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Abstrakt 
Tato p r á c e popisuje n e t r a d i č n í metodu r o z p o z n á v á n í řečn íka p o m o c í p ř í z n a k ů a a logor i tmů 
použ ívaných p ř e v á ž n ě v p o č í t a č o v é m vidění . V ú v o d u jsou shrnuty p o t ř e b n é teore t ické 
znalosti z oblasti poč í t ačového rozpoznáván í . Jako aplikace grafických p ř í z n a k ů v rozpoz­
náván í řečn íka jsou deta i lně j i p o p s á n y j iž z n á m é B B F př íznaky . T y t o jsou vyhodnoceny 
nad s t a n d a r d n í m i řečovými d a t a b á z e m i T I M I T a N I S T S R E 2010. E x p e r i m e n t á l n í výs ledky 
jsou shrnuty a p o r o v n á n y se s t a n d a r d n í m i metodami. V závěru jsou jsou nav rženy m o ž n é 
s m ě r y b u d o u c í p ráce . 

Abstract 
We describe a non-tradit ional method for speaker recognition that uses features and al­
gorithms used main ly for computer vision. Important theoretical knowledge of computer 
recognition is summarized first. The Boosted B i n a r y Features are described and explored 
as an already proposed method, that has roots i n computer vis ion. This method is evalu­
ated on standard speaker recognition databases T I M I T and N I S T S R E 2010. Exper imenta l 
results are given and compared to standard methods. Possible directions for future work 
are proposed at the end. 
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Chapter 1 

Introduction 

The need for accurate speaker recognition is increasing today. It is not just an academic 
problem for a long t ime. Telephone companies, banks and others ( including police and 
intelligence agencies of course) would like to use speaker recognition systems (SRS) for 
different purposes: voice verified authentication, cal l t racking or automatic labeling of 
voice data, etc. Today's state-of-the-art SRSs use mostly short-term spectral features, 
such as M F C C coefficients, for speaker modeling. We investigate usage of features known 
from computer vision domain in the task of speaker recognition in this work. We focus on 
the Boosted B i n a r y Features ( B B F ) as already existing features usable for this task. 

1.1 Related work 

Probably the most recent attempt to exploit computer graphics-like features in speech 
domain is work around Boosted B i n a r y Features ( B B F ) , done mainly by A n i n d y a Roy 
[23] [24] [25] [26]. In this work, we are following what has been already done, using these 
sources. 

There are also other studies investigating different approaches of getting speaker features 
from signal spectrum [ ], but mostly, these features are global /hol is t ic (i.e. not localized 
or part-based) - they are not similar to features known from computer vision domain (these 
are almost always localized). Because of this, these features are not considered i n our work. 

1.2 Organization of this work 

This paper is organized as follows: Needed theoretical background is given i n Chapter 2. 
We also present an overview of features for speaker recognition, together w i th features used 
in computer vision i n that chapter. The B B F approach is described in Chapter 3. A t 
the end of the chapter, we introduce several questions. These questions are answered in 
Chapter 4, where we summarize the results obtained dur ing our work. Y o u w i l l find the 
results of the B B F system evaluations on the T I M I T and the N I S T S R E 2010 databases 
there. The results are discussed afterwards. We conclude and give directions for future 
work in Chapter 5. There is also Append ix A , where pract ical information about our B B F 
system implementat ion can be found. 
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Chapter 2 

Theoretical background 

The theory employed i n our work is presented i n this chapter. Well-explored things of our 
interest are summarized here. We start w i th basic concepts of speaker recognition systems. 

2.1 Speaker recognition 

Speaker recognition tries to answer the question: „ W h o is speaking?" There are 2 different 
tasks: speaker identification and speaker verification/detection. We illustrate the difference 
in F i g . 2.1. 

Figure 2.1: Au tomat i c speaker identification (ASI) and verification ( A S V ) . 

A l though the tasks are different, bo th makes use of the same k ind of i n fo rma t ion -
speaker identity. The corresponding automatic speaker recognition systems (either for 
verification or identification) must be able to express such a quali ty i n some way. We 
describe how to do it in the next section. 

We can divide speaker recognition also into text dependent and text independent. Text 
independent recognition is much more challenging [ ] and can be used in scenarios without 
client cooperation. For example speaker detection on a telephone line, speaker diarizat ion, 
caller identity checking etc. 

Today, we are s t i l l looking for the best technique, how to extract information from 
a speech signal, that can be used as an input to a pattern recognition algorithms. We 
introduce this topic i n the next section. 
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2.2 Features for speaker recognition 

Humans, dur ing their lives, learn differences i n voice of other people using well-known char­
acteristic features of ind iv idua l , that can be obtained from his /her speech-p i tch , t imbre, 
speaking rate, intonation, selection of specific words, voice abnormalities etc. Ideal speaker 
recognition system should uti l ize a l l of them. B u t also, speech signal carries everything 
else together w i th speaker information, like speaker mood, channel information, linguistic 
content, noise and so on. For the speaker recognition task, we want to use only relevant 
part of the input signal. 

We must firstly transform the speech signal into so-called feature space, where computers 
(classification algorithms) can see the actual features. Th is is called feature extraction. 
Extrac ted features can be divided into low level features (pitch, timbre) and higher level 
speaker features like intonation (so-called prosodic features) and even higher features like 
idiolect (selection of speaker specific words or phrases) [15]. We w i l l consider only low level 
features in the following text, not going into the higher ones. 

A l l the state-of-the-art SRSs are using to some extent these low level features, because 
they are easy to extract and model . They usually benefit from the knowledge of human 
auditory and vocal tract system. 

We give a short description of currently the most often used low level features for 
speaker recognition - the M F C C coefficients - in this section. Nevertheless, there are also 
other (namely Linear Predic t ion Cepstra l C o e f f i c i e n t s - L P C C features), we refer to a nice 
and complete overview i n [15]. 

• M F C C - M e l - F r e q u e n c y Cepstra l Coefficients are famous speech features used very 
often for automatic speech/speaker recognition. They can be described as a short-
term cepstral features that use Mel-fi l ter banks. After the signal is processed by the 
S T F T (Short Term Fourier Transform), Mel-banks transforms linear frequency scale 
into a scale s imilar to the scale of human ear perception capabilities. Logar i thm of 
this Mel-spect rum is taken and Discrete Cosine Transform ( D C T ) is applied. F i n a l 
M F C C features are obtained by retaining about 12-15 lowest D C T coefficients [ ]. 

It is very often and useful, after feature extraction, to add A and A A (or even 
higher-order delta) coefficients to M F C C . B y using this technique, features become 
t e m p o r a l - t h e y carry also t ime context. One immediate disadvantage of the global 
nature of M F C C is that it reduces noise-robustness: addi t ion of noise i n a smal l sub 
band affects the entire representation [ ]. Th is can be par t ly suppressed by cepstral 
mean subtraction ( C M S ) [ ] (which removes slowly varying convolutive noise) and 
other advanced techniques. 

