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Classification of common thoracic disorders from X-ray 

images  

 
 

Abstract 

 

I have trained and tested two models based on the ResNet-50 and MobileNet models.  

The models have been trained on the ChestX-ray14 dataset, which is currently one 

of the largest publicly available dataset of X-ray images, containing over 112 

thousand images collected from the medical reports of nearly 31 thousand patients.  

Each X-ray image is labelled either ‘No Findings’ (normal) or with at least one of 

the 14 thoracic disorders. AUC (Area Under Curve) scores were used to measure 

model accuracy. 

Furthermore, three Voting Classifiers: Max Vote, Hard Vote, Simple Average were 

used along with AUC scores from the two models in an attempt achieve higher 

classification accuracy. 

 

Keywords: model, training, image, dataset, label, classification, accuracy, X-ray, AUC, 

Voting Classifier. 



Klasifikace běžných hrudních poruch z rentgenových 

snímků  

 
 

Abstrakt 

 

Vyškolil jsem a otestoval dva modely založené na modelech ResNet-50 a MobileNet. 

Modely byly proškoleny na datovém souboru ChestX-ray14, který je v současné 

době jedním z největších veřejně dostupných datových souborů rentgenových 

snímků, který obsahuje více než 112 tisíc snímků shromážděných z lékařských zpráv 

téměř 31 tisíc pacientů. 

Každý rentgenový snímek je označen buď jako „Žádný nález“ (normální nález), nebo 

alespoň s jednou ze 14 hrudních poruch. K měření přesnosti modelu byla použita 

skóre AUC (Area Under Curve). 

Kromě toho byly použity tři klasifikátory hlasování: Max Vote, Hard Vote, Simple 

Average a skóre AUC ze dvou modelů ve snaze dosáhnout vyšší přesnosti 

klasifikace. 

 

Klíčová slova: model, trénink, obrázek, datová sada, štítek, klasifikace, přesnost, rentgen, 

AUC, klasifikátor hlasování. 
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1 Introduction 

Shortage of doctors, nurses is a very serious and increasing problem due to variety of factors 

such as: many doctors are reaching retirement age, not many doctors are being trained and 

many doctors leave their home country for higher paying jobs in wealthier countries, creating 

huge disparities among regions and countries. 

Low fertility rate caused by variety of socioeconomic issues is the root of aging populations 

in developed countries. Increasing percentage of old people will naturally increase the 

demand for hospital beds, doctors, nurses and other hospital staff.  

According to a report (European Commission, 2012) by the European Commission, number 

of elderly persons aged 65 and over in Europe is estimated to almost double from the 2010 

figure of 87 million to 152.7 million by 2060.  

Environmental pollution is a major factor exacerbating this problem further. Air pollution 

alone causes many life-threatening diseases such as ischemic heart disease, stroke, lung 

cancer and acute lower respiratory infection (World Health Organization, 2014) which often 

manifest as pneumonia. All these factors as well as the current COVID-19 pandemic is 

increasing the pressure on health care systems all over the world.  

Radiologists are one of the most affected medical professionals (telemedicineclinic, 2016) 

by the sudden increase of workload and they can benefit from a computer-aided diagnosis 

(CAD) system that can identify thoracic disorders such as pneumonia. This is not to say that 

such a system will completely replace radiologists, but it can help reduce their workload. 

Advancements of the machine learning field in the last decade and the availability of massive 

datasets made it possible to implement such a system. 



2 Objective and Methodology 

2.1 Objective 

The objective of this thesis is to train and test multiple state-of-the-art convolutional neural 

networks (CNNs) on the chosen dataset to compare their accuracies.  

Moreover, use various Ensemble methods in conjunction with the models to compare the 

test results with the results of individual models. 

 

2.2 Methodology 

In this thesis, I have followed below steps: 

1. Find data. 

2. Discover and visualize the data to gain insights. 

3. Prepare the data for CNN models. 

4. Select multiple CNN models and train them on the original images. 

5. Test each model on the test set and compare their accuracies. 

6. Train each model further on augmented images. 

7. Test each model on augmented images and compare the results with previous 

results. 

8. Use Ensemble methods with the models to achieve higher accuracy. 

 

2.3 Data 

The chosen data used is a publicly available dataset provided by the U.S National Health 

Institute’s (NIH) Clinical Centre and contains over 112 thousand anonymized frontal-view 

chest X-ray images from nearly 31 thousand patients (Wang, et al., 2017).  

The image labels were mined from associated radiological reports using natural language 

processing (NLP). Each image can have multiple labels, the fourteen common thoracic 

disorders/pathologies represented by the labels are: Atelectasis, Consolidation, Infiltration, 

Pneumothorax, Edema, Emphysema, Fibrosis, Effusion, Pneumonia, Pleural thickening, 

Cardiomegaly, Nodule, Mass and Hernia. The text-mined disease labels are expected to 

have over 90% accuracy. Figure 1 shows the proportion of X-ray images with multi-labels 

for each of the 14 pathologies. 



Figure 1. The circular diagram shows the proportions of images with multi-labes in each of 14 

pathology classes and the labels' co-occurence statistics. 

