
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF RADIO ELECTRONICS
ÚSTAV RADIOELEKTRONIKY

DETECTION OF PARKING SPACE AVAILABILITY BASED
ON VIDEO
DETEKCE DOSTUPNOSTI PARKOVACÍCH MÍST NA ZÁKLADĚ VIDEA

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Miloslav Kužela

SUPERVISOR
VEDOUCÍ PRÁCE

doc. Ing. Tomáš Frýza, Ph.D.

BRNO 2024

Termín zadání: 16.2.2024 Termín odevzdání: 27.5.2024

Vedoucí práce: doc. Ing. Tomáš Frýza, Ph.D.

doc. Ing. Lucie Hudcová, Ph.D.

předseda rady studijního programu

Bakalářská práce
bakalářský studijní program Elektronika a komunikační technologie

Ústav radioelektroniky
Student: Miloslav Kužela ID: 240648
Ročník: 3 Akademický rok: 2023/24

NÁZEV TÉMATU:

Detekce dostupnosti parkovacích míst na základě videa

POKYNY PRO VYPRACOVÁNÍ:

Projekt je zaměřen do oblasti zpracování video signálů a využití strojového učení pro možnosti smart parkingu.
Výsledkem práce bude systém, který umožní najít volné místo na parkovišti, bude schopen vyhodnocovat
průběžnou obsazenost a detekovat špatně zaparkovaná vozidla. Prostudujte současné systémy umožňující
detekci vozidel a jejich využití pro smart parking. Prostudujte možnosti klasifikátorů strojového učení zaměřené
na vozidla, případně chodce. Vyberte vhodné komponenty a navrhněte koncepci systému, který bude schopen
zaznamenávat provoz na parkovišti a odesílat data na vhodné online úložiště.

Systém aplikujte na vhodné parkoviště, naprogramujte celou aplikaci a proveďte detailní testování. Systém musí
být schopen vyčíslit celkovou obsazenost parkovacích ploch, určit nejbližší volné místo a detekovat anomálie
v parkování. Svou práci publikujte na vhodné platformě, např. GitHub, studentská soutěž apod.

DOPORUČENÁ LITERATURA:

[1] CHEN, Lun-Chi, Ruey-Kai SHEU, Wen-Yi PENG, Jyh-Horng WU a Chien-Hao TSENG. Video-Based Parking
Occupancy Detection for Smart Control System. Applied Sciences [online]. 2020, 10(3) [cit. 2023-05-29]. ISSN
2076-3417. Dostupné z: doi:10.3390/app10031079

[2] LEE, Cheng Pin, Fabian Tee Jee LENG, Riyaz Ahamed Ariyaluran HABEEB, Mohamed Ahzam AMANULLAH
a Muhammad Habib ur REHMAN. Edge computing-enabled secure and energy-efficient smart parking: A review.
Microprocessors and Microsystems [online]. 2022, 93 [cit. 2023-05-29]. ISSN 01419331. Dostupné z:
doi:10.1016/j.micpro.2022.104612

UPOZORNĚNÍ:

Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným
způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského
zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku
č.40/2009 Sb.

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

Date of project
specification:

16.2.2024
Deadline for
submission:

 27.5.2024

Supervisor: doc. Ing. Tomáš Frýza, Ph.D.

doc. Ing. Lucie Hudcová, Ph.D.

Chair of study program board

Bachelor's Thesis
Bachelor's study program Electronics and Communication Technologies

Department of Radio Electronics
Student: Miloslav Kužela ID: 240648
Year of
study:

 3 Academic year: 2023/24

TITLE OF THESIS:

Detection of parking space availability based on video

INSTRUCTION:

The project is focused on the area of video signal processing and the use of machine learning for smart parking.
The result of the work will be a system that will allow you to find a free parking space, will be able to evaluate the
current occupancy and detect poorly parked vehicles. Study current systems that allow the detection of vehicles
and their use for smart parking. Study the possibilities of machine learning classifiers focused on vehicles, or
pedestrians. Select suitable components and propose a concept for a system that will be able to record parking
lot traffic and send data to a suitable online storage. Apply the system to a suitable parking lot, program the entire
application and perform detailed testing. The system must be able to calculate the total occupancy of parking
spaces, determine the nearest free space and detect anomalies in parking. Publish your work on a suitable
platform, such as GitHub, a student competition, etc.

RECOMMENDED LITERATURE:

[1] CHEN, Lun-Chi, Ruey-Kai SHEU, Wen-Yi PENG, Jyh-Horng WU a Chien-Hao TSENG. Video-Based Parking
Occupancy Detection for Smart Control System. Applied Sciences [online]. 2020, 10(3) [cit. 2023-05-29]. ISSN
2076-3417. Dostupné z: doi:10.3390/app10031079

[2] LEE, Cheng Pin, Fabian Tee Jee LENG, Riyaz Ahamed Ariyaluran HABEEB, Mohamed Ahzam AMANULLAH
a Muhammad Habib ur REHMAN. Edge computing-enabled secure and energy-efficient smart parking: A review.
Microprocessors and Microsystems [online]. 2022, 93 [cit. 2023-05-29]. ISSN 01419331. Dostupné z:
doi:10.1016/j.micpro.2022.104612

WARNING:

The author of the Bachelor's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno

ABSTRACT
Determining a parking space occupation is often solved by using physical sensors located
near a parking space, but with the rise of machine learning, it is possible to apply such
technology with the use of cameras and detection algorithms to solve such a problem.
This thesis focuses on the use of this machine learning model. Presents currently avail-
able models and detectors, discusses the creation of a custom data set with a custom
file structure, trains such a model, and consults its results based on its accuracy when
applied in a parking lot. This model is then used among side a created web server that
allows the users of the parking lot to view the current occupancy and history. All by
using the Python programming language with Torchvision libraries.

KEYWORDS
Car, Parking, Detection, Machine learning, Machine vision, AI, Camera, Video

ABSTRAKT
Detekování obsazenosti parkovacích míst je často řešeno použitím senzorů umístěných
v blízké lokaci parkovacího místa. Se vzrůstem strojového učení je možnost využití této
technologie za použití kamer a detekčních algoritmů. Práce se zabývá právě vytvořením
a použitím takového modelu k detekci obsazenosti parkoviště. Probírá existující modely
a detektory, vytvoření vlastního datasetu s konkrétní strukturou, vytvoření a naučení
různých typů modelů a probrání vysledků při testování daných modelů na vlastních zá-
znamech z parkovací plochy. Poté následné vytvoření webové aplikace na které můžou
návštěvnící parkoviště pozorovat obsazenost parkoviště. Vše za použití programovacího
jazyka Python s knihovnami Torchvision.

KLÍČOVÁ SLOVA
Auto, Parkování, Detekce, Strojové Učení, Strojové vidění, AI, Kamera, Video

Typeset by the thesis package, version 4.09; https://latex.fekt.vut.cz/

https://latex.fekt.vut.cz/

ROZŠÍŘENÝ ABSTRAKT

Automobily se v současné době staly nedílnou součástí našich životů. Automo-
bilů stále přibývá a to přináší určité problémy. Automobily potřebují někde parko-
vat, což vede k nárůstu počtu velkých parkovacích ploch, které se stává obtížné
a zdlouhavé projíždět, aby se našlo volné parkovací místo. Přišli jsem s řešeními
pro tento problém v podobě různých fyzických senzorů, které monitorují jednotlivá
parkovací místa. Avšak ceny těchto systémů rostou s počtem parkovacích míst, což
je bohužel současný trend.

S rozvojem umělé inteligence, známé také jako strojové učení a strojové vidění,
se objevují alternativy pro řešení těchto problémů. Umělá inteligence je obor in-
formatiky, který se studuje již dlouhou dobu, ale v poslední době dosáhl mnoha
důležitých průlomů. Vzhledem k tomu, že se kamery často používají k monitorování
veřejných nebo soukromých parkovišť, proč je nevyužít také k monitorování ob-
sazenosti parkovacích míst? Tato práce se zaměřuje na aplikaci strojového vidění
na videozáznam parkoviště za účelem detekce obsazených a volných parkovacích
míst s minimálním uživatelským vstupem. Všechny testy a finální aplikace budou
prováděny na parkovišti vedle budovy T10 Vysokého učení technické v Brně.

Pro strojové vidění existuje několik typů detektorů a modelů. Po analýze dostup-
ných konvolučních neuronových sítí byly vybrány tři modely. Mobilenet V3 large,
Mobilenet V3 small a Resnet50. Tyto modely byly testování na dvou detektorech:
Faster RCNN a RetinaNET.

Pro řešení zmíněného problému se využil programovací jazyk Python 3.11 ne-
jvýznamněji s knihovnami Torchvision a CV2 které umožňují vytváření, upravování
a trénování různých modelů strojového učení a práci s obrázkovými daty. S použitím
těchto knihoven byl napsaný program, který umožňuje uživateli zvolit z listu mod-
elů a natrénovat jej na množině obrázků parkoviště s označenými parkovacími místy.
Aplikace ještě zaznamenává průběh trénování na stránky Comet, kde může uživatel
pozorovat postup trénování na přehledných grafech. Pro označení parkovacích míst
byla taktéž vytvořena jednoduchá aplikace v prostředí Jupyter.

Pro natrénování konvoluční neuronové sítě jsou třeba obrázková data. K tomu
byl zprvu využit telefonní mobil iPhone X s aplikací která pořídila fotku co 10
minut. Následně bylo pořizovací zařízení změněno na Raspberry Pi 4 které je vy-
baveno kamerou Camera Module V2. Pomocí aplikace v prostředí Jupyter byly
fotky zpracovány, a se zakreslenými parkovacími místy a jejich stavem obsazenosti
vytváří dataset T10LOT který je součástí výsledku práce.

Následně byla naprogramována testovací funkce, která ověřila všechny natréno-
vané modely a vypočítala jejich F1 skóre. Program disponuje funkcí uložení obrázků,
na kterých lze jednotlivé detekce pozorovat. Tyto obrázky společně s natrénovanými

modely a datasetem T10LOT jsou přiloženy na Google Drive odkazované v práci.
Po porovnání testovacích výsledků se došlo k závěru, že nejefektivnější síť je

Mobilenet V3 large s přetrénovanými váhy na YOLO datasetu. F1 skoré této sítě
vychází jako jedno z nejlepších. Velkou výhodou je i přetrénovaný stav tohoto
modelu. To znamená že není třeba model trénovat na velké hodnotě dat, ale stačí
malá skupina fotek parkoviště, na kterém bude model použit.

Pro finální aplikaci byla napsána knihovna ArgonPark, která má metody pro
vytvoření a načtení modelu který se poté používá pro analýzu parkovacích míst
na vstupních fotkách. Knihovna je jednoduchá a zdokumentována pomocí Sphinx.
Zdrojový kód je přístupný jak v elektronické příloze, tak na GitHub stránce této
práce.

