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Abstract

In the past two decades, arti�cial spin ice systems have become a powerful exper-

imental platform to investigate cooperative magnetic phenomena often associated

with highly frustrated magnets. Compared to their natural counterparts, arti�cial

spin ice systems made of interacting magnetic nanostructures o�er several key ad-

vantages. Being engineered through nanofabrication processes, an extensive palette

of geometries can be designed. In addition, their magnetic con�guration can be vi-

sualised directly, at the scale of the spin degree of freedom, using magnetic imaging

techniques. Local and global quantities can then be measured conveniently, in real

space and time, at almost any desired temperature.

This PhD work focuses on such arti�cial spin systems, and more speci�cally on

the square geometry, which was initially proposed as a two-dimensional (2D) coun-

terpart of the three-dimensional (3D) pyrochlore crystal structure. However, this 2D

approach removes the magnetic frustration present in 3D, and the system orders in

a conventional antiferromagnetic fashion rather than exhibiting a highly degenerate,

liquid-like ground state.

Following a strategy proposed in the literature, arrays of nanostructures consist-

ing of two vertically o�set sub-lattices were fabricated to restore frustration, enabling

to reach a spin liquid regime experimentally. Imaging the magnetic con�gurations

obtained after a �eld demagnetisation protocol, the analysis of the spin-spin cor-

relations reveals deviations from what is predicted by the (short-range) square ice

model. Comparing the experimental �ndings to Monte Carlo simulations, our re-

sults indicate that long-range magnetostatic interactions are not washed out in our

arrays, contrary to what was initially thought.

Then, these arti�cial square ice structures were used to understand to what ex-

tent the �eld demagnetisation protocol we apply is a stochastic process. To do so, we

studied the magnetic con�gurations obtained after successive �eld protocols. Our

results show that each captured magnetic micro-state di�ers substantially from the

previous one, but not entirely. Analysing the corresponding spin and vertex con-

�gurations, we demonstrate that our �eld protocol is a stochastic process, although

we also observe unambiguous signatures of magnetic determinism that we attribute

to the presence of quenched disorder. The possible sources of randomness in our

experiment are discussed.

Finally, we explore the behaviour of a series of �eld-demagnetised conventional

(non-o�set) square arrays, in which the lattice parameter is gradually varied to tune

the interaction strengths. Comparing the experimental vertex populations and spin-

spin correlations to Monte Carlo predictions, we show that the lattice series is well

approximated by a unique short-range spin Hamiltonian probed at di�erent e�ective



temperatures. In other words, the lattice parameter can serve as a knob to probe

the thermodynamics of a given spin model.
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Résumé

Au cours des deux derni�eres décennies, les syst�emes frustrés de spins arti�ciels se

sont imposés comme une plate-forme expérimentale incontournable pour sonder des

phénom�enes magnétiques coopératifs souvent associés au magnétisme frustré. Par

rapport ¸ leurs équivalents naturels, ces syst�emes arti�ciels constitués de nanos-

tructures magnétiques en interaction o�rent plusieurs avantages clés. Fabriqués

par des procédés de nanofabrication, ils permettent de concevoir une palette tr�es

large de géométries. En outre, leur con�guration magnétique peut être visualisée

directement, ¸ l'échelle du degré de liberté du spin, ¸ l'aide de techniques d'imagerie

magnétique. Les quantités locales et globales peuvent alors être mesurées de mani�ere

pratique, dans l'espace réel et en temps réel, ¸ n'importe quelle température.

Ce travail de doctorat se concentre sur de tels syst�emes de spins arti�ciels, et

plus particuli�erement sur la géométrie carrée qui a été initialement proposée comme

un équivalent bidimensionnel (2D) de la structure cristalline tridimensionnelle (3D)

des syst�emes pyrochlores. Toutefois, cette approche 2D supprime la frustration mag-

nétique présente ¸ 3D, et le syst�eme s'ordonne de mani�ere antiferromagnétique au

lieu de présenter un état fondamental massivement dégénéré, semblable ¸ celui d'un

liquide de spin.

Suivant une stratégie proposée dans la littérature, des réseaux carrés de nanos-

tructures constitués de deux sous-réseaux décalés verticalement ont été fabriqués

pour restaurer la frustration magnétique, ce qui a permis d'atteindre expérimen-

talement un régime liquide de spin. En visualisant les con�gurations magnétiques

obtenues apr�es un protocole de désaimantation, l'analyse des corrélations de spin

rév�ele des écarts par rapport aux prédictions du mod�ele (¸ courte portée) de la glace

carrée. En comparant ces données ¸ des simulations Monte Carlo, nos résultats in-

diquent que les interactions magnétostatiques ¸ longue portée ne peuvent pas être

négligées dans nos expériences, contrairement ¸ ce qui était pensé jusqu'¸ présent.

Par la suite, ces glaces carrées arti�cielles ont été utilisées pour comprendre

dans quelle mesure le protocole de désaimantation en champ que nous appliquons

est un processus stochastique. Pour ce faire, nous avons étudié les con�gurations

magnétiques obtenues apr�es des protocoles de champ successifs. Nos résultats mon-

trent que chaque micro-état magnétique obtenu di��ere substantiellement du précé-

dent, mais pas compl�etement. En analysant les con�gurations de spin et de vertex

correspondantes, nous démontrons que notre protocole en champ est un processus

stochastique, bien que nous observions également des signatures non ambigu�es d'un

déterminisme magnétique que nous attribuons ¸ la présence d'un désordre résiduel.

L'origine de ce désordre et du comportement aléatoire en champ sont discutés.

En�n, nous explorons la physique d'une série de réseaux carrés convention-



nels (c'est-¸-dire non décalés verticalement) désaimantés en champ tournant, dans

lesquels le param�etre de maille est progressivement modi�é a�n d'ajuster l'intensité

des interactions magnétostatiques. En comparant les populations de vertex et les

corrélations de spin ¸ des prédictions Monte Carlo, nous montrons que la série de

réseaux est bien décrite par un Hamiltonien de spin unique, sondé ¸ di�érentes

températures e�ectives. En d'autres termes, le param�etre de maille peut servir de

potentiom�etre pour explorer la thermodynamique d'un mod�ele de spin donné.

Mots clés

Glace de spin arti�cielle, frustration géométrique, imagerie magnétique, désaiman-

tation en champ



Abstrakt

V posledních dvou desetiletích se umìlé systémy spinového ledu staly významnou

experimentální platformou pro zkoumání kooperativních magnetických jevù èasto

spojených s vysoce frustrovanými magnety. Ve srovnání se svými pøirozenými

protìj¹ky nabízejí umìlé systémy spinového ledu vytvoøené z vzájemnì interagu-

jících magnetických nanostruktur nìkolik klíèových výhod. Díky tomu, ¾e jsou

pøipravovány pomocí mikro nanotechnologických procesù, lze vytváøet rozsáhlou

paletu geometrií. Kromì toho lze jejich magnetickou kon�guraci pøímo vizualizovat

na úrovni spinového stupnì volnosti pomocí magnetických zobrazovacích technik.

Lokální a globální velièiny lze pak pohodlnì mìøit v reálném prostoru a èase, a to

pøi témìø libovolné teplotì.

Tato doktorská práce se zamìøuje na takové umìlé spinové systémy, konkrétnì

na ètvercovou geometrii, která byla pùvodnì navr¾ena jako dvourozmìrný (2D) pro-

tìj¹ek trojrozmìrné (3D) krystalové struktury pyrochlorù. Tento 2D pøístup v¹ak

odstraòuje magnetickou frustraci pøítomnou ve 3D a systém se uspoøádává kon-

venèním antiferomagnetickým zpùsobem, místo aby vykazoval vysoce degenerovaný

základní stav podobný spinové kapalinì.

Na základì strategie navr¾ené v literatuøe byla vyrobena pole nanostruktur ses-

távajících ze dvou vertikálnì posunutých submøí¾ek, aby se obnovil úèinek frustrace,

co¾ umo¾nilo experimentálnì dosáhnout re¾imu spinové kapaliny. Zachycení mag-

netických kon�gurací získaných po protokolu demagnetizace magnetickým polem

odhalilo následující: analýza párových spinových korelací vykazuje odchylky od

toho, co pøedpovídá model ètvercového ledu (krátkého dosahu). Srovnáme-li ex-

perimentální zji¹tìní se simulacemi Monte Carlo, na¹e výsledky ukazují, ¾e magne-

tostatické interakce dlouhého dosahu nejsou v na¹ich polích, na rozdíl od pùvodního

názoru, potlaèeny.

Poté byly tyto umìlé struktury ètvercového ledu pou¾ity k pochopení toho, do

jaké míry je námi aplikovaný protokol demagnetizace polem stochastickým proce-

sem. Za tímto úèelem jsme studovali magnetické kon�gurace získané po jednotlivých

aplikacích demagnetizaèního protokolu. Na¹e výsledky ukazují, ¾e ka¾dý zachycený

magnetický mikrostav se podstatnì li¹í od pøedchozího, ale ne zcela. Analýzou

odpovídajících spinových a vertexových kon�gurací jsme prokázali, ¾e ná¹ demag-

netizaèní protokol je stochastický proces, aèkoli jsme také pozorovali jednoznaèné

známky magnetického determinismu, které pøisuzujeme pøítomnosti drobných ne-

dokonalostí na¹ich umìlých systému. Následnì diskutujeme mo¾né zdroje náhod-

nosti v na¹em experimentu.

Nakonec zkoumáme chování øady konvenèních (vertikálnì neposunutých) ètver-

cových møí¾ek demagnetizovaných magnetickým polem, u nich¾ se postupnì mìní



parametr møí¾ky, aby se ladila síla interakcí mezi elementy tvoøící systém. Srovnáním

experimentálních populací vertexù a párových spinových korelací s pøedpovìïmi

Monte Carlo ukazujeme, ¾e møí¾ková øada je dobøe aproximována jedineèným spinovým

hamiltoniánem krátkého dosahu zkoumaným pøi rùzných efektivních teplotách. Jinými

slovy, møí¾kový parametr mù¾e slou¾it jako jistý ovladaè pro zkoumání termody-

namiky daného spinového modelu.

Klíèová slova

Umìlé systémy spinového ledu, geometrická frustrace, magnetické zobrazovací tech-

niky, demagnetizace magnetickým polem
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1 Introduction

1 INTRODUCTION

1.1 Geometrical frustration

In physical systems, frustration is typically described as the inability to satisfy all

interactions within the system simultaneously. This condition can stem from struc-

tural/chemical disorder, as seen in spin glasses, or from a speci�c combination of

lattice geometry, type of spin, and the nature of spin-spin interactions in struc-

turally/chemically ordered systems. The latter case is referred to as geometrical

frustration, and this type of frustration is the underlying condition for the uncon-

ventional phenomena observed in frustrated magnets, be they arti�cial or natural.

The typical example for illustrating the geometrical frustration is considering a

triangular plaquette that hosts Ising-like spins on its corners, and the pairwise spin-

spin interaction is antiferromagnetic. Ising-like spins are restricted to one dimension

and can point only in two opposite directions (e.g. up or down). The antiferromag-

netic interaction between nearest neighbours then tends to align the neighbouring

spins in an alternating fashion. While it is possible to satisfy the interactions for the

�rst two spins placed to the triangular plaquette, it is not possible to do so when

placing the third (see Fig. 1.1a).

a)

AF

AF

AF FM

FM

FM
AF

AF

AF

AF

b) c)
Ising spins

Fig. 1.1: a) Example of geometrical frustration: Ising spins placed on corners of tri-

angular plaquette with nearest-neighbour antiferromagnetic (AF) interaction. Plac-

ing a third spin will inevitably lead to frustration in one interaction. b) If the

geometry is changed to a square, it is possible to place all spins while keeping all

nearest-neighbour interactions satis�ed. c) If the geometry is maintained, but the

nature of the interaction is changed to ferromagnetic (FM, i.e. spins tend to align

parallel to each other), it is also possible to satisfy all interactions between nearest

neighbours. White (black) dots represent spins pointing up (down). Green links

indicate satis�ed interactions.

Suppose the geometry of the problem is changed to a square. In that case, no

frustration is present as placing the spins in alternating fashion is possible, and

the nearest-neighbour antiferromagnetic interaction is fully satis�ed (see Fig. 1.1b).
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1.1 Geometrical frustration

Similarly, suppose the nature of the interaction is changed to ferromagnetic while

the triangular geometry is preserved. In that case, satisfying all interactions between

the nearest neighbours is possible, and no frustration is present (see Fig. 1.1c). This

simple example shows that geometrical frustration arises only if there is a speci�c

combination of the lattice geometry, the nature of interaction and the type of spin

(here, Ising-like). From this point onward, we will only focus on systems that e�ec-

tively consist of Ising-like spins.

It is instructive to determine what are the possible con�gurations of a single

triangular plaquette in which the Ising spins are coupled antiferromagnetically. The

total amount of di�erent con�gurations is 23 = 8, as there are three spins, and each

can have two di�erent orientations. Essentially, there are two states: ground state

con�guration (six times degenerate, shown in Fig. 1.2a) in which one out of three

bonds is frustrated and excited state (two times degenerate, shown in Fig. 1.2b) in

which all three bonds are frustrated. If we continue the comparison with the square

plaquette, the ground state con�guration has no unsatis�ed bonds and is two times

degenerate (see Fig. 1.2c).

a) b) c)

Fig. 1.2: a) Six lowest possible energy con�gurations (i.e., ground state con�gura-

tions) for a triangular plaquette with antiferromagnetic interactions. b) Two possible

higher-energy con�gurations for the same system. White (black) dots represent spins

pointing up (down). Green (red) links indicate satis�ed (frustrated) interactions.

c) Two possible (not frustrated) ground state con�gurations for a square plaquette

with antiferromagnetic interactions.

So far, we have restricted our discussion to evaluating the e�ect of frustration

on the ground state con�gurations of a single triangular/square cell. Naturally, the

next step is to examine what are the impacts of frustration on a network scale,

focusing speci�cally on the lowest possible energy con�gurations. As a �rst step of

building a network of corner-sharing triangles (this is e�ectively the kagome lattice),
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1.1 Geometrical frustration

one out of six GS con�gurations (shown in Fig. 1.2a needs to be selected. The sub-

sequent addition of a triangular cell through a shared corner provides three possible

orientations for the two unde�ned spins belonging to the new cell (when selecting

from the available single triangle GS con�gurations). The building of such a chain

is illustrated in Fig. 1.3. For example, for a chain consisting of only three triangles,

there are 6 × 3 × 3 = 54 possible ground state con�gurations and as the length of

the chain is further extended, the degeneracy of the ground state increases faster

than the system size. As all these states share the same energy, the ground state is

macroscopically degenerate. Due to this extensive degeneracy of the ground state

manifold, the residual entropy per site is a �nite value. If the chain of triangles

considered here is extended into a whole network, it forms the antiferromagnetic

kagome lattice, for which it was shown that the residual entropy is S0 = 0.50183R

[1], where R corresponds to ideal gas constant R = NA · kB (NA is Avogadro's num-

ber and kB is the Boltzmann constant).

...

...

Fig. 1.3: Building a network of corner-sharing triangles out of available single trian-

gle GS con�gurations. The number of possible con�gurations increases exponentially

with the length of the chain.

To �nish our comparison, if a chain or network of low-energy con�guration is con-

structed from non-frustrated building blocks, such as square cells where the nearest-

neighbour spins are antiferromagnetically coupled, the con�guration becomes en-
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1.2 Water ice

tirely determined with the placement of the �rst block (selecting one of two possible

ground state con�gurations). Consequently, there is only one way to connect sub-

sequent blocks. In this scenario, the ground state degeneracy is una�ected by the

system size, as the ground state always exhibits a twofold degeneracy. Hence, such

a system does not exhibit any residual entropy.

At this point, we might conclude that geometrical frustration leads to extensive

ground state degeneracy, subsequently leading to �nite residual entropy (also called

zero-point entropy). This behaviour contradicts the third law of thermodynamics,

at least in the formulation provided by Planck, which states that: \When temper-

ature falls to absolute zero, the entropy of any pure crystalline substance tends to

a universal constant (which can be taken to be zero)." [2]. As frustrated systems

generally lack a unique ground state ordering, they can explore the vast expanse of

their ground state manifold with no energy penalty. This characteristic potentially

allows for intensive 
uctuations, even at low temperatures.

In this section, we have explored the impact of geometrical frustration on the

low-energy states of theoretical spin models. In the next sections, we will show

how such a phenomenon can be found in natural compounds, such as water ice and

pyrochlore crystals.

1.2 Water ice

The seminal example of a frustrated natural compound is ordinary water ice. By

the word ordinary, we refer to the hexagonal phase of water ice (Ih). In this phase,

oxygen ions sit at the centres of a corner-sharing tetrahedron lattice. Thus, each

oxygen ion is surrounded by four other oxygen ions. The bond between each pair

of oxygen ions is facilitated by one hydrogen ion. Thus, each oxygen ion has a

tetrahedral proton environment. As the electrostatic interactions between hydrogen

ions are repulsive [3], one might conclude that the global energy would be minimised

if the hydrogen ions occupy the middle position on each O { O line of contact.

However, such a con�guration does not maintain the integrity of water molecules,

which exhibit strong chemical binding energy [4]. Consequently, the condition for

minimising the global energy is that each oxygen has two hydrogen ions in a \close

position" and two hydrogen ions in a \far position" (see Fig. 1.4). Therefore, the

electrostatic interactions between hydrogen ions cannot all be minimised, leading

to frustration. The two hydrogen ions in the close position correspond to covalent

bonds of the water molecule, while the two in the far position are bonded via a

hydrogen bond (they are bonded by covalent bonds to their respective neighbouring

oxygen ions). The \two in, two out" condition, which re
ects the water molecule
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1.2 Water ice

integrity constraint, is known as Bernal-Fowler \ice rules" [3].

a) b)

O2- H+ Displacement vector

Legend

Fig. 1.4: a) Sketch of the internal structure of the low-energy arrangement of water

molecules in ordinary ice (Ih). The arrows show the displacement vectors of hydrogen

ions with respect to the centre point of each O { O line of contact. b) Sketch of

six possible ground state con�gurations for an arrangement of four hydrogen ions

surrounding one oxygen ion. Such con�gurations follow the ice rules.

During the 1930s, discrepancy (i.e., residual entropy) between the spectroscopic

value of the entropy of water and that obtained by heat capacity measurements was

reported [5, 6]. In 1935, Pauling [7] provided a description of water ice internal

structure that accounts for the reported discrepancy. He emphasized that a large

number of con�gurations respect the above-mentioned ice rules, and thus, the low-

energy manifold of water ice exhibits extensive degeneracy. In other words, many

di�erent states can be built up by connecting the six tetrahedron cells that satisfy

the two in, two out condition (see Fig. 1.4b).

Following Pauling's work, the total number of con�gurations for N oxygen ions

is 22N , as there are 2N hydrogen ions, and each can be in two possible states (two

positions per each O { O link). Out of these con�gurations, the ones in which

the structure is built out of tetrahedron cells that respect the ice rules must be

selected. There are 24 = 16 possible con�gurations per tetrahedron, and six of those

respect the ice rule constraint. Thus the number of possible states is Ω = 22N ·
(6/16)N = (3/2)N . All these states have the same lowest possible energy, therefore

the ground state manifold is extensively degenerate. Thus the residual entropy

of water ice is S0 = kB · ln(Ω) = 0.81 cal ·K−1 ·mol−1, which yields remarkable

agreement with the experimental result reported by Giauque and Stout [6]: S0 =

0.82± 0.05 cal ·K−1 ·mol−1.
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1.3 Spin ice

1.3 Spin ice

Roughly sixty years after the consequences of frustration were described for water

ice similar properties were discovered in rare-earth pyrochlore compounds at low

temperatures: Ho2Ti2O7 [8] and Dy2Ti2O7 [9]. In those compounds, the magnetic

ions (Ho3+ or Dy3+) occupy the junctions of corner-sharing tetrahedron lattice and

due to high crystal �eld energy their magnetic moments are constrained to a single

axis (line connecting centres of the neighbouring tetrahedrons, same as the O { O

line of contact in water ice), at low temperatures. Therefore, each spin is e�ec-

tively Ising-like as it can only point towards or outwards with respect to the centre

of one tetrahedron. Additionally, it was reported that the interaction between the

rare-earth ions is e�ectively ferromagnetic [8] thus, the lowest energy state for each

tetrahedron is when two spins point inwards and two outwards, which corresponds

to the ice rules formulated for water ice. Therefore, a direct mapping between the

displacement of hydrogen ions in water ice and the orientation of magnetic moments

of magnetic ions in pyrochlore compounds is recovered. Thus, the pyrochlore com-

pounds are essentially a magnetic analogue to water ice and are referred to as \spin

ice" (see Fig. 1.5 for comparison).

a) b)

O2- H+ Displacement vector

Legend Legend

RE ion Spin (magnetic moment)

Fig. 1.5: a) Sketch of the internal structure of low-energy manifold of water ice (Ih).

b) Sketch of the magnetic con�guration of the low-energy state of the pyrochlore

compound. Adapted (with signi�cant modi�cations) from [10]
.

It is instructive to look in more detail at what leads to geometrical frustration

in pyrochlore compounds. As the interaction between individual spins is e�ectively

ferromagnetic, the interaction energy of a pair of spins is minimised when they point

head-to-tail/tail-to-head. There are 24 = 16 possible con�gurations per tetrahedron,
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1.3 Spin ice

as there are four spins, and each can point inward/outward. The lowest possible

energy per tetrahedron is achieved when two spins point inwards and two outwards.

This condition is satis�ed for 6/16 possible con�gurations per tetrahedron. How-

ever, in all six cases, two pairwise spin interactions out of six are frustrated (see

Fig. 1.6). Thus, the system is geometrically frustrated.

Legend

RE ion Spin (magnetic moment)

Fig. 1.6: Sketch of six possible ground state magnetic con�gurations for a single

tetrahedron cell. There are six pairwise spin interactions that are all equally strong.

In each case, the two out of those six interactions are frustrated (indicated by red

lines), and four are satis�ed (indicated by green lines).

Thus, the same as for water ice, the pyrochlore low-energy magnetic state ex-

hibits extensive degeneracy, as there is a large number of states in which the ice

rules (two-in, two-out) are respected. In fact, the level of degeneracy is the same

as for water ice. Thus, the spin ice materials should also possess residual entropy

as water ice. This was experimentally con�rmed by Ramirez et al. [9] in 1999, and

resulting residual entropy of Dy2Ti2O7 agree with the Pauling's estimate for water

ice to within a few percent, con�rming the validity of the correspondence between

water ice (Ih) and spin ice materials.

It is worth mentioning that in the case of spin ice materials, the extensive de-

generacy arises from magnetic disorder, unlike in water ice, where it has a chemical

origin. Therefore, from an experimental point of view, spin ice materials o�er an ad-

ditional degree of freedom in the possibility of applying an external magnetic �eld to

access speci�c magnetic states. For example, the behaviour of kagome ice layers was

investigated in Dy2Ti2O7 in a magnetic �eld applied along the [111] direction [11].

However, experimental challenges are also associated with investigating magnetic

states in pyrochlore compounds. To capture the exotic properties of interest, the
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1.4 Arti�cial spin ice

experiments must be conducted at very low temperatures (< 10 K, sometimes < 1 K

), and the experimental techniques (such as neutron di�raction) yield only global

information about the system's con�guration. In other words, the obtained infor-

mation is essentially averaged over the bulk of the sample, and resolving individual

magnetic moments is not possible.

1.4 Arti�cial spin ice

Arti�cial spin ice systems were proposed as a two-dimensional counterpart to the

three-dimensional magnetic structure of spin ice compounds. Some twenty years

ago, pioneering works of Wang et al. [12] and Tanaka et al. [13{15] presented arti�-

cial arrays of nanomagnets patterned by electron beam lithography.

In the former work [12], arrays of single-domain ferromagnetic elongated islands

were placed on a two-dimensional square lattice. After the application of �eld de-

magnetisation protocol, the captured magnetic con�gurations revealed the following:

1) each magnet is single-domain and due to the shape anisotropy Ising-like (mag-

netisation can point only in two opposite directions along the long axis of each

nanomagnet) and 2) the captured con�gurations showed an excess of vertices obey-

ing the ice rules. This work also introduced the term \arti�cial spin ice", which has

been widely adopted.

In the case of the latter work [15], arrays of connected honeycomb networks were

patterned, and their remanent state was measured. The magnetic imaging revealed

the following: 1) the magnetisation of the wire segments between two vertex sites

is e�ectively Ising-like (thus can point only outwards or inwards with respect to

one vertex site), 2) these wire segments interact with each other at vertex sites,

where domain walls are formed and 3) the captured con�gurations showed tendency

to follow the ice rules (adapted to three magnet vertices: two-in/one-out or two-

out/one-in).

It is instructive to outline the connection between the three-dimensional structure

of spin ice materials and the two-dimensional geometries studied in the pioneering

works mentioned above, as those are also the geometries that received major atten-

tion and were extensively studied. A two-dimensional square lattice can be deduced

from the three-dimensional pyrochlore lattice (shown in Fig. 1.7a) if it is projected

to a plane (looking downwards along the z-axis, shown in Fig. 1.7b). Then, if elon-

gated nanomagnets are placed at the positions occupied by rare earth ions (shared

corners of square cells) and are oriented such that their long axes point towards the

centres of projected square cells, a two-dimensional analogue of the spin ice struc-

ture is obtained (see Fig. 1.7c).
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1.4 Arti�cial spin ice

z

a)

b)

z

c)

Fig. 1.7: a) 3D structure of pyrochlore compounds. The red balls indicate the

positions of the rare earth ions. b) Projection of (a) to a plane (viewed from above,

i.e. looking downwards along the z-axis). The arrows indicate the magnetic moments

(also projected to a plane). c) Sketch of an arti�cial spin system consisting of

elongated single-domain nanomagnets placed on a square lattice.

While the projection shown in Fig. 1.7 is quite illustrative, it is somewhat 
awed

as projecting the tetrahedron cell to a square cell introduces an imbalance between

the six pairwise interactions belonging to one cell. In a square array of nanomagnets

such as the one shown in Fig. 1.7c, the four interaction strengths of the perpendic-

ular neighbouring magnets are stronger than the two of the collinear neighbouring

magnets. Consequently, the six-fold ground state degeneracy per cell is lost, and

the ground state consists of two con�gurations that satisfy the interactions between

the perpendicular (nearest) neighbours, is two times degenerate and exhibits a con-

ventional antiferromagnetic ordering. The frustration is present for the interactions

between the collinear neighbours but does not e�ectively come into play. Mean-

while, all six pairwise interactions are equally strong in the tetrahedron cell. The

consequences of this imbalance and how the balance can be restored in arti�cial

systems will be addressed later in the text.
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1.4 Arti�cial spin ice

A two-dimensional kagome lattice can also be deduced from the three-dimensional

structure of spin ice materials as a (111) plane intersection (shown in Fig. 1.8a

and 1.8b). By the same approach as for the square lattice (mimicking the positions

of spins by elongated nanomagnets), a two-dimensional kagome lattice built out of

nanomagnets is obtained (see Fig. 1.8c).

a)

z
(111)

c)b)

(111)

Fig. 1.8: a) 3D structure of pyrochlore compounds. The red balls indicate the

positions of the rare earth ions. The (111) plane is shown in a light blue colour.

b) A (111) plane intersection of (a), the arrows indicate the magnetic moments. c)

Sketch of an arti�cial spin system consisting of elongated single-domain nanomagnets

placed on a kagome lattice.

In the case of the arti�cial kagome spin system built out of elongated nanomag-

nets, the balance of the three pairwise interactions in the triangular cell (corresponds

to one face of the tetrahedron cell) is maintained as the spins are just slightly tilted

into a plane. Therefore, there is a six-fold ground state degeneracy per cell, in which

one pairwise interaction is frustrated. Consequently, if only nearest-neighbour inter-

actions are considered, the system exhibits extensive ground state degeneracy. Ar-
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1.4.1 Advantages of arti�cial spin systems

ti�cial systems of elongated magnets placed on the kagome lattice (such as the one

shown in Fig. 1.8c) are sometimes referred to as hexagonal or honeycomb networks

due to the dual relationship between the kagome and hexagonal lattices (elongated

nanomagnets placed on the lattice points of kagome lattice corresponds to the links

of the hexagonal lattice).

It is important to note that the term arti�cial spin ice has often been broadly

applied to describe various systems consisting of arrays of nanomagnets. However,

to be precise, this term should only be used for frustrated systems that feature a

six-fold degenerate ground state per cell (i.e. vertex) and possess a geometry in-

spired by the structure of water ice (or spin ice materials). A more encompassing

and accurate term would be arti�cial spin systems. Thus, while every arti�cial spin

ice system is an arti�cial spin system, the converse is invalid.

1.4.1 Advantages of arti�cial spin systems

In the previous pages, we established the connection between spin ice materials and

arti�cial spin (ice) systems. One might then ask what advantages the arti�cial spin

systems o�er for the experimental studies. The main advantages are: 1) tunability of

the design, 2) direct accessibility of the local information about the con�guration (at

the scale of the spin degree of freedom) and 3) experiment temperature tunability.

Tunability of the design

Arti�cial spin systems consisting of nanomagnets are commonly fabricated by elec-

tron beam lithography combined with additive or subtractive microfabrication tech-

niques (more details are provided in Sec. 2.2). Therefore, essentially any 2D or 2.5D1

geometry (lattice) can be designed and patterned. Additionally, the shape, size and

material of the nanomagnets can be selected at will. Usually, the nanomagnets are

optimised to be a single domain, and their elongated shape de�nes their easy axis.

In that case, their magnetisation (in-plane) can be considered \uniform", and each

nanomagnet is e�ectively Ising-like, as the magnetisation can point only in two pos-

sible directions along with their easy axis. Therefore, each nanomagnet e�ectively

emulates an Ising-like spin. If placed on a suitable lattice, one can consider the ar-

ti�cial spin systems as an experimental simulator of natural compounds or various

theoretical spin models. It is worth pointing out that the arti�cial spin systems

1By 2.5D, we refer to geometries that are built by multi-step lithography, in which the structures

patterned in the subsequent steps are supported by the ones fabricated in the previous step(s).

No self-supporting structures can be fabricated by the most commonly adapted lithographic tech-

niques. An example of a 2.5D structure is the vertically o�set sub-lattices of a square lattice

investigated in this work.
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1.4.1 Advantages of arti�cial spin systems

can also be built out of Ising-like nanomagnets with magnetisation perpendicular to

the lattice plane [16{18]. Furthermore, arti�cial spin systems are not restricted to

feature only Ising-like nanomagnets and systems consisting of XY magnets [19] or

nanomagnets emulating Potts spins (four-state) [20] were presented.

The design 
exibility can also be employed to apply di�erent modi�cations to

the considered lattice, such as: tuning the interactions strengths by changing the

lattice parameter (as we do in Chapter 5), rotate the islands [21], add interaction

modi�ers [22], introduce two distinct nanomagnet sizes [23, 24], introduce topo-

logical defects [25] or create connected lattices with symmetric [26] or asymmetric

modi�cations [27, 28] (subtracted material) at vertex sites. The design possibilities

for arti�cial spin systems are virtually limitless and are essentially only limited by

the capabilities and resolution of the fabrication techniques. Over the past twenty

years or so, a wide variety of arti�cial spin system geometries and their modi�cations

have been introduced (examples shown in Fig. 1.9).

Fig. 1.9: Examples of the ever-growing family of arti�cial spin systems. The �gure

presents various modi�cations of the two seminal geometries (square and kagome).

Adapted from [29].

Direct and local information accessibility

Magnetic imaging techniques employed for capturing the magnetic con�gurations of

arti�cial spin systems consisting of single domain nanomagnets (e.g. magnetic force

microscopy [12, 15, 27, 30, 31], x-ray magnetic circular dichroism photoemission

electron microscopy [32, 33] or Lorentz transmission electron microscopy [34, 35])

allow for unambiguous determination of magnetisation direction for each nanomag-

net. In other words, the orientation of each Ising-like pseudo-spin can be determined
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1.4.1 Advantages of arti�cial spin systems

directly in real space, which provides local information about the magnetic con�g-

uration of the system. At the same time, this locally-resolved information can be

obtained across relatively large areas. For example, in this work, we use magnetic

force microscopy to image entire lattices consisting of 840 or 1860 Ising-like pseudo-

spins. Thus, the global information about the system's magnetic con�guration is

also obtained.

In contrast, the experimental techniques used to examine the magnetic con�gu-

rations of spin ice compounds, such as neutron scattering [8, 36], are indirect and

yield only a global perspective of the system. Consequently, while arti�cial spin sys-

tems provide the means to visualise how frustration is locally accommodated, studies

of spin ice compounds are limited to interpretations based on global information.

Additionally, the dynamics of local excitations within the disordered manifolds of ar-

ti�cial spin systems can be directly observed [37]. In contrast, for spin ice materials,

one must rely on interpreting their e�ects as re
ected in the global information [36,

38].

Experiment temperature tunability

The arti�cial spin systems consisting of single-domain nanomagnets can be designed

to allow magnetic imaging to be conducted at or near room temperature. This is the

case for the arti�cial spin systems in which the con�guration is arrested after the

application of the energy minimisation procedure (e.g., �eld demagnetisation [12,

26, 27, 30], at-growth thermalisation [21, 39, 40] or annealing through the Curie

temperature of the constituent material [35, 41]). In such instances, the typical

thickness of the nanomagnets ranges from 20 to 30 nm. Due to the volume of the

nanomagnets, the blocking temperature is signi�cantly higher than the room tem-

perature, ensuring that the arrested magnetic con�gurations remain stable at room

temperature, where magnetic imaging is usually performed. However, it is also

possible to reduce the volume of the nanomagnets, which allows for tuning of the

blocking temperature. This strategy allows for observation of real-space dynamics,

assuming that temperature control of the environment is implemented in-situ within

the imaging technique. For example, observation of the thermal relaxation of the

arti�cial square spin system (with nanomagnet thickness of 3 ± 0.3 nm) at 350 K

was reported [33].

In contrast, to observe exotic phenomena in spin ice compounds, very low tem-

peratures are required (typically about our even below 1 K) [8, 9, 36]. One might

then conclude that arti�cial spin systems built out of nanomagnets provide a more

convenient window of experimental conditions.
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Summary

For the reasons outlined above, arti�cial spin systems have received considerable

attention in the last two decades (as evidenced by topical reviews [29, 42{44] and

book chapters [45, 46]) and have provided a beautiful playground to experimentally

investigate properties of various lattice spin models (whether inspired by natural

compounds or not, whether frustrated or not). While arti�cial spin systems were

initially introduced as an experimental simulator of frustrated spin models, their

potential applications have also been explored. However, this topic is not a focus of

this thesis and will not be discussed further (more details can be found in Ref. [29,

43, 47].

As a �nal point, it is worth mentioning that arti�cial spin systems are not re-

stricted to feature nanomagnets as building blocks and di�erent approaches were

presented. For example, assemblies of colloidal particles [48{50] (also referred to

as particle ice), arrays of macroscopic rotors [51], mechanical metamaterials [52] or

nonmagnetic molecular assemblies [53] were presented.

1.4.2 The square geometry

In this work, we focus on the arti�cial spin systems built out of elongated nanomag-

nets placed on a square lattice. More speci�cally, we conduct experimental investi-

gations of �eld demagnetised conventional square lattices (i.e., lattices in which all

nanomagnets lie on the substrate) and vertically o�set square lattices (i.e., lattices

in which one sublattice is vertically o�set with respect to the other one). Below, we

describe these two systems and provide a brief overview of previous experimental

works that have featured these types of arti�cial arrays of nanomagnets.

Conventional square lattice

The �rst experimental realisation of the conventional square lattice was reported by

Wang et al. in 2006 [12]. In this work square arrays of elongated permalloy nano-

magnets (size 220 × 80 × 25 nm3, lattice parameter 320{880 nm) were fabricated

with intent to mimic the properties of spin ice materials (the relation between the

2D square lattice and 3D magnetic structure of pyrochlore compounds is provided

in Fig. 1.7). Atomic force microscopy (AFM) topography image of a typical lattice

fabricated in this work is provided in Fig. 1.10a, and Fig. 1.10b shows magnetic force

microscopy (MFM) image showing the arrested magnetic con�guration obtained for

the same array after application of �eld demagnetisation protocol.

Utilising the vertex description (see Fig. 1.10c) Wang et al. reported that their

captured magnetic con�gurations showed a tendency to locally respect the ice rule
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Fig. 1.10: a) AFM topography image of a conventional square lattice. b) MFM

magnetic contrast taken for the same array as in (a). Each magnet is a single

domain, as evidenced by black and white contrast on its extremities. The coloured

outlines indicate examples of type I (pink), type II (blue) and type III (green).

Both (a) and (b) are adapted from [12], and the blue bar represents 1 µm in both

images. c) The possible 16 magnetic con�gurations per vertex site, divided into four

topological types. d) Detailed look at satis�ed and unsatis�ed pairwise interactions

at vertex sites for di�erent vertex types. For a conventional square lattice consisting

of elongated nanomagnets, the lowest possible energy con�guration per vertex is

type I, in which the four nearest-neighbour interactions (J1) are satis�ed at the

expense of the next-nearest-neighbour interactions (J2).

condition (two-in/two-out), evidenced by the excess of type I and type II vertices

compared to what would be expected for an array of randomly oriented nanomag-

nets.

