and Pipeline together

43 all.pipelines.detailed = unite(all.pipelines.detailed, Reservoir_Pipeline, c(

↪→ Reservoir, Pipeline), remove=F, sep=" ")

44

45 # Create column for Season and Pipeline together

46 all.pipelines.detailed = unite(all.pipelines.detailed, Season_Pipeline, c(Season,

↪→ Pipeline), remove=F, sep=" ")

47

48 # Create column with unique name

49 all.pipelines.detailed$All = "All"

50

51 ### Observed species ###

52

53 # Export ggplot to Latex

54 tikz(file = "Alpha_diversity_richness_PRS.tex", width = 6, height = 3)

55 # Plot Reservoir_Season_Pipeline

56 ggplot(all.pipelines.detailed, aes(x = Pipeline, y = Richness)) +

57 geom_point(aes(fill = Pipeline), shape = 21, size = 3) +

58 xlab(NULL) +

59 ylab("Species richness") +

60 theme(axis.text.x = element_blank(),

61 axis.ticks.x = element_blank(),

62 axis.text.y = element_text(size = 6, color = "black"),

63 axis.title = element_text(size = 10, face = "plain"),

64 legend.text = element_text(size = 6, color = "black"),

65 legend.title = element_text(size = 8, face = "plain"),

66 legend.margin = margin(t = 0, unit='cm'),

67 legend.key = element_rect(fill = NA, color = NA),

68 strip.text.x = element_text(size = 6, face = "plain", color = "black"),

69 strip.background = element_blank(),

70 #plot.margin = margin(10, 10, 10, 50),

71 plot.title = element_text(hjust = 0.5, size = 20, face = "bold",

72 margin = margin(10, 0, 10, 0)),

73 panel.background = element_rect(fill = 'white'),

74 panel.grid.major = element_line(colour = "lightgray", size = 0.3),

75 panel.grid.minor = element_line(colour = "lightgray", size = 0.1),

76 panel.border = element_rect(colour = "black", fill = NA, size = 0.5)

77) + facet_grid(~Reservoir_Season, switch = "x") +

78 scale_fill_discrete(name = "Pipelines")

79 dev.off()

80

180

81 # Plot All

82 p = ggplot(all.pipelines.detailed, aes(y = Richness)) +

83 stat_boxplot(geom = "errorbar", lwd = 1, position = "dodge", show.legend = F, aes(

↪→ color = All)) +

84 geom_boxplot(coef = 1.5, show.legend = F, alpha = 0.5, outlier.alpha = 1, varwidth

↪→ = T, lwd = 1, aes(color = All, fill = All)) +

85 xlab(NULL) +

86 ylab("Species richness") +

87 theme(axis.text.x = element_blank(),

88 axis.text.y = element_text(size = 6, color = "black"),

89 axis.title = element_text(size = 10, face = "plain"),

90 axis.ticks.x = element_blank(),

91 legend.text = element_text(size = 6, color = "black"),

92 legend.title = element_text(size = 8, face = "plain"),

93 legend.margin = margin(t = 0, unit='cm'),

94 legend.key = element_rect(fill = NA, color = NA),

95 strip.text.x = element_text(size = 8, face = "plain", color = "black"),

96 strip.background = element_blank(),

97 #plot.margin = margin(10, 10, 10, 50),

98 plot.title = element_text(hjust = 0.5, size = 20, face = "bold",

99 margin = margin(10, 0, 10, 0)),

100 panel.background = element_rect(fill = 'lightgray'),

101 panel.grid.major = element_line(colour = "white", size = 0.3),

102 panel.grid.minor = element_line(colour = "white", size = 0.1),

103 panel.border = element_rect(colour = "black", fill = NA, size = 0.5)

104) + facet_grid(~All, switch="x")

105

106 # Calculate median and quartiles

107 ggplot_build(p)$data

108 min(all.pipelines.detailed$Richness)

109 max(all.pipelines.detailed$Richness)

110 median(all.pipelines.detailed$Richness)

111 quartiles(all.pipelines.detailed$Richness, maxDecimals = 0)

112 all.pipelines.detailed[all.pipelines.detailed$Richness == min(all.pipelines.detailed$

↪→ Richness),]["Richness"]

113 all.pipelines.detailed[all.pipelines.detailed$Richness == max(all.pipelines.detailed$

↪→ Richness),]["Richness"]

114

115 ## Pipelines ##

116

117 # Plot Pipeline

118 p = ggplot(all.pipelines.detailed, aes(y = Richness)) +

119 stat_boxplot(geom = "errorbar", lwd = 1, position = "dodge", show.legend = F, aes(

↪→ color = Pipeline)) +

120 geom_boxplot(coef = 1.5, show.legend = F, alpha = 0.5, outlier.alpha = 1, varwidth

↪→ = T, lwd = 1, aes(color = Pipeline, fill = Pipeline)) +

181

121 xlab(NULL) +

122 ylab("Species richness") +

123 theme(axis.text.x = element_blank(),

124 axis.text.y = element_text(size = 6, color = "black"),

125 axis.title = element_text(size = 10, face = "plain"),

126 axis.ticks.x = element_blank(),

127 legend.text = element_text(size = 6, color = "black"),

128 legend.title = element_text(size = 8, face = "plain"),

129 legend.margin = margin(t = 0, unit='cm'),

130 legend.key = element_rect(fill = NA, color = NA),

131 strip.text.x = element_text(size = 8, face = "plain", color = "black"),

132 strip.background = element_blank(),

133 #plot.margin = margin(10, 10, 10, 50),

134 plot.title = element_text(hjust = 0.5, size = 20, face = "bold",

135 margin = margin(10, 0, 10, 0)),

136 panel.background = element_rect(fill = 'white'),

137 panel.grid.major = element_line(colour = "lightgray", size = 0.3),

138 panel.grid.minor = element_line(colour = "lightgray", size = 0.1),

139 panel.border = element_rect(colour = "black", fill = NA, size = 0.5)

140) + facet_grid(~Pipeline, switch="x")

141

142 # Export ggplot to Latex

143 tikz(file = "Alpha_diversity_richness_pipelines.tex", width = 6, height = 3)