Jako poslední byla využita databáze MongoDB která slouží pro ukládání stavu
celého parkoviště. K těmto datům se poté dá následně libovolně přistupovat z
jakéhokoliv zařízení. Data obsahují časové razítko, kdy byl záznam vytvořen, jméno
parkovacího místa, jeho lokaci na obrázku pomocí čtyř bodů, obsazenost a poměr
překrytí s detekcí.

Pro uživatelskou přívětivost byly tyto nástroje zakomponovány do webové ap-
likace, která je provozována na Raspberry Pi, na kterém se nachází i kamera kterou
je snímáno parkoviště. Na této webové stránce lze vidět aktuální fotku parkoviště
se nakreslenými zónami a jejich obsazenost danou barvou. Tato fotka se obnovuje
automaticky co dvě sekundy. Následně lze na stránce vyžádat informace o parko-
vaní, kdy se uživateli poskytne počet obsazených míst a nejbližší dostupné parko-
vací místo. Dále se na stránce nachází možnost pro upravení mapy parkoviště. To
se provádí stáhnutím obrázku bez zakreslených parkovacích míst a pomocí využití
přiložené grafické aplikace se označí parkovací místa. Aplikace následně vygeneruje
soubor, který se pomocí stránky nahraje a mapu zaktualizuje. Jako poslední funkce
se nabízí zobrazení historie obsazenosti parkoviště, a to za pomocí barového grafu.

Použitím počítače Raspberry Pi v4, který nemá dostatečně výkonný procesor se
způsobuje delší čas na inferenci jednoho snímku, orientačně se pohybuje v rozmezí 4
až 5 sekund. Tento časový úsek není pro konkrétní použití zcela kritický, ale správ-
nou optimalizací modelů, jako například kvantizační metodou, se dá čas zkrátit. To
ale obnáší složitější úpravu trénovací funkce. Při použití výkonnějšího Hardwaru by
se inference mohla velice zrychlit, a to na několik snímků za sekundu.

Webová aplikace je nyní v provozu a sbírá data, která se později dají graficky
vizualizovat a využít k dalšímu výzkumu.

KUŽELA, Miloslav. Detection of parking space availability based on video. Bachelor’s
Thesis. Brno: Brno University of Technology, Faculty of Electrical Engineering and Com-
munication, Department of Radio Electronics, 2024. Advised by doc. Ing. Tomáš
Frýza, Ph.D.

Author’s Declaration

Author: Miloslav Kužela

Author’s ID: 240648

Paper type: Bachelor’s Thesis

Academic year: 2023/24

Topic: Detection of parking space availability
based on video

I declare that I have written this paper independently, under the guidance of the advisor
and using exclusively the technical references and other sources of information cited in
the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, I furthermore declare that, with respect to the creation of this paper,
I have not infringed any copyright or violated anyone’s personal and/or ownership rights.
In this context, I am fully aware of the consequences of breaking Regulation S 11 of the
Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach
of rights related to intellectual property or introduced within amendments to relevant
Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll.
of the Czech Republic, Section 2, Head VI, Part 4.

Brno .
author’s signature∗

∗The author signs only in the printed version.

ACKNOWLEDGEMENT

I would like to thank the advisor of my thesis, doc. Ing. Tomáš Frýza, Ph.D. for his
valuable comments, time and help in writing this thesis.

Contents

Introduction 16

1 Theory and approaches 17
1.1 Parking space detection . 17

1.1.1 Sensors . 17
1.1.2 Use of cameras . 19

1.2 Artificial intelligence and machine learning 20
1.2.1 Artificial intelligence . 20
1.2.2 Neural networks . 21
1.2.3 Perceptron . 21

1.3 Machine vision . 25
1.3.1 CNN . 27
1.3.2 Image and object recognition 27
1.3.3 CNN models for image classification 28
1.3.4 R-CNN . 28
1.3.5 Retinanet . 28
1.3.6 YOLO . 29

1.4 Cloud edge computing . 30

2 Code and relevant software tools 31
2.1 Python . 31

2.1.1 Jupyter notebook . 31
2.1.2 Anaconda . 31
2.1.3 Torch and torchvision library 31
2.1.4 OpenCV library . 32
2.1.5 Flask . 32

2.2 Comet . 32
2.3 Datasets . 32

3 Solution proposals 37
3.1 Creating a dataset . 37

3.1.1 Data acquisition . 37
3.1.2 Dataset structure creation . 38
3.1.3 Labeling . 38

3.2 Creating an ML model . 39
3.2.1 Using a pre-trained model . 40
3.2.2 Constructing a custom model 41
3.2.3 Training . 41
3.2.4 Retraining . 42

3.3 Hardware setup proposal . 42

4 Testing results 44
4.1 Training results . 44

4.1.1 Pretrained model . 44
4.1.2 Custom models . 44

4.2 Testing . 46
4.2.1 Testing methods . 46
4.2.2 Testing results . 47

5 Solution 50
5.1 Hardware choices . 50

5.1.1 Remote access . 50
5.1.2 Position and mounting solution 51

5.2 Software . 51
5.2.1 ArgonPark library . 51

5.3 Web server . 52
5.3.1 Multiprocessing . 53
5.3.2 Database . 53
5.3.3 User interface . 54

Conclusion 56

Symbols and abbreviations 62

List of appendices 64

A Content of the electronic attachment 65

List of Figures
1 Function diagram . 16
1.1 Signalization of occupancy . 17
1.2 Ultrasonic sensor in a parking garage mounted on a ceiling 18
1.3 Comparison with visible color distortion 19
1.4 Example of an algorithm . 20
1.5 Simple neural network function . 21
1.6 Single neuron . 22
1.7 Transfer functions without a threshold 23
1.8 Transfer functions with a threshold 23
1.9 Overfitting . 24
1.10 Learning diagram . 25
1.11 Oriented figure of a neural network 26
1.12 Stages of recognition . 27
1.13 A CNN model with an input image and a class output [21] 27
1.14 R-CNN object detection [27] . 29
1.15 Feature pyramid network example [26] 29
1.16 YOLO model [30] . 30
2.1 Example of Comet web interface . 33
2.2 Example of an annotated image from PKLOT dataset 34
2.3 Example of an annotated image from ACPDS dataset 35
2.4 Example of an annotated image from CNRpark dataset 36
2.5 Example from the COCO dataset with semantic segmentation [38] . . 36
3.1 iPhone capturing setup . 38
3.2 Raspberry Pi combo mount . 38
3.3 Annotating widget A . 39
3.4 Annotating widget B . 39
3.5 Training script prompts . 42
3.6 Training script flowchart diagram . 43
4.1 Average losses per epoch . 45
4.2 Training loss per batch . 45
4.3 Example of testing result . 47
4.4 Bar graph of accuracy and time . 48
4.5 Example of a testing output on a difficult scenarios 49
5.1 Web application diagram . 50
5.2 Intersection over union . 52
5.3 Main page of the web application . 54
5.4 History page view . 55

5.5 Map edit page view . 55

List of Tables
4.1 Table of results for individual models 48

Listings
3.1 Obtaining a pretrained model . 40
3.2 Example of model creation . 40

Introduction
Cars in current time have became such an important part of our lives. In a recent
study in 2021 in the Czech Republic, there are approximately 579 cars per 1000
inhabitants [4]. This poses certain problems. These cars need to go somewhere, so
there are more larger parking spaces that are very difficult to navigate to find free
parking places. We have already come up with solutions to solve these problems
with all kinds of physical sensors that monitor a single parking place. But the prices
of such systems increase with the number of parking places, which is unfortunately
the current trend.

With the rise of AI (Artificial Intelligence), or better known machine learning and
machine vision, there are alternatives to solve such problems. Artificial intelligence is
a field of computer science that has been studied for ages but has recently made many
important breakthroughs. Since CCTV (Closed-circuit television) cameras are often
used to monitor a public or private parking lot, why not also use them to monitor
parking occupancy? This thesis focuses on applying machine vision to a video
recording of a car park to detect occupied and free parking spaces with minimal user
input. The final working version will make use of cloud edge computing. All tests
will be conducted in a parking lot next to a BUT (Brno University of Technology)
building.

Cameras

Single board computer

Neural network Detection algorithm Database server

IOT devices

Requests Responses

Fig. 1: Function diagram

16

1 Theory and approaches

1.1 Parking space detection
Current solutions that solve the problem of parking space detection can be divided
into two groups. The first uses a localized system to detect only incoming and
outgoing cars, and the other monitors individual parking spaces. Both have their
own advantages and disadvantages. The first system utilizes gates that allow cars to
enter and leave the parking lot and often prints tickets that would later be used to
pay for parking; with the addition of cameras, it is possible to log the license plates
and link them with parking tickets. This system has the ability to only know about
the current number of cars in the parking lot. This information is then compared
with the maximum capacity to determine how many parking places should be left
unoccupied, but not which ones. This also presents the problem that if there were
an electrical or technical problem of the gate system, the count of cars currently on
the parking lot could change without the system knowing.

The second system, on the other hand, uses a detector of some kind to monitor
individual parking spaces. This then allows parking lot managers and potential
visitors to know what exact parking spaces are free and which are not, as well as
to reserve certain spots for frequent visitors. Such systems often only signal the
occupancy of a parking space with a light located near it, see Figure 1.1.

Fig. 1.1: Signalization of occupancy

1.1.1 Sensors

As mentioned above, sensors are used for systems that monitor individual parking
places. These sensors need to be connected to a main station, which then provides

17

Fig. 1.2: Ultrasonic sensor in a parking garage mounted on a ceiling

all the necessary logging and computation. Here are some of the most common types
of sensors used:

• Ultrasonic sensors - Such sensors are mostly located above the parking slot,
preferably on the ceiling, which is why they are prevalent in parking garages.
They work by transmitting and then receiving ultrasonic waves and measuring
the time between, thus obtaining the distance [5]. An example of a system
used in a parking garage is shown in Figure 1.2. The disadvantage of such
a sensor is that it detects any obstacle, including those that are not made of
metal. This can cause false positive detection, which affects the accuracy of
the system. To add to this disadvantage, the speed of sound changes with
air temperature and moisture, so the sensor needs to compensate by having
additional sensors.

• Magnetic sensors - Magnetometers detect the change of electromagnetic
fields when there is a vehicle in close proximity. They are often installed
under each parking space, which is reflected in installation costs, but provide
an accurate detection of occupancy [6]. They are suitable for outdoor and
indoor parking lots.