At this point, it is worth revisiting the consequences of projecting the 3D mag-

netic structure of spin ice materials into a 2D square array of nanomagnets (as

shown in Fig. 1.7). We noted previously that this approach leads to an imbalance

between the six pairwise interactions between the four magnets meeting at one ver-
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tex site. In contrast, the six pairwise interactions between the four spins of one

tetrahedron cell are equally strong in spin ice materials. For geometrical reasons,

in a conventional square lattice vertex, the six pairwise interactions between the

four magnets meeting at a vertex site are divided into four interactions between

the nearest-neighbours (J1, perpendicular pairs of magnets) and two interactions

between the next-nearest-neighbours (J2, collinear pairs of magnets) and J1 > J2.

Interaction energy for a pair of magnets is minimised when they are oriented head-

to-tail or tail-to-head. Consequently, the lowest possible energy con�guration per

vertex is reached when the interactions between the nearest-neighbours are satis�ed

at the expense of next-nearest-neighbours, which is the case for type I vertices (see

Fig. 1.10d). The ground state manifold then corresponds to a perfect tiling of type

I vertices in a chequerboard-like fashion, is two times degenerate and antiferromag-

netically ordered.

In hindsight, it is clear that a conventional square array of elongated nano-

magnets is not a suitable candidate to mimic the low-energy properties of spin ice

materials2 as the ground state con�guration per vertex is only two-times degenerate,

unlike in water ice or spin ice where it is six-times degenerate. The reason why the

con�gurations reported by Wang et al. do not exhibit more prominent ordering can

be attributed to the low e�ciency of the demagnetisation protocol (this is supported

by a relatively high fraction of type III vertices).

Even though this arti�cial spin system failed at mimicking the physics of spin ice

materials, its well-de�ned antiferromagnetic ground state has become a sort of etalon

for experimental studies. Conventional square arrays of nanomagnets were explored

to evaluate e�ciency of di�erent �eld demagnetisation protocols [54{57] (more de-

tailed comparison of those works is provided in Chapter 5), e�ciency of at-growth

thermalisation [39, 40, 58] or e�ciency of annealing through Curie temperature [35,

41, 59]. Other experimental studies featuring conventional square lattices focused

on e�ects of thermal 
uctuations [33, 60], role of intrinsic disorder [45, 56], magneti-

sation reversal processes [61] or dynamics of charged excitations (type III vertices,

see Fig. 1.10c) within uncharged but ordered backgrounds [62{64].

Vertically o�set square lattice

In the preceding pages, we discussed why the conventional square lattice fails to

replicate the properties of spin ice materials. For an accurate emulation, restor-

ing the balance among the six pairwise interactions at each vertex site is essential,

thereby preserving the six-fold ground state degeneracy per vertex site characteristic

2This statement might not be entirely accurate and will be revisited in Chapter 5.
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1.4.2 The square geometry

of spin ice materials. Speci�cally, this requires modifying the square array of nano-

magnets so that the interaction strengths at vertex are equalised (J1 = J2, referred

to as \ice condition"), resulting in equivalent energies for type I and type II vertices

(EI = EII).

A possible strategy to equalise the coupling strengths between the perpendic-

ular (J1) and collinear (J2) neighbours at vertex site was proposed by Möller and

Moessner in 2006 [65]. The main idea of this proposition is to shift vertically one of

the sublattices forming the square array by a height o�set h (shown in Fig. 1.11a).

By doing so, the coupling strength between the perpendicular neighbours (J1) is

weakened, while the one between the collinear neighbours (J2) remains the same.

The height o�set then enables for tuning of the J1/J2 ratio, and for a speci�c height

o�set hc, the balance between the J1 and J2 is recovered (see Fig. 1.11c).
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Fig. 1.11: a) Three-dimensional sketch of a vertically o�set square lattice. The blue

sublattice is shifted vertically by height o�set h. The coupling strengths between

perpendicular (J1) and collinear (J2) neighbours are indicated by red and green,

respectively. b) SEM image of the vertically o�set square lattice in which one

sublattice is elevated due to placement of its nanomagnets on top of Ti/Au bases.

c) Result of micromagnetic simulations showing how the J1/J2 ratio can be tuned

by modifying the height o�set h. At a critical (numerical) value hnum
c close to 120

nm, the ice condition J1/J2 = 1 is obtained. Adapted from [30].

Experimental realisation of a vertically o�set square lattice was presented by

Perrin et al. in 2016 [31]. A two-step electron beam lithography process was utilised

to achieve the height o�set. The �rst step focused on preparing the Ti/Au bases and

alignment marks. The second step was dedicated to fabricating the square arrays

of permalloy nanomagnets. Thanks to precise alignment, the magnets of one sub-

lattice rest directly on the substrate, whereas the magnets of the second sublattice

are positioned atop the bases patterned during the �rst step (see Fig. 1.11b).

After applying a �eld demagnetisation protocol, the arrested magnetic con�gura-

tions were imaged by magnetic force microscopy. Analysing the obtained real space
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1.4.2 The square geometry

magnetic con�gurations revealed that for a height o�set hexp = 100 nm the con�g-

urations are highly disordered and the ratio between the type I and type II vertices

approaches 1:2 (see Fig. 1.13b), which corresponds to their degeneracy numbers (two

variants of type I vertex and four variants of type II vertex). This shows that for

such a height o�set, the balance between the six pairwise interactions at vertex is

e�ectively approached (J1 = J2 = J) and considering only the nearest-neighbour

interactions the type I and type II vertices have the same lowest possible energy and

de�ne the ground state (see Fig. 1.13c and 1.13d). A straightforward analogy with

the six possible ground state con�gurations per tetrahedron cell in spin ice materials

is thus retained (Fig. 1.6 vs. Fig. 1.13c). Therefore, such a system (vertically o�set

square lattice, hexp = 100 nm) can be called arti�cial spin ice or arti�cial square ice.

One might then wonder, what are the characteristics of the captured magnetic

con�gurations (for the height o�set (hexp = 100 nm). First, no clear ordering is

evident when examining an example vertex map (as shown in Fig. 1.12). This is

re
ected in the experimental magnetic structure factor (MSF), which shows a dif-

fused but structured magnetic di�raction pattern (see Fig. 1.12b), in which no Bragg

peaks (indication of order) are present.

a) b) c)
Type I Type II Type III

Fig. 1.12: a) Real space magnetic con�guration (shown as a vertex map; the legend

is provided above the map) of a vertically o�set square lattice (hexp = 100 nm). b)

The magnetic structure factor computed from four magnetic con�gurations, similar

to the one shown in (a). c) Numerical magnetic structure factor computed from 1000

random spin con�gurations, in which the ice rule constraint is strictly applied (i.e.,

only type I and type II vertices are permitted). The intensity scale bar is provided

right next to each plot. (a) Adapted from [44], (b-c) adapted from [31].

Comparing this result with a numerical prediction (see Fig. 1.12c) indicates

strong similarities, implying that the experimental magnetic con�guration can be

characterised as a spin liquid (disordered but correlated magnetic state, in which

pairwise spin correlations are not zero, but decay to zero at large distances [44]).

Furthermore, the experimental MSF exhibits distinct features (see red circle in
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Fig. 1.12b, referred to as pinch points) that are indicative of algebraic nature of the

pairwise spin correlations [31, 66] associated with the so-called Coulomb phase [67].

The Coulomb phase is an emergent state for certain lattice models featuring local

constraints that can be mapped to a divergence-free \
ux" [67]. Following the work

of Henley [67], the lattice model has to satisfy three conditions for the Coulomb

phase to emerge:

1. each variable (the spin in our case) can be mapped to a (discrete) signed

(magnetic) 
ux Pi, running along bond i (the bond is a line between two

adjacent vertex sites in our case);

2. the variables obey hard constraints, such that the sum of the 
uxes at each

vertex is zero (this constraint corresponds to the ice rules in our case, two-

in/two-out vertex con�gurations);

3. the system is in a highly disordered phase, without any long-range ordered

pattern (i.e., liquid-like).

The three conditions mentioned above are valid assuming a vertically o�set

square lattice (with a critical height o�set that recovers the ice condition), brought

into its low-energy manifold (only type I and type II vertices are present). Even

though the experimental spin con�gurations do not strictly obey the second condi-

tion (there are a signi�cant fraction of type III vertices present; see white squares in

Fig. 1.12a), indicating that the system has not been fully brought to its massively

degenerate low-energy manifold, the experimental MSF exhibits features speci�c of

a Coulomb phase (pinch points, highlighted by red circle in Fig. 1.12b). Therefore,

the magnetic con�gurations can be described as a Coulomb phase with embedded

local excitations (type III).

The nature of type III vertices

Following the work of Castelnovo et al. [68], the type III vertices are often referred

to as magnetic monopoles in the context of arti�cial spin systems. The description,

introduced for spin ice compounds, is based on substituting each spin by a pair of

opposite magnetic charges (this description is often referred to as dumbbell model.

Consequently, the six con�gurations that follow the ice rule (two-in/two-out) are

characterised by a zero net magnetic charge at each (vertex) site. Conversely, the

type III vertices (three-in/one-out or vice versa) have a net magnetic charge q = ±2

and type IV vertices (four-in or four-out) have a net magnetic charge q ± 4 (see

Fig. 1.13c). The magnetic charge q is de�ned as the sum of spins per vertex site

(+1 for spins pointing inwards and −1 for spins pointing outwards).
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q = +-4
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Fig. 1.13: a) AFM topography (top) and MFM contrast (bottom) images of a verti-

cally o�set square lattice. In the topography image, the nanomagnets are depicted

in red, the bases that elevate one of the sublattices vertically are shown in yellow,

and the substrate is represented in grey. In the magnetic image, the magnetic con-

trast is visualised with blue (red), indicating negative (positive) magnetic charges.

b) A plot showing the density of type-i vertices as a function of the height o�set h.

The points represent mean values, and the error bars indicate the standard devia-

tion (based on four demagnetisations). c) The possible 16 magnetic con�gurations

per vertex site, divided into four topological types. d) Detailed look at satis�ed

and unsatis�ed pairwise interactions at vertex sites for di�erent vertex types. For a

vertically o�set square lattice (with critical height o�set), there are six lowest pos-

sible energy con�gurations per vertex (type I and type II), in which four pairwise

interactions between the nearest neighbours (J1 = J2 = J) are satis�ed, and two

are frustrated. (a) and (b) adapted from [31].

However, the properties of the type III vertices di�er substantially based on their

environment (i.e., in which con�gurations they are embedded). If they are embedded

in an ordered and uncharged background (either type I or type II background), they

act as con�ned quasi-particles and are typically linked to their oppositely charged
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counterpart by a string tension [69, 70]. This string can be seen as a path that lead

to their separation (trace of reversed spins) and is often referred to as Dirac string.

In this case, when the type III vertices are embedded in ordered con�gurations, their

nature can be characterised as charged defects (or charged excitations).

Examples of two possible con�gurations in which type III vertices are incorpo-

rated in mainly ordered backgrounds are shown in Fig. 1.14a and Fig.1.14b. In the

�rst case (Fig. 1.14a), a pair of oppositely charged type III vertices is embedded in

an ordered background of type I vertices. The two charged defects are connected

by a chain of reversed spins corresponding to their possible annihilation path and

forming a type II domain wall. Such a con�guration corresponds to a system in

which the ground state is formed by type I vertices, and the presence of type II and

III vertices indicates that the system was not brought into its ground state con�gu-

ration. Such con�gurations were reported for conventional square lattices after �eld

demagnetisation [31, 56, 57] or thermal annealing [71]. In this scenario, the type

III vertices are not free to move, and the only sustainable movement is the one that

reduces the string length, potentially resulting in their annihilation, thereby further

reducing the system's energy.

In the second case (Fig. 1.14b), a pair of oppositely charged type III vertices is

embedded in a saturated background of type II vertices. The two charged defects

are connected by a chain of reversed spins corresponding to their separation path

and forming a type I domain wall. Such a con�guration corresponds to a square

spin system that was diagonally polarised by an external magnetic �eld, and subse-

quently, a �eld in the opposite direction was applied. Such a �eld treatment induces

nucleation of the charged defects (type III vertices) that are propagated throughout

the lattice via an avalanche process [62, 72]. Similar results were reported for a

thermal relaxation of a conventional square lattice, in which the initial state was

diagonally polarised by applying an external magnetic �eld [33]. In this scenario,

the movement of the type III vertices is restricted by the constraints of the ordered

background, and only sustainable movement is such that leads to further reduction

of the system's energy (the type III vertices essentially mediates the �eld-driven

reversal or stabilisation of the energetically more favourable con�guration).

Conversely, if the type III vertices are present in a disordered liquid-like back-

ground (see Fig. 1.14c), their movement is not constrained, and they are free to

evolve within a highly disordered manifold without energy penalty (movement of

type III vertices leads to transformation of type I into type II vertices or vice versa,

depending on the local con�guration). In this scenario, the type III vertices can

be referred to as magnetic monopoles, recovering the similarities with a low-energy

manifold (with local excitations that break the ice rules) of spin ice compounds, for

which the concept of emergent magnetic monopoles was initially introduced [68].
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While in the case of the ordered magnetic backgrounds, one can identify the path

of reversed spins that lead to the separation of the two oppositely charged type III

vertices (shown in Fig. 1.14a and Fig.1.14b), the same is not possible in case of the

type III vertices embedded in the magnetically disordered manifold. For a con�g-

uration shown in Fig. 1.14c, one can de�ne many di�erent paths to recombine the

two magnetic monopoles. In other words, the path taken by the pair of monopoles is

erased by the magnetic disorder, and in the case of a larger system with a �nite den-

sity of monopoles, one cannot determine pairing for oppositely charged monopoles.

a) b) c)

Type I Type II Type III (q = +2) Type III (q = −2) Reversed spins

Fig. 1.14: Pair of oppositely charged type III vertices in: a) ordered type-I back-

ground (antiferromagnetic ordering), b) ordered type-II background (diagonally po-

larised state) and c) disordered (liquid-like) background. In the ordered backgrounds

(a, b), the pair of type III vertices is linked by the path of reversed spins (red ar-

rows). This path corresponds to a domain wall formed by type II vertices in (a) and

type I vertices in (b). In the case of the disordered background (c), no apparent

path of reversed spins can be identi�ed (it was erased by the magnetic disorder).

The legend for the maps is provided below. Adapted from [73].

To summarize, if the type III vertices are present in magnetically ordered back-

grounds, their nature can be described as charged defects. If embedded within a

highly disordered manifold, they behave as free-to-move magnetic monopoles, which

interact via a magnetic Coulomb interaction [67, 68].
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1.5 Motivation and overview

Over the past two decades, arti�cial spin systems have emerged as a robust ex-

perimental platform for exploring the properties of frustrated (Ising) spin models.

The typical approach involves fabricating elongated nanomagnets on a lattice of in-

terest and employing an energy minimisation procedure to stabilise the low-energy

con�gurations of the spin system being studied. This approach proved fruitful and

provided many intriguing experimental results, such as spin-liquid phases, magnetic

Coulomb phases, emergent magnetic monopoles and many others. Unlike natural

compounds, where the exotic physics associated with frustration was initially stud-

ied, arti�cial spin systems o�er direct access to the system's con�guration at the

spin degree of freedom level. This accessibility allows for detailed observation of

how frustration and local excitations are accommodated on a microscale, providing

valuable insights into the underlying physics.

Arti�cial spin systems research is a fast-evolving �eld in which many di�er-

ent lattice geometries and associated phenomena are being investigated. However,

the operating principle of those systems (i.e., the reason why and how they work)

is sometimes overlooked. In fact, one could present compelling arguments as to

why the approach of emulating spin models by arrays of magnetostatically coupled

single-domain magnetic islands should fail. Strictly speaking, the nanomagnets are

not point dipoles, Ising variables or macrospins as they are micromagnetic objects

characterised by not uniform magnetic texture and exhibit magnetisation dynamics.

Despite these limitations, the experimental results are well-approximated by Ising

spin models.

In this work, we focus on �eld-demagnetised arti�cial square spin arrays (con-

ventional square lattice and vertically o�set square lattice) and investigate three

separate problems (presented in three experimental chapters) that are all linked to

the fundamental properties of arti�cial spin systems formed by elongated nanomag-

nets.

In Chapter 3, we investigate whether signatures of farther neighbour couplings

can be detected experimentally in a spin liquid con�guration retained in vertically

o�set square lattices (referred to as arti�cial square ice). This question is linked to

the fact that arti�cial spin systems consisting of nanomagnets are dipolar by desing,

thus considering nearest-neighbour interactions only to describe their physics is an

approximation. While this short-range approximation showed good agreement with

previously reported results for arti�cial square ice, we were able to detect subtle

di�erences in the experimental magnetic structure factor that cannot be accounted

for by the short-range model. We identify the origins of those additional features

observed in the experimental magnetic structure factor, and utilising Monte Carlo
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simulations, we show how they can be recovered numerically if interactions extending

beyond nearest neighbours are considered. Our results thus indicate that interac-

tions from farther neighbour couplings are at play in our �eld-demagnetised arti�cial

square ice magnets, and they impact the magnetic correlations.

Chapter 4 reports the results of applying successive �eld demagnetisation pro-

tocols to arti�cial square ice magnets. The primary motivation for this work is

to address to what extent the �eld demagnetisation we apply can be viewed as a

stochastic process. Our results show that applying the �eld demagnetisation pro-

tocol multiple times to the same arti�cial square ice system results in magnetic

con�gurations that are substantially di�erent from each other, though not entirely.

Analysing the obtained spin and vertex con�gurations, we demonstrate that our

�eld protocol is a stochastic process, although some level of magnetic determin-

ism is present in our results. We attribute the presence of magnetic disorder to

intrinsic disorder (i.e., imperfections of the arti�cial spin systems that locally bias

the magnetostatic interactions or reversal dynamics). This result illustrates one of

the limitations of emulating spins by single-domain nanomagnets. We also explore

potential sources of randomness in our experiment, including the intrinsic one as-

sociated with thermal 
uctuations that a�ect the magnetisation reversal dynamics

of the nanomagnets forming the arti�cial system. This highlights the importance

of considering the micromagnetic nature of the building blocks of the arti�cial spin

systems.

In Chapter 5, we investigate whether a series of �eld-demagnetised conventional

square lattices, in which the lattice parameter is gradually varied to tune the interac-

tion strengths, yield magnetic con�gurations corresponding to a unique spin model

probed at distinct e�ective temperatures. In other words, is it possible to probe

e�ective thermodynamics by tuning the interaction strengths of an arti�cial square

spin system? By carefully comparing vertex populations and magnetic structure

factors obtained by experiment and Monte Carlo simulations, we show this is gener-

ally the case. However, deviations for densely packed lattices are observed, showing

the limitations of the single-model approximation. Moreover, for the densely packed

lattices, we observe unexpected trend deviations that can be accounted for only if

the coupling strengths of the spin model are signi�cantly modi�ed. Employing mi-

cromagnetic simulations, we show that this trend deviation can be attributed to the

combination of micromagnetic e�ects and kinetic e�ects associated with the �eld

demagnetisation protocol. This result again highlights the importance of consider-

ing the micromagnetic nature of the building blocks of the arti�cial spin systems.
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2 METHODS

The primary purpose of this chapter is to provide detailed information about the ex-

perimental and numerical techniques employed in this work. The simpli�ed research


ow utilised in this work is provided in Fig. 2.1, and details about each method are

provided later in the text.

Micromagnetic simulations
E-beam lithography

E-beam evaporation

Lift-off

Sample fabrication

Field demagnetisation

Magnetic imaging

Evaluation & analysis

Micromagnetic simulations

Monte Carlo simulations

to compare

repeated
n times

Fig. 2.1: An overview of the research 
ow implemented for the design, fabrication

and characterisation of arti�cial spin systems.

Firstly, micromagnetic simulations are employed to assess the viability of the

proposed concept for a selected arti�cial spin system and to optimise the design

parameters. Typically, one or more 'free design parameters' are varied in the exper-

imental study to modify the properties of the investigated system. For instance, in

the case of the study presented in Chapter 3, the lattice parameter is varied, while

the other parameters are �xed. Micromagnetic simulations allow us to model the

impact of varying the free parameter, thereby providing insights into how the sys-

tem might behave in experimental settings before conducting any empirical studies.

This is particularly helpful, as the micromagnetic simulations are relatively fast to

run in comparison to the sample fabrication and follow-up experimental steps.

As the idea for the experimental study was tested in the computational space via

the micromagnetic simulations, the next step is to make the physical sample itself.

To do so, we employ a conventional lift-o� process utilising an electron beam writer
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for the exposure of the process mask and an electron beam evaporator for the depo-

sition of the material stack. After fabrication, the quality of the prepared structures

is assessed by utilising scanning electron microscopy (SEM). As we usually fabricate

the pattern with di�erent exposure parameters at di�erent locations on the sample,

SEM imaging is used to select the regions of interest where the suitable quality of

the structures is observed.

Both in our work and generally in the �eld of arti�cial spin systems, the interest

lies in the low-energy con�gurations of the studied arrays. Therefore, it is necessary

to employ experimental techniques that assist the system in reaching down to its

low-energy manifold. For this purpose, we employ the �eld demagnetisation proto-

col. Upon completed demagnetisation, we conduct magnetic imaging by means of

magnetic force microscopy, which allows us to determine the local magnetic proper-

ties of the lattices under study.

The �nal stage of the research 
ow is to analyse the captured con�gurations. In

order to compare the experimental results with a numerical spin model, we employ

Monte Carlo simulations. To align the Monte Carlo simulations with the experi-

mental systems, we use micromagnetic simulations, which enable us to bring the

properties of the numerical model close to what we probe experimentally. The �eld

demagnetisation and subsequent steps may be repeated several times to improve the

statistical reliability of the obtained results and to verify the reproducibility of the

results.

The following text will provide details about each numerical or experimental

technique utilised in this work. Should the method be carried out by someone other

than the thesis author, it will be duly noted in the subsequent text. Otherwise, it

is to be assumed that the author conducted the work.

2.1 Micromagnetic simulations

Micromagnetic simulations are nowadays a powerful tool of magnetism research,

which allows not only for benchmarking/optimising of systems prior to their fabri-

cation but also can provide valuable insights for interpretation of the experimental

results. In this work, we used two di�erent software packages for the micromagnetic

simulations: OOMF [74] andMuMax3 [75]. The OOMF package was used in Sec. 3.4

to model the e�ect of the height o�set variation and to estimate magnetostatic cou-

pling strengths in a square lattice with elevated sublattice. The MuMax3 software

was used in Sec. 4.3 to model the �eld-driven reversal of a single magnet or vertex

consisting of four magnets. In the latter case, the di�erence between simulations

run at 0 K and at room temperature was investigated. The MuMax3 package was

also used in Sec. 5.4 to estimate how the magnetostatic coupling strengths evolve
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as the lattice parameter of square networks is varied.

As the OOMF simulations were conducted by Dr Nicolas Rougemaille, we will

focus here on the MuMax3 simulations that were carried out by the author of the

thesis.

2.1.1 MuMax3 simulations

MuMax3 is a free, open-source micromagnetic simulation package developed by the

DyNaMat team at Ghent University. One of the bene�ts of the MuMax3 code

is that some calculations are done by the graphical card (GPU), which allows for

heavy computation task parallelisation, which signi�cantly reduces the time needed

to compute the simulations, compared to CPU based solutions such as OOMF. An

NVIDIA GPU with a CUDA core is a necessary condition to run MuMax3 software.

The simulation is then de�ned using MuMax3 API, which employs the Go program-

ming language. The simulation execution can be then monitored via GUI.

MuMax3 relies on the �nite di�erence method for the discretisation of the simu-

lation space. In other words, the simulation space is �lled by equally sized cuboid-

like cells, for which the relevant properties are calculated. This method's primary

advantage lies in the signi�cant reduction of the computation time. However, its

drawbacks include the limitation in de�ning �ner spatial subdivisions (which might

be helpful to better approximate shape/region edges/boundaries) and a less precise

approximation of curved shapes, which essentially results in a staircase approxima-

tion. The latter can lead to parasitic e�ects in the dynamics induced by the staircase

approximation, such as the formation of pinning sites or nucleation centres. To sup-

press the artefacts induced by the discretisation, MuMax3 has a built-in function

EdgeSmooth, which recalibrates the saturation magnetisation of the cell in question.

This adjustment is based on a further subdivision into subcells, enabling a more

accurate approximation of the shape under consideration.

MuMax3 is designed to calculate both the time- and space-dependent evolution

of magnetisation in ferromagnetic elements [75, 76], such as, for example, permalloy

nanomagnets considered in this work. In general, the two main use cases ofMuMax3

are either simulations of dynamics or energy minimisation computation. An exam-

ple of the former case is the �eld-driven reversal of magnet or vertex, discussed in

Sec. 4.3. In this case, we have also used the option to simulate the magnetisation

dynamics at �nite temperatures, which is implemented in MuMax3 [75, 77]. An

example of the latter case is the magnetostatic energy calculation of the distinct

vertex types, discussed in Sec. 5.4. We will now focus on the latter case and provide

a detailed description of how the simulations were designed and carried out.

The following text provides an example of how we de�ne and execute the micro-
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magnetic simulations using MuMax3. In this example, we wish to investigate nu-

merically how the total energy of di�erent vertex types evolves as the gap between

the magnets forming a single square lattice vertex is increased. The geometrical and

material parameters are aligned with our experimental sample (see Tab. 5.1), and

we aim to probe the w = 150 nm case.

Calculation of magnetostatic energy of vertex types

The �rst step is to de�ne the size of the simulation world and the simulation mesh.

As we plan to use a loop for probing the di�erent gap sizes (i.e. magnet-to-magnet

distance at the vertex centre), we select a simulation world size that comfortably �ts

the entire vertex geometry for the largest targeted gap. In the case considered here,

the total in-plane size (both in x and y) of the square lattice vertex for the largest

designed gap is 2× l + g = 2× 750 + 750 = 2250 nm. We thus set sizeX = sizeY =

2400 nm to �t the considered geometry fully in x and y with some margins at the

edge of the simulation box. For the z size of the simulation box, we set directly the

height of the magnets considered in the experiment, thus sizeZ = 25 nm.

When selecting a number of cells (resp. the cell size), mainly two factors need

to be considered. The �rst factor, a technical one, is that it is recommended to set

the cell number to be power-of-two size (best for performance) or 7-smooth number

(still good for performance) in order to optimise the software performance [75]. The

second factor, a physical one, is that a su�ciently small cell size compared to the

exchange length of the considered material shall be chosen [75]. In the case of

permalloy (Fe20Ni80) ∆d =
√

2A/µ0M2
S ≈ 5 nm, A is the exchange sti�ness and MS

is the spontaneous magnetisation. Upon these considerations we set number of cells

in x and y as Nx = Ny = 600, which sets the cell size in x, y to 4 × 4 nm2. As

the considered system is e�ectively two-dimensional, we set the cell size in z equal

to the magnet height to reduce the computation time. A code snippet showing the

setting of the simulation world size and the mesh size is provided in Lst. 2.1.

Listing 2.1: MuMax3: Setting up simulation world size and mesh

1 // Simulation world parameters

2 Nx :=600; // number of cells in x

3 Ny :=600; // number of cells in y

4 Nz:=1; // number of cells in z

5

6 sizeX :=2400e-9; //size of simulation box in x

7 sizeY :=2400e-9; //size of simulation box in y

8 sizeZ :=25e-9; //size of simulation box in z

9

10 SetGridSize(Nx, Ny, Nz);

11 SetCellSize(sizeX/Nx, sizeY/Ny , sizeZ/Nz);
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An intuitive way to test whether the simulation mesh is su�ciently �ne is to

repeat the same simulation with a �ner mesh. If the results are not signi�cantly

di�erent, the original size of the mesh is likely su�cient for the considered problem.

In our case, we also tested �ner mesh sizes 4× 4× 5 nm3 and 2× 2× 12.5 nm3, and

we did not observe signi�cant di�erence for the results, compared to the mesh size

4 × 4 × 25 nm3, indicating that the coarse disretisation in the z direction does not

a�ect the quality of the results.

The next step is to specify other general simulation parameters, material pa-

rameters and �xed geometrical parameters (see code snippet in Lst. 2.2). We set

EdgeSmooth=5 to obtain a more realistic approximation of the curved edges of

the nanomagnets (EdgeSmooth=N means that N3 subcells are used to rescale the

saturation magnetisation of the considered cell). The value of stime is used later

to specify the additional time for which we let the system evolve, after the en-

ergy minimisation is completed. Then the commonly used material parameters for

permalloy are set (saturation magnetisation MS = 800 kAm−1, exchange sti�ness

A = 10 pJm−1 and magnetocrystalline anisotropy is neglected). The damping is

set to α = 0.5 to speed up the convergence of the simulation. Finally, the �xed

geometrical parameters: magnet width, aspect ratio, the value of initial gap size,

magnet length, the radius of magnet ends and length of the rectangular part of the

magnet are speci�ed.

Listing 2.2: MuMax3: Setting of global parameters

1 // Simulation parameters

2 smu :=5;

3 EdgeSmooth=smu;

4 stime :=5e-9;

5 snapshotformat="png"

6

7 // Material parameters

8 // permalloy

9 Msat =800e3; // saturation magnetisation

10 Aex=10e-12; // exchange stiffness

11 alpha =0.5; // damping

12

13 // Fixed geometrical parameters

14 w:=150e-9; // magnet width

15 ar:=5; // magnet aspect ratio

16 g:=60e-9; // initial value of gap

17 l:=w*ar; // magnet length

18 r:=w/2; // radius of magnet ends

19 lrect :=l-2*r; // length of magnet 's rectangular part
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As a next step, we specify the numerical outputs to be saved when speci�ed in the

simulation script (code snippet is provided in Lst. 2.3. Apart from the geometrical

and simulation parameters, we specify that values of exchange, demagnetisation and

total energy shall be recorded.

Listing 2.3: MuMax3: Specifying the numerical outputs

1 // Table settings -- specifying the outputs

2 tableaddvar(smu , "Smooth", " ");

3 tableaddvar(stime , "simulation time", "s");

4 tableaddvar(w, "width", "nm");

5 tableaddvar(ar, "aspect ratio", "");

6 tableaddvar(g, "gap", "nm");

7 tableadd(E_exch);

8 tableadd(E_demag);

9 tableadd(E_total);

Then we de�ne a loop (see Lst. 2.4) that cycles through the size of the gap from

gin = 60 nm to gfin = 750 nm with step of gstep = 30 nm. Within the loop, we then

de�ne the geometry of the vertex, assign regions to individual magnets, specify their

initial magnetisation and run the simulation. For clarity, we divide these tasks into

individual code snippets, shown sequentially below.

Listing 2.4: MuMax3: Loop de�nition (iterates over gap size)

1 // Start of the loop

2 gstep :=30e-9;

3 gmax :=780e-9;

4 for g=60e-9; g<=gmax; g+= gstep{

5 print(g)

6

7 // Geometry definition

8 ...

9

10 // Region and initial magnetisation definition

11 ...

12

13 //Core of the simulation

14 ...

15

16 }

For the de�nition of the vertex geometry, we use the built-in shapes and trans-

formation operations available in MuMax3. Essentially, we merge the rectangular
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part of the magnet's body with two circles at each end to obtain the stadium shape

of the magnet. Subsequently, this shape is translated and rotated to de�ne the four

magnets, which form the square lattice vertex. The vertex is then set as the geome-

try to be used by the script. A code snippet used to de�ne the geometry is provided

in Lst. 2.5.

Listing 2.5: MuMax3: Setting up the vertex geometry

1 // Geometry definition

2 mbody :=rect(w,lrect);

3 mhead := circle(w);

4 magnet := mbody.add(mhead.transl(0,lrect /2,0)).add(mhead.transl(0,-

lrect /2,0));

5

6 tmagnet := magnet.transl(0,l/2+g/2,0); //top magnet

7 bmagnet := magnet.transl(0,-(l/2+g/2) ,0); // bottom magnet

8 rmagnet := magnet.rotz(pi/2).transl ((l/2+g/2) ,0,0); // right magnet

9 lmagnet := magnet.rotz(pi/2).transl(-(l/2+g/2) ,0,0); //left magnet

10 vertex := tmagnet.add(bmagnet).add(rmagnet).add(lmagnet); // vertex

11

12 setgeom(vertex); //set the full vertex as the simulation geometry

13 saveas(geom , "vertex");

14 snapshot(geom);

The next step is to de�ne the initial magnetisation of the four magnets to recover

the considered vertex type (here, type I is de�ned). To do that, we �rst de�ne regions

for each magnet and then set the magnetisation for a given region to obtain the type

I con�guration. A relevant code snippet is provided in Lst. 2.6. To simulate di�erent

vertex types, one must modify the magnetisation assignment accordingly.

Listing 2.6: MuMax3: De�nition of regions, assignment of magnetisation

1 // Region definition

2 defregion (1, tmagnet); //top magnet

3 defregion (2, bmagnet); // bottom magnet

4 defregion (3, rmagnet); //right magnet

5 defregion (4, lmagnet); //left magnet

6 save(regions);

7 snapshot(regions);

8

9 // Initial magnetisation definition , T1 defined

10 m.setRegion(1, uniform(0, -1, 0)); //top magnet

11 m.setRegion(2, uniform(0, 1, 0)); // bottom magnet

12 m.setRegion(3, uniform(1, 0, 0)); // right magnet

13 m.setRegion(4, uniform(-1, 0, 0)); //left magnet
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At this point, we have fully initialised the studied problem and can proceed with

running the simulation. For the purpose of energy minimisation for magnetostatic

problems, the MuMax3 code o�ers two options. The �rst option is to use the relax()

command that attempts to �nd the minimum energy for the de�ned system by

disabling the precession term in the LLG equation. The e�ective �eld, computed

from the damping term, then directs the magnetisation toward a direction with lower

energy, which, however, is not necessarily the global energy minima [75, 78]. The

other option is to use minimise () command, which employs the steepest descent

method [79] to minimise the system energy. It is reported that the minimise ()

method is faster, compared to the relax() method, but is less robust when the initial

state is far from the energy minimum [78]. This is not true in our case, so both

methods seem suitable for the problem considered here.

We used the relax() command, and the code snippet for running the simulation

is provided in Lst. 2.7. We �rst record/snapshot the initial magnetisation of the

system and simulated MFM contrast. Then, the energy of the system is relaxed,

and the simulation is run for an additional 5 ns to ensure that a stable con�guration

has been reached. After that, we record/snapshot the �nal magnetisation state,

simulated MFM contrast and numerical values speci�ed in Lst. 2.3 are saved. Then,

the script continues to sample through the speci�ed gap values de�ned in Lst. 2.4.

Listing 2.7: MuMax3: Core of the simulation

1 //Core of the simulation

2

3 // Snapshots of initial configuration

4 snapshot(m);

5 save(m);

6 MFMLift=sizeZ +50e-9;

7 snapshot(MFM);

8

9 // Energy minimisation

10 relax ();

11 run(stime);

12

13 // Spapshots of final configuration and quantity save

14 snapshot(m);

15 save(m);

16 snapshot(MFM);

17 tablesave ();

The above-provided code snippets (Lst. 2.1 to 2.7) can be merged together to

obtain working MuMax3 script as no parts were omitted. We note that it is a script,
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not a con�guration �le, so the order of the snippets must be respected to recover a

working �le. To run the script, one can put the provided script into a .txt �le and

drag it on top of the MuMax3 executable �le or run it via the command line.

Results: magnetostatic energy of vertex types

Here, we report the results of the MuMax3 simulations discussed in the previous

pages. To probe all four possible vertex types, we have repeated the code presented

above with di�erent assignments of the initial magnetisation (in Lst. 2.6), to also

recover the �nal con�gurations for the type II, III and IV vertices.

Fig. 2.2 shows the results of the micromagnetic simulations computed for a single

vertex with magnet width w = 150 nm. In Fig. 2.2a, we plot the total vertex energy

(normalised to the type I total energy) per vertex type as a function of the gap.

This chart nicely illustrates how the increase in the gap size impacts the magneto-

static energy levels. For the small gaps, a distinct separation between the vertex

energy levels is observed, with the energy levels of type III and IV vertices being

signi�cantly higher than those of type I and II. Conversely, for the large gaps, the
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Fig. 2.2: Results of the micromagnetic simulations for the set of w = 150 nm mag-

nets. a) Plot of the total vertex energy per type as a function of the gap. All

energies are normalised with respect to the total energy of type I vertices. Data

points are the results of the simulations, lines provide visual aid. The red label indi-

cates the gap for which the snapshots of �nal micromagnetic states are provided in

(b). b) Examples of �nal simulated magnetic con�gurations for a gap g = 450 nm.

The colour indicates the local direction of magnetisation according to the provided

colour wheel. The arrows next to individual magnets show the overall magnetisation

direction to provide a visual guide.
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energies of type I, II, and III vertices tend to converge, and the energy of type IV

vertices also shows a tendency to approach this uni�ed level. This is expected, as

an increase in gap size results in diminished interaction strengths, consequently re-

ducing the disparities among the energy levels under consideration. Fig. 2.2b then

shows an example of the �nal micromagnetic states obtained for the four considered

vertex types for a gap g = 450 nm.