 

Source: (Wang, et al., 2017) 

2.4 Implementation 

Model training was done using a virtual machine on Google Compute Engine with the 

following specifications: 

• 8 x vCPUs 

• 52GB RAM 

• 1 x NVIDIA Tesla P4 GPU 

• Debian 10 

• Tensorflow 2.4 pre-installed. 

 



2.5 Model Architectures 

Convolutional neural networks (CNNs) are special types of neural networks that are 

proven to be best for image processing tasks such as classification. CNNs are different 

from regular neural networks because they contain at least one convolutional layer, in 

which neurons are connected to pixels only in their receptive fields (called kernel) rather 

than every single pixel. 

While it is possible to build a DCNN model from scratch by combining different layers 

such as convolutional, max pooling and dense, it is often more practical to use existing 

high-accuracy models as a base model and built on top of them.  

I have trained and compared two models based on ResNet50 and MobileNet model 

architectures. 

 

2.5.1 ResNet 

 

ResNet (stands for Residual Neural Network) won the 2015 ILSVRC competition by 

introducing a “residual block” which allowed one or more layers to be skipped. It’s an 

extremely deep network with 152 layers and achieved top-5 error rate of 3.57%. 

Figure 2 illustrates the residual block. 

 

Figure 2. The residual block. 

 
 

Source: (Garyfallos, et al., 2019) 

 

 

The Top-5 error is the percentage of the time that the classifier did not include the correct 

class among its top 5 guesses. Figure 3 shows the architecture of ResNet-50 model. 



Figure 3. Architecture of ResNet-50 model. 

 

Source: www.stackoverflow.com 

 

 

 

 

2.5.2 MobileNet 

MobileNet is a light-weight deep convolutional neural network designed to run on 

embedded and mobile devices. MobileNet uses depth-wise separable convolutional layers. 

Figure 4 shows the architecture of MobilNet. 

 

Figure 4. Architecture of MobileNet 

 

Source: (Wang, et al., 2020) 

http://www.stackoverflow.com/


2.5.3 Hyperparameters often used for tuning models 

• Batch size 

 

Batch size is the size (number) of training instances used in a batch learning. 

  

• Learning rate 

 

Learning rate is the size of the step in a Gradient Descent algorithm, if the learning 

rate is too small the algorithm will take too long (too many iterations) to reach the 

minimum value of the cost function, if the learning rate is too big, the algorithm 

might skip over the minimum and never converge. 

• Momentum 

 

Momentum helps to know the direction of the next step with knowledge of the 

previous steps. It helps prevent oscillations. 

 

• Optimizer  

 

Optimizers are algorithms or methods used for changing the attributes (weights, 

learning rate etc.) of a neural network to reduce loss faster. 

 

• Image size 

 

Image size is important since many CNNs require the training images to be of 

uniform size or even have a specific resolution (e.g., 224 x 224).  

Moreover, CNNs generally train faster on smaller images. 



3 Survey of Current Literature 

Since the release of the ChestX-ray8 dataset (Wang, et al., 2017), the previous version of 

ChestX-ray14 in 2017, there has been many studies using this dataset for a multi-label 

classification of thorax diseases including the original paper.  

The ChestX-ray8 dataset contained almost 109 thousand images, each labelled either with 

one or more of the 8 possible pathologies or “normal” in cases where no abnormality was 

detected. 

3.1 ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks 

on Weakly-Supervised Classification and Localization of Common 

Thorax Diseases 

In this paper (Wang, et al., 2017), the authors built a DCNN architecture called Unified Deep 

Convolutional Neural Network Framework by modifying pre-trained models such as 

AlexNet, GoogLeNet, VGG-16 and ResNet-50.  

3.1.1 Model 

The modification entailed removing the fully-connected and final classification layers and 

including a transition layer, global pooling layer, a prediction layer and finally a loss layer. 

They have used an 8-dimensional label vector for predictions. Indices in this vector 

represented a presence or a lack of pathologies with values 1 and 0 respectively, which 

transformed the multi-label classification problem to use a regression-like loss function. The 

role of the transition layer was to transform activations from previous layers into a uniform 

dimension of output since different pre-trained models has different settings, for example 

1024 for GoogLeNet and 2048 for ResNet-50. 

At the loss layer they first experimented with 3 standard loss functions: Hinge Loss, 

Euclidean Loss and Cross Entropy Loss. But the model had problems learning due to the 

rarity of positive (not “Normal”) labels within the dataset.  

Thus, they modified the Cross Entropy Loss (CEL) function to a Weighted Cross Entropy 

Loss (W-CEL) function by multiplying the 2 parts of CEL by 𝛽𝑃 =  
|𝑃|+|𝑁|

|𝑃|
  and  

𝛽𝑁 =
|𝑃|+|𝑁|

|𝑁|
 respectively, where |P| and |N| are total number of 1s and 0s in a batch of image 

labels. 



They used the global pooling layer for not only classification, but also for generating 

heatmaps, and then used the heatmaps to generate bounding boxes.  

Figure 5 shows the architecture of the Unified DCNN framework. 

 

Figure 5. Unified DCNN framework 

 

Source: (Wang, et al., 2017) 

 

3.1.2 Experiments and Results 

After experimenting with Unified DCNN frameworks based on four different DCNNs: 

AlexNet, GoogLeNet, VGG and ResNet-50, the one based on ResNet-50 achieved the 

highest Area-Under-Curve (AUC) value. 