• Milimiter wave radars - MMW (Milimeter wave) radars have recently be-
come more popular in the automotive industry. They in a way work similar
to ultrasonic sensors, but use much higher frequencies (30 GHz and higher).
Because they use high frequencies, these sensors use small antennas, which is
why the receiver and transmitter can fit onto a single chip. A good example
is a PCR (pulsed coherent radar) developed by Acconeer [7]. They are often
installed on the ground and can detect a standing car with high accuracy.
With more precise algorithms, it is possible to differentiate between different
objects. They can be considered an IoT (Internet of Thing) device, as they

18

are often deployed in an open parking lot and communicate using Wi-Fi or
Bluetooth [8].

There is also the possible use of induction loops under the parking space. Such
induction loops are used at crossroads with traffic lights to correctly and efficiently
time the light change according to the number of waiting cars. Using a coil connected
to a power source that detects the change in inductance when a car drives over it
is simple however, its simplicity is overshadowed by the cost of installation and the
potential power loss. With the addition of having to replace such coils every 3 to 7
years, makes this solution unfeasible for parking lots [9].

1.1.2 Use of cameras

When using video data, the biggest obstacle to detecting a free space is to locate
the parking space itself; this can be done in a number of ways, be it by using
machine vision or ML models. Numerous studies on the topic of parking occupancy
detection test different types of ML object classifiers. The most prominent detectors
used are R-CNN (Regional-Based Convolution Neural Network), Resnet (Residual
neural network), and YOLO (you only look once), all with different results and
use cases[10][11]. The biggest problem with using cameras is the inaccuracy with
which the image can be captured. That means different environmental factors such
as weather and lightning conditions. The photos on Figure 1.3 were captured in a
short time frame of each other with the same camera, but the second photo had
such a lightning condition that the camera incorrectly adjusted its saturation.

When using machine vision algorithms to detect cars, a change in the color of the
lightning can possibly change the detection result. Having the ability to train the
models in these situations can prevent inaccuracies. However, the use of cameras
for parking detection is not yet as popular as that of physical sensors due to their
accuracy and recentness.

Fig. 1.3: Comparison with visible color distortion

19

1.2 Artificial intelligence and machine learning

1.2.1 Artificial intelligence

Intelligence itself would be defined as the ability to make decisions on your own when
presented with a certain amount of data. This decision would be influenced not
only by the input data presented, but also by your previous knowledge. Computer
programs do not have this ability. They work by using an algorithm, which is a set
of predetermined steps that the program should take to solve a problem [12]. This
problem is usually predetermined, like solving a math equation, for example. Making
an artificial intelligence is to make a program that would solve a problem by using
what it has learned in the past on a similar but not the same problem, hence why
its called ML.

Fig. 1.4: Example of an algorithm

20

1.2.2 Neural networks

The initial research on neural networks was based on the workings of the human
brain. That is, "the neural network is a distributed parallel system of executive
elements that are organized so that the network can perform the desired function
𝐹 " [13]. To better understand this sentence, "executive elements" are neurons that
are interconnected in layers, where individual neurons are connected to other neurons
in other layers by a connection that has a certain weight. The arrangement of these
connections differs between different neural nets, but the purpose remains the same.

If we ignore the inner workings, the neural network can be described by a simple
diagram on Figure 1.5. Here, the function 𝐹 (𝑥) is performed by the neural network.
The result of the function is affected by the weight of the connection. This weight
can be taken as a form of signal strength that affects the final result. These weights
are the way for the neural network to "remember" and are bound to change during
the learning process.

If a single neuron in a neural network is described by a mathematical description,
it would result in a simple diagram, see Figure 1.6. Note that each input connection
has its own weight, which affects the input value. The next thing to notice is that
the neuron has its own weight, called bias. This bias also affects the calculation.

Connecting these neurons to a network consisting of hidden layers of n neurons
will result in a neural network. There are multiples of different layouts and connec-
tions, which are called typologies. This thesis will only describe a single topology,
which is important to understand the following materials, as the use case for each
topology is different. Since machine vision mostly uses CNN (Convolution Neural
Network), the theoretical part will describe the basics of an FNN (Feedforward Neu-
ral Network), specifically Perceptron. FNNs are named in such a way because the
information flows forward through their layers and never loops back.

Fig. 1.5: Simple neural network function

1.2.3 Perceptron

Single layer perceptron

A single layer perceptron is just a single neuron that has 𝑛 inputs and an output,
see Figure 1.6. Due to its simplicity, it will be used to explain the basics of neural

21

Fig. 1.6: Single neuron

networks. Understanding these fundamentals is really useful when dealing with
other topics of machine learning later. The neuron has its bias, and each of its
inputs has its weight. The neuron uses these inputs and weights to solve a single
predetermined function. Its workings can be described by an equation (1.1).

𝑦 = 𝑓(𝑧) where 𝑧 = 𝑤0 +
𝑛∑︁

𝑖=1
𝑤𝑖𝑥𝑖 (1.1)

Here, 𝑓 is a transfer function and 𝑧 is the inner potential of neurons that is affected
by the input and its weight. There is a multiple of transfer functions. Those without
a threshold on Figure 1.7 and those with it on Figure 1.8. The output of a neuron
without a threshold function can be 0/1 or -1/0; on the other hand, when using a
threshold, the neuron can have up to three values as output, -1/0/1. It is important
to note the rules for where the output jumps to a different value. Equation (1.3)
represents bipolar functions and (1.2) for unipolar functions with a threshold.

𝑖𝑓 𝑧 < 𝜃, 𝑡ℎ𝑒𝑛 𝑓(𝑧) = 0
𝑖𝑓 𝑧 >= 𝜃, 𝑡ℎ𝑒𝑛 𝑓(𝑧) = 1

(1.2)

𝑖𝑓 𝑧 <= −𝜃, 𝑡ℎ𝑒𝑛 𝑓(𝑧) = −1
𝑖𝑓 − 𝜃 < 𝑡 < 𝜃, 𝑡ℎ𝑒𝑛 𝑓(𝑧) = 0

𝑖𝑓 𝑧 >= 𝜃, 𝑡ℎ𝑒𝑛𝑓(𝑧) = 1
(1.3)

22

1,0

0,8

0,6

0,4

0,2

0-2-4 2 4

1,0

0

-1,0

-2-4 2 4

Unipolar Bipolar

Fig. 1.7: Transfer functions without a threshold

1,0

0,8

0,6

0,4

0,2

0-2-4 4

1,0

0

-1,0

-4 4

Unipolar Bipolar

Fig. 1.8: Transfer functions with a threshold

Learning

Linearly separated classes of objects are needed that consist of inputs that the
perceptron should sort into classes. This network uses learning with a teacher, which
means that to learn the network, one needs to provide the correct classification along
with the data set. Then it is possible to find the correct weight vector that separates
the values into their correct class in a finite number of loops, see Figure 1.10. Where
𝑡 is the Number of iterations, 𝑠 current sample, and 𝑝 correct result. The starting
value of the weights does not play such an important role in the learning process.
Learning or training a model is, in simplicity, a desire to reach a global minimum of
a loss function. A loss function is the difference between the desired output and the
calculated one. Finding the global minimum is achieved by changing the so-called

23

hyperparameters of a model, in this case the weights. There are numerous functions
that exist to solve this problem; such functions are called optimizers.

Overfitting

Training a model on a small variance of input data for too long can cause over-
fitting. This means that the resulted model will be too generalized on the training
data sample. It is preferred to validate the model on a different sample of data to
verify that the model is not being overfitted. In Figure 1.9 an overfitted network is
plotted in red and a fitted one in green.

Fig. 1.9: Overfitting

Inference

Inference is a process that tests the learned network on new sets of data. If it has
been trained correctly, it should classify these data correctly. Inferring a trained
perceptron is done by calculating the output once and observing the output.

Multi layer perceptron

Perceptron has the ability to be combined and layered into a neural network. By
doing so, it increases the number of inputs and outputs that it can process, see
Figure 1.11. All the principles stay the same, learning is done in the same way as
previously, only that the result of the previous layer continues forward to the next
one. This topology is called this MLP (Multilayer Perceptron).

24

Start

Inicialization

Submission of a
training pattern

Output calculation

Learning: weights
adaptation

s = p

Correct classification of all
samples?

End

s + 1, t + 1

s = 1, t + 1

No

Yes

Yes

No

Fig. 1.10: Learning diagram

Perceptron critique

The first Perceptron network was created by Frank Rosenblatt. Considering the
age, there has been a long time gap in which machine learning has not really pro-
gressed. This can be explained by a simple critique. Perceptron is unable to classify
non-linearly separable sets of samples. As a simple example, you cannot train a per-
ceptron to perform the XOR logical function. This has slowed research and affected
the motivation for the further development of AI. This problem was later solved by
changing the inner function of the neuron to a different shape, such as a sigmoid,
and implementing a new learning algorithm called backpropagation [14].

1.3 Machine vision
Machine vision is a term used to describe the process of a machine visualizing,
processing and recognizing certain objects or stimuli in an image. Compared to a

25

Fig. 1.11: Oriented figure of a neural network

human simply seeing and classifying an object in a real world, is not as easy of a
task for a computer. Machine vision does not necessarily need to include machine
learning. Rather, it is a concept of using mathematical approaches to recognize or
detect an identical or familiar image in an object. The machine vision process can
be split into individual stages as can be seen on Figure 1.12:

1. Image capture and digitization - Firstly, the real world needs to be captured
and logged into a digital form. This can be achieved by using a camera, for
example. This process produces unwanted noise and loss of information that
are hard to avoid [15].

2. Image preprocessing - This step is used to make desired features of an im-
age more visible, and vice versa. Processes that fall into this category are:
pixel brightness transformations, geometric transformations, and local pre-
processing. For example, image noise reduction falls into this category [16].

3. Segmentation - The goal of this section is to separate objects from backgrounds
and the preparation for describing the image. It is also used to reduce un-

26

wanted data [17].
4. Description - The description of an object in an image. It should not be

affected by orientation, noise, scale, brightness, or shape[18].
5. Classification - Classification of an image or object into a class.

Image capture /
Digitalization

Preprocessing Segmentation Description Classification

Fig. 1.12: Stages of recognition

1.3.1 CNN

Convolution neural networks are FNNs with a convolution operation instead of ma-
trix multiplication in at least one of their layers [19]. They make use of filters
or kernels for convolution Figure 1.13. Convolution is needed because for a net-
work to be able to process a 100x100 pixel image, each neuron would have 10,000
weights on their inputs. By employing cascaded convolution filters, only 25 neurons
are required to process 5x5 tiles [20]. One of the methods that can also be used
is down-sampling, which effectively reduces the number of pixels in the image. By
changing the sequence of convolution, down-sampling, and FNNs can create multiple
of models.

