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spatially, functionally, and taxonomically structured in temperate and 

tropical forest ecosystems. Firstly, we investigated to what extent 

caterpillar assemblages are vertically structured in a temperate forest in 

eastern North America. By using a comprehensive dataset of temperate 
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montane rainforest can be considered as ‘classical’ herbivores (sensu 

stricto). In the last chapter, we introduce and compare plot-based sampling 

approaches to study interaction networks in forest ecosystems and provide 

comprehensive guidelines for replication in future studies. 
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One of the most challenging tasks in current ecological research is to 

understand how local insect communities and their interaction networks 

are spatially and functionally structured. This may enable deeper insights 

into the underlying processes and determinants that shape patterns of 

species richness and specialisation as well as trophic interactions among 

sites, regions, and ecological gradients. Especially at a time of widely-

reported decline in insect species and biomass around the globe (Bell et al. 

2020, Montgomery et al. 2020, Wagner 2020), a fundamental knowledge 

about the mechanisms structuring insect communities can help to establish 

measures for effective and prosperous conservation management. 

More than half of all insect species are associated with plants (Pierce 1995; 

and references therein) and represent a substantial fraction of global 

species diversity (e.g., Ødegaard et al. 2000, Wiens et al. 2015). 

Furthermore, phytophagous insects play an important role in ecosystem 

functioning as primary consumers (Metcalfe et al. 2014, McArt et al. 2013, 

Kristensen et al. 2019), prey for higher trophic levels (Kalka & Kalko 2005, 

Visser et al. 2006, Singer et al. 2017), as well as interaction partners in a 

variety of mutualistic relationships (Fiedler 2001, Janson et al. 2008, Hahn 

& Brühl 2016). 

Among phytophagous insects, the order Lepidoptera is considered as one 

of the largest single radiations (Menken et al. 2010, Mitter et al. 2017), 

covering more than 157,000 validly described species (van Nieukerken et 

al. 2011). The total richness, however, is expected to be much higher with 

estimations ranging between 255,000 and 500,000 species worldwide 

(Kristensen et al. 2007). Furthermore, members of this speciose order can 

be found in nearly every region and habitat (Kristensen et al. 2007, Solis 

2008). The close association with plants as a food source, high species 

richness, and ecological diversity as well as their widespread occurrence in 

most terrestrial ecosystems, makes the order Lepidoptera an ideal model 
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organism group with which to investigate plant-herbivore interaction 

networks and assemblage characteristics in local and regional 

communities.  

A large proportion of Lepidoptera species, if not the majority, is associated 

with forests, which cover approximately 30% of the world’s terrestrial area 

(Pan et al. 2013). Plant traits, resource availability, resource specialisation, 

and vertical niche partitioning are considered important drivers of this 

outstanding diversity (Lewinsohn et al. 2005, Novotny & Basset 2005, 

Lewinsohn & Roslin 2008, Ashton et al. 2016). In this thesis, I study how 

caterpillar assemblages are spatially, functionally, and taxonomically 

structured in temperate and tropical forest ecosystems and discuss 

potential ecological and evolutionary factors driving these patterns. 

VERTICAL CHANGES IN FOREST CATERPILLAR ASSEMBLAGES – A HUGE 

KNOWLEDGE GAP 

Forests represent complex three-dimensional ecosystems with changing 

biotic and abiotic conditions along the vertical axis, such as temperature, 

humidity, plant species composition, and foliage biomass (Ulyshen 2011, 

Nakamura et al. 2017). These vertical gradients further shape the structure 

and composition of arthropod communities (Basset et al. 2003, Floren & 

Schmidl 2008), and thus might play a key role in explaining the high diversity 

found in forest ecosystems due to spatial niche partitioning (Wardhaugh 

2014, Nice et al. 2019). 

Studies on the vertical stratification of caterpillars allow for deeper insights 

into how assemblages are spatially structured in local forest communities. 

This could yield information on the importance of different strata as 

development habitat for larval stages and in maintaining local species 

diversity. Additionally, the results might provide a baseline helping us to 
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understand foraging and stratification patterns observed for their 

associated predators and parasitoids (Pearson 1971, Murakami 2002, 

Stireman et al. 2012, Di Giovanni et al. 2015).  

Despite several studies investigating the stratification patterns of 

Lepidoptera assemblages in tropical (e.g., De Vries 1988, Brehm 2007, 

Ribeiro et al. 2016) and temperate forest ecosystems (e.g., Hacker & Müller 

2008, Hirao et al. 2009, De Smedt et al. 2019), most of them focused on 

adults. Since immature stages develop in habitats that can substantially 

differ from those where the adults might be found (Schulze et al. 2001), 

knowledge about the vertical niche partitioning of caterpillars remains 

incomplete. Adults can be found in environments that do not provide the 

conditions for a successful larval development, especially during migration, 

while seeking a mate and food sources. In addition, bait and light traps were 

most often used to study vertical stratification in adult butterflies and 

moths. These methods, however, could easily be biased by attracting 

species into strata that they usually do not inhabit. 