Based on the estimated magnetostatic energies of the four vertex types, we cal-

culated the estimation for the J1 and J2 coupling strengths and their ratio as a

function of the gap. Those results are then used to select an approximate ratio for

the Monte Carlo simulations. This process is detailed in Sec. 5.4. The same simula-

tion set was also carried out for the magnet width w = 100nm, with the outcomes

presented in the same section of the manuscript.

Simulating �eld-driven dynamics at �nite temperature

In the previous pages, we provided a detailed description of how we approached

the preparation of a MuMax3 script for the purpose of magnetostatic simulations.

In this work, namely in Sec. 4.3, we also used MuMax3 to simulate a �eld-driven

reversal of a single magnet and full vertex of the square lattice with high o�set. In

the latter case, we compare how the dynamics di�er as the simulation is run at 0 K

and at room temperature (300 K). We will now focus on this particular case, o�ering

an overview of how the simulation was executed. We will not revisit the complete

simulation de�nition to avoid redundancy, as it mirrors the description provided in

the preceding pages.

To run the simulations at �nite temperature, MuMax3 includes implementation

of stochastic (Brownian) thermal �eld B⃗therm as [75]:

B⃗therm = η⃗(step)

√
2µ0αkBT

BsatγLL∆V∆t
(2.1)

where µ0 is the vacuum permeability, α the damping parameter, kB the Boltzmann

constant, T the temperature, Bsat the saturation magnetisation (in Tesla), γLL the

gyromagnetic ratio (1/Ts), ∆V the volume of the cell, ∆t the time step and η⃗(step)

a random vector drawn from a standard normal distribution whose value is changed

after each time step. The code snippet used for setting up the temperature in the

simulation is provided in Lst. 2.8.

Listing 2.8: MuMax3: Setting up the temperature

1 temp.set (300) //set temperature to 300 K

2 Thermseed (2) // specify seed (optional)

3 fixdt = 0 // allow adaptive time -stepping
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The �rst line sets the temperature to 300 K. In the second line, we specify

the seed value for selecting the sequence of random numbers used to generate the

thermal �eld. We can then compare the simulations' results with di�erent seed

values to evaluate whether applying \di�erent" B⃗therm a�ects the results. Selecting

the seed value also ensures reproducibility if the simulation needs to be repeated.

In the last line, we specify that adaptive time stepping [77] is used, which generally

reduces the time needed for the simulation.

We can then proceed with the simulation of the �eld-driven vertex reversal. To do

so, we de�ne a loop that increases the value of the external �eld by 1 mT and within

each iteration, the simulation is run for 5 ns (the code snippet is provided in Lst. 2.9).

It is important to note that for the purpose of simulating dynamics, the run()

command must be used. During the simulation, the magnetisation con�guration is

saved every 100 ps, and the selected numerical quantities are saved every 10 ps.

Listing 2.9: MuMax3: caption

1 snapshot(m) // capture the initial magnetisation configuration

2 AutoSnapshot(m, 100e-12) // capture every 100 ps

3 tableautosave (10e-12) // record values every 10 ps

4 Bmax := 80.0e-3 //max. value of external field

5 Bstep := 1e-3 //step for the external field

6 for B := 50.0e-3; B <= Bmax; B += Bstep { // start of the loop

7 print(B) // print the value of external magnetic field

8 B_ext = vector(-B/pow(2, 1/2), -B/pow(2, 1/2), 0) // external

magnetic field in -(xy) direction

9 run(5e-9) //run the simulation for 5 ns

10 snapshot(m) // capture at the end of each iteration

11 } //end of the loop

The results of the �eld-driven reversal of the vertex of the square lattice with

height o�set simulated at 0 K and 300 K are reported and discussed in Sec. 4.3.

2.2 Sample fabrication

In most cases, arti�cial spin systems consist of sub-micron-sized elements. Such

sizes require the utilisation of state-of-the-art nanofabrication techniques. If we

focus on the research applications, one or two samples per designed system will

usually be fabricated. Therefore, it is desirable to use direct-write techniques that

allow for quick iteration of the fabrication process. Based on those requirements, the

most suitable technique for patterning the arti�cial spin networks is electron beam

lithography combined with additive or subtractive fabrication techniques to realise
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the designed pattern in the magnetic material of choice. Di�erent approaches might

be taken depending on the details of the considered system to be made. Looking at

the previous works, the following lithographic methods were used for the fabrication

of arti�cial spin systems:

� e-beam lithography (positive resist, single layer) + lift-o� [14, 26, 27, 39, 40,

56, 57, 62, 80],

� e-beam lithography (positive resist, double layer) + lift-o� [12, 16],

� e-beam lithography (negative resist, single layer) + ion beam etching [81],

� e-beam lithography (positive resist) + lift-o� (etching mask) + ion beam etch-

ing [82].

Schematics of the aforementioned fabrication approaches are provided in Fig. 2.3.

While all four processes have similar capabilities and can yield similarly good re-

sults, there are distinct limitations for each of them. For the processes that form

the �nal structures via the lift-o� method (Fig. 2.3a and 2.3b), it is usually recom-

mended to work exclusively with evaporation techniques for the deposition, due to

more directional deposition. Using sputtering techniques, in this case, might lead

to unwanted deposition of the material on the resist side walls, which might lead to

a formation of collars at the proximity of the structure edges. This might be miti-

gated by using the double-layer resist mask (or single-layer mask of speci�c resists

such as ZEP 520 or CSAR 62), which provides an undercut after the development.

The lift-o� technique is also sensitive to \cleanliness" of the developed areas, as any

resist residuals might lead to increased shape roughness, lower surface adhesion or

parasitic masking.

The processes that rely on ion beam etching to form the �nal patterns (Fig. 2.3c

and 2.3d) might su�er from di�erent e�ects induced by the ion beam etching itself.

Collars (also referred to as fencing) might also form due to the re-deposition of the

etched material to the mask side walls. Also, the magnetic properties of the struc-

tures might be impacted due to the plantation of the sputtering ions, intermixing

of the substrate/structure materials or due to increased shape roughness, to name

a few. Suppressing these e�ects might require careful process optimisation.

The list of possible fabrication approaches for arti�cial spin system patterning

provided above is not extensive, and other approaches might be utilised. For exam-

ple, the �nal structures can also be patterned by focused ion beam milling directly

from a deposited �lm without the need for the resist process mask [83]. The main

disadvantage of this approach is a relatively long procedure time, particularly for the

systems in which the �nal structures cover a minority of the patterned area (which

is often the case for arrays of elongated magnetic elements). The time needed for

the FIB milling might be reduced by using a \Sketch and Peel" process, in which

54



2.2 Sample fabrication
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Fig. 2.3: Possible approaches for patterning of arti�cial spin systems utilising elec-

tron beam lithography to prepare a process mask. a) lift-o� (single resist layer), b)

lift-o� (double resist layer), c) ion beam etching (negative resist mask) and d) ion

beam etching (hard mask prepared by lift-o�).

only the outlines of the targeted shapes are milled, and the unwanted material is

removed using adhesion tape. It was shown that this method is capable of producing

sub-100 nm gold structures [84]. Alternatively, it is possible to mask the outlines of

the shapes using electron beam lithography and negative resist. After the deposi-

tion of selected material, an adhesive polymer is used to remove the \unsketched"

shapes and the resist is subsequently stripped, leaving only the \sketched" pattern

[85]. To the best of the author's knowledge, the Sketch and Peel technique has yet

to be utilised for the fabrication of arti�cial spin systems.

To summarize, several fabrication processes are suitable for the fabrication of

arti�cial spin systems. As each of them o�ers distinct advantages and limitations,

the choice of the method to use must be based on careful consideration with respect

to the desired system.

In this work, all of the studied samples were prepared using the lift-o� method

utilising electron beam lithography for the pattering of the process mask (a single

layer of positive resist was used). This approach was selected as it is, in the author's

point of view, the simplest one out of the methods mentioned above and its limita-

tions can be mitigated by optimisation of fabrication parameters. Also, this process

is well-known in our group, as it was successfully implemented in previous works by

former students [31, 86].

In this work, we present three studies focused on the investigation of properties

of �eld-demagnetised arti�cial square arrays of nanomagnets. In the two of them
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(Chapter 3 and 4), a sample fabricated by a former PhD student of the group is

utilised. In this sample, two types of square arrays are present: a conventional square

lattice and a square lattice with an elevated sublattice. The latter was prepared by

two subsequent lift-o� steps, the �rst step being used to pattern non-magnetic bases

and alignment marks and the second step being dedicated to pattering the magnets

forming the lattice. Details about the sample fabrication can be found in Yann

Perrin's PhD thesis (detailed description, in French) [87] or in this article (brief de-

scription) [31]. For the third study presented in this work (Chapter 5), the sample

containing a series of conventional square lattices with varied lattice parameter was

fabricated by the author of the thesis. We will now focus on this sample and pro-

vide a detailed description of the fabrication procedure. All tasks of the fabrication

process were carried out by the author, if not indicated otherwise.

Note: During the PhD studies, the author of the thesis was responsible for fabri-

cating several dozen samples with various arti�cial spin system geometries. Some of

the works utilising those samples were already presented [26, 73, 88], while others are

currently in progress. The fabrication was done either at Institut Néel (Grenoble,

France) at the Nanofab facility, which features the Nanobeam Nb5 electron beam

writer or at the Institute of Scienti�c Instruments of the Czech Academy of Sci-

ences (Brno, Czech Republic), with the use of Raith EBPG 5000+ ES electron beam

writer. When in Grenoble, the electron beam evaporation was done at the cleanroom

facility of PTA. In the Czech Republic, the electron beam evaporation was done at

the CEITEC Nano research infrastructure.

Therefore, the aim of the following subsections is not only to provide a detailed

description of the fabrication of the sample investigated in this work but also to pro-

vide a well-tested recipe, which might be, hopefully, useful to future readers of the

thesis.

2.2.1 Overview of the fabrication process

Here, we focus on the fabrication process employed for the preparation of the sample

with conventional square lattices (with varied lattice parameters), which was probed

experimentally in this work (in Chapter 5). This sample was prepared using the

electron beam writer Nanobeam Nb5 at the Nanofab facility at Institut Néel. All

other process tasks (resist coating, development, lift-o� etc.) were also conducted

at the Nanofab cleanroom, with the exception of the electron beam deposition of

permalloy, which was carried out by Vojtìch Schánilec at CEITEC Nano research

infrastructure (the author had no access to suitable device at the time of the sample

fabrication).

Even though it is not necessary for this particular geometry (there is no overlap
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between two exposures required), we used a two-step lithographic technique (see

Fig. 2.4), mainly for the convenience of the exposure execution. In the �rst step, we

utilised the lift-o� method to fabricate global registration/alignment marks (5 nm

Ti / 50 nm Au), which are then used in the second step to place the pattern over the

substrate precisely and to generate a focus map prior to electron beam exposure. The

latter might slightly improve the fabrication quality. We also used the �rst step to

pattern sample navigation features such as dose labels, region labels, orientation bar

and sample ID. This approach allows us to position the labels in close proximity to

the magnetic lattices with con�dence that they will not a�ect the magnetic ordering

of the lattices, as they are non-magnetic. The second step, another lift-o� procedure,

is then dedicated to the patterning of the magnetic arrays.

a) I step (optional)

1) 2) 3)

4) 5) 6)

e-beam

b) II step

e-beam1) 2) 3)

4) 5) 6)

Fig. 2.4: Schematics of the two-step lithography technique used for sample fabri-

cation in this work. Both the �rst (a) and second (b) steps consist of the same

operations: 1) substrate preparation, 2) resist spin-coating, 3) electron beam ex-

posure, 4) development, 5) material deposition and 6) lift-o�. While the �rst step

prepares registration marks and navigation features (labels, etc.), the second step is

dedicated to patterning the magnetic lattices.
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As mentioned above, the �rst step is optional, as there is no need to stitch

precisely two consecutive exposures, and the focusing could be done, for example,

by using paste with silver particles1. On the other hand, with the registration marks,

the second step exposure execution is much simpler and less susceptible to placement

errors. To be more e�cient, we did the �rst step for a full 2" wafer, on which we can

pattern nine 10× 10 mm2 chips at the same time. After lift-o�, we cover the wafer

with a protective layer of photoresist and use a wafer scriber to dice the wafer into

individual chips. After stripping o� the protective photoresist, the chips are ready

to use for the second step.

In the following pages, we provide a detailed description of how the individual

methods used for sample fabrication were carried out in this work.

2.2.2 Electron beam lithography

Electron beam lithography consist of the following steps:

1. Layout preparation.

2. Exposure data preparation.

3. Substrate preparation and resist spin-coating.

4. Electron beam exposure.

5. Development.

Each of the aforementioned steps can signi�cantly in
uence the quality of the

output, and process optimisation is a crucial task. The parameter space is rather ex-

tensive, and selecting the best recipe for a given task is based not only on conclusive

testing but also on previous experience, previous works, discussion with colleagues,

and the author's intuition. Therefore, some steps presented below cannot be justi�ed

by literature or tests and might be based on the author's subjective feelings.

Layout preparation

To prepare the layout de�ning the patterns for exposure, we utilised the open-source

software KLayout Layout Viewer and Editor [89]. KLayout is 2D CAD software op-

timised for designing microfabrication templates. Shapes to be exposed are de�ned

as squares or polygons placed on a �xed-spacing square grid (here, we use a grid

size of 1 nm, which is typically used for patterns to be exposed by electron beam

writers). There are two convenient features that are worth mentioning. First, the

layout can be divided into layers that can be used to assign di�erent fabrication

1The common practice is to apply a small amount of silver paste using a tiny brush close to the

sample edge. The silver paste can then be used to optimise focus before the exposure.
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parameters when preparing the exposure data (e.g., di�erent exposure doses or dif-

ferent beam currents). Second, the layout can be built using a hierarchy, which is

particularly handy if the layout consists of a repetition of the same shapes. In our

case, we aim to design a layout consisting of individual magnets that are placed on

a lattice. By using hierarchy, we can de�ne the shape of the magnet only once and

then specify the lattice positions to generate the lattice (in Klayout, a single object

can be placed into Cell and the array is then generated via Cell instance). If the

shape is to be modi�ed, we can only modify its de�nition in the original Cell, and

the changes will be re
ected for all of its instances.

The snapshot of the single-chip of the full 2" wafer layout (in KLayout environ-

ment) used for the �rst lithography step is provided in Fig. 2.5. Di�erent layers

are used only to highlight di�erent features of the design. On the border of the

10 × 10 mm2 chip, scribing marks are designed. These dashed lines are �lled with

di�raction grating (period Λ = 1 µm) to improve the visibility after the fabrication.

In the lower part of the chip, an orientation bar (also �lled by the same grating) and

sample label are placed. Both of those features are visible to the naked eye, which

is helpful for the identi�cation and manipulation of the sample. Two sets of global

registration marks are placed on each diagonal, enveloping the central part of the

chip, which is designated for the future placement of the magnetic arrays (in the

second step). In each set of the registration marks, a 3 × 3 array of square marks

is designed (each mark has size 8 × 8 µm2, the period of the array is 200 microm

in both directions). Finally, the regions to be �lled by structures are labelled, and

their boundaries are marked in the top left and bottom right corner. These features

will be useful for navigating the �nished sample during measurement.

The regions to be �lled by the structures in the second step have size 500 ×
500 µm2, which corresponds to the size of the main �eld (MF) that will be used for

the pattering (detail will be discussed later). Here, we designed an array of 6 × 6

regions, in which the rows are indexed by letters (A{F) and columns by numbers

(1{6). In the second step exposure, we will assign a dose sweep across the rows and

pairs of columns will be �lled by lattices with di�erent magnet widths.

For the second step, we prepared three separate layouts (for three selected mag-

net sizes), each containing a series of 24 conventional square lattices with varied

lattice parameter. The geometry speci�cation is provided in Fig. 5.1 and a list of

designed lattices in Tab. 5.1. The strategy employed for geometrical parameter se-

lection of the lattices is discussed in Sec. 5.1.

In Fig. 2.6, we show the layout for the second lithography step containing two

identical series of square arrays with magnet's width w = 100 nm at di�erent mag-

ni�cation. All of the lattices are built based on the same magnet shape, obtained

by merging a rectangle with two appropriately positioned circles, which yields the
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2.2.2 Electron beam lithography

stadium shape of the magnet. Each magnet is essentially a polygon of 32 points.

Chip layout (I step), size 10 x 10 mm2Legend

Detail: registration marks

Detail: region label & marks

• shape: square
• size: 8 x 8 μm2

• period: 200 μm 

• size: 500 x 500 μm2

• corresponds to MF 

Fig. 2.5: Chip layout for the �rst lithography step of the sample studied in this

work (Chapter 5). On the left, a legend describing di�erent features of the design

is presented. On the right, two details of the layout are shown.

a) Layout of one region
series of w = 100 nm lattices

b) Layout of single lattice
(30 x 30 vertices)

c) Layout of individual vertex
magnet = polygon of 32 points

Fig. 2.6: Region layout for the second lithography step containing series of conven-

tional square arrays consisting of stadium-shaped magnets of size 500× 100 nm2 at

various magni�cations: a) entire layout (2 series of 24 lattices), b) detail of one of

those lattices and c) detail of single vertex of (b). In (c), for the top magnet, the 32

individual points de�ning its shape are shown.

The �nal step of the layout preparation is to export the designed patterns to a

.GDS �le, which will be used to prepare the exposure data.

60



2.2.2 Electron beam lithography

Exposure data preparation

The next step is to prepare the exposure data, which essentially includes two steps:

data fracturing and job �le preparation. For this sample, the exposure was carried

out by Nanobeam Nb5 electron beam writer. To fracture the data, proprietary

software of the Nanobeam company called nbPat was used. The input .GDS �le

is essentially translated into the native \language" of the writer pattern generator.

In the case of this particular electron beam writer, the shapes to be exposed are

approximated by pixels that correspond to the beam shot placements. The writing

strategy for any de�ned shape (i.e. polygon) is �rst to write the outline of the shape

and then subsequently �ll the inner area of the shape. This writing strategy is a

perfect �t for our application, as it allows for symmetrical and high-�delity beam

placement, particularly for the rounded ends of our magnets. A similar writing

strategy is also available on other electron beam writers. For example, in the case

of RAITH systems, comparable fracturing can be obtained using sequence method.

Field writing parameters, such as main �eld size (and o�set) and sub�eld size

(and o�set), are speci�ed during the fracturing. The main �eld corresponds to

the physical movement of the writer stage. Each main �eld is then divided into

sub�elds that correspond to a coarser beam de
ection. Shapes within each sub �eld

are written with �ner de
ection of the beam. General rules are to avoid placing

critical structures at main �eld borders to avoid stitching errors. The stitching of the

sub�elds yields much lower errors and is usually not critical for the pattern writing.

Its e�ects can be suppressed by advanced writing strategies such as overpass (the

writing is done in two or more passes with an appropriately scaled-down dose for

each pass, and the sub�eld o�set is changed between subsequent passes). However,

as we did not observe any defects in our fabricated structures that would suggest

sub�eld stitching errors being at play, we used the conventional single-pass writing

technique.

In the case of the considered sample, we used main �eld size 500× 500 µm2 and

sub�eld size 20×20 µm2 for both lithography steps. In the case of the �rst step, the

main �eld and sub�eld o�sets were optimised with respect to the registration marks

(the goal is to have main �eld and sub�eld borders not crossing the marks). For the

second step, we centred the structures (series of lattices of one magnet width) within

a single main �eld (see Fig. 2.6a). As the lattices within the series have varying sizes,

it is impossible to optimise the sub�eld o�set in a way that sub�eld borders do not

cross the structures. However, as mentioned above, we did not observe any defects

originating from the sub�eld stitching in the fabricated lattices.

The second task of the exposure data preparation is to prepare a job �le that

includes the de�nition of the exposure itself. This job �le essentially includes the
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set of instructions that the electron beam writer executes to carry out the exposure.

In the case of the Nanobeam Nb5 tool, the job �le is a command-based script. The

typical job �le includes the following:

� Speci�cation of the beam settings (e.g. focus setting).

� Speci�cation of sample position with respect to the tool coordinates.

� Speci�cation of patterns to be exposed (loading of the fractured pattern �les).

� Dose setting for di�erent block(s) of pattern(s).

� (Optional) Setting of the registration procedure (speci�cation of the marks

and their position).

We will now focus only on the second lithography step (dedicated to the fabrication

of the targeted arrays) and brie
y describe how the job �le was designed. The

fractured patterns (three separate layouts for lattices with di�erent magnet widths

w = 100 nm, 150 nm and 200 nm) are loaded. Each layout has a size of one main

�eld, which is the same as the size of the labelled regions we prepared in the �rst

step (see Fig. 2.5). We thus speci�ed the positioning of the patterns (as blocks in

the job �le) as follows:

� w100 { columns 1 & 2,

� w150 { columns 3 & 4,

� w200 { columns 5 & 6.

This is then repeated in 8 rows, for which the exposure dose is increased from the

bottom to the top (from D = 600 to 1300 µC/cm2, with a step of 100 µC/cm2).

As we initially planned to have only six doses (for which we prepared the labelled

region array in the �rst step), the lowest (highest) dose row is placed below (above)

the prepared region array. By doing so, we speci�ed the placement of all desired 48

blocks of patterns. To provide a fun fact, almost 4.3 million individual magnets are

de�ned for writing on our sample.

For the global registration, four marks (one from each diagonal) are speci�ed by

their respective position. The left and right bottom marks are used to align the

sample and tool coordinates. These four marks are also used to generate a focus

map for the exposure.

We note that the selection of the exposure dose must consider the following: the

resist to be exposed, the acceleration voltage of the electron beam writer and the

nature of the lithography. We plan to use PMMA resist, which is positive (exposed

areas are more easily dissolved during development), and the Nanobeam Nb5 at

Institut Néel is operated at 80 kV. The higher the voltage, the higher the exposure

dose is needed to clear the resist in exposed areas after development. As we are

interested in the fabrication of process mask, the lithography nature is binary (in

exposed areas, we want to entirely remove the resist, in unexposed areas, the resist

shall remain close to its original thickness). It is a common approach to slightly
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overexpose the patterns in binary lithography to ensure uniform clearing of the

exposed areas. Considering those aspects and re
ecting on previous experience, we

selected the dose sweep speci�ed above. The reason for using several doses is to

\broaden the process window" in order to make sure that some of the doses will

yield the optimal result.

Substrate preparation and resist spin-coating

As we have designed the layout of our sample and prepared the exposure data, the

remaining step to be done prior to the exposure is to prepare the substrate and coat

it with suitable resist for the electron beam exposure. For both lithography steps,

we used standard PMMA resist with molecular weight 950 K. For such a resist, a

typical value of achievable resolution provided by manufacturers is approx. 6 nm,

which is su�cient for patterns considered here.

The details of the substrate preparation and resist spin-coating for both lithog-

raphy steps are provided below.

I step

� Substrate: 2" wafer, orientation: (100), type: P/Boron

� Substrate pretreatment: none, used \out-of-the-box"

� Resist: 4% PMMA 950 K (AR-P 679.04)

� Spin coating: 6000/4000/30 (RPM/acceleration/duration in seconds)

� Soft-bake: Hot plate, 180 ◦C, 5 minutes, with vacuum pumping

� Thickness measurement: approx. 230 nm

� Quality control via optical microscope

II step

� Substrate: 10× 10 mm2 chip (diced from the 2" wafer)

� Substrate pretreatment: cleaning/stripping of covering photoresist layer (used

for scribing)

{ I bath: 5 min Acetone with ultrasonic agitation

{ II bath: 5 min IPA with ultrasonic agitation

{ Rinse with IPA (using wash bottle)

{ Dry with nitrogen

{ Hot plate (150 ◦C, 5 min), to evaporate any residual solvent/dehydrate

the substrate

� Resist: 3% PMMA 950 K (AR-P 679.03)

� Spin coating: 4000/4000/30 (RPM/acceleration/duration in seconds)

� Soft-bake: Hot plate, 180 ◦C, 5 minutes, with vacuum pumping

� Thickness measurement: approx. 160 nm
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� Quality control via optical microscope

The selection of resist concentration and spin-coating parameters is based on the

desired thickness of the resist coating, which is based on what it will be used for.

In our case, we are interested in a lift-o� technique, for which the rule of thumb

is to have at least a 1:3 (or better 1:5) ratio between the targeted thickness of the

deposited material and the resist process mask. In the �rst step, we want to deposit

approx. 55 nm (5 nm Ti / 50 nm Au), and in the second step, we wish to deposit

approx. 30 nm (5 nm Ti / 25 nm NiFe). Thus, the resist concentration and spin-

coating parameters were set accordingly. We veri�ed the thickness in both cases by

Ocean Optics NanoCalc spectroscopic re
ectometer. So, for the �rst step, we have

a ratio of approx. 55:230, and for the second step, approx. 30:160, both satisfying

the \lift-o� condition".

After the spin-coating, the substrate with coated resist is placed on top of a

hot plate. This serves two purposes: 1) to evaporate the resist solvent and 2) to

create a well-de�ned resist structure in the coated layer. A general rule is that

the baking temperature should be above the polymer glass transition tempera-

ture TPMMA
g = 125 ◦C and signi�cantly below its thermal degradation temperature

(TPMMA
c = 250 ◦C. We thus opted to use Tbake = 180 ◦C, which satis�es the criteria

mention above and is also a \standard operation procedure" for PMMA resists at

Nanofab facility at Institut Néel.

As a last step, the quality of the coated resist layer is investigated using optical

microscopy. Particularly for the second step and the central area of the chip (where

the structures will be placed), the cleanliness of both the substrate and the coated

resist layer is critical, as any impurities present might result in defects. Thus, if any

impurities were spotted in this area, we stripped/cleaned the sample and coated it

again. Dark-�eld microscopy has proven very useful for spotting possible impurities,

as they light up due to the light re
ected from their edges and become clearly visible

against the dark background generated by the uniform surface of the substrate.

Electron beam exposure

As we have prepared the substrate with suitable resist and the exposure data, we can

proceed with the exposure itself. A simpli�ed overview of the exposure procedure

is as follows:

1. Load the sample into the electron beam writer.

2. Load the database with the selected electron beam current and working dis-

tance (this varies based on the substrate thickness).

3. Run a package of calibration procedures.

4. Locate and save positions of the marks, that speci�es the sample coordinates.

64



2.2.2 Electron beam lithography

5. Start the exposure job.

The selection of electron beam current has several implications for the pattern ex-

posure. Firstly, the beam size di�ers based on the beam current. For the Nanobeam

Nb5 tool, the manufacturer estimates the beam size of approx. 4 nm for beam cur-

rent of 1 nA, compared to approx. 20 nm for beam current of 30 nA. Therefore,

lower beam currents are more suitable for writing small features, while large beam

currents are more suitable for writing big features. We thus used beam current of

30 nA in the �rst step to write the exposure marks, labels and other chip features

and beam current of 1 nA for the second step to write the square arrays of interest.

In the case of the Nanobeam Nb5 tool, the writing step size is variable and

depends on the exposure dose, beam current and writing clock rate. We did not

prescribe the writing step size for the writing of our structures. Thus, the device

uses the smallest possible step size that keeps the de
ection rate below the limit

of the writing clock (60 MHz). This resulted in writing step size of 2 nm for our

square arrays patterned in the second lithography step. Compared to the size and

shape of our features, the writing step is su�ciently small to provide an accurate

representation. In fact, the writing step size is smaller than the beam size, which

means that the beam shots will overlap, which is desirable for binary lithography,

as it helps to achieve uniform clearing of the exposed areas.

Development

The �nal step of the lithography itself is to develop the sample. In the case of

positive resist, which was used here, the interaction with the beam in the exposed

areas leads to the breaking down of the resist molecules into smaller fragments that

have lower molecular weight. This leads to their faster development rate compared

to the unexposed areas, provided that a suitable solvent (also called developer) is

used. The choice of the developer and development time is essential to optimise the

process. As we wish to obtain a binary process mask after the development, which

will be used for the lift-o� technique, we need uniform clearing of the exposed areas,

preferably without any resist residuals.

Upon testing and previous experience we used the following development proce-

dure:

� I bath: MIBK:IPA [1:3], 60 s.

� II bath: IPA, 60 s.

� Rinse angled chip by IPA from wash bottle, 10 s.

� Dry with nitrogen.

After the development, we inspect the lithography results using an optical micro-
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scope. Of course, we cannot inspect the structures themselves due to the technique's

limited resolution, so one must trust the process (which is based on previous testing

on larger features, where inspection by an optical microscope is possible).

2.2.3 Material deposition

For the material deposition, we used the electron beam physical vapour deposition

(EBPVD) technique [90], also called electron beam evaporation, exclusively in this

work. As we discussed previously, evaporation is preferable for the lift-o� tech-

nique, as the more directional deposition prevents/limits the formation of collars at

the mask side walls/structure edges.

The EBPVD operates on the principle of using a high-energy electron beam to va-

porize a source material under UHV conditions, subsequently depositing a thin �lm

onto a substrate/sample. The deposition rate (resp. layer thickness) is monitored

during the deposition by a quartz crystal micro-balance monitor, which measures

the frequency response of a quartz crystal to estimate the amount of the deposited

material [91].

The deposition for the �rst lift-o� was carried out using Plassys electron beam

evaporator located in the Nanofab cleanroom at Institut Néel. First, 5 nm of Ti was

deposited to improve the adhesion, and then 50 nm of Au was deposited to form

the registration marks, labels and other chip features. The rate of deposition was

approx. 1 �A s−1 for Ti and approx. 0.5 �A s−1 for Au.

The deposition for the second lift-o� was carried out by Vojtìch Shánilec at

CEITEC Nano research facility employing BESTEC electron beam evaporator. Again,

5 nm of Ti was deposited �rst to improve the adhesion, followed by 25 nm of NiFe

deposition. Finally, 3 nm of Al was deposited as a capping layer. The rate of

deposition was approx. 0.5 �A s−1, 1 �A s−1 and 0.5 �A s−1 for Ti, NiFe and Al, respec-

tively. The stage with the sample was continuously rotated at 5 RPM during the

deposition.

2.2.4 Lift-o�

The �nal procedure of the sample fabrication is to conduct the lift-o� technique

to remove the resist mask with the undesired material lying on top. In an ideal

case, only the material deposited through the holes of the resist mask directly to

the sample surface shall remain.

In the case of the sample fabrication presented here, the lift-o� procedure is

conducted slightly di�erently for the two lithography steps. For the �rst lift-o�
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(Ti/Au stack for the marks, labels, etc.) the procedure consists of the following

steps:

� I bath: NMP solvent, heated to 80 ◦C via hot-plate (several hours).

{ Film release enhancement via pipette and removal of lifted �lm fragments

from the bath via pipette.

{ Ultrasonic agitation (10 s, low-power).

� II bath: Ethanol.

{ Ultrasonic agitation (60 s, low-power).

{ Impurities release enhancement via pipette.

� Rinsing of angled wafer by Ethanol from wash bottle (10 s).

� Drying with nitrogen.

For both baths, the wafer was submerged in the appropriate solvent in glass

through. For the �rst bath, the glass through was covered by an hourglass to sup-

press solvent evaporation. After the signi�cant release of the material �lm was

observed (during the �rst bath), the further �lm release was facilitated by the gen-

tle blowing of the pipette (submerged in the solvent) from the sides of the substrate.

By doing so, large fragments of the lifted-o� material are fully released from the sub-

strate. Subsequently, we removed those fragments from the bath by sucking them

into the pipette. As the next step is to apply ultrasonic agitation, which breaks the

�lm into tiny fragments, this step helps improve the process's cleanliness.

After the ultrasonic agitation, which helps to break any remaining connections

between the structures and the material to be removed, the substrate is transferred

into a second bath (Ethanol), followed by another ultrasonic agitation. Then an-

other pipette release enhancement is carried out to release any remaining impurities

from the substrate. Subsequently, the substrate is removed from the bath and thor-

oughly rinsed with Ethanol using a wash bottle. Finally, the sample's surface is

dried by blowing the nitrogen gun.

For the second lift-o� (Ti/NiFe stack for the square arrays), the procedure is

slightly di�erent and utilises an \hourglass trick", that in the author's experience

leads to improved cleanliness of the �nal sample. This trick was suggested to the

author independently by both Yann Perrin (former PhD student of the MNM group)

and Bruno Fernandez (Nanofab sta� member). The main idea is to place the sam-

ple into the lift-o� solvent motive-down using an hourglass placed within the glass

through. By doing so, the lifted-o� material (particularly after it is fragmented by

ultrasonic agitation) sediments at the bottom of the glass rather than on the sample,

which further improves the process cleanliness. For the second lift-o�, the procedure

contains the following steps:

� I bath (motive-down): NMP solvent, heated to 80 ◦C via hot-plate (several
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hours).

{ Ultrasonic agitation (60 s, ramped gradually from low- to mid-power).

{ Sedimentation (60 min).

� II bath (motive-down): Ethanol + ultrasonic agitation (30 s, mid-power).

� III bath (motive-up): Ethanol + ultrasonic agitation (30 s, mid-power) +

impurities release via pipette.

� Rinsing of angled sample with Ethanol from wash bottle (10 s).

� Drying with nitrogen.

This concludes the process of sample fabrication. The next step is to image the

patterned structures by scanning electron microscopy, which will provide informa-

tion about the micro-quality of the fabricated structures. As one cannot inspect the

in
uence of every decision taken during the fabrication process, it is hard to provide

evidence for every process parameter. Particularly, the above-described implemen-

tation of the lift-o� process might seem unnecessarily complex. The one thing we

tested, and it is worth stressing, is that applying ultrasonic agitation is crucial for

obtaining clean structures, which, combined with a suitable exposure dose, produces

sharp structure edges without (almost) any collar defects present. We also note that

we (for other samples) tested di�erent solvents for the lift-o� (Aceton or Dioxolan),

which also produced nice results. However, the quality of the lift-o� was slightly

inferior compared to when NMP was used.

2.2.5 Results

Due to the sub-micron size of the magnets, only the macro-quality can be assessed

by optical microscopy, and scanning electron microscopy (SEM) has to be used to

image their micro-quality. From the macro point of view, the fabrication quality

is excellent, and no macro defects are present. By macro-defect, we mean missing

parts of the layout that could originate, for example, from particle contamination

(either in resist or prior to the material deposition). This would cause missing parts

of the designed structures of irregular shape. The absence of this type of defect

suggests that the overall cleanliness of the fabrication process was maintained.

On the micro-scale, we observe a very low amount of defects. By micro-scale

defects, we refer to defects on the lattice element level, such as missing magnets (see

the example provided in Fig. 2.7a). For example, for the 4 series of w = 100 nm

lattices investigated in Ssec. 5.3.1, only 4 out of 84 considered lattices are observed

to have a micro-defect. In the case of the four lattices referred to above, we observe

that, at most, 3/1860 magnets are missing. We note that for the micro-defects, we

mostly observe missing magnets, which suggests that these defects originate from
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the lack of adhesion between the substrate and the magnet. We can only speculate

what caused the lack of adhesion for those missing magnets. Possible explanations

are either not completely cleared resist after development or the presence of micro-

impurities on the substrate. In both cases, it is likely that the magnet is then

\ripped o�" during the lift-o� (particularly during the ultrasonic agitation), leading

to a vacant site in our arti�cial array.

On the nano-scale level, we understand defects as a shape variation that is more

prominent than the shape roughness, which is always present. In the case of our

sample, we typically observe nano-scale defects characterised by missing material

at the edge of the patterned shapes (see the example provided in Fig. 2.7c). The

likely origin of those defects is not perfectly cleared resist at the substrate after

the development. These resist residues then act as parasitic mask, leading to the

removal of the chunk of the deposited material, resulting in a magnet with missing

volume.

a)

c)

b)

Fig. 2.7: Examples of fabrication defects observed in our arti�cial square arrays. a)

AFM topography image of an incomplete square lattice. The pink box highlights

two missing magnets. b) The detail of the defect site highlighted in (a). The left

image shows AFM topography, and the right image shows the magnetic contrast.

The contrast of the incomplete vertices is distinguishable from the complete ones,

as they do not consist of four \poles". c) SEM detail of fabricated square lattice.

The red box highlights nano-scale defect. Part of the magnet's volume is missing,

and the shape variation is signi�cant compared to the magnet's roughness.

In the case of the lattices with micro-scale fabrication defects, for which we

mainly observe an entire magnet body missing, the defects sites are easy to identify

in the topography and magnetic images obtained by AFM/MFM (see Fig. 2.7b).

For this type of defect, we then assign a missing spin in the evaluation. A defect of
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this type a�ects the spin con�guration in the vicinity of the defect site, as there are

missing pairwise spin-spin interactions.

The nano-scale defects (example shown in Fig. 2.7c) are essentially not visible

in the AFM/MFM images, as they are below the resolution at which we scan the

images. These defects may slightly in
uence the interaction strengths and/or the

magnets reversal dynamics, but it is hard to establish how strong their impact is.

In this work, we consider those defects as intrinsic property of the fabricated arrays.

Other important task to be done during the SEM imaging is to identify which

exposure doses yields structures suitable for the experimental study. To do so, we

imaged the same lattice patterned with di�erent exposure doses. The results of this

analysis are provided and discussed in Sec. 5.20.

