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Abstrakt
Tato práce popisuje netradiční metodu rozpoznávání řečníka pomocí příznaků a alogoritmů
používaných převážně v počítačovém vidění. V úvodu jsou shrnuty potřebné teoretické
znalosti z oblasti počítačového rozpoznávání. Jako aplikace grafických příznaků v rozpoz-
návání řečníka jsou detailněji popsány již známé BBF příznaky. Tyto jsou vyhodnoceny
nad standardními řečovými databázemi TIMIT a NIST SRE 2010. Experimentální výsledky
jsou shrnuty a porovnány se standardními metodami. V závěru jsou jsou navrženy možné
směry budoucí práce.

Abstract
We describe a non-traditional method for speaker recognition that uses features and al-
gorithms used mainly for computer vision. Important theoretical knowledge of computer
recognition is summarized first. The Boosted Binary Features are described and explored
as an already proposed method, that has roots in computer vision. This method is evalu-
ated on standard speaker recognition databases TIMIT and NIST SRE 2010. Experimental
results are given and compared to standard methods. Possible directions for future work
are proposed at the end.
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Chapter 1

Introduction

The need for accurate speaker recognition is increasing today. It is not just an academic
problem for a long time. Telephone companies, banks and others (including police and
intelligence agencies of course) would like to use speaker recognition systems (SRS) for
different purposes: voice verified authentication, call tracking or automatic labeling of
voice data, etc. Today’s state-of-the-art SRSs use mostly short-term spectral features,
such as MFCC coefficients, for speaker modeling. We investigate usage of features known
from computer vision domain in the task of speaker recognition in this work. We focus on
the Boosted Binary Features (BBF) as already existing features usable for this task.

1.1 Related work

Probably the most recent attempt to exploit computer graphics-like features in speech
domain is work around Boosted Binary Features (BBF), done mainly by Anindya Roy
[23][24][25][26]. In this work, we are following what has been already done, using these
sources.

There are also other studies investigating different approaches of getting speaker features
from signal spectrum [18], but mostly, these features are global/holistic (i.e. not localized
or part-based) – they are not similar to features known from computer vision domain (these
are almost always localized). Because of this, these features are not considered in our work.

1.2 Organization of this work

This paper is organized as follows: Needed theoretical background is given in Chapter 2.
We also present an overview of features for speaker recognition, together with features used
in computer vision in that chapter. The BBF approach is described in Chapter 3. At
the end of the chapter, we introduce several questions. These questions are answered in
Chapter 4, where we summarize the results obtained during our work. You will find the
results of the BBF system evaluations on the TIMIT and the NIST SRE 2010 databases
there. The results are discussed afterwards. We conclude and give directions for future
work in Chapter 5. There is also Appendix A, where practical information about our BBF
system implementation can be found.
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Chapter 2

Theoretical background

The theory employed in our work is presented in this chapter. Well-explored things of our
interest are summarized here. We start with basic concepts of speaker recognition systems.

2.1 Speaker recognition

Speaker recognition tries to answer the question:
”
Who is speaking?“ There are 2 different

tasks: speaker identification and speaker verification/detection. We illustrate the difference
in Fig. 2.1.
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Figure 2.1: Automatic speaker identification (ASI) and verification (ASV).

Although the tasks are different, both makes use of the same kind of information –
speaker identity. The corresponding automatic speaker recognition systems (either for
verification or identification) must be able to express such a quality in some way. We
describe how to do it in the next section.

We can divide speaker recognition also into text dependent and text independent. Text
independent recognition is much more challenging [15] and can be used in scenarios without
client cooperation. For example speaker detection on a telephone line, speaker diarization,
caller identity checking etc.

Today, we are still looking for the best technique, how to extract information from
a speech signal, that can be used as an input to a pattern recognition algorithms. We
introduce this topic in the next section.
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2.2 Features for speaker recognition

Humans, during their lives, learn differences in voice of other people using well-known char-
acteristic features of individual, that can be obtained from his/her speech – pitch, timbre,
speaking rate, intonation, selection of specific words, voice abnormalities etc. Ideal speaker
recognition system should utilize all of them. But also, speech signal carries everything
else together with speaker information, like speaker mood, channel information, linguistic
content, noise and so on. For the speaker recognition task, we want to use only relevant
part of the input signal.

We must firstly transform the speech signal into so-called feature space, where computers
(classification algorithms) can see the actual features. This is called feature extraction.
Extracted features can be divided into low level features (pitch, timbre) and higher level
speaker features like intonation (so-called prosodic features) and even higher features like
idiolect (selection of speaker specific words or phrases) [15]. We will consider only low level
features in the following text, not going into the higher ones.

All the state-of-the-art SRSs are using to some extent these low level features, because
they are easy to extract and model. They usually benefit from the knowledge of human
auditory and vocal tract system.

We give a short description of currently the most often used low level features for
speaker recognition – the MFCC coefficients – in this section. Nevertheless, there are also
other (namely Linear Prediction Cepstral Coefficients – LPCC features), we refer to a nice
and complete overview in [15].

• MFCC – Mel-Frequency Cepstral Coefficients are famous speech features used very
often for automatic speech/speaker recognition. They can be described as a short-
term cepstral features that use Mel-filter banks. After the signal is processed by the
STFT (Short Term Fourier Transform), Mel-banks transforms linear frequency scale
into a scale similar to the scale of human ear perception capabilities. Logarithm of
this Mel-spectrum is taken and Discrete Cosine Transform (DCT) is applied. Final
MFCC features are obtained by retaining about 12-15 lowest DCT coefficients [15].

It is very often and useful, after feature extraction, to add ∆ and ∆∆ (or even
higher-order delta) coefficients to MFCC. By using this technique, features become
temporal – they carry also time context. One immediate disadvantage of the global
nature of MFCC is that it reduces noise-robustness: addition of noise in a small sub
band affects the entire representation [4]. This can be partly suppressed by cepstral
mean subtraction (CMS) [3] (which removes slowly varying convolutive noise) and
other advanced techniques.

2.3 Computer graphics features

There are quite different tasks in computer vision in contrast to speaker recognition, but
there are analogies. The most analogous to speaker recognition is face recognition, where
we want to find out the identity of a person from an image. We can also compare phoneme
detection or keyword spotting to computer vision object detection. These ideas (to treat
phonemes, words and such as sound objects in time-frequency plane) can be found in [1][17].

This section describes some of commonly used graphics features and their characteristics.
What follows is mainly an excerpt from a similar overview in [23]. We try to highlight
characteristics, that could be interesting for speaker recognition task.
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• Haar features – this type of features is extensively used in image object detection.
It is typically used in Viola & Jones object detection framework [27]. Features are
defined as a difference of sums of two square regions in the image. This difference
is then compared to a learned threshold and serves as a weak prediction of presence
of some object. An example of such regions (features) is in Fig. 2.2. These regions
are then scaled to different sizes and can be also tilted (±45◦). In the training phase,
boosting algorithms are used to select the best features (i.e. the position in the image,
scale, tilt and a threshold for each feature).