Fig. 1.13: A CNN model with an input image and a class output [21]

1.3.2 Image and object recognition

Image recognition is when an image has a single object or feature that can be
categorized into a class. For example, a picture of a dog will be classified as a dog

27

class, and a picture of a cat will be classified as a cat class. These models are often
termed image classifiers. On the other hand, object detection is when a model can
recognize a class or a feature in a picture and correctly determine its location in
an image. Training these models is more difficult since the object in the image
needs to be manually labeled and classified; hence, the creation of data sets is time
consuming. These models are often referred to as object classifiers.

1.3.3 CNN models for image classification

There are multiple models that are being used for image classification. The most
well-known are MobileNet, ResNet50, and VGG. Mobilenet is the most preferred
one in this work because it is designed to be inferenced on less powerful/mobile
devices, like those using ARM processors. The newest MobileNet to mention is
MobileNetV3 [22] which is tested in this thesis with its predecessor MobileNetV2
[23]. MobileNetV3 is noticeably faster and improves upon the V2 bottlenecks. Other
types like ResNet (Residual Network)[24] and VGG19 are also worth mentioning.
All of these models can be used in an object classifier such as R-CNN(regional-based
convolution neural network)[25] or Retinanet[26].

1.3.4 R-CNN

A Regional Based Convolution Neural Network is a CNN at base, but uses regions
proposal to be able to detect objects in an image. This regional proposal takes place
before the CNN input [27]. That is why its called a two-stage detection detector
or network. The initial regional proposal is handled by one neural network and
the class classification is done by a CNN. As time progressed, new versions of R-
CNN were created. Firstly, Fast R-CNN and then Faster R-CNN which is the most
current version of an R-CNN, although considering its naming, it is still slower
than other networks used for object detection, but is considered the most accurate
of them all [28] [25]. The way in which the convolution and detection layers are
organized significantly changes the way the detector works. For better reference,
R-CNN will be referred to as an object classifier or detector and its inner structure
as an image classifier or model. This is because at the core R-CNN is still just an
image-classifying convolution network with a region proposal.

1.3.5 Retinanet

Compared to R-CNN, Retinanet uses a one-stage approach to object recognition
[26]. Its main advantage is in the detection of small objects in a dense environment,
so it has found use in aerial photos and medical fields [29]. It uses FPN (Feature

28

Fig. 1.14: R-CNN object detection [27]

Pyramid Network) and Focal Loss. FPN is an augmentation of a standard convo-
lution network that creates a top-down pathway of the image. This was inspired
by resnet architecture that used a bottom-up architecture. This pyramid creates a
feature rich multiscale maps at different resolutions from a single resolution input
imag, see Figure 1.15 a) to b). This makes the network really good at detecting
the same objects at different scales. It is possible to use the detector with differ-
ent models than Resnet, but the creators recommend using Resnet50 FPN for best
results.

Fig. 1.15: Feature pyramid network example [26]

1.3.6 YOLO

YOLO is an object detection model that utilizes a single-detector approach. This
means that a single neural network predicts bounding boxes and objects class directly
from a single resolution image in one evaluation. Hence, the name you only look
once. The detection pipeline is direct and takes the whole image, divides it into an
NxN grid, creates bounding boxes with confidence rating that reflects the probability
that that box contains an object, and a class probability map that gives every
cell the possibility to contain a class of a certain type. The model then makes a
final prediction, see Figure 1.16. This simple pipeline makes the network fast, but
not as accurate as other object classifiers. That is because of space limitations,
because grids have only two bounding boxes and one class probability, when an

29

image contains a small enough object in a bigger group, the network will most likely
miss it. Using a higher resolution image can help but increases the complexity of
the network and its speed [30]. The newest version of YOLO is YOLOV8 developed
by Ultralytics released in the current year 2023 [31].

Bounding boxes with confidence

Class probability map

Final detectionsN x N grid on input

Fig. 1.16: YOLO model [30]

1.4 Cloud edge computing
Cloud edge computing is a way of bringing computing abilities closer to the devices
that capture the data [32]. This means utilizing a cloud storage as a database for
storing already processed information from the device. For this works example, the
determination of what parking place is occupied would be performed on the device
that is also controlling the parking lot, then the information would be sent to a
remote database server that would contain the information about the parking place
occupancy, which then could be retrieved by any device with an access.

30

2 Code and relevant software tools

2.1 Python
Python is a popular high-level object-oriented programming language that is ideal for
large-scale data analysis and machine learning [33]. It is an interpreted programming
language, which means that it does not require any compiler. This makes it easy
to quickly deploy working scripts. The disadvantage of an interpreted programming
language is the need for an interpreter. This can cause version conflicts, missing
modules/libraries, and other specific problems that you would not otherwise have
on a compiled language.

2.1.1 Jupyter notebook

Due to the way Python works, having the option of having small scripts that could
share data with each other would be beneficial. That is where Jupyter notebooks 1

come in handy. It is a Python cell scripting helper. It allows to run scripts that are
divided into cells, but runs them all in the same Python interpreter environment
with all the same variables. Most of the code used in this thesis is written in
modules separated in individual folders. These modules are then imported into
Jupyter notebooks and subsequently used in individual cells.

2.1.2 Anaconda

One of the advantages of using Python is its ability to import packages or libraries.
These packages are freely available on the Internet. There are tools such as PIP
which is a Python package manager that helps to install and manage such packages.
The problem arises when, after coding one project that is dependent on one set of
libraries and then wanting to switch to another, will create conflicts and result in
installing and removing different packages and, or even switching Python versions. A
tool like Anaconda, or Conda 2 for short, solves this problem by creating manageable
Python environments, and it is able to package the environment for use on different
systems with cross-compatibility. It features its own package manager and PIP.

2.1.3 Torch and torchvision library

The torchvision library is a machine vision library from the Torch machine learning
framework. Pytorch is its Python equivalent. This framework makes it easy to

1https://jupyter.org
2https://docs.conda.io

31

create, train, and evaluate machine learning models in a Python environment. Its
machine vision library includes a multiple of pre-trained models from popular papers.
Refer to the torch vision documentation for more in-depth information [34].

2.1.4 OpenCV library

OpenCV3 is a popular open source library used mainly as a tool for real-time machine
vision models. It is written in multiple languages, including Python. It includes tools
to load images in multiple color formats and provides the ability to draw rectangles,
text, and circles into an image.

2.1.5 Flask

Flask4 is a Python web framework library that allows the user to create simple web
servers in Python. This means responding to an HTML request and sending HTML
templates. It uses jinja2 template engine to create HTML templates. Compared
to a framework like Django, Flask is more Python-like and is easier to get started
with. If a user needs, there are many community-made extensions that extend the
set of features. For example, adding the ability to access and manage a remote or
local database.

2.2 Comet
When creating and training an ML model, it is often beneficial to record the progress
of training and validation in graphs so that they can be compared later with different
versions and iterations. An online cloud service called Comet helps to track these
metrics. A Python library is used to communicate and send metrics data to the cloud
during training; these data can then be analyzed live in a Web GUI (Graphical User
Interface), as can be seen in Figure 2.1 [35].

2.3 Datasets
Datasets are needed for training custom ML models. When talking about object
recognition, data sets are considered to be sets of images with annotations that label
an object in an image and specify its class. For parking occupancy detection, a data
set containing parked cars is preferred. There are many data sets available freely on
the Internet, but it is always recommended to create one that fits the desired use

3https://opencv.org
4https://flask.palletsprojects.com/en/3.0.x/

32

Fig. 2.1: Example of Comet web interface

case. All images shown have ROIs (regions of interest) plotted in them. ROIs are
generated from annotations and need to be rectangles; that is why in most cases the
boxes overlap.

There were 4 existing datasets considered for use in this thesis:
• PKLOT - This dataset contains 12,417 images of a parking lots of universities

in Brazil. The images were acquired every 5 minutes for a period of more than
30 days. The photos were captured by a high-definition camera Microsoft
LifeCam HD-5000 in a lossless quality with a resolution of 1280x720 pixels.
It contains pictures during different weather conditions, such as rainy, sunny,
and overcast. All images were annotated by a human [36]. See Figure 2.2 for
an example of annotations. This dataset was chosen due to the height and
angle at which the photos were taken, presumably from a window.

• ACPDS - Contains 293 images captured at a 10 meter height with a GoPro
Hero 6 camera with a resolution of 4000x3000 pixels [11]. It contains a variety
of parking lots and has been considered in this work due to the specific angles
it offers. An example of an image from the dataset with ROIs Figure 2.3

• CNRPark-EXT - This dataset contains a total of 12,000 annotated images;
it features 4 different camera angles on a car park that includes trees and street
lightning lamps that behave as obstacles [37]. Refer to 2.4 for an example.

• COCO - COCO (Common Object in Context) is a data set created by Mi-
crosoft to train object recognition models in the context of a scene [38]. It
features 328,000 images with 2.5 million labels of 91 different object classes
with a short text description that gives context to the scene on the image.
Aside from featuring object localization labels, it contains semantic segmen-

33

tation maps that precisely copy the shape of the object; this can be used in
segmentation models. The data set is featured in this work because most of
the pre-trained models featured in the TorchVision library are trained on a
COCO data set.

Only three were selected from this list. That is PKLOT for it’s huge collection of
images, CNRPark-EXT for the inclusion of different weather conditions and COCO
as torch-pretrained models are trained on it.

Fig. 2.2: Example of an annotated image from PKLOT dataset

34

Fig. 2.3: Example of an annotated image from ACPDS dataset

35

Fig. 2.4: Example of an annotated image from CNRpark dataset

Fig. 2.5: Example from the COCO dataset with semantic segmentation [38]

36

3 Solution proposals

3.1 Creating a dataset
When creating an ML model that has a specific use case, in case of this thesis;
parking occupancy detection, it is beneficial to create a dataset not only for training
but also for validating and testing of the model. Since a video is just pictures
captured in fast succession, instead of recording a parking place and then obtaining
thousands of images, the dataset should consist of images that are different in some
way from each other. Therefore, it is better to set up a device that captures a photo
after a certain period, for example, every 30 minutes.

3.1.1 Data acquisition

Due to the fact that the parking lot on which this ML model will be applied is
next to a university building and there are no usable CCTV cameras that would
capture the parking lot. The images would be taken from the top floor of that
university building. Firstly, an iPhone X was chosen as the capturing device with
a time-lapse application that captured an image every 30 minutes throughout the
day. This was done during the late autumn and winter months, from November to
early January. The device was mounted on a 3D printed stand that was rigidly fixed
to a window frame, see Figure 3.1. Since the camera needed to be placed behind
a window, a black paper was placed under the stand to reduce reflections caused
by the stand. This fact also brought about an advantage because during a rainy
day, water droplets would appear on the outside of the glass, which simulates how
moisture could accumulate on a camera lens.

The dataset also includes a couple of images taken at night; these photos were
cherry picked to include only those in which a human can differentiate a parked car.
Such images were included in both the training and the testing set of images, see
Figure 4.5. A total of 83 images were captured this way.