2.3 Computer graphics features 

There are quite different tasks i n computer vision in contrast to speaker recognition, but 
there are analogies. The most analogous to speaker recognition is face recognition, where 
we want to find out the identity of a person from an image. We can also compare phoneme 
detection or keyword spott ing to computer vision object detection. These ideas (to treat 
phonemes, words and such as sound objects i n time-frequency plane) can be found i n [1] [17]. 

This section describes some of commonly used graphics features and their characteristics. 
W h a t follows is mainly an excerpt from a similar overview i n [23]. We t ry to highlight 
characteristics, that could be interesting for speaker recognition task. 
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Haar features - this type of features is extensively used in image object detection. 
It is typical ly used i n V i o l a & Jones object detection framework [27]. Features are 
denned as a difference of sums of two square regions i n the image. This difference 
is then compared to a learned threshold and serves as a weak predict ion of presence 
of some object. A n example of such regions (features) is i n F i g . 2.2. These regions 
are then scaled to different sizes and can be also t i l ted ( ± 4 5 ° ) . In the t ra ining phase, 
boosting algorithms are used to select the best features (i.e. the posit ion i n the image, 
scale, t i l t and a threshold for each feature). 

E S 
Figure 2.2: C o m m o n Haar feature regions 

• Local B inary Patterns ( L B P ) - these features are known for its invariance to 
i l luminat ion. Feature extraction is shown i n F i g . 2.3. In principle, the neighborhood 
is thresholded by the value of the center p ixel and the binary values are then mul t ip l ied 
by the weights given for the corresponding pixel and summed. Resul t ing L B P code 
is not used as a single feature, but a histogram of these codes is computed over an 
image region and then used as a feature. There are many variations of the basic 3 x 3 
neighborhood. It was proposed in [20]. 
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Figure 2.3: The way, how the L B P features are extracted 

• Fern features-these features were proposed in [ ] and could be seen as a gen­
eralization of the L B P features. Instead of considering regular neighborhood, these 
features are computed by comparing the „cen t e r " p ixel w i th an arbitrary other pixel 
in the image. This leads to much larger feature set. 

• Descriptor-based features-used i n computer vision to detect and describe points 
of interest i n the image. They are used for camera calibrat ion, 3D reconstruction, 
object detection and other tasks [2]. A s a representative, we can mention S U R F 
(Speeded-Up Robust Features) and S I F T (Scale Invariant Feature Transform) de­
scriptors. Computa t ion is quick but not easy to describe (the exaction has usually 
multiple stages like detection, indexing etc.), so we refer to [2]. 

Intuitively, these features, modified for use i n speech domain, could be suitable rather 
for speech recognition (phoneme detection) than for speaker recognition. We mention 
them here because of this analogy example. 
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2.4 Boosting 

In the following chapters, we w i l l be dealing wi th boosting. This section provides some 
basic information about boosting. For more in depth description, please, see [11][12]. 

Boost ing is a way of combining the performance of many weak classifiers to produce 
a powerful committee or strong classifier [12] in an iterative way. The only requirement for 
a weak classifier is, that it should be „ b e t t e r than random guessing". 

The most famous boosting algori thm is the a D A b O O S T . For example, it is being used 
for feature selection in Vio la&Jones object detection framework [ ], where Haar features 
are ut i l ized. The term AdaBoos t is a shorthand for Adapt ive Boost ing. 

In this work, we use the variant of AdaBoos t called Discrete AdaBoost with weighted 
re-sampling [ ]. F u l l a lgori thm w i t h explanation is in Section 3.2.2. There are many 
other variants of classical AdaBoos t - Rea l AdaBoos t , Gentle AdaBoos t , Tota l Corrective 
AdaBoos t . . . 

There are studies [ ] [ ] showing bad behaviour of the AdaBoos t on data w i th label noise 
and outliers, because boosting tends to assign the examples to which noise was added much 
higher weight than other examples. A s a result, hypotheses generated i n later iterations 
cause the combined hypothesis to over-fit the noise [9]. In other words, the AdaBoos t 
assumes, that the data are linearly separable. 

There are boosting algorithms without this problem, namely the BrownBoos t [ ] and its 
most recent variant RobustBoost . These algorithms do not use convex opt imizat ion (that 
is responsible for mentioned bad behavior of the AdaBoos t [10]), but use other opt imizat ion 
techniques to minimize misclassification loss. 

2.5 Evaluation metrics and data 

To select the best system, we must be able to objectively compare the two. To be objective, 
some common measure of system accuracy must exist. Also , the need for common data set 
is important . Results obtained on non-standard or proprietary corpus are obscure and not 
comparable w i t h other ones. 

This section describes, how speaker recognition systems can be evaluated, and describes 
standard speech corpora we are using i n this work. 

2.5.1 E v a l u a t i o n metr ics 

We describe standard ways, how to evaluate speaker recognition systems, i n this section. 
The output of a recognizer is a score. It is a numerical measure (estimation) of how 

confident the recognition system is, given some t r ia l . A t r i a l is a pair of a test utterance and 
a claimed identity. The score is referred as a soft decision sometimes. W h e n we need a hard 
decision, we must set some threshold for scores to obtain final class labels. We describe 
here, how we can interpret the scores and hard decisions. 

Things are l i t t le easier for speaker identification task. There is only one type of system 
error-misclassif icat ion. For such purpose, we can use probability of misclassification, that 
is s imply a number of incorrectly classified trials d ivided by a to ta l number of trials. 

For speaker verification, we can not use such simple metric. There are two cases, where 
the system can err [16]. See table 2.1 for a l l possible states. 
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Client Impostor 
Impostor predicted 

Client predicted 
False rejection ( F R ) True rejection 

True acceptance False acceptance (FA) 

Table 2.1: Possible outcomes for speaker verification 

Sometimes, F R is referred as a miss or nondetection and F A as a false alarm. Proba­
bilities of these events are defined: 

number of F R 

"' ' number of client trials 

„ number of F A 
pfa = 

number of impostor trials 

Pfa and Pmiss are dependent on each other and the trade-off between them is called 
operating point of system and can be set by altering system's detection threshold. 

Pfa and Pmiss are not usually equally expensive. For example, i n access applications, 
false acceptances are much more expensive than false rejections. Thus, operating point sits 
typical ly in the area of low false acceptances. 

Overal l system behavior can be visualized by the ROC (Receiver Operat ing Character­
istic) or better w i th the DET (Detection Er ro r Trade-off) curve [16]. 