Figure 2.2: Common Haar feature regions

• Local Binary Patterns (LBP) – these features are known for its invariance to
illumination. Feature extraction is shown in Fig. 2.3. In principle, the neighborhood
is thresholded by the value of the center pixel and the binary values are then multiplied
by the weights given for the corresponding pixel and summed. Resulting LBP code
is not used as a single feature, but a histogram of these codes is computed over an
image region and then used as a feature. There are many variations of the basic 3×3
neighborhood. It was proposed in [20].

LBP code:

11110100

Figure 2.3: The way, how the LBP features are extracted

• Fern features – these features were proposed in [21] and could be seen as a gen-
eralization of the LBP features. Instead of considering regular neighborhood, these
features are computed by comparing the

”
center“ pixel with an arbitrary other pixel

in the image. This leads to much larger feature set.

• Descriptor-based features – used in computer vision to detect and describe points
of interest in the image. They are used for camera calibration, 3D reconstruction,
object detection and other tasks [2]. As a representative, we can mention SURF
(Speeded-Up Robust Features) and SIFT (Scale Invariant Feature Transform) de-
scriptors. Computation is quick but not easy to describe (the exaction has usually
multiple stages like detection, indexing etc.), so we refer to [2].

Intuitively, these features, modified for use in speech domain, could be suitable rather
for speech recognition (phoneme detection) than for speaker recognition. We mention
them here because of this analogy example.
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2.4 Boosting

In the following chapters, we will be dealing with boosting. This section provides some
basic information about boosting. For more in depth description, please, see [11][12].

Boosting is a way of combining the performance of many weak classifiers to produce
a powerful committee or strong classifier [12] in an iterative way. The only requirement for
a weak classifier is, that it should be

”
better than random guessing“.

The most famous boosting algorithm is the aDAbOOST. For example, it is being used
for feature selection in Viola&Jones object detection framework [27], where Haar features
are utilized. The term AdaBoost is a shorthand for Adaptive Boosting.

In this work, we use the variant of AdaBoost called Discrete AdaBoost with weighted
re-sampling [23]. Full algorithm with explanation is in Section 3.2.2. There are many
other variants of classical AdaBoost – Real AdaBoost, Gentle AdaBoost, Total Corrective
AdaBoost . . .

There are studies [7][9] showing bad behaviour of the AdaBoost on data with label noise
and outliers, because boosting tends to assign the examples to which noise was added much
higher weight than other examples. As a result, hypotheses generated in later iterations
cause the combined hypothesis to over-fit the noise [9]. In other words, the AdaBoost
assumes, that the data are linearly separable.

There are boosting algorithms without this problem, namely the BrownBoost [9] and its
most recent variant RobustBoost. These algorithms do not use convex optimization (that
is responsible for mentioned bad behavior of the AdaBoost [10]), but use other optimization
techniques to minimize misclassification loss.

2.5 Evaluation metrics and data

To select the best system, we must be able to objectively compare the two. To be objective,
some common measure of system accuracy must exist. Also, the need for common data set
is important. Results obtained on non-standard or proprietary corpus are obscure and not
comparable with other ones.

This section describes, how speaker recognition systems can be evaluated, and describes
standard speech corpora we are using in this work.

2.5.1 Evaluation metrics

We describe standard ways, how to evaluate speaker recognition systems, in this section.
The output of a recognizer is a score. It is a numerical measure (estimation) of how

confident the recognition system is, given some trial. A trial is a pair of a test utterance and
a claimed identity. The score is referred as a soft decision sometimes. When we need a hard
decision, we must set some threshold for scores to obtain final class labels. We describe
here, how we can interpret the scores and hard decisions.

Things are little easier for speaker identification task. There is only one type of system
error – misclassification. For such purpose, we can use probability of misclassification, that
is simply a number of incorrectly classified trials divided by a total number of trials.

For speaker verification, we can not use such simple metric. There are two cases, where
the system can err [16]. See table 2.1 for all possible states.
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Client Impostor
Impostor predicted False rejection (FR) True rejection

Client predicted True acceptance False acceptance (FA)

Table 2.1: Possible outcomes for speaker verification

Sometimes, FR is referred as a miss or nondetection and FA as a false alarm. Proba-
bilities of these events are defined:

Pmiss =
number of FR

number of client trials

Pfa =
number of FA

number of impostor trials

Pfa and Pmiss are dependent on each other and the trade-off between them is called
operating point of system and can be set by altering system’s detection threshold.

Pfa and Pmiss are not usually equally expensive. For example, in access applications,
false acceptances are much more expensive than false rejections. Thus, operating point sits
typically in the area of low false acceptances.

Overall system behavior can be visualized by the ROC (Receiver Operating Character-
istic) or better with the DET (Detection Error Trade-off) curve [16].

For quick comparison of systems, we can pick some well defined point on the DET curve.
This is typically the EER (Equal Error Rate). The point, where Pmiss = Pfa.

2.5.2 Standard speaker databases

TIMIT

This is an old standard speech database sponsored by DARPA. It contains a total of 6300
sentences (2-3 s in length), 10 sentences spoken by each of 630 speakers from 8 major dialect
regions of the United States. Each sentence is transcribed and phonetic content is given with
timing. TIMIT is an ideal input for any SRS, because there is no inter-session variability,
sampling frequency is sufficiently high (16 kHz) and the sentences are phonetically rich.
Also, high quality microphones were used for recordings.

This database is subdivided into suggested test and train sets. This division is intended
for speech recognition purposes. To use this database for speaker verification evaluations,
we can use division from [22] (this division is also described in Section 4.2.2).

NIST SRE

National Institute of Standards and Technology Speaker Recognition Evaluation1 is held
every year and provides an opportunity for researchers to compare their systems. Data
corpus is available for participants only, and is reasonably big. Every year, there are some
new evaluation conditions and more difficult data. Unlike TIMIT, this data can be consid-
ered as real (telephone quality, different channel effects, conversational excerpts) and more
challenging. Results of recognition system on such database are much more representative.

1http://www.itl.nist.gov/iad/mig/tests/sre/
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Also, there are results available for recent evaluations, involving performance of today’s
state-of-the-art SRSs, that one can use for up-to-date comparison.

In this work, we use subset of data from SRE 2010 and SRE 2008. In each database,
there are several training and testing conditions. One combination of training and testing
is called core condition and is mandatory for every participant. This data can be further
subdivided into all trials involving only telephone speech in training and test, all trials
involving interview speech from the same microphone type in training and testing and so
on. We are using for our purposes the first mentioned condition, also referred as tel-tel or
condition 5.