The second part of this data set was captured using a single-board computer
Raspberry-pi V4 with a Pi Camera Module v2 and both were mounted on the same
arm using a 3D printed adapter. The camera module captures photos in higher
resolution, precisely 3200×1800. Note that all photos are kept in 16:9 aspect ratio.
All images are then scaled down to match the resolution of 1920×1080 px. More than
200 images were produced from which about 117 images were used in the dataset,
which brings the total number of images to 190. These images were captured through
the months of April up to the beginning of May.

37

All images were labeled and annotated using the included tools, and the resulting
dataset is called T10LOT and can be downloaded from a shared Google drive that
can be found in the GitHub repository1. of this work.

Fig. 3.1: iPhone capturing setup Fig. 3.2: Raspberry Pi combo mount

3.1.2 Dataset structure creation

A dataset structure from [10] was used with small modifications to its file structure.
A dataset root directory contains two folders:

1. The main dataset folder has the same name as the dataset, and it should
contain all images of the dataset in a "images" folder. The rest of the data set
structure is generated later by the annotation widgets.

2. Annotation classes, as the name suggests, houses images split into visual
condition classes, such as "sunny", "fog" and "winter", for example. The images
must be manually sorted and placed here. Currently, this directory is not used,
other than for user information or testing purposes.

3.1.3 Labeling

Annotation and labeling of captured images were done using a Jupyter widget ap-
plication inspired by [10], their work focused on testing multiple different models
with a custom dataset structure. The annotation script was rewritten to work with
the latest Python version with a different file structure. Since the camera remained
stationary, a single map was applied to all images using the apply to all button;
see Figure 3.3. After annotating individual parking places, the labeling widget Fig-
ure 3.4 was used to label parking places occupied (marked in blue) or busy (marked
in red). The widget then creates the desired dataset folder structure with all the

1https://github.com/slavajda02/parking-research-argon

38

generated outputs. A more in-depth guide for the use of both annotation widgets is
available in a GitHub repository2.

Fig. 3.3: Annotating widget A

Fig. 3.4: Annotating widget B

3.2 Creating an ML model
Due to the large number of different models available to test and use. A training
script was written that helps with the creation and subsequent training of the model

2https://github.com/slavajda02/parking-research-argon

39

on a wanted dataset. The training script uses a training method inspired by [10]
since they used object detection and image recognition with models: Resnet50,
MobileNetV2 and VGG in combination with object detectors Faster R-CNN and
ResNET. Most of the train loop code has been rewritten to suit this thesis, but
the dataloader class has been kept the same, as the work uses the same dataset
structure. The training script along with the libraries used is available in a GitHub
repository3 and is a fork of the original repository of the mentioned authors.

3.2.1 Using a pre-trained model

When using the torchvision library, there is an option to use models with pre-trained
weights. Most of these models are constructed according to their original papers,
although in some cases the models are improved to be faster or more accurate. Using
a pre-trained model is quite simple, but differs from model to model. Most often, the
library provides a method that constructs the given model with a custom number
of output classes. This means that there is no need to edit the model’s structure
to accommodate the pre-trained weights. Listing 3.1 describes the way to obtain
a pre-trained model class of a faster R-CNN detector with a mobilenet V3 large
backbone with 2 output classes, one for a car class, the other one for a background.

1 from torchvision . models . detection import fasterrcnn_mobilenet_v3_large_fpn
2

3 model = fasterrcnn_mobilenet_v3_large_fpn (weights = " DEFAULT ", num_classes = 2)

Listing 3.1: Obtaining a pretrained model

1 from torchvision .ops import MultiScaleroIAlign
2 from torchvision . models . detection .rpn import AnchorGenerator
3

4 backbone = torchvision . models . mobilenet_v3_small (). features
5 backbone . out_channels = 2
6 new_anchor_generator = AnchorGenerator (sizes =((32 , 64, 128 , 256 , 512) ,),
7 aspect_ratios =((0.5 , 1.0 , 2.0) ,))
8 new_roi_pooler = MultiScaleRoIAlign (featmap_names =[’0’],
9 output_size =4, sampling_ratio =1)

10 model = FasterRCNN (backbone =backbone ,
11 num_classes =2,
12 min_size =min_size ,
13 max_size =max_size ,
14 image_mean =mean ,
15 image_std =std ,
16 rpn_anchor_generator = new_anchor_generator ,
17 box_roi_pool = new_roi_pooler)

Listing 3.2: Example of model creation

3https://github.com/slavajda02/parking-research-argon

40

3.2.2 Constructing a custom model

Construction of a desired model is handled in the "inter_utils.py" file. Listing 3.2 is
describing the creation of a custom mobilenetV3 small model with a Faster R-CNN
detector without any weights. First, using the torchvision library, the backbone
of the model is obtained; it contains the convolution layers and features of the
network. Then an anchor generator is needed along with a ROI (Region Of Interest)
pooler. The anchor generator defines anchors for ROIs in an image, ROI pooler is a
function that aligns ROIs for these anchors. Then lastly calling the Faster R-CNN
method from the torchvision library creates a class of the model that has methods
for inferencing the model. This class is later used in both the training scripts and
testing scripts. The torch library also features a function that has the ability to save
this model class to a state dictionary file, so that a model can be later loaded in a
different instance.

3.2.3 Training

Training an object recognition model with the use of the torchvision library goes as
follows:

1. Defining a dataset class that has a "__getitem__" method which returns
dictionaries of images and targets, for both the training and validation batch
of images.

2. Create a data set loader class from the torchvision library and pass it the
dataset classes.

3. Defining an optimizer that changes the model parameters through the learning
phase.

4. Running the training loop, which consists of feeding a batch of images to the
model using the dataset loader class, returns its calculated loss. The loss
is then used by the optimizer to optimize the model parameters. A batch
of images is used during a single iteration. The batch size depends on the
hardware on which the network is being trained. A bigger batch will require
more VRAM (Video Random Acess Memory).

5. Validating the model on the validation dataset. The loss function from this
loop suits as a metric for the user to determine whether the model is learning
and not overfitting.

6. Running both the training and validation loops for x amount of epoch. The
number of epochs depends on the size of the dataset and the model used. A
smaller dataset will require more epochs, and vice versa.

All of these steps have been incorporated into an automatic training function that
allows the user to easily train a model from a list of available models. In the

41

beginning, the training script asks the user a couple of questions to configure the
training Figure 3.5. After that, the script loads the selected dataset and trains the
network on the selected datasets. The command-line application then saves the final
model state into a file which can then be used for the deployment. Figure 3.6 shows
a simple flow chart that describes the training script. The script also features a
logging feature. The train progress is sent and logged on the Comet cloud service
as mentioned in Section 2. Comet automatically plots metrics like training loss and
validation loss.

Fig. 3.5: Training script prompts

3.2.4 Retraining

Retraining a model with pre-trained weights is really similar to training a model
from random weight values. This means that the only difference is in creating the
model class, then all that is needed is to run the standard training and validation
loop. The training script also has this incorporated.

3.3 Hardware setup proposal
When deciding what hardware components to use, it is necessary to remember that
inferencing an AI network is computationally difficult. Due to this reason, it is
proposed to use a Raspberry Pi 4, which is a powerful single board computer that
utilizes an ARM (Advance RISC Machine) considering its size. When combined with
a camera, such as the Raspberry Pi Camera v2 which uses a Sony IMX708 sensor
with 12Mpx, it could be used to continuously monitor a parking lot. This setup
could be enclosed in a 3D printed box. When considering cloud edge computing, the

42

Training script entry

Model and dataset user
selection

Preparing the model,
changing output classes

Dataset loader init

Inference on a batch of
images

Grade the result

Editing weights

No

Yes

All epochs?

Training loop

NoNo

Yes

All datasets?

Save model
state

App exit

Save final model
state

Fig. 3.6: Training script flowchart diagram

Raspberry Pi is equipped with a WiFi interface for connectivity; this means that
there would be no need to provide an Ethernet connection and just an adequate
power supply would suffice.

43

4 Testing results
A mulitple of testing was done to figure out what model combination would be the
most effective and accurate. From the models mentioned in the theory Section 1.3.3
of this work, three models were chosen. The MobilenetV3 small, Mobilenet V3 large
and Resnet50. All of these models were tested on Faster R-CNN and Retinanet.
Two pre-trained models using the COCO dataset were also used: FasterRCNN Mo-
bilenetV3 Large FNP and FasterRCNN resnet50 FPN V2, which were both provided
by the Torchvision library.

Models that were trained from scratch were trained with datasets that go in this
order:

1. PKLot - 35 training epochs
2. CarParkEXT - 50 training epochs
3. T10LOT - 100 training epochs

Such epochs numbers were chosen after seeing that further training epochs have
almost no improvement on the loss progression.

4.1 Training results

4.1.1 Pretrained model

When looking at Figure 4.1, it is possible to see the training progress of a pretrained
Faster R-CNN MobileNet V3 large model on a T10LOT dataset. First, the loss
is really high and eventually drops while going through the first 10 epochs. In
Figure 4.2 you can see the loss progress relative to the image batches when one
batch is 4 images. If the dataset were to be larger, the loss function would approach
its minimum faster. Training was stopped after 50 epochs, as there was no more
significant improvement; because of this, the time to train is short relative to training
on a larger dataset.

4.1.2 Custom models

Following the training order of the datasets, training took about an hour on an
RTX 2070 super GPU. Information about the minimum loss achieved on a T10LOT
dataset is in Table 4.1.

