
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

ADVANCED ELECTRONIC CIRCUITS SIMULATION
METHODS
MODERNÍ METODY MODELOVÁNÍ A SIMULACE ELEKTRONICKÝCH OBVODŮ

PHD THESIS
DISERTAČNÍ PRÁCE

AUTHOR Ing. FILIP KOCINA
AUTOR PRÁCE

SUPERVISOR doc. Ing. JIŘÍ KUNOVSKÝ, CSc.
ŠKOLITEL

BRNO 2017

Abstract
The thesis deals with the simulation of electronic circuits. It describes the Capacitor Substi-
tution Method (CSM) to transform electronic circuits into electric circuits which can then be
solved using numerical methods, namely the Modern Taylor Series Method (MTSM). This
method is distinguished by automatic order selection, halving the step size as required and
the wide area of stability according to the order. Within the thesis, specialized program-
ming equipment to solve ordinary differential equations using MTSM was created by the
author of the thesis, with many improvements to the algorithms (compared to TKSL/386).
These algorithms involve the simplification of generic expressions into polynomials, paral-
lelization independent of the integration method etc. This software runs on a Linux server
which communicates using the TCP/IP stack. The equipment was successfully used to
simulate VLSI circuits whose solution by CSM was much faster and more memory-efficient
than the state-of-the-art SPICE.

Abstrakt
Disertační práce se zabývá simulací elektronických obvodů. Popisuje metodu kapacitorové
substituce (CSM) pro převod elektronických obvodů na elektrické obvody, jež mohou být
následně řešeny pomocí numerických metod, zejména Moderní metodou Taylorovy řady
(MTSM). Tato metoda se odlišuje automatickým výběrem řádu, půlením kroku v případě
potřeby a rozsáhlou oblastí stability podle zvoleného řádu. V rámci disertační práce bylo
autorem disertace vytvořeno specializované programové vybavení pro řešení obyčejných
diferenciálních rovnic pomocí MTSM, s mnoha vylepšeními v algoritmech (v porovnání
s TKSL/386). Tyto algoritmy zahrnují zjednodušování obecných výrazů na polynomy, pa-
ralelizaci nezávislou na integrační metodě atp. Tento software běží na linuxovém serveru,
který komunikuje pomocí protokolu TCP/IP. Toto vybavení bylo úspěšně použito pro simu-
laci VLSI obvodů, jejichž řešení pomocí CSM bylo značně rychlejší a spotřebovávalo méně
paměti než state-of-the-art SPICE.

Keywords
Modern Taylor Series Method, Capacitor Substitution Method, ordinary differential equa-
tions, electronic circuits, logic gates, inverter, NAND, NOR, XOR, RS latch, D latch, JK
flip-flop, T flip-flop, binary adder, Booth’s algorithm, VLSI.

Klíčová slova
Moderní metoda Taylorovy řady, metoda kapacitorové substituce, obyčejné diferenciální
rovnice, elektronické obvody, logická hradla, invertor, NAND, NOR, XOR, RS klopný ob-
vod, D klopný obvod, JK klopný obvod, T klopný obvod, binární sčítačka, Boothův algo-
ritmus, VLSI.

Reference
KOCINA, Filip. Advanced Electronic Circuits Simulation Methods. Brno, 2017. PhD
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Kunovský Jiří.

Index

A
adder, 19

full, 19
half, 19
transient response, 19, 21

adjacency matrix, 29

B
Booth’s algorithm, 24

C
Capacitor Substitution Method, 8
carry

generate, 20
propagate, 20
propagation, 20, 21

Carry Look-ahead, 20
Carry Look-ahead Unit, 21
circle test, 4
circuits

electronic, 7
CLA, 20
CLU, 21
CMOS

flip-flops
T, 26

inverter, 8
multiplexer, 26
NAND, 12
NOR, 15
XOR, 17

complement, 25
CSM, 8

D
D shift register, 24
differential–algebraic equations, 3

E
equations

differential–algebraic, 3

F
FOS, 7
full adder, 19

H
half adder, 19

I
ILA, 25
ILU, 25
initial-value problem, 3, 4
Invert Look-ahead, 25
Invert Look-ahead Unit, 25

M
method

Euler, 3
MTSM, 5
Runge–Kutta, 4

methods
numerical, 3

minimal form, 5, 6
multiplexer, 26
multiplier, 24

S
SPICE, 7

T
T flip-flop, 26
transient response, 19, 21
transistor

NMOS, 10
PMOS, 10

two’s complement, 25

V
VLSI, 7, 19

37

[15] Koch, O.; Kofler, P.; Weinmüller, E. B.: The Implicit Euler Method for the
Numerical Solution of Singular Initial Value Problems. Applied Numerical

Mathematics. 2000. ISSN 0168-9274.

[16] Kocina, F.: FOS: Fast ODE Solver. Software.
Retrieved from: http://www.fit.vutbr.cz/~ikocina/prods.php

[17] Nedialkov, S. N.; Pryce, J. D.: Solving Differential Algebraic Equations by Taylor
Series III. Journal of Numerical Analysis, Industrial and Applied Mathematics. 2008.
ISSN 1790-8140.

[18] Pedroni, V. A.: Digital Electronics and Design with VHDL. Elsevier. 2008.
ISBN 978-0-12-374270-4.

[19] Rafiquzzaman, M.: Fundamentals of Digital Logic and Microcomputer Design. John
Wiley & Sons. 5th edition. 2005. ISBN 978-0-471-73349-2.

[20] Ralston, A.; Rabinowitz, P.: A First Course in Numerical Analysis. McGraw–Hill.
1978. ISBN 978-0-07-051158-3.

[21] Wakerly, J. F.: Digital Design: Principles and Practices. Pearson Education. 4th
edition. 2006. ISBN 978-0-13-186389-7.

36

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Aims . 2

2 Differential–Algebraic Equations 3

2.1 Numerical methods . 3
2.1.1 Euler method . 3
2.1.2 Runge–Kutta methods . 4
2.1.3 Modern Taylor Series Method . 5

2.2 Transformation into basic operations . 5
2.2.1 Transformation into the minimal form 5
2.2.2 Minimal form . 6

3 Solving Electronic Circuits 7

3.1 Approaches to VLSI simulation . 7
3.1.1 SPICE . 7
3.1.2 FOS . 7

3.2 Capacitor Substitution Method . 8
3.2.1 CMOS inverter . 8
3.2.2 CMOS NAND . 12
3.2.3 CMOS NOR . 15
3.2.4 XOR . 17

4 VLSI 19

4.1 Adder . 19
4.1.1 Half adder . 19
4.1.2 Full adder . 19
4.1.3 Transient response . 19
4.1.4 CLA adder . 20
4.1.5 Scale of integration . 22
4.1.6 Experiments . 22

4.2 Multiplier . 24
4.2.1 Booth’s algorithm . 24
4.2.2 Multiplier components . 26
4.2.3 Verification . 27
4.2.4 Experiments . 28

4.3 Generic CMOS circuits . 29
4.3.1 Generating ODEs . 30

i

5 Conclusion 31
5.1 Aims achieved . 31
5.2 Research contribution . 32
5.3 Future research . 32

List of Publications 33

Bibliography 35

Index 37

ii

Bibliography

[1] Barrio, R.; Blesa, F.; Lara, M.: VSVO Formulation of the Taylor Method for the
Numerical Solution of ODEs. Computers and Mathematics with Applications. 2005.
ISSN 0898-1221.

[2] Butcher, J. C.: Coefficients for the Study of Runge–Kutta Integration Processes.
Journal of the Australian Mathematical Society. 1963. ISSN 1446-7887.

[3] Butcher, J. C.: Implicit Runge–Kutta Processes. Mathematics of Computation. 1964.
ISSN 0025-5718.

[4] Butcher, J. C.: Numerical Methods for Ordinary Differential Equations. John Wiley
& Sons. 3rd edition. 2016. ISBN 978-1-119-12150-3.

[5] Chang, C. Y.; Sze, S. M.: ULSI Technology. McGraw–Hill. 1996.
ISBN 978-0-07-114105-5.

[6] Collins, P. J.: Differential and Integral Equations. Oxford University Press. 2006.
ISBN 978-0-19-853382-5.

[7] Engelhardt, M.: SPICE Differentiation. LT Journal of Analog Innovation. 2015.

[8] Flynn, M. J.; Oberman, S. F.: Advanced Computer Arithmetic Design. John Wiley &
Sons. 2001. ISBN 978-0-471-41209-0.

[9] Griffiths, D. F.; Higham, D. J.: Numerical Methods for Ordinary Differential

Equations. Springer. 2010. ISBN 978-0-85729-147-9.