Database Male/female
speakers

Training Testing Target/nontarget
trials

Fs

TIMIT 112/56 20 s 2-3 s 336/280560 16 kHz
SRE 2010 core
condition 5

1906/2361 2.5 min 2.5 min 3704/233077 8 kHz

Table 2.2: Basic parameters for TIMIT and NIST SRE 2010 condition 5 evaluation data.
The TIMIT database was subdivided into train and test as in [22]. Durations for training
and testing are only approximate.

2.6 Score normalization

In some cases it is useful to perform score normalization. The problem here is caused by
different dynamic ranges of classifier responses to input data.

There are two basic types of score normalization [15]. The Z-normalization (zero nor-
malization) is used to align scores between different speakers. This can be done in the
enrollment phase (offline). It is complementary to setting client specific detection thresh-
olds. The T -normalization (test normalization) aligns scores (classifier responses) between
different types of test segments (f.e. segments with different levels of noise). By normaliza-
tion, we mean

s′ =
s− µ
σ

In this work we are using only Z-norm, so here is the detailed description. For Z-
normalization, the µ (mean) and σ (standard deviation) are estimated for every client
model from a set of impostor utterances, called cohort set. This set is the same for every
client.
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Chapter 3

Overview of Boosted Binary
Features

This chapter describes recent approach for feature extraction and speaker modeling called
Boosted Binary Features (BBF). It was proposed in several documents by Anindya Roy
[23][24][25][26]. It is novel, because it is recent, but also because the unusual way of speech
feature extraction it uses. After short introduction to computer graphics features in previ-
ous chapter, we start this chapter by looking at how it is similar to features known from
computer vision domain, and then we describe in depth, how such features can be extracted
from speech signal.

3.1 Relation of BBF to computer graphics features

As it can be deduced from [23] (chapter 3), the idea behind BBF comes from the idea of
Fern features, and these can be thought as a generalization of the Local Binary Patterns
(see Section 2.3), both used in computer vision domain. They all (LBP, Fern, BBF) are
localized, which means, that a feature is dependent only on some small region (subsection)
of an input signal. This property has several nice consequences, like noise robustness (both
in speech and vision).

On the other hand, almost all known features used for speech description today are
holistic – single feature is influenced by the entire input signal (like MFCC and LPCC).

For clarification, we can write down (very roughly) something like this:

LBP
generalization−−−−−−−−→ Fern

vision→speech−−−−−−−−−→ BBF

3.2 Feature description and speaker modeling

This section describes, how BBF features looks like and how we use them. It may be a bit
confusing at the beginning, what we call a feature here. Typically, in speaker recognition, we
talk about features, after we have transformed the input data into some higher dimension
space and then we use these features, to fit some probabilistic model or for discriminative
training. In the BBF approach,

”
feature“ (as in Boosted Binary Features) has a wider

sense. This is because feature extraction and speaker modeling are linked. Let’s look at
how.
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3.2.1 Definition of BBF

One single feature is defined as a difference of 2 points in spectro-temporal plane and this
difference is thresholded by some threshold. Hence they are binary. The spectro-temporal
plane is created by transforming input speech signal into spectrogram. To keep number of
possible features sane, we consider only points inside a sliding window, that we will refer
later as a spectro-temporal matrix.

This matrix has dimensions NF (NF equals to a number of unique frequency points in
the symmetric magnitude spectra obtained by the Fourier transform) and NT (number of
stacked spectral vectors).

In this text, we will follow [23] and let the spectro-temporal matrix to be only single
spectral vector (NT = 1), thus completely omitting temporal context in task of speaker
recognition. This should not be critical, even that temporal context is known to be advan-
tageous to MFCC based systems in form of ∆-coefficients, for speaker recognition [15].

The feature is defined:

fi(x) =

{
1 if x(ki,1)− x(ki,2) ≥ θi
0 if x(ki,1)− x(ki,2) < θi

, (3.1)

where x is the spectral vector, ki,1 and ki,2 are frequency indices and θi is a threshold.
It is clear, that the number of all possible combinations of indices is

NΦ = NF (NF − 1). (3.2)

According to [23], we can use only a small subset out of NΦ to build a classifier, because
other combinations are not so speaker-specific.

Theoretically, the number of all possible features is infinite, because of the real threshold.
In practice, we are limited by floating point precision and input data quantization, but still,
the number of all possible features is huge. Thus, we must use a heuristic described in the
footnotes for Section 3.2.2, when extracting features.

From Equation 3.1, we can see, that given some data, the feature can make decisions
and predict one of two classes. In our speaker recognition case – client or impostor. This is
also a nice example of how weak classifier can look for boosting purposes. If we combine
several such features (weak classifiers) into one classifier, we can create a strong classifier.
This is called boosting (see chapter 2.4).

The strong classifier is defined as a linear combination of such features:

F (x) =

NΦ∗∑
i=1

αifi(x), (3.3)

where NΦ∗ is the number of selected features. This summation then serves as a speaker
model. Here we see, that feature extraction and speaker modeling are very tightly linked.

The final decision is defined as:

Ω∗ =

{
Ω1(client) if F (x) ≥ Θ

Ω0(impostor) otherwise
, (3.4)

where Θ is the detection threshold set correspondingly to a requested operating point of
the system (see Section 2.5.1).

Important thing to note here is, that every speaker has a different subset of features.
The question is, how to select good features for a client out of a complete (very large) set?
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3.2.2 Extraction

We have defined the features, but we did not mention yet, how we can extract the useful ones
and how to get concrete parameter values, for example the thresholds. This is described in
the following text.

Let’s define a function, that will measure the misclassification loss of some combination
of features F (X) on some training data X = {xj}Ntrj=1 [23].

Lmisc,F =
1

Ntr

Ntr∑
j=1

1F (xj)y(xj)<0 , (3.5)

where xj is the j-th spectral vector (sample) in the training data matrix and where label
y(xj) = 1 if xj belongs to target class and y(xj) = −1 otherwise. The function simply
computes the total number of misclassification errors over all the training samples.

We want to select a subset F , that will minimize this error. It is not tractable to min-
imize this function directly. Instead, we can use Discrete AdaBoost algorithm, that will
minimize the exponential loss. This exponential loss is an upper bound of the misclassifi-
cation loss [23], so it is safe (guaranteed to converge, if there are weak classifiers available
with misclassification error lower than 0.5).

Discrete AdaBoost algorithm with weighted re-sampling

What follows is a complete training algorithm taken from [23]:
Inputs: Ntr training samples, i.e. spectral vectors {xj}Ntrj=1 extracted from the training

speech data, their corresponding class labels, yj ∈ {−1 (impostor), 1 (client)}, NΦ∗ , the
number of features to be selected, N∗tr, the number of training samples to be randomly
selected at each iteration (N∗tr < Ntr)1.

Output: The sequence of selected best features and its weights {φ∗n, α∗n}
NΦ∗
n=1 .

1. Initialize the sample weights {w1,j} ← 1
Ntr

2. Repeat for n = 1, 2, · · ·NΦ∗ :

(a) Normalize the sample weights, wn,j ← wn,j∑Ntr
j′=1

wn,j′

(b) Randomly sample a subset of N∗tr training samples, according to the distribution
{wn,j}.