144 p

145 dev.off()

146

147 # Get min, max, median, and quartiles for each pipeline

148 ggplot_build(p)$data

149 # Get pipelines

150 pipelines = unique(all.pipelines.detailed$Pipeline)

151 for (pipeline in pipelines) {

152 print(pipeline)

153 # Extract pipeline

154 pipeline = all.pipelines.detailed[all.pipelines.detailed$Pipeline == pipeline,]

155 # Get min, max, median, and quartiles for each pipeline

156 print(min(pipeline$Richness))

157 print(max(pipeline$Richness))

158 print(median(pipeline$Richness))

159 print(quartiles(pipeline$Richness))

160 print(pipeline[pipeline$Richness == min(pipeline$Richness),]["Richness"])

161 print(pipeline[pipeline$Richness == max(pipeline$Richness),]["Richness"])

162 print("--")

163 print("")

164 }

165

166 ## Statistical analyses ##

182

167

168 # fit linear models

169 mod.richness = aov(Richness~Pipeline, data=all.pipelines.detailed)

170 # ANOVA

171 anova.test = anova(mod.richness)

172 anova.test

173 # Tukey

174 tukey.test = TukeyHSD(mod.richness)

175 tukey.test

176

177 # Check if p-value < 0.05

178 tukey.test = as.data.frame(tukey.test[["Pipeline"]])

179 tukey.test[tukey.test$`p adj` < 0.05,]

180

181 # Export as latex tables

182 print(xtable(anova.test, digits = c(0, 0, 2, 3, 4, 4)), booktabs=TRUE, file = "Alpha_

↪→ Diversity_Richness_ANOVA_Pipelines.tex")

183 print(xtable(tukey.test$Pipeline, digits = c(0, 4, 4, 4, 4)), booktabs=TRUE, file = "

↪→ Alpha_Diversity_Richness_Tukey_Pipelines.tex")

184

185 ## Reservoirs ##

186

187 # Plot Reservoir

188 p = ggplot(all.pipelines.detailed, aes(y = Richness)) +

189 stat_boxplot(geom = "errorbar", lwd = 1, position = "dodge", show.legend = F, aes(

↪→ color = Reservoir)) +

190 geom_boxplot(coef = 1.5, show.legend = F, alpha = 0.5, outlier.alpha = 1, varwidth

↪→ = T, lwd = 1, aes(color = Reservoir, fill = Reservoir)) +

191 xlab(NULL) +

192 ylab("Species richness") +

193 theme(axis.text.x = element_blank(),

194 axis.text.y = element_text(size = 6, color = "black"),

195 axis.title = element_text(size = 10, face = "plain"),

196 axis.ticks.x = element_blank(),

197 legend.text = element_text(size = 6, color = "black"),

198 legend.title = element_text(size = 8, face = "plain"),

199 legend.margin = margin(t = 0, unit='cm'),

200 legend.key = element_rect(fill = NA, color = NA),

201 strip.text.x = element_text(size = 8, face = "plain", color = "black"),

202 strip.background = element_blank(),

203 #plot.margin = margin(10, 10, 10, 50),

204 plot.title = element_text(hjust = 0.5, size = 20, face = "bold",

205 margin = margin(10, 0, 10, 0)),

206 panel.background = element_rect(fill = 'white'),

207 panel.grid.major = element_line(colour = "lightgray", size = 0.3),

208 panel.grid.minor = element_line(colour = "lightgray", size = 0.1),

183

209 panel.border = element_rect(colour = "black", fill = NA, size = 0.5)

210) + facet_grid(~Reservoir, switch="x")

211

212 # Export ggplot to Latex

213 tikz(file = "Alpha_diversity_richness_reservoirs.tex", width = 6, height = 3)

214 p

215 dev.off()

216

217 # Get min, max, median, and quartiles for each pipeline

218 ggplot_build(p)$data

219 # Get reservoirs

220 reservoirs = unique(all.pipelines.detailed$Reservoir)

221 for (reservoir in reservoirs) {

222 print(reservoir)

223 # Extract reservoir

224 reservoir = all.pipelines.detailed[all.pipelines.detailed$Reservoir == reservoir,]

225 # Get min, max, median, and quartiles for each reservoir

226 print(min(reservoir$Richness))

227 print(max(reservoir$Richness))

228 print(median(reservoir$Richness))

229 print(quartiles(reservoir$Richness))

230 print(reservoir[reservoir$Richness == min(reservoir$Richness),]["Richness"])

231 print(reservoir[reservoir$Richness == max(reservoir$Richness),]["Richness"])

232 print("--")

233 print("")

234 }

235

236 ## Statistical analyses ##

237

238 # fit linear models

239 mod.richness = aov(Richness~Reservoir, data=all.pipelines.detailed)

240 # ANOVA

241 anova.test = anova(mod.richness)

242 anova.test

243 # Tukey

244 tukey.test = TukeyHSD(mod.richness)

245 tukey.test

246

247 # Check if p-value < 0.05

248 tukey.test = as.data.frame(tukey.test[["Reservoir"]])

249 tukey.test[tukey.test$`p adj` < 0.05,]

250

251 # Export as latex tables

252 print(xtable(anova.test, digits = c(0, 0, 2, 3, 4, 4)), booktabs=TRUE, file = "Alpha_

↪→ Diversity_Richness_ANOVA_Reservoirs.tex")

253 print(xtable(tukey.test$Reservoir, digits = c(0, 1, 4, 4, 4)), booktabs=TRUE, file =

184

↪→ "Alpha_Diversity_Richness_Tukey_Reservoirs.tex")

254

255 ## Seasons ##

256

257 # Plot Pipeline

258 p = ggplot(all.pipelines.detailed, aes(y = Richness)) +

259 stat_boxplot(geom = "errorbar", lwd = 1, position = "dodge", show.legend = F, aes(

↪→ color = Season)) +

260 geom_boxplot(coef = 1.5, show.legend = F, alpha = 0.5, outlier.alpha = 1, varwidth