For quick comparison of systems, we can pick some well defined point on the D E T curve. 
This is typical ly the EER (Equal Error Rate). The point, where Pmiss = Pfa-

2.5.2 S t a n d a r d speaker databases 

T I M I T 

This is an old standard speech database sponsored by D A R P A . It contains a to ta l of 6300 
sentences (2-3s i n length), 10 sentences spoken by each of 630 speakers from 8 major dialect 
regions of the Un i t ed States. E a c h sentence is transcribed and phonetic content is given wi th 
t iming . T I M I T is an ideal input for any S R S , because there is no inter-session variabili ty, 
sampling frequency is sufficiently high (16 kHz) and the sentences are phonetically r ich. 
Also , high quali ty microphones were used for recordings. 

This database is subdivided into suggested test and t ra in sets. This divis ion is intended 
for speech recognition purposes. To use this database for speaker verification evaluations, 
we can use division from [ ] (this divis ion is also described i n Section 4.2.2). 

N I S T S R E 

Nat iona l Institute of Standards and Technology Speaker Recognit ion E v a l u a t i o n 1 is held 
every year and provides an opportuni ty for researchers to compare their systems. D a t a 
corpus is available for participants only, and is reasonably big. Every year, there are some 
new evaluation conditions and more difficult data. Unl ike T I M I T , this data can be consid­
ered as real (telephone quality, different channel effects, conversational excerpts) and more 
challenging. Results of recognition system on such database are much more representative. 

1http://www.itl.nist.gov/iad/mig/tests/sre/ 
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Also , there are results available for recent evaluations, involving performance of today's 
state-of-the-art SRSs , that one can use for up-to-date comparison. 

In this work, we use subset of data from S R E 2010 and S R E 2008. In each database, 
there are several t ra ining and testing conditions. One combination of t ra ining and testing 
is called core condit ion and is mandatory for every participant. Th is data can be further 
subdivided into all trials involving only telephone speech in training and test, all trials 
involving interview speech from the same microphone type in training and testing and so 
on. We are using for our purposes the first mentioned condit ion, also referred as tel-tel or 
condition 5. 

Database M a l e / female 
speakers 

Training Testing Target/nontarget 
trials 

Fs 

T I M I T 112/56 20 s 2-3 s 336/280560 16 k H z 
S R E 2010 core 
condit ion 5 

1906/2361 2.5 m i n 2.5 m i n 3704/233077 8 k H z 

Table 2.2: Basic parameters for T I M I T and N I S T S R E 2010 condit ion 5 evaluation data. 
The T I M I T database was subdivided into t ra in and test as in [22]. Durat ions for t raining 
and testing are only approximate. 

2.6 Score normalization 

In some cases it is useful to perform score normalizat ion. The problem here is caused by 
different dynamic ranges of classifier responses to input data. 

There are two basic types of score normalizat ion [ ]. The Z-normal iza t ion (zero nor­
malization) is used to align scores between different speakers. Th is can be done i n the 
enrollment phase (offline). It is complementary to setting client specific detection thresh­
olds. The T-normal iza t ion (test normalization) aligns scores (classifier responses) between 
different types of test segments (f.e. segments w i th different levels of noise). B y normaliza­
t ion, we mean 

s = 
(7 

In this work we are using only Z-no rm, so here is the detailed description. For Z-
normalizat ion, the \i (mean) and a (standard deviation) are estimated for every client 
model from a set of impostor utterances, called cohort set. Th is set is the same for every 
client. 
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Chapter 3 

Overview of Boosted Binary 
Features 

This chapter describes recent approach for feature extraction and speaker modeling called 
Boosted Binary Features (BBF). It was proposed i n several documents by A n i n d y a Roy 
[ ] [24] [25] [26]. It is novel, because it is recent, but also because the unusual way of speech 
feature extraction it uses. After short introduct ion to computer graphics features i n previ­
ous chapter, we start this chapter by looking at how it is similar to features known from 
computer vision domain, and then we describe i n depth, how such features can be extracted 
from speech signal. 

3.1 Relation of BBF to computer graphics features 

A s it can be deduced from [ ] (chapter 3), the idea behind B B F comes from the idea of 
Fern features, and these can be thought as a generalization of the L o c a l B i n a r y Patterns 
(see Section 2.3), bo th used i n computer vision domain. They a l l ( L B P , Fern, B B F ) are 
localized, which means, that a feature is dependent only on some small region (subsection) 
of an input signal. This property has several nice consequences, like noise robustness (both 
in speech and vision). 

O n the other hand, almost a l l known features used for speech description today are 
holistic-single feature is influenced by the entire input signal (like M F C C and L P C C ) . 

For clarification, we can write down (very roughly) something like this: 

t T-.-I-. generalization _ vision—^speech _ _ _ 
L B P > Fern > B B F 

3.2 Feature description and speaker modeling 

This section describes, how B B F features looks like and how we use them. It may be a bit 
confusing at the beginning, what we cal l a feature here. Typical ly , in speaker recognition, we 
talk about features, after we have transformed the input data into some higher dimension 
space and then we use these features, to fit some probabil ist ic model or for discriminative 
t raining. In the B B F approach, „ f ea tu re" (as in Boosted B i n a r y Features) has a wider 
sense. This is because feature extraction and speaker modeling are l inked. Let ' s look at 
how. 
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3.2.1 D e f i n i t i o n of B B F 

One single feature is denned as a difference of 2 points i n spectro-temporal plane and this 
difference is thresholded by some threshold. Hence they are binary. The spectro-temporal 
plane is created by transforming input speech signal into spectrogram. To keep number of 
possible features sane, we consider only points inside a sl iding window, that we w i l l refer 
later as a spectro-temporal matr ix . 

This matr ix has dimensions Np (Np equals to a number of unique frequency points in 
the symmetric magnitude spectra obtained by the Fourier transform) and Np (number of 
stacked spectral vectors). 

In this text, we w i l l follow [23] and let the spectro-temporal mat r ix to be only single 
spectral vector (Np = 1), thus completely omit t ing temporal context i n task of speaker 
recognition. Th is should not be cr i t ical , even that temporal context is known to be advan­
tageous to M F C C based systems in form of A-coefncients, for speaker recognition [15]. 

The feature is defined: 

f i ( 3 1 ) 

[0 i f x(fci,i) - x ( / ^ 2 ) < 9i 

where x is the spectral vector, A ^ i and kip are frequency indices and 6>j is a threshold. 
It is clear, that the number of a l l possible combinations of indices is 

N$ = Np(Np — 1). (3.2) 

Accord ing to [23], we can use only a smal l subset out of N$ to bu i ld a classifier, because 
other combinations are not so speaker-specific. 

Theoretically, the number of a l l possible features is infinite, because of the real threshold. 
In practice, we are l imi ted by floating point precision and input data quantization, but s t i l l , 
the number of a l l possible features is huge. Thus, we must use a heuristic described i n the 
footnotes for Section 3.2.2, when extracting features. 