Figure 6 shows the ROC curve plots of Unified DCNNs based on ResNet, GoogLeNet, 

VGGNet and AlexNet. 

The team further experimented using the ResNet-50 but with three different pooling 

schemes: Average Pooling, Max Pooling and LSE (stands for Log-Sum-Exp) pooling and 

found out that LSE outperformed average and max pooling schemes when the hyperparamter  

r = 10. Finally, the model performed better with W-CEL compared to CEL, especially on 

classes with few positive instances. 

Figure 7 shows the comparison plot of three different pooling schemes: Average, Global and 

LSE. 



Figure 6. Comparison of ROC curves. 

 

Source: (Wang, et al., 2017) 

 

 

 

 

 

 

 

 

Source: (Wang, et al., 2017) 

Figure 7. Comparison of pooling schemes. 



3.2 ChexNet: Radiologist-Level Pneumonia Detection on Chest X-Rays 

with Deep Learning 

ChexNet model was developed by a team of scholars from the department of Computer 

Science, Department of Medicine and the Department of Radiology at Stanford University.  

3.2.1 Model 

ChexNet is a 121-layer deep convolutional neural network that was trained on the ChestX-

ray14 dataset. The model outputs the probability of pneumonia and a heatmap localizing the 

areas of the image most often associated with pneumonia. Figure 10 shows a heatmap on an 

X-ray image of patient with congestive heart failure and cardiomegaly (enlarged heart). 

The team used a binary cross entropy loss function which is very similar to that of in the 

original paper (Wang, et al., 2017). 

 

 𝐿(𝑋, 𝑦) =  −𝑤+ ∗ 𝑦 ∗ 𝑙𝑜𝑔𝑝(𝑌 = 1|𝑋) −  𝑤− ∗ (1 − 𝑦) ∗  𝑙𝑜𝑔𝑝(𝑌 = 0|𝑋) (1) 

 

Where 𝑝(𝑌 = 𝑖|𝑋)  is the probability that the model assigns to the label 𝑖 , 𝑤+ =  
|𝑁|

(|𝑃|+|𝑁|)
, 

𝑤− =  
|𝑃|

(|𝑃|+|𝑁|)
  where |P| and |N| are the numbers of positive and negative cases of 

pneumonia in the training set respectively.  

Unlike in the original paper (Wang, et al., 2017), the classification problem here is binary 

(pneumonia vs normal), thus the use of binary cross entropy loss function. Another 

significant difference is that the authors used diagnosis by four practicing radiologists to 

evaluate the model’s accuracy. 

3.2.2 Experiments and Results 

The authors collected a test set of 420 frontal chest X-ray images. The labels were obtained 

independently from the four radiologists who had no information about the patient history 

or the test set. The team calculated the F1 scores (harmonic mean of precision and recall) 

for each radiologist and the model and used it as the ground truth. They also calculated the 

average F1 score of the radiologists. Moreover, the team also calculated 95% confidence 

intervals (CI) for both the radiologists and the model on 10 thousand bootstrap 

(bootstrapping is sampling method where a subset of the test set is randomly chosen, which 

means one instance can be sampled more than once) samples, sampled from the test set.  



Figure 8 shows the comparison of the individual and average F1 scores of  4 radiologists 

and the ChexNet model. 

 

Figure 8. Comparison of indivial and average F1 scores of radiologists against ChexNet 

 

Source: (Rajpurkar, et al., 2017) 

 

To determine whether the model’s accuracy was statistically significantly higher than 

radiologist diagnosis, the authors also calculated the difference between the average F1 

score of the model and the radiologists on the same bootstrap samples, and they concluded 

that the difference was significant because the 95% confidence interval (0.051 (95% CI 

0.005, 0.084)) did not include zero. 

To compare the performance of ChexNet with models from other teams, the authors 

modified the ChexNet by changing the binary output to 14-dimensional vector to indicate 

the presence of the 14 pathology classes. This vector contained the predicted probabilities 

of each pathology class.  

Finally, they modify the loss function to optimize the sum of unweighted binary cross 

entropy losses: 

 

 

𝐿(𝑋, 𝑦) =  ∑[−𝑦𝑐𝑙𝑜𝑔𝑝(𝑌𝑐 = 1|𝑋) − (1 − 𝑦𝑐)𝑙𝑜𝑔𝑝(𝑌𝑐 = 0|𝑋)]

14

𝑐=1

 

 

(2) 

 

Where 𝑝(𝑌𝑐 = 1|𝑋) is the predicted probability that the image contains the pathology ‘c’ 

and 𝑝(𝑌𝑐 = 0|𝑋) is the predicted probability that the image does not contain the pathology 

‘c’. This modified model out-performed previous state-of-the art models on all 14 classes. 

Figure 9 shows the comparison of ChexNet’s performance against previous state-of-the art 

models. 