↪→ = T, lwd = 1, aes(color = Season, fill = Season)) +

261 xlab(NULL) +

262 ylab("Species richness") +

263 theme(axis.text.x = element_blank(),

264 axis.text.y = element_text(size = 6, color = "black"),

265 axis.title = element_text(size = 10, face = "plain"),

266 axis.ticks.x = element_blank(),

267 legend.text = element_text(size = 6, color = "black"),

268 legend.title = element_text(size = 8, face = "plain"),

269 legend.margin = margin(t = 0, unit='cm'),

270 legend.key = element_rect(fill = NA, color = NA),

271 strip.text.x = element_text(size = 8, face = "plain", color = "black"),

272 strip.background = element_blank(),

273 #plot.margin = margin(10, 10, 10, 50),

274 plot.title = element_text(hjust = 0.5, size = 20, face = "bold",

275 margin = margin(10, 0, 10, 0)),

276 panel.background = element_rect(fill = 'white'),

277 panel.grid.major = element_line(colour = "lightgray", size = 0.3),

278 panel.grid.minor = element_line(colour = "lightgray", size = 0.1),

279 panel.border = element_rect(colour = "black", fill = NA, size = 0.5)

280) + facet_grid(~Season, switch="x")

281

282 # Export ggplot to Latex

283 tikz(file = "Alpha_diversity_richness_seasons.tex", width = 6, height = 3)

284 p

285 dev.off()

286

287 # Get min, max, median, and quartiles for each pipeline

288 ggplot_build(p)$data

289 # Get seasons

290 seasons = unique(all.pipelines.detailed$Season)

291 for (season in seasons) {

292 print(season)

293 # Extract season

294 season = all.pipelines.detailed[all.pipelines.detailed$Season == season,]

295 # Get min, max, median, and quartiles for each season

296 print(min(season$Richness))

185

297 print(max(season$Richness))

298 print(median(season$Richness))

299 print(quartiles(season$Richness))

300 print(season[season$Richness == min(season$Richness),]["Richness"])

301 print(season[season$Richness == max(season$Richness),]["Richness"])

302 print("--")

303 print("")

304 }

305

306 # Fences

307 quartiles = quartiles(all.pipelines.detailed[all.pipelines.detailed$Season == "Summer

↪→ ",]$Richness, maxDecimals = 0)

308 upperq = round(quartiles$value[["75%"]])

309 lowerq = round(quartiles$value[["25%"]])

310 iqr = upperq - lowerq

311 upper.fence = upperq + (1.5 * iqr)

312 lower.fence = lowerq - (1.5 * iqr)

313

314 ## Statistical analyses ##

315

316 # fit linear models

317 mod.richness = aov(Richness~Season, data=all.pipelines.detailed)

318 # ANOVA

319 anova.test = anova(mod.richness)

320 anova.test

321 # T-test

322 t.test(Richness~Season, data=all.pipelines.detailed, var.equal = TRUE)

323 # Tukey

324 tukey.test = TukeyHSD(mod.richness)

325 tukey.test

326

327 # Check if p-value < 0.05

328 tukey.test = as.data.frame(tukey.test[["Season"]])

329 tukey.test[tukey.test$`p adj` < 0.05,]

330

331 # Export as latex tables

332 print(xtable(anova.test, digits = c(0, 0, 2, 3, 4, 4)), booktabs=TRUE, file = "Alpha_

↪→ Diversity_Richness_ANOVA_seasons.tex")

Source Code A.20: Calculate alpha diversity species richness and create charts for pipelines, reservoirs, and

season.

1 library(vegan)

2 library(tidyr)

3 library(dplyr)

186

4 library(ggplot2)

5 library(colorblindr)

6 library(tidyverse)

7 library(tikzDevice)

8 library(xtable)

9 library(reshape2)

10 library(scales)

11 library(dataMaid)

12 library(nortest)

13

14

15 # Set working directory to source file location

16 if(Sys.getenv("RSTUDIO") == "1"){

17 setwd(dirname(rstudioapi::getActiveDocumentContext()$path))

18 }else{

19 setwd(utils::getSrcDirectory()[1])

20 }

21

22 # Load data

23 load("Tables.RData")

24

25 ##### Statistical analyses using all.pipelines.detailed #####

26

27 ### ALPHA ###

28

29 # Remove columns Reservoir, Season and Pipeline

30 statistic = all.pipelines.detailed[,! colnames(all.pipelines.detailed) %in% c("

↪→ Reservoir", "Season", "Pipeline")]

31

32 # Alpha diversity: shannon index

33 all.pipelines.detailed$Shannon = diversity(statistic)

34

35 # Create column for Reservoir, Season and Pipeline together

36 all.pipelines.detailed = unite(all.pipelines.detailed, Reservoir_Season_Pipeline, c(

↪→ Reservoir, Season, Pipeline), remove=F, sep=" ")

37

38 # Create column for Reservoir and Season together

39 all.pipelines.detailed = unite(all.pipelines.detailed, Reservoir_Season, c(Reservoir,

↪→ Season), remove=F, sep=" ")

40

41 # Create column for Reservoir and Pipeline together

42 all.pipelines.detailed = unite(all.pipelines.detailed, Reservoir_Pipeline, c(

↪→ Reservoir, Pipeline), remove=F, sep=" ")

43

44 # Create column for Season and Pipeline together

45 all.pipelines.detailed = unite(all.pipelines.detailed, Season_Pipeline, c(Season,

187

↪→ Pipeline), remove=F, sep=" ")

46

47 # Create column with unique name

48 all.pipelines.detailed$All = "All"

49

50 ### Shannon index ###

51

52 # Export ggplot to Latex

53 tikz(file = "Alpha_diversity_shannon_PRS.tex", width = 6, height = 3)