2.2.6 Summary

In this section, we provided a detailed description of how we approached the design

and fabrication of arti�cial square arrays consisting of nanomagnets arranged on a

square lattice. This sample is then experimentally investigated in Chapter 5.

The fabrication recipe provided above is a well-tested recipe and was also used for

fabricating other samples, with only minor optimisation of the process parameters.

As the fabrication results are fairly good, we show that it is not always necessary to

use double resist layers for the lift-o� technique, provided that the resist thickness,

exposure dose and development parameters are suitably optimised.

2.3 Field demagnetisation

Both in this work and generally in the �eld of arti�cial spin systems research, the

interest lies in the low-energy con�gurations of the studied arrays. So far, two main

approaches to minimise the system's energy have been employed: �eld or thermal

demagnetisation. The intended demagnetisation protocol must be chosen before the

sample fabrication, as there are distinct requirements for sample compatibility. For

example, the thermal approach requires a speci�c substrate or intermediate layer to

mitigate substrate-sample inter-di�usion [71], smaller magnet volume (compared to

the �eld approach) [22, 92] or speci�c magnetic material choice [35]. The discussion

comparing the two approaches and their performance is provided in the introduction

of Chapter 4. Here, we focus only on the �eld demagnetisation protocol, which was

used exclusively in this work.

Typical samples that will be demagnetised by �eld protocol consist of arrays

that are thermally stable at room temperature. The usual thickness of the mag-

nets is in the range of 20 to 30 nm, which leads to their Blocking temperature
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being signi�cantly above the room temperature. In other words, due to the volume

of the magnets, the energy barrier for the magnetisation reversal is so high that

spontaneous reversal (driven by thermal 
uctuations) never occurs. Therefore, the

magnetic con�gurations of the arrays can be altered only by applying the external

magnetic �eld, which yields arrested con�gurations that do not change in time. The

magnetic imaging can then be conducted at room temperature, which is always con-

venient.

The typical adaptation of a �eld demagnetisation protocol for arrays of ferromag-

netic nanomagnets relies on application of external magnetic �eld, which amplitude

decreases in time [12, 31, 54, 55, 57], although use of protocol with �xed �eld ampli-

tude was also reported [56]. In the case of systems with in-plane magnetisation, such

as ours, the �eld direction is also applied in-plane. Furthermore, the �eld or rather

the sample, is rotated in-plane to ensure e�ective demagnetisation of the multi-axial

systems.

Use of di�erent decaying �eld pro�les to demagnetise square arrays of nanomag-

nets was reported: linear decrease [54, 57], step decrease [54], step decrease with

polarity alternation [12, 54, 55] or sine function with linearly-decreased amplitude

[31]. Without taking into account the di�erent lengths of the applied protocols, the

closest approach to the ground-state ordering for conventional square arrays was

reached by using the sine function with linearly decreased amplitude in Ref. [31]. A

more detailed comparison of the reported performance of di�erent �eld demagneti-

sation protocols is provided in the introduction of Chapter 5.

In this work, we exclusively employ the sine function with a linear decrease in

amplitude as the �eld pro�le for the demagnetisation, following the previous work

of Perrin et al. [31]. Schematic of the �eld demagnetisation protocol utilised in this

work is provided in Fig. 2.8a, and the experimental set-up used for demagnetisation

is shown in Fig. 2.8b. This set-up was designed by V. Schánilec during his master

studies [93] and was later refurbished by the author of the thesis. The image pro-

vided in Fig. 2.8b shows the current (refurbished) version of the device.

The sample is placed in a sample holder pocket and secured by double-sided

tape. The sample holder is then mounted on top of the brushless dc motor, which

is positioned below the air gap of the electromagnet. In our experiment, the sample

rotation was typically set to fsample = 20 Hz, if not speci�ed otherwise. Then, the

magnetic �eld driven via coil excitation controlled by a waveform generator and

a KEPCO power supply was applied. The typical �eld pro�le used in this work

consists of the sine wave (ffield = 250 mHz) modulated by a linear function with a

negative slope, which is adjusted based on the targeted total length of the protocol.

To be precise, the modulation function consists of the liner function with a negative

slope, to which a zero function is appended. In this work, we typically used 72
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2.3 Field demagnetisation

h long demagnetisation protocols. The coil excitation is set such that the initial

amplitude of the external magnetic �eld is approx. 100 mT, which is well above

the coercive �eld of the investigated lattices. Then, the �eld amplitude gradually

decreases towards zero, following the �eld pro�le speci�ed above. As the rotational

frequency of the sample is much faster than the frequency of the sine wave, only

minor changes in the �eld amplitude occur during one complete revolution of the

sample.

time

magnetic field

sample

a) b)

Fig. 2.8: a) Schematic of a �eld demagnetisation protocol. The sample is rotated

within an external magnetic �eld de�ned as a sine wave with linearly decreasing

amplitude in time. The �eld direction is in-plane with respect to the sample. b)

Image of �eld demagnetisation set-up used in this work. The samples are placed in

a sample holder mounted on a brushless dc motor. The sample holder is located

within the air gap of the electromagnet consisting of copper coil and iron pole pieces.

A waveform generator and KEPCO power supply drive the excitation of the coil.

The motor rotation is controlled via a potentiometer connected to an Arduino board

and electronic speed control module.

The �eld demagnetisation protocol is essentially a black-box process. One might

know only the initial con�guration of the sample prior to the demagnetisation and

then the �nal con�guration after the demagnetisation is conducted. However, an

intuitive description of what happens during the �eld protocol can be provided.

During demagnetisation, each magnetic element within the array experiences an

e�ective �eld that combines the external driving �eld with the cumulative dipolar

�elds of the neighbouring magnets. Magnet reversal occurs when this e�ective �eld

surpasses the coercive �eld strength of the magnet in question and is oriented in

the opposite direction to the current magnetisation direction of the magnet being

considered.

If the amplitude of the driving �eld exceeds the coercive �elds of the lattice mag-
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nets, the magnetisation of the nanoislands aligns with the direction of the applied

external �eld. In this regime, the magnetic con�guration of the lattice can be de-

scribed as a diagonally polarised state, and the net polarisation tracks the direction

of the external �eld. Once the maximum �eld amplitude is below the coercive �elds

of the lattice magnets, the con�guration is frozen as the �eld is not strong enough

to facilitate any magnet reversal. At this point, the �nal con�guration that will

be subsequently imaged is arrested. The �eld protocol is then e�ective only when

the amplitude of the external �eld is comparable to the coercive �elds of the lattice

magnets. In this regime, the external �eld provides the additional push to overcome

the reversal barrier but does not overpower the contribution of dipolar �elds from

the neighbouring magnets, which steers the system towards its low-energy manifold.

The level of energy minimisation is then essentially limited by single-spin 
ip dy-

namics, as collective spin updates such as loop 
ips are not available experimentally.

2.4 Magnetic imaging and data evaluation

Once the sample is demagnetised, the arrested magnetic con�gurations are measured

by magnetic imaging. In this work, we exclusively use magnetic force microscopy to

probe the magnetic con�gurations of our arrays. This technique o�ers enough res-

olution to resolve the orientation of each nanoisland forming the lattices, providing

fully resolved real space information about the magnetic con�guration. Once this

con�guration is extracted from the measured image, di�erent quantitative data can

be computed to characterise the captured con�guration. Below, we describe how

the magnetic imaging was performed and how we process the captured images.

2.4.1 Magnetic force microscopy

Magnetic force microscopy (MFM) [94, 95] is a two-pass scanning probe microscopy

technique that enables probing of magnetic properties of the sample based on its in-

teraction with a sharp tip coated with a thin �lm of magnetic material. The tapping

mode, wherein the cantilever with the tip oscillates near its resonance frequency, is

predominantly employed for magnetic force microscopy nowadays. This mode was

also utilised in this work.

The �rst pass is essentially a conventional atomic force microscopy (AFM),

and the probe measures the topography of the sample by scanning across it (see

Fig. 2.9a). In the tapping mode, the amplitude of the probe oscillations is such that

at the lower turning point, the tip encounters intermittent contact with the sam-

ple. The tapping mode thus operates at the transition between the repulsive and

attractive force regime. During the scan, the microscope maintains the set oscilla-

tion amplitude (also called set point). Suppose there is a change in the sample-tip
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2.4.1 Magnetic force microscopy

distance. In that case, the oscillation amplitude changes and its recorded value is

passed to a feedback loop that adjusts the Z scanner piezo element to maintain the

set amplitude set point. The sample topography is then reconstructed from the Z

scanner movement. The topography recorded at the given line scan in the �rst pass

is then used as an input for the subsequent second pass.

For the second pass, the tip is lifted to a speci�ed height above the sample surface

and mimics the previously measured topography pro�le. Thus, a constant distance

between the tip and the sample surface is maintained (see Fig. 2.9b). Therefore, the

tip mostly experiences the interaction between the magnetic stray �eld emerging

from the sample and the magnetic coating of the tip. This leads to a di�erence

between the driving phase and the detected phase of the tip oscillations. If the stray

�eld attracts the tip towards the sample, the resulting phase shift is negative and

vice versa (see Fig. 2.9b). The recording of this phase shifts throughout the scanning

process and then yields a magnetic image.

h

b) second passa) first pass

c) topography d) magnetic phase

Fig. 2.9: Illustration of the two-pass magnetic force microscope technique scanning

across in-plane oriented single-domain stadium-shaped nanomagnets. a) The sam-

ple's topography is acquired during the �rst pass (a blue dashed line illustrates the

tip trajectory). The second pass (b) then measures the phase shift induced by the

interaction of the tip with the stray �eld emerging from the magnets. During the

second pass the tip is shadowing the topography pro�le recorded during the �rst

pass at speci�ed lift height h above the sample surface (shown by magenta dashed

line). The spatially resolved image of the topography (c) and magnetic phase shift

(d) is acquired by composing several adjacent line scans together. The colour scales

of these illustrations mimic the Gwyddion and Sky colour scales that we use in this

work for the topography and magnetic phase, respectively. Both colour scales are

available in the Gwyddion [96] SPM data analysis software that we use to visualise

the AFM/MFM images in this work.

In Fig. 2.9c, we show an illustration of how a perfect topography image of
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two stadium-shaped magnets might look like. In reality, scanning artefacts will

be present, particularly at the magnet edges. In fact, the topography is only a help-

ful byproduct of the measurement as we are primarily interested in acquiring the

magnetic phase image. Having the topography for all measured lattices is, of course,

practical, as we can check that no micro-scale fabrication defects are present, such

as missing magnets.

Fig. 2.9d then shows how a perfect magnetic phase image of two oppositely ori-

ented single-domain magnets should look like. The MFM essentially measures the

interaction of the magnetic tip with a stray �eld emerging from the magnets. Pro-

vided that the magnetisation is oriented as shown in Fig. 2.9b, the negative phase

shift (illustrated by black dots) occurs at the magnet heads. Accordingly, the posi-

tive phase shift (illustrated by white dots) occurs at the magnet tails. This allows for

the reconstruction of the magnetisation direction for each nanoisland in the imaged

array.

Measurement details

The MFM measurements reported in this work were carried out either utilising NT-

MDT Ntegra microscope at the MFM platform at Institut Néel or utilising Bruker

Dimension Icon microscope at the AFM platform of Institute of Scienti�c Instru-

ments of the CAS. In the case of the measurements carried out at the Institut

Néel, in-house coated AFM tips were used. The tips were typically coated with a

thin �lm of CoCr alloy deposited by magnetron sputtering. The usual thickness of

the CoCr layer was approx. 50 nm. In the case of the measurements carried out

at the Institute of the Scienti�c Instruments, commercial probes with a medium

moment MESP-V2 from the device manufacturer were used. Following the optimi-

sation of scanning parameters, suitable magnetic contrast was achieved, enabling

the complete resolution of the magnetisation orientation for each magnet within the

measured arrays. As this was accomplished routinely for both probe choices and

both devices mentioned above, we will not distinguish between the tip/device used

for the magnetic images reported in this work.

The main aim of the MFM imaging in the scope of this work is to obtain su�cient

magnetic contrast, which allows for unambiguous determination of the magnetisation

direction of each magnet forming the array while minimising the scan acquisition

time and maximising the tip lifetime. To do so, the typical scanning parameters

were set as follows:

� Scan resolution: 512× 512 points.

� Scan rate: 0.2 to 0.4 Hz.

� Lift height: 60 to 80 nm.

� Set point: approx. 30 nm.
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The scan size was set to fully envelope the measured lattice. The set point was

optimised so the tip correctly tracks the measured lattices, and the gain(s) was/were

optimised to minimise the amplitude error while ensuring a fast reaction of the

feedback loop to the topography variation. The lift height was set to a relatively

high value to minimise the possible contact of the tip with the sample during the

second pass. By following this methodology, we were typically able to record several

dozens of scans before the magnetic coating of the tip was worn out, which led to

insu�cient contrast of the magnetic images.

For the measurements of conventional square arrays with varied lattice parameter

(results reported in Chapter 5), we used the automatic measurement capability of

the Bruker Dimension Icon microscope. This is done via a Programmed move for

which the centres of the targeted lattices are speci�ed, and then the microscope runs

a sequence of MFM measurements with �xed pre-set parameters for each of them.

After the capture is done, the tip is withdrawn from the sample, the position of the

motorised stage is changed to the previously speci�ed position (centre of the next

lattice to be measured), the tip is landed, and the next scan is conducted. Using the

Programmed move allowed us to acquire a considerable amount of measurements in

a time-e�ective manner.

Measurement results

Here, we show typical AFM/MFM images acquired for arti�cial arrays considered in

this work. We also discuss the challenges of obtaining MFM contrast that allows for

a clear evaluation of the arrested magnetic con�guration. Fig. 2.10 shows examples

of AFM and MFM scans obtained for a conventional square lattice of nanomagnets

investigated in this work. As the lattice spacing is relatively dense (the magnet-

to-magnet distance at the vertex site is only 140 nm), the contrast of individual

\poles" at the vertex site slightly di�use together, particularly for the type II and

type III vertices. However, the contrast is su�cient to allow for unambiguous deter-

mination of the magnetisation orientation for each magnet (see the detail provided

in Fig. 2.10b).

In Fig. 2.11 we show the AFM and MFM images of another conventional square

lattice with the same size of the magnets as in Fig. 2.10, only di�erence being signif-

icantly larger lattice parameter (the magnet-to-magnet distance at the vertex site is

500 nm). Due to the bigger separation between the magnets, the MFM contrast is

much easier to interpret, as the \poles" of the four magnets meeting at the vertex

site are nicely separated (see the detail in Fig. 2.11b). In fact, the clarity of the

MFM contrast is so good that it allowed us to use a relatively simple image pro-

cessing technique to automate the evaluation of the coarsely packed lattices. The

details about this automated evaluation method will be provided later.
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a) AFM topography b) MFM magnetic phase

Fig. 2.10: Example of AFM (a) and MFM (b) image of a conventional square array

of nanomagnets investigated in this work. The nominal size of the magnets is 500×
100×25 nm3, and the lattice spacing is relatively dense (magnet-to-magnet distance

at vertex site is 140 nm). In (b), a detail of 3 × 3 vertices shows the evaluation of

the magnet's magnetisation (spins are drawn from white to black \pole" for each

magnet). We use the convention to draw spins pointing in two principal directions

of the lattice in blue (red) colour for positive (negative) direction, respectively. This

convention is maintained throughout this work. The scale bar represents 5 µm in

both images.

a) AFM topography b) MFM magnetic phase

Fig. 2.11: Example of AFM (a) and MFM (b) image of a conventional square array

of nanomagnets investigated in this work. The nominal size of the magnets is 500×
100×25 nm3, and the lattice spacing is relatively coarse (magnet-to-magnet distance

at vertex site is 500 nm). In (b), a detail of 3 × 3 vertices shows the evaluation of

the magnet's magnetisation (spins are drawn from white to black \pole" for each

magnet). The colour code for the spins is the same as in Fig. 2.10b. The scale bar

represents 5 µm in both images.
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In the case of the square lattice with elevated sublattice, both the measurement

and the MFM contrast interpretation proved to be much more challenging than when

all of the magnets lie directly on top of the surface. An example of measurement of

such lattice is provided in Fig. 2.12. The height o�set for the vertical magnets leads

to much less clear contrast at the vertex sites, and the signal from the magnets lying

on top of the substrate is slightly screened by the elevated ones (see Fig. 2.12b).

Also, there are sometimes edge artefacts that lead to parasitic signals (sometimes

the tip touches the edge of the elevated magnets, which leads to a very strong neg-

ative phase shift at the considered pixel). What proved to be a handy trick was to

average the forward and backward MFM phase signals. As the parasitic edge signal

was typically present at the leading edge of the magnets, averaging together the two

oppositely scanned passes helped to �lter out the parasitic contrast. We note that

Fig. 2.12b shows the backward MFM phase signal only, so the interpretation of the

magnetisation direction of each magnet is challenging. However, the di�erent vertex

types have di�erent overall intensities and distinct characteristic shapes. Thus, by

careful evaluation, which also considers the neighbouring vertices, the contrast at

each vertex site can be evaluated.

a) AFM topography b) MFM magnetic phase

Fig. 2.12: Example of AFM (a) and MFM (b) image of the square lattice with

elevated sublattice. The nominal size of the magnets is 500 × 100 × 30 nm3, the

lattice spacing is relatively dense (magnet-to-magnet distance at vertex site is only

150 nm), and the nominal value of the height o�set is h = 100 nm. In (b), a detail of

3× 3 vertices shows the evaluation of the magnet's magnetisation (spins are drawn

from white to black \pole" for each magnet). The colour code for the spins is the

same as in Fig. 2.10b. The scale bar represents 5 µm in both images.
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2.4.2 Data evaluation

The primary goal of the MFM data evaluation in this work is to extract qualitative

information regarding the magnetisation orientation of each nanomagnet in the im-

aged array and to generate a numerical matrix suitable for visualisation and analysis.

Essentially, the visual information captured by the MFM needs to be converted into

an array of numerical values in a manner that is convenient for further processing.

The �rst step of the data evaluation is to obtain a levelled and corrected mag-

netic phase image from the raw data produced by the microscope. For this step,

we relied on free open-source SPM data analysis software Gwyddion [96]. Typically,

we levelled the scanned images using the mean plane subtraction method, aligned

the scan rows using the median method, adjusted the range of the data, such as

the mean value corresponding to zero, and optimised the scale range to improve

the image contrast. We also corrected the data to \unrotate" the image and ap-

plied scanner drift or distortion compensation when necessary. We also used the

option to remove the polynomial background to further improve the contrast for

the evaluation. During this operation, we always veri�ed that the subtraction of

the polynomial background did not induce any errors a�ecting the targeted contrast

emerging from the individual nanomagnets. Finally, the image obtained with the

above-described pre-treatment was saved and used as an input for the evaluation

script(s).

For the magnetic phase images with contrast that is challenging to interpret

(conventional square lattices with dense lattice spacing and square lattices with el-

evated sublattice), the evaluation was done manually with the help of MATLAB

script developed by the thesis author during his master studies. The main principle

of the code operation is that the magnetic phase image of the considered lattice is

sliced into individual images that include the magnetic contrast of individual vertex

sites. The script then cycles through all the vertex sites of the lattice, and the user

classi�es the vertex con�guration. As the user also evaluates the contrast at the

lattice borders, each spin is essentially evaluated twice, which is used to verify the

integrity of the spin con�guration. If contradictory information arises from the two

vertices to which each spin belongs, the user is prompted to provide a correction.

The details about the MATLAB evaluation code implementation and execution are

provided in [97].

The evaluation script produces a numerical array specifying the direction of each

spin, with the output format tailored to comply with the input requirements of a vi-

sualisation and analysis toolkit developed by Yann Perrin during his doctoral studies

[87]. The scripts of the Perrin toolkit are then subsequently run using a batch �le

that is automatically executed at the end of each evaluation script execution. This
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produces a wide range of outputs that we use to describe and analyse the captured

con�gurations, such as vertex population statistics, vertex and spin maps or mag-

netic structure factor intensity plots.

For the magnetic phase images with \easy-to-read" contrast (mostly conven-

tional square lattices with a coarser lattice spacing), a new automatic MATLAB

evaluation script was developed in this work. The operating principle of the code is

essentially the same. However, the evaluation of the contrast at individual vertex

sites and lattice edges is done automatically employing a relatively simple median

threshold method to classify each individual \pole" (see Fig. 2.13). Essentially, the

code determines whether the \single-pole" region (see the subset of Fig. 2.13b) is

signi�cantly more white/black with respect to the global mean value of the image

pixels. If the threshold criteria are not met or contradicting information about

the spin direction between the two neighbouring vertices is obtained, the user is

prompted to evaluate the direction of the considered spin.

a) b)

Fig. 2.13: Operation of the MATLAB auto evaluation code. a) The user speci�es

the position of the top-left and bottom-right vertex sites. This information is used to

generate slicing lines, as shown in (b). b) For each identi�ed vertex site, the image is

dissected into four sectors in which the individual \poles" are located (shown in the

subset). Then \polarity" (black/white) of each \pole" is classi�ed using a median

threshold method.

After the evaluation is completed, the code again yields a spin matrix format-

ted accordingly to meet input requirements of the Perrin toolkit. Upon the toolkit

execution, the same outputs as for the manual option are acquired.
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2.4.3 Statistical analysis of the captured spin con�gurations

In the previous pages, we described how the arrested magnetic con�gurations of

arti�cial square arrays of nanomagnets can be measured and evaluated to obtain

the complete spin con�guration (in the form of a spin matrix). The question then

arises regarding how the extracted spin con�gurations can be analysed. Below,

we give an overview of di�erent statistical metrics that can be calculated from the

extracted spin matrices.

Residual magnetisation

One of the �rst proposed methods to analyse the captured con�gurations is to cal-

culate total residual magnetisation as:

mx = (Nx −N−x)/(Nx +N−x), (2.2)

my = (Ny −N−y)/(Ny +N−y), (2.3)

mtot =
√

m2
x +m2

y/
√
2, (2.4)

where Nx (N−x) is the number of horizontal spins pointing right (left), Ny (N−y) is

the number of vertical spins pointing up (down), mx (my) is a magnetisation in x (y)

direction and mtot is a total residual magnetisation of the considered array. Under

this de�nition, mtot = 1 would indicate fully magnetised con�guration (i.e. perfect

ferromagnetic ordering) and mtot = 0 would indicate perfect antiferromagnetic or-

dering. While this metric has its merit and was used in previous works to measure

the e�ciency of di�erent �eld demagnetisation protocols [54, 55], it is somewhat

coarse, thus we have not employed it in this work.

Vertex populations

Another commonly implemented method is to analyse the captured con�gurations

based on the density of di�erent vertex types [12, 26, 30, 31, 56, 57]. In the case

of a square lattice, there are 16 possible con�gurations per vertex, which can be

divided into four topological types (see Fig. 2.14a). One can then count the number

of occurrences per vertex type and calculate vertex populations (expressed as a per-

centage or fraction relative to the total number of vertices in the considered array).

Furthermore, as the information about vertex types is spatially resolved during the

evaluation, vertex and spin maps can be plotted, which is a helpful tool to analyse

the captured con�gurations visually (see Fig. 2.14b and 2.14c).
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a)

b) c)

Fig. 2.14: a) The 16 possible vertex con�gurations per square lattice vertex site,

divided into four topological types (type I, II, III and IV). Di�erent vertex types are

distinguished by distinct colours, which are used to create vertex maps. For type

III vertices, dark green (magenta) colour indicates a negative (positive) charge. The

spins pointing in positive (negative) directions are shown as blue (red) arrows. This

colour scheme for vertex and spin maps is used throughout the thesis with minor

modi�cations. b), c) Spin and vertex maps obtained by evaluation of the measured

magnetic con�gurations of conventional square lattices, (b) has more dense lattice

spacing than (c). Vertex populations are indicated below each map as a horizontal

stacked bar chart. Type I vertices are shown as light blue or light green to indicate

distinct domains.
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The vertex populations are quite indicative when the investigated system has a

magnetically ordered ground state. For example, the ground state of a conventional

square array of nanomagnets is antiferromagnetically ordered and consists of perfect

tiling of type I vertices. In that case, the vertex populations can provide informa-

tion on how close the ground state ordering is being approached in the experiment.

To provide an example, Fig. 2.14b shows the vertex and spin map obtained for a

conventional square lattice. The vertex populations for this con�guration are 86 %,

12.7 % and 1.3 % for type I, II and III, respectively. Therefore, one can conclude

that the ground state con�guration is being approached relatively closely (this is

also supported by the vertex map, which shows large domains of type I vertices).

However, the vertex populations are a global metric, and they essentially only

tell what percentage of the con�guration belongs to distinct vertex types. Therefore,

this metric does not re
ect how the vertices are spatially distributed over the lattice.

This can be visually evaluated based on the vertex maps, but the vertex popula-

tions themselves are insensitive in this regard. A more sensitive way to analyse the

con�gurations is needed, especially when the con�gurations are disordered (or close

to being disordered).

Pairwise spin correlations and magnetic structure factor

A more sensitive approach how to analyse the level and nature of order or disor-

der present in the captured con�gurations is to calculate pairwise spin correlations.

There are essentially two options for how to approach the correlations analysis. The

�rst option involves calculating the real space correlations, also known as correla-

tion coe�cients, for de�ned pairs of spins and then averaging these over the entire

network. In the case of a square network, the typical approach is to de�ne the

correlation function based on the distance and orientation of neighbouring magnets

relative to the magnet under consideration. In that way, correlations can be cal-

culated for nearest neighbour pairing, next nearest neighbour pairing, and further

neighbour pairings if necessary. The usual approach is to de�ne a correlation C,

such that C = +1 (C = −1) if a pair of spins is aligned in a way that minimises

(maximises) their interaction energy. In this way, the mean correlation values be-

tween distinct neighbouring pairs can be measured, which helps quantify the level

and nature of the ordering present in the system. Examples of the works that em-

ployed analysis of the real space correlations can be found in Ref. [12, 55].

The other option is to conduct the correlation analysis in the reciprocal space.

This can be done by computing a Fourier transform of the pairwise spin correlations

(deduced from the real space con�gurations), which provides the magnetic structure

factor (MSF). All of the experimental MSFs presented in this work were calculated
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by a script belonging to the Perrin toolkit, in which the MSF is calculated in such a

way that the resulting intensity plot corresponds to a magnetic di�raction pattern

(similar to those obtained in neutron scattering experiments on spin ice materials).

More details about the implementation of the MSF calculation can be found in Yann

Perrin's PhD thesis (detailed description, in French) [87] or in Ref. [31] (brief de-

scription). All numerical MSFs (deduced from Monte Carlo simulations) presented

in this work were calculated using scripts provided by Dr. Benjamin Canals. Both

the experimental and numerical MSFs were then plotted by a code developed by

Dr. Benjamin Canals to ensure the same visual appearance.

An intuitive way how to interpret the MSF intensity plots is that if the magnetic

con�guration is ordered (i.e., strongly correlated), MSF will exhibit strong Bragg

peaks (the nature of ordering corresponds to Bragg peaks at di�erent locations in

reciprocal space). Conversely, if the magnetic con�guration is entirely random, MSF

will be completely 
at. There is also an intermediary regime in which the magnetic

con�guration is disordered but correlated. In this case, the MSF will show a low-

intensity di�used but structured pattern. These three cases are shown in Fig. 2.15.

Fig. 2.15: a-c) Examples of three di�erent magnetic con�gurations for a square

spin system. d-f) Associated magnetic structure factors. All MSFs are computed

for 81 × 81 points covering the area of ±6 × ±6 (π/a)2 in reciprocal space. The

intensity scale bar is provided right next to each plot.
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We note that the three magnetic con�gurations presented in Fig. 2.15a{2.15c

were arbitrarily de�ned (i.e., they are not the experimental results). Fig. 2.15a

shows an antiferromagnetically ordered state consisting of the perfect tiling of type

I vertices. As this state is perfectly ordered, associated MSF (shown in Fig. 2.15d)

shows strong Bragg peaks. Fig. 2.15b shows a spin liquid (a vertex paramagnet of

type I and II vertices). As this state is disordered but correlated, the associated

MSF (shown in Fig. 2.15e) shows a di�used but structured pattern characteristic

of a spin liquid state on a square lattice [66]. Fig. 2.15c then shows a random ar-

rangement of spins on a square lattice (vertex paramagnet of type I, II, III and IV

vertices). As this state is disordered and completely uncorrelated, the associated

MSF (shown in Fig. 2.15f) shows a fully di�used background. Utilising an analogy

with the three conventional states of matter, the three magnetic con�gurations pre-

sented in Fig. 2.15a{2.15c can be described as solid{like, liquid{like and gas{like

(from left to right).

The Fig. 2.15 shows three very di�erent examples that are easy to distinguish

(and one might argue that the MSF analysis is unnecessary for that). However, the

interpretation of the obtained MSFs can be much more nuanced in the experiment.

For example, suppose the spin liquid phase is being approached experimentally, and

some residual ordering is present. In that case, the MSF will exhibit Bragg peaks

with slightly higher intensity than the di�used background. The location of the

peaks in the reciprocal space is then linked to the nature of the ordering present in

the system. This is a strategy that we employ in Chapter 3.

In this work, we primarily use the vertex populations and MSF to analyse the

spin con�gurations extracted from the magnetic images of the investigated lattices.

In other words, the input is in the form of a numerical array that speci�es the spin

con�guration. Thus, the same analysis methods can also be applied to con�gu-

rations obtained by Monte Carlo simulations. One can then compare experimental

results obtained by magnetic imaging of arti�cial spin systems and numerical results

obtained by probing the thermodynamic properties of a given spin model(s). This

is a strategy that we use in Chapter 5.
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2.5 Monte Carlo simulations

The Monte Carlo simulations presented in this work were performed by Dr. Nicolas

Rougemaille, utilising custom software solutions developed by Dr. Benjamin Canals,

a theoretician from the Condensed matter theory research team at Institut Néel. As

the author of the thesis was merely using the outputs of those simulations, we will

not provide an in-depth technical description of how those simulations are designed.

Instead, we will focus on the simulations' outputs and discuss how these might be

utilised to analyse the experimental results. General technical details regarding the

implementation of Monte Carlo simulations for arti�cial spin systems can be found

in the appendix of Ioan-Augustin Chioar's doctoral thesis [98].

The great bene�t of the Monte Carlo simulations is that they allow for probing

of �nite thermodynamic properties of the considered spin model. Provided that the

model is aligned with the experimentally studied system, the results of the Monte

Carlo simulations are useful reference, to which the experimental results can be

compared. This is particularly helpful in the case of the �eld demagnetised arti�cial

arrays, as one essentially obtains only one image of the arrested con�guration per

demagnetisation procedure.

The comparison with the Monte Carlo simulations can then help to answer the

fundamental question of whether the experimentally captured con�guration is repre-

sentative of physics at thermodynamic equilibrium or if an out-of-equilibrium physics

is present. Additionally, by comparing the numerically modelled properties with the

experimental results, one can assign a �ctitious e�ective temperature to the experi-

mentally captured magnetic con�guration. By doing so, one can determine whether

the captured microstate is representative of an ordered or disordered phase at ther-

modynamic equilibrium.

The use cases of the Monte Carlo simulations in the context of arti�cial spin

system research are not limited to providing a reference for experimental results.

For example, application of Monte Carlo simulations to probe numerically the low-

energy properties and predict the possible ground-state con�gurations of di�erent

models were reported [65, 99, 100].

In this work, we employ Monte Carlo simulations in two separate studies. In

Chapter 3, we use Monte Carlo simulations to show that further neighbour cou-

plings must be considered if the experimental results obtained for arti�cial square

ice magnets shall be accurately reproduced. In Chapter 5, we use Monte Carlo sim-

ulations to show that e�ective thermodynamics can be observed in a conventional

square spin system, and the e�ective temperature reached depends on the lattice

spacing. The details about how the simulation parameters were set are provided in

the aforementioned chapters of the manuscript.
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3 Farther neighbour couplings in arti�cial square ice magnet

3 FARTHERNEIGHBOUR COUPLINGS IN AR-

TIFICIAL SQUARE ICE MAGNET

In general, arti�cial spin systems are composed of single-domain ferromagnetic is-

lands arranged on a given lattice and are coupled together via magnetostatics. Thus,

they are essentially dipolar systems and employing short-range models (considering

only nearest-neighbour interactions) to describe their physics is an approximation.

In the case of arti�cial kagome systems, both consisting of in-plane (arti�cial kagome

ice) or out-of-plane magnets (kagome Ising antiferromagnet), this approximation

captures only some of the physics observed experimentally [16, 101]. Other low-

energy physics, such as spin liquid 2 phase [32, 82, 102, 103] or spin-fragmentation

[103, 104] can be accounted for only if long-range (dipolar) couplings are considered.

Conversely, the physics of arti�cial square ice systems seems to be well approxi-

mated utilising the short-range model [31, 37]. Even though there is no strong dis-

course between experimental results and short-range model, the question of whether

we can detect signatures of farther neighbour couplings experimentally is still rele-

vant. For example, dipolar interactions are known to lift the extensive degeneracy

of the square ice manifold, leading to the ordering of the system at low temperatures

[65, 70].

A sample with an arti�cial square ice magnet was fabricated to probe whether the

signatures of farther neighbour couplings can be detected experimentally. In order

to recover the ice regime experimentally, we resorted to a previously studied square

spin system, the z-shifted square lattice [31, 87]. The sample was exposed to a �eld

demagnetization procedure several times, and arrested magnetic con�gurations were

imaged in real space utilizing the magnetic force microscopy technique. The exper-

imental magnetic structure factor (MSF) averaged over the di�erent experiments

was computed based on spin con�gurations extracted from the magnetic imaging

and compared to a numerical one (deduced from the Monte Carlo simulations). In

accordance with previous works [31, 37], the experimental magnetic structure factor

resembles the one corresponding to the low-energy manifold of the square ice model.

However, careful inspection of intensity pro�les in peculiar wave-vector directions of

the average MSF reveals distinct features that di�er from the numerically deduced

MSF. In the following pages, we will discuss the origins of those features and how

they can be recovered if long-range magnetostatic interactions extending beyond the

nearest neighbour are included in the theoretical model.
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3.1 Designing the system

3.1 Designing the system

Arti�cial square ice magnets were patterned by two-step electron beam lithography

(employing the lift-of process). The �rst step was dedicated to fabricating the non-

magnetic bases (Ti/Au), which create the desired height o�set for one sublattice of

the square array. The nominal value of the height o�set is set to hexp = 100 nm,

for which the liquid phase was already observed in a �eld demagnetized system [31].

Subsequently, a second lithography step was employed to fabricate simultaneously

the nanomagnets on top of the bases and also directly on the substrate surface,

which ensures the �delity of the pattern on the lattice level.

One array then consists of 840 stadium-shaped nanomagnets (NiFe) with nominal

dimensions of 500× 100× 30 nm3 for the length, width and thickness, respectively.

The 30-nm-thick NiFe layer is capped with 3-nm-thick Al �lm to limit oxidation of

the magnetic material. The nominal magnet-to-magnet distance at the vertex is set

to 150 nm, resulting in a lattice parameter of a = 650 nm. SEM image of the entire

lattice (consisting of 20 × 20 vertices) and tilted image showing the realisation of

the vertical o�set within our arti�cial system are provided in 3.1.

(a) Full lattice (b) Detail, tilted

Fig. 3.1: SEM images of an arti�cial square ice system in which one sublattice is

elevated by height o�set h. a) full lattice of 840 nanomagnets (all vertical magnets

have elevated bases) and tilted detail (b). In (b), one can clearly see the Ti/Au beds

supporting one-half of the magnets. Yellow bar represents 1 µm in both images.

The choice of the geometrical parameters mentioned above, together with the

choice of the magnetic material, has several implications necessary for realising the

arti�cial square ice system. The �rst consequence is that every magnet in our grids

is e�ectively single-domain (i.e. magnetisation texture is close to uniform, and no

magnetic wall or vortex is present within a single magnet). Therefore, their mo-

ments can be considered as Ising-like spins. Secondly, the blocking temperature is
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3.2 Experimental results

several orders above the room temperature due to the magnet volume, rendering the

spontaneous magnet reversal practically impossible. In other words, the magnetic

con�guration of our lattice is stable at ambient temperature and can be modi�ed

only by applying an external magnetic �eld. Lastly, all these parameters together

are a collective recipe to experimentally recover the spin liquid phase. If only one is

changed, one might obtain an ordered con�guration instead. For example, even if

the height o�set is kept at hexp = 100 nm and only the lattice parameter is reduced

by 50 nm, the resulting con�guration will be approaching ferromagnetic order in-

stead. Thus, we chose the geometrical parameters of our lattices to be the same as

in the previous work [31], which succeeded in observing the liquid phase.

3.2 Experimental results

The arti�cial magnets were brought to their low-energy magnetic con�gurations

through �eld demagnetization protocol, which was used four times in total, each

time followed by magnetic imaging of the selected lattices. Three out of four times,

we have employed a 72-hour-long protocol. Once, a 168-hour-long procedure was

used. We note that we have not detected a signi�cant di�erence in the arrested

con�gurations obtained with the longer protocol. The magnetic image of one of the

demagnetized con�gurations is shown in Fig. 3.2a. A careful classi�cation of the

magnetic contrast at each vertex site (see legend above Fig. 3.2a) yields a determi-

nation of the global spin con�guration (shown in Fig. 3.2b), provided there are no

structural or imaging defects present. MSF is then computed from the extracted

spin con�guration (see Fig. 3.2c).