The few available studies on stratification patterns of caterpillar 

assemblages focused either on focal plant species (Wagner et al. 1995, Le 

Corff & Marquis 1999) or examined vertical changes in their parasitism 

(Connahs et al. 2011, Šigut et al. 2018). Despite contrary findings, they 

indicate, at least partially, that forest caterpillar assemblages are vertically 

structured in terms of density, composition, and diversity (Le Corff & 

Marquis 1999, Šigut et al. 2018). However, the presented information often 

differed, depending on the aim of the study, or revealed inconsistencies 

due to different sampling systems (i.e., target host plant species). This 

prevents general conclusions from being made and invokes further 

investigation. 
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HOW PLANT TRAITS STRUCTURE CATERPILLAR ASSEMBLAGES  

Properties of caterpillar assemblages such as density, richness, 

composition, and specialisation are unequally distributed within and 

among co-occurring plant species (Le Corff & Marquis 1999, Novotny et al. 

2002b, Summerville et al. 2003, Šigut et al. 2018). Besides top-down control 

by natural enemies (Lill et al. 2002, Singer et al. 2012, Singer et al. 2017), 

bottom-up forces by plants are generally considered the main driver behind 

these variations (Campos et al. 2016, Vidal & Murphy 2018). Caterpillar 

assemblages are therefore structured by a range of plant traits which either 

act as defence mechanisms or influence insect development, fitness, and 

reproduction (Lill et al. 2009, Marquis & Lill 2010, Carmona et al. 2011, War 

et al 2018). These traits include defence mechanisms, nutritional quality 

(primary and secondary nutrients) as well as life history and plant 

architecture (Agrawal 2007, Carmona et al. 2011).  

Due to their function as feeding deterrents or toxins, plant defences (e.g., 

secondary chemistry, latex, trichomes) are undoubtedly the most 

important traits structuring caterpillar assemblages (Agrawal & Fishbein 

2006, Agrawal 2007). Pellissier et al. (2012), for instance, showed that 

butterfly assemblages at lower altitudes are more specialised than those 

found at higher elevations where plants are less well-defended. Further 

studies revealed that investment in defence mechanisms by plants 

negatively affected the abundance, density and richness of associated 

caterpillar assemblages (Diniz et al. 1999, Lill et al. 2009). In addition, 

several studies indicated that leaf manipulation by endophagous and 

shelter-building caterpillars allowed them to avoid chemical and physical 

plant defences (Cornell et al. 1989, Sandberg & Berenbaum 1989, Sagers 

1992). Thus, variation in plant defences might further lead to changes in 

guild composition with lower proportions of exposed feeders on highly 

protected plants. While most defensive traits directly affect insect 
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herbivores, some traits such as extrafloral nectaries and volatile organic 

compounds (VOCs) structure assemblages indirectly by attracting 

parasitoids and predators and thus strengthen top-down pressure (Diniz et 

al. 2012, Agrawal 2007). 

Besides defence mechanisms, nutritional quality is another crucial 

parameter as it influences caterpillar development and performance. 

Caterpillars feeding on poor leaf quality plants need longer for 

development and thus are exposed to potential enemies for longer (Stamp 

& Bowers 1990, Coley et al. 2006, Bede et al. 2007). The positive correlation 

between host plant quality and caterpillar density was confirmed by various 

studies and seems to be a common pattern (e.g., Marquis & Lill 2010, Singer 

et al. 2012, Whitfeld et al. 2012). A study by Forbes et al. (2017) further 

indicated positive effects of specific nutrients on herbivore richness. These 

quality-dependent richness and abundance patterns could be partially 

explained by female oviposition preference (Baylis & Pierce 1991) and the 

fact that generalist caterpillar species tend to favour nutrient-rich plants 

(Lee et al. 2003). Further traits such as phenology, architecture, and a 

plant’s ontogenetic stage were also shown to influence caterpillar 

assemblages (Marquis et al. 2002, Barrett & Agrawal 2004, Donaldson & 

Lindroth 2008, Carmona et al. 2011, Zvereva et al. 2014), generally because 

they reflect changes in plant defences and resource quality. 

A range of plant traits, which were shown to structure caterpillar 

assemblages, are phylogenetically conserved, implying that trait similarity 

decreases with increasing phylogenetic distance of the plant species 

(Ackerly 2003, Agrawal 2007, Whitfeld et al. 2012, Davies et al. 2013). Thus, 

closely related plant species should affect herbivore assemblages in a more 

similar way than distantly related plant taxa (Ødegaard et al. 2005, Vialatte 

et al. 2010, Grandez-Rios et al. 2015). Phylogenetic metrics indicating the 

relationships among co-occurring plant species might therefore provide 



7 

 

useful measures to predict the assemblage structure of a host plant’s 

caterpillar fauna in local communities and across larger scales. 