[10] Hairer, E.; Nørsett, S. P.; Wanner, G.: Solving Ordinary Differential Equations I:

Nonstiff Problems. Springer. 2nd edition. 1993. ISBN 978-3-540-56670-0.

[11] Hairer, E.; Wanner, G.: Solving Ordinary Differential Equations II: Stiff and

Differential–Algebraic Problems. Springer. 2nd edition. 1996. ISBN 978-3-540-60452-5.

[12] Hwang, E. O.: Digital Logic and Microprocessor Design with VHDL. Thomson. 2006.
ISBN 978-0-534-46593-3.

[13] Kaeslin, H.: Digital Integrated Circuit Design: From VLSI Architectures to CMOS

Fabrication. Cambridge University Press. 2008. ISBN 978-0-521-88267-5.

[14] Kishore, K. L.; Prabhakar, V. S. V.: VLSI Design. I. K. International Publishing
House. 2010. ISBN 978-93-80026-67-1.

35

2015 Kocina, F.; Šátek, V.; Veigend, P.; et al.: New Trends in Taylor Series Based
Applications. In Proceedings of the 13th International Conference of Numerical

Analysis and Applied Mathematics. American Institute of Physics. 2015.
ISBN 978-0-7354-1392-4.

Veigend, P.; Kunovský, J.; Kocina, F.; et al.: Electronic Representation of Wave
Equation. In Proceedings of the 13th International Conference of Numerical

Analysis and Applied Mathematics. American Institute of Physics. 2015.
ISBN 978-0-7354-1392-4.

2014 Kocina, F.; Kunovský, J.; Marek, M.; et al.: New Trends in Taylor Series Based
Computations. In Proceedings of the 12th International Conference of Numerical

Analysis and Applied Mathematics. American Institute of Physics. 2014.
ISBN 978-0-7354-1287-3.

2013 Šátek, V.; Kunovský, J.; Kocina, F.; et al.: Taylor Series Based Computations and
MATLAB ODE Solvers Comparisons. In Proceedings of the 11th International

Conference of Numerical Analysis and Applied Mathematics. American Institute of
Physics. 2013. ISBN 978-0-7354-1184-5.

Publications in Web of Science3 or Scopus4

2015 Šátek, V.; Kocina, F.; Kunovský, J.; et al.: Taylor Series Based Solution of Linear
ODE Systems and MATLAB Solvers Comparison. In Proceedings of the 8th Vienna

International Conference on Mathematical Modelling. Elsevier Science Direct. 2015.
ISBN 978-3-901608-46-9.

Kunovský, J.; Šátek, V.; Kocina, F.; et al.: The Positive Properties of Modern
Taylor Series Method. In Proceedings of the 13th International Scientific Conference

on Informatics. Institute of Electrical and Electronics Engineers. 2015.
ISBN 978-1-4673-9867-1.

2013 Kopřiva, J.; Kunovský, J.; Kocina, F.; et al.: Numerical integration in the RNS. In
Proceedings of the 12th International Scientific Conference on Informatics. Faculty
of Electrical Engineering and Informatics, Technical University of Košice. 2013.
ISBN 978-80-8143-127-2.

Other publications

2015 Kocina, F.; Veigend, P.; Nečasová, G.; et al.: Parallel Computations of Differential
Equations. In Proceedings of the 10th Doctoral Workshop on Mathematical and

Engineering Methods in Computer Science. Litera. 2015. ISBN 978-80-214-5254-1.

3http://apps.webofknowledge.com/
4http://www.scopus.com/

34

Nomenclature

y′ Time Derivative (ẏ)

CLA Carry Look-ahead

CLU Carry Look-ahead Unit

CMOS Complementary Metal–Oxide–Semiconductor

CNF Conjunctive Normal Form

CPU Central Processing Unit

CSM Capacitor Substitution Method

DNF Disjunctive Normal Form

EPS Error Per Step

FOS Fast ODE Solver

ILA Invert Look-ahead

ILU Invert Look-ahead Unit

LSB Least Significant Bit

LSI Large-Scale Integration

MSB Most Significant Bit

MSI Medium-Scale Integration

MTSM Modern Taylor Series Method

NMOS Negative Metal–Oxide–Semiconductor

ODE Ordinary Differential Equation

ORD Order of Method

PMOS Positive Metal–Oxide–Semiconductor

SSI Small-Scale Integration

ULSI Ultra Large-Scale Integration

VLSI Very Large-Scale Integration

iii

List of Publications

Prestigious conferences1

2017 Kocina, F.; Kunovský, J.: Advanced VLSI Circuits Simulation. In Proceedings of the

15th International Conference on High Performance Computing & Simulation.
Institute of Electrical and Electronics Engineers. 2017.

2016 Kocina, F.; Nečasová, G.; Veigend, P.; et al.: Parallel Solution of Higher Order
Differential Equations. In Proceedings of the 14th International Conference on High

Performance Computing & Simulation. Institute of Electrical and Electronics
Engineers. 2016. ISBN 978-1-5090-2088-1.

2015 Valenta, V.; Nečasová, G.; Kocina, F.; et al.: Adaptive Solution of the Wave
Equation. In Proceedings of the 5th International Conference on Simulation and

Modeling Methodologies, Technologies and Applications. Science and Technology
Press. 2015. ISBN 978-989-758-120-5.

Proceedings with relatively high ranking2

2016 Kocina, F.; Nečasová, G.; Veigend, P.; et al.: Modelling VLSI Circuits Using Taylor
Series. In Proceedings of the 14th International Conference of Numerical Analysis

and Applied Mathematics. American Institute of Physics. 2016. ISSN 0094-243X.

Nečasová, G.; Kocina, F.; Veigend, P.; et al.: Solving Wave Equation Using Finite
Differences and Taylor Series. In Proceedings of the 14th International Conference of

Numerical Analysis and Applied Mathematics. American Institute of Physics. 2016.
ISSN 0094-243X.

Veigend, P.; Nečasová, G.; Kocina, F.; et al.: Real Time Simulation of Transport
Delay. In Proceedings of the 14th International Conference of Numerical Analysis

and Applied Mathematics. American Institute of Physics. 2016. ISSN 0094-243X.

Chaloupka, J.; Kocina, F.; Veigend, P.; et al.: Multiple Integral Computations. In
Proceedings of the 14th International Conference of Numerical Analysis and Applied

Mathematics. American Institute of Physics. 2016. ISSN 0094-243X.

1http://portal.core.edu.au/conf-ranks/, http://dblp.uni-trier.de/
2http://www.scimagojr.com/

33

proximation can model the lengths of the transient responses. The Capacitor Substi-
tution Method (CSM) is described in Section 3.2.

– The proposed method should be efficient.

This hypothesis is clearly answered in Chapter 4. It can be seen from the results, that
the proposed CSM is much faster (much more than 1000×) and more memory-efficient
than the state-of-the-art SPICE.

5.2 Research contribution

During my doctoral studies, I developed programming equipment for solving systems of
ordinary differential equations [16] which is further being improved and also adapted for
educational purposes (it is used in the course High Performance Computations2 at the
Faculty of Information Technology, Brno University of Technology).

I dealt with the simulation of electric and electronic circuits, which led to the proposal
of the Capacitor Substitution Method (CSM). I simulated various electronic circuits using
this method, starting with the basic CMOS gates (inverter, NAND, NOR, see Section 3.2)
and XOR (Section 3.2.4), further latches and flip-flops and finally an adder (Section 4.1)
and a multiplier (Section 4.2).

Further, I created specialized software for simulating VLSI, which was used for the
simulation of relatively large VLSI circuits by CSM. The comparison of my approach to
the state of the art is convincing: up to a 16kb adder with 1 332 536 transistors (300 366
logic gates) was successfully simulated in less than four minutes; SPICE was unable to
solve even small VLSI circuits – a 1kb adder with 83 256 transistors (18 766 logic gates) –
in a reasonable time. The experiments were performed in Section 4.1.6.

I also successfully used CSM for the simulation of sequential logic circuits represented
by a multiplier. First, I constructed the basic elements required for the construction of
the multiplier using Booth’s algorithm with the CMOS logic gates proposed in Section 3.2.
Then, I connected them together to form the whole multiplier. The created circuit is quite
complex and the process of its modeling can serve as an example for modeling larger and
more complex VLSI circuits such as microprocessors. The multiplier is thoroughly analyzed
in Section 4.2 and the results of the experiments are shown in Section 4.2.4.

The main ideas of the thesis were published at the prestigious3 IEEE International
Conference on High Performance Computing & Simulation (HPCS 2017)4 and accepted by
the scientific community.