54 # Plot Reservoir_Season_Pipeline

55 ggplot(all.pipelines.detailed, aes(x = Pipeline, y = Shannon)) +

56 geom_point(aes(fill = Pipeline), shape = 21, size = 3) +

57 xlab(NULL) +

58 ylab("Shannon index") +

59 theme(axis.text.x = element_blank(),

60 axis.ticks.x = element_blank(),

61 axis.text.y = element_text(size = 6, color = "black"),

62 axis.title = element_text(size = 10, face = "plain"),

63 legend.text = element_text(size = 6, color = "black"),

64 legend.title = element_text(size = 8, face = "plain"),

65 legend.margin = margin(t = 0, unit='cm'),

66 legend.key = element_rect(fill = NA, color = NA),

67 strip.text.x = element_text(size = 6, face = "plain", color = "black"),

68 strip.background = element_blank(),

69 #plot.margin = margin(10, 10, 10, 50),

70 plot.title = element_text(hjust = 0.5, size = 20, face = "bold",

71 margin = margin(10, 0, 10, 0)),

72 panel.background = element_rect(fill = 'white'),

73 panel.grid.major = element_line(colour = "lightgray", size = 0.3),

74 panel.grid.minor = element_line(colour = "lightgray", size = 0.1),

75 panel.border = element_rect(colour = "black", fill = NA, size = 0.5)

76) + facet_grid(~Reservoir_Season, switch = "x") +

77 scale_fill_discrete(name = "Pipelines")

78 dev.off()

79

80 # Plot All

81 p = ggplot(all.pipelines.detailed, aes(y = Shannon)) +

82 stat_boxplot(geom = "errorbar", lwd = 1, position = "dodge", show.legend = F, aes(

↪→ color = All)) +

83 geom_boxplot(coef = 1.5, show.legend = F, alpha = 0.5, outlier.alpha = 1, varwidth

↪→ = T, lwd = 1, aes(color = All, fill = All)) +

84 xlab(NULL) +

85 ylab("Shannon index") +

86 theme(axis.text.x = element_blank(),

87 axis.text.y = element_text(size = 6, color = "black"),

88 axis.title = element_text(size = 10, face = "plain"),

188

89 axis.ticks.x = element_blank(),

90 legend.text = element_text(size = 6, color = "black"),

91 legend.title = element_text(size = 8, face = "plain"),

92 legend.margin = margin(t = 0, unit='cm'),

93 legend.key = element_rect(fill = NA, color = NA),

94 strip.text.x = element_text(size = 8, face = "plain", color = "black"),

95 strip.background = element_blank(),

96 #plot.margin = margin(10, 10, 10, 50),

97 plot.title = element_text(hjust = 0.5, size = 20, face = "bold",

98 margin = margin(10, 0, 10, 0)),

99 panel.background = element_rect(fill = 'lightgray'),

100 panel.grid.major = element_line(colour = "white", size = 0.3),

101 panel.grid.minor = element_line(colour = "white", size = 0.1),

102 panel.border = element_rect(colour = "black", fill = NA, size = 0.5)

103) + facet_grid(~All, switch="x")

104

105 # Calculate median and quartiles

106 ggplot_build(p)$data

107 min(all.pipelines.detailed$Shannon)

108 max(all.pipelines.detailed$Shannon)

109 median(all.pipelines.detailed$Shannon)

110 quartiles(all.pipelines.detailed$Shannon)

111 all.pipelines.detailed[all.pipelines.detailed$Shannon == min(all.pipelines.detailed$

↪→ Shannon),]["Shannon"]

112 all.pipelines.detailed[all.pipelines.detailed$Shannon == max(all.pipelines.detailed$

↪→ Shannon),]["Shannon"]

113

114 ## Pipelines ##

115

116 # Plot Pipeline

117 p = ggplot(all.pipelines.detailed, aes(y = Shannon)) +

118 stat_boxplot(geom = "errorbar", lwd = 1, position = "dodge", show.legend = F, aes(

↪→ color = Pipeline)) +

119 geom_boxplot(coef = 1.5, show.legend = F, alpha = 0.5, outlier.alpha = 1, varwidth

↪→ = T, lwd = 1, aes(color = Pipeline, fill = Pipeline)) +

120 xlab(NULL) +

121 ylab("Shannon index") +

122 theme(axis.text.x = element_blank(),

123 axis.text.y = element_text(size = 6, color = "black"),

124 axis.title = element_text(size = 10, face = "plain"),

125 axis.ticks.x = element_blank(),

126 legend.text = element_text(size = 6, color = "black"),

127 legend.title = element_text(size = 8, face = "plain"),

128 legend.margin = margin(t = 0, unit='cm'),

129 legend.key = element_rect(fill = NA, color = NA),

130 strip.text.x = element_text(size = 8, face = "plain", color = "black"),

189

131 strip.background = element_blank(),

132 #plot.margin = margin(10, 10, 10, 50),

133 plot.title = element_text(hjust = 0.5, size = 20, face = "bold",

134 margin = margin(10, 0, 10, 0)),

135 panel.background = element_rect(fill = 'white'),

136 panel.grid.major = element_line(colour = "lightgray", size = 0.3),

137 panel.grid.minor = element_line(colour = "lightgray", size = 0.1),

138 panel.border = element_rect(colour = "black", fill = NA, size = 0.5)

139) + facet_grid(~Pipeline, switch="x")

140

141 # Export ggplot to Latex

142 tikz(file = "Alpha_diversity_shannon_pipelines.tex", width = 6, height = 3)

143 p

144 dev.off()

145

146 # Get min, max, median, and quartiles for each pipeline

147 ggplot_build(p)$data

148 # Get pipelines

149 pipelines = unique(all.pipelines.detailed$Pipeline)

150 for (pipeline in pipelines) {

151 print(pipeline)

152 # Extract pipeline

153 pipeline = all.pipelines.detailed[all.pipelines.detailed$Pipeline == pipeline,]

154 # Get min, max, median, and quartiles for each pipeline

155 print(round(min(pipeline$Shannon), digits = 3))

156 print(round(max(pipeline$Shannon), digits = 3))

157 print(median(pipeline$Shannon))

158 print(quartiles(pipeline$Shannon))

159 print(pipeline[pipeline$Shannon == min(pipeline$Shannon),]["Shannon"])

160 print(pipeline[pipeline$Shannon == max(pipeline$Shannon),]["Shannon"])

161 print("--")

162 print("")

163 }

164

165 ## Statistical analyses ##

166

167 # fit linear models

168 mod.Shannon = aov(Shannon~Pipeline, data=all.pipelines.detailed)