Figure 9. Comparison of ChexNet against previous state-of-the-art models 

 

Source: (Rajpurkar, et al., 2017) 

 

 

Figure 10. Heatmap correctly localized on an X-ray image of a patient with congestive heart failure and 

cardiomegaly (enlarged heart) 

 

Source: (Rajpurkar, et al., 2017) 

 

 



3.3 Learning to recognize Abnormalities in Chest X-Rays with 

Location-Aware Dense Networks 

 

3.3.1 Data 

Unlike previous, similar works, the authors of this paper used PLCO (Gohagan, et al., 

2000) dataset in addition to the ChestXRay-14 dataset, a total of 297.541 images of 86.876 

patients. From the PLCO dataset, 12 most prevalent labels were chosen in addition the 14 

labels of ChestXray-14 dataset. The two datasets share 6 labels with same names, however, 

for simplicity these classes were treated as different. Also, the authors assumed that there is 

no patient overlap between the two datasets. All images were normalized to match the 

ImageNet definition. 

Figure 11 shows the image distribution by labels except the ‘No Finding’/’Normal’ label. 

 

Figure 11. Image distribution by labels except the 'No Finding' label in both datasets. 

 

Source: (Guendel, et al., 2018) 

 



In the PLCO dataset, location information is available for 5 of the 12 pathologies. The 

location information consists of the information about the side (right or left lung), more 

detailed localization in each lung (divided by horizontal lines into 5 segments of equal 

height) and an additional label for diffuse disease. Figure 12 shows an example x-ray image 

from the PLCO dataset and it’s corresponding lung side, lung segmentation information. 

 

Figure 12. Input x-ray image, and it's corresponding lung side, lung segmentation information. 

 

Source: (Guendel, et al., 2018) 

 

Based on the localization information in the PLCO dataset, the authors created 9 additional 

classes: 2 for the lung sides, 1 for diffused diseases over multiple lung parts and 5 for each 

lobe, finally 1 more ‘wildcard’ label for a presence of pathology in multiple lung parts. 

Lobes are distinct units of a lung; right lung has 3 lobes, and the left lung has 2 lobes. 

Figure 13 shows an image of a lung denoting various parts, including the 5 lobes. 

 

Figure 13. Image of a lung denoting various parts, including the 5 lobes. 

 Source: (Lumen Learning, n.d.) 

 



3.3.2 Model 

The authors used a pretrained (on the ImageNet dataset) DenseNet-121 model to classify 

the images. For each image in the ChestX-ray14 dataset, they assigned a 𝐶 dimensional 

binary vector [𝑙1, 𝑙2, … 𝑙𝐶] where 𝐶 = 14. They treated the classification problem as 14 

independent binary classification problems by defining 14 binary cross entropy loss 

functions. Due to the high class-imbalance as shown in Figure 11, the authors included 

additional weights in the loss functions, based on the label frequency within each batch: 

 

  𝐿(𝑋, 𝑙𝑛) − (𝑤𝑃 ∗ 𝑙𝑛 log(𝑝) + 𝑤𝑁 ∗ (1 − 𝑙𝑛) log(1 − 𝑝)) 

 

 

(3) 

 

Where 𝑤𝑃 =  
𝑃𝑛+ 𝑁𝑛

𝑃𝑛
 and 𝑤𝑁 =

𝑃𝑛+ 𝑁𝑛

𝑁𝑛
, with 𝑃𝑛 and 𝑁𝑛 indicating the number of positive 

and negative samples. The model was trained with batch size of 128, the Adam optimizer 

(𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 =  10−8)  and an adaptive learning rate initialized at 10−3 and 

reduced tenfold when the validation loss plateaus. The authors also split the data in a way 

to ensure each batch contained images from both datasets.  

Following loss function was used for the combined dataset with C = 35 classes: 

 

 

𝐿(𝑋) =  −
1

𝐶
∑ 𝑤(𝑤𝑃 ∗ 𝑙𝑛 log(𝑝) +  𝑤𝑁 ∗ (1 − 𝑙𝑛) log(1 − 𝑝))

𝐶

𝑛=1

 

 

(4) 

 

Where 𝑤 is either 0 or 1, depending on which dataset the image is coming from and 

whether a spatial information exists.  

Figure 14 shows the proposed model architecture. 



Figure 14. Model architecture. 

 

Source: (Guendel, et al., 2018) 

 

3.3.3 Experiments and Results 

The combined dataset was split patient-wise, 70% for training, 10% for validation and 20% 

for testing. Figure 15 shows the test results on the two datasets, the table left shows results 

on the ChestX-ray14 dataset compared to the test result of the original paper (Wang, et al., 

2017), the table on the right shows the test results on the PLCO dataset. 

DNetLoc model version used the localization information in the PLCO dataset.  

The 5 pathologies which the names were highlighted as bold (Nodule, Mass, Infiltrate, 

Atelectasis, Hilar Abnormality) had localization information.  

The performance difference of DNet and DNetLoc models on those 5 pathologies are 

significant compared to the rest of the pathologies. 

Figure 16 shows the corresponding ROC curves of the test results in Figure 15. 



Figure 15. Table of the left shows test results on the ChestX-ray14 dataset, the table on the right shows test 

results on the PLCO dataset. 

 

Source: (Guendel, et al., 2018) 

 

 

Figure 16. ROC curves of the corresping tables in Figure 18. 

 

Source: (Guendel, et al., 2018) 

 

 

 

 

 

 



3.4 Weakly Supervised Medical Diagnosis and Localization from 

Multiple Resolutions 

This study focuses on localization of Region of Interest (ROI) rather than classification. 

The authors emphasized the need for image analysis at multiple levels of resolution since 

thoracic disorders vary greatly in terms of the size and location of ROIs. 