FEEDING GUILDS AND SPECIALISATION IN CATERPILLARS 

Caterpillar species associated with plants represent a variety of guilds 

based on their feeding habits. Generally, they can be either categorised as 

internal (endophages) or external feeders (ectophages; Cornell 1989). 

Internal feeders (i.e., miners, borers, gall-inducers) live and feed inside 

plant organs (e.g., leaves, twigs, fruits), whereas external feeders comprise 

all taxa that live on the plant surface. In exceptional cases, some 

Lepidoptera species switch between categories during their larval 

development (mostly from internal to external feeding mode; Gaston et al. 

1991). External feeders, however, do not necessarily need to live without 

any physical protection. Many species, commonly termed as shelter-

builders, roll leaves or tie them together; others for example live in webs or 

construct cases from both organic and inorganic material (Gaston et al. 

1992). Thus, external feeders can be further divided into two guilds: shelter 

builders and exposed feeders. The latter ones represent the guild of truly 

free-living caterpillar species. Feeding guilds, however, do not only reflect 

species-specific foraging behaviours, rather they have profound ecological 

implications. Shelters, for instance, protect against predation (Damman 

1987, Connor & Taverner 1997, Tvardikova & Novotny 2012) and harsh 

environmental conditions by generating a beneficial microclimate (Henson 

1958, Larsson et al. 1997, Fukui 2001). Shelter-building behaviour can 

further improve host plant quality by lowering chemical and physical 

defences (Sagers 1992). Because of their higher mobility, exposed feeders, 

in contrast, could optimize their diet by selective foraging, and lower their 

parasitism and predation rates by resting some distance away from the 
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feeding site (Heinrich 1979). These differences between exposed feeders 

and shelter builders lead to guild-specific patterns in diet breadth, diversity, 

and composition (Menken et al. 2010, Connahs et al. 2011, Diniz et al. 2012, 

Hrcek et al. 2013). Shelter builders, for instance, were shown to be 

generally more specialised than exposed feeders (Gaston et al. 1992, 

Menken et al. 2010). Furthermore, shelter builders often represent the 

dominant feeding guild in local assemblages (Diniz et al. 2012, Hrcek et al. 

2013), although this pattern is not always consistent (see for example Šigut 

et al. 2018). This underpins the need to treat and analyse feeding guilds 

separately when investigating assemblage structure and specialisation 

patterns of plant-caterpillar networks. Nevertheless, despite the general 

differences in specialisation patterns among exposed feeders and shelter 

builders, there is also high variability in diet breadth among species within 

individual feeding guilds.  

Host plant specialisation is considered one of the most important drivers of 

the high diversity found in herbivorous insects. However, herbivore 

specialisation can be measured in various ways and many indices have been 

developed. While early indices were simple counts of host species, genera, 

or families that an insect species utilises, more advanced indices account 

fully, or at least partially, for host plant phylogeny, interaction strength, and 

resource availability (e.g., Symons & Beccaloni 1999, Blüthgen et al. 2006, 

Jorge et al. 2014). Some of these indices have become very popular and 

lend a more realistic perspective on specialisation patterns in herbivore 

assemblages. 

It is assumed that increased specialisation leads to more finely partitioned 

food resources which in turn allows more herbivore species to coexist 

(Lewinsohn & Roslin 2008). Furthermore, evidence was found that host 

shifts followed by subsequent specialisation promotes speciation in 

Lepidoptera (Janz et al. 2006, Janz & Nylin 2008, Fordyce 2010). Thus, one 
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would expect caterpillar assemblages to be more diverse the narrower their 

diet breadth. Indeed, several attempts have been made to investigate 

whether increased species richness in caterpillar assemblages is a result of 

overall higher specialisation or caused by greater resource diversity (e.g., 

Novotny et al. 2002a, Novotny et al. 2006, Dyer et al. 2007, Pellissier et al. 

2012, Forister et al. 2015). While some of those studies revealed a positive 

relationship between richness and specialisation (Dyer et al. 2007, Pellissier 

et al. 2012, Forister et al. 2015), Novotny et al. (2002a, 2006) reported no 

significant differences in host specificity between the caterpillars of a 

species-poor temperate forest and its tropical counterpart. The reasons for 

the contrasting results are not clear and still under debate (Stork 2007). 

Studies investigating both richness/ diversity and specialisation 

concomitantly are therefore essential to understand how these 

components are linked in local assemblages and how they are structured 

among and within plant species. 

DIETARY DIVERSITY OF FOREST CATERPILLARS – A BRIEF OUTLINE 

Forest ecosystems harbour an outstanding diversity of butterfly and moth 

species. A vast majority of those species are associated with the foliage of 

woody plants, while the summed fraction of grass and herb feeders is 

generally lower (Heinrich 1993, Hammond & Miller 1998, Summerville & 

Crist 2002). Furthermore, lepidopteran larvae represent the largest 

proportion of leaf-chewing insects in forest habitats (e.g., Novotny et al. 