(c) For each feature φi in Φ, set the threshold parameter θi to minimize misclassifi-
cation error,

ei =
1

N∗tr

N∗tr∑
j=1

1{φi(xj)6=yj}

over the sampled set2.

(d) Select the next best feature, φ∗n = φ∗i where i∗ = arg miniei, i.e. select that
feature with the lowest misclassification error on the current subset of training
samples.

1A value of Ntr∗ equal to 5% of Ntr was found to work well [23].
2The difference xj(ki, 1)− xj(ki, 2) for each training sample xj is taken as a candidate threshold value.

Any value in between two consecutive such thresholds would not change the classification result and hence
can be ignored The optimal threshold θi is chosen via a search over these candidate values [23].
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(e) Set βn ← ei∗
1−ei∗

(f) Set the weight of the selected feature,

αn = − log βn

(g) Update the sample weights,

wn+1,j ← wn,jβ
1{φ∗n(xj)=yj}
n

3. Normalize feature weights to sum to one, αn ← αn∑NΦ∗
n′=1

αn′

Algorithm explanation

Here is the previous algorithm rewritten, using natural language, with difficult operations
made clear.

After initialization, we select a subset of samples N∗tr out of the training data, according
to their weights. In other words, we select samples, that were wrongly classified before.

Then we select the best performing feature (or we can say, train a classifier) on this
subset. This is done by a search over Φ. Further, for each feature φi we need to set the
best possible threshold.

After we have selected the best feature on a subset in step 2c, we compute the misclassi-
fication error over all the samples and re-weight them accordingly (step 2g). Samples with
higher misclassification error will get more weight and are more likely to be selected in the
next iteration. The next iterations will try to select other features to correct this error.

At the end of the iteration, we also add the best feature/classifier to the set of selected
features with the feature weight related to its performance on the subset.

3.3 Open questions

In this section, we present some ideas we have encountered during our experiments. These
are also the differences between the BBF system proposed in [23] and our own implemen-
tation.

3.3.1 Number of candidate thresholds

Feature extraction is very time consuming task for BBF. To speed-up the feature selection
process, we should optimize step 2c from the selection algorithm (see Section 3.2.2). There,
the best feature is found by a search over all possible features and all possible thresholds.
If we lower the number of candidate thresholds in this step (i.e. subsample it), we could
extract features faster, possibly without a significant performance loss. Intuitively, we can
say, that using larger amount of possible thresholds leads to a quicker boosting convergence,
because we use

”
stronger“ weak classifiers. Later, we will refer to this number as to Nthd.

If candid thds is the available threshold set, than we use its subset (MATLAB nota-
tion):
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% sor t t h r e s h o l d s and make them unique
thds=unique ( cand id thds ) ;
% l i n e a r l y subsample on ly N thd f i n a l t h r e s h o l d s
i f length ( thds ) > N thd

thds=thds ( f loor ( [ 1 : length ( thds ) /N thd : length ( thds ) ] ) ) ;
end

3.3.2 Input data dimension

Another question is: What input data dimension is optimal? The input dimension is the
half of the number of points obtained from the N -point DFT when preprocessing the data.
The question can be rewritten as: What resolution in frequency do we need?

It is clear, that we should bear in mind the sampling frequency of the signal Fs.
The sampling theorem says, that the upper bound of frequencies present in a sampled

discrete signal sampled at sampling frequency Fs is Fs
2 . Higher frequencies appears in a sam-

pled signal aliased and they are therefore usually band-limited before sampling. Because of
this, we can imagine the input sampled signal to contain frequencies up to Fs

2 Hz, that are
divided into N

2 bins by the DFT (because the signal is real in time, the magnitude spectra
is symmetric and thus we use only a half3 of it).

The BBF method uses the difference of magnitude in two frequency points for its com-
putations. The frequency band it takes into account for one point is

λ =
Fs
N

For example, for Fs = 16 kHz and N = 256 the distance of 2 points in spectra is 62.5 Hz.
Intuitively, higher resolution leads to better accuracy, but the system can fail, if the

speaker’s fundamental frequency increases or decreases in time of more than a λ
2 .

Increasing the resolution also results in a quadratic increase of the number of all possible
features NΦ, that is mainly responsible for extraction time.

There are 2 ways, how we can manipulate frequency resolution of the resulting spectro-
gram. The first option is to change the window length of the STFT. This will result also
in the change of the time resolution (number of output frames). We denote this operation
later as a STFT window resize to N samples.

The second option is to keep the window of the STFT the same and change the param-
eter of a function computing the STFT, that determines how many points we want to get
on the output (this is often labeled as NFFT). We denote this operation later as a NFFT
change to N points. This will not change the frequency resolution itself, but it will rather
interpolate the correct output (the signal segments will be zero-padded or shortened to the
length NFFT). Note, that we loose information in the case of shortening. In the case of
zero-padding, we do not lose any information, just the DTFT frequency representation is
sampled smoother, in theory [29].

3.3.3 Training data set size and imbalance

This question relates to a size of a background set in the training data. For the TIMIT
experiments, we followed the division into client (’1’) and background (’-1’) examples as

3Precisely, if the N is even, we get N
2
+ 1 unique points and if the N is odd, we get N+1

2
unique points.
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presented in [23]. Target to non-target ratio in this case is 8
250 = 3.2%. Total duration of

the training data before preprocessing is (8 + 250) × 3 s, that gives about 13 minutes of
recording.

The question is, what size and target to non-target ratio is optimal for the AdaBoost to
work properly? There are some propositions to modify the AdaBoost, so it does not suffer
from class imbalance in the training set [14][8]. We do not make any changes to the BBF
system in this sense, but rather, we are aware of it.

3.4 Complete system

The BBF system can be implemented like every other speaker verification system, due to
its principally the same architecture. This means, that it consists of two parts: training
and testing. See Fig. 3.1.

Preprocessing
(FFT & VAD)

client 1
Discrete

AdaBoost
client model 1

(selected features)

Preprocessing
(FFT & VAD)

client N
Discrete

AdaBoost
client model N

(selected features)

.

.

.

background set

Preprocessing
(FFT & VAD)

.

.

.

.

.

.

Score
computation

Preprocessing
(FFT & VAD)

trial

claimed
identity

speech
sample

decision

TRAINING

TESTING

Figure 3.1: Overview of complete BBF recognition system

Note, that even if we use the term background set here, the system does not perform
any kind of background model adaptation (like MAP adaptation for the GMM-UBM).
Instead, the background set serves as a negative example for discriminative training by the
AdaBoost algorithm. This means, that we have to train every client separately. If we used
this system for a big set of speakers, we would need a lot of CPU time. But as the training
is done offline, generally, it is not a handicap.
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Chapter 4

Experimental setup and results

As a practical part of this work, we implemented the BBF system and tested it on two
standard databases. The results are given in this chapter. Results for reference systems
using classical feature extraction techniques are also given. Short discussion follows after
each result and general topics are discussed in the next chapter, together with a summary
of results.