Consistent with the previous work [31], the experimental MSF exhibits distinct

features of the low-energy manifold of the square ice model: the intensity pattern is

di�use but structured and displays emergent pinch points for speci�c wave vectors

in the reciprocal space [31, 37]. We note that in our experiment, we systematically

recover (over four demagnetizations and two layout-wise identical lattices) spin con-

�guration and associated MSF consistent with the characteristics of the spin liquid

state. This is also evidenced by the experimental vertex populations (approx. 29 %,

62 % and 9 % for the Type I, II and III vertices, respectively), which are approaching

the ratio of 1:2 for Type I and II vertices expected for the ground-state manifold of

the square ice model. The presence of a considerable fraction of Type III vertices,

which is also in line with previous studies [31, 37], indicates that the captured spin

con�gurations are not in the ground-state manifold. In other words, the energy of

the system was minimized substantially, but not entirely.
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3.2.1 Comparison with the (short-range) square ice model
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Fig. 3.2: a) Magnetic image of a square lattice with a height o�set hexp = 100 nm.

A legend with examples of four distinct vertex types' contrasts is provided above

the image. b) Spin con�guration extracted from (a) with colour code highlighting

the vertex type (see the legend above the map). The arrows indicate the direction

of the magnetization within each nanomagnet. d) The magnetic structure factor

computed from (b). This magnetic structure factor strongly resembles that of the

square ice. Adapted from [30].

3.2.1 Comparison with the (short-range) square ice model

We have established that our experiment reproducibly recovers spin liquid con�gura-

tions approaching the ice regime. Naturally, the next step is to compare the results

obtained by our arti�cial lattices with the relevant theoretical model { the square ice

model. We calculated the average experimental MSF (see Fig. 3.3a) based on eight

individual measurements. The average MSF's intensity plot is smoother and more

symmetrical, compared to the individual one reported in Fig. 3.2c, whilst preserving

its shape. At �rst glance, the physics captured in our experiment strongly resembles

that of the square ice model (see Fig. 3.3b). Nevertheless, careful inspection of the

experimental magnetic structure factor reveals additional features that the square

ice model cannot reproduce. Speci�cally, line scans along the qx = 3 and qx = 5

directions (see red and purple dashed lines in Fig. 3.3a and 3.3b) show features that

are not present in the theoretical MSF (see Fig. 3.3c).

At this point, it is worth pointing out that the square ice model is a short-range

model, which considers only interactions from the nearest neighbours. Provided

that the coupling strengths of the nearest perpendicular and collinear neighbours

are tuned to be equal (J1 = J2), there are six equally strongly bound nearest neigh-

bours in a square lattice (see Fig. 3.3d) and direct analogy with the structure of spin

ice materials can be drawn (see Fig. 3.3e). However, as described in the preceding
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3.3 Origin of the additional features
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Fig. 3.3: a) Averaged (over four demagnetizations of two lattices) experimental mag-

netic structure factor. b) Magnetic structure factor corresponding to the low-energy

manifold of the square ice model (obtained by numerical simulation). c) Intensity

pro�les obtained from (a) (in orange) and (b) (in blue) for the two q directions

qx = 3 and qx = 5. The scan directions are depicted in (a, b) as red (qx = 3) and

purple (qx = 5) dashed lines. Blue and red circles mark additional features observed

experimentally. d) Two-dimensional map of coupling strengths in the square spin

system. The short-range model includes only J1 and J2 couplings. e) Sketch of

spin ice material structure showing six equally distanced neighbouring spins. (a-d)

adapted from [30].

paragraph, this (short-range) square ice model shows limitations in capturing the

physics observed experimentally.

The following questions naturally arise. Is it possible to trace the origin of those

additional features present in the experimental magnetic structure factor? Further-

more, can we modify our theoretical model to better account for the experimental

results? We will show below that these features emerge due to dipolar interactions,

extending beyond nearest neighbours and being at play in our lattices.

3.3 Origin of the additional features

It is worth recalling that numerical studies of square arrays with height o�set have

shown that dipolar interactions are expected to order the system at low temper-

atures ultimately [65, 70, 105]. The character of the ground state thus strongly

depends on the value of the height o�set, and ice regime is an intermediate phase
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3.3 Origin of the additional features

that is terminated at low T by an ordering transition [65].

When the height o�set h is smaller than the critical value hc, the ground state

is two-times degenerate and exhibits an antiferromagnetic ordering in the sense of

Rys-F model [106, 107]. Corresponding spin con�guration and magnetic structure

factor are provided in Fig. 3.4. Suppose the h is bigger than the critical value. In

that case, the ground state is also antiferromagnetically ordered (in a manner of

Slater-KDP model [108]). It is comprised of antiferromagnetic alternation of ad-

jacent fully polarized lines1. Associated spin con�guration and magnetic structure

factor are provided in Fig. 3.5.
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Fig. 3.4: a) Spin con�guration and (b) magnetic structure factor representing the

ordered ground state of the Rys-F model. c) Intensity pro�les are taken from (b)

for the qx = 3 and 5 r.l.u. directions (indicated by red and purple dashed lines,

respectively). The blue circles highlight speci�c positions in the reciprocal space

for which features corresponding to the experimental MSF are observed. The MSF

shown in (b) is obtained at �nite temperature to widen the Bragg peaks. Adapted

from [30].

Notably, the two ground states exhibit magnetic Bragg peaks in reciprocal space

exactly at the positions where the additional features are located in the experi-

mental MSF (see Figs. 3.3c, 3.4c and 3.5c). For example, the Rys-F model or-

1This is true if we consider the antiferromagnetic coupling between adjacent lines being present,

i.e. J3 > 0. This assumption is, in fact, both reasonable and instructive as we are looking for

signatures of coupling strengths that go beyond J2. For the sake of completeness, without the

antiferromagnetic coupling between neighbouring lines, the ground state consists of a random

arrangement of ferromagnetic lines.
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Fig. 3.5: a) Spin con�guration and (b) magnetic structure factor representing the

ordered ground state of the Slater-KDP model with an antiferromagnetic coupling

between adjacent lines. c) Intensity pro�les are taken from (b) for the qx = 3 and 5

r.l.u. directions (indicated by red and purple dashed lines, respectively). The red

circles highlight speci�c positions in the reciprocal space for which features corre-

sponding to the experimental MSF are observed. The MSF shown in (b) is obtained

at �nite temperature to widen the Bragg peaks. Adapted from [30].

dered ground state induces Bragg peak at (qx, qy) = (3, 3), which can be directly

linked to an experimental feature marked by blue circle in Fig. 3.3. Likewise,

the Slater-KDP ordered ground state induces Bragg peaks at positions (qx, qy) =

(3, 2), (3, 4) and (5, 2). This �ts nicely with the experimental features marked

by red circles in Fig. 3.5c. Remarkably, also the intensity asymmetries between

the pairs of peaks marked in Fig. 3.5c are observed in the experimental MSF (see

Fig. 3.3c). The additional experimentally recovered features thus can be linked with

the ground-state properties of the dipolar square ice [65, 70].

These additional features point towards the presence of additional antiferro-

magnetic spin-spin correlations on top of the pure square ice manifold. To put it

di�erently, the imaged low-energy magnetic con�gurations are not an entirely ran-

dom arrangement of Type I and Type II vertices. Consequently, the Type I vertices

(shown as blue squares in Fig. 3.2b) form slightly bigger patches than expected from

pure statistics. Similarly, the Type II vertices (shown as red squares in Fig. 3.2b) be-

longing to lines in the square array are more likely to have opposite adjacent line(s)

around them (see alternating red and blue polarized lines on top of red domains in

Fig. 3.2b).
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3.4 Beyond the nearest-neighbour description

In the previous section, we traced the origins of additional experimental features

back to the ground state properties of the dipolar square ice model. One can wonder

whether it is possible to recover those features numerically by including interactions

beyond the nearest neighbours in the theoretical model. In order to do so, we

carry out Monte Carlo simulations with the Ising spin Hamiltonian, in which the

magnetostatic coupling strengths are derived from the material properties and actual

dimensions of nanomagnets used in the experiment. In this work, we have examined

the e�ects of adding farther neighbour couplings to the spin Hamiltonian up to the

tenth-nearest neighbours (see Fig. 3.6).

J1

J2

J3

J4 J5

J6

J7 J8

J9

J10

Fig. 3.6: a) Two-dimensional map of a square lattice with colour code highlighting

the ten coupling strengths (concerning the central red magnet) considered in this

work. Adapted from [30].

3.4.1 Estimating the coupling strengths

Even though single-domain nanomagnets are often considered as Ising pseudo-spins

in arti�cial spin systems, they are micromagnetic objects with magnetisation texture

which is not exactly uniform, especially at both ends of single island [86, 109{113].

Therefore, it is necessary to estimate coupling strengths, representative of our real

physical system, in a way that accounts for the micromagnetic e�ects.

For that reason, we computed the micromagnetic energy of pairs of nanomag-

nets corresponding to the �rst to tenth nearest neighbours, using the OOMMF code

[74]. The numerical simulation follows all the geometrical parameters of the fab-

ricated lattices (lattice parameter: a = 650 nm, stadium-shaped magnets of size:
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3.4.1 Estimating the coupling strengths

500×100×30 nm3) and material parameters corresponding to NiFe are selected (the

spontaneous magnetisation MS is such that µ0MS = 1.0053 T, the exchange sti�-

ness is set to A = 10 pJm−1 and magnetocrystalline anisotropy is neglected). The

simulations are run at 0 K. Thus, no thermal 
uctuations are present. To minimise

�nite di�erence e�ects, the simulation mesh size is set to 1× 1× 15 nm3. Small cell

size in x and y is selected to provide a good approximation of the semicircular ends

of the magnets, while coarse mesh size in z helps to reduce the simulation time, as

it does not a�ect the estimate of the coupling strengths substantially. The actual

coupling strengths Ji (i = 1 ... 10) are deduced from the energy di�erence between

antiferromagnetic (head-to-head) and ferromagnetic (head-to-tail) arrangement of

the associated pair of magnets (see Fig. 3.7a).

a) b)

AFM FM

Fig. 3.7: a) Three-dimensional simulated micromagnetic con�gurations for a pair of

orthogonal nanomagnets. In the left pair, the two magnets are coupled antiferro-

magnetically, while in the right pair, they are coupled ferromagnetically. The red

and blue contrast represents the divergence of the magnetization vector, while the

arrows indicate the local direction of magnetization. The energy di�erence between

those two con�gurations corresponds to the J1 coupling strength. b) Sweeping the

height o�set h in the micromagnetic simulations allows the calculation of the J1/J2
ratio as a function of h. For a critical (numerical) value hnum

c ≈ 120 nm (indicated

by red dashed lines), the square ice condition J1/J2 = 1 is recovered. The data

points represent the results of the simulation. The line is provided only to guide the

eye. (b) adapted from [30].

In a square lattice with a height o�set as ours, the J1, J5 and J8 coupling

strengths are derived from pairs of magnets from the two sublattices (see Fig. 3.6).

The two considered magnets are located within the same sublattice for the remain-

ing coupling strengths. Therefore the height o�set h matters only when estimating

the J1, J5 and J8. We then computed J1 as a function of the height o�set in the

range from 0 to 180 nm with steps of 15 nm. In line with previous work [31], the J1
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3.4.2 Probing the thermodynamic properties

coupling weakens as the height o�set increases and for critical value hnum
c ≈ 120 nm

it is equal to J2 (which is independent of the height o�set). Further increase of the

h beyond the critical value then leads to J1 being weaker than J2. The evolution of

the J1/J2 ratio as a function of height o�set h is provided in Fig. 3.7b.

Our goal, however, is to estimate the coupling strengths for our experimental

system, which has height o�set hexp = 100 nm. The results of coupling strengths up

to tenth nearest neighbours Ji (i = 1 ... 10) calculated for the experimental value of

the height o�set are reported in Tab. 3.1.

Tab. 3.1: Estimated micromagnetic coupling strengths Ji for the �rst ten neighbours

(i = 1 ... 10) of square array with height o�set hexp = 100 nm. All values are

expressed in arbitrary units (a.u., 1 a.u.= 1.05 × 10−18 J).

i 1 2 3 4 5 6 7 8 9 10

Ji 2.220 1.933 -0.333 0.045 0.104 -0.052 0.132 0.073 0.058 -0.018

3.4.2 Probing the thermodynamic properties

Thanks to the obtained estimates of magnetostatic coupling strengths, we can now

probe numerically �nite temperature properties of a (spin) square ice model with

farther neighbour interactions included. The main hope is to obtain agreement

between the theoretical model and the experimental system. We thus carried out

Monte Carlo simulations utilizing the Ising spin Hamiltonian, de�ned as:

H = −
∑

i,j|ri,j<α

Ji,jσiσj (3.1)

where σi and σj are Ising variables on sites i and j of a square lattice, separated by

distance rij. The parameter α then de�nes the distance to which coupling strengths

are included. In this work, we examined the e�ects of including the interactions of up

to the �rst ten neighbours (αmax =
√
5a, a is the lattice parameter). The simulations

were carried out for 12× 12× 2 lattice sites2 with periodic boundary conditions and

utilizing single spin-
ip algorithm. The cooling-down procedure starts at T/J1 = 100

and ends as the single spin-
ip dynamics freezes. After each temperature step-down,

�rst 104 modi�ed Monte Carlo steps (mmcs) are used for reaching the thermal

equilibrium and then measurements follow (also computed with 104 mmcs). The

magnetic structure factor is computed as a function of the e�ective temperature

2To check that the simulation results do not depend on the system size, we run (in selected

cases) simulations for 12 × 12 × 2, 20 × 20 × 2 and 30 × 30 × 2 lattice sites and no substantial

di�erence was observed.
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3.5 Results and discussion

(T/J1), with the same parameters as the experimental one (density of points, area

in reciprocal space).

3.5 Results and discussion

Below, we report our �ndings of comparing Monte Carlo simulations with experi-

mental results by taking the following steps:

1. We �rst assume that the square ice condition is strictly obeyed (J1 = J2).

2. We then examine the thermodynamic properties of the square ice model with

additional coupling strengths originating from further neighbours step-by-step.

In other words, we start with the short-range model (only J1 and J2 included),

and we run a series of simulations where we add coupling strengths from further

neighbours one by one. The last simulation then considers all ten coupling

strengths provided in Tab. 3.1.

3. For all these simulations, we extract the intensity pro�les along the qx = 3

and qy = 5 r.l.u. directions, for which the distinct experimental features are

observed (see Fig. 3.3c).

4. For each simulation (i.e. range of included coupling strengths), we determine

the Monte Carlo temperature that provides the best �t against the experimen-

tal data.

5. We then detune the ice condition to validate the robustness of our �ndings.

3.5.1 Ice condition obeyed: J1 = J2

First, we consider the case where J1 = J2 and proceed with points (2-4) as laid

out above. Even though the magnetostatic micromagnetic simulations yield un-

even values for the �rst two couplings for the experimental value of height o�set

hexp = 100 nm (see Tab. 3.1), this is reasonable assumption as we are approaching

the ice phase in the experiment (as evidenced by vertex populations and experi-

mental MSF). We take J1 = J2 = 2, and for other coupling strengths, we use the

estimates obtained by the micromagnetic simulations (reported in Tab. 3.1) to main-

tain the proportionality.

The results for the complete set of considered coupling strengths (up to J10) are

reported in Fig. 3.8. Curves extracted from the experimental MSF are shown in

orange, while the theoretical ones are shown in blue. The left and right columns

correspond to qx = 3 and qx = 5 r.l.u. directions, respectively. For each subplot

(Fig. 3.8a to 3.8h), the range of coupling strengths included in the spin Hamiltonian

is provided on the left, together with the Monte Carlo temperature which provides

the best �t of the experimental data.
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3.5.1 Ice condition obeyed: J1 = J2
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Fig. 3.8: Comparison of intensity line scans (along qx = 3 and qx = 5 r.l.u. direc-

tions) of the experimental (orange lines) and theoretical (blue) magnetic structure

factors. The range of interactions included in the theoretical model and the Monte

Carlo temperature, which provides the best �t to the experimental data, are indi-

cated on the left. Adapted from [30].
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3.5.2 Ice condition detuned: J1 < J2

Essentially, the set of reported simulations can be divided into three groups (in-

dicated by a coloured arrow on the right side in Fig.3.8. In the �rst subset (solid

blue arrow), the main impact of the coupling interactions added to the model (J3

and J4 is to amplify antiferromagnetic correlations between spins belonging to the

same sublattice. This is evidenced by the strengthening of the peaks located at

(qx, qy) = (3, 3) and (5, 5), which corresponds to ordering in the sense of Rys-F

model (peaks highlighted by blue circles in Fig.3.4c). In the second group (green ar-

row), coupling strengths from J5 to J8 a�ect both the antiferromagnetic correlations

between spins of the same sublattice and the antiferromagnetic correlations between

adjacent polarized lines. The latter is evidenced by intensity increase for peaks lo-

cated at (qx, qy) = (3, 3), (3, 4) and (5, 2), (5, 4), which originates from ordering in

a sense of Slater-KDP model (peaks highlighted by red circles in Fig.3.5c). Finally,

for the last two simulations (blue dashed arrow), which goes up to J9 and J10, only

the antiferromagnetic correlations between spins belonging to the same sublattice

are present.

To summarize, the results reported in Fig. 3.8 show that by including interac-

tions that extend beyond nearest-neighbours into the theoretical model, it is possible

to reproduce the experimentally observed features. Speci�cally, when considering

interactions up to J7 (Fig. 3.8e) or J8 (Fig. 3.8f), the theoretical curve approaches

the experimental one (semi)quantitatively. We note that at least some features of

the experimental MSF are observed for all considered ranges of included coupling

strengths. In other words, the qualitative agreement between the model with farther

couplings included seems always better than the short-ranged model.

One might then wonder why the agreement obtained for coupling interactions ex-

tending up to J8 gets lost after including farther coupling strengths (namely J9 and

J10). At this point, it is worth recalling the results of previous theoretical/numerical

works on dipolar square systems with height o�set [65, 70, 105], which reports that

full dipolar treatment of the spin Hamiltonian (i.e. considering all interactions in

the system) leads to ordered ground state. The nature of the ground state is criti-

cally sensitive to the height o�set h value. Therefore, determining the ground state

con�guration for the case where h = hc is not an easy task and in Ref. [105], it is

stated that it depends on the algorithm that is used for the \cooling-down" in the

Monte Carlo simulation.

3.5.2 Ice condition detuned: J1 < J2

In the text above, we discussed the results under the assumption that the ice condi-

tion (J1 = J2) is strictly obeyed. This is unlikely to be achieved in the experiment,

especially if we consider that the nature of the ground state is susceptible to the
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3.5.2 Ice condition detuned: J1 < J2

height o�set h value. It is then natural to wonder whether the conclusions drawn

above are robust when the J1 = J2 condition is detuned.

Obviously, the ice condition can be detuned in two ways, either having J1 > J2

or J1 < J2. In the former case, both the detuning condition and the long-range

magnetostatic interactions will favour the ordering in the sense of the Rys-F model

(see Fig. 3.4). In this case, the agreement between the experimental MSF and the

modelled one could only worsen. However, the latter case (J1 < J2) will amplify the

antiferromagnetic correlations between the adjacent polarized lines (see Fig. 3.5).

Detuning the ice condition in this way will thus lead to a competition between the

correlations originating from the long-range interactions and those ampli�ed by the

detuning.

Indeed, when selecting J1 = 2, J2 = 2.1 and J3 = −0.333 we recover semi-

quantitative agreement with the experimental data (see Fig. 3.9a). We note that

for J1 = J2 = 2 the agreement was rather poor (as shown in Fig. 3.8a). Similarly,

when one more coupling strength is included (J4 = 0.045), it is possible to recover

a nice agreement with the experimental data when setting J1 = 2 and J2 = 2.2

(see Fig. 3.9b). The same approach can be extended to include additional coupling

strengths from further neighbours.
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Fig. 3.9: Intensity line scans (along qx = 3 and qx = 5 r.l.u. directions) comparing

experimental data and two models with following set of coupling strengths: (a)

J1 = 2, J2 = 2.1, J3 = −0.333, and (b) J1 = 2, J2 = 2.2, J3 = −0.333, J4 = 0.045.

The Monte Carlo temperature is T = 1.5 J1 for both simulations. The blue and red

circles highlight the experimentally observed features. Adapted from [30].
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3.5.3 Ordering vs dynamical freezing

The origin of the additional features we observe experimentally is, therefore,

further validated as being associated with magnetostatic interactions that extend

beyond nearest neighbours. These �ndings are robust, as the argumentation holds

whether the ice condition is obeyed or detuned. The next question is whether the

detuning of the ice condition such as J1 < J2 can occur in our experiment. This

could be, in principle, justi�ed in two cases:

1. if the experimental height o�set would be above the numerical critical value

hnum
c ≈ 120 nm, which is not the case as hexp = 100 nm and

2. if the �eld demagnetisation procedure would amplify the impact of J2 cou-

pling strength due to associated kinetic e�ects. This is likely the case, as the

magnetisation during the �eld demagnetisation procedure (the sample is essen-

tially exposed to a rotating magnetic �eld) reverses via an avalanche process,

favouring the formation of straight lines in the lattice. This is conveniently

illustrated by numerical simulations of the �eld demagnetisation protocol pro-

vided in Supplementary Information (namely Videos 1 and 2) of Ref. [31].

3.5.3 Ordering vs dynamical freezing

The �nal point we want to address is why our arti�cial magnet does not order,

and the obtained MSF strongly resembles the one of the square ice model instead.

Looking at the Monte Carlo temperatures that provide the best �t to the exper-

imental data (see Fig. 3.8 or 3.9) reveals that the experimentally measured spin

con�gurations correspond to an e�ective temperature in the order of J1. Our �eld

demagnetization protocol is thus unable to fully minimize the system's energy, and

we obtain con�guration respective of a higher energetic manifold. At this point,

it is instructive to recall reported �ndings of numerical studies of dipolar square

systems with height o�set [65, 70, 105]. Namely, Ref. [65] predicts that in such a

system, the ice regime is an intermediate phase that is terminated at low T by an

ordering transition (the ground state is h-dependent). This allows the interpreta-

tion of our results. The �eld demagnetization is unable to reach the ground state

con�guration, and the intermediate ice regime is captured. However, the emergence

of Bragg peaks in our experimental MSF indicates that the ordered con�guration

is slightly approached. The fact that we cannot reach a very low-energy state in

our experiment is consistent with previous works. In general, exploring the ground-

state manifold of arti�cial frustrated magnets experimentally, whether using �eld

or thermal demagnetization, is rather challenging [44] both due to intrinsic (e.g.,

dynamical freezing [27, 114]) or extrinsic (i.e., quenched disorder) e�ects.
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3.6 Summary

3.6 Summary

In this study, we focused on further examination of the properties of �eld-demagnetised

arti�cial square ice magnets. By carefully inspecting the magnetic structure factor

derived from measured magnetic con�gurations, we identi�ed additional features

that cannot be accounted for by the short-range square ice model. We then traced

down the origins of these distinct features and showed that they are in agreement

with the ground-state properties of the dipolar square ice model. To further support

our �ndings, we report how these features can be recovered numerically by includ-

ing additional coupling strengths that extend beyond the nearest neighbours into

the model. We check that our �ndings are valid not only when the ice condition

is strictly obeyed, but also when it is detuned. We thus conclude that considering

longer-ranged couplings is necessary to interpret our results accurately.

As a consequence, an arti�cial system such as ours is expected to undergo an

ordering transition at (very) low temperature [65]. However, this ground state is

not reached in the experiment, as the �eld demagnetisation procedure is not able

to fully minimise the energy of the system due to the dynamical freezing. On the

other hand, the �eld demagnetisation protocol is sensitive enough not to wash out

the signatures of long-range dipolar interactions.

Interestingly, our �ndings also have implications for the properties of magnetic

monopoles.In a pure ice manifold (i.e., square ice with only nearest neighbour in-

teraction), magnetic monopoles are decon�ned quasiparticles that are free to move

(without energy penalty; the energy cost is associated only with their nucleation)

and interact via e�ective Coulomb interaction that has entropic origin [67]. On the

other hand, in a square ice manifold perturbed by long-range interactions, the mag-

netic monopoles additionally interact via genuine magnetic Coulomb interaction [67,

69]. Additionally, if the long-range interactions are considered, the energy landscape

is no longer entirely 
at (as for the short-range description), leading to additional

binding of the monopole pairs [69]. In other words, the magnetic monopoles we

observe in our experiments are not fully decon�ned and should behave as weakly

bound, as the string tension bounding the pairs of oppositely charged monopoles do

not entirely vanish (even within the ice manifold) [70].
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4 Is �eld demagnetization of arti�cial square ice magnet a stochastic process?

4 IS FIELD DEMAGNETIZATION OF ARTIFI-

CIAL SQUARE ICE MAGNET A STOCHAS-

TIC PROCESS?

Bringing arti�cial magnets into their ground-state or low-energy manifolds remains

a major experimental challenge. Being able to lower the system energy su�ciently

is a crucial ingredient, as a majority of the exotic and intriguing behaviour emerges

only at low e�ective temperatures. So far, two main approaches have been employed

to bring arti�cial frustrated magnets into their low-energy states. Both approaches

are illustrated in Fig. 4.1 and discussed in the following paragraphs.

The �rst one, �eld demagnetization protocol, is in detail described in Sec. 2.3 to-

gether with how we implement it in our experiments. In this method, the sample is

exposed to an external magnetic �eld, the amplitude of which slowly decays in time.

In the case of in-plane arti�cial magnets, the sample is often rotated to compensate

for the multi-axial symmetry of the studied systems. This method has been used

in a number of previous studies with minor di�erences [12, 16, 17, 24, 26, 27, 30,

31, 54, 82, 86, 115], mostly in how the magnetic �eld amplitude is reduced/stepped

down.

The second approach relies on thermal activation of the magnetization dynam-

ics, either by annealing the sample above the Curie temperature of the constituent

magnetic material [32, 35, 41, 59, 71, 103, 116, 117] or by approaching the blocking

temperature of individual magnets [33, 37, 92, 118]. A special case of the latter

approach is a single-shot technique, in which the magnetic con�guration develops

only in the early stages of the magnetic material deposition in a magnetic �eld-free

environment [21, 39].

Thermal demagnetization

time

temperature sample

heating
TC / TB

Field demagnetization

time

magnetic field
sample

Fig. 4.1: Schematics of �eld and thermal demagnetization approaches.

The two approaches presented above o�er distinct advantages but share the same

experimental limitations. In practice, both protocols seem to be similarly e�cient

in reaching down to low-energy con�gurations of degenerate arti�cial systems [44].

For example, in the case of the experimental studies of kagome dipolar spin
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4 Is �eld demagnetization of arti�cial square ice magnet a stochastic process?

ice, both approaches are unable to reach down to very low-energetic con�gurations,

which are characterized by magnetic charge crystallization, and only partial emer-

gence of the charge ordering is observed [32, 35, 71, 82, 103, 117]. This behaviour is

not unique for the kagome dipolar spin ice and was also reported for kagome Ising

antiferromagnet [32, 99] and Shakti spin system [41, 119]. Even though the experi-

mentally reached e�ective temperatures remain relatively high, detecting signatures

of phenomena associated with lower-energetic states is still possible. Prime exam-

ple is the spin fragmentation process [104], which was partially observed in dipolar

kagome spin ice [103].

Similarly, both �eld-demagnetised [31] and thermally active [22, 37] arti�cial

magnets were successfully used to capture the physics of the square ice model. Here,

as well, the e�ective temperature of the system remained relatively high, and very

low-energy ordering was also not reached. However, its signatures were detected

experimentally [30], as we discussed in detail in the previous Chapter (Chapter 3).

To summarise, both �eld and thermal demagnetisation, at least in systems stud-

ied so far, were unable to explore the (very) low energetic con�gurations1. Both

approaches are, in fact, limited by the same mechanism, which is the freezing of

the single spin-
ip dynamics. This intrinsic e�ect prohibits reaching low-energy

manifolds in the systems we are interested in, as they become loop models in their

low-temperature regimes [44]. Therefore, the experimentally available single spin


ip events are not able to further minimise the system energy at some point, both

when using a �eld or thermal approach.

In the text above, we discussed the e�ectiveness of both protocols and their

shared limitations. There is, however, a fundamental di�erence between them. In

the case of the thermally active arrays, we can intuitively understand that the ther-

mal 
uctuations act as a source of stochasticity. On the other hand, one might then

wonder whether a �eld protocol is not a source of determinism, especially when

both the blocking temperature and Curie temperature of the constituent material

are well above the demagnetisation/measurement temperature. Without any ther-

mal 
uctuations at play, one might think that �eld demagnetising the very same

lattice several times will repeatedly yield the same con�guration. This is in contrast

with thermally active systems, in which one can repeat the same protocol several

times and hope to obtain di�erent states after each demagnetisation of the same

array.

This has practical implications for how one should approach arti�cial magnets

in the experiment. Usually, such arti�cial systems have limited size, both for fab-

rication and measurement reasons. A common approach is then to average several

1With the exception of recently reported approaches that reduce the degeneracy at the vertex

level and bias the system towards reaching the targeted low-energy con�gurations [24, 27, 28].
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4 Is �eld demagnetization of arti�cial square ice magnet a stochastic process?

measurements to improve the statistics (for example, see Fig. 3.3) and test the

experiment's reproducibility. If one assumes that successive �eld demagnetisation

protocols applied to the same lattice would yield the same con�gurations, it would

be necessary to average di�erent lattices (i.e. ensemble average) to capture the

physics at stake better. On the other hand, if the �eld demagnetisation proves

to be stochastic, one would obtain a di�erent con�guration each time the protocol

is applied, and it would be sensible to average over the di�erent demagnetisations

(i.e. time average).

The main aim of this work is to address the following questions: What will

be the result of applying �eld demagnetization protocol several times to the very

same athermal2 arti�cial square ice magnet? Would we obtain the same arrested

magnetic con�guration repeatedly, or will we capture essentially a series of uncor-

related con�gurations that share similar macroscopic properties? Alternatively, can

we view a �eld demagnetization protocol applied to an athermal arti�cial magnet as

a stochastic process? If so, what could be the potential origins of stochasticity (or

determinism) in such an experiment? This work thus aims to complement previous

studies that reported presence [18] or absence [63] of stochasticity in arti�cial spin

systems and consequences of the presence of quenched disorder in such arrays [56,

120, 121].

In order to address the questions speci�ed above, we studied the response of arti-

�cial square ice magnets to successive �eld demagnetisation procedures. After each

demagnetisation protocol, the magnetic con�guration of lattices of interest was im-

aged using magnetic force microscopy and the spin con�guration of the lattices was

extracted from the captured images. We note that the sample was always aligned in

the same way for the imaging after each demagnetisation. The spatial distribution

of vertices and spins within the same lattice were then compared across the demag-

netisations. As the lattices examined in this study belong to the same sample as the

ones used in the previous section, we will rely on the sample description provided

there (see Sec. 3.1). Nevertheless, we want to emphasise that due to the volume of

the nanomagnets, their magnetic moments are stable and do not reverse at ambient

temperature unless the �eld protocol is applied.

We note that the dataset for the lattices with height o�set hexp = 100 nm is

shared with the previous section. Thus, the �ndings of this and the previous section

can be applied to each other. However, this section will also analyse the results for

one lattice with no height o�set, which is also present on the sample. This lattice has

the same geometrical parameters as the lattices with elevation and was fabricated

2In accordance with previously reported studies, we use the term athermal to refer to systems

that have stable remanent magnetic state (orientation of the nanomagnets does not change as a

function of time).
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4.1 Experimental results

in the same (second) lithography step.

4.1 Experimental results

All of the lattices of interest in this study belong to one sample, so they all share

the same �eld history. In order to experimentally investigate the questions raised

above, we demagnetised the sample four times in total. After each application of

the demagnetisation protocol, we conducted magnetic imaging employing magnetic

force microscopy and extracted the complete spin con�guration of each lattice. The

resulting captured con�gurations of one arti�cial square ice magnet (i.e. square lat-

tice with elevated sublattice, height o�set hexp = 100 nm) demagnetised for times

are provided in Fig. 4.2a. As usual, we also computed the magnetic structure factor

for each captured con�guration (see Fig. 4.2b).

a)

0

-4

-6

2

4

6

-2

qx (r.l.u.)
0-4-6 2 4 6-2

q y
 (

r.l
.u

.)

b)

0

-4

-6

2

4

6

-2

qx (r.l.u.)
0-4-6 2 4 6-2

q y
 (

r.l
.u

.)

0

-4

-6

2

4

6

-2

qx (r.l.u.)
0-4-6 2 4 6-2

q y
 (

r.l
.u

.)

0

1

2

3

0

-4

-6

2

4

6

-2

qx (r.l.u.)
0-4-6 2 4 6-2

q y
 (

r.l
.u

.)

Type I

Type II

Type III

Fig. 4.2: a) Spin and vertex maps showing real space con�gurations of the same

arti�cial square ice magnet after applying �eld demagnetisation protocol four times.

The vertices are represented by blue, red and grey squares for type I, II and III

vertices, respectively (see the legend on the right). The arrows indicate the local

spin directions. b) Corresponding magnetic structure factors computed from the

spin con�gurations provided in (a). All four plots have identical intensity (i.e., the

scale bar on the right belongs to all four images) and are computed for 81×81 points

in reciprocal space.

Several conclusions might be drawn from the above-presented series of measure-

ments: 1) All four con�gurations are di�erent, and no obvious pattern appears

systematically in all of them. 2) Although they are di�erent, they share similar

macroscopic properties (e.g. vertex populations). 3) All four captured con�gura-

tions are liquid-like, as evidenced by their associated magnetic structure factors (see
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4.1.1 Exploring the level of stochasticity/determinism

Fig. 4.2b, where all four plots have characteristic disordered but structured pattern

associated with low energy-manifold of the square ice model).

At this point, it is worth pointing out that an arti�cial square ice magnet is a

particularly well-suited system for our study, as the low-energetic state is a disor-

dered phase. Its con�guration can be described as a vertex paramagnet of type I

and type II vertices, assuming no excitations (type III) are present. Therefore, any

�xed repeating pattern should be easily identi�ed in a series of measured con�gu-

rations belonging to the same lattice. Similarly to previous work [31], we observe

approx. 9 % of type III vertices (emergent magnetic monopoles) present in our

lattices. Their presence re
ects the fact that the �eld demagnetization protocol is

not able to minimize the system energy fully. As mentioned above, no repeating

pattern (e.g. patches of �xed vertices) appears when comparing the four liquid-like

con�gurations. Similarly, the positions of magnetic monopoles are not �xed and

vary across the four demagnetizations.

4.1.1 Exploring the level of stochasticity/determinism

We have established above that no obvious pattern is repeating in the four captured

magnetic con�gurations. However, by only looking at the four spin/vertex maps, it

is hard to resolve whether the arrested con�gurations are genuinely independent of

each other or if there is some level of correlation between them. In order to be more

quantitative and to also ease the visual evaluation, we have generated vertex density

maps (see Fig. 4.3), in which each vertex site, represented by a coloured square, is

shaded according to a frequency of occurrence of a given vertex type.

(a)

0x (140) 1x (117) 2x (84)

3x (54) 4x (5)

(b)

0x (26) 1x (76) 2x (96)

3x (116) 4x (86)

(c)

0x (276) 1x (90) 2x (20)

3x (13) 4x (1)

Fig. 4.3: Vertex density maps for type I (a), type II (b) and type III (c) vertices.

Shading corresponds to the frequency of occurrence (see legend above each map).
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4.1.1 Exploring the level of stochasticity/determinism

For example, Fig. 4.3a shows a density map for type I vertices, compiling the

four measured magnetic con�gurations (presented in Fig. 4.2a). If type I was never

present at a given vertex position, the corresponding square is coloured as white. If

type I was present at a given vertex position, the corresponding square is coloured

as blue, and the shade corresponds to a frequency of occurrence. By looking at

the legend above the Fig. 4.3a we can see that type I was never present at 140

vertex sites and was present once, twice, three times, or four times at 117, 84, 54,

and 5 vertex sites, respectively. Density maps for type II (Fig. 4.3b) and type III

(Fig. 4.3c) are constructed accordingly. It is worth mentioning that only the vertex

type is considered when compiling the density maps, regardless of the associated

spin con�guration of the given vertex (e.g. density map do not distinguish between

the eight possible type III spin con�gurations, and all will appear as a grey square).

The vertex density maps thus provide a visualisation of the spatial distribution

of vertex types across the four demagnetisations of one lattice. We note that the

lattice was always aligned the same way prior to magnetic imaging. Looking at the

legend boxes above the density maps (see Fig. 4.3), one can see lattice positions at

which the same vertex type appeared four times (i.e. after every demagnetisation).

Namely, there are 5 locations for type I, 86 locations for type II and 1 location for

type III, in which the same vertex type appears. One may wonder whether this

amount of vertex type overlap originates from pure statistics or if there is a local

preference for a given vertex type at some lattice positions. In other words, do sam-

ple imperfections (structural and/or magnetic disorder) lead to creation of pinning

sites, that prescribe which vertex type is more favoured at a given location?