44

0 10 20 30 40 50

Epoch

0

0.5

1

1.5

2

2.5

L
os

s

Average loss per epoch

0 10 20 30 40 50

Epoch

0

0.2

0.4

0.6

0.8

1

1.2

1.4

L
os

s

Average validation loss per epoch

Fig. 4.1: Average losses per epoch

0 50 100 150 200 250 300 350 400 450 500

Batch

0

0.5

1

1.5

2

2.5

3

3.5

4

L
os

s

Loss per batch

Fig. 4.2: Training loss per batch

45

4.2 Testing

4.2.1 Testing methods

The verifying of an object detector can be quite complicated. It is possible to look
just at the result of a loss function when evaluating the model on a testing data set.
However, this does not fit the use case. Because the goal of this model is to detect
a car in a parking spot, the following method was proposed. Since the result of an
inference is a box surrounding a detected object, it is possible to use the middle
point of this rectangle to check whether it lies inside a labeled parking lot or not.
The correct parking lot bounding boxes come from the T10LOT dataset. Knowing
this information, it is possible to sort the different types of detection into categories:

• TP (True Positive) detection - A car detected where a car is
• FP (False Positive) detection - A car is detected where a car is not
• FN (False Negative) detection - A car is not detected where a car is

Using this information, one can calculate the F1 score of the model with the Equa-
tion (4.3). This is an error metric that measures the model performance by calcu-
lating the harmonic mean of precision and recall for the minority positive class. It
takes into account both the recall Equation (4.2) and precision Equation (4.1) abil-
ity of the model. The resulting number is the measure of the overall performance of
the model ranging from 0 to 1, where 1 is the best [39]. For this use case, a script
was written that uses a trained model, tests it on the testing batch of images from a
dataset, and calculates the model’s F1 score. The script has the option to save the
test results in images as can be seen in Figure 4.3. This figure intentionally features
a badly trained model to demonstrate visualization. The red dots are the centers
of the model detection, while the squares are the parking slot locations with cars
present. If a detection is present in this space, it gets classified as a TP detection.
All of the testing was performed on an RTX 2070 super GPU, this should be taken
into consideration when judging the inference time. It is excepted to be longer on
weaker hardware, especially ARM CPUs.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(4.1)

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4.2)

𝐹1 = 2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
(4.3)

46

Fig. 4.3: Example of testing result

4.2.2 Testing results

When directly comparing pre-trained models with custom-created ones in Table 4.1,
the MobileNet V3 large with Faster R-CNN is more accurate than a custom-created
mobilenet V3 large and small, the pretrained RetinaNet is not as accurate as the
custom-created one. The inference time is fastest on the MobileNet V3 small model.
There is a high chance that it could become more accurate if re-trained on a larger
dataset. Another thing to note is that the model with pre-trained weights was
more likely to detect a car that was not in a parking place, compared to models
that were trained only on the parking lot datasets. The custom made ResNet50
Faster R-CNN network performed the worst, this could be due to the training not
lasting long enough or the use of a too small of a dataset. The bar graph Figure 4.4
compares the accuracy and inference time of the models with different detectors.

Individual test images included difficult scenarios, such as water droplets in front
of the camera and different lightning conditions as a result of a change of time.
Even through such complications, the models performed mostly without any prob-
lem. Some models performed shockingly well on dark images such as mobilenetV3
Figure 4.5. Images that include a difficult scenario are sorted in folders according
to the condition. This directory is named "annotationy_classes" and is in the root
folder of the data set provided. It should be noted that the faster R-CNN models
were more likely to focus on detecting only cars that were on a parking spot, not
approaching or parked cars; this could have been due to the way two-stage detectors
work, and their region proposal stage was optimized for the current parking lot.

47

When tested with a slightly different camera angle but the same location, the
models ability to detect cars was not significantly impacted, which shows that the
models are not over fitted and a small camera shift will not impact the models
accuracy. When the models were tested on high-resolution images captured at com-
pletely different angles, the models were unable to correctly detect the cars. This
shows that when retraining a model on a small dataset, it will mostly work only
on that use case. All images that are the result of the testing are included in the
electronic attachment located on Google Drive.

Model Pretrained Detector Training loss Validation loss F1 score Inference time
MobileNetV3 small NO FasterRCNN 0.0236 0.0256 0.972 11.7 ms
MobileNetV3 large NO FasterRCNN 0.0259 0.0284 0.970 13.8 ms
ResNet50 NO FasterRCNN 0.481 0.431 0.218 16.4 ms
MobileNetV3 small NO RetinaNet 0.0136 0.0237 0.881 10.2 ms
MobileNetV3 large NO RetinaNet 0.0134 0.0232 0.873 15.1 ms
ResNet50 NO RetinaNet 0.0949 0.0984 0.206 35.9 ms
MobileNetV3 large YES FasterRCNN 0.078 0.120 0.990 22.5 ms
ResNet50V2 YES FasterRCNN 0.056 0.0637 0.962 97.9 ms
ResNet50V2 YES RetinaNet 0.047 0.0758 0.961 73 ms

Table 4.1: Table of results for individual models

M
ob

ile
Ne

tV
3

sm
all

M
ob

ile
Ne

tV
3

lar
ge

Re
sN

et5
0

Pr
etr

ain
ed

 M
ob

ile
Ne

tV
3

lar
ge

Pr
etr

ain
ed

 R
es

Ne
t5

0V
20

20

40

60

80

100

Ac
cu

ra
cy

 [%
]

Accuracy
RCNN
RetinaNet

M
ob

ile
Ne

tV
3

sm
all

M
ob

ile
Ne

tV
3

lar
ge

Re
sN

et5
0

Pr
etr

ain
ed

 M
ob

ile
Ne

tV
3

lar
ge

Pr
etr

ain
ed

 R
es

Ne
t5

0V
20

20

40

60

80

100

In
fe

re
nc

e t
im

e [
m

s]

Inference time
RCNN
RetinaNet

Fig. 4.4: Bar graph of accuracy and time

48

Fog

Water droplets

Sun glare

Night

Fig. 4.5: Example of a testing output on a difficult scenarios

49

Child processMain process Database

Fetching every 2 sec output.jpg

raw.jpg

Push every minute

Occupancy
dictionary

Every 4 seconds

ArgonPark library
Inference and labeling

PiCam

/upload //history /parking

Web browser

Occupancy
message

Every 4 seconds

T10 database

Queue

Interactive history bar graph

Bar graph
generation

map.json

state.dict

Map overview and upload menu Main page with image stream

Shows occupacy information

Fig. 5.1: Web application diagram

5 Solution

5.1 Hardware choices
After considering some factors, the final setup is made out of a Raspberry-pi V4
with a Pi camera module v2. This hardware combination is mounted on the same
arm as before with the same 3D printed mount as mentioned in Section 3.1.1. After
testing the camera module v2 it was decided that such resolution will be enough for
this use case, the field of view is very similar to the iPhone X which was used before
as a capturing device.

5.1.1 Remote access

Since the Raspberry Pi is in a remote location and is not connected to any HID
(Human Interface Devices), a remote access method was devised. Specifically, the
use of a VPN (Virtual Private Network). A VPN client connects the Raspberry Pi
to a virtual subnetwork hosted by a remote server. Other users can then connect
to this VPN and access the Raspberry Pi over the network securely. The VPN in
question is called WireGuard 1, which is a simple, secure, and fast VPN that is
relatively easy to set up on almost any platform. After connecting the Raspberry
Pi to a VPN server, an SSH (Secure Shell) connection can be established from any
client on the same virtual network. With such a connection, an application like
VSCode 2 can be used for remote development and application deployment.

1https://www.wireguard.com
2https://code.visualstudio.com

50

5.1.2 Position and mounting solution

For the ease of testing a same location and mount was used as during image capture
for the T10LOT dataset. The 3D printed articulated arm and mount remained the
same as shown in Figure 3.2 and are available to download on a Printables website3

5.2 Software
In addition to the libraries mentioned in Chapter 2, some new libraries were added.
Most notably, the picamera2 library, which is used to interface and control the
camera connected to the Raspberry Pi. The main advantage of this version when
compared to the first one is the ability to run on a 64bit architecture, which the
Raspberry Pi 4 has. This then allows for the use of the torchvision library, which
does require such architecture. The last thing to mention is the Plotly library 4,
which is used to generate interactive figures that can be run in the Web browser of
the users thanks to Javascript.

5.2.1 ArgonPark library

ArgonPark is a custom written library that uses the trained model to classify parking
spaces for the occupants. Methods from this library takes an input image and a
parking lot map that can be created using an included Jupyter notebook script and
inferences the trained machine learning network. When first calling the class of
this library, the user needs to provide a map.json file that contains the locations of
parking spots and a state_dict_final.pth file that contains the final-state dictionary
of a trained model. The class can then calculate the overlap and decide if a specific
parking lot is occupied or not from a provided image. All of this information is
returned as a dictionary. There is also an option to generate an image with free
and busy parking spaces that can be used for visualization purposes. The library
was written with docstring comments that explain each method and it’s input and
return variables.

Area calculation

After evaluating an image, the network outputs two objects. One is a list of boundary
boxes that contain a specific class and a precision float. The boundary boxes are
squares that are not perfectly aligned with the cars and may protrude or crop a part

3https://www.printables.com/cs/model/892765-raspberry-pi-4-and-camera-module-v2-holder-
with-a

4https://plotly.com/python/

51

of the car. Parking spaces, on the other hand, are marked as polygons. To try and
solve the problem where the detection boxes partially overlap neighboring parking
spaces or do not completely overlap the parking space Figure 5.2, an intersection
area calculation was introduced. After which it is possible to calculate the IoU
(Intersection over Union) Equation (5.1), this value can then be used to make the
final decision about the slot being occupied or free. It is also possible to compare the
neighboring parking lot IoU to see if there is no incorrectly parked car. An example
would be a car parking on the dividing lines, making its boundary box occupy about
50% of the area of two parking slot polygons.

𝐼𝑜𝑈(𝐴, 𝐵) = (𝐴 ∩ 𝐵)
(𝐴 ∪ 𝐵) (5.1)

Parking lot

Car detection

A

B

Fig. 5.2: Intersection over union

5.3 Web server
ArgonPark library facilitates a way of easily evaluating parking spaces in a known
parking lot. But a Python script is still needed to perform the actions a user wants.
That means that another application needs to be created that allows the user to
easily interface with the ArgonPark library. One of the ways to do this is to use
a website that has a simple GUI interface. For this a web server application was
created. A user can then load a website that shows them the image of the parking

52

space, history, and the ability to change both the map of the parking place and the
model weights.

5.3.1 Multiprocessing

Running the inference will hold a Python process for longer than 4 seconds. This
is unacceptable when there is also a web server running in the same process. To
solve this problem, a new process is created on another core of the Raspberry Pi.
This is done through a Multiprocessing Python library, which provides a way to
interact with python processes running on different logical cores. After using this
library, the entire ArgonPark library is initialized on a new core while the webserver
is running in the main process. Every time the child process finishes a new inference,
it pushes data to a database and a queue, which is a FIFO (First-in, First-out) type
of memory, and the parent process reads this information. The Web server can also
request a photo of the parking plot by setting a dedicated flag. This invokes the
child to save an image with parking information to a specified folder, which is then
read repeatedly by the client’s browser.

5.3.2 Database

A database is used to store the occupancy status of all numbered parking spaces in
the parking lot. This data is saved every time a new camera image is pulled and
saved. This occurs approximately every 4 seconds, due to the speed of the computer.
Data are saved according to the time they have been acquired. The project uses
a MongoDB database. This is a no SQL type database widely used in the data
analysis and IoT sector. Currently, the database is hosted off-site in the cloud on
an Atlas service 5. The database can be easily transferred to a local one, as hosting
the database on the Raspberry Pi. The Web application sends data to the database
every minute. The following data are sent:

• Timestamp of the inference
• Then for each parking slot:

– A parking slot number.
– 4 points coordinates representing the parking slot polygon.
– Occupancy status as a Boolean value.
– IoU float value.

This information can then be fetched by any other application/device. For example,
a car approaching the parking lot can request the data from the database and know
which parking slot is occupied or not and show this information to the driver.