169 # ANOVA

170 anova.test = anova(mod.Shannon)

171 anova.test

172 # Tukey

173 tukey.test = TukeyHSD(mod.Shannon)

174 tukey.test

175

176 # Check if p-value < 0.05

190

177 tukey.test = as.data.frame(tukey.test[["Pipeline"]])

178 tukey.test[tukey.test$`p adj` < 0.05,]

179

180 # Export as latex tables

181 print(xtable(anova.test, digits = c(0, 0, 4, 4, 4, 4)), booktabs=TRUE, file = "Alpha_

↪→ Diversity_Shannon_ANOVA_Pipelines.tex")

182 print(xtable(tukey.test$Pipeline, digits = c(0, 4, 4, 4, 4)), booktabs=TRUE, file = "

↪→ Alpha_Diversity_Shannon_Tukey_Pipelines.tex")

183

184 ## Reservoirs ##

185

186 # Plot Reservoir

187 p = ggplot(all.pipelines.detailed, aes(y = Shannon)) +

188 stat_boxplot(geom = "errorbar", lwd = 1, position = "dodge", show.legend = F, aes(

↪→ color = Reservoir)) +

189 geom_boxplot(coef = 1.5, show.legend = F, alpha = 0.5, outlier.alpha = 1, varwidth

↪→ = T, lwd = 1, aes(color = Reservoir, fill = Reservoir)) +

190 xlab(NULL) +

191 ylab("Shannon index") +

192 theme(axis.text.x = element_blank(),

193 axis.text.y = element_text(size = 6, color = "black"),

194 axis.title = element_text(size = 10, face = "plain"),

195 axis.ticks.x = element_blank(),

196 legend.text = element_text(size = 6, color = "black"),

197 legend.title = element_text(size = 8, face = "plain"),

198 legend.margin = margin(t = 0, unit='cm'),

199 legend.key = element_rect(fill = NA, color = NA),

200 strip.text.x = element_text(size = 8, face = "plain", color = "black"),

201 strip.background = element_blank(),

202 #plot.margin = margin(10, 10, 10, 50),

203 plot.title = element_text(hjust = 0.5, size = 20, face = "bold",

204 margin = margin(10, 0, 10, 0)),

205 panel.background = element_rect(fill = 'white'),

206 panel.grid.major = element_line(colour = "lightgray", size = 0.3),

207 panel.grid.minor = element_line(colour = "lightgray", size = 0.1),

208 panel.border = element_rect(colour = "black", fill = NA, size = 0.5)

209) + facet_grid(~Reservoir, switch="x")

210

211 # Export ggplot to Latex

212 tikz(file = "Alpha_diversity_shannon_reservoirs.tex", width = 6, height = 3)

213 p

214 dev.off()

215

216 # Get min, max, median, and quartiles for each reservoir

217 ggplot_build(p)$data

218 # Get reservoirs

191

219 reservoirs = unique(all.pipelines.detailed$Reservoir)

220 for (reservoir in reservoirs) {

221 print(reservoir)

222 # Extract reservoir

223 reservoir = all.pipelines.detailed[all.pipelines.detailed$Reservoir == reservoir,]

224 # Get min, max, median, and quartiles for each reservoir

225 print(round(min(reservoir$Shannon), digits = 3))

226 print(round(max(reservoir$Shannon), digits = 3))

227 print(median(reservoir$Shannon))

228 print(quartiles(reservoir$Shannon))

229 print(reservoir[reservoir$Shannon == min(reservoir$Shannon),]["Shannon"])

230 print(reservoir[reservoir$Shannon == max(reservoir$Shannon),]["Shannon"])

231 print("--")

232 print("")

233 }

234

235 ## Statistical analyses ##

236

237 # fit linear models

238 mod.Shannon = aov(Shannon~Reservoir, data=all.pipelines.detailed)

239 # ANOVA

240 anova.test = anova(mod.Shannon)

241 anova.test

242 # Tukey

243 tukey.test = TukeyHSD(mod.Shannon)

244 tukey.test

245

246 # Check if p-value < 0.05

247 tukey.test = as.data.frame(tukey.test[["Reservoir"]])

248 tukey.test[tukey.test$`p adj` < 0.05,]

249

250 # Export as latex tables

251 print(xtable(anova.test, digits = c(0, 0, 4, 4, 4, 4)), booktabs=TRUE, file = "Alpha_

↪→ Diversity_Shannon_ANOVA_Reservoirs.tex")

252

253 ## Seasons ##

254

255 # Plot Season

256 p = ggplot(all.pipelines.detailed, aes(y = Shannon)) +

257 stat_boxplot(geom = "errorbar", lwd = 1, position = "dodge", show.legend = F, aes(

↪→ color = Season)) +

258 geom_boxplot(coef = 1.5, show.legend = F, alpha = 0.5, outlier.alpha = 1, varwidth

↪→ = T, lwd = 1, aes(color = Season, fill = Season)) +

259 xlab(NULL) +

260 ylab("Shannon index") +

261 theme(axis.text.x = element_blank(),

192

262 axis.text.y = element_text(size = 6, color = "black"),

263 axis.title = element_text(size = 10, face = "plain"),

264 axis.ticks.x = element_blank(),

265 legend.text = element_text(size = 6, color = "black"),

266 legend.title = element_text(size = 8, face = "plain"),

267 legend.margin = margin(t = 0, unit='cm'),

268 legend.key = element_rect(fill = NA, color = NA),

269 strip.text.x = element_text(size = 8, face = "plain", color = "black"),

270 strip.background = element_blank(),

271 #plot.margin = margin(10, 10, 10, 50),

272 plot.title = element_text(hjust = 0.5, size = 20, face = "bold",

273 margin = margin(10, 0, 10, 0)),

274 panel.background = element_rect(fill = 'white'),

275 panel.grid.major = element_line(colour = "lightgray", size = 0.3),

276 panel.grid.minor = element_line(colour = "lightgray", size = 0.1),

277 panel.border = element_rect(colour = "black", fill = NA, size = 0.5)