4.1 Reference systems

In this section, we give a short description of recognition systems used later as a reference
for our experiments on different data sets. For experiments on the TIMIT, we used own
GMM-UBM system and for evaluation on the NIST SRE 2010 data set, we compare our
BBF system with both the GMM-UBM and state-of-the-art iVector PLDA system. We kept
the same preprocessing stage for both the BBF and the reference system, where possible.

4.1.1 Baseline GMM-UBM

The BBF system presented in [23] is compared to the results of Douglas Reynolds’s GMM
system from 1995 [22] (because they are better than results of their own, simpler, GMM
implementation).

We compared our BBF system performance on the TIMIT with our own MFCC GMM-
UBM, that uses the same background set of speakers and other common settings, such as
the same VAD (Voice Activity Detector). We believe, that even if it is probably worse than
the results of systems with speaker specific background speakers (msc – maximally spread
close speakers [22]), the results are worth presenting.

Here, we indicate the most important values of system parameters: Diagonal covariance
GMM contained 128 components. It was firstly trained as a UBM model containing the
same background data (see Section 4.2.2) using the EM algorithm and then adapted into
client models by MAP adaptation. All data was filtered through VAD and preprocessed
into MFCC coefficients (20 coefficients were extracted). The score was computed as a ratio
of client mixture and UBM mixture log likelihoods.

4.1.2 iVector PLDA system

We compare the BBF system performance on the NIST data with the state-of-the-art
speaker recognition technology available in this work.
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The full description of this system can be found in [5]. We give only an excerpt from
[6] about this system here. The iVector is a low-dimensional, information rich, fixed length
representation of an utterance. These low-dimensional data are then used as a

”
features“

for classifiers, the PLDA (Probabilistic Linear Discriminant Analysis) in this case.
iVectors used in this system had length 400 and were extracted via 60-dimensional

features and 2048-component full-covariance UBM. The features were 19 short time gaus-
sianized MFCC + energy augmented with their delta and double delta coefficients. The
analysis window had 20 ms with shift of 10 ms. PLDA model was trained with 90 eigenvoices
and 400 eigenchannels using mixer 04,05,06 and Switchboard telephone data [5].

The question is, how meaningful the comparison of the BBF and this reference system
will be? The BBF training does not at all consider many problems, such as the channel
variability, so we can a priori say, that this state-of-the-art system will be better. We do
not try to compare the actual results, but we want to show by the results of this reference
system, how far we can go with performance today.

At the beginning of this work, we also wanted to try out a score fusion, after the results
of the BBF system on the NIST database have been available, but we had rejected to do
so, after we have seen the actual results.

4.2 TIMIT

We repeated some experiments realized already in [23]. We kept the same testing set and
evaluation conditions. In case we obtain the same results, we will be sure, that our system
is properly implemented and the results given in the literature are correct (we will see, that
they are).

Further, we used this relatively small database to experiment with some parameters of
our system with extraction time in mind.

4.2.1 Data preprocessing

We should start with data preprocessing. Input signal is firstly transformed into frequency
domain. According to [23] and originally according to [22], we use 20 ms sliding window
over the input raw signal with a 10 ms shift to compute a 256-point DFT. We use one half
of symmetric magnitude spectra.

After that, we use energy-based VAD (Voice Activity Detector) described in [15] to
detect speech in signal and discard other frames without useful information. For our ex-
periments, we used a distance of 30 dB from the maximum speech energy to set silence
threshold. In [23], there is no remark about what VAD they are using, so we used simple
energy based VAD described above. It is possible to use such simple detector, because the
TIMIT contains clean and uniform data.

4.2.2 Setup

We followed evaluation protocol in [23] (first part originally described in [22]).

The 168 speakers (112 males, 56 females) from the
”
test“ portion of the TIMIT

database were used as clients. For each speaker, the 2 sa sentences, 3 si sentences
and first 3 sx sentences were used for training and the remaining 2 sx sentences
for testing.
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. . .

For training a client classifier in the BBF system, i.e. to select the binary
features using the AdaBoost algorithm, the positive (client, ’1’) training samples
were extracted from the client training data, while the negative (impostor, ’0’)
samples were extracted from a set of 250 utterances randomly selected from the

”
train“ portion of the TIMIT database (177 males and 73 females).

4.2.3 Results

The results that we obtained with our BBF system on the TIMIT are presented here.
They are a bit worse than the results in [23], probably because we used an approximation
described in Section 3.3.1 to speed-up computation. If not stated otherwise, we used Nthd =
40 for all computations (the value was chosen experimentally). This way, we could learn
quickly about the BBF system behavior under other different conditions, without a need
for a bigger computer.

We tried to evaluate our BBF system without Nthd limitation and the results were
slightly worse than the results in [23]. This is probably because we used different VAD.

Input data dimension

As an answer to questions from the Section 3.3 (Open questions), we present the BBF
system behavior for different input data dimensions in Fig. 4.1. The 20 ms window of the
STFT was used for all experiments and we altered the frequency resolution by changing
the NFFT parameter (see Section 3.3.2). This resulted in information loss, but the number
of training frames for the AdaBoost remained the same. We give rough training times for
these settings in section

”
Client model training time“.

As stated in Section 3.3.2, we can change the frequency resolution also without losing
any information, by resizing the STFT sliding window. The results obtained with this
preprocessing stage are in Fig. 4.2.

The reference GMM-UBM system (see Section 4.1.1) with the same preprocessing stage
achieved for this task performance of 0.55% EER. This is better, compared to our best BBF
system (with 512 features and using input data dimension of 128 and Nthd = 40), but note,
that we used for this evaluation just an approximation of complete BBF system from [23]
(see Section 3.3). With the full system (i.e. with system not limited by Nthd), they achieve
EER of 0.31% on the same task.

Client model training time

This time depends mainly on input data dimensionality, then on the training data size,
NΦ∗ , Nthd and of course on the CPU speed. Table 4.1 is just for a notion here. It is based
on our MATLAB implementation that ran on the Intel R© CoreTM 2 Duo CPU E8200 @
2.66GHz processor.

Compared to the reference GMM-UBM system, training is much more time consum-
ing for the BBF system, because it can not use adaptation and every client has to be
trained separately. It is like using the GMM for speaker modeling without the UBM MAP
adaptation.

For an accurate analysis of computational complexity of the testing stage, compared to
an evaluation of the GMM model, see section 5.6.2 in [23].
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Input data
dimension

Feature set
size (NΦ)

Time to extract
a feature [s]

Time total
(Nf = 512) [min]

32 992 1.53 14
64 4032 4.41 38
96 9120 10.65 91
128 16256 18.00 154

Table 4.1: BBF system training time

Client model size

We summarize some interesting facts related to speaker modeling here – client model size
and in the next section client model training time. We show these properties to fully
compare systems only – they are not the main objective today. The training is done offline
and the disk storage is not an issue any longer.