To probe this issue, we have calculated vertex overlap probabilities Pi to �nd

vertex type i [i = (I, II, III, IV)] n times at the same lattice site after n demag-

netisations (the resulting plot is provided in Fig. 4.4c). For n = 1, there are four

data points which correspond directly to the four imaged con�gurations. When

n = 2, 3 and 4, there are six, four and one points, respectively (as we explore all

possible combinations, there are six pairs, four triplets and one quadruplet avail-

able for selection). All possible combinations are plotted as open circles, whereas

the average values are shown as full circles (see Fig. 4.4c). Example of an overlap

(i.e. intersection) of pair (n = 2) of vertex maps (obtained after �rst and second

demagnetisation) is provided in Fig. 4.4a, whereas example of intersection of triplet

(n = 3, maps obtained after �rst three demagnetisations) is shown in Fig. 4.4b.

Comparing these two overlap maps reveals that the number of vertices located in

the same lattice positions decreases gradually for all vertex types as n increases.

This trend is further evidenced when looking at the series of full circles (average

values for all possible combinations) in Fig. 4.4c. Therefore, we can conclude that

the �eld demagnetisation protocol is not a purely deterministic process.
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Fig. 4.4: Example of vertex overlap maps obtained as the intersection of two (a) and

three (b) experimentally observed con�gurations [(a) is the intersection of �rst two

and (b) of �rst three con�gurations reported in Fig. 4.2, taken from left to right].

c) Probability Pi to �nd a type i vertex at the same lattice position n times after n

demagnetisations. Open circles are the values obtained by all possible combinations.

Full circles are the average values. The dashed lines show the expected probabilities

for a purely stochastic process.

To compare the experimental results with probabilities expected for a purely

stochastic process, we calculated the expected probabilities as Pi = (Ni/N)n where

Ni are the average vertex populations observed experimentally for type i vertices,

and N is the total number of vertices of single lattice (N = 400). By design, a

perfect match is obtained for n = 1. When n ̸= 1, we �nd fairly good agreement

between the experiment and the predictions. However, the agreement cannot be

considered quantitative since the stochastic description consistently underestimates

the probabilities of type I and II vertices. (see the blue and red dashed lines in

Fig. 4.4c). In other words, more overlap is present in our experiment compared to

a purely stochastic regime. This e�ect is particularly evident for type II vertices

(which make up the majority of con�gurations), for which the deviation between

experimental data and prediction increases substantially as n increases. One might

wonder whether this behaviour is speci�c to the studied lattice or if a similar trend

would also be observed in other lattices of the same type. To explore this further,

we conducted the same experiment and analysis on a di�erent lattice, which shares

all nominal properties and also the �eld history, as it is located on the same sample.
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4.1.2 Examining another arti�cial square ice magnet

4.1.2 Examining another arti�cial square ice magnet

We have repeated the same analysis for another arti�cial square ice magnet on the

same sample to test whether the results are robust and reproducible. We note that

both lattices were imaged after the same demagnetisation procedures. As the second

lattice has identical nominal geometrical parameters and the fabrication process

parameters, they can di�er only due to intrinsic deviations of the fabrication process

itself. Speci�cally, both lattices are even located within the same main-�eld window.

Therefore, they share the same local alignment marks for the lithography steps. The

only conceivable di�erence originating from the fabrication process could be a slight

shift between the �rst and second lithography layer (i.e. the non-magnetic elevated

beds and magnets on top of them), as the precision of the alignment might di�er

based on spatial position within the main-�eld window. However, we note that for

neither of the two lattices, SEM imaging revealed magnets that would not sit fully on

the bases or bases that would interfere with magnets of the lower layer (i.e. magnets

directly on the substrate). However, it should be acknowledged that the magnets

on top of the bases are relatively close to their edges. Therefore, determining that

the whole volume of the magnet is on the base is not entirely certain.

The resulting arrested con�gurations of the second arti�cial square ice magnet

obtained after the very same four demagnetisation protocols are shown in Fig. 4.5a.
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Fig. 4.5: a) Spin and vertex maps showing real space con�gurations of another

arti�cial square ice magnet after applying �eld demagnetization protocol four times.

The colour code is the same as in Fig. 4.2. b) Corresponding magnetic structure

factors computed from the spin con�gurations shown in (a). All four plots have

identical intensity (i.e., the scale bar on the right belongs to all four images) and

are computed for 81× 81 points in reciprocal space.
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4.1.2 Examining another arti�cial square ice magnet

We have also calculated the magnetic structure factor for each captured con�gu-

ration (shown in Fig. 4.5b). By looking both at spin/vertex maps and associated

magnetic structure factors, we can con�rm that the �ndings formulated for the �rst

lattice (no apparent repeating pattern in the con�gurations, the con�gurations are

all di�erent but share similar macroscopic properties, all con�gurations are liquid-

like) are valid for the second lattice as well.

Following the analysis of the �rst arti�cial square ice magnet, the next step is to

compute the vertex density maps to visualise the spatial distribution of vertex types

as a function of successive demagnetisation protocols. The vertex density maps for

the second arti�cial square ice magnet are provided in Fig. 4.6. As we repeat essen-

tially the same process, we will rely on the detailed description provided previously

and focus only on the results and their comparison with the �rst lattice.

(a)

0x (145) 1x (116) 2x (85)

3x (38) 4x (16)

(b)

0x (23) 1x (62) 2x (98)

3x (118) 4x (99)

(c)

0x (298) 1x (81) 2x (16)

3x (5) 4x (0)

Fig. 4.6: Vertex density maps for type I (a), type II (b) and type III (c) vertices.

They are computed from the four measurements of the second lattice. Shading

corresponds to the frequency of occurrence (see legend above each map).

Comparing the two sets of vertex density maps of both lattices does not reveal

any signi�cant di�erences, as the frequency of occurrence per vertex type distribu-

tion is rather similar. The only observation that comes to mind is that there are

slightly fewer type III vertices being present in the second lattice on average (about

3 % less), which naturally leads to a less dense map for type III vertices in general

and, consequently, more dense maps for type I and type II vertices, compared to the

�rst lattice.

To complete the analysis of the second lattice, we have also calculated the vertex

overlap probabilities (shown in Fig. 4.7c). As for the �rst lattice, one can see the
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4.1.3 Examining another system: conventional square lattice

same trend for the deviation between the experimental data and probabilities ex-

pected for the purely stochastic regime. Therefore, we con�rm that our �ndings are

not speci�c to a single realisation of an arti�cial square ice magnet, thus indicating

the robustness and reproducibility of our results. To conclude, we see more vertex

type overlap for both lattices than expected for purely stochastic demagnetisation

protocol, showing that some determinism is present in our experiment. The possible

source of determinism and other signatures of its presence will be discussed later.
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Fig. 4.7: Example of vertex overlap maps obtained as the intersection of two (a)

and three (b) experimentally observed con�gurations of the second lattice [(a) is

the intersection of �rst two and (b) of �rst three con�gurations reported in Fig. 4.5,

taken from left to right]. c) Probability Pi to �nd a type i vertex at the same lattice

position n times after n demagnetisations. Open circles are the values obtained by

all possible combinations. Full circles are the average values. The dashed lines show

the expected probabilities for a purely stochastic process.

The question then arises whether these �ndings can be generalised to other ar-

ti�cial spin systems with di�erent physics at play.

4.1.3 Examining another system: conventional square lat-

tice

We conducted the same experiment and analysis for a conventional square spin sys-

tem (i.e. square lattice with no height o�set) to probe this idea. We emphasise

that the conventional square lattice shares the same nominal geometrical parame-

ters as the two arti�cial square ice magnets discussed above. The only di�erence

is the absence of the non-magnetic bases. Of course, the absence of elevation of

one sublattice has signi�cant consequences for the energy landscape of the system.
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4.1.3 Examining another system: conventional square lattice

Speci�cally, the system is unfrustrated, resulting in an ordered ground state that is

only two times degenerate (two possible tiling of type I vertices).

We note that the conventional square lattice is located on the same sample and

was imaged after the very same demagnetisation protocols as the two arti�cial square

ice arrays discussed in detail above. For the sake of consistency, we will follow the

same steps for analysing the captured con�gurations (provided in Fig. 4.8a), as with

the two previous lattices.
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Fig. 4.8: a) Spin and vertex maps showing real space con�gurations of the conven-

tional square spin system after applying �eld demagnetisation protocol four times.

The colour code is the same as in Fig. 4.2. b) Corresponding magnetic structure

factors computed from the spin con�gurations shown in (a). All four plots have

identical intensity (i.e., the scale bar on the right belongs to all four images) and

are computed for 81× 81 points in reciprocal space.

As expected, the four arrested magnetic con�gurations of the conventional square

spin system exhibit large domains of type I vertices separated by meandering type

II domain walls. Only a tiny fraction (approx. 1.3 %) of charged defects (type III

vertices) is observed, all incorporated within the type II domain walls. Interest-

ingly, neither the charged defects nor the domain walls appear systematically at the

same locations within the lattice. To be more quantitative and visually represent

the vertex type spatial distribution across the four demagnetisations, we have again

compiled the vertex density maps (shown in Fig. 4.9). As the vertex populations

are dominated by type I vertices (approx. 86 % on average), their density map (see

Fig. 4.9a) naturally shows many of them appearing on the same lattice position.

Notably, every lattice position was at least once hosting type I vertex.

As we are interested in examining the level of stochasticity/determinism, it is
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4.1.3 Examining another system: conventional square lattice

(a)
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Fig. 4.9: Vertex density maps for type I (a), type II (b) and type III (c) vertices.

They are computed from the four measurements of the conventional square spin

system. Shading corresponds to the frequency of occurrence (see legend above each

map).

more convenient to look at the position of type II and III vertices. The density map

of type II vertices (see Fig. 4.9b) reveals that there is not even one lattice site that

would always host a type II vertex. In other words, our lattice has no predetermined

pathway for a domain wall. In general, the type II density map shows that the do-

main walls enter the lattice at similar positions, as evidenced by lattice sites close

to the edges with a high frequency of occurrence (3x), and then take di�erent routes

through the bulk of the lattice. Interestingly, the type III density map (see Fig. 4.9c)

shows that we never observed them more than once at a given lattice site.

To �nalise the analysis of the conventional square lattice, we also plotted the ver-

tex overlap probabilities (provided in Fig. 4.10c). A comparison of the experimental

data with probabilities expected for a purely stochastic process (dashed lines) re-

veals that the deviation between them is considerably narrower compared to the two

arti�cial square ice magnets. As for the two former lattices, the experimental vertex

overlap probabilities decay slower than expected based on pure statistics. Consid-

ering that the type II density map shows that the sites with a high frequency of

occurrence are found close to the lattice edges (six sites that host the type II three

out of four times), one might wonder whether cropping of the lattice to remove the

edges will improve the agreement between the experiment and the prediction. Re-

moving the edges from the captured spin con�gurations is not unreasonable. First,

the vertices at the edges have fewer neighbouring vertices, which unambiguously af-
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Fig. 4.10: Example of vertex overlap maps obtained as the intersection of two (a)

and three (b) experimentally observed con�gurations of the second lattice [(a) is

the intersection of �rst two and (b) of �rst three con�gurations reported in Fig. 4.8,

taken from left to right]. c) Probability Pi to �nd a type i vertex at the same lattice

position n times after n demagnetisations. Open circles are the values obtained by

all possible combinations. Full circles are the average values. The dashed lines show

the expected probabilities for a purely stochastic process.

fects their dynamics. Second, due to the proximity e�ect, the magnets at the edges

might receive a lower exposure dose during the electron beam lithography, resulting

in slight di�erences in �delity and fabrication quality.

The results of the step-by-step symmetrical cropping of the lattice edge layer/s

of the captured con�gurations are provided in Fig. 4.11. We see that as the edge

layer/s are cropped out (not considered for the analysis), the agreement between

the experimental data and the prediction improves. This trend continues further

when the width of the crop is increased an almost perfect agreement is found for

the cropped-out centre of the lattice of size 12x12 vertices.

These observations allow us to conclude that quenched disorder does not play

a signi�cant role in the conventional square lattice, as the deviations between the

experiment and stochastic prediction of the vertex overlap probabilities for large n

originate from the lattice edges. In other words, when only the bulk of the lattice

is considered for the calculation of vertex overlap probabilities, they agree with a

prediction for a purely stochastic demagnetisation process.

We note that the cropping of the measured con�gurations of the two arti�cial

square ice magnets (i.e. lattices with height o�set), which were discussed in detail

previously, did not result in improving the agreement between the experiment and
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Fig. 4.11: a) Density map for type II vertices, compiled from the four measurements

of the conventional square spin system. The coloured frames indicate the cropping

for the analysis of the vertex overlap probabilities. (b-d) Probability Pi to �nd a

type i vertex at the same lattice sites n times after n demagnetisations, calculated

for the entire lattice (b) and symmetrical cropping of one (c) and two (d) vertex

edge layer/s. Full circles are the average values. The dashed line shows the expected

probabilities for a purely stochastic process.

prediction, even for cropping up to the centre of the lattice of size 12x12 vertices.

4.2 Discussion: footprints of quenched disorder

We have established above that the quenched disorder does not play a signi�cant

role in the conventional two-dimensional square lattice, as removing the lattice edges

leads to recovering the agreement between the experiment and the stochastic pre-

diction. Conversely, the same approach did not work on the arti�cial square ice

magnets. One might wonder whether we can identify footprints of quenched disor-

der within the experimentally captured liquid-like con�gurations. In order to test

this idea, we will pivot back to the �rst arti�cial square ice magnet (results provided
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4.2 Discussion: footprints of quenched disorder

in Fig. 4.2) and continue the analysis not on the vertex level but at the spin level.

Speci�cally, we will focus on the lattice sites that hosted type III vertices three (13x)

or four (1x) times (highlighted in the density map of the type III vertices provided

in Fig. 4.12a). As discussed before, the MFM imaging enables us to resolve the mag-

netisation orientation of each nanomagnet. Therefore, we can extract the exact spin

states of the lattice sites that hosted type III three or four times. Comparing these

local con�gurations (across the demagnetisations) leads to an intriguing discovery:

the monopoles have a strong tendency to have the same spin state repeatedly (see

Fig. 4.12).
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Fig. 4.12: a) Density map for type III vertices, compiled from the four measurements

(demagnetisations) of the �rst arti�cial square ice magnet (results shown in Fig. 4.2).

The numbers on the left (above) index the rows (columns). Lattice sites that hosted

T3 vertices three or four times are highlighted by green and purple frames for sites

with the same and di�erent spin states, respectively. MFM contrast recorded at

the two sites highlighted by solid colour frames is provided in (c) as an example of

lattice position with the same and di�erent spin states. b) All eight possible type III

vertices divided into four spin states (A-D) based on spin-reversal symmetry. The

other variant of the same spin state is obtained by reversing all spins (i.e., from red

to blue and vice versa). c) Example of lattice sites hosting three times the same

spin state [at lattice position (11,12)] and di�erent spin states [at lattice position

(17,4)]. Numbers above the cropped images (D1 to D4) refer to the demagnetisation

protocol.

This discovery is somewhat surprising as there are eight possible monopoles
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4.2 Discussion: footprints of quenched disorder

(i.e., a ±2 charged defects), which can be divided into four spin states (each being

two-time degenerate, see Fig. 4.12b). Thus, each monopole spin state has a 25%

probability to occur. The probability of observing three times the same spin state

(out of four possible) for a monopole is only 6.25 %. Strikingly, in our experiment, 9

of the 14 considered monopoles have three times the same spin state3. This statistic

is incompatible with the assumptions for a purely stochastic process, and quenched

disorder is present and biasing our experiment.

One might then wonder what distinguishes these vertex sites, that repeatedly

hosted the same monopole spin state, from the rest. To investigate this issue, we

performed detailed SEM imaging of those lattice sites to evaluate whether structural

defects are present. Fig. 4.13 shows a comparison of two lattice sites that hosted

monopole three out of four times, whereby one hosted same monopole spin state

(Fig. 4.13a) and the other di�erent monopole spin states (Fig. 4.13b).

(a) (b)

(2,19) (3,16)

D1 D2 D3 D4 D1 D2 D3 D4

Fig. 4.13: SEM details of vertex sites of the arti�cial square ice magnet that hosted

monopole three out of four times. a) Lattice site (2,19) that hosted monopole of

same spin state. b) Lattice site (3,16) that hosted monopole of di�erent spin states.

Above each image are the local spin con�gurations obtained at that vertex site

across the four demagnetisations (D1 to D4). The yellow scale bar represents 200

nm. The indexing of rows/columns is as in Fig. 4.12.

A comparison of those two SEM details does not reveal a signi�cant di�erence

between them (e.g. missing part of a magnet, magnet not aligned on top of its base,

base interfering with the magnets on the substrate, etc). In other words, there seems

3The one lattice site at which type III was observed four times hosted three times the same

spin state. Therefore, we have a total of 9 sites that hosted three times a monopole of the same

spin state.
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4.2.1 Extending the spin state analysis to type II vertices

to be no structural reason why one should host monopoles of the same spin state

and other monopoles of di�erent spin states. We note that we conducted such de-

tailed imaging for all of the lattice sites that hosted monopole three or more times

(indicated in Fig. 4.12a), and we did not observe any structural features that would

explain why we often observe monopoles of same spin state at a given lattice site.

As we did not observe any structural defects, we speculate that the source of the

quenched disorder has a magnetic origin.

4.2.1 Extending the spin state analysis to type II vertices

One might wonder what the results of the spin state analysis, which we did for type

III vertices often observed at the same lattice position, will be if we consider type II

vertices instead. There are four possible type II vertices that can be divided into two

spin states (each being two-time degenerate, see Fig. 4.14b). As the type II vertices

prevail in the arti�cial square ice vertex populations (approx. 60 %), a signi�cant

number of them are found at the same lattice site. To be precise, the density map

provided in Fig. 4.3 shows that 86 lattice sites hosted type II vertex after each of

the four demagnetisations. We will now focus on those 86 lattice sites and examine

their associated spin state. The analysis results are summarised in Fig. 4.14.

Based on the analysis provided in Fig. 4.14 following observations can be made:

1. In our experiment, the probability of �nding the same type II spin state four

times at the same lattice site is overweighted compared to prediction (coming

from pure statistics). Proportionally, the probability of having two times both

spin states at a lattice site is underweighted. Both shown in Fig. 4.14c.

2. Lattice sites that host four times the same spin state are spatially distributed

across the lattice. We do not see clustering of such sites.

Therefore, similar to the type III spin state analysis, we observe a local preference

for type II spin state at lattice sites, further con�rming that quenched disorder is

present and biasing our experimental results. We note that the spin state analysis

cannot be extended to type I vertices, as they have only one two-time degenerate

spin state.
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Fig. 4.14: a) Map showing the 86 sites where type II was observed after each de-

magnetisation. Out of those sites at 25, type II of the same spin state was observed.

Those sites are highlighted by the double-headed arrows that show which spin state

was present. b) Division of possible type II vertices into two spin states. The

double-headed arrows illustrate the net moment direction of those spin states. c)

Comparison of experimental spin state probability distribution compared with that

coming from pure statistics.

4.2.2 Summary

So far, we have limited our analysis of the footprints of the quenched disorder to

the �rst arti�cial square ice magnet. We note that we did the same analysis also for

the second lattice with the height o�set. The results are essentially in agreement,

with the following minor deviations:

1. For the second lattice, we observed type III at the same lattice site less fre-

quently (5 sites where type III was present three times, none where it would

appear four times). The same spin state for type III was observed twice at

those �ve sites. The e�ect of observing the same spin state is, therefore, slightly

weaker (2/5) than for the �rst lattice (9/14) but still above the expectations

for pure statistics. Detailed SEM imaging of the �ve considered lattice sites

also revealed no structural defects, consistent with the �rst lattice.

2. Interestingly, the spin state analysis of type II vertices observed four times

at the same lattice site for the second lattice shows a stronger preference

for hosting the same type II spin state (43/99 vs. 25/86, see Fig. 4.14a for

reference).
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4.3 Discussion: what is the source of randomness?

4.3 Discussion: what is the source of random-

ness?

We have established above that the experimental vertex overlap probabilities for

both examined arti�cial square ice magnets decay slower than the expectation for

a purely stochastic process (reported in Fig. 4.4c and 4.7c). We then discussed

footprints of the quenched disorder in the spin con�gurations captured for those

two lattices. Combining those results, we conclude that if the �eld demagnetisation

protocol we apply to our lattices is at least partly a stochastic process, quenched

disorder likely adds some determinism.

At the beginning of this section, we discussed the two approaches used for bring-

ing the arti�cial spin systems to their low energy con�gurations: �eld and thermal

demagnetisation. We stated that in the case of thermal demagnetisation, one might

intuitively understand that the thermal 
uctuations act as a source of stochasticity.

We also stated that the �eld demagnetisation protocol might be considered a de-

terministic process, especially when the demagnetisation is carried at temperatures

well below both the blocking temperature of the individual magnets and the Curie

temperature of the constituent material. This is, however, in contrast with our ex-

perimental results.

One might then ask, what is the source of randomness in our experiments? We

acknowledge variations in our �eld demagnetisation protocols may exist between

successive demagnetisations, even if we set the same parameters for each proto-

col (same strength of the initial �eld, same voltage for driving the motor rotation,

etc.). This variability could be attributed to extrinsic sources of randomness, such

as magnetic noise generated by the electromagnet power supply, 
uctuations in the

rotation speed of the sample, and variability in the initial �eld direction, among

others. Assuming that these sources of variation can be eliminated, there is still an

intrinsic source of stochasticity, which has a micromagnetic origin.

At this point, it is worth recalling that considering nanomagnets of the size con-

sidered in this work as Ising pseudospins is a rough approximation, and the relevance

of their micromagnetic texture in arti�cial spin systems was previously reported [86,

109{113]. This has important implications for the dynamics in our lattices, as the

magnetization reversal in considered nanomagnets is expected to proceed via nucle-

ation and propagation of vortex domain walls [122].

To illustrate how the magnetisation texture evolves during reversal, we con-

ducted micromagnetic simulations using the MuMax3 software [75]. The nanomag-

net has the same shape (rectangle with two semicircular heads) and dimensions

(500 × 100 × 30 nm3) as the ones forming our experimentally investigated lattices.

121



4.3 Discussion: what is the source of randomness?

For the simulation, material parameters commonly used for permalloy are selected

(spontaneous magnetisation MS = 800 kAm−1, exchange sti�ness A = 10 pJm−1,

magnetocrystalline anisotropy is neglected and damping is set to α = 2×10−2). The

simulation mesh size is set to 2×2×30 nm3. The simulations are run at 0 K, there-

fore, no thermal 
uctuations are present. The external magnetic �eld is oriented at

an angle of 45◦ with respect to the long axis of the nanomagnet, and its amplitude

increased by steps of 1 mT when approaching the reversal �eld. Snapshots of the

magnetisation texture upon reversal are shown in Fig. 4.15.

t

Bext. Bext.

Fig. 4.15: Snapshots of a micromagnetic simulation illustrate the magnetisation

reversal in a nanomagnet considered in this work. The white dashed circles in the

left snapshot highlight vortex/antivortex cores.

The prominent feature we wish to emphasise is the emergence of vortices and

antivortices, denoted by the appearance of the white and black cores, respectively.

White dashed circles highlight a pair of vortex and antivortex cores in the left snap-

shot provided in Fig. 4.15. These vortex/antivortex cores are nucleated at the edges

of the nanomagnet and then move towards its centre. The eventual annihilation of

vortices/antivortices triggers the magnetisation reversal.

It was reported previously that thermal 
uctuations at room temperature (i.e.

300 K) signi�cantly in
uence �eld-driven domain wall dynamics in permalloy stripes,

particularly for the �elds above the Walker �eld [123]. Notably, this study reports

stochastic e�ects being present for defect-free magnetic wires and also for stripes

with notch-like pinning site or stripes with roughness (i.e. randomised defects on

the wire edges). Consequently, similar e�ects could be at play during our �eld de-

magnetisation protocols of arti�cial spin systems (carried at room temperature), as

the �eld necessary for triggering the nanomagnet reversal is much larger than the

Walker �eld.

It is worth pointing out that our lattices consist of 840 interacting nanomagnets,
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where each magnet is in
uenced by an e�ective �eld combining both the exter-

nal magnetic �eld and the �elds originating from the neighbouring nanomagnets.

Thus, any probabilistic e�ects at the single magnet magnetisation dynamics level

can propagate through the lattice via the kinematic e�ects associated with the �eld

demagnetisation protocol.

To explore how the thermal 
uctuations might introduce a source of stochas-

ticity in our experiments, we conducted micromagnetic simulations emulating the

�eld-driven reversal of square lattice vertex at 300 K, utilising the stochastic thermal

�eld Btherm implemented in the MuMax3 software [77]. Material parameters are the

same as for the single magnet reversal simulation (described above). All geometri-

cal parameters closely follow the nominal parameters of lattices in the experiment

(magnets size 500 × 100 × 30 nm3, lattice parameter a = 650 nm and height o�set

hexp = 100 nm). The simulation mesh is set to 4 × 4 × 10 nm3, enabling the cor-

rect height o�set setting while keeping the simulation time reasonably low. The

initial con�guration is type II vertex, in which net magnetic moment points in the

+xy direction (i.e. magnetisation of the horizontal magnets points to the right and

magnetisation of vertical magnets points to the top). Then, the magnetisation of

the top magnet is reversed, and an external magnetic �eld is applied in the -xy di-

rection. The amplitude of the external �eld is then increased by steps of 1 mT. The

simulation was repeated 10 times with di�erent seeds for the thermal �eld selected

for each one of them. For reference, the simulation was also run at 0 K. The results

of the simulation set (11 simulations in total) are summarised in Fig. 4.16.

Interestingly, the 
ipping order of magnets is observed to be dependent on the

seed value of the stochastic thermal �eld Btherm emulating the room temperature

(i.e. 300 K), at which the �eld demagnetisation protocols were carried out in the

experiment. For the two seeds out of ten (shown in Fig. 4.16a), the left and bottom

magnet 
ip �rst simultaneously, similar to when the simulation is run at 0 K. The

only di�erence is that the reversal starts at a lower value of the external �eld. The

remaining eight simulations show reversal starting either with the left magnet (three

times, see Fig. 4.16b) or the bottom magnet (�ve times, see Fig. 4.16c). For both

cases, the reversal of the �rst magnet starts at a lower external �eld than the reversal

at 0 K. Even if the 
ipping order is the same, there are additional di�erences, such

as the total time of the reversal, as shown in Figs. 4.16b and 4.16c (compare the

blue/green curve against the grey curves). We ran the same simulation to improve

the statistic for 20 additional seeds, increasing the total number to 30. The distribu-

tion of the branching (i.e. what magnet(s) are reversed �rst) for all simulations that

have been run is provided in Fig. 4.17. Notably, it shows that the bottom or left

magnet is reversed �rst equally likely and less likely that they are reversed together

at the same time.
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a) b) c)

Bext BextBext

Fig. 4.16: Micromagnetic simulations of �eld-driven reversal of arti�cial square ice

magnet vertex considered in this work (i.e. there is vertical o�set hexp = 100 nm

between the horizontal and vertical magnets). The magnets' 
ipping order depends

on the seed selection for the stochastic thermal �eld Btherm. The results are di-

vided based on 
ipping order: (a) left and bottom magnets 
ip �rst at the same

time (similar to when the simulation is run at 0 K), (b) left magnet 
ip �rst and

(c) bottom magnet 
ip �rst. Three representative snapshots are shown for each

case: initial con�guration, �rst reversed magnet(s), and last reversal step. These

snapshots correspond to the coloured curve in the respective plot below. The plots

show the magnetisation mx as a function of time for the di�erent seeds (indicated

in the brackets within the plots legend). The black dashed line corresponds to the

simulation run at 0 K. Above each magnetisation plot is also a plot showing the

stepping of the external �eld Bext. The direction of the external magnetic �eld Bext

and magnetisation colour wheel are indicated above the snapshots.
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Fig. 4.17: Distribution of the 
ipping order for 30 di�erent seeds. Below each col-

umn, the magnet(s) that 
ip �rst is shown in red (the empty arrowhead shows the

initial orientation and the full arrowhead shows the �nal con�guration. The colours

of the bars correspond to coloured curves in Fig. 4.16.

We can then speculate that the branching e�ect we have demonstrated above can

act as a source of randomness for the avalanche processes present during the �eld

demagnetisation procedure. In other words, thermal 
uctuations might in
uence the

reversal pathways taken during the �eld demagnetisation protocol when the external

�eld's strength approaches the magnets' reversal �elds for at least some external

�eld angles. This may eventually lead to capturing di�erent (almost) uncorrelated

con�gurations after applying the �eld demagnetisation protocol several times to the

very same lattice.

4.4 Summary

In this study, we have focused on comparing the results of applying �eld demag-

netisation protocol four times to several lattices located on the same sample. We

show that the con�gurations obtained for a given lattice after successive �eld de-

magnetisations share similar macroscopic properties but di�er substantially in the

spatial distribution of vertices. By analysing the vertex density maps and associated

vertex overlap probabilities, we show that the amount of vertex type overlap is in

qualitative agreement with a prediction for a stochastic demagnetisation process.

However, the agreement is not quantitative, as we see slightly more overlap than

expected across the studied lattices.
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We attribute these di�erences to the presence of quenched disorder. In the case of

the conventional square spin system (i.e. lattice with no height o�set), the di�erence

between the experiment and prediction for the stochastic process can be suppressed

by removing lattice edges from the analysis. Conversely, in the case of the arti�cial

square ice magnet (i.e. lattice with properly tuned height o�set), the same approach

does not close the gap between the experiment and the prediction. The analysis of

the spin-states of often overlapping type III and type II vertices reveals local pref-

erence to host the same spin-state at those lattice sites repeatedly. Thus providing

direct evidence of quenched disorder being at play. Interestingly, the detailed ex-

amination of those lattice sites through electron microscopy has not revealed any

noticeable structural defects, which leads us to speculate that the quenched disorder

has a magnetic origin.

However, the most interesting outcome of this work is that the �eld demagnetisa-

tion protocol is not a purely deterministic process, as the response of the very same

lattice to several demagnetisations yields di�erent arrested con�gurations. Using

micromagnetic simulations, we show that the square lattice vertex's �eld-driven re-

versal is sensitive to room-temperature thermal 
uctuations, and the reversal order

di�ers with the stochastic thermal �eld seed. Those simulations lead us to believe

that the room-temperature thermal 
uctuations are not negligible for consideration

of �eld demagnetisation dynamics.

We note that describing arti�cial spin systems, which are thermally stable at

remanence, as athermal systems, as is often done in the literature, might be mis-

leading. Even though the blocking temperature of individual nanomagnets and

the Curie temperature of the constituent material is well above the temperature at

which the demagnetisation is carried out, the thermal 
uctuations are still present

and might in
uence the demagnetisation dynamics.

Lastly, we would like to note that plotting the vertex density maps provides

interesting insights regarding the level of stochasticity/determinism, as they con-

veniently highlight the regions that retain the same con�guration after successive

demagnetisations. The vertex density maps might help spot the areas that shall

be removed from the analysis as we did for the conventional square spin system

or in interpreting deviations from the at-equilibrium state. For example, one can

imagine that the monopoles present in the spin-liquid phase can originate either

from the freezing of the single spin-
ip dynamics or from quenched disorder. By do-

ing several demagnetisations, one can then distinguish between them, as the \true"

monopoles will appear at di�erent sites, and the \pinned" ones will appear at the

exact locations.
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5 EFFECTIVE THERMODYNAMICS IN ATHER-

MAL, FIELD-DEMAGNETISED ARTIFICIAL

SQUARE SPIN SYSTEMS

Arti�cially made spin systems o�er great 
exibility in the lattice design. This 
ex-

ibility enables not only the fabrication of a large palette of lattice geometries, but

also lattices of the same geometry with varying lattice parameters. This was em-

ployed already in the �rst study that reported an experimental investigation of an

arti�cial square spin system [12]. In this work, a series of square lattices consisting of

nanomagnets of the same size but with di�erent lattice parameters (i.e. periods) was

prepared, and the con�gurations obtained after an ac �eld demagnetisation protocol

were imaged. Comparing the vertex populations and pairwise spin correlations as a

function of lattice spacing revealed that magnetic ordering develops preferentially in

densely packed lattices. Accordingly, the lattices with larger lattice spacing are less

correlated, and uncorrelated spin arrangements are obtained for the largest studied

lattice spacing. This is expected as the increase of the lattice spacing signi�cantly

reduces the strength of the magnetostatic interaction coupling neighbouring nano-

magnets. However, even for the smallest studied lattice spacing, the fraction of type

I vertices was approx. 33 %, indicating that the arrested con�guration is far from

the ground state con�guration (perfect tiling of type I vertices only).

More details on the ac �eld demagnetisation protocol used in the aforementioned

study were provided in a work authored by the same group [54]. Here, it was re-

ported how the �eld was stepped down during the demagnetisation. The provided

information makes it possible to estimate the total duration of the demagnetisation

protocol as approx. 1 min. This work also compared di�erent �eld pro�les used for

the demagnetisation, concluding that ac demagnetisation was more e�cient (mea-

sured by total remanent magnetisation extracted from captured con�gurations) than

linear or monotonous stepping-down of the applied �eld. This work was later supple-

mented by the study originating from the same group [55], which also investigated

the role of the �neness of the magnetic �eld step size during the ac �eld demag-

netisation procedure. Apart from showing that the correlations continue to develop

even after the global magnetisation is minimised, which essentially advocates for

using �ner �eld step size to increase the demagnetisation e�ciency, this work also

reports that smaller lattice spacing yields more strongly correlated con�gurations.

This work does not directly report the maximum value of the type I vertex popu-

lation reached but reports values of spin-spin correlators. The highest value for the

nearest-neighbour pairwise spin correlator is reported as approx. ⟨C⟩ = 0.49± 0.03.

To provide a reference, the value of ⟨C⟩ = 1 is expected for ground-state con�gura-
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tion (tessellation of type I vertices only). Looking at the values of the minimal �eld

step size given, one can estimate the duration of the �nest demagnetisation protocol

as approx. 66 min.

Response of arti�cial square spin systems to other �eld pro�les used during the

�eld demagnetisation was also investigated. Interestingly, con�gurations with a type

I population of approx. 50 % were obtained using a protocol with �xed amplitude of

the applied magnetic �eld [56] and notably, arrested con�gurations with maximum

type I vertex fraction of approx. 63 % were obtained using linearly ramped down

�eld pro�le [57]. In accordance with the previous work that used the ac �eld pro�le

[55], the recipe for approaching the ground-state ordering is to have strong interac-

tions (i.e. small lattice parameter) and �ne-stepping of the �eld. In the work with

linearly-ramped down �eld pro�le [57], the total duration of the demagnetisation

protocol for the �nest ramping rate can be estimated as approx. 72 min. As all

studies with decaying external �elds mentioned above share similar starting values

of the external �eld (approx. 130 mT), it is reasonable to use the total duration

of the protocol to illustrate how much time the con�gurations were given to evolve.

For clarity, all the studies mentioned here employed sample rotation to compensate

for the multi-axial symmetry of the lattices (di�erent rotation speeds in the range

of approx. 2500|1000 RPM were used). To provide the time frame, the works

mentioned above were published in 2006{2013.

In 2011, a novel way of approaching the ground-state con�guration in arti�cial

square lattice by single-shot at-growth thermalisation was presented [39]. This ap-

proach leverages the fact that during the early stages of the material deposition,

the magnetisation of the islands can switch due to their low volume while accom-

modating the e�ective �eld from the neighbouring magnets. Assuming no external

magnetic �eld is present, the as-grown state can closely approach the ground-state

con�guration. The arrested con�guration imaged by MFM then showed GS-ordered

domains of type I with a width of approx. 10 µm, signi�cantly surpassing the results

of �eld demagnetised lattices formerly reported. Two years later, a study from the

same group reported results of applying the at-growth thermalisation process to a

series of square lattices with varying lattice parameters [40]. Notably, it was shown

that the captured populations of di�erent vertex types can be tuned by modifying

the lattice constant. Similar to what was reported previously for the �eld demagne-

tised lattices, smaller lattice constant results in more correlated con�gurations with

a higher fraction of type I vertices. For the most densely spaced lattices studied

even achieving population of 100 % of type I vertices over �ve MFM images of size

13 × 13 µm2 taken at di�erent places of the same lattice is reported. The e�ective

temperature is determined from experimentally observed vertex populations, follow-

ing the formalism presented previously [124]. Interestingly, it is shown that varying
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the lattice parameter yields con�gurations with distinct e�ective temperatures and

strong agreement with a vertex model (vertex energies estimated by a point-dipole

approximation) is reported. In other words, it is possible to scan across magnetic

microstates with distinct e�ective temperatures by fabricating a series of square lat-

tices with di�erent lattice parameters, which are at-growth thermalised.