278) + facet_grid(~Season, switch="x")

279

280 # Export ggplot to Latex

281 tikz(file = "Alpha_diversity_shannon_seasons.tex", width = 6, height = 3)

282 p

283 dev.off()

284

285 # Get min, max, median, and quartiles for each season

286 ggplot_build(p)$data

287 # Get seasons

288 seasons = unique(all.pipelines.detailed$Season)

289 for (season in seasons) {

290 print(season)

291 # Extract season

292 season = all.pipelines.detailed[all.pipelines.detailed$Season == season,]

293 # Get min, max, median, and quartiles for each season

294 print(round(min(season$Shannon), digits = 3))

295 print(round(max(season$Shannon), digits = 3))

296 print(median(season$Shannon))

297 print(quartiles(season$Shannon))

298 print(season[season$Shannon == min(season$Shannon),]["Shannon"])

299 print(season[season$Shannon == max(season$Shannon),]["Shannon"])

300 print("--")

301 print("")

302 }

303

304 # Fences

305 quartiles = quartiles(all.pipelines.detailed[all.pipelines.detailed$Season == "Summer

↪→ ",]$Shannon)

306 upperq = round(quartiles$value[["75%"]])

193

307 lowerq = round(quartiles$value[["25%"]])

308 iqr = upperq - lowerq

309 upper.fence = upperq + (1.5 * iqr)

310 lower.fence = lowerq - (1.5 * iqr)

311

312 ## Statistical analyses ##

313

314 # fit linear models

315 mod.Shannon = aov(Shannon~Season, data=all.pipelines.detailed)

316 # ANOVA

317 anova.test = anova(mod.Shannon)

318 anova.test

319 # T-test

320 t.test(Shannon~Season, data=all.pipelines.detailed, var.equal = TRUE)

321 # Tukey

322 tukey.test = TukeyHSD(mod.Shannon)

323 tukey.test

324

325 # Check if p-value < 0.05

326 tukey.test = as.data.frame(tukey.test[["Season"]])

327 tukey.test[tukey.test$`p adj` < 0.05,]

328

329 # Export as latex tables

330 print(xtable(anova.test, digits = c(0, 0, 4, 4, 4, 4)), booktabs=TRUE, file = "Alpha_

↪→ Diversity_Shannon_ANOVA_Seasons.tex")

Source Code A.21: Calculate alpha diversity shannon index and create charts for pipelines, reservoirs, and season.

1 library(dplyr)

2 library(tidyr)

3 library(vegan)

4 library(xtable)

5 library(ggforce)

6 library(ranacapa)

7 library(tikzDevice)

8 library(concaveman)

9

10 # Set working directory to source file location

11 if(Sys.getenv("RSTUDIO") == "1"){

12 setwd(dirname(rstudioapi::getActiveDocumentContext()$path))

13 }else{

14 setwd(utils::getSrcDirectory()[1])

15 }

16

17 # Load data

194

18 load("Tables.RData")

19

20 ##### Statistical analyses using all.pipelines.detailed #####

21

22 ### Pipeline, Reservoir, and Season

23

24 # Remove columns Reservoir, Season and Pipeline

25 statistic = all.pipelines.detailed[,! colnames(all.pipelines.detailed) %in% c("

↪→ Reservoir", "Season", "Pipeline")]

26

27 ### BETA

28

29 # Compute dissimilarity indices

30 beta.jaccard = vegdist(statistic, method = "jaccard")

31

32 # Minimum and Maximum values

33 min(beta.jaccard)

34 which(as.matrix(beta.jaccard) == min(beta.jaccard), arr.ind=TRUE)

35 max(beta.jaccard)

36 which(as.matrix(beta.jaccard) == max(beta.jaccard), arr.ind=TRUE)

37

38 # Calculate PCoA principal coordinates analysis

39 pc.jaccard <- as.data.frame(cmdscale(beta.jaccard, k = 2))

40

41 # Create new columns

42 pc.jaccard$Reservoir_Season_Pipeline = rownames(pc.jaccard)

43 pc.jaccard = pc.jaccard %>% separate(Reservoir_Season_Pipeline, c("Reservoir", "

↪→ Season", "Pipeline"), " ", remove = F)

44

45 # Multivariate homogeneity of groups dispersions (variances)

46 beta.disp = betadisper(beta.jaccard, pc.jaccard$Pipeline)

47

48 # Tukey Honest Significant Differences

49 tukey = TukeyHSD(beta.disp)

50 # Export pair Tukey table

51 print(xtable(tukey$group, digits = c(1, 3, 3, 3, 3)), booktabs=TRUE, file = "Beta_

↪→ Diversity_Jaccard_Pipelines_Tukey.tex")

52

53 # Pipeline

54 # Permutational Multivariate Analysis of Variance Using Distance Matrices

55 permanova = adonis(as.formula("beta.jaccard~Pipeline"), data = pc.jaccard)

56 # Export permanova table

57 print(xtable(permanova$aov.tab), booktabs=TRUE, file = "Beta_Diversity_Jaccard_

↪→ Pipelines_Permanova.tex")

58

59 # Pairwise multilevel comparison using adonis

195

60 pair.permanova = pairwise_adonis(statistic, pc.jaccard$Pipeline, sim_method = "

↪→ jaccard")

61 # Export pair permanova table

62 print(xtable(pair.permanova, digits = c(0, 1, 2, 2, 3, 2, 1)), booktabs=TRUE, file =

↪→ "Beta_Diversity_Jaccard_Pipelines_Pair_Permanova.tex")

63

64 # Reservoir

65 # Permutational Multivariate Analysis of Variance Using Distance Matrices

66 permanova = adonis(as.formula("beta.jaccard~Reservoir"), data = pc.jaccard)

67

68 # Pairwise multilevel comparison using adonis

69 pair.permanova = pairwise_adonis(statistic, pc.jaccard$Reservoir, sim_method = "

↪→ jaccard")

70

71 # Season

72 # Permutational Multivariate Analysis of Variance Using Distance Matrices

73 permanova = adonis(as.formula("beta.jaccard~Season"), data = pc.jaccard)