For the BBF system, to achieve performance presented in this chapter, we need to
know parameters for all 512 features. That is two integer frequency indices (4 B each), the
threshold (8 B) and the feature weight (8 B). It is 12.228 kB in total for the BBF system.

For the GMM-UBM system modeling, we need to store component weights (128), means
(128×20) and covariance matrices (128×20). It is 41.984 kB in total for the GMM-UBM1.

Number of candidate thresholds

As we note in Section 3.3, throughout our work, we do not use the whole candidate threshold
set for feature selection in our experiments. To speed-up computation, we use only a subset
of it. This yields a question, how big error we suffer with given Nthd? Intuitively, we can
say, that using larger amount of possible thresholds leads to a quicker boosting convergence,
because we use

”
stronger“ weak classifiers. So the other interesting question is, how much

this convergence relates to Nthd. We performed several evaluations concerning this question,
so we could exploit this knowledge in the future. The results are shown in Fig. 4.3 and 4.4.

As we can see from Fig. 4.3, surprisingly, the actual value of Nthd has a minor effect
on system accuracy. The difference in accuracy for Nthd = 10 and the full set (about 2000
thresholds on average) seems to disappear after we have extracted enough features.

The next question arises: How is this possible? We think, that even we get much smaller
number of possible weak classifiers by lowering Nthd, we still get a bunch of good classifiers
usable (imagine selecting a maximum value from a set of 1000 numbers with a Gaussian
distribution and from a set of 100000 numbers with the same distribution – you will get
very similar results).

This is an important information, because we can set Nthd to some small value and
rapidly accelerate the feature selection process, without a significant performance loss.

We show results for a very low values of Nthd in Fig. 4.4. We can see, that by low-
ering Nthd to very low values in order of units, the accuracy drops (boosting convergence
decelerates).

Note that this topic surely deserves more investigation.

1If we used only 32 mixture components (thus lowering the client model disk footprint to be equal that
of BBF system → 10.624 kB), we would obtain performance EER=1.19 %.
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Figure 4.1: BBF system performance with respect to input data dimensionality and number
of selected features NΦ∗ . Dimensionality was altered (with information loss) by changing
the NFFT parameter only, with the same window size of 20 ms (320 samples). The results
for full BBF system are taken from [23].
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Figure 4.2: BBF system performance with respect to input data dimensionality and number
of selected features NΦ∗ . Dimensionality was altered (without information loss) by changing
the STFT window size. The last curve is our primary BBF system for reference, where the
window was 20 ms (320 samples) and NFFT=256.
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Figure 4.3: BBF system performance with different values of Nthd. For these experiments,
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Other results

The feature distribution, as an interesting fact introduced in [24], is presented in Fig. 4.5.
In this figure we can see, how many features were selected for a given point in the Φ-space
(there are two coordinates in Φ-space – the first and the second frequency index). There
were 512 features extracted for each client. Two variants are presented for different NFFT
settings.

Note, that this is not a distribution of feature weights as in [23] on p. 79. In our case,
the resulting weight distribution matrix (see Fig. 4.6) is rather flat, containing several
(168) points with high average weight, that corresponds to the first selected features for
each client. The weight distribution from [23] differs, probably due to different computing
procedure.
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Figure 4.6: Distribution of selected feature weights. Features of all clients were pooled and
expected feature weights for a given frequency pair were computed. log10 of this number
was taken.
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Figure 4.7: Histogram of thresholds of selected features. Individual thresholds ranges from
-5 to 7 in the x-axis, but they are too sparse to be seen in the main histogram.
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There is also a distribution (a histogram) of thresholds of selected features in Fig. 4.7.
The number of candidate thresholds was not limited by Nthd in this case2.

We can see, that most of the threshold values lies somewhere around zero. This is
because the input data magnitude has a large dynamic range. We should mention the
statistics of input data to compare threshold values with, now. The world set (background
model) had maximum, minimum, mean and standard deviation equal to 13.9, 2 × 10−8,
0.06 and 0.14 respectively. Parameter settings of feature extractor for this particular results
were: Nthd = full set, NFFT = 64, window = 20ms.

4.3 NIST SRE 2010

As proposed in [23], we performed evaluation of the BBF system on the NIST SRE database.
To our knowledge, the BBF speaker recognition system has been tested so far on clean
speech (TIMIT), synthetic noisy databases (NTIMIT, HTIMIT and XM2VTS & Noisex-
92, where each evaluation used clean speech for training) and the MOBIO database. The
MOBIO database was created as a part of the Mobile Biometry (MOBIO) project 3. The
MOBIO Phase I database consists of speech data collected at 6 different sites from 152
people using a Nokia N93i mobile phone [23].

In this section we present the results we have obtained on the NIST database.

4.3.1 Experimental setup

All the input data was sampled at 8 kHz, so we decided to use 128-point Fourier transform
and 20 ms window. The shift was set to a half of the window. As a consequence of what
we have written in Section 3.3.2 about frequency resolution, the frequency resolution was
the same as for experiments on TIMIT.

The BBF system was the same as in previous experiments. We also tried a different
VAD in the preprocessing stage – phoneme recognizer-based segmentation available from
the BUT speech research group speech@fit. Description of this VAD can be found in [5]. In
short, it is a phoneme recognizer, where all phoneme classes are linked to the speech class.
After this labeling, it uses energy based post-processing.

We used the female subset of the core – condition 5 subset from the NIST SRE 2010
as a training data (one two-channel telephone conversational excerpt, of approximately
five minutes total duration [19]). We chose the female subset, because females should be
generally harder to recognize [6].

A subset of NBG female speakers from the NIST SRE 2008 short2 training condition
was used as the background set.

After we had obtained very poor results on a preliminary subset of 128 speakers, we
tried to alter some system variables, but with no luck. Table 4.2 describes these variables
and their symbols, that are used later in results.

4.3.2 Results

The results, that were produced on preliminary subset of 128 speakers (with all modifica-
tions we have tried), are summarized in Table 4.3. The results of our BBF implementation,

2Although, when limited to Nthd = 40, the results were similar.
3http://www.mobioproject.org
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Symbol Description
Nthd Number of candidate thresholds. (see Sec. 3.3.1)
Nbg Number of background speakers. (see Sec. 3.3.3)
Nbgframes Number of frames used for each background speaker. We used Nbgframes

to subsample background speaker data to ensure speaker variability and
reasonable amount of data.

xnorm Normalize input signal by its absolute maximum before preprocessing. We
tried to normalize different speech levels on the input by setting the xnorm
system parameter.

VAD n This indicates that the simple energy-based VAD was used with silence to
maximum energy distance n dB. Otherwise, phoneme based VAD described
in 4.3.1 was used.

