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Classification of common thoracic disorders from X-ray
images

Abstract

| have trained and tested two models based on the ResNet-50 and MobileNet models.
The models have been trained on the ChestX-ray14 dataset, which is currently one
of the largest publicly available dataset of X-ray images, containing over 112
thousand images collected from the medical reports of nearly 31 thousand patients.
Each X-ray image is labelled either ‘No Findings’ (normal) or with at least one of
the 14 thoracic disorders. AUC (Area Under Curve) scores were used to measure
model accuracy.

Furthermore, three Voting Classifiers: Max Vote, Hard VVote, Simple Average were
used along with AUC scores from the two models in an attempt achieve higher

classification accuracy.

Keywords: model, training, image, dataset, label, classification, accuracy, X-ray, AUC,
Voting Classifier.



Klasifikace béZnych hrudnich poruch z rentgenovych
snimkii

Abstrakt

Vyskolil jsem a otestoval dva modely zalozené na modelech ResNet-50 a MobileNet.
Modely byly proskoleny na datovém souboru ChestX-rayl4, ktery je v soucasné
dobé jednim z nejvétSich vefejné dostupnych datovych souborti rentgenovych
snimkd, ktery obsahuje vice nez 112 tisic snimkd shroméazdénych z 1€katskych zprav
témer 31 tisic pacientil.

Kazdy rentgenovy snimek je oznaéen bud’jako ,,Zadny nalez* (normalni nalez), nebo
alespoil s jednou ze 14 hrudnich poruch. K méfeni presnosti modelu byla pouzita
skore AUC (Area Under Curve).

Kromé toho byly pouzity tfi klasifikatory hlasovani: Max Vote, Hard Vote, Simple
Average a skore AUC ze dvou modelli ve snaze dosdhnout vysSi piesnosti

klasifikace.

Klicova slova: model, trénink, obrazek, datova sada, stitek, klasifikace, pfesnost, rentgen,

AUC, klasifikator hlasovani.
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1 Introduction

Shortage of doctors, nurses is a very serious and increasing problem due to variety of factors
such as: many doctors are reaching retirement age, not many doctors are being trained and
many doctors leave their home country for higher paying jobs in wealthier countries, creating
huge disparities among regions and countries.

Low fertility rate caused by variety of socioeconomic issues is the root of aging populations
in developed countries. Increasing percentage of old people will naturally increase the
demand for hospital beds, doctors, nurses and other hospital staff.

According to a report (European Commission, 2012) by the European Commission, number
of elderly persons aged 65 and over in Europe is estimated to almost double from the 2010
figure of 87 million to 152.7 million by 2060.

Environmental pollution is a major factor exacerbating this problem further. Air pollution
alone causes many life-threatening diseases such as ischemic heart disease, stroke, lung
cancer and acute lower respiratory infection (World Health Organization, 2014) which often
manifest as pneumonia. All these factors as well as the current COVID-19 pandemic is
increasing the pressure on health care systems all over the world.

Radiologists are one of the most affected medical professionals (telemedicineclinic, 2016)
by the sudden increase of workload and they can benefit from a computer-aided diagnosis
(CAD) system that can identify thoracic disorders such as pneumonia. This is not to say that
such a system will completely replace radiologists, but it can help reduce their workload.
Advancements of the machine learning field in the last decade and the availability of massive

datasets made it possible to implement such a system.



2 Objective and Methodology

2.1 Objective

The objective of this thesis is to train and test multiple state-of-the-art convolutional neural
networks (CNNSs) on the chosen dataset to compare their accuracies.
Moreover, use various Ensemble methods in conjunction with the models to compare the

test results with the results of individual models.

2.2 Methodology

In this thesis, | have followed below steps:
1. Find data.
Discover and visualize the data to gain insights.

Prepare the data for CNN models.

2

3

4. Select multiple CNN models and train them on the original images.

5. Test each model on the test set and compare their accuracies.

6. Train each model further on augmented images.

7. Test each model on augmented images and compare the results with previous
results.

8. Use Ensemble methods with the models to achieve higher accuracy.

2.3 Data

The chosen data used is a publicly available dataset provided by the U.S National Health
Institute’s (NIH) Clinical Centre and contains over 112 thousand anonymized frontal-view
chest X-ray images from nearly 31 thousand patients (Wang, et al., 2017).

The image labels were mined from associated radiological reports using natural language
processing (NLP). Each image can have multiple labels, the fourteen common thoracic
disorders/pathologies represented by the labels are: Atelectasis, Consolidation, Infiltration,
Pneumothorax, Edema, Emphysema, Fibrosis, Effusion, Pneumonia, Pleural thickening,
Cardiomegaly, Nodule, Mass and Hernia. The text-mined disease labels are expected to
have over 90% accuracy. Figure 1 shows the proportion of X-ray images with multi-labels
for each of the 14 pathologies.



Figure 1. The circular diagram shows the proportions of images with multi-labes in each of 14
pathology classes and the labels' co-occurence statistics.
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Source: (Wang, et al., 2017)

2.4 Implementation

Model training was done using a virtual machine on Google Compute Engine with the
following specifications:

8 x vCPUs

52GB RAM

1 x NVIDIA Tesla P4 GPU
Debian 10

Tensorflow 2.4 pre-installed.



2.5 Model Architectures

Convolutional neural networks (CNNS) are special types of neural networks that are
proven to be best for image processing tasks such as classification. CNNs are different
from regular neural networks because they contain at least one convolutional layer, in
which neurons are connected to pixels only in their receptive fields (called kernel) rather
than every single pixel.

While it is possible to build a DCNN model from scratch by combining different layers
such as convolutional, max pooling and dense, it is often more practical to use existing
high-accuracy models as a base model and built on top of them.

I have trained and compared two models based on ResNet50 and MobileNet model

architectures.

2.5.1 ResNet

ResNet (stands for Residual Neural Network) won the 2015 ILSVRC competition by
introducing a “residual block” which allowed one or more layers to be skipped. It’s an
extremely deep network with 152 layers and achieved top-5 error rate of 3.57%.

Figure 2 illustrates the residual block.

Figure 2. The residual block.
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Source: (Garyfallos, et al., 2019)

The Top-5 error is the percentage of the time that the classifier did not include the correct

class among its top 5 guesses. Figure 3 shows the architecture of ResNet-50 model.



Figure 3. Architecture of ResNet-50 model.
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2.5.2 MobileNet

Re-architect fully-connected layers
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MobileNet is a light-weight deep convolutional neural network designed to run on

embedded and mobile devices. MobileNet uses depth-wise separable convolutional layers.

Figure 4 shows the architecture of MobilNet.