74

75 # Pairwise multilevel comparison using adonis

76 pair.permanova = pairwise_adonis(statistic, pc.jaccard$Season, sim_method = "jaccard"

↪→)

77

78 # Calculate eigenvalue percentage

79 eigenvalues = summary(eigenvals(beta.disp, model = "all"))

80 eigenvalues.percentage = eigenvalues["Proportion Explained",]

81 eigenvalues.percentage = round(100 * eigenvalues.percentage, 2)

82

83 pc.jaccard = unite(pc.jaccard, "Reservoir Season", Reservoir, Season, sep = " ",

↪→ remove = F)

84

85 # Export plot (Remove % of the plot and put it after export table)

86 tikz(file = "Beta_Diversity_Jaccard_PCoA_PRS.tex", width = 6, height = 3.7)

87 # Plot PCoA

88 ggplot(pc.jaccard, aes(x = V1, y = V2)) +

89 geom_point(aes(shape = Pipeline, fill = `Reservoir Season`, color = `Reservoir

↪→ Season`), size = 1, stroke = 1) +

90 # stat_ellipse(aes(fill = Pipeline, color = Pipeline), geom = "polygon", alpha = 0

↪→ .3, size = 0.5) +

91 #geom_mark_hull(aes(fill = Reservoir_Season), alpha = 0.3, expand = unit(3, "mm")) +

↪→
92 xlab(paste("PCoA1[", eigenvalues.percentage[["PCoA1"]], "]", sep = "")) +

93 ylab(paste("PCoA2[", eigenvalues.percentage[["PCoA2"]], "]", sep = "")) +

94 theme(axis.text.x = element_text(angle = 45, size = 6, color = "black",

95 face = "plain", vjust = 1, hjust = 1),

96 axis.text.y = element_text(size = 6, color = "black"),

97 axis.title = element_text(size = 10, face = "plain"),

196

98 legend.text = element_text(size = 6, color = "black"),

99 legend.title = element_text(size = 8, face = "plain"),

100 legend.margin = margin(t = 0, unit='cm'),

101 legend.key = element_rect(fill = NA, color = NA),

102 strip.text.x = element_text(size = 6, face = "plain", color = "black"),

103 strip.background = element_blank(),

104 #plot.margin = margin(10, 10, 10, 50),

105 plot.title = element_text(hjust = 0.5, size = 20, face = "bold",

106 margin = margin(10, 0, 10, 0)),

107 panel.background = element_rect(fill = 'white'),

108 panel.grid.major = element_line(colour = "lightgray", size = 0.3),

109 panel.grid.minor = element_line(colour = "lightgray", size = 0.1),

110 panel.border = element_rect(colour = "black", fill = NA, size = 0.5)

111) + scale_shape_manual(values = c("Anacapa" = 21,

112 "Barque" = 22,

113 "MetaBEAT" = 23,

114 "MiFish" = 24,

115 "SEQme" = 25)) +

116 scale_fill_manual(values = c("Klí£ava Autumn" = "white",

117 "Klí£ava Summer" = "#B79F00",

118 "�ímov Autumn" = "white",

119 "�ímov Summer" = "#00BFC4",

120 "�lutice Autumn" = "white",

121 "�lutice Summer" = "#F564E3")) +

122 scale_color_manual(values = c("Klí£ava Autumn" = "#B79F00",

123 "Klí£ava Summer" = "black",

124 "�ímov Autumn" = "#00BFC4",

125 "�ímov Summer" = "black",

126 "�lutice Autumn" = "#F564E3",

127 "�lutice Summer" = "black")) +

128 guides(fill=guide_legend(override.aes=list(shape=21)))

129 dev.off()

130

131 ### Pipeline

132

133 # Remove columns Reservoir, Season

134 statistic = all.pipelines.detailed[,! colnames(all.pipelines.detailed) %in% c("

↪→ Reservoir", "Season")]

135 statistic = aggregate(. ~ Pipeline, data = statistic, FUN = sum)

136 rownames(statistic) = statistic$Pipeline

137 statistic$Pipeline = NULL

138

139 # Computes dissimilarity indices for pipelines

140 beta.jaccard = vegdist(statistic, method = "jaccard")

141 min(beta.jaccard)

142 max(beta.jaccard)

197

143 beta.jaccard

144

145 # Export jaccard table

146 print(xtable(as.matrix(beta.jaccard)), booktabs=TRUE, file = "Beta_Diversity_Jaccard_

↪→ Pipelines.tex")

147

148 ### Reservoir

149

150 # Remove columns Pipeline, Season

151 statistic = all.pipelines.detailed[,! colnames(all.pipelines.detailed) %in% c("

↪→ Pipeline", "Season")]

152 statistic = aggregate(. ~ Reservoir, data = statistic, FUN = sum)

153 rownames(statistic) = statistic$Reservoir

154 statistic$Reservoir = NULL

155

156 # Computes dissimilarity indices for Reservoirs

157 beta.jaccard = vegdist(statistic, method = "jaccard")

158 min(beta.jaccard)

159 max(beta.jaccard)

160 beta.jaccard

161

162 # Export jaccard table

163 print(xtable(as.matrix(beta.jaccard)), booktabs=TRUE, file = "Beta_Diversity_Jaccard_

↪→ Reservoirs.tex")

164

165 ### Season

166

167 # Remove columns Reservoir, Pipeline

168 statistic = all.pipelines.detailed[,! colnames(all.pipelines.detailed) %in% c("

↪→ Reservoir", "Pipeline")]

169 statistic = aggregate(. ~ Season, data = statistic, FUN = sum)

170 rownames(statistic) = statistic$Season

171 statistic$Season = NULL

172

173 # Computes dissimilarity indices for Seasons

174 beta.jaccard = vegdist(statistic, method = "jaccard")

175 beta.jaccard

Source Code A.22: Calculate beta diversity Jaccard dissimilarity indices and create a chart for pipelines, reservoirs,

and season.