5.3 Future research

The thesis outlines the possibilities of VLSI circuits simulation. Relatively large circuits
can be simulated and future research can focus on modeling a basic Central Processing
Unit (CPU) with basic operations simulated. After modeling a basic CPU, a more complex
CPU model can be proposed. Such an extensive model consists of billions of transistors;
therefore, a supercomputer will have to be involved.

2http://www.fit.vutbr.cz/study/courses/VNV/index.php.en
3http://portal.core.edu.au/conf-ranks/?search=hpcs&by=all&source=CORE2017
4Kocina, F.; Kunovský, J.: Advanced VLSI Circuits Simulation. In Proceedings of the 15th International

Conference on High Performance Computing & Simulation. Institute of Electrical and Electronics Engineers.
2017.

32

Chapter 1

Introduction

Many real-world problems lead to large systems of ordinary differential equations (ODEs).
These systems cannot be solved analytically; therefore, numerical methods are involved.
Many numerical methods exist, differing in complexity, accuracy, speed and flexibility.
Some methods can be substituted using superior variants, while others are used together
with more sophisticated optimizations for a specific purpose.

In this thesis, some methods are mentioned, but the main subject of interest is a very
precise, fast and flexible method that uses the Taylor series. The method can solve many
technical initial-value problems. This method is used in the software I developed to compute
large systems of differential equations. The software runs on a Linux server, accepting the
tasks using the TCP/IP stack.

The main part of the thesis is devoted to electric/electronic circuits simulation. The elec-
tric circuits discussed contain only resistors, capacitors and coils, while electronic circuits
also include semiconductors like diodes and transistors. Both the diode and the transistor
are represented using their exponential characteristics. The Capacitor Substitution Method
(CSM) developed is used for the simulation of transistors. Further, the simulation of various
electronic components is proposed.

CSM is much faster and more memory-efficient than the state-of-the-art SPICE. Rela-
tively large Very Large-Scale Integration (VLSI) circuits (over a million transistors) have
been successfully simulated in less than four minutes. For example, multiple-bit adders and
multipliers are used. These circuits are simulated using both CSM and SPICE and the
results are compared. The simulation of the multipliers is relatively slow when compared
to the adders, since more algorithmic cycles have to be simulated.

1.1 Motivation

The simulation of electronic circuits is still a challenging problem. The simulation of VLSI
circuits is complicated and time-consuming using the existing software, which implies in-
convenience for everyday usage. This is due to the precise simulation of the individual
transistors that is performed. This simulation uses a large amount of resources.

Another approach to the simulation of electronic circuits is to consider primarily the
steady state of the transistor and the length of the transient response. The rest of the
behavior (and possible errors) can be ignored. The approach benefits from the fact that
most of the time only the length of the transient response is required and it is irrelevant

1

that the error during the transient response is relatively high. This approach is the main
subject of the thesis.

1.2 Aims

This thesis deals with three research hypotheses:

– The equations describing an electronic circuit can be systematically created.

– The transistors could be replaced by RC circuits.

– The proposed method should be efficient.

2

Chapter 5

Conclusion

In this thesis, I discussed the simulation of electronic circuits. First, I described several
numerical methods used for solving systems of ordinary differential equations (ODEs), but
I mainly focused on the Modern Taylor Series Method (MTSM), which is very accurate,
fast and flexible.

The main part of the thesis dealt with solving electronic circuits. The Capacitor Sub-
stitution Method (CSM) was introduced and CMOS gates (inverter, NAND, NOR) were
simulated. Then more complex circuits were modeled using the CMOS gates: XOR, an
n-bit D shift register, a complementing circuit, a T flip-flop and a two-input n-bit multi-
plexer. From the circuits previously created, large circuits were constructed: a multiple-bit
adder and a multiplier.

The proposed method can be easily parallelized since all logic gates are independent
while no switching occurs; therefore, I separated the equations representing the electronic
circuits, merging together approximately a thousand ODEs1. This approach appeared to be
the most efficient one. Moreover, the simulation can be distributed among more computers
on condition that the communication bus is reasonably fast. The acceleration of the parallel
approach compared to the sequential approach is quite considerable.

CSM was successfully used for the simulation of VLSI circuits: multiple-bit adders
(a combinational logic circuit) and multipliers (a sequential logic circuit) were simulated.
The simulation using CSM was compared to the state-of-the-art system (SPICE) and the
acceleration is quite impressive: CSM is capable of solving more than a million transistors
in less than 4 minutes, while SPICE is unable to solve it within 24 hours; therefore, SPICE
is unusable for this purpose. The results of the experiments are presented in Section 4.1.6
and Section 4.2.4.

5.1 Aims achieved

This thesis dealt with three research hypotheses:

– The equations describing an electronic circuit can be systematically created.

The detailed assembling of ODEs is presented in Chapter 3. The basic CMOS logic
gates are analyzed and modeled. The generic algorithm is introduced in Section 4.3.

– The transistors could be replaced by RC circuits.

Yes, the operation of the transistors can be approximated by RC circuits. This ap-

1It would be inefficient to simulate each logic gate separately.

31

4.3.1 Generating ODEs

The algorithm for the construction of ODEs is straightforward: each non-zero line of the
adjacency matrix defines the inputs for the operation. For example, the penultimate line de-
scribes a three-input9 NOR: x, y, z are the inputs; the equations are generated consecutively
and the current for three inputs is:

i =
1

Ri
·
(

U − uC1
− uC2

− uC3
− uC456

)

, (4.20)

the three ODEs for the three inputs:

u′C1
=

1

C1
·

(

i−
1

Rx
· uC1

)

, uC1
(0) = 0

u′C2
=

1

C2
·

(

i−
1

Ry
· uC2

)

, uC2
(0) = 0

u′C3
=

1

C3
·

(

i−
1

Rz
· uC3

)

, uC3
(0) = 0

(4.21)

and the ODE for the output:

u′C456
=

1

C456
·

(

i−
Rx ·Ry +Rx ·Rz +Ry ·Rz

Rx ·Ry ·Rz
· uC456

)

, uC456
(0) = 3.3. (4.22)

The construction of the equations corresponding to the other lines is analogical.

9The number of non-zero elements on the line defines the operation arity.

30

Chapter 2

Differential–Algebraic Equations

A large number of technical problems can be described using a system of ordinary differential
and algebraic equations [10, 11]. These systems can be formally written as

w′

1 = f1(w1, . . . , wn, x1, . . . , xm), w1(t0) = w0
1

...
...

w′

n = fn(w1, . . . , wn, x1, . . . , xm), wn(t0) = w0
n

x1 = g1(w1, . . . , wn, x1, . . . , xm)

...

xm = gm(w1, . . . , wn, x1, . . . , xm)

(2.1)

consisting of n ordinary differential equations and m algebraic equations. Few systems can
be solved analytically; therefore, numerical methods are most commonly used to find the
solution [6, 9].

2.1 Numerical methods

Various numerical methods can be used to solve ordinary differential equations (ODEs).
The methods for solving algebraic equations are not mentioned since they are not required
for the proposed method of solving electronic circuits.

Initial-value problems described by ODEs can be solved using many different methods.
Let (2.2) specify the initial-value problem.

y′ = f(t, y), y(t0) = y0 (2.2)

Then the problem can be solved by a numerical method – several methods are mentioned
in the following subsections.

2.1.1 Euler method

The simplest numerical method for solving ordinary differential equations is the explicit
Euler method. It is a special form of the explicit Taylor method of the first order:

yn+1 = yn + h · f(tn, yn). (2.3)

3

The simplicity of the Euler method unfortunately implies very low accuracy. Step
size h has to be small for more precise results and the method is completely unusable for
stiff systems. The circle test can be used as an easy demonstration of the poor precision of
the Euler method:

y′′ = −y, y(0) = 0, y′(0) = 1. (2.4)

Figure 2.1 shows the problem clearly1. Some drawbacks of the explicit Euler method can
be removed by the implicit form of the Euler method [15].

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

(a) Euler method

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

(b) Exact solution

Figure 2.1: Circle test

2.1.2 Runge–Kutta methods

Runge–Kutta methods are commonly used for solving initial-value problems. These methods
are often chosen in many technical branches, mainly for solving non-stiff problems. The
next value is calculated by

yn+1 = yn +
ORD
∑

i=1

wiki (2.5)

where weights wi are constant and coefficients ki are calculated by (2.6); function f(t, y) is
the right side of the solved ordinary differential equation.

ki = hn · f

tn + αihn, yn +
i−1
∑

j=1

βijkj

 (2.6)

Weights wi, vector α and matrix β determine a specific method – they are often derived
from the Taylor series [2, 3]. Step size hn can be variable, but this is rare. The following
fourth-order method (2.7) appears to be the most frequent (with constant step size h),

1Dependency of y′ on y with step size 0.05 is shown.