F rom Equa t ion 3.1, we can see, that given some data, the feature can make decisions 
and predict one of two classes. In our speaker recognition case-c l ien t or impostor. This is 
also a nice example of how weak classifier can look for boosting purposes. If we combine 
several such features (weak classifiers) into one classifier, we can create a strong classifier. 
Th is is called boosting (see chapter 2.4). 

The strong classifier is defined as a linear combination of such features: 

F ( x ) = £ a i / i ( x ) , (3.3) 
i=l 

where N$* is the number of selected features. This summation then serves as a speaker 
model. Here we see, that feature extraction and speaker modeling are very t ight ly l inked. 

The final decision is defined as: 

f ^ ( c l i e n t ) i f F ( x ) > e ; ^ 

I Qq (impostor) otherwise 

where O is the detection threshold set correspondingly to a requested operating point of 
the system (see Section 2.5.1). 

Important th ing to note here is, that every speaker has a different subset of features. 
The question is, how to select good features for a client out of a complete (very large) set? 
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3.2.2 E x t r a c t i o n 

We have defined the features, but we d id not mention yet, how we can extract the useful ones 
and how to get concrete parameter values, for example the thresholds. This is described in 
the following text. 

Let 's define a function, that w i l l measure the misclassification loss of some combination 
of features F(X.) on some t ra ining data X = {xj}£*i [23]. 

where Xj is the j - t h spectral vector (sample) i n the t ra ining data mat r ix and where label 
y(xj ) = 1 i f X j belongs to target class and y(x j ) = — 1 otherwise. The function s imply 
computes the total number of misclassification errors over a l l the t ra ining samples. 

We want to select a subset F, that w i l l minimize this error. It is not tractable to min­
imize this function directly. Instead, we can use Discrete AdaBoos t algori thm, that w i l l 
minimize the exponential loss. This exponential loss is an upper bound of the misclassifi­
cation loss [23], so it is safe (guaranteed to converge, i f there are weak classifiers available 
wi th misclassification error lower than 0.5). 

Discrete AdaBoos t algorithm with weighted re-sampling 

W h a t follows is a complete t ra ining algori thm taken from [23]: 
Inputs: Nfr t ra ining samples, i.e. spectral vectors { x j } ^ ^ extracted from the t raining 

speech data, their corresponding class labels, yj £ { — 1 (impostor), 1 (client)}, iV<j>», the 
number of features to be selected, N^r, the number of t ra ining samples to be randomly 
selected at each i teration (JV t* < Ntr)1-

Output: The sequence of selected best features and its weights {0*, a* }^*^. 

1. Initialize the sample weights {wij} <— jj— 

2. Repeat for n = 1,2, • • • N§*\ 

(a) Normalize the sample weights, wnj < N™™'3  

(b) Randomly sample a subset of iV t* t raining samples, according to the dis t r ibut ion 

{wn,j}-

(c) For each feature (pi i n set the threshold parameter 9i to minimize misclassifi­
cation error, 

over the sampled set 2 . 

(d) Select the next best feature, 0* = 4>* where i* = arg minjej, i.e. select that 
feature wi th the lowest misclassification error on the current subset of t raining 
samples. 

X A value of Ntr* equal to 5% of Ntr was found to work well [23]. 
2The difference Xj(fei, 1) — Xj(fei, 2) for each training sample x3- is taken as a candidate threshold value. 

Any value in between two consecutive such thresholds would not change the classification result and hence 
can be ignored The optimal threshold 0i is chosen via a search over these candidate values [23]. 

(3.5) 
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(e) 

(f) 

Set ßn <-

Set the weight of the selected feature, 

log A 'n 

(g) Update the sample weights 

{0n ( x j )=S/ j} 
n 

3. Normalize feature weights to sum to one, an <— 
E 

A l g o r i t h m explanation 

Here is the previous a lgori thm rewritten, using natural language, w i th difficult operations 
made clear. 

After in i t ia l izat ion, we select a subset of samples iV t* out of the t ra ining data, according 
to their weights. In other words, we select samples, that were wrongly classified before. 

Then we select the best performing feature (or we can say, t ra in a classifier) on this 
subset. This is done by a search over $ . Further, for each feature (pi we need to set the 
best possible threshold. 

After we have selected the best feature on a subset i n step 2c, we compute the misclassi-
fication error over all the samples and re-weight them accordingly (step 2g). Samples wi th 
higher misclassification error w i l l get more weight and are more l ikely to be selected i n the 
next i teration. The next iterations w i l l t ry to select other features to correct this error. 

A t the end of the iteration, we also add the best feature/classifier to the set of selected 
features wi th the feature weight related to its performance on the subset. 

3.3 Open questions 

In this section, we present some ideas we have encountered during our experiments. These 
are also the differences between the B B F system proposed in [ ] and our own implemen­
tat ion. 

3.3.1 N u m b e r of candidate thresholds 

Feature extraction is very t ime consuming task for B B F . To speed-up the feature selection 
process, we should optimize step 2c from the selection algori thm (see Section 3.2.2). There, 
the best feature is found by a search over a l l possible features and a l l possible thresholds. 
If we lower the number of candidate thresholds i n this step (i.e. subsample i t) , we could 
extract features faster, possibly without a significant performance loss. Intuitively, we can 
say, that using larger amount of possible thresholds leads to a quicker boosting convergence, 
because we use „ s t r o n g e r " weak classifiers. Later, we w i l l refer to this number as to Nthd-

If c a n d i c L t h d s is the available threshold set, than we use its subset ( M A T L A B nota­
tion): 

12 



% sort thresholds and make them unique 
thds=unique ( candid_thds ) ; 
% linearly subsample only N-thd final thresholds 
i f l eng t h ( t hds ) > N_thd 

thds=thds ( f l o o r ([ 1 : l eng th (thds ) /N_thd : l eng th (thds ) ] ) ) ; 
end 

3.3.2 Input d a t a d i m e n s i o n 

Another question is: W h a t input data dimension is optimal? The input dimension is the 
half of the number of points obtained from the iV -point D F T when preprocessing the data. 
The question can be rewrit ten as: W h a t resolution i n frequency do we need? 

It is clear, that we should bear in mind the sampling frequency of the signal Fs. 
The sampling theorem says, that the upper bound of frequencies present i n a sampled 

discrete signal sampled at sampling frequency Fs is ^ . Higher frequencies appears i n a sam­
pled signal aliased and they are therefore usually band-l imited before sampling. Because of 
this, we can imagine the input sampled signal to contain frequencies up to I f H z , that are 
divided into ^ bins by the D F T (because the signal is real i n time, the magnitude spectra 
is symmetric and thus we use only a half 3 of i t ) . 