For example, cardiomegaly (enlarged heart) is determined to be present if the width of the 

heart is measured to be 50% or greater than the width of the thoracic cage, this can be 

detected by looking at the entire X-ray image rather than a localized region.  

On the hand, lung nodules are usually as small as few millimetres in size and are often 

missed by radiologists, thus it is obviously preferable to analyse small, localized regions of 

an X-ray image to detect lung nodules. The authors further emphasized the importance of 

localization of ROI because it can immediately draw the attention of practicing 

radiologists, thus assisting them to provide faster and more accurate diagnosis. (Yao, et al., 

2018).  

Unlike in (Wang, et al., 2017) and (Rajpurkar, et al., 2017) which generated heatmaps, the 

authors of this study proposed a model that generates saliency maps in order to visualize 

the ROIs, to provide radiologists a form of transparency as to why the model made a 

particular prediction. Saliency map can be considered a form of image segmentation, 

image segmentation is the process of partitioning a digital image into multiple segments 

(sets of pixels, also known as superpixels).  

The goal of segmentation is to simplify the representation of an image into something that 

is easier to analyze. Image segmentation is typically used to locate objects and boundaries 

(lines, curves, etc.) in images. More precisely, image segmentation is the process of 

assigning a label to every pixel in an image such that pixels with the same label share 

certain characteristics. (The Wikimedida Foundation, 2020). 

 

3.4.1 Model 

The authors proposed a model that can perform localization only from the use of global 

labels, global label is simply a label for the entire image as opposed to a segment or pixel 

label. They proposed such a model because medical training data is very hard to label as it 

often relies on the use of natural language processing to convert historic reports into global 

labels or employment of radiologists to meticulously read and label each report manually. 



Segmentation information is even harder to obtain because the radiologists has to draw 

segmentations by hand. They framed the problem of weakly supervised classification and 

localization problem as a multi-instance learning (MIL) problem based on previous similar 

works. MIL is a type of supervised learning, instead of receiving set of training instances 

which are individually labelled, the model receives a set of labelled bags, each containing 

many instances. A bag is labelled positive if any of the instances it contains is positive, 

otherwise negative (The Wikimedia Foundation, 2020). In this case, bags are images and 

instances in within the bags are image patches. 

It seems that the reason why the authors of this study and the authors of similar previous 

works framed the problem of localization with multi-resolution as MIL is because of how 

MIL labels bags of instances is very similar to how image segmentation works by 

assigning a single label/annotation to a segment/set of pixels. But, unlike previous similar 

works, the authors of this paper used a customized version of the Log-Sum-Exp pooling 

function with a learnable lower-bounded adaption which they called LSE_LBA to better 

handle the challenge of localizing pathologies of very different sizes using only image-

level/global labels. This allowed the model to generate high-resolution saliency maps 

without using localization labels.  Below function is the modified LSE (LSE_LBA): 

 

 

𝐿𝑆𝐸_𝐿𝐵𝐴(𝑆) =  
1

𝑟0 +  𝑒𝛽
log {

1

𝑤ℎ
∑ ∑ 𝑒[(𝑟0+ 𝑒𝛽)𝑆𝑖,𝑗]

ℎ

𝑗=1

𝑤

𝑖=1

} 

 

(5) 

 

Where S is a saliency map, 𝑟0 is the lower-bound and 𝛽 is a learnable parameter. 

The authors noted that the key difference between their approach and the approaches of 

previous, similar works is that they specifically trained their model to localize, instead of 

trying to output localization cues from models trained to classify. 

Figure 17 shows an X-ray image of a patient with Mass along with generated saliency maps 

of increasing resolutions. 

 



Figure 17. Chest X-ray image and it's multiple saliency map of increasing resolutions 

 

Source: (Yao, et al., 2018) 

 

 

The proposed model architecture uses ResNet to reduce image resoluton while also using 

DenseNet at each resolution level to preserve them. The model also uses upsampling 

(increasing resolution) in order to generate the saliency maps. 

 

Figure 18. Model architecture 

 

Source: (Yao, et al., 2018) 

 



3.4.2 Experiments and Results 

The authors applied data augmentation during model training by zooming by factors 

uniformly sampled from [0.25, 0.75], translating by [-50, 50] pixels (moving the image in 

one of four directions so that part of the image would be out of frame) and rotating by [-25, 

25] degrees. And then normalized to the interval [0, 1] as neural networks work better on 

normalized/scaled input.  

Data augmentation is useful for artificially increasing the size of training dataset if the 

dataset is small and if a model is trained on such irregular images (zoomed, out of frame 

and rotated) it would be better at generalizing if  it receives similar irregular/poor quality 

images as an input. The model was trained from scratch with Adam optimizer and early 

stopping enabled. The team used the AUC metric to evaluate the performance of the 

classification task and the Dice coefficient for the localization task. 

Dice coefficient is a measure of overlap of between 2 images or patches/segments: 

 

  
𝐷𝑖𝑐𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 2 ∗ 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑏𝑜𝑡ℎ 𝑖𝑚𝑎𝑔𝑒𝑠
 

 

 

(6) 

 

But the exact formula the authors used to calculate the Dice coefficient is: 

 

  
𝐷𝐼𝐶𝐸 =  

2 ∗ 𝑆 ∗ 𝐺

𝑆2 +  𝐺2
 

 

 

(7) 

 

Where S is the saliency map generated by the model and G is the ground truth binary 

bounding box with same resolution as the input X-ray image (512 x 512). 