4

Table 4.9 summarizes the results of parallel simulation. Parallel simulation by SPICE
is not included since the chosen implementation does not support it. The last column of
the table contains the acceleration of parallel to serial simulation.

bits MEM [MB] Time [s] Acceleration

16 1.59 15.48 3.8127

32 3.14 61.00 4.6716

64 5.71 178.37 6.4023

128 11.38 712.17 7.6167

256 22.47 2534.44 10.2791

Table 4.9: Parallel simulation

The comparison of CSM and SPICE is shown in Table 4.10. It is evident that CSM
runs much faster than SPICE and is capable of solving larger circuits with low memory
overhead.

bits Serial Parallel

16 3.0454 11.6111

32 4.6001 21.4898

64 > 75.6581 > 484.3864

Table 4.10: Acceleration of CSM compared to SPICE

4.3 Generic CMOS circuits

Generic CMOS circuits can be described using an adjacency matrix. The matrix is sparse
and can be automatically transformed into a system of ODEs describing the electronic
circuit using CSM. For example, the adjacency matrix and the vector of operations for
three-input XOR follow.

A =

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 1 1 0

u =

x

y

z

↑
↓
↑
↓
↑
↓
↓
↓

(4.19)

The lines of matrix A correspond with the lines of vector u. To obtain the inputs for an
operation, matrix–vector multiplication is performed.

29

registers and the two’s complement of the multiplier is calculated and stored in the register.
The other phases (which are performed n-times) always consist of three subphases:

1. From two LSBs of the multiplicand, the type of operation is determined (00 and 11
mean no operation, 01 addition and 10 subtraction).

2. The multiplier (or its complement in the case of subtraction) is added to the result
and stored in the alternate result register. This phase takes longer than the others,
depending on the adder delay.

3. If the operation was to add or subtract, the alternate result register is chosen as the
multiplier result (and the adder input) by storing the value of the T flip-flop into the
delaying register. If this is not the last phase, the multiplicand and the result are
shifted one bit right.

The result of the calculation performed, which is given in the last line of Table 4.6, is the
two’s complement of

−0.1000011010101110110110001101101b

that corresponds with the correct result of (4.18).

4.2.4 Experiments

Table 4.7 summarizes the parameters for individual test cases. Fast adder and complement
circuits were used and the simulation time was chosen appropriately to solve the whole
multiplication process. The penultimate column (containing the multiplier delays in the
number of time segments) determines the simulation times. The last column contains the
scale of the integration [14].

bits # transistors # gates # ODE Delay SI

16 6190 1169 4264 51 LSI
32 12274 2324 8461 132 LSI
64 24456 4625 16853 260 LSI

128 48812 9236 33642 645 LSI
256 97538 18449 67218 1285 VLSI

Table 4.7: Booth’s multiplier – parameters

The results of serial simulation are given in Table 4.8. The last three lines of the SPICE
results are incomplete since SPICE runs longer than a day8.

CSM SPICE

bits MEM [MB] Time [s] MEM [MB] Time [s]

16 1.34 59.02 24.54 179.74

32 2.88 284.97 55.27 1310.88

64 5.46 1141.98 – > 86400

128 11.12 5424.41 – > 86400

256 22.17 26051.81 – > 86400

Table 4.8: Serial simulation

81 day = 86 400 s

28

see [4, 20].

k1 = h · f(tn, yn)

k2 = h · f

(

tn +
1

2
h, yn +

1

2
k1

)

k3 = h · f

(

tn +
1

2
h, yn +

1

2
k2

)

k4 = h · f(tn + h, yn + k3)

yn+1 = yn +
1

6

(

k1 + 2k2 + 2k3 + k4

)

(2.7)

2.1.3 Modern Taylor Series Method

The Modern Taylor Series Method (MTSM) uses not only the first derivative for calculating
the next value, but also higher derivatives. These derivatives are obtained by consequent
differentiating the previous derivatives (the right side of the equation is the first derivative)
[1, 17]. The value in every point is obtained by their combination (2.8).

yn+1 = yn +

ORDn
∑

i=1

y
(i)
n hin
i!

(2.8)

In practice, it is impossible to use an infinite sum of MTSM terms. The number of terms
is determined by the order of the method (ORDn). Contrary to the previous methods, it
is possible to choose any order: the higher the order chosen, the more accurate the solution
calculated. The MTSM order changes automatically during the calculation; the calculation
in the current time step ends when the stopping rule is met: the absolute values of three
successive MTSM terms are less than the required accuracy (EPS). Although higher orders
allow the use of a bigger step size, multiple-precision arithmetic has to be often used in
that case; otherwise, the results would not be accurate.

2.2 Transformation into basic operations

Using the automatic transformation, each elementary function can be transformed into
basic operations – addition, subtraction, multiplication and division. The division can be
replaced by the multiplication; moreover, the subtraction can be replaced by the addition
with the opposite sign of the second argument (it can be performed either via multiplication
by −1 or using an unary minus).

2.2.1 Transformation into the minimal form

Now we have only additions and multiplications, so it is possible to use the commutative,
the distributive and the associative laws to rearrange an expression into its minimal form.
The following expression is taken as an example.

u = (x+ 2y) · (x− 2y) (2.9)

5

The expression is parsed into the syntax tree in Figure 2.2.

·

+

x ·

2 y

−

x ·

2 y

Figure 2.2: Syntax tree

The transformation begins by determining the operation in the root node – multipli-
cation, so the transformations are performed on the left and right children nodes and the
result is a multiplication by terms (using the distributive law):

(x+ 2y) · (x− 2y) → x · x+ x · (−2y) + 2y · x+ 2y · (−2y). (2.10)

Now the expression can be rearranged (using the commutative law) and variables can be
merged (using the associative law and expressing multiplications as exponentiations)2:

x · x+ x · (−2y) + 2y · x+ 2y · (−2y) → x2 − 4 · y2. (2.11)

2.2.2 Minimal form

The proposed algorithm leads to the unique minimal form if the result is sorted (assigning
indices to variables), coefficients ai are non-zero, at most one product is empty (ni = 0),
no variable is repeated within any term and no product is duplicated. The final minimal
form is described by a polynomial (2.12).

y =
m
∑

i=1

ai

ni
∏

j=1

v
rij
ij , m, ni ∈ N0, rij ∈ N, ai ∈ R \ {0}, vij ∈ Var (2.12)

2It is a common formula (a+ b) · (a− b) = a2
− b2.

6

4.2.3 Verification

First, the correct operation of the multiplier was verified. The multiplication (4.18) was
performed (the numbers were generated randomly).

−0.1001101000010111101110101100100b · 0.1101111111000001000000100001011b (4.18)

−0.1001101000010111101110101100100b is 10110010111101000010001010011100b in two’s
complement. The partial results of the algorithm are shown in Table 4.6.

Extended multiplicand Result

1 INIT 00000000000000000000000000000000
2 101100101111010000100010100111000 00000000000000000000000000000000
3 110110010111101000010001010011100 00000000000000000000000000000000
4 111011001011110100001000101001110 11001000000011111011111101111010
5 111101100101111010000100010100111 11100100000001111101111110111101
6 111110110010111101000010001010011 11110010000000111110111111011110
7 111111011001011110100001000101001 00110000111100100011100001110100
8 111111101100101111010000100010100 00011000011110010001110000111010
9 111111110110010111101000010001010 11010100010011000100110110010111
10 111111111011001011110100001000101 00100010000101100110011101010001
11 111111111101100101111010000100010 11011001000110101111001100100011
12 111111111110110010111101000010001 00100100011111011011101000010111
13 111111111111011001011110100001000 00010010001111101101110100001011
14 111111111111101100101111010000100 00001001000111110110111010000101
15 111111111111110110010111101000010 11001100100111110111011010111101
16 111111111111111011001011110100001 00011110001111111111101111100100
17 111111111111111101100101111010000 00001111000111111111110111110010
18 111111111111111110110010111101000 00000111100011111111111011111001
19 111111111111111111011001011110100 00000011110001111111111101111100
20 111111111111111111101100101111010 11001001111100111011111100111000
21 111111111111111111110110010111101 00011100111010100010000000100001
22 111111111111111111111011001011110 11010110100001001100111110001011
23 111111111111111111111101100101111 11101011010000100110011111000101
24 111111111111111111111110110010111 11110101101000010011001111100010
25 111111111111111111111111011001011 11111010110100001001100111110001
26 111111111111111111111111101100101 00110101010110001000110101111110
27 111111111111111111111111110110010 11100010101111000000011000111001
28 111111111111111111111111111011001 00101001010011100100001110100010
29 111111111111111111111111111101100 00010100101001110010000111010001
30 111111111111111111111111111110110 11010010011000110101000001100011
31 111111111111111111111111111111011 11101001001100011010100000110001
32 111111111111111111111111111111101 00101100100010010001010010011110
33 111111111111111111111111111111110 10111100101010001001001110010011

Table 4.6: Booth’s multiplier – partial results

The initialization is the first phase of the algorithm – the result registers, the T flip-flop
and the delaying one-bit register are zeroed; then, the input values are stored in appropriate

27

T flip-flop

The result and an operand of the adder used to add or subtract the multiplier are kept in
a pair of n-bit registers and after every required addition (some segments do not require
an addition) the functions of the registers are toggled to avoid copying the result. The
master–slave T flip-flop serves this purpose. It is derived from the master–slave JK flip-flop
where both inputs are either zero or one. The function is described by (4.16).