The B B F method uses the difference of magnitude i n two frequency points for its com­
putations. The frequency band it takes into account for one point is 

For example, for Fs = 16 k H z and i V = 256 the distance of 2 points i n spectra is 62.5 H z . 
Intuitively, higher resolution leads to better accuracy, but the system can fail, if the 

speaker's fundamental frequency increases or decreases i n t ime of more than a ^ . 
Increasing the resolution also results i n a quadratic increase of the number of a l l possible 

features iV<j>, that is mainly responsible for extraction time. 
There are 2 ways, how we can manipulate frequency resolution of the resulting spectro­

gram. The first opt ion is to change the window length of the S T F T . This w i l l result also 
in the change of the t ime resolution (number of output frames). We denote this operation 
later as a STFT window resize to N samples. 

The second option is to keep the window of the S T F T the same and change the param­
eter of a function computing the S T F T , that determines how many points we want to get 
on the output (this is often labeled as N F F T ) . We denote this operation later as a NFFT 
change to N points. This w i l l not change the frequency resolution itself, but it w i l l rather 
interpolate the correct output (the signal segments w i l l be zero-padded or shortened to the 
length N F F T ) . Note, that we loose information i n the case of shortening. In the case of 
zero-padding, we do not lose any information, just the D T F T frequency representation is 
sampled smoother, i n theory [29]. 

3.3.3 T r a i n i n g d a t a set size a n d imbalance 

This question relates to a size of a background set i n the t ra ining data. For the T I M I T 
experiments, we followed the divis ion into client ('1') and background ('-1') examples as 

3Precisely, if the N is even, we get y + 1 unique points and if the N is odd, we get unique points. 
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presented i n [ ]. Target to non-target ratio in this case is ^fo = 3.2%. Tota l durat ion of 
the t ra ining data before preprocessing is (8 + 250) x 3 s, that gives about 13 minutes of 
recording. 

The question is, what size and target to non-target ratio is op t imal for the AdaBoos t to 
work properly? There are some propositions to modify the AdaBoos t , so it does not suffer 
from class imbalance i n the t ra ining set [14][8]. We do not make any changes to the B B F 
system in this sense, but rather, we are aware of i t . 

3.4 Complete system 

The B B F system can be implemented like every other speaker verification system, due to 
its pr incipal ly the same architecture. This means, that it consists of two parts: t raining 
and testing. See F i g . 3.1. 

client 1 
Preprocessing 
(FFT & V A D ) 

client N 
Preprocessing 
(FFT & V A D ) 

background set 

Preprocessing 
(FFT & V A D ) 

Discrete 
AdaBoost 

Discrete 
AdaBoost 

client model 1 
(selected features) 

client model N 
(selected features) 

TRAINING 

TESTING 
claimed 
identity 

trial 

speech 
sample 

Preprocessing 
(FFT & V A D ) 

Score 
computation decision 

Figure 3.1: Overview of complete B B F recognition system 

Note, that even i f we use the term background set here, the system does not perform 
any k ind of background model adaptation (like M A P adaptation for the G M M - U B M ) . 
Instead, the background set serves as a negative example for discriminative t ra ining by the 
AdaBoos t algori thm. This means, that we have to t ra in every client separately. If we used 
this system for a big set of speakers, we would need a lot of C P U time. B u t as the t raining 
is done offline, generally, it is not a handicap. 
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Chapter 4 

Experimental setup and results 

A s a pract ical part of this work, we implemented the B B F system and tested it on two 
standard databases. The results are given in this chapter. Results for reference systems 
using classical feature extraction techniques are also given. Short discussion follows after 
each result and general topics are discussed i n the next chapter, together w i th a summary 
of results. 

4.1 Reference systems 

In this section, we give a short description of recognition systems used later as a reference 
for our experiments on different data sets. For experiments on the T I M I T , we used own 
G M M - U B M system and for evaluation on the N I S T S R E 2010 data set, we compare our 
B B F system wi th bo th the G M M - U B M and state-of-the-art iVector P L D A system. We kept 
the same preprocessing stage for both the B B F and the reference system, where possible. 

4.1.1 Base l ine G M M - U B M 

The B B F system presented in [23] is compared to the results of Douglas Reynolds 's G M M 
system from 1995 [22] (because they are better than results of their own, simpler, G M M 
implementation). 

We compared our B B F system performance on the T I M I T wi th our own M F C C G M M -
U B M , that uses the same background set of speakers and other common settings, such as 
the same V A D (Voice A c t i v i t y Detector). We believe, that even if it is probably worse than 
the results of systems wi th speaker specific background speakers (msc - maximally spread 
close speakers [22]), the results are worth presenting. 

Here, we indicate the most important values of system parameters: Diagonal covariance 
G M M contained 128 components. It was firstly trained as a U B M model containing the 
same background data (see Section 4.2.2) using the E M algori thm and then adapted into 
client models by M A P adaptation. A l l data was filtered through V A D and preprocessed 
into M F C C coefficients (20 coefficients were extracted). The score was computed as a ratio 
of client mixture and U B M mixture log likelihoods. 

4.1.2 i V e c t o r P L D A sys tem 

We compare the B B F system performance on the N I S T data w i th the state-of-the-art 
speaker recognition technology available i n this work. 
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The full description of this system can be found in [5]. We give only an excerpt from 
[6] about this system here. The iVector is a low-dimensional, information rich, fixed length 
representation of an utterance. These low-dimensional data are then used as a „ f ea tu re s " 
for classifiers, the P L D A (Probabil is t ic Linear Discr iminant Analysis) i n this case. 

iVectors used i n this system had length 400 and were extracted v ia 60-dimensional 
features and 2048-component full-covariance U B M . The features were 19 short t ime gaus-
sianized M F C C + energy augmented wi th their delta and double delta coefficients. The 
analysis window had 20 ms wi th shift of 10 ms. P L D A model was trained w i t h 90 eigenvoices 
and 400 eigenchannels using mixer 04,05,06 and Switchboard telephone data [5]. 

The question is, how meaningful the comparison of the B B F and this reference system 
w i l l be? The B B F tra ining does not at a l l consider many problems, such as the channel 
variabili ty, so we can a pr ior i say, that this state-of-the-art system w i l l be better. We do 
not t ry to compare the actual results, but we want to show by the results of this reference 
system, how far we can go wi th performance today. 

A t the beginning of this work, we also wanted to t ry out a score fusion, after the results 
of the B B F system on the N I S T database have been available, but we had rejected to do 
so, after we have seen the actual results. 

4.2 TIMIT 

We repeated some experiments realized already i n [23]. We kept the same testing set and 
evaluation conditions. In case we obtain the same results, we w i l l be sure, that our system 
is properly implemented and the results given i n the literature are correct (we w i l l see, that 
they are). 

Further, we used this relatively smal l database to experiment w i th some parameters of 
our system wi th extraction t ime in mind . 

4.2.1 D a t a preprocess ing 

We should start w i th data preprocessing. Input signal is firstly transformed into frequency 
domain. Accord ing to [ ] and originally according to [ ], we use 20ms sl iding window 
over the input raw signal w i th a 10 ms shift to compute a 256-point D F T . We use one half 
of symmetric magnitude spectra. 