Table 4.2: The BBF system parameters for NIST database preliminary evaluation

in comparison with state-of-the-art systems, are very bad. The reference state-of-the-art
system achieved EER of 3.57% [6] on the whole female subset of the NIST SRE 2010 con-
dition 5. On the other hand, simple GMM-UBM system, as used for TIMIT experiments,
performed similarly to our BBF system.

Because we did not find a way, how to improve the system performance on
this subset at least to some reasonable level, we did not attempt to get results
from the whole female subset.

As we can see from Table 4.3, the most influential variable for these experiments was
VAD. The more benevolent we were with the distance of maximum signal energy to silence,
the more the system performance decreased. This is clear, but with the settings, that has
shown to be the best in our experiments (energy-based VAD with threshold 15 dB), we use
only a fraction of available speech (only some vowels probably, because they have higher
energies) and just lose valuable information this way. On the other hand, if we used more
frames, the results were not better, perhaps because of added noise. Behavior of different
VAD settings that we have used is demonstrated on a short utterance from the training set
in Fig. 4.8.

We tried to partition the training data to be the same size and balance as the data from
TIMIT from previous chapter (24 s of speech for client enrollment and target to non-target
data ratio of 3.2%). This case is labeled as

”
timitlike“ in the results.

Although the output scores of BBF strong classifiers should be normalized on its own
(as a consequence of Eq. 3.1), we present some z-normalized scores of our BBF system
in the results. These are labeled as z-norm in Table 4.3. Normalization coefficients were
estimated from a set of 32 cohort speakers, and cohort set was the same for all the clients.

4.3.3 Feature weight masking

The distribution of features selected for the B tests (see Table 4.3) is shown together with
feature distribution obtained on TIMIT in Fig. 4.9. There are some new noticeable regions
with high occurrence of selected features. These regions are encircled. We assume, that
these are regions of channel features and noise features.

One could propose to use
”
correct“ feature distribution obtained on the TIMIT clean

database to re-weight feature weights of features extracted from unclean NIST utterances.
This way, it would be possible to eliminate the influence of channel and noise features,
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i.e. the features, that were selected unintentionally by the AdaBoost on unclean training
data. Likewise, this

”
masking“ would amplify weights of features, that are in regions of the

Φ-space, where there were a lot of features selected for speakers on clean TIMIT speech. It
could be thought as something like

”
feature-level noise/channel-effect cancellation“.

The question is, if it is possible to just re-weight non-linearly the feature weights and if
this would be beneficial. We leave this topic open in this work.
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Figure 4.9: Distribution of features extracted on clean speech (on the left, TIMIT, males
and females) and on noisy training data with channel variability (on the right, NIST SRE
2010, telephone speech, females). The main differences are highlighted.
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test group % EER VAD NΦ∗ Nbg Nbgframes Nthd xnorm additional

A
36.03 15 64 400 1000 40 yes
35.67 15 128 400 1000 40 z-norm

35.22 15 128 400 1000 40

B

38.04 20 32 300 800 20 yes
37.51 20 64 300 800 20 yes
36.73 20 96 300 800 20 yes
36.44 20 128 300 800 20 yes
36.71 20 160 300 800 20 yes
36.20 20 192 300 800 20 yes
35.86 20 256 300 800 20 yes
36.08 20 288 300 800 20 yes
36.27 20 320 300 800 20 yes
35.95 20 352 300 800 20 yes
36.08 20 384 300 800 20 yes
37.67 20 384 300 800 20 yes z-norm

C

39.82 phn 64 300 1000 40
40.14 phn 64 250 1000 40 yes
40.41 phn 128 250 1000 40 yes
40.40 phn 192 250 1000 40 yes
40.04 phn 256 250 1000 40 yes

D

39.99 phn 32 250 1000 20 yes WIN=NFFT=128
40.32 phn 64 250 1000 20 yes WIN=NFFT=128
39.70 phn 96 250 1000 20 yes WIN=NFFT=128
39.65 phn 128 250 1000 20 yes WIN=NFFT=128

E
41.03 phn 32 250 1000 20 WIN=NFFT=128
39.71 phn 64 250 1000 20 WIN=NFFT=128
39.80 phn 96 250 1000 20 WIN=NFFT=128

F
41.95 phn 128 250 300 80 timitlike
40.41 phn 259 250 300 80 timitlike
41.35 phn 323 250 300 80 timitlike

iVec+PLDA
reference

3.57 phn - - - - -

GMM-UBM
reference

36.30 15 - 250 1000 - yes

Table 4.3: The BBF system performance for different settings of parameters on the
NIST SRE 2010 subset of 128 females. Reference systems are described in Section 4.1.2.
iVec+PLDA reference system was evaluated on the full female subset.
Test group labels A-F are there for later referring and they have no other meaning.
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4.4 Results and discussion

Our implementation of the BBF system was evaluated on two different databases. Let’s re-
capitulate all the results in this section.

4.4.1 Experiments on the TIMIT

From the results obtained on the TIMIT database, we can see that the BBF system really
is comparable with classical approaches and feature extraction techniques (MFCC GMM-
UBM in this case) on clean speech. It has been shown in Sec. 4.2, that both systems have
its own pros & cons and all these properties should be considered before looking at the
EERs we give, because they are really not an absolute measure (we could use 512 mixture
components in the GMM, instead of 128, for example).

As an interesting fact, we would like to highlight the result from Sec. 4.2.3, i.e. the
finding, that we do not have to consider the whole set of candidate thresholds, when selecting
the best feature in each AdaBoost iteration, and thus speed-up the feature extraction
process.

4.4.2 Experiments on the NIST SRE data

The results obtained on the NIST SRE 2010 core condition 5 were not as good because the
training data was much harder. We try to discuss this problem here. We think that it has
several reasons.

1. The BBF system does not consider channel effects at all, but the training contains
this variability. So the AdaBoost probably selected also a

”
channel features“ rather

than characteristic features of speakers. Phones and channels used to record speech
in the background set were different to enrollment phones and channels. This is a big
mismatch. The particular selection of the background set could be also the reason.

2. The amount of the training data and noise presence caused the AdaBoost to over-fit
the noisy frames. The AdaBoost noise over-fitting problem is known already [7][9]
and so the next logical step could be to try out to incorporate some more robust
boosting algorithm. We suggest concrete directions in the following chapter.

3. The training set was imbalanced. This was not investigated further in this work.
Maybe it is not a problem at all.

Although the BBF system was much worse, than the state-of-the-art reference system,
simple GMM-UBM system achieved similar results. This is because these simple systems
do not consider channel effects and noise. It is interesting, from our point of view, that
both BBF and GMM-UBM again achieved similar results.
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Chapter 5

Conclusions and future work

The BBF technique for feature extraction and speaker modeling was investigated in this
work. We confirm the results given in the original paper [23] and we present some new
results, ideas and propositions. As proposed in [23], the BBF system was evaluated on the
NIST SRE data, which was also the main goal of this work – objectively compare classical
feature extraction techniques with the system based on computer graphics features.