5https://www.mongodb.com/en/atlas

53

5.3.3 User interface

Fig. 5.3: Main page of the web application

The site features a simple user interface using a popular CSS front-end toolkit
called Bootstrap 6. This ensures that the site adapts to different screens, such
as mobile. The main page consists of the navigation panel and live view of the
parking lot with plotted parking lot status Figure 5.3. This image updates every
2 seconds thanks to a small JavaScript code. The next option on the navigation
panel is history. Opening this link loads all data from the database and creates an
interactive bar graph that shows the number of cars in the parking lot depending
on the hour of the day, Figure 5.4.

The last interface to note is the map upload. Here, a user can download a raw
image in full resolution and use it to plot a new map of the parking lot using the
included Jupyter mapy_creator widget, which is a part of the argonPark library.
After doing so, they can upload the map to the server, which will automatically
refresh it and show a new updated image of the parking lot with the new map seen
in Fig 5.5.

The site also features a request parking button that shows the number of occupied
parking spaces and the closest parking space relative to the entrance. This is valid
only for the T10 parking place. If a user wants to keep this feature in their own
parking lot, they need to correctly label parking spaces according to their position.
The first one to label is the closest one, and so on.

6https://getbootstrap.com

54

Fig. 5.4: History page view

Fig. 5.5: Map edit page view

55

Conclusion
A certain list of models were picked after doing research about the available con-
volution networks with object recognition. These models were MobileNet V3 large,
Mobilenet V3 small and ResNet50. All of these models were to be tested and eval-
uated for accuracy.

Having established this fact, a couple of interactive command-line scripts were
written in a Python language. These scripts incorporate the use of multiple Python
libraries for machine learning such as Torch, Torchvision, and CV2.

The next decision was to choose the datasets to which to use for training. Af-
ter considering the use-case, a couple of datasets fitting the criteria were selected:
PKLot and CarParkEXT. Both datasets feature photos taken from a building above
a parking lot with a similar angle. The same is the final use case of this thesis.

Lastly, models need to be trained for the particular parking lot in mind. For
this a collection of photos was taken on an iPhone X and a Raspberry Pi v4 with
a camera module. These photos were then sorted, labeled, and processed in the
same format as previous datasets. The resulting dataset is called T10LOT and is
available at a Google Drive referenced in this works GitHub repository.

After training and testing the proposed models and evaluating their result on
the data that were available, it seems that using a custom made MobileNet V3
small model on an faster R-CNN would be preferred, due to it’s inference time
and accuracy, even though the pretrained MobileNet V3 large is more accurate,
providing more training data of the T10LOT dataset could improve the models
accuracy. However, due to the simplicity of using a model with pretrained weights
and quickly retraining it on a small dataset, the final decision to use the MobileNet
V3 large with the pretrained weights was made.

After this decision a library that simplifies the inference and calculation of oc-
cupancy is made. The library initializes the MobileNet V3 large model and loads
the provided trained model state dictionary. The library also requires a map.json
file, which has the locations of individual parkng slots as polygons. This map can
be created using an included Jupyter notebook scripts located inside of the library
folder. Once all of the files are satisfied, the user can call methods of the library that
evaluate, calculate, and create images that have the status of individual parking lots
plotted.

This approach is good for a low-level program in which the user can use it for
their own project, but for the demonstration of this solution a simple WebServer
application that runs on the Flask Python library was written. This application runs
on a Raspberry Pi v4 computer with a v2 camera module aimed at the T10 parking
lot. The WebServer application then utilizes the ArgonPark library to analyze and

56

create data on parking lot occupancy. It communicates with a MongoDB database
to store a large history. The users can then see the current parking occupancy
situation in the parking place with a simple image. The site also features an option
to upload a new map.json file and trained model state dictionary.

The Web server uses a multiprocessing approach due to the calculation complex-
ity of the neural network. This means that the ArgonPark library is running as a
child sub-process of the main WebServer process. Communication across these two
processes is then managed through flags, events, and queues.

Further expansion of the application is possible; as the data is available in the
database, any device with Internet access could request the actual state of the
parking lot. Such as a car infotainment system to display the parking lot map
and status. The data feature an IoU parameter that can be used to determine if a
car is overlapping multiple parking places.

The selected hardware is relatively sufficient regarding it’s performance. But the
inference time is still longer than 4 seconds in which the system cannot judge the
occupancy of the parking lot. The machine learning model can be further optimized
by dynamic quantization. That would require modification of the training script
to quantify the model during training. There could be a rather large performance
increase.

During the writing of the web server, generative machine learning was used to
guide with general code ideas. This tool is called copilot and is integrated in the
IDE that was used during the writing of this thesis. No code has been copied, but
snippets of the generated code were used as an inspiration for the current version of
the web application.

Overall, the use of a camera for occupancy detection seems to be plausible com-
pared to a sensor approach. It is not as accurate as a sensor would be, but, by using
a single well-placed camera, one could, in theory, replace all sensors that would be
covered by such a camera. With the ability to connect more cameras to enough
powerful hardware that would run a larger machine learning model, one could ef-
fectively replace all sensors in a parking lot. The web application is continuously
running and collecting more data which can later be used for further research.

57

Bibliography
1. KUŽELA, Miloslav; FRÝZA, Tomáš. Detection of parking space availability

based on video. In: Brno, 2024.

2. FRÝZA, Tomáš; ONDŘEJ, Zelený; KUŽELA, Miloslav. Using Computer Vi-
sion and Machine Learning for Efficient Parking Management: A Case Study.
In: 2024.

3. Dive into Deep Learning — Dive into Deep Learning 1.0.3 documentation [on-
line]. [N.d.]. [visited on 2024-05-26]. Available from: https://d2l.ai/index.
html.

4. EUROSTAT. Stock of vehicles by category and NUTS 2 regions [online]. [vis-
ited on 2023-11-06]. Available from: https : / / ec . europa . eu / eurostat /
databrowser/view/TRAN_R_VEHST__custom_6385961/bookmark/table?
lang=en&bookmarkId=8dee8b9a-0c4f-4f1d-b24c-999f39c62a35.

5. KIANPISHEH; MUSTAFFA, Norlia; LIMTRAIRUT, Pakapan; KEIKHOS-
ROKIANI, Pantea. Smart Parking System (SPS) Architecture Using Ultrasonic
Detector. International Journal of Software Engineering and Its Application.
2012, vol. 6.

6. PAIDI, Vijay; FLEYEH, Hasan; HÅKANSSON, Johan; NYBERG, Roger G.
Smart parking sensors, technologies and applications for open parking lots: a
review. IET Intelligent Transport Systems [online]. 2018, vol. 12, no. 8, pp. 735–
741 [visited on 2023-12-26]. issn 1751-9578. Available from doi: 10.1049/iet-
its.2017.0406. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1049/iet-
its.2017.0406.

7. Acconeer Products [online]. [N.d.]. [visited on 2023-12-26]. Available from: https:
//www.acconeer.com/products/.

8. SANDBLOM, Daniel. This is how you will park your car in the future [online].
2023. [visited on 2023-12-26]. Available from: https://www.acconeer.com/
news/this-is-how-you-will-park-your-car-in-the-future/.

9. LAMAR, Jack. Ending the era of inductive loops [online]. [N.d.]. [visited on
2024-04-26]. Available from: https://ouster.com/insights/blog/ending-
the-era-of-inductive-loops.

10. MARTYNOVA, Anastasia; KUZNETSOV, Mikhail; PORVATOV, Vadim; TISHIN,
Vladislav; KUZNETSOV, Andrey; SEMENOVA, Natalia; KUZNETSOVA, Kse-
nia. Revising deep learning methods in parking lot occupancy detection. 2023.
Available from arXiv: 2306.04288 [cs.LG].

58

https://d2l.ai/index.html
https://d2l.ai/index.html
https://ec.europa.eu/eurostat/databrowser/view/TRAN_R_VEHST__custom_6385961/bookmark/table?lang=en&bookmarkId=8dee8b9a-0c4f-4f1d-b24c-999f39c62a35
https://ec.europa.eu/eurostat/databrowser/view/TRAN_R_VEHST__custom_6385961/bookmark/table?lang=en&bookmarkId=8dee8b9a-0c4f-4f1d-b24c-999f39c62a35
https://ec.europa.eu/eurostat/databrowser/view/TRAN_R_VEHST__custom_6385961/bookmark/table?lang=en&bookmarkId=8dee8b9a-0c4f-4f1d-b24c-999f39c62a35
https://doi.org/10.1049/iet-its.2017.0406
https://doi.org/10.1049/iet-its.2017.0406
https://www.acconeer.com/products/
https://www.acconeer.com/products/
https://www.acconeer.com/news/this-is-how-you-will-park-your-car-in-the-future/
https://www.acconeer.com/news/this-is-how-you-will-park-your-car-in-the-future/
https://ouster.com/insights/blog/ending-the-era-of-inductive-loops
https://ouster.com/insights/blog/ending-the-era-of-inductive-loops
https://arxiv.org/abs/2306.04288

11. MAREK, Martin. Image-Based Parking Space Occupancy Classification: Dataset
and Baseline. 2021. Available from doi: 10.48550/arXiv.2107.12207.

12. PRESS, Cambridge University. Cambridge Advanced Learner’s Dictionary &
Thesaurus. 2023. Available also from: https://dictionary.cambridge.org/
dictionary/english/algorithm.

13. JIRSÍK, Václav. Umělé neuronové sítě terminologie [Kurz předmětu BPC-
UIN]. 2023.

14. JIRSÍK, Václav. Umělé neuronové sítě Perceptron [Kurz předmětu BPC-UIN].
2023.

15. JIRSÍK, Václav. Strojové vidění – Snímání [Kurz předmětu BPC-UIN]. 2022.

16. JIRSÍK, Václav. Strojové vidění – Předzpracování [Kurz předmětu BPC-UIN].
2022.

17. JIRSÍK, Václav. Strojové vidění – Segmentace [Kurz předmětu BPC-UIN].
2022.

18. JIRSÍK, Václav. Strojové vidění – Popis [Kurz předmětu BPC-UIN]. 2022.

19. HORÁK, Karel. Introduction to Convolutional Neural Networks. 2022.

20. HABIBI AGHDAM, Hamed; JAHANI HERAVI, Elnaz. Traffic Sign Detection
and Recognition. In: HABIBI AGHDAM, Hamed; JAHANI HERAVI, Elnaz
(eds.). Guide to Convolutional Neural Networks: A Practical Application to
Traffic-Sign Detection and Classification [online]. Cham: Springer International
Publishing, 2017, pp. 1–14 [visited on 2023-12-19]. isbn 978-3-319-57550-6.
Available from doi: 10.1007/978-3-319-57550-6_1.