After that, we use energy-based V A D (Voice A c t i v i t y Detector) described in [15] to 
detect speech i n signal and discard other frames without useful information. For our ex­
periments, we used a distance of 30 d B from the m a x i m u m speech energy to set silence 
threshold. In [23], there is no remark about what V A D they are using, so we used simple 
energy based V A D described above. It is possible to use such simple detector, because the 
T I M I T contains clean and uniform data. 

4.2.2 Se tup 

We followed evaluation protocol i n [23] (first part originally described i n [22]). 

The 168 speakers (112 males, 56 females) from the „ t e s t " por t ion of the T I M I T 
database were used as clients. For each speaker, the 2 sa sentences, 3 si sentences 
and first 3 sx sentences were used for t ra ining and the remaining 2 sx sentences 
for testing. 
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For t ra ining a client classifier i n the B B F system, i.e. to select the binary 
features using the AdaBoos t algori thm, the positive (client, '1') t raining samples 
were extracted from the client t raining data, while the negative (impostor, '0') 
samples were extracted from a set of 250 utterances randomly selected from the 
„ t r a i n " por t ion of the T I M I T database (177 males and 73 females). 

4.2.3 Resu l t s 

The results that we obtained wi th our B B F system on the T I M I T are presented here. 
They are a bit worse than the results i n [23], probably because we used an approximation 
described in Section 3.3.1 to speed-up computat ion. If not stated otherwise, we used Nthd = 
40 for a l l computations (the value was chosen experimentally). Th is way, we could learn 
quickly about the B B F system behavior under other different conditions, without a need 
for a bigger computer. 

We tr ied to evaluate our B B F system without Nthd l imi ta t ion and the results were 
slightly worse than the results i n [ ]. Th is is probably because we used different V A D . 

Input data dimension 

A s an answer to questions from the Section 3.3 (Open questions), we present the B B F 
system behavior for different input data dimensions in F i g . 4.1. The 20 ms window of the 
S T F T was used for a l l experiments and we altered the frequency resolution by changing 
the N F F T parameter (see Section 3.3.2). Th is resulted i n information loss, but the number 
of t raining frames for the AdaBoos t remained the same. We give rough t ra ining times for 
these settings in section „Cl ien t model t ra ining t ime". 

A s stated i n Section 3.3.2, we can change the frequency resolution also without losing 
any information, by resizing the S T F T sl iding window. The results obtained wi th this 
preprocessing stage are i n F i g . 4.2. 

The reference G M M - U B M system (see Section 4.1.1) w i th the same preprocessing stage 
achieved for this task performance of 0.55% E E R . This is better, compared to our best B B F 
system (with 512 features and using input data dimension of 128 and Nthd = 40), but note, 
that we used for this evaluation just an approximation of complete B B F system from [23] 
(see Section 3.3). W i t h the full system (i.e. w i t h system not l imi ted by Nthd), they achieve 
E E R of 0.31% on the same task. 

Client model training time 

This t ime depends mainly on input data dimensionality, then on the t ra ining data size, 
N$*, Nthd and of course on the C P U speed. Table 4.1 is just for a notion here. It is based 
on our M A T L A B implementat ion that ran on the I n t e l ® C o r e ™ 2 Duo C P U E8200 @ 
2.66GHz processor. 

Compared to the reference G M M - U B M system, t ra ining is much more t ime consum­
ing for the B B F system, because it can not use adaptat ion and every client has to be 
trained separately. It is like using the G M M for speaker modeling without the U B M M A P 
adaptation. 

For an accurate analysis of computat ional complexity of the testing stage, compared to 
an evaluation of the G M M model, see section 5.6.2 i n [23]. 

17 



Input data Feature set T i m e to extract T i m e total 
dimension size (N$) a feature [s] (Nf = 512) [min] 
32 992 1.53 14 
64 4032 4.41 38 
96 9120 10.65 91 
128 16256 18.00 154 

Table 4.1: B B F system tra ining time 

Client model size 

We summarize some interesting facts related to speaker modeling here-c l ien t model size 
and i n the next section client model t ra ining time. We show these properties to fully 
compare systems o n l y - t h e y are not the main objective today. The t ra ining is done offline 
and the disk storage is not an issue any longer. 

For the B B F system, to achieve performance presented i n this chapter, we need to 
know parameters for a l l 512 features. Tha t is two integer frequency indices ( 4 B each), the 
threshold ( 8 B ) and the feature weight ( 8 B ) . It is 12.228 k B in total for the B B F system. 

For the G M M - U B M system modeling, we need to store component weights (128), means 
(128 x 20) and covariance matrices (128 x 20). It is 41.984 k B in to ta l for the G M M - U B M 1 . 

N u m b e r of candidate thresholds 

A s we note i n Section 3.3, throughout our work, we do not use the whole candidate threshold 
set for feature selection i n our experiments. To speed-up computat ion, we use only a subset 
of i t . Th is yields a question, how big error we suffer w i th given Nthd^ Intuitively, we can 
say, that using larger amount of possible thresholds leads to a quicker boosting convergence, 
because we use „ s t r o n g e r " weak classifiers. So the other interesting question is, how much 
this convergence relates to Nthd- We performed several evaluations concerning this question, 
so we could exploit this knowledge i n the future. The results are shown i n F i g . 4.3 and 4.4. 

A s we can see from F i g . 4.3, surprisingly, the actual value of Nthd has a minor effect 
on system accuracy. The difference i n accuracy for Nthd = 10 and the full set (about 2000 
thresholds on average) seems to disappear after we have extracted enough features. 

The next question arises: How is this possible? We think, that even we get much smaller 
number of possible weak classifiers by lowering Nthdi we s t i l l get a bunch of good classifiers 
usable (imagine selecting a m a x i m u m value from a set of 1000 numbers w i th a Gaussian 
dis tr ibut ion and from a set of 100000 numbers w i th the same dis t r ibut ion - you w i l l get 
very similar results). 

This is an important information, because we can set Nthd to some smal l value and 
rapidly accelerate the feature selection process, without a significant performance loss. 

We show results for a very low values of Nthd i n F i g . 4.4. We can see, that by low­
ering Nthd to very low values i n order of units, the accuracy drops (boosting convergence 
decelerates). 

Note that this topic surely deserves more investigation. 

1 If we used only 32 mixture components (thus lowering the client model disk footprint to be equal that 
of B B F system —> 10.624kB), we would obtain performance EER=1.19%. 
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i V $ * - N u m b e r o f s e l e c t e d f e a t u r e s 

Figure 4.1: B B F system performance wi th respect to input data dimensionality and number 
of selected features iV<j>*. Dimensional i ty was altered (with information loss) by changing 
the N F F T parameter only, w i th the same window size of 20ms (320 samples). The results 
for full BBF system are taken from [23]. 