Figure 4. Architecture of MobileNet
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2.5.3 Hyperparameters often used for tuning models
e Batch size
Batch size is the size (number) of training instances used in a batch learning.
e Learning rate

Learning rate is the size of the step in a Gradient Descent algorithm, if the learning
rate is too small the algorithm will take too long (too many iterations) to reach the
minimum value of the cost function, if the learning rate is too big, the algorithm
might skip over the minimum and never converge.

e Momentum

Momentum helps to know the direction of the next step with knowledge of the
previous steps. It helps prevent oscillations.

e Optimizer
Optimizers are algorithms or methods used for changing the attributes (weights,
learning rate etc.) of a neural network to reduce loss faster.

e Image size

Image size is important since many CNNSs require the training images to be of
uniform size or even have a specific resolution (e.g., 224 x 224).
Moreover, CNNs generally train faster on smaller images.



3 Survey of Current Literature

Since the release of the ChestX-ray8 dataset (Wang, et al., 2017), the previous version of
ChestX-ray14 in 2017, there has been many studies using this dataset for a multi-label
classification of thorax diseases including the original paper.

The ChestX-ray8 dataset contained almost 109 thousand images, each labelled either with
one or more of the 8 possible pathologies or “normal” in cases where no abnormality was
detected.

3.1 ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks
on Weakly-Supervised Classification and Localization of Common
Thorax Diseases

In this paper (Wang, et al., 2017), the authors built a DCNN architecture called Unified Deep
Convolutional Neural Network Framework by modifying pre-trained models such as
AlexNet, GooglLeNet, VGG-16 and ResNet-50.

3.1.1 Model

The modification entailed removing the fully-connected and final classification layers and
including a transition layer, global pooling layer, a prediction layer and finally a loss layer.
They have used an 8-dimensional label vector for predictions. Indices in this vector
represented a presence or a lack of pathologies with values 1 and O respectively, which
transformed the multi-label classification problem to use a regression-like loss function. The
role of the transition layer was to transform activations from previous layers into a uniform
dimension of output since different pre-trained models has different settings, for example
1024 for GoogLeNet and 2048 for ResNet-50.

At the loss layer they first experimented with 3 standard loss functions: Hinge Loss,
Euclidean Loss and Cross Entropy Loss. But the model had problems learning due to the
rarity of positive (not “Normal”) labels within the dataset.

Thus, they modified the Cross Entropy Loss (CEL) function to a Weighted Cross Entropy

|P|+|N|

Loss (W-CEL) function by multiplying the 2 parts of CEL by 5, = ] and
By = w::}% respectively, where |P| and |N| are total number of 1s and Os in a batch of image

labels.



They used the global pooling layer for not only classification, but also for generating
heatmaps, and then used the heatmaps to generate bounding boxes.

Figure 5 shows the architecture of the Unified DCNN framework.

Figure 5. Unified DCNN framework
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3.1.2 Experiments and Results

After experimenting with Unified DCNN frameworks based on four different DCNNSs:
AlexNet, GoogLeNet, VGG and ResNet-50, the one based on ResNet-50 achieved the
highest Area-Under-Curve (AUC) value.

Figure 6 shows the ROC curve plots of Unified DCNNs based on ResNet, GooglLeNet,
VGGNet and AlexNet.

The team further experimented using the ResNet-50 but with three different pooling
schemes: Average Pooling, Max Pooling and LSE (stands for Log-Sum-Exp) pooling and
found out that LSE outperformed average and max pooling schemes when the hyperparamter
r = 10. Finally, the model performed better with W-CEL compared to CEL, especially on
classes with few positive instances.

Figure 7 shows the comparison plot of three different pooling schemes: Average, Global and
LSE.



Figure 6. Comparison of ROC curves.

ResNet

0.9

e
@

e
~

g
=)

GooglLeNet

0.9}

o
o

.
3

o
®

> 2
= =
_:Z:} 0.5 2 0.5 Atelectasis
S .
3 0.4 Atelectasis 1904 (E);rcil_t;r:egaly
Cardiomegaly n filljtr;te
03 Effusion 1l 03 ---- Mass
Infiltrate - - - - Nodule
0.2 : : : : Mass 1 02 = === Pneumonia
/ Nodule / -—=--p
; neumothorax
0.1} = === Pneumonia 1 04
I - =~ =~ Pneumothorax r
% 02 04 06 08 3 0 0.2 04 06 0.8
1-Specificity 1-Specificity
VGGNet 1 AlexNet
1
0.9+ 0.9
0.8+ 0.8
0.7+ 0.7
= 0.6F 1z 0.6
= ’ 2 -
=05 I 1 ? 0.5
C !’ o
g o gtelgptams | 3 Atelectasis
0.4 ‘% E;r ‘omegaly | 1™ 0.4 Cardiomegaly
| flllf[s'?" Effusion
03 nfiltrate 0.3 Infiltrate
- === Mass e
= === Nodule Mass
02 ) 0.2 = === Nodule
= ==~ Pneumonia ---=- p f
- =~ - Pneumothorax neumonia
0.1 0.1 - - - = Pneumothorax
0 1 1 1 O L L L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
1- Specificity 1-Specificity

Source: (Wang, et al., 2017)

Figure 7. Comparison of pooling schemes.
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3.2 ChexNet: Radiologist-Level Pneumonia Detection on Chest X-Rays
with Deep Learning

ChexNet model was developed by a team of scholars from the department of Computer

Science, Department of Medicine and the Department of Radiology at Stanford University.
3.2.1 Model

ChexNet is a 121-layer deep convolutional neural network that was trained on the ChestX-
ray14 dataset. The model outputs the probability of pneumonia and a heatmap localizing the
areas of the image most often associated with pneumonia. Figure 10 shows a heatmap on an
X-ray image of patient with congestive heart failure and cardiomegaly (enlarged heart).

The team used a binary cross entropy loss function which is very similar to that of in the

original paper (Wang, et al., 2017).

LX,y) = —wy xy * logy(Y = 11X) — w_x (1 = y) x log,(Y = 0]X) @

IN|
(IPI+IND’

Where p(Y = i|X) is the probability that the model assigns to the label i , w, =

_ _IFl
(IPI+IND)

where |P| and |N| are the numbers of positive and negative cases of

pneumonia in the training set respectively.

Unlike in the original paper (Wang, et al., 2017), the classification problem here is binary
(pneumonia vs normal), thus the use of binary cross entropy loss function. Another
significant difference is that the authors used diagnosis by four practicing radiologists to

evaluate the model’s accuracy.

3.2.2 Experiments and Results

The authors collected a test set of 420 frontal chest X-ray images. The labels were obtained
independently from the four radiologists who had no information about the patient history
or the test set. The team calculated the F1 scores (harmonic mean of precision and recall)
for each radiologist and the model and used it as the ground truth. They also calculated the
average F1 score of the radiologists. Moreover, the team also calculated 95% confidence
intervals (CI) for both the radiologists and the model on 10 thousand bootstrap
(bootstrapping is sampling method where a subset of the test set is randomly chosen, which

means one instance can be sampled more than once) samples, sampled from the test set.



Figure 8 shows the comparison of the individual and average F1 scores of 4 radiologists
and the ChexNet model.