2010, Šigut et al. 2018) and thus contribute greatly to overall herbivory in 

these ecosystems. Especially during outbreaks, folivorous caterpillars can 

reach high densities resulting in severe impacts on trees by defoliating focal 

host species or even whole forest stands (Myers 1993, Myers 1998, Kamata 

2002). 
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Besides these ‘classical’ herbivores, a smaller proportion of caterpillars do 

not consume the living tissue of vascular plants (Tracheophyta), but feed 

on other substrate such as dead plant material, lichens, algae, bryophytes, 

or fungi (Powell et al. 1998, Bodner et al. 2015, Adams et al. 2016). A few 

species even reveal a parasitic or predatory feeding habit (see Pierce 1995, 

Powell et al. 1998). These ‘alternative feeders’ (i.e., all dietary guilds 

besides those of ‘classical’ herbivores) represent a minority of Lepidoptera 

species and are mostly found in basal lineages (Powell et al. 1998, Menken 

et al. 2010).  

As caterpillars are typically used to study interactions between insects and 

vascular plants, dietary guilds of ‘alternative feeders’ are often neglected 

leading to deficient knowledge about their role in forest ecosystems. 

Particularly in tropical forests and other regions where information about 

utilized food sources is scarce, the fraction of these ‘alternative feeders’ in 

local caterpillar assemblages is largely unknown. A recent study by Bodner 

et al. (2015) in a montane rainforest, for instance, revealed that ‘alternative 

feeders’ made up a substantial proportion of caterpillars sampled from 

woody plant species. The rarity of such studies, however, illustrates that we 

need more comprehensive information about these ‘alternative feeding’ 

habits in local caterpillar assemblages to draw concise conclusions about 

specialisation patterns and niche partitioning of co-existing species. This 

goal can only be reached by direct observations in the field and/or by 

feeding trials during rearing in the laboratory. 

METHODS TO STUDY PLANT-ARTHROPOD INTERACTIONS IN FOREST 

CANOPIES 

Forest canopies are hotspots of biodiversity (Nakamura et al. 2017) and 

provide habitats for an exceptionally large number of arthropods (Basset et 
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al. 2015). Although ecologists have always been fascinated by canopies and 

their associated biota, the upper canopy layers have been neglected for a 

very long time in ecological studies due to limited access techniques and 

logistics (Lowman 2009). Canopy research is thus a relatively young 

ecological discipline, which mostly evolved during the last four decades due 

to the development of suitable sampling methods. Specialised methods of 

canopy sampling include fogging as well as sampling from cranes, 

walkways, and towers (see Barker & Pinard 2001, Lowman 2009, 

Gottsberger 2017, Nakamura et al. 2017). Although these methods enabled 

valuable insights into the richness and composition of canopy arthropods, 

our knowledge about their functional role and trophic position in 

interaction networks is still limited. Many studies, for instance, focused 

either on certain plant taxa, randomly selected tree individuals, or sampled 

merely small parts of the tree crown. Such methods are rather ‘selective’ 

as, independent from sampling effort, they capture only a limited fraction 

of the occurring species and their trophic interactions in a given forest 

stand. This could lead to an overestimation of specialisation and provide 

fragmentary insights into local species richness. ‘Selective’ methods are 

therefore not ideal when studying plant-arthropod interaction networks. 

Another problem in canopy arthropod research is that many different 

sampling protocols were used, which either hinders direct comparisons 

among forest sites and regions, or even makes them impossible.  

The necessity for standardized protocols in canopy research was 

formulated nearly 20 years ago (Barker & Pinard 2001), however, no 

comprehensive guidelines for arthropod sampling are currently available.   

Considering the aforementioned limitations in canopy arthropod research, 

we need quantitative sampling strategies that reflect the tree composition 

realistically and include entire tree crowns (Godfray et al. 1999, Šigut et al. 

2018, Redmond et al. 2019). In addition, observed trophic associations 
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between plants and arthropods should be corroborated by rearing, 

literature searches, and/or the barcoding of gut contents (see Zhu et al. 

2019, Hausmann et al. 2020). These approaches would provide more 

detailed information and holistic insights into plant-arthropod interactions. 

Furthermore, well-written sampling protocols and guidelines for sample 

processing must allow for rigorous comparisons among forest sites - even 

if the applied sampling techniques differ.  

AIMS AND SCOPE 

The structure of insect herbivore assemblages varies substantially within 

and among forest habitats and ecosystems. As pointed out in the previous 

paragraphs, the underlying mechanisms are complex yet poorly 

understood. Only comprehensive sampling of plant-herbivore interactions 

in forests from a variety of biogeographic regions can shed more light into 

the mechanisms structuring their communities. Especially in regions where 

host plant information is scarce or the insect taxa poorly known, rigorous 

sampling and rearing is the best way to compile solid data on trophic 

interactions and local host plant preferences.  