In this work, we aim to investigate whether this approach of varying the lattice

parameter to obtain con�gurations characterised by di�erent e�ective temperatures

can be employed when working with athermal, �eld-demagnetised arti�cial square

spin system. This issue has already been mentioned in a previous work [124], which,

however, mainly focused on the e�ect of the magnetic �eld step on the achieved

e�ective temperature, even though some e�ect of varying the lattice parameter can

also be identi�ed from the experimental data reported. It is worth mentioning that

the maximum population of approx. 50 % for type I vertices is reported, similar to

the earlier studies working with the �eld demagnetisation. However, we know that

the ground-state con�guration (full tiling of type I vertices) can be approached more

closely with a �eld demagnetisation, as populations with approx. 86 % for type I

vertices were repeatedly reached previously in our group for arti�cial square arrays

[31]. Our goal is thus to complement the previous work [124] with more e�cient

demagnetisation, which, in principle, should enable us to obtain magnetic states

with lower e�ective temperatures. Ideally, approaching what was reported for the

at-growth thermalised arrays [40].

We believe this is an important matter that can provide more insights for com-

paring the e�ectiveness of �eld and thermal approaches for equilibrating the arti�-

cial arrays. It is our understanding that �eld demagnetisation is often considered

an obsolete or inferior process compared to thermal activation. We aim to show

that �eld demagnetisation can yield similarly good results, and it is still a relevant

method for exploring low-energy manifolds of arti�cial spin systems. Our study also

has practical implications. Assuming it is possible to scan across di�erent e�ective

temperatures by �eld demagnetising athermal square arrays with varying lattice pa-

rameter, one can even envision to probe a phase transition, provided it lies in the

experimental window of the e�ective temperatures reached.

To experimentally investigate the abovementioned matter, a sample with a se-

ries of arti�cial conventional square arrays [12] with varying lattice parameter was

fabricated. The sample is then �eld demagnetised and arrested con�gurations of in-

dividual lattices imaged by magnetic force microscopy. Captured magnetic images

were evaluated to obtain spin and vertex maps. The evolution of vertex populations

as a function of varying lattice parameter was then compared against the results

of Monte Carlo simulations with short-range (J1,J2) model. A good agreement

between the experiment and the simulation is observed, suggesting that adjusting
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the strength of the interactions in the square arrays makes it possible to probe

microstates that are representative of distinct (�ctitious) e�ective temperatures.

5.1 Sample design

This work studies the e�ects of varying the lattice parameter of arti�cial conventional

square arrays. By conventional, we mean a square lattice that has all magnets placed

directly on the substrate (i.e. there is no height o�set engineered). When designing

such an arti�cial array, one can essentially choose all the geometrical parameters

de�ning the lattice and also the constituent material. This enables the design to

be optimised in a convenient way for the planned experiment. For the purpose of

this work, the sample must be designed to ful�l the following requirements: 1) the

magnetic con�gurations of the arrays are stable at remanence (at room tempera-

ture), 2) the individual magnetic elements forming the grids are single-domain, 3)

arrays provide strong enough contrast for the magnetic force microscopy allowing

evaluation of each island and 4) for small lattice parameters the arrays are strongly

interacting to allow for approaching the ground-state ordering.

Considering the requirements listed above and the experience gained from the

previous works, we have opted for the following nominal values of geometrical pa-

rameters for our sample:

� magnet width: w = 100 nm, 150 nm and 200 nm,

� magnet length: l = 5× w,

� gap sweep: g = 0.4× w to 5× w (with step 0.2× w),

� magnetic material: 25 nm NiFe,

� nanomagnets shape: stadium (rectangle with two semicircular ends, see Fig. 5.1b),

� lattice size: 30× 30 vertices.

.

The choice of the magnet's width, length, thickness, and constituent material is

mostly based on our previous works (and those of a former student in our group).

Namely the square lattices with magnet width of 100 nm were investigated in [30,

31, 87] and for width of 150 nm in [97]. In those works, the same shape, aspect

ratio (i.e. l = 5 × w) and magnetic material (NiFe, thickness 25 or 30 nm) were

used. Based on the results obtained therein, we expect the closest approach to-

wards GS ordering (between 80 to 90 % of type I vertices) for gaps in the range

g = 1× w to 2× w. The gap refers to the distance between opposite magnets at a

vertex site. Therefore, the designed gap sweep corresponds to a sweep of the lattice

parameter in the range of a = 5.4× w to 10× w (a = l + g), yielding a series of 24

lattices for each designed width.
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Fig. 5.1: a) Sketch of a conventional

square lattice of size 2 × 2 vertices, with

plotted geometrical parameters. b) De-

tail of single stadium-shaped magnet with

de�ning geometrical parameters.

Tab. 5.1: Overview of designed lat-

tices

w [nm] 100 150 200

Lat. nr. g [nm] g [nm] g [nm]

1 40 60 80

2 60 90 120

3 80 120 160

4 100 150 200

5 120 180 240

6 140 210 280

7 160 240 320

8 180 270 360

9 200 300 400

10 220 330 440

11 240 360 480

12 260 390 520

13 280 420 560

14 300 450 600

15 320 480 640

16 340 510 680

17 360 540 720

18 380 570 760

19 400 600 800

20 420 630 840

21 440 660 880

22 460 690 920

23 480 720 960

24 500 750 1000

Such a gap sweep should enable us to closely approach the GS ordering for the

small gaps and also to capture signi�cant changes in vertex populations as the in-

teraction strengths are weakened by increasing the gap. In fact, we start the sweep

from g = 0.4× w for which the magnet's semicircular heads are in contact (for the

perpendicular neighbouring magnets at the vertex site) to ensure that we probe the

smallest possible gaps. The �rst four lattices in each series have a gap smaller than

the magnet width, which was not reported in the literature, as per the understand-
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ing of the author of this thesis.

To �nish the description of the sample design, we note that we have opted for

lattice size 30× 30 vertices. Such a lattice then consist of 1860 individual magnets

and each vertex constitutes of 4 magnets (there are no incomplete vertices at lattice

edges). Maximum array size (w = 200 nm, g = 1000 nm) is 61 × 61 µm, ensuring

that even the largest lattice can be imaged by a single MFM scan, which is conve-

nient both for the measurement and also the evaluation.

5.2 Sample fabrication and SEM characterisation

The sample considered here was fabricated by our usual lift-o� process, with the

lithography carried out by 80 kV electron beam writer Nanobeam Nb5 at Institut

Néel. Series of conventional square lattices with varied gaps (listed in Tab. 5.1) were

patterned with eight di�erent exposure doses (from D = 600 to 1300 µC/cm2, with

step of 100 µC/cm2) and each series for given magnet width and dose was repeated

four times. We note that all the lattices were patterned on a single 10× 10 cm2 Si

substrate. The reasoning for replicating each series four times serves two primary

purposes. First, once the optimal dose that produces high-quality structures is de-

termined, we can gather data from multiple series of design-wise identical lattices.

This approach enhances the statistical reliability of the results without the necessity

to repeat the demagnetisation protocol several times. Second, replicating each series

across di�erent locations on the sample reduces the risk of encountering damaged

lattices. This precaution accounts for potential local fabrication 
aws, which could

arise from impurities or insu�cient adhesion.

The dose sweep was designed according to previous experience in a way that

it starts with a dose which is on the lower limit of the optimal dose window

(D1 = 600 µC/cm2) and slowly progresses towards the higher doses for which we

expect higher quality of the fabricated structures. However, a higher dose generally

leads to a slight enlargement of structures (essentially positive bias of the design),

which might lead to undesirable (and undesigned) melting of the magnets at the ver-

tex sites for small gaps. With the designed dose sweep, we aim to �nd an optimal

dose(s) that yields high-quality structures and ensures that unconnected individual

islands still form the lattices with small gaps.

In order to assess the fabrication quality and to evaluate the smallest achieved

lattice spacing (i.e., the smallest gap for which no melting is present), we have

conducted detailed SEM imaging across the lattices fabricated with di�erent ex-

posure doses. Fig. 5.2 shows SEM details of fabricated conventional square lattice
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(w = 100 nm, g = 140 nm) captured with a stage tilt of 60◦. The best shape quality

is observed for the highest dose (D8 = 1300 µC/cm2). On the other hand, for the

dose D2 = 700 µC/cm2, the shape quality is rather poor. For this study, we have

decided to work with lattices exposed with doses ranging from D5 = 1000 µC/cm2

to D8 = 1300 µC/cm2, which yield nanomagnets of acceptable shape quality. The

structures exposed with lower doses mostly su�er from lower edge quality and show

less smooth top surfaces.

D2 = 700 μC/cm2 D4 = 900 μC/cm2 D5 = 1000 μC/cm2 D8 = 1300 μC/cm2

Fig. 5.2: Tilted (60◦) SEM details of lattices with nominal width w = 100 nm and

nominal gap g = 140 nm (lat. nr. 6) for di�erent exposure doses (indicated above

each image).

The next step is to evaluate for which designed gap the melting together of the

nanomagnets at the vertex site will occur and to establish whether this critical gap

will di�er across exposure doses. Fig. 5.3 shows SEM details taken at the approxi-

mate centre of lattices with magnet width w = 100 nm for previously selected dose

range D5{D8 and for lat. nr. 4{6. The red circles highlight observed tiny connec-

tions between neighbouring magnets at the vertex site (to be on the safe side, we

consider even the tiniest connections).

This analysis allows us to conclude that for the dose range D5{D8 lattices with

nr. 6{24 are indeed formed by individual (unmelted) islands. Lattices with nr. 4

and 5 can be considered as transition between individual and melted islands (we

will show later that these tiny connections do not signi�cantly alter the vertex pop-

ulations). For the lattices with nr. 3, the connecting bridges between perpendicular

magnets are more evident. For the lattice nr. 2, we observed the formation of an

essentially connected square grid with holes at the vertex site (similar to the geome-

try we studied elsewhere [26]. Lattices with nr. 1 also forms connected square grids,

but defects are present at the vertex sites (resist masking the \hole" is either not

lifted-o� or fell to the side, leading to missing magnetic material).
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5.2 Sample fabrication and SEM characterisation

Lat. nr. 4, g = 100 nm Lat. nr. 5, g = 120 nm Lat. nr. 6, g = 140 nm

D8

D7

D6

D5

Fig. 5.3: SEM details taken approximately at lattice centres of lattices with width

w = 100 nm. Rows correspond to di�erent exposure doses (indicated on the left)

and columns to di�erent nominal gaps/lattice numbers (indicated above). Yellow

bar represents 500 nm in all images. Red circles highlight magnets in contact (i.e.

there is a tiny bridge connecting perpendicular neighbours at the vertex site).

We have conducted the same assessment for the lattices with nanomagnet width

w = 150 nm, the results are provided in Fig. 5.4. For those lattices, we observe

that the lattices nr. 4{24 are formed by individual nanomagnets. For the lat. nr.

3, we observe melting for doses D6{D8, while for the D5, we observe that the mag-

nets are still not in contact. For the lat. nr. 2, we again observe the formation of

fully connected square grids with holes of varied pillow-like shapes. The lat. nr. 1

shows the same connected grids with defects as for lattices with the magnet width

w = 100 nm.

To conclude, we have established that the majority of the fabricated series are

formed by individual nanomagnets (lat. nr. 6{24 for the width of magnets 100 nm

and lat. nr. 4{24 for the width of 150 nm). These ranges are valid for exposure
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5.3 Experimental results

Lat. nr. 2, g = 90 nm Lat. nr. 3, g = 120 nm Lat. nr. 4, g = 150 nm

D8

D7

D6

D5

Fig. 5.4: SEM details taken approximately at lattice centres of lattices with width

w = 150 nm. Rows correspond to di�erent exposure doses (indicated on the left),

and columns to di�erent nominal gaps/lattice numbers (indicated above). Yellow

bar represents 500 nm in all images. Red circles highlight magnets in contact (i.e.

there is a tiny bridge connecting perpendicular neighbours at the vertex site). Red

frames highlight fully melted lattices with holes at the vertex sites.

doses D5{D8. Hence, using SEM imaging, we have identi�ed the area of interest

with lattices suitable for our experiment.

5.3 Experimental results

In order to bring the lattices to their low-energy manifolds, we have employed a 72h

long ac �eld demagnetisation protocol (with sample rotation). Lattices belonging
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5.3.1 Lattices with magnet width 100 nm

to the area of interest (based on the SEM assessment described above) were then

imaged by magnetic force microscopy. The spin con�gurations were then evaluated

based on the obtained MFM images, which enabled us to extract all characteris-

ing quantities of our lattices, such as vertex populations or spin correlations. As

the collected dataset is quite extensive (we have measured more than 340 di�erent

lattices across di�erent widths and exposure doses), we will provide only selected

representatives of the series in the text and complete example series in the Appendix

of the thesis. In the following, we will primarily focus on the global properties, such

as the vertex populations as a function of the gap.

5.3.1 Lattices with magnet width 100 nm

Fig. 5.5 shows three measured magnetic con�gurations and their associated spin and

vertex maps. These three con�gurations are selected as representatives of the entire

gap sweep series (magnet width w = 100 nm), full series is provided in Sec. A.1.

Fig. 5.5a shows the image of lat. nr. 6, the smallest gap, for which the lattice

consists of individual (unmelted) islands. Fig. 5.5c shows the image of lat. nr. 24,

which is the largest gap in the designed series, and Fig. 5.5b shows the image of the

lat. nr. 15, which is in the middle of the suitable gap sweep range (for convenience,

the images are shown as equal size).

At this point, it is instructive to recall what is the ground-state con�guration

of a conventional square lattice. Regardless of the gap size or magnet width, the

magnetostatic coupling strength between the perpendicular neighbouring magnets

J1 is always stronger than between the collinear magnets J2. This means that the

type I vertices have the lowest energy and the ground state is antiferromagnetically

ordered, two times degenerate, and consists of a tessellation of type I vertices.

Looking at the vertex/spin map obtained experimentally for the gap g = 140 nm

(see Fig. 5.5d), one can see that the ground-state con�guration is approached. The

lattice is dominantly populated by type I vertices (approx. 85 %), which form large

domains (highlighted by light green and light blue colours to ease the recognition of

separate domains). These type I domains are separated by domain walls, formed by

mostly type II vertices (approx. 14 %). A small fraction of type III vertices (approx.

1 %) is present and exclusively incorporated within the domain walls. This result is

consistent with what we reported above for di�erent sample (see Fig. 4.8) and with

previous studies originating from our group [30, 31]. Our result surpasses other re-

ported studies which employed various �eld demagnetisation protocols [55{57, 124],

judged by achieved type I vertex fraction (or nearest-neighbour pairwise spin corre-

lator). However, our result still somewhat underperforms what was reported for the

at-growth thermalisation equilibration [40].
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5.3.1 Lattices with magnet width 100 nm

a) b) c)

d) e) f)
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Type II

Type III

Type IV
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Type II

Type III

Type IV

Type I Type II

Type III
0 0.50.25 0.75 1

Type I Type II

Type III
0 0.50.25 0.75 1

Type I Type II

Type III
0 0.50.25 0.75 1

Type IV

Lat. nr. 6, g = 140 nm Lat. nr. 15, g = 320 nm Lat. nr. 24, g = 500 nm

Fig. 5.5: a-c) Magnetic images of conventional square lattices (w = 100 nm) with

gaps g = 140 nm, 320 nm and 500 nm (corresponding lat. nr. 6, 15 and 24, from

left to right). d-f) Spin and vertex maps extracted from (a-c), each map is below its

respective magnetic image. The legends for interpreting the magnetic images and

spin/vertex maps are provided on the right. Below each spin/vertex map is a stacked

bar chart indicating the vertex populations of the respective map above. The images

belong to one series of lattices exposed with exposure dose D7 = 1200 µC/cm2.

Pivoting back to the results provided in Fig. 5.5, one can see how the increase of

the gap, which leads to the weakening of the coupling strengths, a�ects the captured

con�gurations. For the gap g = 320 nm (see Fig. 5.5e), the type I population ex-

hibits an approximate 20% reduction, along with a decrease in the average domain

size and an increase in their overall number. Correspondingly, the type II popula-

tion has increased by approx. 9 % and type III population by approx. 11 %. While

the type II vertices form mostly one-vertex-wide domain walls again, similar to the

gap g = 140 nm, the type III vertices start forming small clusters that connect the

type II domain walls. For the largest gap in the series g = 500 nm (see Fig. 5.5f,

the population of type I vertices is further reduced by approx. 28 % at the expense

of type II and type III vertices. Type I domains are further divided into smaller

patches, and type II vertices start to form patches as well (or this can be described

as widening of the domain walls). Type III vertices then form larger clusters or
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5.3.1 Lattices with magnet width 100 nm

appear as single vertices and are generally more evenly distributed over the whole

lattice. Even three type IV vertices are observed, showing a signi�cant weakening

of the coupling strengths, as those never appear for the lattices with small gaps.

Henceforth, our analysis will shift towards examining the collective characteris-

tics of the entire series under study. To facilitate this, we have plotted the vertex

populations derived from individual MFM images belonging to one series of lattices

with varying gaps (see Fig. 5.6, w = 100 nm, D7 = 1200 µC/cm2).

Fig. 5.6: Evolution of the vertex populations as a function of gap for one series of

conventional square lattices (w = 100 nm, D7 = 1200 µC/cm2). Three lat. nr./gaps,

for which MFM images and spin/vertex maps are presented in Fig. 5.5 are indicated

by red dashed lines. The full symbols denote experimental data. The lines serve

solely as a visual guide.

It is worth noting that the series under discussion is the same from which we

have presented the exemplar of the three lattices in Fig. 5.5. Notably, within this

series of 21 lattices (lattice numbers 4 to 24), we observe an absence of defects at

the spin level (i.e. missing magnets). This absence of missing spins is a testament to

a well-tuned fabrication process and also showcases the capabilities of the electron

beam writer, the NanoBeam nB5.

Looking at the trends for the vertex populations as a function of gap (Fig. 5.6),
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5.3.1 Lattices with magnet width 100 nm

we observe how the weakening of the coupling strengths leads to signi�cant changes

of the vertex type distribution. In most of the gap range (lat. nr. 8{24), we observe

a linear-like reduction of type I population at the bene�t of type II and III vertices.

However, even for the largest gap in the series (lat. nr. 24, g = 500 nm), the sys-

tem is still correlated, as the vertex populations are far from what is expected for

the uncorrelated (paramagnetic) con�guration. For such a con�guration, the vertex

fractions correspond to the vertex degeneracy (i.e. 12.5 %, 25 %, 50 % and 12.5 %

for type I, II, III and IV, respectively).

Interestingly, the vertex population of type I seems to saturate for the gaps

smaller than approx. g = 200 nm and further reduction of the gap does not lead to-

wards increasing the type I population. Even if we exclude the lat. nr. 4 and 5 from

the consideration1, we observe that for lat. nr. 6{8, the type I fraction essentially

plateaus at approx. 80-85 %, which starkly contrasts with the rest of the series (lat.

nr. 9{24). This is an unexpected result, which we will discuss later. We will also

show that for the lattices with magnet width w = 150 nm, the trend change for the

small gaps becomes even more pronounced.

As we have measured and evaluated three additional series that have identical

fabrication parameters (same design, same dose) as the series presented in Fig. 5.6,

it is natural to aggregate the results to improve the statistical reliability. The ag-

gregated plot of the vertex populations as a function of the gap for the four series is

provided in Fig. 5.7. The data for the individual series are shown as open symbols,

and the averaged data are denoted by full symbols with lines to guide the eye. The

chart shows strong agreement across the four series and only minor variations be-

tween them. Some variation is expected, as we are working with lattices of limited

size (30× 30 vertices). We note that for the 84 lattices belonging to the four series,

we observe only four having a defect on a spin level (i.e. missing magnet; at most,

3/1860 spins are missing). This low rate of defects means that the structural disor-

der in our lattices is essentially negligible.

Looking at the aggregated chart of vertex populations provided in Fig. 5.7, we

clearly observe the saturation of type I vertices for the small gaps, as we did for the

individual series (Fig. 5.6). We marked the lat. nr. 8 (g = 180 nm) by green dashed

line as a threshold at which the linear increase of the type I vertices, observed for

the majority of the series (lat. nr. 9{24) changes to a 
at value. By a green dashed

line, we marked the lattices (4 and 5) for which we observed the formation of minute

1For lattice number 4, we detected the formation of minute connections between perpendicularly

neighbouring magnets at vertex sites for dose D7 (refer to Fig. 5.3). In the case of lattice number

5, the formation of such connections for dose D7 was not observed; however, this phenomenon

was noted for doses D6 and D8. Consequently, to err on the side of caution, we also consider the

potential for bridge formation in lattice number 5 for dose D7.
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5.3.1 Lattices with magnet width 100 nm

Fig. 5.7: Evolution of vertex populations as a function of a gap for a set of four

design-wise identical series of conventional square lattices (w = 100 nm, D7 =

1200 µC/cm2). The open data markers denote experimental results for the four

series. The full markers show the average values. The lines connect the average

values and are provided as a visual aid.

connections between the magnets. We will now focus on the outcomes observed for

lattices featuring a magnet width of w = 150 nm. We will discuss potential expla-

nations for the occurrence of type I vertex population saturation for narrow gaps

later.
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5.3.2 Lattices with magnet width 150 nm

5.3.2 Lattices with magnet width 150 nm

In the following, we report the results obtained magnet width w = 150 nm. We

will follow the same steps as for the lattices with magnet width w = 100 nm, for

which we have reported the results above. Fig. 5.8 shows three MFM images and

associated spin/vertex maps as representatives of the gap sweep series, full series is

provided in Sec. A.2. Generally, we observe a similar e�ect of the gap increase on

the captured con�gurations.

a) b) c)

d) e) f)

Lat. nr. 5, g = 180 nm Lat. nr. 14, g = 450 nm Lat. nr. 24, g = 750 nm

Type I

Type II

Type III

Type IV

Type I

Type II

Type III

Type IV

0 0.50.25 0.75 1

Type I Type II

Type III
0 0.50.25 0.75 1

Type I Type II

Type III Type III
0 0.50.25 0.75 1

Type I Type II Type IVType IV

Fig. 5.8: a-c) Magnetic images of conventional square lattices (w = 150 nm) with

gaps g = 180 nm, 450 nm and 750 nm (corresponding lat. nr. 5, 14 and 24, from

left to right). d-f) Spin and vertex maps extracted from (a-c), each map is below its

respective magnetic image. One multi-domain magnet is observed in (c), highlighted

by a cyan frame. As we cannot assign an Ising value to it, there is one missing spin

in (e). The legends for interpreting the magnetic images and spin/vertex maps are

provided on the right. Below each spin/vertex map is a stacked bar chart indicating

the vertex populations of the respective map above. The images belong to one series

of lattices exposed with exposure dose D5 = 1000 µC/cm2.

For the gap g = 180 nm (Fig. 5.8d), we again observe con�guration that ap-

proaches the ground-state ordering. The ratio between type I, II and III vertices is

similar to what we reported for the lat. nr. 6 (w = 100 nm, see Fig. 5.5d). Again,

we observe large domains of type I vertices, separated by type II domain walls, that
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5.3.2 Lattices with magnet width 150 nm

occasionally host type III vertices. The only di�erence compared to lat. nr. 6

(w = 100 nm) is that all domain walls are not connected to the lattice edges, and

we observe a few small type II domain loops encapsulating small type I domains

within large type I domains. The amount of charged defects (type III vertices) is

only slightly higher (9 counts for w = 100 nm and 12 counts for w = 150 nm).

Looking at the opposite end of the gap series (see Fig. 5.8f), we observe con�gu-

ration that is very similar to what we observed for the largest gap in the w = 100 nm

series (Fig. 5.5f, both in vertex populations and in how the vertices are spatially dis-

tributed over the lattice).

Noticeably, for the gap g = 450 nm (Fig.5.8e), we observe a di�erent balance

between the vertex types compared to lat. nr. 15 (w = 100 nm, Fig. 5.5e). With

the increase of the gap size, we observe a faster reduction of type I vertices at the

expense of type II and III vertices for the lattice with magnet width w = 150 nm.

Additionally, we also see a faster increase in the type III vertex population. We note

that both lattices under comparison belong roughly to the centre of the studied gap

series.

The next step is to examine the evolution of the vertex populations as a func-

tion of the gap sweep. Fig. 5.9 presents a chart depicting the vertex populations,

derived from individual MFM images, within a single series of lattices with varied

gaps (w = 150 nm, D5 = 1000 µC/cm2). From this series, we provided the three

exemplars MFM images with their respective spin/vertex maps in Fig. 5.8. For this

series as well, we do not observe any structural defect on the spin level. However, for

large gaps, we rarely observe magnets forming multi-domain states (three lattices

have one or two multi-domain magnets). For reference, each lattice is formed by

1860 spins, so the multi-domain defect level is very low. As we cannot assign an

Ising value to those multi-domain magnets, we treat them as a missing spin when

evaluating the spin con�gurations (an example is provided in Fig. 5.8f). Looking at

the provided plot of the vertex populations, we observe a similar trend as for the

w = 100 nm series. There are, however, several di�erences.

Firstly, we do not observe a saturation for type I vertices for small gaps, but we

observe a reversal of the trend (for which the magnets are still not melted together,

see Fig. 5.4). This e�ect is unexpected and will be discussed later. Secondly, we

observe that the decrease of the type I population as the gap is increased is faster for

the part of the range (lat. nr. 5{10) than for the rest of the series (lat. nr. 11{24).

We note that for the w = 100 nm series, the decrease of type I vertices seemed

linear-like. Thirdly, we observe a smaller separation between the type II and type

III trendlines, compared to the w = 100 nm series. These three observations show

that the change in the width of the magnets has signi�cant e�ects on the observed

vertex populations, even though the magnet's aspect ratio remains the same.
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5.3.2 Lattices with magnet width 150 nm

Fig. 5.9: Evolution of the vertex populations as a function of gap for one series of

conventional square lattices (w = 150 nm, D5 = 1000 µC/cm2). Three lat. nr./gaps,

for which MFM images and spin/vertex maps are presented in Fig. 5.8 are indicated

by red dashed lines. The symbols denote experimental data. The lines serve solely

as a visual guide.

Similar to the w = 100 nm series, we have accumulated measurements of three

additional design-wise identical series for the magnet width w = 150 nm (all for the

same dose D5 = 1000 µC/cm2). In two of the series, lat. nr. 3 and 4, measurement

was not conducted due to observed defects. Besides, the vast majority of lattices

were found to be defect-free. Only for 10 lattices out of 84, we could not extract the

orientation of each spin, mostly due to the multi-domain state or impurities prevent-

ing us from obtaining readable magnetic contrast. In the most severe cases among

these 10 lattices, the orientation of 5 out of 1860 spins could not be determined.

Establishing the overall sound quality of the lattices within the four series, we

have aggregated the results to improve their statistical reliability. The composite

graph of the vertex populations as a function of gap for the four series (w = 150 nm,

D5 = 1000 µC/cm2) is shown in Fig. 5.10. Open symbols denote data points for the

individual series, while the full symbols show the average values. The lines connect

the average values to provide a visual guide. Orange labels highlight the two lattice

numbers (3 and 4), as they were measured only for two series (in the other two

143



5.3.2 Lattices with magnet width 150 nm

series, signi�cant defects were observed for those lattices).

Fig. 5.10: Evolution of the vertex populations as a function of a gap for a set

of four design-wise identical series of conventional square lattices (w = 150 nm,

D5 = 1000 µC/cm2). The open symbols denote experimental results for the four

series. The full symbols show the average values. The lines connect the average

values and are provided as a visual guide. The two lattice numbers (4 and 5)

measured only from two series are highlighted by orange labels.

Looking at the composite chart, we observe robust agreement across the four

series, and the observations we made for the individual series plot (in Fig. 5.9) are

also valid here. The green dotted line highlights the gap for which a reversal in

population trends is observed, whereas the green dashed line indicates a shift in the

trend's steepness.
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5.4 Comparison with thermodynamics

The scienti�c question we want to address is whether it is possible to probe con-

�gurations representative of di�erent e�ective temperatures by tuning the coupling

strengths of athermal, �eld-demagnetised arti�cial square spin system. In other

words, can the evolution of the captured magnetic con�gurations as a function of

lattice parameter be viewed as a series of at-equilibrium states with di�erent e�ec-

tive temperatures?

In order to address this question, we carried out Monte Carlo simulations with

an Ising spin Hamiltonian, which enabled us to sample through the at-equilibrium

thermodynamic properties of the chosen model. In this work, we decided to use the

short-range model. Thus, only coupling strengths of the �rst and second neighbours

(J1 and J2) are considered. This is an approximation, as our systems of single-

domain islands are dipolar in nature. However, previous works studying similar

conventional square lattice systems (at-growth thermalised) show that the captured

physics is well described by a short-range model [39, 40]. In those works, the point-

dipole approximation was used to estimate the vertex type energies (only six pairwise

interactions between the four dipoles forming the vertex contribute to its energy).

Provided that the numerical model is aligned with our experimental system, we

can then compare the properties of a series of experimentally studied lattices with

increasing gaps against the thermodynamic evolution of the model.

5.4.1 Coupling strength estimation

To align the numerical model with the actual physical system, we performed a series

of micromagnetic simulations, which enable us to estimate the values of the coupling

strengths as a function of the lattice parameter. Compared to estimating the inter-

actions based on the magnetic charges (dumbbell model) [68, 124] or point-dipole

approximation [39, 40], the micromagnetic approach accounts for the magnetisation

texture of the islands, which is not exactly uniform, particularly at their both ex-

tremities [86, 109{113].

We thus computed the micromagnetic energy of type I, II and III vertices with

increased magnet-to-magnet distance, utilising the MuMax3 software [75]. The sim-

ulations are designed to closely follow both the geometrical and the material pa-

rameters of the lattices studied experimentally. Thus for the series of w = 100 nm

lattices the magnets have size 500×100×25 nm3 and the magnet-to-magnet distance

(i.e. gap) is varied from g = 0.6×w to 5×w (with step of 0.2×w). The simulation

mesh is set to 2× 2× 25 nm3, and the simulation space is set to �t completely the

full vertex for the largest gap value. Correspondingly, for the series of w = 150 nm

145



5.4.1 Coupling strength estimation

lattices, the magnets have size 750 × 150 × 25 nm3 and the gap is increased in the

same fashion as for the w = 100 nm lattices. In this case, the simulation mesh is set

to 4 × 4 × 25 nm3. For both simulation series, the nanomagnets have the stadium

shape, as in the experiment. For the material de�nition, parameters commonly used

for permalloy are set (saturation magnetisation MS = 800 kAm−1, exchange sti�-

ness A = 10 pJm−1 and magnetocrystalline anisotropy is neglected). The damping

is set to α = 0.5, and simulations are run at 0 K with no external �eld applied.

The coupling strengths between perpendicular neighbours J1 and collinear neigh-

bours J2 are then calculated as follows:

J1 = −(E1 + E2 − 2× E3) /4, (5.1)

J2 = −(E2 − E3) /2, (5.2)

where Ei (i = 1, 2 and 3) are the total vertex energies of type I, II and III, respec-

tively (description of the energy calculation and results are provided in Methods in

Sec. 2.1). Fig. 5.11 shows the results of the MuMax3 simulations for the w = 100 nm

series of lattices. Fig. 5.11a shows an example of the geometry de�nition for two

cases: g = 100 nm and g = 500 nm. The white areas correspond to the individual

magnets, and for those areas, the material parameters corresponding to permalloy

are de�ned. In the bottom panel, we show the six pairwise couplings (4×J1, 2×J2)

that contribute to the vertex energy. Fig. 5.11b shows the snapshots of �nal micro-

magnetic states (after the system is relaxed in the simulation) of the type I, II and

III vertices (from left to right) for the two gaps (same as in Fig. 5.11a). The total

energies of those three con�gurations are saved as an output of the simulation and

are used to calculate the coupling strengths.

Fig. 5.11c then shows the plot of coupling strengths J1, J2 as a function of the

gap. As expected, increasing the gap leads to reducing the coupling strengths, and

the coupling strength for the perpendicular neighbours is always stronger than that

of the collinear neighbours (i.e. J1 > J2) in the sampled range of gap values.

It is instructive to plot the ratio J2/J1 as a function of the gap (provided in

Fig. 5.11d), as it provides clear insight on what is the expected ground-state order-

ing of the system. Interestingly, we observe that for small gaps, the ratio increases

towards the ice condition (J2/J1 = 1). However, even for the smallest possible gap,

for which the magnets do not touch (g = 45 nm, not shown in the chart), the con-

dition is not reached (J2/J1 = 0.85) and stays on the side of J1 > J2. Therefore,

from the magnetostatic point of view, the expected ground-state ordering is type I

tiling for all studied gaps.

If we consider the range of gaps for which we observe unmelted magnets in

the experiment (g ≤ 140 nm), the values of the J2/J1 ratio lie in the interval
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Fig. 5.11: a) Two examples of geometry de�nition for micromagnetic simulations

for the lattices with magnet width w = 100 nm. In the bottom image the J1, J2
coupling strengths are illustrated. b) Snapshots of the �nal micromagnetic simulated

states for type I, II and III vertices. The local direction of magnetisation is indicated

by colour according to the provided colour wheel. The arrows next to individual

magnets show the overall magnetisation direction to provide a visual guide. c) Plot

of coupling strengths J1 and J2 as a function of the gap. The values of coupling

strengths J1, J2 are computed using eq. 5.1 and 5.2, respectively. d) J2/J1 ratio as

a function of the gap. The red dotted line indicates the gap for which we observed

melting of the magnets in the experiment, while the red dashed line indicates the gap

below which the population of type I vertices does not increase in the experiment.

< 0.55; 0.71 >. This is the interval of interest that will be probed in the Monte

Carlo simulations (the J2/J1 ratio is used to de�ne the coupling strengths for the

model). At this point, it might seem that our e�ort to describe the experimental

results by a single model is a lost battle, as the J2/J1 ratio is not constant across the
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5.4.1 Coupling strength estimation

studied gap range. In fact, one could consider viewing our series of lattices as a set

of di�erent models, as for each gap, the value of J2/J1 ratio is di�erent. However,

we will show later that our approach (�tting the experimental data with a single

model) works and provides a good agreement.

We now shift our focus to the series of w = 150 nm lattices, for which we have

followed the same micromagnetic approach to obtain the estimates for the coupling

strengths, as for the w = 100 nm lattices. As we have followed the same steps as

above, we report only the results for the J1 and J2 coupling strengths and their ratio

(see Fig. 5.12). Looking at the charts, the results are similar to the ones obtained

for the w = 100 nm lattices. Naturally, the absolute value of the J1, J2 coupling

strengths is slightly higher as the magnets have a larger volume (see Fig. 5.12a).

The plot of the J2/J1 ratio (shown in Fig. 5.12b) reveals a trend very similar to the

one of the w = 100 nm lattices. If we consider the range of gaps for which we do

not observe the trend reversal of the vertex populations, we obtain an interval for

the J2/J1 ratio < 0.60; 0.76 >.
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Fig. 5.12: Results of the MuMax3 simulations for the w = 150 nm lattices. a) Plot

of coupling strengths J1 and J2 as a function of the gap. The values of coupling

strengths J1, J2 are computed using eq. 5.1 and 5.2, respectively. d) J2/J1 ratio as

a function of the gap. The red dashed line indicates the gap for which the trend of

the vertex populations is reversed in the experiment.

To conclude, we have estimated the J2/J1 ratio for both series of lattices studied

experimentally (w = 100 and 150 nm) using micromagnetic simulations. This lets

us know what J2/J1 ratio values to focus on with Monte Carlo simulations. The

question of what happens for the small gaps (trend saturation for the w = 100 nm

lattices and trend reversal for the w = 150 nm lattices) remains unanswered for now,

and we will address it later in the discussion.
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5.4.2 Probing the thermodynamic properties

5.4.2 Probing the thermodynamic properties

The next step is to probe numerically �nite temperature properties of the short-

range square spin model using Monte Carlo simulations. The idea is to compute a

series of simulations with di�erent J2/J1 ratios sampling the interval estimated by

micromagnetic simulations. Subsequently, we plan to compare the results of Monte

Carlo simulations against the experimental data. We proceed as follows:

1. We compute a set of Monte Carlo simulations for di�erent values of J2/J1 ratio

(ranging from 0.50 to 1.00 with a step of 0.05). This range covers the interval

of J2/J1 ratios estimated from the micromagnetic simulations.

2. We �t the above reported experimental data to the vertex populations obtained

with the Monte Carlo simulations. Essentially, we �t a series of experimental

quadruplets (vertex populations of all four vertex types for a series of lattices

with varied gap) to the vertex population curves obtained by Monte Carlo

simulations employing the least-square method.

3. We establish what value of J2/J1 ratio provides the best �t for each of the two

averaged experimental series (w = 100 nm and w = 150 nm lattices).

4. We then compare the experimental averaged magnetic structure factors to the

ones obtained with Monte Carlo simulations for the J2/J1 ratio selected in the

previous point.

5. If the experimental data and Monte Carlo simulations agree both in the vertex

populations and magnetic structure factors, we can consider our series of lat-

tices with varied gap as a series of at-equilibrium states with di�erent e�ective

temperatures.

For the Monte Carlo simulations, we de�ne the short-range Ising spin Hamilto-

nian as:

H = −
∑

i,j|J1,J2

Ji,jσiσj, (5.3)

where σi and σj are Ising variables on sites i and j of a square lattice, and only

interactions between magnets coupled by J1, J2 coupling strengths are considered.