Figure 8. Comparison of indivial and average F1 scores of radiologists against ChexNet

F1 Score (95% CI)
Radiologist 1 0.383 (0.309, 0.453)
Radiologist 2 0.356 (0.282, 0.428)
Radiologist 3 0.365 (0.291, 0.435)
Radiologist 4 0.442 (0.390, 0.492)

Radiologist Avg. 0.387 (0.330, 0.442)
CheXNet 0.435 (0.387, 0.481)

Source: (Rajpurkar, et al., 2017)

To determine whether the model’s accuracy was statistically significantly higher than
radiologist diagnosis, the authors also calculated the difference between the average F1
score of the model and the radiologists on the same bootstrap samples, and they concluded
that the difference was significant because the 95% confidence interval (0.051 (95% ClI
0.005, 0.084)) did not include zero.

To compare the performance of ChexNet with models from other teams, the authors
modified the ChexNet by changing the binary output to 14-dimensional vector to indicate
the presence of the 14 pathology classes. This vector contained the predicted probabilities
of each pathology class.

Finally, they modify the loss function to optimize the sum of unweighted binary cross

entropy losses:

14 )
L) = ) [=elogy(Fe = 11X) = (1 = y)log, (¥, = 01X)]

c=1

Where p(Y, = 1|X) is the predicted probability that the image contains the pathology ‘c’

and p(Y, = 0|X) is the predicted probability that the image does not contain the pathology
‘c’. This modified model out-performed previous state-of-the art models on all 14 classes.
Figure 9 shows the comparison of ChexNet’s performance against previous state-of-the art

models.



Figure 9. Comparison of ChexNet against previous state-of-the-art models

Pathology Wang et al. (2017) Yao et al. (2017) CheXNet (ours)
Atelectasis 0.716 0.772 0.8094
Cardiomegaly 0.807 0.904 0.9248
Effusion 0.784 0.859 0.8638
Infiltration 0.609 0.695 0.7345
Mass 0.706 0.792 0.8676
Nodule 0.671 0.717 0.7802
Pneumonia 0.633 0.713 0.7T680
Pneumothorax 0.806 0.841 0.8887
Consolidation 0.708 0.788 0.7901
Edema 0.835 0.882 0.8878
Emphysema 0.815 0.829 0.9371
Fibrosis 0.769 0.767 0.8047
Pleural Thickening 0.708 0.765 0.8062
Hernia 0.767 0.914 0.9164

Source: (Rajpurkar, et al., 2017)

Figure 10. Heatmap correctly localized on an X-ray image of a patient with congestive heart failure and
cardiomegaly (enlarged heart)

Source: (Rajpurkar, et al., 2017)



3.3 Learning to recognize Abnormalities in Chest X-Rays with
Location-Aware Dense Networks

3.3.1 Data

Unlike previous, similar works, the authors of this paper used PLCO (Gohagan, et al.,
2000) dataset in addition to the ChestXRay-14 dataset, a total of 297.541 images of 86.876
patients. From the PLCO dataset, 12 most prevalent labels were chosen in addition the 14
labels of ChestXray-14 dataset. The two datasets share 6 labels with same names, however,
for simplicity these classes were treated as different. Also, the authors assumed that there is
no patient overlap between the two datasets. All images were normalized to match the
ImageNet definition.

Figure 11 shows the image distribution by labels except the ‘No Finding’/’Normal’ label.

Figure 11. Image distribution by labels except the ‘No Finding' label in both datasets.
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In the PLCO dataset, location information is available for 5 of the 12 pathologies. The
location information consists of the information about the side (right or left lung), more
detailed localization in each lung (divided by horizontal lines into 5 segments of equal
height) and an additional label for diffuse disease. Figure 12 shows an example x-ray image

from the PLCO dataset and it’s corresponding lung side, lung segmentation information.

Figure 12. Input x-ray image, and it's corresponding lung side, lung segmentation information.
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Source: (Guendel, et al., 2018)

Based on the localization information in the PLCO dataset, the authors created 9 additional
classes: 2 for the lung sides, 1 for diffused diseases over multiple lung parts and 5 for each
lobe, finally 1 more ‘wildcard’ label for a presence of pathology in multiple lung parts.
Lobes are distinct units of a lung; right lung has 3 lobes, and the left lung has 2 lobes.

Figure 13 shows an image of a lung denoting various parts, including the 5 lobes.

Figure 13. Image of a lung denoting various parts, including the 5 lobes.
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3.3.2 Model

The authors used a pretrained (on the ImageNet dataset) DenseNet-121 model to classify
the images. For each image in the ChestX-ray14 dataset, they assigned a C dimensional
binary vector [y, 1, ... -] where C = 14. They treated the classification problem as 14
independent binary classification problems by defining 14 binary cross entropy loss
functions. Due to the high class-imbalance as shown in Figure 11, the authors included
additional weights in the loss functions, based on the label frequency within each batch:

L(X: ln) - (WP * ln log(p) + wy * (1 - ln) log(l - p)) ©)

Pp+ Ny,

Where wp = P":—N" and wy = , with B, and N,, indicating the number of positive

n n

and negative samples. The model was trained with batch size of 128, the Adam optimizer
(B, = 09,6, = 0.999,¢ = 10~®) and an adaptive learning rate initialized at 10~ and
reduced tenfold when the validation loss plateaus. The authors also split the data in a way
to ensure each batch contained images from both datasets.

Following loss function was used for the combined dataset with C = 35 classes:

1 C (4)
LI = =2 > wwp + Ly 10g(p) + wy = (1= ) log(1 — )

n=1

Where w is either 0 or 1, depending on which dataset the image is coming from and
whether a spatial information exists.

Figure 14 shows the proposed model architecture.



Figure 14. Model architecture.
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3.3.3 Experiments and Results

The combined dataset was split patient-wise, 70% for training, 10% for validation and 20%
for testing. Figure 15 shows the test results on the two datasets, the table left shows results
on the ChestX-ray14 dataset compared to the test result of the original paper (Wang, et al.,
2017), the table on the right shows the test results on the PLCO dataset.

DNetLoc model version used the localization information in the PLCO dataset.

The 5 pathologies which the names were highlighted as bold (Nodule, Mass, Infiltrate,
Atelectasis, Hilar Abnormality) had localization information.

The performance difference of DNet and DNetLoc models on those 5 pathologies are
significant compared to the rest of the pathologies.

Figure 16 shows the corresponding ROC curves of the test results in Figure 15.



Figure 15. Table of the left shows test results on the ChestX-ray14 dataset, the table on the right shows test

results on the PLCO dataset.