The aim of this dissertation is to provide deeper insights in how herbivore 

assemblages are spatially, compositionally, and functionally structured in 

forest ecosystems by using caterpillars as a highly diverse model organism 

group. Potential drivers are considered from an ecological as well as from 

an evolutionary perspective.  

Particularly, we aim to study if caterpillar assemblages in temperate forests 

are vertically structured and if metrics derived from the plant phylogeny 

can help to predict their compositional changes and variation in assemblage 

characteristics. We further aim to investigate if caterpillars on plants meet 

the assumption to be generally classified as ‘classical’ herbivores sensu 
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stricto. In addition, the present thesis provides guidelines to gather 

comparable and reproducible data on plant-herbivore interactions based 

on results and experiences of a well-established and promising sampling 

approach.  

CHAPTER I While several studies documented stratification patterns of adult 

Lepidoptera, vertical niche partitioning of their immature stages received 

comparatively little investigation. Here, we study the vertical structuring of 

an arboreal caterpillar community in a temperate deciduous forest in 

eastern North America. We used a plot-based sampling method to gather 

plant – caterpillar interaction networks from the understory, midstory, and 

canopy of a whole 0.2 ha forest stand. Despite overall caterpillar density, 

we found pronounced stratification patterns in guild composition, 

taxonomic composition, and specialisation. We showed that the canopy 

unveiled a distinctly different caterpillar assemblage, while understory and 

midstory revealed the highest caterpillar richness, highlighting their 

importance in maintaining the diversity of arboreal caterpillar faunas. 

CHAPTER II Assemblages of insect herbivores are structured by plant traits of 

which a considerable proportion are phylogenetically conserved. Plant 

phylogenetic metrics indicating distances and relationships could thus 

serve as ‘synthetic similarity measure’ of conserved traits and might predict 

variation in caterpillar assemblages among co-occurring plant species. In 

this chapter we investigate, based on a comprehensive cross-continental 

dataset of plant-caterpillar interactions, how phylogenetic distance among 

host trees and their phylogenetic isolation explains species turnover and 

variations in assemblage characteristics of associated caterpillars. By using 

plot-based sampling approaches, we show that distance metrics obtained 

from the host plant phylogeny could be useful predictors explaining 
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compositional changes among hosts as well as host-specific variation in 

richness and mean specialisation of associated caterpillar assemblages. The 

study demonstrates that metrics obtained from plant phylogenies appear 

to be a promising tool in predicting the assemblage characteristics of insect 

herbivores within their respective communities. 

CHAPTER III Folivorous caterpillars are widely considered as ‘classical’ 

herbivores feeding on living leave tissue. However, especially in tropical 

regions where host plant information is scarce, few attempts have been 

made to prove this general assumption based on feeding trials. In this study 

we focused on caterpillar assemblages associated with the bamboo genus 

Chusquea KUNTH in montane rainforest and elfin forest of the south 

Ecuadorian Andes. Specific emphasis was put on caterpillar feeding guilds, 

which were defined by foliage-quality preferences of individual species. 

Based on feeding trials we found that a substantial fraction of the caterpillar 

assemblages are not strict herbivores and that elevation, leaf area, and 

foliage quality further shape guild composition. Our findings lead to the 

general assumption that in tropical forests caterpillars, although associated 

with ‘putative’ host plants, might play a larger role as detritivores than in 

temperate forest ecosystems. 

CHAPTER IV Various methods have been previously used to study plant – 

arthropod networks in forest ecosystems. However, focusing merely on 

selected tree species or parts of their canopy might lead to erroneous 

conclusions and misinterpretations. Here, we present reproducible 

guidelines for a plot-based sampling approach with the aim of gathering 

comprehensive plant – arthropod interaction data, hence enabling the 

reconstruction of whole-forest canopy networks. We compare three 

alternative approaches of this method that were previously applied in 
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various forest ecosystems worldwide. In addition, we compare network 

properties derived from plot-based sampling with those derived from 

simulations of non-plot-based sampling data. We subsequently discuss the 

advantages of the plot-based sampling method in general and advertise its 

further use to acquire comparable datasets of plant-arthropod interactions. 

This would allow for rigorous comparisons across larger geographic scales 

and thus provide deeper insights in how networks are structured and 

change among sites and regions. 
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Abstract 

1. Assemblages of insect herbivores are structured by plant traits such 

as nutrient content, secondary metabolites, physical traits, and 

phenology. These traits are often phylogenetically conserved, 

implying a decrease in trait similarity with increasing phylogenetic 

distance of the host plant taxa. A metric of phylogenetic distances 

and relationships among co-occurring plant species can be thus 

considered as ‘proxy measure’ for phylogenetically conserved plant 

traits and might be used to predict variation in herbivorous insect 

assemblages among co-occurring plant species. 

2. We analysed a Holarctic dataset of caterpillars and their host 

associations to study if the phylogenetic distances among host plants 

explain the compositional changes and assemblage characteristics of 

their insect herbivores. 