21. ASLAM, Aasma; HAYAT, Khizar; UMAR, Arif; ZOHURI, Bahman; ZARKESH-
HA, Payman; MODISSETTE, David; KHAN, Sahib; HUSSAIN, Babar. Wavelet-
based convolutional neural networks for gender classification. Journal of Elec-
tronic Imaging. 2019, vol. 28, p. 1. Available from doi: 10.1117/1.JEI.28.1.
013012.

22. HOWARD, Andrew; SANDLER, Mark; CHU, Grace; CHEN, Liang-Chieh;
CHEN, Bo; TAN, Mingxing; WANG, Weijun; ZHU, Yukun; PANG, Ruom-
ing; VASUDEVAN, Vijay; LE, Quoc V.; ADAM, Hartwig. Searching for Mo-
bileNetV3 [online]. arXiv, 2019 [visited on 2023-12-23]. Available from doi:
10.48550/arXiv.1905.02244. arXiv:1905.02244 [cs].

23. SANDLER, Mark; HOWARD, Andrew; ZHU, Menglong; ZHMOGINOV, An-
drey; CHEN, Liang-Chieh. MobileNetV2: Inverted Residuals and Linear Bot-
tlenecks [online]. arXiv, 2019 [visited on 2023-12-23]. Available from doi: 10.
48550/arXiv.1801.04381. arXiv:1801.04381 [cs].

59

https://doi.org/10.48550/arXiv.2107.12207
https://dictionary.cambridge.org/dictionary/english/algorithm
https://dictionary.cambridge.org/dictionary/english/algorithm
https://doi.org/10.1007/978-3-319-57550-6_1
https://doi.org/10.1117/1.JEI.28.1.013012
https://doi.org/10.1117/1.JEI.28.1.013012
https://doi.org/10.48550/arXiv.1905.02244
https://doi.org/10.48550/arXiv.1801.04381
https://doi.org/10.48550/arXiv.1801.04381

24. HE, Kaiming; ZHANG, Xiangyu; REN, Shaoqing; SUN, Jian. Deep Residual
Learning for Image Recognition [online]. arXiv, 2015 [visited on 2023-12-25].
Available from doi: 10.48550/arXiv.1512.03385. arXiv:1512.03385 [cs].

25. REN, Shaoqing; HE, Kaiming; GIRSHICK, Ross; SUN, Jian. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks [online].
arXiv, 2016 [visited on 2023-12-23]. Available from doi: 10.48550/arXiv.
1506.01497. arXiv:1506.01497 [cs].

26. LIN, Tsung-Yi; GOYAL, Priya; GIRSHICK, Ross; HE, Kaiming; DOLLÁR, Pi-
otr. Focal Loss for Dense Object Detection [online]. arXiv, 2018 [visited on 2023-
12-25]. Available from doi: 10.48550/arXiv.1708.02002. arXiv:1708.02002
[cs] version: 2.

27. GIRSHICK, Ross; DONAHUE, Jeff; DARRELL, Trevor; MALIK, Jitendra.
Rich feature hierarchies for accurate object detection and semantic segmenta-
tion [online]. arXiv, 2014 [visited on 2023-12-19]. No. arXiv:1311.2524. Avail-
able from arXiv: 1311.2524[cs].

28. RODRIGUEZ, Maria L. Different Models for Object Detection [online]. 2021.
[visited on 2023-12-23]. Available from: https://medium.com/geekculture/
different-models-for-object-detection-9c5cda7863c1.

29. How RetinaNet works? [online]. [N.d.]. [visited on 2023-12-25]. Available from:
https://developers.arcgis.com/python/guide/how-retinanet-works/.

30. REDMON, Joseph; DIVVALA, Santosh; GIRSHICK, Ross; FARHADI, Ali.
You Only Look Once: Unified, Real-Time Object Detection [online]. arXiv, 2016
[visited on 2023-12-26]. Available from: http://arxiv.org/abs/1506.02640.
arXiv:1506.02640 [cs].

31. TERVEN, Juan; CORDOVA-ESPARZA, Diana. A Comprehensive Review of
YOLO: From YOLOv1 and Beyond [online]. arXiv, 2023 [visited on 2023-12-
27]. Available from: http://arxiv.org/abs/2304.00501. arXiv:2304.00501
[cs] version: 1.

32. What is Edge Computing? - Edge Computing Explained - AWS [online]. [N.d.].
[visited on 2023-12-28]. Available from: https://aws.amazon.com/what-
is/edge-computing/.

33. FOUNDATION, Python software. Python [online]. [visited on 2023-12-10].
Available from: https://www.python.org.

34. Torchvision — Torchvision 0.16 documentation [online]. [visited on 2023-12-
10]. Available from: https://pytorch.org/vision/stable/index.html.

60

https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.48550/arXiv.1506.01497
https://doi.org/10.48550/arXiv.1506.01497
https://doi.org/10.48550/arXiv.1708.02002
https://arxiv.org/abs/1311.2524 [cs]
https://medium.com/geekculture/different-models-for-object-detection-9c5cda7863c1
https://medium.com/geekculture/different-models-for-object-detection-9c5cda7863c1
https://developers.arcgis.com/python/guide/how-retinanet-works/
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/2304.00501
https://aws.amazon.com/what-is/edge-computing/
https://aws.amazon.com/what-is/edge-computing/
https://www.python.org
https://pytorch.org/vision/stable/index.html

35. Docs Home - Comet Docs [online]. [N.d.]. [visited on 2023-12-26]. Available
from: https://www.comet.com/docs/v2/.

36. ALMEIDA, Paulo R. L. de; OLIVEIRA, Luiz S.; BRITTO, Alceu S.; SILVA,
Eunelson J.; KOERICH, Alessandro L. PKLot – A robust dataset for parking
lot classification. Expert Systems with Applications [online]. 2015, vol. 42, no.
11, pp. 4937–4949 [visited on 2023-12-27]. issn 0957-4174. Available from doi:
10.1016/j.eswa.2015.02.009.

37. G., Amato; F., Carrara; F., Falchi; C., Gennaro; C., Vairo. CNRPark. 2016.

38. LIN, Tsung-Yi; MAIRE, Michael; BELONGIE, Serge; BOURDEV, Lubomir;
GIRSHICK, Ross; HAYS, James; PERONA, Pietro; RAMANAN, Deva; ZIT-
NICK, C. Lawrence; DOLLÁR, Piotr. Microsoft COCO: Common Objects in
Context [online]. arXiv, 2015 [visited on 2023-12-27]. Available from doi: 10.
48550/arXiv.1405.0312. arXiv:1405.0312 [cs].

39. ALLWRIGHT, Stephen. How to interpret F1 score (simply explained). 2022.
Available also from: https : / / stephenallwright . com / interpret - f1 -
score/.

61

https://www.comet.com/docs/v2/
https://doi.org/10.1016/j.eswa.2015.02.009
https://doi.org/10.48550/arXiv.1405.0312
https://doi.org/10.48550/arXiv.1405.0312
https://stephenallwright.com/interpret-f1-score/
https://stephenallwright.com/interpret-f1-score/

Symbols and abbreviations
AI Artificial intelligence

ARM Advance RISCM Machine

BUT Brno University of Technology

CCTV Closed-circuit television

CNN Convolution neural network

CPU Central processing unit

DSP Digital Signal Processing

FIFO First-in, first-out

FNN Feedforward neural network

FPN Feature pyramid network

GPU Graphical processing unit

HID Human Interface Device

IoT Internet of Things

IoU Intersection over Union

𝑡 Number of iterations

𝑠 Sample

𝑝 Wanted result

R-CNN Regional Based Convolutional Neural Networks

ML Machine learning

MMW Milimeter wave

PCR Pulsed Coherent Radar

Resnet Residual neural network

ROI Region of interest

SSH Secure Shell

62

VPN Virtual Private Network

VRAM Video Random Acess Memory

YOLO You only look once

VPN Virtual Private Network

63

List of appendices

A Content of the electronic attachment 65

64

A Content of the electronic attachment
The electronic attachment contains all of the current code from the GitHub repos-
itory related to this work. The code was tested on Python3.11 running on Win-
dows and Linux machines. The directory tree ommits python library files such as
"__init__.py" which are needed for the language interpreter, but can be ignored by
the user. Due to file size constrains, the electronic attachment does not include the
trained models, datasets and tested images. Please refer to the GitHub1 repository
for these files.

/..root of the attached archive
Annotating

markup_widget_a.ipynb........jupyter widget for annotating parking places
markup_widget_b.ipynb jupyter widget for labeling occupancy
README.md..documentation
scripts.............directory containing the libraries for annotating widgets

annotation_widget.py
labeling_widget.py
process_data.py

Models
train.py...script for training models
test.py...script for testing models
inference.ipynb jupyter notebook for testing on a single image
baselines.......directory containing libraries for training and testing scripts

intersection_based
inter_models.py

utils
common_utils.py
inter_utils.py
process_data.py
queries.py

rPi_host...Raspberri Pi programs
camera.py... takes photos with raspberry pi camera used for dataset creation
webServer...WebServer application

app .. WebServer library
ArgonPark..ArgonPark library

argonPark.py
argonPark_example.py shows exaple usage of the library
map_Creator

Creator.ipynb......................for creating map.json files
scripts

annotation_widget.py
Static .. WebServer static files
templates...................................HTML jinja2 templates

1https://github.com/slavajda02/parking-research-argon

65

base.html base webpage with nav bar
dev.html.....................................developer tool page
history.html.......................................history page
index.html main index page
upload.html .. upload page

uploads ... upload directory
map.json

config.py
server.py...............................runs the WebServer application

README.md...documentation
requirements.txt......................file containing required python libraries
environment.yml...........................file for creating a conda enviroment

66

	Introduction
	Theory and approaches
	Parking space detection
	Sensors
	Use of cameras

	Artificial intelligence and machine learning
	Artificial intelligence
	Neural networks
	Perceptron

	Machine vision
	CNN
	Image and object recognition
	CNN models for image classification
	R-CNN
	Retinanet
	YOLO

	Cloud edge computing

	Code and relevant software tools
	Python
	Jupyter notebook
	Anaconda
	Torch and torchvision library
	OpenCV library
	Flask

	Comet
	Datasets

	Solution proposals
	Creating a dataset
	Data acquisition
	Dataset structure creation
	Labeling

	Creating an ML model
	Using a pre-trained model
	Constructing a custom model
	Training
	Retraining

	Hardware setup proposal

	Testing results
	Training results
	Pretrained model
	Custom models

	Testing
	Testing methods
	Testing results

	Solution
	Hardware choices
	Remote access
	Position and mounting solution

	Software
	ArgonPark library

	Web server
	Multiprocessing
	Database
	User interface

	Conclusion
	Symbols and abbreviations
	List of appendices
	Content of the electronic attachment