Method Wang et al. [1]|Our DNet|Our DNet
Official Split Yes Yes No
Atelectasis 0.7003 0.767 0.826
Cardiomegaly 0.8100 0.883 0.911
Effusion 0.7585 0.828 0.885
Infiltration 0.6614 0.709 0.716
Mass 0.6933 0.821 0.854
Nodule 0.668T 0.758 0.774
Prneumonia 0.6580 0.731 0.765
Prneumothorax 0.7993 0.846 0.872
Consolidation 0.7032 0.745 0.806
Edema 0.8052 0.835 0.892
Emphysema 0.8330 0.895 0.925
Fibrosis 0.7859 0.818 0.820
Pleural Thick. 0.6835 0.761 0.785
Hernia 0.8717 0.896 0.941
Mean 0.7451 0.807 0.841

Source: (Guendel, et al., 2018)

[Method [[Our DNet|Our DNetLoc|
Nodule 0.817 0.831
Mass 0.845 0.878
Granuloma 0.888 0.888
Infiltrate 0.875 0.880
Scaring 0.841 0.850
Fibrosis 0.873 0.875
Bone/Soft Tissue Lesion|| 0.853 0.845
Cardiac Abnormality 0.927 0.926
COPD (.881 0.882
Effusion 0.933 0.926
Atelectasis 0.831 0.867
Hilar Abnormality 0.812 0.841
Mean (Location) 0.836 0.859
Mean (.865 0.874

Figure 16. ROC curves of the corresping tables in Figure 18.
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3.4 Weakly Supervised Medical Diagnosis and Localization from
Multiple Resolutions

This study focuses on localization of Region of Interest (ROI) rather than classification.
The authors emphasized the need for image analysis at multiple levels of resolution since
thoracic disorders vary greatly in terms of the size and location of ROIs.

For example, cardiomegaly (enlarged heart) is determined to be present if the width of the
heart is measured to be 50% or greater than the width of the thoracic cage, this can be
detected by looking at the entire X-ray image rather than a localized region.

On the hand, lung nodules are usually as small as few millimetres in size and are often
missed by radiologists, thus it is obviously preferable to analyse small, localized regions of
an X-ray image to detect lung nodules. The authors further emphasized the importance of
localization of ROI because it can immediately draw the attention of practicing
radiologists, thus assisting them to provide faster and more accurate diagnosis. (Yao, et al.,
2018).

Unlike in (Wang, et al., 2017) and (Rajpurkar, et al., 2017) which generated heatmaps, the
authors of this study proposed a model that generates saliency maps in order to visualize
the ROls, to provide radiologists a form of transparency as to why the model made a
particular prediction. Saliency map can be considered a form of image segmentation,
image segmentation is the process of partitioning a digital image into multiple segments
(sets of pixels, also known as superpixels).

The goal of segmentation is to simplify the representation of an image into something that
is easier to analyze. Image segmentation is typically used to locate objects and boundaries
(lines, curves, etc.) in images. More precisely, image segmentation is the process of
assigning a label to every pixel in an image such that pixels with the same label share

certain characteristics. (The Wikimedida Foundation, 2020).

3.41 Model

The authors proposed a model that can perform localization only from the use of global
labels, global label is simply a label for the entire image as opposed to a segment or pixel
label. They proposed such a model because medical training data is very hard to label as it
often relies on the use of natural language processing to convert historic reports into global

labels or employment of radiologists to meticulously read and label each report manually.



Segmentation information is even harder to obtain because the radiologists has to draw
segmentations by hand. They framed the problem of weakly supervised classification and
localization problem as a multi-instance learning (MIL) problem based on previous similar
works. MIL is a type of supervised learning, instead of receiving set of training instances
which are individually labelled, the model receives a set of labelled bags, each containing
many instances. A bag is labelled positive if any of the instances it contains is positive,
otherwise negative (The Wikimedia Foundation, 2020). In this case, bags are images and
instances in within the bags are image patches.

It seems that the reason why the authors of this study and the authors of similar previous
works framed the problem of localization with multi-resolution as MIL is because of how
MIL labels bags of instances is very similar to how image segmentation works by
assigning a single label/annotation to a segment/set of pixels. But, unlike previous similar
works, the authors of this paper used a customized version of the Log-Sum-Exp pooling
function with a learnable lower-bounded adaption which they called LSE_LBA to better
handle the challenge of localizing pathologies of very different sizes using only image-
level/global labels. This allowed the model to generate high-resolution saliency maps

without using localization labels. Below function is the modified LSE (LSE_LBA):

5)
LSE_LBA(S) =

— ~lo g{ Zze[(r0+e )siily

i=1j=

Where S is a saliency map, y is the lower-bound and £ is a learnable parameter.

The authors noted that the key difference between their approach and the approaches of
previous, similar works is that they specifically trained their model to localize, instead of
trying to output localization cues from models trained to classify.

Figure 17 shows an X-ray image of a patient with Mass along with generated saliency maps

of increasing resolutions.



Figure 17. Chest X-ray image and it's multiple saliency map of increasing resolutions
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Source: (Yao, et al., 2018)

The proposed model architecture uses ResNet to reduce image resoluton while also using
DenseNet at each resolution level to preserve them. The model also uses upsampling

(increasing resolution) in order to generate the saliency maps.

Figure 18. Model architecture
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3.4.2 Experiments and Results

The authors applied data augmentation during model training by zooming by factors
uniformly sampled from [0.25, 0.75], translating by [-50, 50] pixels (moving the image in
one of four directions so that part of the image would be out of frame) and rotating by [-25,
25] degrees. And then normalized to the interval [0, 1] as neural networks work better on
normalized/scaled input.

Data augmentation is useful for artificially increasing the size of training dataset if the
dataset is small and if a model is trained on such irregular images (zoomed, out of frame
and rotated) it would be better at generalizing if it receives similar irregular/poor quality
images as an input. The model was trained from scratch with Adam optimizer and early
stopping enabled. The team used the AUC metric to evaluate the performance of the
classification task and the Dice coefficient for the localization task.

Dice coefficient is a measure of overlap of between 2 images or patches/segments:

Area of overlap (6)

Di cient = 2
lce coef ficien " Total number of pixels in both images

But the exact formula the authors used to calculate the Dice coefficient is:

2x85xG (1)

DICE = ———
S+ G*

Where S is the saliency map generated by the model and G is the ground truth binary
bounding box with same resolution as the input X-ray image (512 x 512).
Figure 19 shows the test results of three models trained with different values for the ry,

which is the lower-bound of the modified Log-Sum-Exp pooling function LSE-LBA.



Figure 19. Comparison of test results against previous state-of-the-art model.

AUC DICE

[3] T = 0 To = 5 T = 10 To = ﬂ To = 5 To = 10
Atelectasis 0.7003 ||0.733| 0.728 | 0.724 | 0.204 |0.240| 0.211
Cardiomegaly 0.8100 || 0.856 |0.858| 0.854 |0.180|0.114 | 0.076
Effusion 0.7585 ||0.806| 0.803 | 0.795 |0.293 |0.294| 0.242
Infiltration 0.6614 || 0.673 |0.675| 0.668 [0.325|0.312| 0.286
Nodule 0.6687 || 0.718 | 0.724 | 0.727 | 0.202 |0.238]| 0.196
Mass 0.6933 || 0.777 | 0.777 | 0.778 |0.295|0.295| 0.241

Pneumonia 0.6580 || 0.684 |10.690| 0.687 [0.112|0.104 | 0.072
Pneumothorax || 0.7993|/0.805|0.791 | 0.763 [0.039|0.023 | 0.028
Consolidation 0.7032 (| 0.711 | 0.714 | 0.717 - - -

Edema 0.8052 ||0.806| 0.804 | 0.801 - - -
Emphysema 0.8330|/0.842| 0.822 | 0.771 - - -
Fibrosis 0.7859(| 0.743 | 0.757 | 0.731 - - -
Pleural thickening|| 0.6835 |(0.724|0.715| 0.712 - - -
Hernia 0.8717|| 0.775 [ 0.764 | 0.824 - - -
AV.G. 0.738 |/ 0.761 | 0.760 | 0.754 - - -

Source: (Yao, et al., 2018)

The combined best results of three versions of the proposed model outperformed the
previous state-of-the art model (Wang, et al., 2017) on 9 of the 14 pathologies.