Q = Q ↑
(

RES ↑ T ↑ q ↑ CLK ↑ En
)

Q = RES ↑ Q ↑ (T ↑ q ↑ CLK ↑ En)

q = q ↑
(

RES ↑ Q ↑ CLK
)

q = RES ↑ q ↑
(

Q ↑ CLK
)

(4.16)

Multiplexer

A two-input n-bit multiplexer (i. e. the multiplexer with control bit c selecting from two
n-bit inputs) is used for selecting the appropriate register containing the result of the
multiplication; another multiplexer is used for the selection of the second adder input. The
function of the multiplexer is described by (4.17).

ri = (c ↑ xi) ↑ (c ↑ yi) (4.17)

4.2.2 Multiplier components

The components used for the multiplier construction are:

– an (n+ 1)-bit D shift register for the multiplicand;

– an n-bit D register containing the multiplier;

– an n-bit accelerated complementing (two’s complement) circuit;

– an n-bit D register containing the complemented multiplier;

– two n-bit D shift registers for the result (toggled to avoid copying);

– a one-bit T flip-flop for the decision which result register is used;

– a one-bit delaying D register to store the decision which result register is used;

– a two-input n-bit multiplexer selecting the right result register (also the first adder
input);

– an XOR deciding whether to switch between the result registers (based on two LSBs
of the multiplicand);

– a two-input n-bit multiplexer for the selection of the second adder input (the multiplier
or the complemented multiplier);

– an n-bit CLA adder.

26

Chapter 3

Solving Electronic Circuits

This chapter focuses on electronic circuits. These circuits contain not only resistors, ca-
pacitors and coils, but also semiconductors.

3.1 Approaches to VLSI simulation

In this section, the approaches to Very Large-Scale Integration (VLSI) simulation are briefly
discussed. Two different approaches are mentioned – SPICE and FOS.

3.1.1 SPICE

SPICE is widely used for analog circuits simulation since it can compute the full large-signal
behavior of arbitrary circuits. SPICE uses a few numerical methods for numerical integra-
tion. The Newton integration method is suitable for finding the solution of circuits with
non-linear elements. The sparse matrix method is used to save memory by storing only
non-zero elements. The implicit integration method is used to integrate the differential
equations that describe the circuit reactances.

Numerical integration is necessary for analog circuits simulation. SPICE uses second
order integration methods. Most SPICE implementations follow Berkeley SPICE and pro-
vide two forms of second order implicit integration: Gear and trapezoidal. Trapezoidal
integration is both faster and more accurate than Gear; however, trapezoidal integration
can cause numerical artifacts. These artifacts manifest themselves as an oscillation around
the precise solution in each time step. See [7] for more information.

3.1.2 FOS

VLSI circuits were initially simulated in Fast ODE Solver (FOS) [16], which was primarily
designed for the solution of general ODEs with the integrated support of arbitrary precision
arithmetic. FOS supports several numerical methods including MTSM, which is used in
the thesis.

General ODEs do not need to be reassembled very often. In contrast, the ODEs de-
scribing VLSI circuits have to be reassembled frequently. For example, the ODEs in (3.1)
have to be reassembled whenever the input changes from true to false and vice versa. Using
selective reassembly, the computation was accelerated 20–50 times. Due to this acceleration,
it was possible to simulate the 512-bit adder (almost VLSI) in approximately 90 minutes.

7

As this acceleration was not sufficient, a specialized system was developed for VLSI simu-
lation. Thanks to this system, a circuit with over 1 million transistors was simulated in
approximately 180 minutes using 7.5 GB of RAM.

The three-address instructions that accelerate the computation in FOS were further
omitted because of high memory usage. CSM produces a system of linear ODEs; each
MTSM term is calculated from the previous term. Thanks to this approach, the calculation
of the same system now uses less memory – less than 320 MB (in contrast to the previous
7.5 GB) – and moreover, it is faster. When calculating the voltage MTSM terms, only
one addition and two multiplications are used. When calculating the MTSM terms of the
current, the number of additions is the same as the number of inputs.

3.2 Capacitor Substitution Method

In this section, the Capacitor Substitution Method (CSM) is introduced. It is a sophisti-
cated approximation of electronic circuits consisting of CMOS transistors by electric circuits
that consist only of capacitors and resistors. These circuits are suitable for further simula-
tion.

The general purpose transistors N3306M and P3306M were chosen for simulation. The
corresponding SPICE models of these transistors follow1.

1 .MODEL N3306M NMOS VTO=1.824 RS=1.572 RD=1.436 IS=1E -15 KP= .1233

2 + CGSO=28E -12 CGDO =3E -12 CBD=35E -12 PB=1

3 .MODEL P3306M PMOS VTO= -2.875 RS=5.227 RD=7.524 IS=1E -15 KP=.145

4 + CGSO=28E -12 CGDO =3E -12 CBD=35E -12 PB=1 LAMBDA =6.67E -3

The behavior of SPICE models was taken as the reference output. The basic logic gates
are modeled using CSM as described below.

3.2.1 CMOS inverter

Figure 3.1a presents the scheme of a CMOS inverter. The inverter consists of PMOS and
NMOS transistors. The function of this scheme can be demonstrated by the electric circuit
in Figure 3.1b. This logic gate is necessary for AND and OR gates construction when De
Morgan’s laws cannot be used – for example, in the case of CLA (see next chapter).

U

i

Ri

A Out

(a) Electronic circuit

U

i

Ri

Out

A

A

(b) Electric analogy

Figure 3.1: Inverter [21]

1Retrieved from http://www.datasheetarchive.jp/.

8

input of the master RS latch and Qi and Qi are the master state values. The variables of
the slave RS latch are denoted by the lower case.

The register can be shifted by signal Sh, with the shift being performed in two steps:
first, the master RS latch loads the value from a higher bit6 and then the slave RS latch
loads the value of the master RS latch in the negative half of the clock – this avoids double
shift.

Two’s complement

Two’s complement is used for the subtraction of the multiplier. Commonly, it is performed
by an inversion and an addition of one [19]. A better approach is to start from the least
significant bit (LSB), leaving all zeros intact up to the first one – other bits are inverted.7

The latter algorithm suffers from the same problem as the adder – slow carry propa-
gation. As in the case of the adder, a propagation circuit can be constructed – the Invert
Look-ahead (ILA). In this case, the carry remains one from the first non-zero carry – the
carries are calculated by (4.11).

c1 = c0 ∨ x0

c2 = c1 ∨ x1

c3 = c2 ∨ x2

c4 = c3 ∨ x3

(4.11)

After substituting ci, (4.12) is derived.

c1 = c0 ∨ x0

c2 = c0 ∨ x0 ∨ x1

c3 = c0 ∨ x0 ∨ x1 ∨ x2

c4 = c0 ∨ x0 ∨ x1 ∨ x2 ∨ x3

(4.12)

By transforming (4.12) to use only basic CMOS gates, (4.13) is obtained.

c1 = c0 ↓ x0

c2 = c0 ↓ x0 ↓ x1

c3 = c0 ↓ x0 ↓ x1 ↓ x2

c4 = c0 ↓ x0 ↓ x1 ↓ x2 ↓ x3

(4.13)

As in the case of the adder, another type of accelerating circuit is required – the Invert
Look-ahead Unit (ILU). It combines the input values in the same way as ILA, but the input
values of this circuit are calculated by

G = x1 ∨ x2 ∨ x3 ∨ x4 (4.14)

or by (4.15) using the basic logic gates.

G = x1 ↓ x2 ↓ x3 ↓ x4 (4.15)

Then an accelerating tree is established: the lowest level consists of ILAs and the other
levels of ILUs (grouping four units from the nearest lower level).