1 library(tidyr)

2 library(ggplot2)

3 library(rstatix)

4 library(EnvStats)

198

5 library(normtest)

6 library(tikzDevice)

7 library(RVAideMemoire)

8

9 # Set working directory to source file location

10 if(Sys.getenv("RSTUDIO") == "1"){

11 setwd(dirname(rstudioapi::getActiveDocumentContext()$path))

12 }else{

13 setwd(utils::getSrcDirectory()[1])

14 }

15

16 # Load data

17 load("Tables.RData")

18

19 # Create column for Reservoir and Season together

20 all.pipelines.only.positive.control = unite(all.pipelines.only.positive.control,

↪→ Reservoir_Season, c(Reservoir, Season), remove=F, sep=" ")

21

22 # Export ggplot to Latex

23 tikz(file = "Positive_Control_PRS.tex", width = 6, height = 3)

24 # Plot Reservoir_Season_Pipeline

25 ggplot(all.pipelines.only.positive.control, aes(x = Pipeline, y = Percentage_of_the_

↪→ total)) +

26 geom_point(aes(fill = Pipeline), shape = 21, size = 3) +

27 xlab(NULL) +

28 ylab("Percentage of assigned reads") +

29 theme(axis.text.x = element_blank(),

30 axis.ticks.x = element_blank(),

31 axis.text.y = element_text(size = 6, color = "black"),

32 axis.title = element_text(size = 10, face = "plain"),

33 legend.text = element_text(size = 6, color = "black"),

34 legend.title = element_text(size = 8, face = "plain"),

35 legend.margin = margin(t = 0, unit='cm'),

36 legend.key = element_rect(fill = NA, color = NA),

37 strip.text.x = element_text(size = 6, face = "plain", color = "black"),

38 strip.background = element_blank(),

39 #plot.margin = margin(10, 10, 10, 50),

40 plot.title = element_text(hjust = 0.5, size = 20, face = "bold",

41 margin = margin(10, 0, 10, 0)),

42 panel.background = element_rect(fill = 'white'),

43 panel.grid.major = element_line(colour = "lightgray", size = 0.3),

44 panel.grid.minor = element_line(colour = "lightgray", size = 0.1),

45 panel.border = element_rect(colour = "black", fill = NA, size = 0.5)

46) + facet_grid(~Reservoir_Season, switch = "x") +

47 scale_fill_discrete(name = "Pipelines")

48 dev.off()

199

49

50 # Minimum percentage

51 min(all.pipelines.only.positive.control$Percentage_of_the_total)

52 all.pipelines.only.positive.control[all.pipelines.only.positive.control$Percentage_of

↪→ _the_total == min(all.pipelines.only.positive.control$Percentage_of_the_total)

↪→ ,]

53

54 # Maximum percentage

55 max(all.pipelines.only.positive.control$Percentage_of_the_total)

56 all.pipelines.only.positive.control[all.pipelines.only.positive.control$Percentage_of

↪→ _the_total == max(all.pipelines.only.positive.control$Percentage_of_the_total)

↪→ ,]

57

58 # Mean and median of the percentage list

59 median(all.pipelines.only.positive.control$Percentage_of_the_total)

60 mean(all.pipelines.only.positive.control$Percentage_of_the_total)

61

62 # Check normality

63 byf.shapiro(Percentage_of_the_total~Pipeline, data =

↪→ all.pipelines.only.positive.control)

64

65 # fit linear models

66 mod.percentage = aov(Percentage_of_the_total~Pipeline, data=

↪→ all.pipelines.only.positive.control)

67 # ANOVA

68 anova.test = anova(mod.percentage)

69 anova.test

70 # Tukey

71 tukey.test = TukeyHSD(mod.percentage)

72 tukey.test

73 # Check if p-value < 0.05

74 tukey.test = as.data.frame(tukey.test[["Pipeline"]])

75 tukey.test[tukey.test$`p adj` < 0.05,]

76

77 # Extract pipelines

78 pipelines = unique(all.pipelines.only.positive.control$Pipeline)

79

80 # For each pipeline do t.test, wilcox, median, median, min and max

81 for (pipeline in pipelines) {

82 dat = all.pipelines.only.positive.control[all.pipelines.only.positive.control$

↪→ Pipeline == pipeline,]

83

84 # Print pipeline name and data

85 print(pipeline)

86 print(dat$Percentage_of_the_total)

87

200

88 # Statistical tests

89 print(paste("chi square: ", round(varTest(dat$Percentage_of_the_total, alternative

↪→ = "greater", sigma.squared = 5)$p.value, digits = 3)))

90 print(paste("t.test: ", t.test(dat$Percentage_of_the_total)$p.value))

91 print(paste("wilcox.test: ", wilcox.test(dat$Percentage_of_the_total)$p.value))

92

93 # Mean and median of the percentage list

94 print(paste("Median: ", median(dat$Percentage_of_the_total)))

95 print(paste("Mean: ", mean(dat$Percentage_of_the_total)))

96

97 # Min and max of the percentage list

98 print(paste("Min: ", min(dat$Percentage_of_the_total)))

99 print(paste("Max: ", max(dat$Percentage_of_the_total)))

100

101 print("")

102 }

Source Code A.23: Calculate positive control Maylandia zebra detection and create a chart showing the difference

between pipelines.

201

	Introduction
	Work Aims
	Material and Methods
	In the field and laboratory
	Study site
	eDNA sampling and laboratory processing

	At the keyboard
	Reference database
	Read sequences curation and taxonomic classification
	Anacapa
	Barque
	MetaBEAT
	MiFish
	SEQme

	Data Analysis

	Results
	Number of sequence reads
	Number of sequence reads after each pipeline execution
	Number of sequence reads assigned to pipelines, reservoirs, and seasons

	Species detection and diversity
	Number of species detected
	Number of sequence reads assigned to species
	Alpha diversity
	Species richness
	Shannon index

	Beta diversity
	Jaccard index

	Species detection consistency and inconsistency
	Positive and negative controls detection

	Execution time of the pipelines

	Discussion
	Comparison of pipelines and conventional methods species detection
	Alpha and beta diversities comparison
	Pipelines analogy and recommendations

	Conclusion
	Bibliography
	List of Tables
	List of Figures
	List of Source Codes
	Appendices