The authors have noticed that AUC is more stable than DICE with respect to different
values of r,. Figure 20 shows example input images with their bounding boxes and saliency

maps, the numbers above the saliency maps are the corresponding DICE coefficients.

Figure 20. Example input images with corresponding bounding box and saliency maps of varying DICE
coefficients.
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3.5 Comparison of Deep Learning Approaches for Multi-Label Chest X-
Ray Classification

In this paper, the authors experimented with ResNet networks of varying depths to classify
the ChestX-ray14 dataset (Wang, et al., 2017), as well as building and training a dedicated
CNN for X-ray images from scratch. They have also experimented with transfer learning
(use of pretrained models) with or without hyperparameter tuning. But what makes this
work different from the previously discussed works in this chapter is that the authors also
used the non-image data in the dataset such as patient age, gender etc, another difference is

that they also performed a cross-validation.

3.5.1 Model

The authors framed the problem as a multi-label classification of 15 classes instead of 14,
adding the No Finding as a class, thus used a binary vector of size = M for each image
label, where M is the number of classes M = 15. After some experiments with different
loss functions, the authors decided to use class-averaged binary cross entropy (BCE) as the

loss function:

¢(3.f) = + Zh_s H[Ym, fru] Where H[y, f1 = =y xlogf —(1=ylog 1 —
£

y is the ground truth label and f: X — Y is the objective that minimizes the loss function.
The authors modified ResNet-50 architecture by replacing the last dense layer with a new
dense layer matching the number of labels (M = 15) and added a sigmoid activation
function. Figure 21 shows the comparison of the original ResNet-50 and modified, fine-
tuned architectures. As can be seen in Figure 21, the authors fine-tuned/retrained all the
convolutional layers. They have also experiment with random weight initialization and pre-

trained weights (on the ImageNet dataset).



Figure 21. Comparison of the original and modified, fine-tuned ResNet-50 architectures.

Layer name Qutput size
conwl 112 =112
poolingl 56 %56
CORve_x BHxEH
conw3_0 28 %28
Conv3_x 28 x 28
cord_0 14 %14
conwve_x 14 %14
corw5_0 T=7T
COnvS_x Tx7
pooling2 1%
derise 11

loss 11

Original 50-layer
7= 7, 64-d, stride 2
3 3, 64-d, max pool, stride 2

11,644, stridel
[ 33,64d, atridel | =3
1 1, 2586-d, stridel

1% 1,128-d, stride2
[3 % 3,128-d, stridel ]
1% 1,512-d, stridel

1w 1,128-d, stridel
[3 5 3,128-d, stridel | = 3
1% 1,512-d, stridel

1 1, 256-d, stride2
[ 3 % 3,256-d, stridel |
1% 1,1024-d, stridel

1 1, 256-d, stridel
[ 35 3,256-d, stridel | % 5
1% 1,1024.d, stridel

1 1,512-d, stride2
[ 3«3, 6512-d,stridel |
1% 1, 2048-d, stridel
13 1,512-d, stridel
[ 35 3,512-d, stridel | % 2
1w 1,2048-d, stridel

7% 7, 2048-d, average pool, stride 1

1000-d, dense-layer
1000-d, softmax

Source: (Baltruschat, et al., 2019)
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Aside from the original ResNet-50, the authors also experimented with 2 variants:

They also experimented with ResNet networks of different depths, namely ResNet-38 and

A variant with a reduced input channel to 1 down from 3 (RGB) since ResNet is

designed to process RGB images.

A variant with an increased input size of 448 x 448 from 224 x 224.

ResNet-101 by increasing and decreasing the sizes of convolutional blocks.

Aside from the images, the authors also used three non-image features to further improve

their architecture: patient age, gender and whether the x-ray images taken from the

front/anterior-posterior (AP) or back/posterior-anterior (PA).
As shown in Figure 22, the non-image feature vector of dimension 3 x 1 was concatenated

with the last pooling layer (1x1x2048), resulting in a 1x1x2051 dimensional output. Also,

patient age data was scaled to [0, 1]



Figure 22. Architecture of ResNet-50 with non-image features used.
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3.5.2 Experiments and Results

The authors first extended the dataset with data augmentation as in (Szegedy, et al., 2015)
which was used in all experiments. During training, image patches of sizes between 8%
and 100% of the original image was sampled. They have also used random rotations
between [-7, 7] degrees as well as horizontal flipping. Adam optimizer was used with
default parameters of 1 = 0.9 and 2 = 0.999 and learning rates Ir = 0.001, Ir = 0.01

for transfer-learning and from scratch respectively.

The authors evaluated eight different model setups and divided them into 3 categories:
e With or without non-image features.
e Transfer learning with off-the-shelf (OTS) and fine-tuned.
e Modified ResNet models with 1-channel or enlarged 448 x 448 input sizes.

AUC values were calculated for all eight model setups along with their standard

deviations. Figure 23 shows the results of the experiments by each class/label.



Figure 23. Results of all 8 model setups by each class.

Pathology Without non-image features With non-image features
oTs FT 1channel large oTs FT 1channel large

Cardiomegaly 727+18 88507 88.9+05 897+03 759+14 884 £ 08 90.2 + 0.4 898+08
Emphysema 7r8+21 892 +1.0 87.0+08 883+1.3 798+1.8 894 +1.2 874+13 891 +1.2
Edema 844 +0.6 89.1 + 04 89.1 £ 0.6 888+ 05 857 +05 89.1 + 0.7 89.0+ 06 88.9+03
Hernia 78814 85538 88.1£4.2 875145 81.9+25 882 +32 893144 B9.6 + 4.4
Prneumothorax T73+1.3 87.0+0.8 85709 85.9+09 797 £1.2 865 £ 0.6 85407 859+1.1
Effusion 79404 877102 B7.6 £ 0.2 876 +0.2 806 +04 87203 87.6 0.2 87303
Mass 668+ 06 82210 83306 83.9 + 0.9 686 £ 06 822+10 83307 832 +03
Fibrosis 72.0+09 80.0 + 0.9 73.9+08 792+16 739+08 80.0 + 0.9 796+ 05 78.9+05
Atelectasis 71.8+06 803+0.7 739:04 79207 73207 801 £06 793106 73104
Consolidation 743103 795105 80.6 + 0.4 80.0+£03 753+03 796 £ 05 804 £ 05 80.0+0.7
Pleural Thicken. 688+1.0 79.0+0.7 784109 78.0+£11 708+11 78611 782 +13 77113
Nodule 65.0+08 72609 733+08 751 £13 665 £ 0.7 747 £06 T40+07 75.8+ 1.4
Pneumonia B4+ 2.7 744 +1.6 743+15 T53+22 683 +2.3 733 +13 T48+15 76.7+ 1.5
Infiltration B5.9+0.2 699+ 0.6 70.2+ 0.3 70.2+05 670 +04 70.2+0.2 701 +£05 TOO+07
Average F30+1 81.7x1.0 81.9+£09 821 £1.2 748+ 1.1 820+09 g20x1.0 B2.2:+ 1.1
Mo Findings T16+£0.3 789 +£05 77303 770 £04 72503 768 +04 T71x04 FI1 03