Figure 19 shows the test results of three models trained with different values for the 𝑟0, 

which is the lower-bound of the modified Log-Sum-Exp pooling function LSE-LBA. 

 



Figure 19. Comparison of test results against previous state-of-the-art model. 

 

Source: (Yao, et al., 2018) 

 

The combined best results of three versions of the proposed model outperformed the 

previous state-of-the art model (Wang, et al., 2017) on 9 of the 14 pathologies. 

The authors have noticed that AUC is more stable than DICE with respect to different 

values of 𝑟0. Figure 20 shows example input images with their bounding boxes and saliency 

maps, the numbers above the saliency maps are the corresponding DICE coefficients. 

 

Figure 20. Example input images with corresponding bounding box and saliency maps of varying DICE 

coefficients. 

 

Source: (Yao, et al., 2018) 



3.5 Comparison of Deep Learning Approaches for Multi-Label Chest X-

Ray Classification 

 

In this paper, the authors experimented with ResNet networks of varying depths to classify 

the ChestX-ray14 dataset (Wang, et al., 2017), as well as building and training a dedicated 

CNN for X-ray images from scratch. They have also experimented with transfer learning 

(use of pretrained models) with or without hyperparameter tuning. But what makes this 

work different from the previously discussed works in this chapter is that the authors also 

used the non-image data in the dataset such as patient age, gender etc, another difference is 

that they also performed a cross-validation. 

3.5.1 Model 

The authors framed the problem as a multi-label classification of 15 classes instead of 14, 

adding the No Finding as a class, thus used a binary vector of size = M for each image 

label, where M is the number of classes M = 15. After some experiments with different 

loss functions, the authors decided to use class-averaged binary cross entropy (BCE) as the 

loss function: 

 

  𝜍(𝑦⃗, 𝑓) =  
1

𝑀
 ∑ 𝐻[𝑦𝑚, 𝑓𝑚]𝑀

𝑚=1  where 𝐻[𝑦, 𝑓] =  −𝑦 ∗ 𝑙𝑜𝑔𝑓 − (1 − 𝑦)log (1 −

𝑓) 

 

 

(8) 

 

𝑦⃗ is the ground truth label and 𝑓: Χ →  Υ is the objective that minimizes the loss function. 

The authors modified ResNet-50 architecture by replacing the last dense layer with a new 

dense layer matching the number of labels (M = 15) and added a sigmoid activation 

function. Figure 21 shows the comparison of the original ResNet-50 and modified, fine-

tuned architectures. As can be seen in Figure 21, the authors fine-tuned/retrained all the 

convolutional layers. They have also experiment with random weight initialization and pre-

trained weights (on the ImageNet dataset). 



Figure 21. Comparison of the original and modified, fine-tuned ResNet-50 architectures. 

 

Source: (Baltruschat, et al., 2019) 

 

Aside from the original ResNet-50, the authors also experimented with 2 variants: 

• A variant with a reduced input channel to 1 down from 3 (RGB) since ResNet is 

designed to process RGB images. 

• A variant with an increased input size of 448 x 448 from 224 x 224. 

 

They also experimented with ResNet networks of different depths, namely ResNet-38 and 

ResNet-101 by increasing and decreasing the sizes of convolutional blocks. 

Aside from the images, the authors also used three non-image features to further improve 

their architecture: patient age, gender and whether the x-ray images taken from the 

front/anterior-posterior (AP) or back/posterior-anterior (PA).  

As shown in Figure 22, the non-image feature vector of dimension 3 x 1 was concatenated 

with the last pooling layer (1x1x2048), resulting in a 1x1x2051 dimensional output. Also, 

patient age data was scaled to [0, 1] 



 

Figure 22. Architecture of ResNet-50 with non-image features used. 

  

Source: (Baltruschat, et al., 2019) 

 

3.5.2 Experiments and Results 

The authors first extended the dataset with data augmentation as in (Szegedy, et al., 2015) 

which was used in all experiments. During training, image patches of sizes between 8% 

and 100% of the original image was sampled. They have also used random rotations 

between [-7, 7] degrees as well as horizontal flipping. Adam optimizer was used with 

default parameters of 𝛽1 = 0.9 and 𝛽2 = 0.999 and learning rates 𝑙𝑟 = 0.001, 𝑙𝑟 = 0.01 

for transfer-learning and from scratch respectively. 

 

The authors evaluated eight different model setups and divided them into 3 categories: 

• With or without non-image features. 

• Transfer learning with off-the-shelf (OTS) and fine-tuned. 

•  Modified ResNet models with 1-channel or enlarged 448 x 448 input sizes. 

 

AUC values were calculated for all eight model setups along with their standard 

deviations. Figure 23 shows the results of the experiments by each class/label. 

 



Figure 23. Results of all 8 model setups by each class. 

 

Source: (Baltruschat, et al., 2019) 

 

As shown in the above image, models with non-image features performed only slightly 

better than their counterparts without non-image features on average.  