The results of this evaluation are not very optimistic, but this could be expected, due
to the simplicity of the classifier and difficult evaluation data. Performance of simple
GMM-UBM and our BBF system was similar, which means, again, that the MFCC and
BBF features are comparable. The main problem with BBF is, that there are no training
methods available so far, that consider channel/speaker variability and/or noise in training
data. So, it will be always worse, than advanced systems with this knowledge, on such
data. This does not mean, that the BBF system is not worthy of further interest. There
are applications and scenarios, like mobile biometry, where it is proven to work finely and
with many advantages over other methods (simplicity, quick score computation, robustness
to unknown noise). Well, it was designed for this task.

5.1 Future work

There are many possibilities, how to continue on this topic. During our work, we have
encountered several problems. We think that these problems deserves more attention and
time, we had not had.

We briefly touched the topic of phonetic class-specific modeling (something similar to
phoneme-specific GMM from [13]), that we have not documented in this paper. The idea
behind this is, that speaker features extracted from, for example vowels, uses totally differ-
ent frequency regions, opposed to consonants. If we have divided speech into these classes
before training and testing, we could benefit from better accuracy.

Previous direction was short term, i.e. straightforward and quick to try out and test.
What would be more complicated, but very interesting, is to exploit the information about
feature distribution (see Fig. 4.5) in some way. In Section 4.3.3, we propose an idea, how to
enhance features extracted from unclean data by re-weighting their feature weights. This
is an example of such exploit.

It could be useful, to somehow improve the boosting process itself, for example using
the Totally Corrective AdaBoost [28] or incorporate boosting algorithms more appropriate
for noisy data like the BrownBoost [9].
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Appendix A

Implementation details

We used the MATLAB R© for all computations and BBF system implementation. All the
source code, results, figures etc. is available on the attached CD-ROM.

A.1 Directory structure

Here we highlight only something from the CD-ROM contents (we omit the libraries and
less important files):

{TIMIT | sre10}_eval/ TIMIT and NIST specific evaluation code
scores/ evaluation scores in BOSARIS friendly format
bbf.m extractor of BBF features
constants.m system parameters can be altered here
*.sh Sun Grid Engine shell scripts for parallel task management

lib/ code for data preprocessing and the AdaBoost implementation
tex/ LATEX source code for this paper
figs/ several .eps figures used in this text and scripts for its creation

gmm-ubm/ GMM-UBM implementation for TIMIT data
ubm sre10 eval/ GMM-UBM implementation for NIST SRE data

A.2 How to use it?

The main objective for us were the results, and how to get them quickly. So we apologize
for dirty and messy code, with only a little documentation. Also, there is nothing like
graphical front-end. Everything is done by calling scripts from command line. Here, we
would like to provide a small programming guide, at least to allow others to repeat the
experiments.

First thing to do is to set paths correctly. Paths are defined for different datasets in
files constants.m. Location of the TIMIT database is defined in TIMIT_eval/submit.sh
as an environment variable TPATH. This variable must be set before running any script
from the TIMIT_eval/ directory. Path definitions for NIST data should be altered in
sre10_eval/constants.m.

The root directory for training outputs (extracted features and cache) is defined in the
variable savedir. The outputs for different parameter settings are stored in subdirectories
called after the idstring variable (this variable is created automatically from current
settings).
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The AdaBoost algorithm is implemented in two files: lib/AB_train.m and
lib/AB_step.m. The main function AB_train(data, labels, niter, savefile, nthd)
is called from the main training script bbf.m. If savefile exists, it is loaded and the train-
ing continues, where it has stopped previously (this can be altered by setting continue_train
variable). The extracted features are being saved together with a big vector of sample
weights to make this possible.

For TIMIT, you can use eval_preproc.m for score generation of actual parameter
settings or eval_NfDepend.m to generate results like from Fig. 4.1. For the NIST database,
use score_subset.m for score generation of actual parameter settings. The subset of 128
females we use in this work is defined in file subset10c05f_key.txt.

Scores can be processed using the BOSARIS Toolkit or the NIST evaluation tools.
We used the Sun Grid Engine (SGE) environment for parallel feature extraction. Shell

script submit.sh can be used to submit array job to grid and train all the models defined
in clients_ids.txt for TIMIT and in subset10c05f_clients.txt for NIST data.

There are some helper scripts that will output summary of feature extraction so far.
lib/desc_feas.m should output a list of features already extracted in the format

”
idstring

number-of-selected-features“. ccat.m outputs detailed information about features already
selected for current parameter settings.

A.3 Libraries and toolkits used

This is a complete list of second party software used in our work. All is freely available on
the Internet.

• VOICEBOX1 – Speech Processing Toolbox for MATLAB

• BOSARIS Toolkit2 – MATLAB code for calibrating, fusing and evaluating scores
from (automatic) binary classifiers

• Netlab3 – Netlab Neural Network Software from Aston University

• MatlabADT4 – MATLAB Audio Database Toolkit enables easy access and filtering
of audio databases such as TIMIT and YOHO by their metadata

• NIST valuation tools5

• Useful Matlab Functions for Speaker Recognition Using Adapted GMM6

by Md Sahidullah (requires Netlab)

• IKR course demos7

1http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
2http://sites.google.com/site/bosaristoolkit/
3http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/
4http://www.mathworks.com/matlabcentral/fileexchange/23843-matlab-audio-database-toolbox
5http://www.itl.nist.gov/iad/mig//tools/
6http://www.mathworks.com/matlabcentral/fileexchange/31678-useful-matlab-functions-for-

speaker-recognition-using-adapted-gaussian-mixture-model
7http://www.fit.vutbr.cz/study/courses/IKR/public/demos/

32

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
http://sites.google.com/site/bosaristoolkit/
http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/
http://www.mathworks.com/matlabcentral/fileexchange/23843-matlab-audio-database-toolbox
http://www.itl.nist.gov/iad/mig//tools/
http://www.mathworks.com/matlabcentral/fileexchange/31678-useful-matlab-functions-for-speaker-recognition-using-adapted-gaussian-mixture-model
http://www.mathworks.com/matlabcentral/fileexchange/31678-useful-matlab-functions-for-speaker-recognition-using-adapted-gaussian-mixture-model
http://www.fit.vutbr.cz/study/courses/IKR/public/demos/

	Introduction
	Related work
	Organization of this work

	Theoretical background
	Speaker recognition
	Features for speaker recognition
	Computer graphics features
	Boosting
	Evaluation metrics and data
	Score normalization

	Overview of Boosted Binary Features
	Relation of BBF to computer graphics features
	Feature description and speaker modeling
	Open questions
	Complete system

	Experimental setup and results
	Reference systems
	TIMIT
	NIST SRE 2010
	Results and discussion

	Conclusions and future work
	Future work

	Bibliography
	Implementation details
	Directory structure
	How to use it?
	Libraries and toolkits used