3. Our plant – caterpillar network data derived from plot-based 

sampling from three different continents included >28,000 

individual caterpillar – host tree interactions. We tested if increasing 

phylogenetic distance of the host plants leads to a decrease in 

caterpillar assemblage overlap. We further investigated to what 

degree phylogenetic isolation of a host tree species explains 

abundance, density, richness and mean specialisation of their 

caterpillar assemblages. 

4. We found that overlap of caterpillar assemblages decreased with 

increasing phylogenetic distance among the host tree species. 

Phylogenetic isolation of the host plant within its plant community 
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was correlated with lower species richness and lower mean 

specialisation of their caterpillar assemblages. We found no effect of 

phylogenetic isolation on caterpillar abundance or density per leaf 

area. Although abundance, density, richness, and mean 

specialisation of the exposed feeding and shelter-building caterpillar 

guilds varied among our study sites, plant phylogeny affected both 

guilds in the same direction. 

5. Our study revealed that distance metrics obtained from host plant 

phylogeny could be useful predictors to explain compositional 

changes among hosts as well as host-specific variations in richness 

and mean specialisation of associated insect herbivore assemblages. 

While some characteristics are mainly driven by resource availability, 

phylogeny-based methods provide a promising tool for global 

studies investigating changes in herbivore assemblages, especially 

now that phylogenetic information of host plants is becoming 

increasingly available. 

 

Key words 

Exposed feeders, guilds, herbivorous insects, Lepidoptera, phylogenetic 

isolation, specialisation, shelter builders, species richness 
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SUMMARY 

Vertical niche partitioning, plant traits, resource availability, and 

specialisation are considered important drivers in structuring communities 

of insect herbivores. This thesis aims to provide deeper insights into how 

caterpillar assemblages are structured in temperate and tropical forest 

ecosystems. To that end, the thesis focuses on externally feeding, 

folivorous caterpillars. We used a quantitative sampling approach to 

investigate the vertical structure of an arboreal caterpillar assemblage in 

eastern North America. Furthermore, by including quantitative interaction 

networks from the Czech Republic and Japan, we extended this dataset to 

answer the question of whether host plant phylogeny is a useful predictor 

of variation in caterpillar assemblages among co-occurring tree species. In 

another study, we asked whether folivorous caterpillars associated with 

bamboo in two tropical forest habitats fulfilled the criteria to be considered 

‘classical’ herbivores, or whether there was need for further precision 

regarding their trophic associations. The thesis ends with a methodological 

study in which we compared various approaches to plot-based sampling, 

discuss their advantages over alternative approaches, and provide 

comprehensive guidelines for replication. In the following paragraphs, I 

summarise the main findings of my thesis, draw some conclusions, and 

provide potential directions for further investigation. 

MAIN FINDINGS AND CONCLUSION 

In CHAPTER I, the vertical stratification of a temperate forest caterpillar 

assemblage was investigated by defining three equally sized forest strata. 

We hereby extended previous attempts (e.g., Wagner et al. 1995, Le Corff 

& Marquis 1999) by shifting from focal host plant species to a quantitative 

approach where trees within a 0.2 ha forest stand were entirely sampled. 
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Overall, we observed a pronounced stratification with differences in guild 

structure, taxonomic composition, diversity, and specialisation across the 

forest strata. By and large, our study thus contradicts the perceived wisdom 

that stratification patterns of arthropod assemblages in temperate forests 

are weakly developed (Lowman et al. 1993, Basset et al. 2003). We found 

that the lower forest strata, i.e., understory and midstory, harboured a 

large fraction of the caterpillar species and was dominated by exposed 

feeders. In contrast, the canopy was species-poor but with a caterpillar 

community that was more host specific. Based on these findings, we 

conclude that taxonomic composition, life history traits (e.g., feeding guild), 

and specialisation are closely linked and strongly influence vertical niche 

partitioning. We further interpret the increased species richness found in 

the lower strata and the lack of exclusively canopy-dwelling species as an 

indicator of the high conservation value of understory and midstory strata 

in maintaining caterpillar diversity in temperate forests. Caterpillar density 

did not differ significantly across the forest strata, which suggests that 

variation in vertical abundance is mainly driven by resource availability (i.e., 

leaf area). Besides resource availability, the biotic and abiotic factors 

shaping the vertical stratification of forest arthropods are complex and 

their relative importance may differ among taxonomic and functional 

groups (Ulyshen 2011, Nakamura et al. 2017). As insect herbivores are 

strongly influenced by their resources (Vidal & Murphy 2018), we speculate 

that vertical changes in plant traits such as toughness, nutritional quality 

and secondary metabolites may play an important role (Dominy et al. 2003, 

Murakami et al. 2005). Understanding the relative importance of such traits 

as drivers of caterpillar vertical niche partitioning would thus be a crucial 

step forward. Vertical variation in abundance, guild composition, and 

restrictions of certain caterpillar species to a particular stratum could have 

cascading effects on the vertical distribution and foraging behaviours of 
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their antagonists such as insectivorous birds and parasitoids. Therefore, the 

examination of tri-trophic interaction networks, especially those including 

parasitoids, might be a worthy direction for future studies on vertical 

stratification. These interaction networks could help us to understand the 

high richness and abundance of tachinid flies and ichneumonid wasps 

found in the understory of temperate forests and might further explain 

their compositional turnover among the forest strata (Stireman et al. 2012, 

Di Giovanni 2015). 