Source: (Baltruschat, et al., 2019)

As shown in the above image, models with non-image features performed only slightly
better than their counterparts without non-image features on average.

The authors trained three more models: ResNet-50-large-age, ResNet-50-large-gender and
ResNet-50-large-VP, where VP stands for view position (AP or PA) based on the best
performing model ResNet-50-large to predict the age, gender and view position of each
training instance.

ResNet-50-large-VP model reached AUC value of 0.9983, ResNet-50-large-gender
reached a AUC value 0.9435. Finally, ResNet-50-large-age had a mean absolute error
(MAE) of 9.13+ 7.05 years. This very high AUC values indicate that the image features
already encode information about the non-image features, thus the authors speculated that
this is the reason why the models with non-image features did yield not reach significant

improvement over their counterparts without non-image features.



4 Practical Part

4.1 Data exploration and pre-processing

The metadata of the ChestX-ray14 dataset has 10 columns, the index is a combination
of the Patient ID and Follow-up # columns. Figure 24 shows the first five rows from

the metadata file.

Figure 24. First five rows from the metadata file.

Follow- Patient Patient Patient View

Image Index Finding Labels Originallmage[Width Height] Origin

up # D Age Gender Position
0 00000001_000.png Cardiomenaly 0 1 57 M P& 2682 2749
1 00000001_001.png  Cardiomegaly|Emphysema 1 1 a8 hd PA 2894 2729
2 00000001_002.png Cardiomegaly|Effusion 2 1 a8 1] PA 2500 2048
3 00000002_000.png Ma Finding a 2 a0 M PA 2400 2048
4 00000003_001.png Hernia 1] 3 T4 F PA 2500 2048

Pre-processing required extraction of the pathology labels from the ‘Finding Labels’

column. Figure 25 shows the extracted labels.

Figure 25. Extracted labels.

["Atelectasis’, 'Cardlomegaly', 'Consolidation', 'Edema’, 'Effusion', 'Emphysema’, 'Fibrosis', 'H
ernia’, 'Infilltration’, 'Mass’, 'Module', "Pleural_Thickening®, 'Prneumonia’, ‘Pneumothorax’]

Since the task is to classify pathologies and more than half (about 60 thousand) of the
instances are normal, i.e., has ‘No Finding’ value in the ‘Finding Labels’ column, these
instances were removed. Figure 26 shows the shape of the metadata dataframe after the
removal of normal instances, more than half of the total instances were removed
(about 60 thousand out of 112 thousand).

Figure 26. Shape of the metadata dataframe after the removal of normal instances..

# Orops rows where the Finding Label is empty
df = df[df['Finding Labels'] 1= '"]

# Sets Image Index column as index
df.set_index('Image Index', inplace=True)
df.shape

(51759, 18)

Figure 27 shows that the reduced dataset is comprised of x-ray images from 14402

unique patients compared to the 30805 unique patients in the original, full dataset.



Figure 27. Number of unique patients in the reduced dataset.

# Number of wnique patiepts in the dataset affer the removal of ‘No Finding ™ rows.
unique_patients = df['Patient ID'].unique(}
print({len{unique_patients))

14482

Figure 28 shows the number of instances for each pathology/label in the dataset.

Figure 28. Number of instances for each pathology.

{'Atelectasis’: 11559, 'Cardlomegaly®: 2776, "Consolidation': 4667, 'Edema’: 2383, 'Effusion’: 13
317, 'Emphysema’: 2516, °Fibrosis': 1686, "Hernia': 227, "Infilltration’: 19894, 'Mass’: 5782, 'No
dule': 6331, "Pleural_ Thickening': 3385, 'Pneumonia‘’: 1431, "Pneumothorax': 5382}

Figure 29 Illustrates the pathology/label distribution in the remaining 51759 instances

shown in Figure 28

Figure 29. Label distribution of the remaining 51759 instances.
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Above image shows a high class-imbalance in the dataset and this fact should be
considered when training a model.

According to the authors of the ChestX-ray14 dataset, the official train_val and test
splits are patient-wise, Figure 30 shows that there is indeed no patient overlap between

the two splits.



Figure 30. Confirming that there is no patient overlap between the train_val and test splits.

# Checks for a potient overiap between 2 subsets

def check_overlap({dfi, dfz):
patientsl = dfl.index.map(lambda x: x.split("'_")[&])
patients2 = df2.index.map(lambda x: x.split("'_")[&])
return list(set(patients1) & set(patlentsz))

# Checking whether the official split: traip_val and test are indeed patient-wise
overlap = check_overlap({train_val_df, test_df)
print('Number of patients in both subsets®, len(overlap))

Number of patients in both subsets &

Figure 31 shows the shapes of train_val and test split dataframes after the exclusion of

normal (‘No Finding’) instances.

Figure 31. Number of instances in the train_val and test splits after the removal of normal instances.

# Orops instonces from the dfI set thot are not ip the df? set
def drop_differences{df1, dfz):

df2.drop{df2.iloc[:, 6:11], inplace = True, axis = 1)

dfs = dfi[dfi.index.isin{df2.index)]

return df3

# Drops instonces from the fraip_val ond fest sefs that has ‘No Finding ™ Labels.
train_val_df = drop_differencesi{train_wal_ df, df)

test_df = drop_differences{test_df, df}
print({'train_wal_df:’,traln_val_df.shape, 'test_df:", test_df.shape)

train_wal_df: (36824, 1) test_df: {15735, 1)

Figure 32 shows the label distribution in the train_val and test splits.

Figure 32. Label distribution in the train_val and test splits.