16 32 48 64 80 96 112 128 
i V $ * - N u m b e r o f s e l e c t e d f e a t u r e s 

Figure 4.2: B B F system performance wi th respect to input data dimensionality and number 
of selected features iV<j>*. Dimensional i ty was altered (without information loss) by changing 
the S T F T window size. The last curve is our pr imary B B F system for reference, where the 
window was 20 ms (320 samples) and N F F T = 2 5 6 . 
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Figure 4.4: B B F system performance wi th low values of N^d- The N F F T was set to 128 
in this case. 

16 (2kHz) 32 (4kHz) 48 (6kHz) 64 (8kHz) 32 (2kHz) 64 (4kHz) 96 (6kHz) 128 (8kHz) 
Firs t frequency index Fi rs t frequency index 

Figure 4.5: Dis t r ibu t ion of selected features for N F F T = 1 2 8 and N F F T = 2 5 6 . Features of 
al l clients were pooled and counted for every frequency pair. Logar i thm of this number was 
taken. 
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Other results 

The feature dis t r ibut ion, as an interesting fact introduced i n [ ], is presented i n F i g . 4.5. 
In this figure we can see, how many features were selected for a given point in the $-space 
(there are two coordinates in $-space - the first and the second frequency index). There 
were 512 features extracted for each client. Two variants are presented for different N F F T 
settings. 

Note, that this is not a dis t r ibut ion of feature weights as i n [ ] on p. 79. In our case, 
the resulting weight dis t r ibut ion mat r ix (see F i g . 4.6) is rather flat, containing several 
(168) points w i th high average weight, that corresponds to the first selected features for 
each client. The weight dis t r ibut ion from p ] differs, probably due to different computing 
procedure. 

32 (2kHz) 64 (4kHz) 96 (6kHz) 128 (8kHz) 
F i r s t frequency index 

Figure 4.6: Dis t r ibu t ion of selected feature weights. Features of a l l clients were pooled and 
expected feature weights for a given frequency pair were computed, logio of this number 
was taken. 
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Figure 4.7: His togram of thresholds of selected features. Indiv idual thresholds ranges from 
-5 to 7 i n the x-axis, but they are too sparse to be seen in the main histogram. 
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There is also a dis t r ibut ion (a histogram) of thresholds of selected features i n F i g . 4.7. 
The number of candidate thresholds was not l imi ted by Nthd i n this case 2 . 

We can see, that most of the threshold values lies somewhere around zero. This is 
because the input data magnitude has a large dynamic range. We should mention the 
statistics of input data to compare threshold values wi th , now. The world set (background 
model) had maximum, min imum, mean and standard deviat ion equal to 13.9, 2 x 1 0 - 8 , 
0.06 and 0.14 respectively. Parameter settings of feature extractor for this part icular results 
were: N^d = full set, NFFT = 64, window = 20 ms. 

4.3 NIST SRE 2010 

A s proposed i n [23], we performed evaluation of the B B F system on the N I S T S R E database. 
To our knowledge, the B B F speaker recognition system has been tested so far on clean 
speech ( T I M I T ) , synthetic noisy databases ( N T I M I T , H T I M I T and X M 2 V T S & Noisex-
92, where each evaluation used clean speech for training) and the M O B I O database. The 
M O B I O database was created as a part of the Mob i l e B iomet ry ( M O B I O ) project 3 . The 
M O B I O Phase I database consists of speech data collected at 6 different sites from 152 
people using a N o k i a N93i mobile phone [23]. 

In this section we present the results we have obtained on the N I S T database. 

4.3.1 E x p e r i m e n t a l setup 

A l l the input data was sampled at 8 k H z , so we decided to use 128-point Fourier transform 
and 20 ms window. The shift was set to a half of the window. A s a consequence of what 
we have wri t ten i n Section 3.3.2 about frequency resolution, the frequency resolution was 
the same as for experiments on T I M I T . 

The B B F system was the same as in previous experiments. We also tr ied a different 
V A D i n the preprocessing stage - phoneme recognizer-based segmentation available from 
the B U T speech research group speech@fit. Descr ipt ion of this V A D can be found i n [5]. In 
short, it is a phoneme recognizer, where a l l phoneme classes are l inked to the speech class. 
After this labeling, it uses energy based post-processing. 

We used the female subset of the core - condition 5 subset from the N I S T S R E 2010 
as a t ra ining data (one two-channel telephone conversational excerpt, of approximately 
five minutes total durat ion [19]). We chose the female subset, because females should be 
generally harder to recognize [6]. 

A subset of NBG female speakers from the N I S T S R E 2008 short2 t ra ining condit ion 
was used as the background set. 

After we had obtained very poor results on a prel iminary subset of 128 speakers, we 
tr ied to alter some system variables, but w i t h no luck. Table 4.2 describes these variables 
and their symbols, that are used later i n results. 

4.3.2 Resu l t s 

The results, that were produced on prel iminary subset of 128 speakers (with a l l modifica­
tions we have tried), are summarized i n Table 4.3. The results of our B B F implementation, 

2Although, when limited to Nthd = 40, the results were similar. 
3http://www.mobioproject.org 
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Symbol Description 

Nthd Number of candidate thresholds, (see Sec. 3.3.1) 
Number of background speakers, (see Sec. 3.3.3) 

•^bg frames Number of frames used for each background speaker. We used N^gframes 
to subsample background speaker data to ensure speaker var iabi l i ty and 
reasonable amount of data. 

xno rm Normalize input signal by its absolute m a x i m u m before preprocessing. We 
tr ied to normalize different speech levels on the input by setting the xnorm 
system parameter. 

V A D n This indicates that the simple energy-based V A D was used wi th silence to 
m a x i m u m energy distance n d B . Otherwise, phoneme based V A D described 
in 4.3.1 was used. 

Table 4.2: The B B F system parameters for N I S T database prel iminary evaluation 

i n comparison wi th state-of-the-art systems, are very bad. The reference state-of-the-art 
system achieved E E R of 3.57% [ ] on the whole female subset of the N I S T S R E 2010 con­
di t ion 5. O n the other hand, simple G M M - U B M system, as used for T I M I T experiments, 
performed s imilar ly to our B B F system. 

Because we did not find a way, how to improve the system performance on 
this subset at least to some reasonable level, we did not attempt to get results 
from the whole female subset. 

A s we can see from Table 4.3, the most influential variable for these experiments was 
V A D . The more benevolent we were wi th the distance of m a x i m u m signal energy to silence, 
the more the system performance decreased. This is clear, but w i th the settings, that has 
shown to be the best i n our experiments (energy-based V A D wi th threshold 15 d B ) , we use 
only a fraction of available speech (only some vowels probably, because they have higher 
energies) and just lose valuable information this way. O n the other hand, i f we used more 
frames, the results were not better, perhaps because of added noise. Behavior of different 
V A D settings that we have used is demonstrated on a short utterance from the t ra ining set 
in F i g . 4.8. 