6That is qi+1 for all bits save the most significant bit (MSB). MSB uses its own value qi.
7The idea uses the fact that all zeros are inverted into ones and when one is added they become zeros

again and the zero which arose from the first one is changed into the overflowed one.

25

bits Serial Parallel

16 2.3077 4.7368

32 3.7320 10.3429

64 5.9744 23.7755

128 9.5493 43.3810

256 30.4183 185.0127

512 64.1298 451.7500

1024 > 1729.0374 > 14794.5205

Table 4.5: Acceleration of CSM compared to SPICE

The results achieved show that the simulation by CSM is much faster than SPICE for
larger circuits. It takes more than a day to simulate them using SPICE.

4.2 Multiplier

Besides addition, multiplication is another important arithmetic operation. To calculate
any MTSM term of any ODE in the autonomous form (transformed by the automatic
transformation), only addition and multiplication are necessary.

4.2.1 Booth’s algorithm

Booth’s algorithm is fast and uses only the operations addition and bit shift. The principle
is discussed in [8].

D shift register

The multiplier stores numbers in D shift registers [12]. These registers consist of D flip-flops;
a master–slave D flip-flop is used for our purposes since it performs shifting in a safe manner
(single D flip-flop requires very careful timing [18]). The function of an n-bit D shift register
is described by (4.10).

Si = xi ↑ En ↑ Wr

Ri = Si ↑ En ↑ Wr

Di = RES ↑ qi+1 ↑ Sh ↑ CLK

Qi = Si ↑ Di ↑ Qi

Qi = RES ↑ Ri ↑ Qi ↑ (Di ↑ Sh ↑ CLK)

di = RES ↑ Qi ↑ Sh ↑ CLK

qi = Si ↑ di ↑ qi

qi = RES ↑ Ri ↑ qi ↑
(

di ↑ Sh ↑ CLK
)

(4.10)

The register can be asynchronously filled with number x if enabled by signals En and Wr

(parallel input). The register can be asynchronously reset by signal RES. Di is a negated

24

Logical one is represented by high voltage (3.3 V for recent CMOS transistors2); logical
zero is represented by low voltage (0 V). The behavior of the inverter is as follows:

– if A = 1, the PMOS transistor (upper one) is closed and the NMOS is open;

– if A = 0, the PMOS transistor is open and the NMOS is closed.

The corresponding SPICE model of the inverter is shown as the abbreviated SPICE
netlist below (the capacitor smooths the output).

1 Vdd 1 0 DC 3.3

2 Ri 2 1 0.1

3 * A = 1, 0

4 V3 3 0 PWL(0 3.3 1e -07 3.3 1e -07 0 2e -07 0)

5 * not(A)

6 M4a 4 3 2 2 P3306M

7 M4b 4 3 0 0 N3306M

8 C4c 4 0 1p

Figure 3.2 shows the output of the inverter using SPICE. The input is logical one in
the interval t ∈ 〈0, 10−7) [s] and logical zero otherwise. The expected result is: if input A

is logical one, then Out corresponds to logical zero; if input A is logical zero, then Out

corresponds to logical one.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 ×10-8 [s]

Out

Figure 3.2: Inverter – SPICE [V]

The curve in Figure 3.2 is similar to the curve for charging the capacitor. To develop
the substituting circuit, the basic concept from electric circuits simulation is used. Each
transistor should be substituted by a capacitor which has the input voltage appropriate to
the state of the transistor.

When the transistor is closed, the capacitor has to charge; when the transistor is open,
the capacitor has to discharge. The input voltage can be controlled by switching the values
of resistors, RL for an open transistor and RH for a closed transistor. The values of the
resistors are denoted as RA, RA, RB or RB depending on the value controlling the switch.
Therefore, the substitution in Figure 3.3 is performed.

2The value depends on the logic used.

9

U

i

Ri

RH RL C1

RH RL C2

Out

A

A

Figure 3.3: Inverter – substituted by CSM

If input A is logical one3, the PMOS transistor is closed – the upper part of the circuit
is switched into the high-resistor branch (with RH) – and the NMOS transistor is open –
the lower part is switched into the low-resistor branch (with RL). The system of ODEs
(3.1) for this regular electric circuit can be constructed (the first algebraic equation is in
explicit form; therefore, value i can be used directly in other equations); capacitor C1 is
precharged to avoid a considerable initial transient response.

i =
1

Ri
·
(

U − uC1
− uC2

)

u′C1
=

1

C1
·

(

i−
1

RA

· uC1

)

, uC1
(0) = 3.3

u′C2
=

1

C2
·

(

i−
1

RA

· uC2

)

, uC2
(0) = 0

(3.1)

Parameters Ri, C1, C2, RL and RH can be determined using the MATLAB function
greyest. This function can estimate the parameters of linear models to correspond with
the SPICE model. The system is described by

x′ = Ax+Bu

y = Cx+Du
(3.2)

where x is a vector of variables, A is a Jacobian matrix, B is a matrix/vector of constants,
u is a vector/scalar of inputs and C and D define how to evaluate output value y. The
expressions in (3.3) describe the transient response of the inverter when toggling the output

3That is more than half the nominal voltage value.

10

The results of the serial simulation of CLA adders are shown in Table 4.3 (the SPICE
simulations running longer than a day5 were terminated before the end – it is irrelevant
how long they run). The results show the memory usage (denoted as MEM) and the time
consumption (Time) depending on the number of bits (# bits).

CSM SPICE

bits MEM [MB] Time [s] MEM [MB] Time [s]

16 0.30 0.39 5.51 0.90

32 0.55 0.97 10.73 3.62

64 1.33 1.95 20.52 11.65

128 2.37 4.77 39.85 45.55

256 4.95 9.61 79.27 292.32

512 9.84 22.26 159.46 1427.53

1024 19.45 49.97 – > 86400

2048 38.96 127.99 – > 86400

4096 77.99 271.23 – > 86400

8192 155.99 630.67 – > 86400

16384 312.03 1316.48 – > 86400

Table 4.3: Serial simulation

The results of the parallel simulation are shown in Table 4.4. SPICE is omitted as
the chosen implementation does not support parallel computation. The results show that
the memory consumption remains almost the same as in the serial simulation. The time
consumption is considerably lower. The decrease in the acceleration ratio for 4 096 bits and
more is probably caused by small caches.

bits MEM [MB] Time [s] Acceleration

16 0.30 0.19 2.0526

32 0.82 0.35 2.7714

64 1.34 0.49 3.9796

128 2.63 1.05 4.5429

256 5.20 1.58 6.0823

512 10.09 3.16 7.0443

1024 19.89 5.84 8.5565

2048 39.23 14.50 8.8269

4096 78.40 33.36 8.1304

8192 157.30 85.95 7.3376

16384 313.01 217.61 6.0497

Table 4.4: Parallel simulation

Table 4.5 shows the acceleration of the serial and parallel computations achieved by
CSM compared to SPICE.

51 day = 86 400 s

23

4.1.5 Scale of integration

The size of an electronic circuit is determined by the scale of integration. It is classified
differently by various authors – according to [14], the main categories are:

– Small-Scale Integration (SSI) – less than 10 logic gates;

– Medium-Scale Integration (MSI) – 10 to 1 000 logic gates;

– Large-Scale Integration (LSI) – up to 10 000 logic gates;

– Very Large-Scale Integration (VLSI) – more than 10 000 logic gates.

Some authors [5] even define a fifth category: Ultra Large-Scale Integration (ULSI). How-
ever, ULSI is commonly included in VLSI by other authors.

4.1.6 Experiments

The experiments were performed on our research server3. All simulation times were chosen
carefully to attain a final steady state. The experiments were performed using SPICE4 and
CSM; specialized software was developed for the VLSI simulation (see Section 3.1.2).

Table 4.2 summarizes the parameters for individual test cases. The multiple-bit adders
with CLU+CLA trees were used for simulation. The first column (denoted as hT) shows
the tree heights, the second one the number of bits, the next columns contain the number of
transistors, logic gates and ordinary differential equations respectively and the last columns
contain the delays in multiples of basic logic-gate delays (these determine the simulation
times) and the scale of the integration. The number of bits used is proportional to the tree
height. The even rows contain the parameters of adders with half CLAs, as not all carries
are required.

hT # bits # transistors # gates # ODE Delay SI

2 16 1272 286 922 11 MSI

3 32 2568 581 1865 15 MSI

3 64 5176 1166 3754 15 LSI

4 128 10376 2341 7529 19 LSI

4 256 20792 4686 15082 19 LSI

5 512 41608 9381 30185 23 LSI

5 1024 83256 18766 60394 23 VLSI

6 2048 166536 37541 120809 27 VLSI

6 4096 333112 75086 241642 27 VLSI

7 8192 666248 150181 483305 31 VLSI

7 16384 1332536 300366 966634 31 VLSI

Table 4.2: CLA adder – parameters

The interesting thing is that the number of ordinary differential equations is smaller than
the number of transistors. This is caused by merging parallel capacitors.