Besides vertical niche partitioning, host plant traits also play a crucial role 

in structuring herbivore assemblages (Agrawal 2007, Carmona et al. 2011). 

These traits, such as nutritional quality, secondary metabolites, and 

phenology, are to a certain degree phylogenetically conserved (Agrawal 

2007, Davies et al. 2013). In CHAPTER II, we explored whether or not metrics 

derived from plant phylogeny could be used as predictors that explain the 

changes in caterpillar assemblages among co-occurring plant species. More 

than 28,000 single host plant interactions from three different continents 

were analysed. We achieved this through an extension of the dataset used 

in chapter I by including additional data derived from plot-based sampling 

in the Czech Republic and Japan.  

We found that the compositional similarity of caterpillar assemblages 

declined with increasing phylogenetic distance of the host plant species. 

Moreover, species richness and mean specialisation of the caterpillar 

assemblage were observed to decline with increasing phylogenetic 

isolation of the host plant. Our findings thus clearly demonstrated that 

plant metrics indicative of phylogenetic relatedness could be useful 

measures to predict changes in community structure among coexisting 

plant species. Plant traits which directly or indirectly structure caterpillar 

assemblages, therefore, may exhibit a considerable degree of phylogenetic 

conservatism. In addition, our results reveal that highly isolated plant 
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species are mostly exploited by species-poor assemblages of less 

specialised caterpillar taxa. However, the study also suggested that 

resource availability plays a crucial role in the structure of caterpillar 

assemblages. Species richness, for instance, was positively affected by 

resource availability suggesting that caterpillar diversity in temperate 

forests is primarily maintained by plant species that are common and have 

close relatives within the community. Furthermore, caterpillar abundance 

and density were primarily driven by available foliage area rather than by 

plant phylogeny, which is in accordance with previous studies from tropical 

forests (Whitfeld et al. 2012). These findings underpin the need to account 

for both host plant phylogeny and resource availability when predicting 

assemblage characteristics of insect herbivores. Our study focused on the 

effects of plant phylogeny on the consumer level (i.e., insect herbivores). 

Several studies, however, reported variations in top-down effects on 

caterpillars mediated by host plant traits (Lill et al. 2002, Singer et al. 2012). 

It would thus be an interesting opportunity for further research to test if 

host plant phylogenies could also be used to predict host plant specific 

variations in predation pressure and compositional changes in parasitoid 

communities. As phylogentic information is becoming increasingly 

widespread, metrics derived from host plant phylogeny might thus not only 

provide a promising tool to study insect herbivore assemblages but also to 

investigate and predict tri-trophic interactions.  

In chapter I and II, we specifically focused on caterpillar species feeding 

exclusively on living leaf tissue of temperate forest trees. However, some 

caterpillar species might not consume the living foliage of a particular plant 

species, but feed on its dead or withered leaves that may be already 

infested by other organisms such as fungi. In CHAPTER III, we were 

particularly interested in these ‘alternative feeders’ (i.e., those caterpillars 

which do not exclusively feed on fresh, living foliage tissue) and aimed to 
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determine their prevalence. We therefore investigated the trophic 

associations of caterpillars associated with the bamboo genus Chusquea 

KUNTH in a montane rainforest ecosystem in the south Ecuadorian Andes. 

Based on feeding trials, caterpillars were segregated into three trophic 

guilds, i.e., strict herbivores, non-herbivores, and switchers. Surprisingly, 

nearly half of all sampled caterpillar individuals (46.5%) and species (41.7%) 

fed either exclusively on dead or withered leaves or switched between 

fresh and dead leaf material during their development. The proportion of 

non-herbivorous caterpillars was about one third (~31% of all individuals 

and species, respectively). This fraction of alternative feeders was even 

higher than reported for caterpillar assemblages associated with shrubs of 

Piperaceae and Asteraceae within the same study area (22%; Bodner et al. 

2015). Our findings thus strengthened former assumptions that the 

proportion of caterpillars taking part in alternative trophic associations is 

much higher in tropical rainforest ecosystems than is known from 

temperate forests (Bodner et al. 2015). Furthermore, we found the fraction 

of non-herbivores to be lower in elfin forest than in montane forest, while 

those of “switchers” and strict herbivores increased. To feed exclusively on 

dead plant material, therefore, might be a disadvantage in environments of 

lower temperature and generally harsher environment. This would further 

suggest that in lowland rainforests, the proportion of caterpillars feeding 

on dead plant material might be even higher than for the studied forest 

habitats of higher elevation. Comparable studies from tropical lowlands 

would be needed to verify or reject this assumption.  