The simulations were carried out for lattice size 30×30 vertices, equalling the lattice

size used in the experiment. The simulations utilise a single-spin 
ip algorithm and

open boundary conditions. The cooling-down procedure starts at T/J1 = 100 and

ends as the single spin-
ip dynamics freezes. After each temperature step-down,

�rst 104 modi�ed Monte Carlo steps (mmcs) are used for reaching the thermal

equilibrium and then measurements follow (also computed with 104 mmcs). Thus,

at each temperature step of the simulation, we collect a large set of statistically

independent con�gurations (104), from which we compute the mean values of vertex
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5.4.3 Results: w = 100 nm series

populations and associated standard deviations (both per-vertex type).

Fig. 5.13 shows results of Monte Carlo simulations for two exemplar J2/J1 ratios

out of the sampled interval. As expected, in both cases, the vertex population curves

start from the value corresponding to the vertex degeneracy in the high-temperature

limit. Similarly, we observe that pure type I ground state is closely approached in

the low-temperature limit for both cases. However, we observe signi�cant di�erences

in how the vertex population evolves, especially for type II and III vertices, for the

Monte Carlo temperature around units of T/J1. As the e�ective temperature of

�eld demagnetised lattices such as ours generally approximates the magnitude of

J1, selecting the J2/J1 ratio will be crucial to �nding a good agreement between our

experimental data and the Monte Carlo simulations.

Fig. 5.13: Results of Monte Carlo simulations for a short-range square spin system

for two distinct J2/J1 ratios: (a) J2/J1 = 0.60 and (b) J2/J1 = 0.80. The vertex

populations and their standard deviations are plotted as lines with enveloping error

bands.

5.4.3 Results: w = 100 nm series

We thus proceed by comparing the experimental results (averaged series obtained

for w = 100 nm, D7 = 1200 µC/cm2 lattices, see Fig. 5.7) against the vertex popu-

lation curves obtained by Monte Carlo simulations to �nd what J2/J1 ratio provides

the best �t. For now, we restrict the experimental data to lattices for which we do

not observe the type I saturation (lat nr. 8{24, g = 180 nm to 500 nm).

Fig. 5.14 shows the results of �tting the experimental data against the Monte

Carlo simulated vertex population curves. For each experimental quadruplet (i.e.,

vertex populations of all four types per given gap), the best �t against the ex-

perimental data was found using the least-square method. The overall quality of

the �t is determined as the average of the root mean square error calculated for
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5.4.3 Results: w = 100 nm series

each quadruplet.

Fig. 5.14: Results of comparing the experimental data averaged over four series

(w = 100 nm, D7 = 1200 µC/cm2) against Monte Carlo population curves for

three di�erent J2/J1 ratios: (a) J2/J1 = 0.75, (b) J2/J1 = 0.70 and (c) J2/J1 =

0.80. MC simulated populations are shown as lines with enveloping 1σ error bands.

Experimental data are shown by symbols with their associated error bars indicating

standard deviation. For data points belonging to type I experimental data, the lat.

nr. is provided as a label next to each respective point. The mean RMSE indicates

the quality of the agreement above each chart. The best �t is observed for the MC

ratio J2/J1 = 0.75.

The �gure shows that the best �t is reached for the MC set with ratio J2/J1 =

0.75 (see Fig. 5.14). The agreement between the experiment and the Monte Carlo

simulation is remarkable in two ways. First, we observe that almost all experimental

data points, except for the TIII vertices for the lat. nr. 8, �ts within the 1σ bands

of the simulated vertex population curves. We note that the simulations were car-

ried out for lattice sizes identical to the experiment. The results indicate that our
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5.4.4 Results: w = 150 nm series

experimental data can be well approximated by a single short-range model within

the selected range of considered gaps.

Secondly, the ordering of the lattices in the sense of gap variation is preserved,

except for one data point (lat. nr. 19, highlighted by the orange label in the chart).

This means that we can view the gap as an experimental knob that allows for probing

states characterised by di�erent e�ective temperatures associated to a single model.

This is quite a striking result if we take into account that the J2/J1 ratio, estimated

by micromagnetic simulations for the w = 100 nm magnets (see Fig. 5.11d), depen-

dents on the gap.

If we compare the J2/J1 value that provides the best �t (J2/J1 = 0.75) against

the estimation based on micromagnetic simulations for the same range of lattices

(lat. nr. 8{24, J2/J1 ∈ < 0.55; 0.71 >), we see that the value that provides the

best �t is above the estimated interval. At this point, it is worth noting that the

estimated coupling strengths J1 and J2 are magnetostatic, as the simulations were

carried out with no external magnetic �eld applied. However, the �eld demagneti-

sation is driven by an external magnetic �eld. The possible explanation for the

quantitative disagreement is that J2 is arti�cially increased due to the kinetic e�ects

of the �eld demagnetisation protocol (during the �eld demagnetisation protocol,

magnetisation reverses via an avalanche process, which favours the formation of

polarised lines in the lattice, see numerical simulations of �eld demagnetisation pro-

tocol in Ref. [31], namely Videos 1 and 2 in the Supplementary Information).

Looking back at Fig. 5.14, we observe that increasing/decreasing the J2/J1 value

by 0.05 (which is the step we used to sample through the J2/J1 ratio in the Monte

Carlo simulations) leads to recovering lesser agreement between the experimental

data and the simulations. In both cases (see Fig. 5.14b and 5.14c), we observe that

especially the populations of TII and TIII vertices are out of balance.

5.4.4 Results: w = 150 nm series

One might then wonder whether a similarly good agreement can also be found for

the w = 150 nm series. We thus repeat the analysis of comparing the Monte Carlo

simulations against the experimental data for the averaged series of w = 150 nm

lattices (4 series, D5 = 1000 µC/cm2). The results are provided in Fig. 5.15.

Looking at the provided charts, we observe that the best �t is reached for the

MC set with ratio J2/J1 = 0.675, as evidenced by the mean RMSE value provided

above each chart (see Fig. 5.15). Even though we computed this additional MC

set, the overall series agreement is slightly worse than observed for the w = 100 nm

lattices. This is mainly due to a deviation of the experimental data from the Monte

Carlo prediction observed for the low lattice numbers (i.e. smaller gaps).
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5.4.4 Results: w = 150 nm series

Fig. 5.15: Results of comparing the experimental data averaged over four series

(w = 150 nm, D5 = 1000 µC/cm2) against Monte Carlo population curves for

three di�erent J2/J1 ratios: (a) J2/J1 = 0.675 (b) J2/J1 = 0.65 and (c) J2/J1 =

0.70. MC simulated populations are shown as lines with enveloping 1σ error bands.

Experimental data are shown by symbols with their associated error bars indicating

standard deviation. For data points belonging to type I experimental data, the lat.

nr. is provided as a label next to each respective point. The quality of the agreement

is indicated by the mean RMSE above each chart. The best �t is observed for the

MC ratio J2/J1 = 0.675.

It is worth recalling that the estimate of the J2/J1 ratio obtained by micromag-

netic simulations (see Fig. 5.12b) shows dependence on the value of the gap (smaller

gap value corresponds to higher J2/J1 ratio). Thus, a more accurate representation

of the data points for the low gap values could be reached only at the expense of

lesser agreement for the rest of the series. This shows that our approach of represent-

ing the experimental data with a single model (single J2/J1 value) has limitations.

We have established above that the main deviation between the experimental
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5.4.5 Results: correlation analysis

data and the simulations is observed for the low gap values (lat. nr. 5{7). Con-

sidering the quality of the agreement in the rest of the series, we have selected the

ratio J2/J1 = 0.675 as the best �t (see Fig. 5.12a), as it most accurately represents

the experimental data in the remainder of the studied range.

Even though the overall quality of the agreement is slightly lower for the w =

150 nm lattices compared to the w = 100 nm lattices (RMSE = 0.009 in Fig. 5.12a

compared to RMSE = 0.006 in Fig. 5.11a, respectively), we still observe that the

majority of the experimental data points lie within the 1σ bands of the Monte Carlo

simulations, indicating good overall agreement for the series. Also, similar to the

w = 100 nm lattices, we observe that the ordering of the lattices in the sense of gap

variation is mostly preserved, except for three lat. nr. (indicated by orange labels

in Fig. 5.12a). This shows that for the wider magnets, the tuning of the gap value

also allows for the probing of states characterised by di�erent e�ective temperatures

corresponding to a unique spin model.

5.4.5 Results: correlation analysis

In the previous pages, we have reported robust agreement when comparing the

experimental vertex populations with Monte Carlo simulations. One may wonder

whether such agreement is su�cient to demonstrate that we probe at-equilibrium

physics at di�erent e�ective temperatures.

At this point, it is instructive to recall that spin con�gurations sharing simi-

lar (or even the same) vertex populations can have di�erent properties. In other

words, how the vertex types are distributed over the lattice matters. Calculating the

magnetic structure factor is a convenient tool to obtain a global picture of how the

system is ordered (see examples of distinct patterns for similar vertex populations in

Fig. 4., Ref.[44]). Thus, to fully prove that the experimental results can be seen as

a series of at-equilibrium states with distinct e�ective temperatures, it is necessary

to observe not only the agreement with the vertex populations but also with the

magnetic structure factors (i.e., the magnetic correlations).

Therefore, we have computed the magnetic structure factor as a function of tem-

perature for the J2/J1 ratios, which provided the best �t for the experimental series

(J2/J1 = 0.75 for the w = 100 nm lattices { see Fig. 5.14a and J2/J1 = 0.675 for the

w = 150 nm lattices { see Fig. 5.15a). Similar to the vertex populations, the Monte

Carlo MSF is averaged over a large number of con�gurations (104) for each tem-

perature step. The simulated MSF can then be compared against the experimental

MSF, averaged over four series, for both w = 100 nm and w = 150 nm lattices.

Fig. 5.16 compares the magnetic structure factors obtained by numerical simu-

lation and those computed from the measured con�gurations. For both simulated
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5.4.5 Results: correlation analysis

and experimental MSFs, three are shown, and the complete series of experimental

MSFs is provided in the Appendix (see Fig. A.5 and A.6). The numerical MSFs

are obtained for the ratio J2/J1 = 0.75, which provided the best �t for the vertex

population curves (see Fig. 5.14a).

Fig. 5.16: (a-c) Magnetic structure factors calculated by numerical simulations

for J2/J1 = 0.75. Monte Carlo temperature for each intensity plot is provided

above. (d-f) Experimental magnetic structure factors (averaged over four series,

w = 100 nm, D7 = 1200 µC/cm2). The label above each intensity plot indicates

the lattice number and the e�ective temperature, for which the best �t against the

vertex populations simulated by Monte Carlo (with J2/J1 = 0.75) is obtained. All

plots are computed for 81× 81 points covering the area of ±6×±6 (π/a)2 in recip-

rocal space. The intensity scale bar is provided right next to each plot.

Looking at the �rst row of Fig. 5.16, we observe that for the lowest presented

Monte Carlo temperature (�rst image on the left, Fig. 5.16a), the magnetic structure

factor exhibits strong Bragg peaks characteristic of type I tiling, which approaches

the ground-state con�guration. As the Monte Carlo temperature is increased, we

observe that the intensity of the peaks is lowered signi�cantly and their width is

increased (see Fig. 5.16b and 5.16c). This shows how the correlations of the system

are weakening as the temperature is increased.

If we compare the experimental MSF against the respective numerical one above,

a qualitative agreement is observed for the �rst two of them (see Fig. 5.16d and

Fig. 5.16e). For the third one, obtained for the lattice with the largest gap in the
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5.4.5 Results: correlation analysis

studied range, we observe that additional sharp peaks are present, which are not

observed in the simulations (see Fig. 5.16f and Fig. 5.16c). This is not speci�c to

the lattices with the largest gap, and we observe the formation of those peaks (same

position, di�erent intensity) for roughly the upper half of the considered gap range

(lat. nr. 17{24, see Fig. A.5 and A.6). Comparison with computed MSF for dif-

ferent type II backgrounds shows that these peaks originate from clusters of type

II vertices organised in a saturated-like manner (vertex net moment has a preferred

direction). Therefore, for reason not currently identi�ed, the �eld demagnetisation

seems to be less e�cient for the w = 100 nm lattices with larger gaps.

We now focus on the lattices with magnet width w = 150 nm. One might won-

der whether we observe the same deviation between the numerical and experimental

MSF for the sparser lattices as for the narrower magnets. Interestingly, looking at

Fig. 5.17, we see that it is not the case for the wider magnets and qualitative agree-

ment is recovered across the series.

Looking at Fig. 5.17d, which belongs to the lattice with the smallest gap for which

the agreement with the Monte Carlo prediction is still observed (see Fig. 5.15a), we

again observe strong Bragg peaks, indicating that the type I ground-state con�gura-

tion is being approached. For the middle point of the considered gap series (shown

in Fig. 5.17e), we observe a signi�cant broadening of the peaks accompanied by their

intensity decrease. The magnetic structure factor computed for the lattice with the

largest gap in the series (see Fig. 5.17f) not only shows a further broadening of the

peaks (again accompanied by their intensity reduction) but we also observe that a

di�used pattern in the background starts to appear.

By comparing the three above-discussed experimental magnetic structure fac-

tors with their respective numerically simulated counterparts (see Fig. 5.17a-5.17c),

we observe robust agreement across the full range of gaps. This qualitative agree-

ment is not exclusive to the three examples provided in Fig. 5.17, as evidenced by

the complete series comparison provided in the Appendix (see Fig. A.7 and A.8).

Therefore, we might conclude that for the w = 150 nm lattices, our approach indeed

yields a series of spin con�gurations representative of at-equilibrium physics of a

single spin model probed at di�erent e�ective temperatures. This conclusion �nds

support through an agreement observed in both the vertex population curves and

the magnetic structure factors when compared to a single spin model. Our study

thus complements the previous works, which assessed the agreement between the ex-

periment and the numerical model solely based on the vertex populations [40, 124],

which might not be a conclusive approach, as we have observed for the w = 100 nm

lattices (see Fig. 5.16f and 5.16c).
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5.5 Discussion: trend deviation for small gaps

Fig. 5.17: (a-c) Magnetic structure factors calculated by numerical simulations

for J2/J1 = 0.675, Monte Carlo temperature for each intensity plot is provided

above. (d-f) Experimental magnetic structure factors (averaged over four series,

w = 150 nm, D5 = 1000 µC/cm2. The label above each intensity plot indicates

the lattice number and the e�ective temperature, for which the best �t against the

vertex populations simulated by Monte Carlo (with J2/J1 = 0.65) is obtained. All

plots are computed for 81× 81 points covering the area of ±6×±6 (π/a)2 in recip-

rocal space. The intensity scale bar is provided right next to each plot.

5.5 Discussion: trend deviation for small gaps

The remaining point to address is the trend deviation for small gaps, which is ob-

served both for the w = 100 nm series (saturation of type I) and for the w = 150 nm

series (reversal of the trend). We note that both e�ects are unexpected, as the

general hypothesis is that denser lattice spacing should yield more strongly inter-

acting nanoislands, subsequently leading to more strongly correlated (i.e., ordered)

con�gurations. While the type I plateau could be attributed, for example, to the

presence of quenched disorder, which prevents further reduction of the system en-

ergy, the trend reversal seems to appear without obvious reason. Is there a possible

explanation that would account for both e�ects?

First, we focus on lattices with magnet width w = 100 nm, for which we ob-

serve type I population saturation for small gaps. We aggregated the relevant plots

discussed here to Fig. 5.18 for convenience. Fig. 5.18a presents a detail of the exper-
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5.5 Discussion: trend deviation for small gaps

imentally observed vertex populations as a function of the gap, with a speci�c focus

on smaller gaps. This plot shows that for lat. nr. 8{6, the type I vertex population

plateaus, while the type II vertex population slightly increases and the type III ver-

tex population proportionally decreases. This evolution of the vertex populations

continues also for lat. nr. 5{4, but for those lattices, minute connections between

perpendicular neighbouring magnets start to appear, which might introduce other

e�ects, so we exclude those lattices from the following analysis.

Fig. 5.18c then shows a detail of the experimental vertex populations plot against

the Monte Carlo simulation for the ratio J2/J1 = 0.75 that provides the best �t for

the whole series (complete chart is provided in Fig. 5.14a). In the plot, we observe

that for lat. nr. 9 and 10, the agreement between the experiment and the simulation

is obtained (as is for the rest of the series, lat. nr. 11{24), but the experimental data

points for lat. nr. 8 starts to deviate from the simulation (essentially, there is an

excess of type II and a lack of type III vertices). As we observe that for even smaller

gaps (lat. nr. 7 and 6), the type II (type III) population increases (decreases), the

agreement between the considered model and the experiment can only worsen.

At this point, it is worth reiterating that, we have tried to represent the exper-

imental data with a single spin model (one J2/J1 ratio). However, the results of

micromagnetic simulations indicate that the J2/J1 ratio depends on the gap and

increases as the gap is reduced. Additionally, the rate of increase of the J2/J1 ra-

tio increases for small gaps (see Fig. 5.18b for detail focusing on the small gaps

and Fig. 5.11 for the entire gap range). This observation prompts the question of

whether it is necessary to change the model for small gaps in order to recover the

agreement with the experimental results.

This is indeed the case as we observe improved agreement for the lat. nr. 8 if

the ratio is increased to J2/J1 = 0.80 (shown in Fig. 5.18d). To obtain a good �t

for the lat. nr. 6 and 7, further increase of the ratio to J2/J1 = 0.85 is required (see

Fig. 5.18e).

Therefore, we might conclude that while our single model approximation shows

remarkable agreement for the majority of the studied series, it fails to capture the

observed physics in the case of the small gap lattices and models with di�erent J2/J1
ratios are needed to capture the experimental results accurately (see Fig. 5.18b). In

all cases, the J2/J1 ratio that provides the best �t for the considered lattice(s) is

greater than the magnetostatic estimation obtained via micromagnetic simulations.

We attribute this e�ect to the fact that the J2 coupling strength is kinetically ampli-

�ed during the �eld demagnetisation process by the previously described mechanism.

We now focus on the lattices with magnet width w = 150 nm and repeat the

analysis for the trend deviation observed for the lattices with small gaps. We again

aggregated the relevant charts that will be discussed here into one �gure for con-
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venience (see Fig. 5.19). Fig. 5.19a shows a detail of the experimentally observed

vertex populations as a function of the gap, explicitly focusing on the smallest gaps.

This plot shows that the general trend, rising population of type I vertices and pro-

portionally declining populations of type II and III vertices as the gap is reduced,

which is observed for the majority of the series (see Fig. 5.10), culminates for lat.

nr. 5. For smaller gaps, the trend abruptly reverses, and the type II population in-

creases at the expense of type I, while the type III population continues to decrease.

We note that for the lattices with the reversed trend (lat. nr. 3 and 4), the magnets

are not melted (see Fig. 5.4, dose D5).

Fig. 5.19c then shows a detail of the experimental vertex populations plot against

the Monte Carlo prediction for the ratio J2/J1 = 0.675, which provides the best �t

for the majority of the considered series (complete chart is provided in Fig. 5.15a).

In the plot, we observe that for lat. nr. 8 and lower, the experimental results start

to deviate from the simulation, as there is an excess of type II and a lack of type

III vertices. Could this be accounted for if we consider di�erent J2/J1 ratios for the

Monte Carlo simulations, similarly to what we showed for the w = 100 nm arrays?

We note that similar to the narrower magnets, the micromagnetic simulations for

wider magnets also show an increase of the J2/J1 ratio as the gap is reduced (see

Fig. 5.19b for detail focusing on the small gaps and Fig. 5.12 for the entire gap

range).

We �nd that this is indeed the case, as a good �t for all considered \small gap"

lattices is found by a subsequent increase of the J2/J1 ratio (see Fig. 5.19d to 5.19h).

We note that this approach works also for the lattices with reversed trend, for which

the J2/J1 ratio must be increased considerably to represent the experimental data

accurately (see Fig. 5.19g for lat. nr. 4 and Fig. 5.19h for lat. nr. 3). Interestingly,

for the lat. nr. 3 (lowest gap for which no melting of magnets is observed), the

ratio that provides the best �t is J2/J1 = 0.95, which approaches the ice condition

J2/J1 = 1. This means that if slightly more dense lattice spacing were fabricated,

one could hope to recover the spin-liquid phase using the conventional square lattice.

This could be an interesting approach, particularly as we observe that the type III

population is only 0.5 % for the lat. nr. 3, which is signi�cantly lower compared to

experimental realisations of the square ice model [22, 31, 37].
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Fig. 5.18: Analysis of the trend deviation for the small gaps (w = 100 nm series).

a) Vertex populations as a function of the gap (subset from the Fig. 5.7). b) J2/J1
ratio as a function of the gap (MuMax3 simulations, subset from Fig. 5.11). c-e)

Fit of experimental vertex populations against Monte Carlo simulations for three

di�erent J2/J1 ratios (indicated above each plot). c) The ratio that was selected

as the best �t for the majority of the experimental series (see Fig. 5.14) fails to

represent the populations observed for lat. nr. 8. and below. d) Higher J2/J1 ratio

accurately �ts the lat. nr. 8 data points. e) To accurately �t the data points for lat.

nr. 7 and 6, the J2/J1 ratio must be increased again. Therefore, the single model

approximation of the experimental results fails for the smallest gaps, and di�erent

models must be used to represent the experimental results accurately.

160



5.5 Discussion: trend deviation for small gaps

Fig. 5.19: Analysis of the trend deviation for the small gaps (w = 150 nm series).

a) Vertex populations as a function of the gap (subset from the Fig. 5.10). b) J2/J1
ratio as a function of the gap (MuMax3 simulations, subset from Fig. 5.12). c-h)

Fit of experimental vertex populations against Monte Carlo simulations for di�erent

J2/J1 ratios (indicated above each plot). c) The ratio that was selected as the best

�t for the majority of the experimental series (see Fig. 5.15) fails to represent the

populations observed for lat. nr. 8. and below. d-h) Higher J2/J1 ratios must be

selected to �t the data points accurately for lat. nr. 7 and lower. Therefore, our

single-model approximation fails for the smallest gaps, and di�erent models must be

used to represent the experimental data accurately. The legend for the charts (d-h)

is the same as in (c).
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We thus conclude that for the w = 150 nm arrays, the single model approxi-

mation also fails at reproducing the physics observed experimentally for the small

gaps. Similarly as for the narrower magnets, di�erent models (i.e. with di�erent

J2/J1 ratios) must be used to represent the experimental results for the densely

spaced lattices accurately.

5.6 Summary

In this study, we have applied a �eld demagnetisation protocol to a series of athermal

square lattices, in which the lattice parameter is gradually varied to tune the inter-

action strengths. Such a strategy was reported in several previous works, in which

di�erent �eld pro�les were used for the demagnetisation [12, 54{57]. The same strat-

egy was also employed for at-growth thermalised arti�cial square networks [39, 40],

where a closer approach to ground-state ordering was reported compared to �eld

demagnetisation protocols.

The �rst outcome of our work is that �eld demagnetisation of conventional square

arrays can lead to a signi�cantly closer approach to ground-state ordering compared

to the above-mentioned studies by di�erent groups. The enhanced e�ciency of the

�eld demagnetisation protocol is most likely attributed to the signi�cantly extended

duration of the protocol we employed, providing more time for the correlations

to develop. Other contributing factors might include stronger coupling strengths

resulting from the larger volume of the magnets or superior fabrication quality, al-

though the latter is somewhat challenging to compare directly. However, based on

the maximum type I vertex fraction achieved, our results still somewhat underper-

form (approx. by 10 %) what was reported for thermally active systems, be they

thermalised at-growth [40] or post-growth [33, 41, 71].

The second outcome of this work is that a series of �eld-demagnetised conven-

tional square lattices with gradually varied lattice parameter yields microstates that

correspond to a single short-range spin model probed at distinct e�ective tempera-

tures. In other words, the lattice parameter can be viewed as an experimental knob,

which allows for probing the thermodynamics of a given spin model. Our �ndings

are supported by the strong agreement observed for the experimental vertex popu-

lations and spin-spin correlations (investigated through magnetic structure factor)

when compared to Monte Carlo simulations.

We �nd that the single-model approximation has its limitations, as it fails to

capture the physics observed for very densely spaced lattices, while it provides an

accurate description for the remainder (majority) of the series. In order to accu-

rately represent the experimental results obtained for the densely spaced networks,
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models with di�erent balance of J1 and J2 coupling strengths must be utilised.

Interestingly, deviations in trends are observed for those lattices with relatively

small lattice spacings compared to the rest of the series. Particularly for the lattices

with wider magnets, we observe complete and unexpected trend reversal. These

results can also be accounted for if the J2/J1 ratio of the model is considerably

increased. Notably, for the most densely spaced lattice featuring the wider magnets,

the ratio that provides the best �t for the experimental results J2/J1 = 0.95 ap-

proaches the ice condition J2/J1 = 1. This intriguing result indicates that if lattice

with slightly smaller lattice spacing would be fabricated (which is still geometrically

possible before the magnets are in contact), it might be possible to obtain the spin

liquid regime utilising conventional square lattice formed by individual nanomag-

nets, which was thought impossible.
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6 SUMMARY

Since their introduction almost twenty years ago [12{15], arti�cial arrays of mag-

netic nanostructures have proven themselves as a powerful experimental platform

in which to investigate emergent exotic properties associated with low-energy man-

ifolds of frustrated magnetic systems. To some extent, arti�cial arrays of elongated

nanomagnets can be considered experimental simulators of frustrated (Ising) spin

models. Lithographic techniques de�ne the geometry and the interaction landscape,

and energy minimisation is done by applying �eld-driven protocol or thermal anneal-

ing. The readout (on the scale of spin degree of freedom) is provided by magnetic

imaging techniques directly in real space. This approach provides a valuable op-

portunity to test, revisit and extend various theoretical predictions from frustrated

spin models [44].

The presented thesis has focused on experimental investigations of �eld demagne-

tised arti�cial square arrays of elongated nanomagnets (namely conventional square

lattices and vertically o�set square lattices) while considering the implications of

mimicking Ising spin models by arrays of nanomagnets coupled by magnetostatic

interactions.

In the �rst presented study, we have focused on the experimental investiga-

tion of farther neighbour coupling signatures in spin liquid con�gurations retained

in vertically o�set square lattices. Following a previously reported work [31], we im-

plemented a height o�set that e�ectively restores the balance among the six nearest-

neighbour interactions, enabling us to experimentally access the disordered square

ice manifold in our two-dimensional arti�cial system. While the previous works

on arti�cial square ice [31, 37] reported results well approximated by a short-range

description, we were able to identify subtle di�erences (additional features) in the

experimental magnetic structure factor that cannot be accounted for by the short-

range square ice model.

We have identi�ed the origins of those features and showed that they correspond

to the ground-state properties of the dipolar (i.e., long-range) square ice model.

Utilising Monte Carlo simulations, we have shown how these additional features can

be recovered numerically if interactions extending beyond nearest neighbours are

included in the spin model. Additionally, we have shown that our �ndings are valid

even if the ice condition is detuned. Such a scenario would correspond to if the

height o�set were slightly below or above the optimal value. In this case, interac-

tions extending beyond nearest neighbours must also be considered to account for

all of the features observed experimentally.

The main outcome of this study is that interactions from farther neighbour cou-
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plings in
uence the magnetic correlations within or near the ice manifold. While

this outcome may be anticipated given the dipolar nature of the magnetostatically

coupled arrays of nanomagnets used in our study, the fact that we were able to

detect their signatures experimentally is a signi�cant result. Consequently, arti�cial

square ice arrays like ours are expected to undergo an ordering transition at (very)

low temperature, as predicted by the dipolar square ice model [65]. Reaching the

ground state con�guration is, however, experimentally challenging, if possible, as

the further minimisation of the system energy employing experimental protocols is

limited by dynamical freezing or intrinsic disorder e�ects. This is a typical experi-

mental challenge that has been encountered in other dipolar arti�cial arrays [44].

Our �ndings also have implications for the properties of local excitations (mag-

netic monopoles) that violate the ice rule constraint. In a pure ice manifold (i.e.,

square ice with only nearest neighbour interaction), magnetic monopoles are decon-

�ned quasiparticles that are free to move (without energy penalty; the energy cost

is associated only with their nucleation) and interact via e�ective Coulomb inter-

action that has entropic origin [67]. On the other hand, in a square ice manifold

perturbed by long-range interactions, the magnetic monopoles additionally interact

via genuine magnetic Coulomb interaction [67, 69]. Additionally, if the long-range

interactions are considered, the energy landscape is no longer entirely 
at (as for the

short-range description), leading to additional binding of the monopole pairs [69].

In other words, the magnetic monopoles we observe in our experiments are not fully

decon�ned and should behave as weakly bound, as the string tension bounding the

pairs of oppositely charged monopoles do not entirely vanish (even within the ice

manifold) [70].

In the second presented study, we have investigated a response of the very same

arti�cial athermal square ice magnet (i.e., vertically o�set square lattice) to suc-

cessive applications of a �eld demagnetisation protocol. We have applied the �eld

demagnetisation protocol four times, and we found that the obtained magnetic con-

�gurations share similar global properties, but the local con�gurations di�er sub-

stantially. To evaluate the level of stochasticity/determinism present in our results,

we have computed vertex density maps, which helped to reveal how the di�erent

possible local con�gurations were spatially distributed over the lattice after succes-

sive demagnetisations.

Analysing these density maps (resp. vertex overlap probabilities), we showed

that our �eld protocol is a stochastic process, although some level of magnetic de-

terminism is present. By analysing spin states present at the lattice sites at which

the deterministic behaviour was observed, we found a tendency to host the same

spin state across the applied demagnetisations, indicating a presence of intrinsic
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disorder (i.e., imperfections that locally bias the energetic landscape or the reversal

dynamics). The tendency to repeatedly host the same spin state was particularly

evident for lattice sites recurrently occupied by magnetic monopoles.

The most signi�cant outcome of this study is that the �eld demagnetisation pro-

tocol is not a purely deterministic process, as substantially di�erent arrested con�g-

urations were obtained after applying the �eld protocol four times, and consistent

results were obtained for two nominally identical vertically o�set square lattices. We

showed that room-temperature thermal 
uctuations might impact the magnetisation

reversal processes during the �eld-driven demagnetisation protocol using micromag-

netic simulations. Although it is acknowledged that extrinsic sources of randomness

(minor di�erences between the applied �eld protocols) cannot be entirely discounted,

it is proposed that an intrinsic source of randomness is at play, which is linked to

thermal 
uctuations.

Our �ndings have implications for handling arti�cial spin systems consisting of

athermal nanomagnets in the experiment. We showed that it is a reasonable ap-

proach to apply �eld demagnetisation several times to the same arti�cial array to

improve the statistical relevance of the results, as a given array is not predeter-

mined to provide the same con�gurations persistently. We note that the vertex

density maps have proven to be a valuable analysis tool that helped identify regions

that remained una�ected (or almost una�ected) across consecutive demagnetisa-

tions. This approach might be used for future experimental studies in which cycling

the �eld demagnetisation or thermal annealing might be utilised. The use of density

maps might then help to identify \frozen"regions, aiding in the analysis of deviations

from equilibrium states. For instance, repeated demagnetisations could di�erentiate

between \true" monopoles and those arising from quenched disorder, as the former

change locations while the latter remain �xed.

In the third presented study, we studied results obtained for a �eld demagnetised

series of conventional square lattices, in which the lattice parameter was gradually

varied to tune the interaction strengths. By carefully comparing vertex populations

and magnetic structure factors obtained by the experiment and Monte Carlo simu-

lations, we showed that the results obtained for such a series mostly correspond to

a single short-range spin model (one J2/J1 ratio) probed at distinct e�ective tem-

peratures. In other words, the lattice parameter can be viewed as an experimental

knob, which allows for probing the e�ective thermodynamics of a given spin model

in a series of �eld-demagnetised athermal lattices. This is quite an intriguing result,

considering that micromagnetic simulations showed that the value of J2/J1 ratio

depends on the gap (resp. lattice spacing) and increases as the gap is reduced (once

the magnets are brought closely together, the ratio rises faster).

167



6 Summary

However, we also found that in some parts of the series (i.e., for certain parts

of the range of lattice parameters studied), the agreement between the experiment

and Monte Carlo simulations for a single spin model was lost. One peculiar case

was identi�ed for coarsely spaced lattices with narrower magnets (w = 100 nm), for

which the agreement was only partial. While the experimental results agreed with

the simulated vertex populations, analysis of magnetic correlations via magnetic

structure factor revealed additional peaks indicating the presence of saturated-like

ordering, suggesting ine�cient demagnetisation for those lattices. Conversely, for a

series of lattices with wider magnets (w = 150 nm), the agreement was observed

for the vertex populations and the magnetic correlations. It would be interesting

to �nd out whether the demagnetisation for lattices with narrower magnets could

be improved (longer protocol or higher initial �eld strength) or whether narrower

magnets are, for some reason, less suitable building blocks for arti�cial spin systems.

A comparable observation regarding the e�cacy of wider magnets for achieving low-

energy con�gurations in similarly sized magnets was recently reported in a study on

kagome chains originating from our group [125].

The other case where our single-model approximation failed to represent the ex-

perimental results was for the densely spaced lattices. In that case, adjusting the

model (increasing the J2/J1 ratio) was necessary to recover the agreement with the

experiment. Interestingly, we found unexpected and abrupt trend reversal for the

very densely spaced lattices with the magnet width w = 150 nm. These results could

also be accounted for by further adjustment of the spin model (a further increase of

J2/J1 ratio). Notably, the increase of the J2/J1 ratio needed to accurately represent

the results obtained for the very densely spaced lattices was observed to be greater

than what was estimated by the micromagnetic simulations, indicating a possible

kinetic e�ect originating from the �eld-driven demagnetisation protocol. In fact, for

the most dense lattice spacing in the case of the w = 150 nm magnets, the ratio

that approximated the experimental results was J2/J1 = 0.95 which considerably

approaches the ice condition J2/J1 = 1, indicating that obtaining the ice manifold

might be possible in a conventional square lattice after all.
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A Supplementary data for Chapter 5

A SUPPLEMENTARYDATA FOR CHAPTER 5

A.1 Spin and vertex maps, example of full series

for w = 100 nm

Lat. nr. 6 Lat. nr. 7 Lat. nr. 8

Lat. nr. 9 Lat. nr. 10 Lat. nr. 11

Lat. nr. 12 Lat. nr. 13 Lat. nr. 14

Lat. nr. 15 Lat. nr. 16 Lat. nr. 17

Fig. A.1: Spin and vertex maps for one of four series of lattices with magnet width

w = 100 nm, part A. Three examples from this series are provided directly in the

text of the thesis.
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A.1 Spin and vertex maps, example of full series for w = 100 nm

Lat. nr. 18 Lat. nr. 19 Lat. nr. 20

Lat. nr. 21 Lat. nr. 22 Lat. nr. 23

Lat. nr. 24

Fig. A.2: Spin and vertex maps for one of four series of lattices with magnet width

w = 100 nm, part B. Three examples from this series are provided directly in the

text of the thesis.

184



A.2 Spin and vertex maps, example of full series for w = 150 nm

A.2 Spin and vertex maps, example of full series

for w = 150 nm

Lat. nr. 5 Lat. nr. 6 Lat. nr. 7

Lat. nr. 8 Lat. nr. 9 Lat. nr. 10

Lat. nr. 11 Lat. nr. 12 Lat. nr. 13

Lat. nr. 14 Lat. nr. 15 Lat. nr. 16

Fig. A.3: Spin and vertex maps for one of four series of lattices with magnet width

w = 150 nm, part A. Three examples from this series are provided directly in the

text of the thesis.
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A.2 Spin and vertex maps, example of full series for w = 150 nm

Lat. nr. 17 Lat. nr. 18 Lat. nr. 19

Lat. nr. 20 Lat. nr. 21 Lat. nr. 22

Lat. nr. 23 Lat. nr. 24

Fig. A.4: Spin and vertex maps for one of four series of lattices with magnet width

w = 150 nm, part B. Three examples from this series are provided directly in the

text of the thesis.
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A.3 Average experimental MSF, w = 100 nm series

A.3 Average experimental MSF, w = 100 nm series

Fig. A.5: Full series of average experimental MSF for lattices with magnet width

w = 100 nm, part A. Three examples from this series are provided directly in the

text of the thesis and compared against numerical MSFs.
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A.3 Average experimental MSF, w = 100 nm series

Fig. A.6: Full series of average experimental MSF for lattices with magnet width

w = 100 nm, part B. Three examples from this series are provided directly in the text

of the thesis and compared against numerical MSFs. Note the formation of Bragg

peaks at y axis, these are indicative of residual saturated-like ordering, indicating

ine�cient demagnetisation. These features are not present in the numerical MSFs.
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A.4 Average experimental MSF, w = 150 nm series

A.4 Average experimental MSF, w = 150 nm series

Fig. A.7: Full series of average experimental MSF for lattices with magnet width

w = 150 nm, part A. Three examples from this series are provided directly in the

text of the thesis and compared against numerical MSFs.
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A.4 Average experimental MSF, w = 150 nm series

Fig. A.8: Full series of average experimental MSF for lattices with magnet width

w = 150 nm, part B. Three examples from this series are provided directly in the

text of the thesis and compared against numerical MSFs.
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