32× Intel Xeon E5-2630v2 (2.6 GHz, 6/12-core, 15 MB cache), 32 GB RAM
4NGSpice v26.1 with default settings

22

from logical zero to logical one.

A =

(

− RL+Ri

C1RLRi
− 1

C1Ri

− 1
C2Ri

− RH+Ri

C2RHRi

)

B =

(

U
C1Ri
U

C2Ri

)

C =
(

0 1
)

D = 0

x =

(

uC1

uC2

)

u = 1

(3.3)

Figure 3.4a shows the solution of (3.1) for parameters U = 3.3 V, Ri = 0.120792 Ω,
C1 = C2 = 3.851953 ·10−9 F, RL = 0.601435 Ω, RH = 1010 Ω. If input A is logical one (i. e.
0 ns ≤ time < 100 ns), then Out corresponds to logical zero; if input A is logical zero
(100 ns ≤ time ≤ 200 ns), then Out corresponds to logical one. Figure 3.4b (solution by
SPICE) is included for comparison.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 ×10-8 [s]

Out

(a) CSM [V]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 ×10-8 [s]

Out

(b) SPICE [V]

Figure 3.4: Inverter – solution

The error of the approximation is shown in Figure 3.5. The approximation error is relatively
high (over 1 V) during the transient response, but the most important fact is that it is low
in the stable state.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 ×10-8 [s]

Err

Figure 3.5: Inverter – approximation error [V]

The transient responses for CSM and SPICE correspond quite well. The difference between
responses is caused by the approximation. The important aspect is that the resulting values
after the transient response and the lengths of the transient responses are similar.

11

3.2.2 CMOS NAND

The scheme of CMOS NAND is shown in Figure 3.6a and the function of this electronic
circuit is explained in Figure 3.6b. This logic gate forms the cornerstone of computer logic;
any logic function can be constructed using only NANDs (with De Morgan’s laws). The
NAND consists of two parallel PMOS transistors and two serial NMOS transistors.

U

i

Ri

A

A

B

B

Out

(a) Electronic circuit

U

i

Ri

A

A

B

B

Out

(b) Electric analogy

Figure 3.6: NAND [21]

The NAND logical inputs are given in Table 3.1. As mentioned earlier, they control the
values of resistors (depending on opening/closing the transistors in the electronic circuit).
The time domain is divided into equally long segments.

A 1 1 0 0
B 1 0 0 1

Table 3.1: NAND – input

CMOS NAND can be solved using the following SPICE netlist (abbreviated form):

1 Vdd 1 0 DC 3.3

2 Ri 2 1 0.1

3 * A = 1, 1, 0, 0

4 V3 3 0 PWL(0 3.3 1e -07 3.3 1e -07 0 2e -07 0)

5 * B = 1, 0, 0, 1

6 V4 4 0 PWL(0 3.3 5e -08 3.3 5e -08 0 1.5e -07 0 1.5e -07 3.3 2e -07 3.3)

7 * nand(A, B)

8 M5a 5 3 2 2 P3306M

9 M5b 5 4 2 2 P3306M

10 M5c 5 3 6 6 N3306M

11 M5d 6 4 0 0 N3306M

12 C5e 5 0 1p

The transformation of NAND is analogical to the transformation of the inverter. The
only difference is that it consists of two pairs of transistors. It is shown in Figure 3.7.

12

using NAND and NOR gates and inverted; the propagation delay of ci remains 2 logic gates
as it is calculated by (4.7) – using De Morgan’s laws.

c1 = g0 ↑ (p0 ↑ c0)

c2 = g1 ↑ (p1 ↑ g0) ↑ (p1 ↑ p0 ↑ c0)

c3 = g2 ↑ (p2 ↑ g1) ↑ (p2 ↑ p1 ↑ g0) ↑ (p2 ↑ p1 ↑ p0 ↑ c0)

c4 = g3 ↑ (p3 ↑ g2) ↑ (p3 ↑ p2 ↑ g1) ↑ (p3 ↑ p2 ↑ p1 ↑ g0)

↑ (p3 ↑ p2 ↑ p1 ↑ p0 ↑ c0)

(4.7)

To evaluate the carries more quickly, another type of electronic circuit is required –
Carry Look-ahead Unit (CLU). It combines the values in the same manner as CLA, but its
input values are calculated by (4.8).

G = g3 ∨ (p3 ∧ g2) ∨ (p3 ∧ p2 ∧ g1) ∨ (p3 ∧ p2 ∧ p1 ∧ g0)

P = p3 ∧ p2 ∧ p1 ∧ p0
(4.8)

Again, it can be transformed into the equivalent form with basic CMOS logic gates using
De Morgan’s laws.

G = g3 ↑ (p3 ↑ g2) ↑ (p3 ↑ p2 ↑ g1) ↑ (p3 ↑ p2 ↑ p1 ↑ g0)

P = p3 ↑ p2 ↑ p1 ↑ p0
(4.9)

The accelerating circuit takes the form of a tree with CLAs on the lowest level and CLUs
on the other levels.

Table 4.1 shows that the length of the transient response of a 64-bit adder is considerably
shorter. For more information, see [19].

t [10−7 s] Result

0.0 11

0.2 11

0.4 11

0.6 1110

0.8 1110

1.0 110000

1.2 110000

1.4 111011100000

1.6 1110110011000000

1.8 11101000100000000000

2.0 1111111111111110111111111111111011111111111011000000000000000000

2.2 1111111111101100111111101110100011101110110000000000000000000000

2.4 1110111011000000111011001000000011101000100000000000000000000000

2.6 1100100000000000110000000000000010000000000000000000000000000000

2.8 1000

3.0 00

Table 4.1: CLA adder – transient response

21

propagates slowly through all 1-bit adders, resulting in the 16-bit adder carry. The result
overflows – denoted by square brackets, see (4.3).

1111111111111111b + 1 = [1]0000000000000000b (4.3)

The situation is shown in Figure 4.1. All bits of the 16-bit adder are set to zero after
the corresponding transient response.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 ×10-8 [s]

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

r16

Figure 4.1: Carry propagation [V]

4.1.4 CLA adder

To avoid a significant delay of the adder (especially for multiple-bit numbers), a specific
circuit – Carry Look-ahead (CLA) – can be constructed [19]. It uses values gi (generate)
and pi (propagate), calculated by (4.4).

gi = ai ∧ bi

pi = ai ∨ bi
(4.4)

Particular carries can be calculated using (4.5).

c1 = g0 ∨ (p0 ∧ c0)

c2 = g1 ∨ (p1 ∧ c1)

c3 = g2 ∨ (p2 ∧ c2)

c4 = g3 ∨ (p3 ∧ c3)

(4.5)

After substituting carries c1, c2 and c3, (4.6) is obtained.

c1 = g0 ∨ (p0 ∧ c0)

c2 = g1 ∨ (p1 ∧ g0) ∨ (p1 ∧ p0 ∧ c0)

c3 = g2 ∨ (p2 ∧ g1) ∨ (p2 ∧ p1 ∧ g0) ∨ (p2 ∧ p1 ∧ p0 ∧ c0)

c4 = g3 ∨ (p3 ∧ g2) ∨ (p3 ∧ p2 ∧ g1) ∨ (p3 ∧ p2 ∧ p1 ∧ g0)

∨ (p3 ∧ p2 ∧ p1 ∧ p0 ∧ c0)

(4.6)

The propagation delay of the CLA is 3 logic gates if AND and OR are used. In case of
NAND and NOR gates2, the propagation delay is 4 logic gates – gi and pi are calculated

2NANDs and NORs are commonly used in electronic circuits (each gate consists of four transistors, see
Figure 3.6a and 3.11a).

20

U

i

Ri

RH RL C1 RH RL C2

RH RL C3

RH RL C4

Out

A B

A

B

Figure 3.7: NAND – substituted by CSM

Capacitors C1 and C2 are parallel; therefore, they can be merged into one capacitor
C12 = C1 + C2; see Figure 3.8.