# Dictionary for pothology: occurence from the train_val sef
train_val_label counts = dict()

train_wal_label counts = count_occurences{labels, train_wal_df}
print('Training and walidation set label counts:', trailn_val_label counts)

Training and validation set label counts: {'Atelectasis': 8288, 'Cardiomegaly': 1787, 'Consolidat
ion': 2852, 'Edema’: 1378, 'Effuslon’: 8659, 'Emphysema’: 1423, 'Fibrosis': 1251, ‘Hernia': 141,

'Infiltration’: 13782, 'Mass': 4634, 'Module': 4788, 'Pleural_Thickening': 2242, 'Pneumonia‘’: 87

6, 'Pneumothorax': 2637}

# Dictionary for pothology: occurence from the test set
test_label counts = dict()

test_label counts = count_occurences{labels, test_df)
print(’'Test set label counts:', test_label counts)

Test set label counts: {'Atelectasis': 3279, 'Cardiomegaly': 1869, 'Consolidation': 1815, 'Edem
a': 925, "Effusilon’: 4658, 'Emphysema’: 1893, 'Fibrosis': 435, 'Hernla': 86, 'Infiltration’: 611
2, "Mass': 1748, 'Nodule': 1623, 'Pleural Thickening': 1143, 'Pneumonia’: 555, ‘Pneumothorax': 26
651

Although the train_val and test subsets were split by patient, the label distributions
within these splits are not too different. Figure 33 shows the comparison of label

distribution within the train_val and test splits.



Figure 33. Label distribution comparison in the train_val and test splits.
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Figure 34 shows the comparison of label proportions in the train_val and test splits by
each label and the error percentages are quite high because the split was done patient-
wise. Especially, Pneumothorax has very high error percentage which can also be seen

in Figure 33

Figure 34. Label-wise comparison of train_val and test splits.

Pathology Entire dataset Training and validation split Test split Training and validation split error % Test split error %
1] Atelectasis 0.142394 0153419 0120525 7742067 -15.358353
1 Cardiomenaly 0.034187 0031629 0.039293 -7.511169 14.900309
2 Consolidation 0.057492 0.052844 0.066713 -8.084882 16.038413
3 Edema 0.028370 0.025533 0.034000 -10.002487 19.8424649
4 Effusion 0.164051 0160441 0471212 -2.200515 4365274
& Emphysema 0.030994 0.026366 0.040175 -14.931359 29.620138
1] Fibrosis 0.020770 0.023180 0.0154989 11.602769 -23.017034
7 Hernia 0.002796 0.002613 0.003161 -6.573843 13.040885
] Infiltration 0.245072 0.255364 0.224656 4199434 -8.330643
a Mass 0.071228 0074745 0.064251 4.9380681 -9.795806
10 Module 0.077991 0.087234 0.059656 11.850871 -23.509208
11 Pleural_Thickening 0.041700 0.041542 0.042013 -0.378709 0.751266
12 Pneumania 0.017628 0.016231 0.020400 -7.925429 15722089
13 Frneumothorax 0.065314 0.048860 0.097956 -25.192415 49.975543



Since the task is a multi-label classification, meaning each instance can belong to one
or more categories, | have added 14 new columns to the dataframes to indicate the
presence (1) or absence (0) of each pathology. Figure 35 illustrates the first five rows
of the train_val dataframe, showing ones or zeros indicating presence or absence of

the corresponding pathologies.

Figure 35. Dataframe of train_val split after adding one column for each label.
train_wal_df.head()

Follow- Patient Patient Patient View

Finding Labels up# D Age Gender Position Atelectasis Cardiomegaly Consolidation .. Effusion Emj
Cardiomegaly ] 1 a7 T} PA 0 1 o .. 0
Cardiomegaly|Emphysema 1 1 a8 1 PA, 0 1 o .. 0
Cardiomegaly|Effusion 2 1 58 T} PA 0 1 o .. 1
Mass|Module a 4 a2 ] AP 0 0 o .. 0
Infiltration G 5 70 F PA 0 0 o .. 0

4 3

The train_val subset was further split into training and validation, but by label. The
split was done in a stratified manner to keep the label proportions as identical as
possible with the train_val set. Figure 36 shows the result of this split, the training set
has 28819 instances and the validation split has 7205 instances.

Figure 36. Training and validation splits.

from sklearn.model_selection import train_test_split

# Stratified Label-wise split of the train_vol set with a 4:1 ratio, wsing the first 4 characters |
train_df, walid_df = train_test_split{train_wal_df, test_size = 6.2, random_state = 42,
stratify = train_wal df['Findlng Labels'].map{lambda x: x.sp]

print{'Training split by label®, train_df.shape, "W¥alidation split by label', walid_df.shape)

Training split by label (28819, 21) Walidatlon split by label (7285, Z21)

Figure 37 shows the compared proportion of label distributions in the training and
validation splits. The label distribution proportions are much more similar compared

to Figure 33



Figure 37. Comparison of the label distributions in the traning and validation splits.
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Figure 38 shows the comparison of the proportions of label distribution in the training
and validation splits. The error percentages in training and validation splits are much
lower compared to those in train_val and test splits shown in Figure 34

Figure 38. Comparison of the proportions of label distribution in the training and validation splits.

Training and  Training split by  Validation split by Training split by label-  Validation spiit by label-

Pathology validation split label label error % error %
0 Atelectasis 0153419 0.153287 0153946 -0.085622 0.343962
1 Cardiomegaly 0.031624 0.031518 0.032072 -0.348017 1.402071
2 Consolidation 0.052844 0.052824 0.052524 0145028451 -0.605998
3 Edema 0.025533 0.025548 0.025472 0.0593491 -0.238586
4 Effusion 0160441 0160068 0161941 -0.232742 0.934971
H] Emphysema 0.026366 0.026705 0.025007 1.2835449 -5.156264
6 Fibrosis 0.023120 0.023442 0.022124 11323549 -4.548909
7 Hernia 0.002613 0.002731 0.002138 4.520360 -18.159180
8 Infiltration 0.255364 0.255409 0.255183 0.017685 -0.071043
9 Mass 0.074745 0.075325 0.072418 0775068 -3.113601
10 Module 0.087234 0.086479 0.090267 -0.865540 3477047
11 Pleural_Thickening 0.041542 0.041585 0.041368 0103778 -0.416898
12 Frneumonia 0.016231 0.016245 0.016176 0.085464 -0.343325

13 Freumaothoras 0.043860 0.048735 0.049363 -0.256125 1.0284904



4.2 Data Augmentation

Data Augmentation is a technique used very often in computer vision tasks to
artificially increase the number of training instances. But the increase of training
instances is not the only purpose of Data Augmentation as it also adds random
augmentations/imperfections to the training images that can probably be encountered
in real-life datasets. Learning from such imperfect images prepares models if and when
it encounters similar images.

| have used Keras API’s ImageDataGenerator class to create augmented images, below

are the augmentations and their values | have chosen:

e horizontal_flip = True
Flips the image along the horizontal axis, this parameter was set True because
there are two types of X-ray images: AP and PA, one taken from the front of a
patient’s and other from the back.

e vertical_flip = False
Flips the image along the vertical axis, it is set to False because the model is
very unlikely to encounter an upside down X-ray image.

e height_shift_range = 0.05
Shifts the image vertically either up or down by a random amount between 0
and 5 percent of the image’s height, creating an empty region above or below
the image.

e width_shift_range = 0.01
Works the same way as the height_shift_range, except horizontally.

e rotation_range =10
Rotates the image along the vertical axis by a random amount between 0 and
10 degree angle, this augmentation was chosen because patient’s chest might
not be perfectly parallel to the X-ray machine.

e fill_mode = ‘constant’
Fills up any empty region, for example caused by width_shift_range,
height shift range. I have chosen the ‘constant’ value along with cval = 0 to

fill the empty regions by solid black pixels. The default value is ‘nearest’,



which fills empty regions by copying its nearest non-empty pixels, but this was
not suitable for X-ray images.
e zoom_range = 0.2

Zooms in and out of the target image, the 0.2 value means 20% percent zoom.