Caterpillar densities of non-herbivores and switchers were not significantly 

influenced by foliage quality of the host plant. Furthermore, positive effects 

of resource availability were only observed for those guilds that feed at 

least partially during their development on living leaf tissue (i.e., strict 

herbivores and switchers). We therefore conclude that predicting 
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caterpillar densities based on the availability of living foliage is only a 

reliable method if the caterpillar guilds rely at least to some extent on this 

food source. Overall, our findings demonstrated that in ecological studies, 

trophic associations should be always clarified prior to further analyses to 

avoid misinterpretations about ‘putative’ resources used for caterpillar 

development. This is particularly the case when plant-caterpillar 

interactions are used to study antagonistic networks. Although barcoding 

methods are nowadays available to reveal host plant information (Zhu et 

al. 2018, Hausmann et al. 2020), their ability to detect trophic associations 

is limited in cases where the food substrate (e.g., leaf tissue), originated 

from the same host plant species. Traditional rearing methods including 

food-choice tests and stable isotope analyses as suggested by Adams et al. 

(2016) may provide suitable alternatives. 

In the first two chapters of this thesis, we employed different approaches 

of plot-based sampling to study quantitative interaction networks in forest 

ecosystems, i.e., cherry picker, canopy crane, and tree felling. In CHAPTER IV, 

we compared the efficiency of these three methods and contrasted plant-

caterpillar networks derived from plot-based sampling with those derived 

from simulated non plot-based approaches. We found that sampling effort 

(person-hours) did not differ among the three techniques, but was 

dependent on forest type. Forest habitats with higher stem densities 

generally demanded greater sampling effort. Although all three methods 

provided access to >80% of the foliage, sampling by cherry picker 

performed slightly better in terms of foliage accessibility than sampling by 

crane or tree felling. However, especially in forest sites that are difficult to 

access, felling or the use of established canopy cranes might be the 

methods of choice. Apart from method-specific advantages and limitations, 

all three approaches turned out to be well-suited for studying endophytic 

and exophytic species of non-flying arthropods such as externally feeding 
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insect larvae, miners, and gallers. Furthermore, since plant-arthropod 

interactions are completely censused for a standardised forest area, the 

networks derived from plot-based sampling allow rigorous comparisons 

across sites, regions, and ecosystems (e.g., Volf et al. 2017, Redmond et al. 

2019, Plowman et al. 2020). Additonally, we showed that commonly used 

network metrics derived from simulated non plot-based samplings 

revealed bias in the results, irrespective of whether the plant selection was 

based on taxonomy or abundance. The significance of this finding goes far 

beyond those studies investigating interaction networks of canopy 

arthropods. It clearly demonstrates the importance of reflecting plant 

composition realistically when studying plant-arthropod interaction 

networks, regardless of habitat and functional plant group. The 

comparability of the tested approaches and the striking advantages of the 

interaction networks over those derived from non plot-based samplings are 

convincing arguments to follow our introduced sampling guidelines in 

further research. 

FUTURE DIRECTIONS 

The present thesis reveals new insights in the factors shaping caterpillar 

assemblages in forest ecosystems. However, further investigations across a 

broader selection of forest types, successional stages, and ecosystems are 

needed to clarify if the observed patterns are valid generally (see Volf et al. 

2017, Redmond et al. 2019). As mentioned before, expanding the scope of 

investigation from bipartite to tri-trophic interaction networks by including 

parasitoids would allow for studying both bottom-up and top-down forces 

simultaneously. This would provide new insights as their relative 

contributions in structuring caterpillar communities could be thoroughly 

evaluated. The inclusion of additional information on the life history, 
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behaviour, and morphology of interacting taxa may further reveal how and 

to what extent functional traits shape the structure of interaction networks. 

Our research focused on two major guilds of external feeding caterpillar 

assemblages, while internal leaf feeders (i.e., miners and gall-inducers) 

were not considered. Internal leaf feeders, however, experience a 

completely different environment during their larval development and are 

capable of feeding on specific leaf tissue. Thus, it would be worthy to 

include these guilds in future studies to examine if their assemblages are 

similarly structured as those of external feeding guilds, or to what degree 

they behave differently.  

Most importantly, the methodology for the future sampling of forest 

caterpillars and their trophic interactions should ideally be standardised to 

enable spatial and temporal comparisons. The guidelines presented in 

chapter IV represent an auspicious starting point to build up a global 

network of forest plots in which to study trophic interactions between 

plants, caterpillars and their natural enemies in a comparable way. 

Realising the establishment of such a global network of standardised forest 

plots would provide the opportunity to study macroecological patterns in 

species diversity, specialisation, and community structure. Additionally, it 

would allow the monitoring of temporal dynamics and long-term changes 

in arthropod communities and their interaction networks and thus yield 

essential information for conservation management.  
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