C1 RH RL C2

Out

B

→ C12 RH RL

Out

B

Figure 3.8: NAND – merging capacitors

13

The circuit in Figure 3.7 is described by (3.4)4; capacitor C12 is precharged to attain
the initial value of zero.

i =
1

Ri
·
(

U − uC12
− uC3

− uC4

)

u′C12
=

1

C12
·

(

i−
RA +RB

RA ·RB

· uC12

)

, uC12
(0) = 3.3

u′C3
=

1

C3
·

(

i−
1

RA

· uC3

)

, uC3
(0) = 0

u′C4
=

1

C4
·

(

i−
1

RB

· uC4

)

, uC4
(0) = 0

(3.4)

The solution for the values from Table 3.1 is shown in Figure 3.9. The transient responses
in both figures begin at 50 ns and 150 ns. The circuit truly behaves like the NAND gate
and the result using CSM is again virtually identical to the result obtained using SPICE;
all transient responses reach a steady state by 50 ns.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 ×10-8 [s]

Out

(a) CSM [V]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 ×10-8 [s]

Out

(b) SPICE [V]

Figure 3.9: NAND – solution

The error of the approximation is shown in Figure 3.10.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 ×10-8 [s]

Err

Figure 3.10: NAND – approximation error [V]

4U = 3.3 V, Ri = 0.120792 Ω, C1 = C2 = C3 = C4 = 3.851953 ·10−9 F, C12 = C1+C2, RL = 0.601435 Ω,
RH = 1010 Ω

14

Chapter 4

VLSI

Very Large-Scale Integration (VLSI) circuits typically comprise hundreds of thousands of
transistors on a chip. They can be assembled only from CMOS NANDs or NORs1 as both
gates can form any logical operation. Therefore it is possible to simulate VLSI circuits
using the CSM described above. More about VLSI design can be found in [14].

4.1 Adder

Addition is a basic arithmetic operation. It is a very suitable operation for the simulation
of VLSI circuits, as it is easily scalable.

4.1.1 Half adder

The half adder has only two inputs (summands). It can be used for the calculation of the
least significant bit (LSB) of multiple-bit adders without an input carry. The output and
the carry are calculated by (4.1).

output = x⊕ y

carry = x ∧ y = x ↑ y
(4.1)

4.1.2 Full adder

The full adder has three inputs – two summands and an input carry. The expressions in
(4.2) are used for calculating the output and the carry.

output = x⊕ y ⊕ c0

carry = (x ∧ y) ∨ (x ∧ c0) ∨ (y ∧ c0)

= (x ↑ y) ↑ (x ↑ c0) ↑ (y ↑ c0)

(4.2)

4.1.3 Transient response

The traditional ripple-carry adder has a disadvantage – it takes a long time to propagate the
carry to 1-bit adders representing more significant bits when calculating the sum. Assuming
a 16-bit adder and the inputs 1111111111111111b and 1, the carry of the least significant bit

1Although it is better to use both types of gates and an inverter.

19

t [10−7 s] x y Res CSM [V] SPICE [V]

0.99 0 0 0 0.000000 0.000000

1.99 0 1 1 3.299943 3.299999

2.99 1 0 1 3.299959 3.299999

3.99 1 1 0 0.001769 0.000000

Table 3.3: XOR

XOR with three inputs

To construct a full adder, three-input XORs are required. Although two XORs could be
used, it is rather useful to have XOR with three inputs6. Equation (3.8) describes the
three-input XOR – derived from the Conjunctive Normal Form (CNF).

x⊕ y ⊕ z = ((x ∧ y) ∧ z) ∧ ((y ∧ z) ∧ x) ∧ ((x ∧ z) ∧ y) ∧ (x ∧ y ∧ z) (3.8)

Equation (3.9) is again obtained from (3.8) using De Morgan’s laws. The NOR operator
is known as Peirce’s arrow (denoted as ↓) [13]. Note that both ↑ and ↓ are assumed to be
non-associative in our formal system – the parentheses delimit separate logic gates; that
is, a 3-input NOR is used to evaluate the last parenthesis and a 4-input NOR is used to
summarize the partial results.

x⊕ y ⊕ z = ((x ↑ y) ↓ z) ↓ ((y ↑ z) ↓ x) ↓ ((x ↑ z) ↓ y) ↓ (x ↓ y ↓ z) (3.9)

Table 3.4 summarizes the results near the end of each time segment (eight segments in
total).

t [10−7 s] x y z Res CSM [V] SPICE [V]

1.49 0 0 0 0 0.000030 0.000001

2.99 0 0 1 1 3.199193 3.198240

4.49 0 1 0 1 3.297346 3.299999

5.99 0 1 1 0 0.000276 0.000001

7.49 1 0 0 1 3.203977 3.203666

8.99 1 0 1 0 0.000276 0.000002

10.49 1 1 0 0 0.000133 0.000019

11.99 1 1 1 1 3.201614 3.203512

Table 3.4: XOR with three inputs

The output values of CSM and SPICE correspond quite well. The behavior of a three-input
XOR is correctly analyzed.

6The three-input XOR delay is shorter than the delay of two XORs and fewer basic logic gates are used.

18

3.2.3 CMOS NOR

The scheme of CMOS NOR is shown in Figure 3.11a and the function of this electronic
circuit is explained in Figure 3.11b. Similarly to the NAND gate, all other logic gates can
be constructed using only NOR gates. The NOR consists of two serial PMOS transistors
and two parallel NMOS transistors.

U

i

Ri

A

A

B

B

Out

(a) Electronic circuit

U

i

Ri

A

B

B

A

Out

(b) Electric analogy

Figure 3.11: NOR [21]

The NOR logical inputs are given in Table 3.2. The time domain is split into equally
long segments.

A 0 1 1 0
B 0 0 1 1

Table 3.2: NOR – input

The abbreviated SPICE netlist of CMOS NOR follows.

1 Vdd 1 0 DC 3.3

2 Ri 2 1 0.1

3 * A = 0, 1, 1, 0

4 V3 3 0 PWL(0 0 5e -08 0 5e -08 3.3 1.5e -07 3.3 1.5e -07 0 2e -07 0)

5 * B = 0, 0, 1, 1

6 V4 4 0 PWL(0 0 1e -07 0 1e -07 3.3 2e -07 3.3)

7 * nor(A, B)

8 M5a 6 3 2 2 P3306M

9 M5b 5 4 6 6 P3306M

10 M5c 5 3 0 0 N3306M

11 M5d 5 4 0 0 N3306M

12 C5e 5 0 1p

The transformation of CMOS NOR is shown in Figure 3.12. Capacitors C3 and C4 are
parallel; therefore, one capacitor C34 = C3 + C4 is used in equations.

15

U

i

Ri

RH RL C1

RH RL C2

RH RL C3 RH RL C4

Out

A

B

A B

Figure 3.12: NOR – substituted by CSM

The circuit in Figure 3.12 is described by equations (3.5)5; capacitor C34 (merged from
C3 and C4) is precharged.

i =
1

Ri
·
(

U − uC1
− uC2

− uC34

)

u′C1
=

1

C1
·

(

i−
1

RA

· uC1

)

, uC1
(0) = 0

u′C2
=

1

C2
·

(

i−
1

RB

· uC2

)

, uC2
(0) = 0

u′C34
=

1

C34
·

(

i−
RA +RB

RA ·RB

· uC34

)

, uC34
(0) = 3.3

(3.5)

The solution for the values from Table 3.2 is shown in Figure 3.13. The transient
responses begin at 50 ns and 150 ns. The circuit truly behaves like the NOR gate.

5Parameters are the same as for (3.4), capacity C34 = C3 + C4.

16

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 ×10-8 [s]

Out

(a) CSM [V]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 ×10-8 [s]

Out

(b) SPICE [V]

Figure 3.13: NOR – solution

The error of the approximation is shown in Figure 3.14. The approximation error during
the transient response now exceeds even 2 V; but as already stated, it is only a minor
problem.

 0

 0.5

 1

 1.5

 2

 0 5 10 15 ×10-8 [s]

Err

Figure 3.14: NOR – approximation error [V]

3.2.4 XOR

XOR can be constructed using the basic CMOS logic gates described above (inverters,
NANDs and NORs). The XOR is used in adders. Equation (3.6) is in the Disjunctive
Normal Form (DNF).

x⊕ y = (x ∧ y) ∨ (x ∧ y) (3.6)

Logic gates AND and OR are compound gates (additional inverters are required), but
if De Morgan’s laws are used, the expression in (3.7) is acquired that uses the simplest
logic gates which can be constructed in electronics. The Sheffer stroke (denoted as ↑) [13]
is a logical operation equivalent to the negated conjunction operation, NAND.

x⊕ y = (x ↑ y) ↑ (x ↑ y) (3.7)

Table 3.3 summarizes the results near the end of each time segment. The last two
columns contain the output voltages of the circuit representing XOR solved by CSM and
SPICE, respectively.

17