The authors trained three more models: ResNet-50-large-age, ResNet-50-large-gender and 

ResNet-50-large-VP, where VP stands for view position (AP or PA) based on the best 

performing model ResNet-50-large to predict the age, gender and view position of each 

training instance. 

ResNet-50-large-VP model reached AUC value of 0.9983, ResNet-50-large-gender 

reached a AUC value 0.9435. Finally, ResNet-50-large-age had a mean absolute error 

(MAE) of  9.13+ 7.05 years. This very high AUC values indicate that the image features 

already encode information about the non-image features, thus the authors speculated that 

this is the reason why the models with non-image features did yield not reach significant 

improvement over their counterparts without non-image features.  



4 Practical Part 

4.1 Data exploration and pre-processing 

The metadata of the ChestX-ray14 dataset has 10 columns, the index is a combination 

of the Patient ID and Follow-up # columns. Figure 24 shows the first five rows from 

the metadata file. 

 
Figure 24. First five rows from the metadata file. 

 
 

Pre-processing required extraction of the pathology labels from the ‘Finding Labels’ 

column. Figure 25 shows the extracted labels. 

 
Figure 25. Extracted labels. 

 
 

Since the task is to classify pathologies and more than half (about 60 thousand) of the 

instances are normal, i.e., has ‘No Finding’ value in the ‘Finding Labels’ column, these 

instances were removed. Figure 26 shows the shape of the metadata dataframe after the 

removal of normal instances, more than half of the total instances were  removed 

(about 60 thousand out of 112 thousand). 

 
Figure 26. Shape of the metadata dataframe after the removal of normal instances.. 

 
 

Figure 27 shows that the reduced dataset is comprised of x-ray images from 14402 

unique patients compared to the 30805 unique patients in the original, full dataset. 

 



Figure 27. Number of unique patients in the reduced dataset. 

 
 

Figure 28 shows the number of instances for each pathology/label in the dataset. 

 
Figure 28. Number of instances for each pathology. 

 
 

Figure 29 Illustrates the pathology/label distribution in the remaining 51759 instances 

shown in Figure 28 

 
Figure 29. Label distribution of the remaining 51759 instances. 

 
 

Above image shows a high class-imbalance in the dataset and this fact should be 

considered when training a model.  

According to the authors of the ChestX-ray14 dataset, the official train_val and test 

splits are patient-wise, Figure 30 shows that there is indeed no patient overlap between 

the two splits. 

 



Figure 30. Confirming that there is no patient overlap between the train_val and test splits. 

 
 

Figure 31 shows the shapes of train_val and test split dataframes after the exclusion of 

normal (‘No Finding’) instances. 

 
Figure 31. Number of instances in the train_val and test splits after the removal of normal instances. 

 
 

Figure 32 shows the label distribution in the train_val and test splits. 

 
Figure 32. Label distribution in the train_val and test splits. 

 
 

Although the train_val and test subsets were split by patient, the label distributions 

within these splits are not too different. Figure 33 shows the comparison of label 

distribution within the train_val and test splits. 

 



Figure 33. Label distribution comparison in the train_val and test splits. 

 
 

 

Figure 34 shows the comparison of label proportions in the train_val and test splits by 

each label and the error percentages are quite high because the split was done patient-

wise. Especially, Pneumothorax has very high error percentage which can also be seen 

in Figure 33 

 
Figure 34. Label-wise comparison of train_val and test splits. 

 
 

 



Since the task is a multi-label classification, meaning each instance can belong to one 

or more categories, I have added 14 new columns to the dataframes to indicate the 

presence (1) or absence (0) of each pathology. Figure 35 illustrates the first five rows 

of the train_val dataframe, showing ones or zeros indicating presence or absence of 

the corresponding pathologies. 

 

Figure 35. Dataframe of train_val split after adding one column for each label. 

 
 

 

The train_val subset was further split into training and validation, but by label. The 

split was done in a stratified manner to keep the label proportions as identical as 

possible with the train_val set. Figure 36 shows the result of this split, the training set 

has 28819 instances and the validation split has 7205 instances. 

 
Figure 36. Training and validation splits. 

 
 

 

Figure 37 shows the compared proportion of label distributions in the training and 

validation splits. The label distribution proportions are much more similar compared 

to Figure 33 



Figure 37. Comparison of the label distributions in the traning and validation splits. 

 
 

Figure 38 shows the comparison of the proportions of label distribution in the training 

and validation splits. The error percentages in training and validation splits are much 

lower compared to those in train_val and test splits shown in Figure 34 

 
Figure 38. Comparison of the proportions of label distribution in the training and validation splits. 

 
 

 



4.2 Data Augmentation 

Data Augmentation is a technique used very often in computer vision tasks to 

artificially increase the number of training instances. But the increase of training 

instances is not the only purpose of Data Augmentation as it also adds random 

augmentations/imperfections to the training images that can probably be encountered 

in real-life datasets. Learning from such imperfect images prepares models if and when 

it encounters similar images. 

I have used Keras API’s ImageDataGenerator class to create augmented images, below 

are the augmentations and their values I have chosen: 

 

• horizontal_flip = True 

Flips the image along the horizontal axis, this parameter was set True because 

there are two types of X-ray images: AP and PA, one taken from the front of a 

patient’s and other from the back. 