Figure 39 shows examples of randomly augmented images with their labels.

Figure 39. Examples of augmented images.

Consolidation, Mass Infiltration Atelectasis, Effusion, Emphysema, Pneumothorax  Effusion, Infiltration
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4.3 Models

I have used models based on two (ResNet50 and MobileNet) out-of-the-box models from
the keras.applications package for classification. And | used the base models without pre-
trained weights on the ImageNet dataset because X-ray images are not part of ImageNet’s
category list. The models were trained with Adam as optimizer, binary cross-entropy
function as the loss function and binary accuracy, mean absolute error as metrics.

The models were first trained, validated and tested on the original images (without
augmentation) and then further trained, validated, tested on augmented images.

Figure 40 and Figure 41 shows the summaries of the models based on ResNet50 and
MobileNet respectively.

Figure 40. Summary of the ResNet50-based model.

resnet58 = create_resnet5e()
resnetse.compile{optimizer="adam", loss = 'binary_crossentropy’,
metrics = ["binary accuracy', 'mae'])

resnet5e.summary()

Model: “sequential™

Layer (type) Output Shape Param #
resnet58 (Functional) (Mone, 7, 7, 2848) 23581448
global_awverage_pooling2d (Gl {Mone, 2848} 5]
dropout {Dropout) (Mone, 2848) =}

dense (Dense) {Mone, 224) 458976
dropout_1 (Dropout) {Mone, 224) =}
dense_1 (Dense) {None, 14) 3156

Total params: 24,843,566
Trainable params: 23,998,446
Mon-trainable params: 53,128

Figure 41. Summary of the MobileNet-based model.

mobilenet.summaryi)

Model: "sequential_ 2"

Layer (type) Qutput Shape Param #
mobilenet_1.88 224 (Functlon ({Mone, 7, 7, 1824) 3228288
global_awerage_pooling2d_2 { (Mone, 1824} =}
dropout_4 {Dropout) {Mone, 1624} =]
dense_4 (Dense) {Mone, 224) 229688
dropout_5 (Dropout) {Mone, 224) =}
dense_5 (Dense) (Mone, 14) 3158

Total params: 3,461,838
Trailnable params: 3,439,158
Mon-tralnable params: 21,888




5 Results and Discussion

Both models were trained for 50 epochs with early stopping, model checkpoint and the
patience parameter set to 5.

5.1 ResNet50-based model

Figure 42 and Figure 43 shows the learning and ROC curves of the ResNet50-based model
trained on non-augmented images respectively.

Figure 44 and Figure 45 shows the learning and ROC curves of the ResNet50-based model
trained on augmented images respectively.

Comparison of the two ROC curves shows that the model accuracy was improved after the
training on augmented images on almost all 14 categories, except Pneumonia.

From the learning curve of the second training (on augmented images), one can see that
both training loss and training accuracy have not plateaued, training loss is decreasing, and
accuracy is increasing, which indicates the model probably could have been improved with
further training on more data or by increasing the number of epochs and the patience

parameter.

Figure 42. Learning curves of the ResNet50-based model on non-augmented images.
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Figure 43. ROC curve of the ResNet50-based model trained on non-augmented images.
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Figure 44. Learning curves of the ResNet50-based model trained on augmented images.
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Figure 45. ROC curve of the ResNet50-based model trained on augmented images.
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5.2 MobileNet-based model

Figure 46 and Figure 47 shows the learning and ROC curves of the ResNet50-based model
trained on non-augmented images respectively.

Figure 48 and Figure 49 shows the learning and ROC curves of the ResNet50-based model
trained on augmented images respectively.

Comparison of the two ROC curves shows that the model accuracy was improved after the
training on augmented images on all 14 categories.

From the learning curve of the second training (on augmented images), one can see that
both training loss and training accuracy have not plateaued, training loss is decreasing, and
accuracy is increasing, which indicates the model probably could have been improved with
further training on more data or by increasing the number of epochs and the patience

parameter.

Figure 46. Learning curves of the MobileNet-based model trained on non-augmented images.
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Figure 47. ROC curve of the MobileNet-based model trained on non-augmented images.
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Figure 48. Learning curves of the MobileNet-based model trained on augmented images.
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Figure 49. ROC curve of the MobileNet-based model trained on augmented images.
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5.3 Voting Classifiers

Three voting classifiers: Max Vote, Hard VVote and Simple Average has been used on the
AUC scores of both models. Surprisingly, all three classifier AUC scores were lower

compared to individual model scores. Figure 50 shows the comparison table.

Figure 50. AUC score comparison of both models and three voting classifiers.

Class Resnet50 Mobilenet Max Vote E ble Hard Vote E hle JAvgE bl
o Atelectasis 0714 0710 0.647 0.555 0.651
1 Cardiomegaly 0.8a7 0.858 0.803 0.595 n.e0z
2 Consolidation 0678 0.669 0.622 0.500 0631
3 Edema 0.802 0.799 0727 0.498 0.728
4 Effusian 0.764 0.rar 0.679 0.633 0.631
g Emphysema 0.760 0.748 0.684 0.500 0.6749
6 Fibrosis 0775 0.7sz 0.706 0.500 0.704
¥ Hernia 0.834 0.871 0.829 0.500 0.8249
8 Infiltration 0.662 0.659 0.567 0.5649 0.583
9 Mass 0.741 0715 0.674 0.546 0.670
10 Module 0.683 0.665 0.633 0.500 0614
11 Pleural_Thickening 0.693 0.685 0.626 0.500 0626
12 Pneumania 0.614 0.634 0.617 0.500 0.604

13 Preurmothoray 0,784 0728 0735 0.4820 07N



6 Conclusion

Thorax diseases account for a significant proportion of global deaths every year,
pneumonia alone kills millions of people annually. People in developing countries are
especially vulnerable compared to the people in developed countries due to variety of
factors such as: poor healthcare system, air pollution and lack of medical professionals.
Developing countries tend to have a more severe lack of medical professionals because
doctors and nurses often leave their home countries to seek higher paying jobs in
developed countries. X-ray imaging is the most common method used for diagnosing
thorax diseases due to its low cost compared to other methods such as Computed Axial
Tomography (CAT) and Magnetic Resonance Imaging (MRI). But radiologists are in
short supply, same as other medical professionals. Thus, a deep learning-based
diagnostic tool can be used make up for the lack of radiologists if the diagnostic

accuracy of such atool is comparable to that of a certified and experienced radiologist.
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