• vertical_flip = False 

Flips the image along the vertical axis, it is set to False because the model is 

very unlikely to encounter an upside down X-ray image. 

• height_shift_range = 0.05 

Shifts the image vertically either up or down by a random amount between 0 

and 5 percent of the image’s height, creating an empty region above or below 

the image. 

• width_shift_range = 0.01 

Works the same way as the height_shift_range, except horizontally. 

• rotation_range = 10 

Rotates the image along the vertical axis by a random amount between 0 and 

10 degree angle, this augmentation was chosen because patient’s chest might 

not be perfectly parallel to the X-ray machine. 

• fill_mode = ‘constant’ 

Fills up any empty region, for example caused by width_shift_range, 

height_shift_range. I have chosen the ‘constant’ value along with cval = 0 to 

fill the empty regions by solid black pixels. The default value is ‘nearest’, 



which fills empty regions by copying its nearest non-empty pixels, but this was 

not suitable for X-ray images.  

• zoom_range = 0.2 

Zooms in and out of the target image, the 0.2 value means 20% percent zoom. 

 

Figure 39 shows examples of randomly augmented images with their labels. 

 

Figure 39. Examples of augmented images. 

 

 

 

 

 

 

 



4.3 Models 

I have used models based on two (ResNet50 and MobileNet) out-of-the-box models from 

the keras.applications package for classification. And I used the base models without pre-

trained weights on the ImageNet dataset because X-ray images are not part of ImageNet’s 

category list. The models were trained with Adam as optimizer, binary cross-entropy 

function as the loss function and binary accuracy, mean absolute error as metrics. 

The models were first trained, validated and tested on the original images (without 

augmentation)  and then further trained, validated, tested on augmented images. 

 Figure 40 and Figure 41 shows the summaries of the models based on ResNet50 and 

MobileNet respectively. 

 

Figure 40. Summary of the ResNet50-based model. 

 

Figure 41. Summary of the MobileNet-based model. 

 



5 Results and Discussion 

Both models were trained for 50 epochs with early stopping, model checkpoint and the 

patience parameter set to 5. 

5.1 ResNet50-based model 

Figure 42 and Figure 43 shows the learning and ROC curves of the ResNet50-based model 

trained on non-augmented images respectively. 

Figure 44 and Figure 45 shows the learning and ROC curves of the ResNet50-based model 

trained on augmented images respectively. 

Comparison of the two ROC curves shows that the model accuracy was improved after the 

training on augmented images on almost all 14 categories, except Pneumonia. 

From the learning curve of the second training (on augmented images), one can see that 

both training loss and training accuracy have not plateaued, training loss is decreasing, and 

accuracy is increasing, which indicates the model probably could have been improved with 

further training on more data or by increasing the number of epochs and the patience 

parameter. 

 

 
Figure 42. Learning curves of the ResNet50-based model on non-augmented images. 

 



Figure 43. ROC curve of the ResNet50-based model trained on non-augmented images. 

 
 

 
Figure 44. Learning curves of the ResNet50-based model trained on augmented images. 

 
 

 



Figure 45. ROC curve of the ResNet50-based model trained on augmented images. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5.2 MobileNet-based model 

Figure 46 and Figure 47 shows the learning and ROC curves of the ResNet50-based model 

trained on non-augmented images respectively. 

Figure 48 and Figure 49 shows the learning and ROC curves of the ResNet50-based model 

trained on augmented images respectively. 

Comparison of the two ROC curves shows that the model accuracy was improved after the 

training on augmented images on all 14 categories. 

From the learning curve of the second training (on augmented images), one can see that 

both training loss and training accuracy have not plateaued, training loss is decreasing, and 

accuracy is increasing, which indicates the model probably could have been improved with 

further training on more data or by increasing the number of epochs and the patience 

parameter. 

 
Figure 46. Learning curves of the MobileNet-based model trained on non-augmented images. 

 
 



Figure 47. ROC curve of the MobileNet-based model trained on non-augmented images. 

 
 
Figure 48. Learning curves of the MobileNet-based model trained on augmented images. 

 
 



Figure 49. ROC curve of the MobileNet-based model trained on augmented images. 

 
 

5.3 Voting Classifiers 

Three voting classifiers: Max Vote, Hard Vote and Simple Average has been used on the 

AUC scores of both models. Surprisingly, all three classifier AUC scores were lower 

compared to individual model scores. Figure 50 shows the comparison table. 

 
Figure 50. AUC score comparison of both models and three voting classifiers. 

 



6 Conclusion 

Thorax diseases account for a significant proportion of global deaths every year, 

pneumonia alone kills millions of people annually. People in developing countries are 

especially vulnerable compared to the people in developed countries due to variety of 

factors such as: poor healthcare system, air pollution and lack of medical professionals. 

Developing countries tend to have a more severe lack of medical professionals because 

doctors and nurses often leave their home countries to seek higher paying jobs in 

developed countries. X-ray imaging is the most common method used for diagnosing 

thorax diseases due to its low cost compared to other methods such as Computed Axial 

Tomography (CAT) and Magnetic Resonance Imaging (MRI). But radiologists are in 

short supply, same as other medical professionals. Thus, a deep learning-based 

diagnostic tool can be used make up for the lack of radiologists if the diagnostic 

accuracy of such a tool is comparable to that of a certified and experienced radiologist. 
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