We tr ied to par t i t ion the t ra ining data to be the same size and balance as the data from 
T I M I T from previous chapter (24 s of speech for client enrollment and target to non-target 
data ratio of 3.2%). This case is labeled as „ t imi t l i ke" i n the results. 

A l though the output scores of B B F strong classifiers should be normalized on its own 
(as a consequence of E q . 3.1), we present some z-normalized scores of our B B F system 
in the results. These are labeled as z-norm in Table 4.3. Normal iza t ion coefficients were 
estimated from a set of 32 cohort speakers, and cohort set was the same for a l l the clients. 

4.3.3 Fea ture weight m a s k i n g 

The dis t r ibut ion of features selected for the B tests (see Table 4.3) is shown together w i th 
feature dis t r ibut ion obtained on T I M I T in F i g . 4.9. There are some new noticeable regions 
wi th high occurrence of selected features. These regions are encircled. We assume, that 
these are regions of channel features and noise features. 

One could propose to use „ c o r r e c t " feature dis t r ibut ion obtained on the T I M I T clean 
database to re-weight feature weights of features extracted from unclean N I S T utterances. 
This way, it would be possible to eliminate the influence of channel and noise features, 

23 



i.e. the features, that were selected unintentionally by the AdaBoos t on unclean training 
data. Likewise, this „ m a s k i n g " would amplify weights of features, that are in regions of the 
<£-space, where there were a lot of features selected for speakers on clean T I M I T speech. It 
could be thought as something like „feature- level noise/channel-effect cancellation". 

The question is, i f it is possible to just re-weight non-linearly the feature weights and i f 
this would be beneficial. We leave this topic open in this work. 

energy (15dB) -- nn inn n nnn n i n i L ii 
energy (20dB) -- nnf II inn i II i n i iw 1 1 ir in nnn 
energy (25dB) - i i i i n n r ' T " mn n 

phoneme (30dB) - ii 11 i 
4 

Time [s] 

4 
Time [s] 

Figure 4.8: Different voice act ivi ty detectors we used for the N I S T dataset. The first three 
are simple energy-based detectors w i th different thresholds and the th i rd one is phoneme-
based detector described i n Section 4.3.1 

Figure 4.9: Dis t r ibu t ion of features extracted on clean speech (on the left, T I M I T , males 
and females) and on noisy t ra ining data wi th channel var iabi l i ty (on the right, N I S T S R E 
2010, telephone speech, females). The main differences are highlighted. 
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test group % E E R V A D ^bg frames Nthd xnorm additional 
36.03 15 64 400 1000 40 yes 

A 35.67 15 128 400 1000 40 z-norm 
35.22 15 128 400 1000 40 

38.04 20 32 300 800 20 yes 
37.51 20 64 300 800 20 yes 
36.73 20 96 300 800 20 yes 
36.44 20 128 300 800 20 yes 
36.71 20 160 300 800 20 yes 

B 36.20 20 192 300 800 20 yes 
35.86 20 256 300 800 20 yes 
36.08 20 288 300 800 20 yes 
36.27 20 320 300 800 20 yes 
35.95 20 352 300 800 20 yes 
36.08 20 384 300 800 20 yes 
37.67 20 384 300 800 20 yes z-norm 

39.82 phn 64 300 1000 40 
40.14 phn 64 250 1000 40 yes 

C 40.41 phn 128 250 1000 40 yes 
40.40 phn 192 250 1000 40 yes 
40.04 phn 256 250 1000 40 yes 

39.99 phn 32 250 1000 20 yes W I N = N F F T = 1 2 8 
40.32 phn 64 250 1000 20 yes W I N = N F F T = 1 2 8 

U 
39.70 phn 96 250 1000 20 yes W I N = N F F T = 1 2 8 
39.65 phn 128 250 1000 20 yes W I N = N F F T = 1 2 8 

41.03 phn 32 250 1000 20 W I N = N F F T = 1 2 8 
E 39.71 phn 64 250 1000 20 W I N = N F F T = 1 2 8 

39.80 phn 96 250 1000 20 W I N = N F F T = 1 2 8 

41.95 phn 128 250 300 80 t imi t l ike 
F 40.41 phn 259 250 300 80 t imi t l ike 

41.35 phn 323 250 300 80 t imi t l ike 

i V e c + P L D A 3.57 phn - - - - -
reference 
G M M - U B M 36.30 15 - 250 1000 - yes 
reference 

Table 4.3: The B B F system performance for different settings of parameters on the 
N I S T S R E 2010 subset of 128 females. Reference systems are described i n Section 4.1.2. 
i V e c + P L D A reference system was evaluated on the full female subset. 
Test group labels A - F are there for later referring and they have no other meaning. 
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4.4 Results and discussion 

Our implementat ion of the B B F system was evaluated on two different databases. Let ' s re­
capitulate a l l the results i n this section. 

4.4.1 E x p e r i m e n t s o n the T I M I T 

From the results obtained on the T I M I T database, we can see that the B B F system really 
is comparable wi th classical approaches and feature extraction techniques ( M F C C G M M -
U B M i n this case) on clean speech. It has been shown in Sec. 4.2, that both systems have 
its own pros & cons and al l these properties should be considered before looking at the 
E E R s we give, because they are really not an absolute measure (we could use 512 mixture 
components i n the G M M , instead of 128, for example). 

A s an interesting fact, we would like to highlight the result from Sec. 4.2.3, i.e. the 
finding, that we do not have to consider the whole set of candidate thresholds, when selecting 
the best feature i n each AdaBoos t i teration, and thus speed-up the feature extraction 
process. 

4.4.2 E x p e r i m e n t s o n the N I S T S R E d a t a 

The results obtained on the N I S T S R E 2010 core condit ion 5 were not as good because the 
t ra ining data was much harder. We t ry to discuss this problem here. We think that it has 
several reasons. 

1. The B B F system does not consider channel effects at a l l , but the t ra ining contains 
this variabil i ty. So the AdaBoos t probably selected also a „channe l features" rather 
than characteristic features of speakers. Phones and channels used to record speech 
in the background set were different to enrollment phones and channels. Th is is a big 
mismatch. The part icular selection of the background set could be also the reason. 

2. The amount of the t ra ining data and noise presence caused the AdaBoos t to over-fit 
the noisy frames. The AdaBoos t noise over-fitting problem is known already [' ][ ] 
and so the next logical step could be to t ry out to incorporate some more robust 
boosting algori thm. We suggest concrete directions i n the following chapter. 

3. The t ra ining set was imbalanced. This was not investigated further i n this work. 
Maybe it is not a problem at a l l . 

A l though the B B F system was much worse, than the state-of-the-art reference system, 
simple G M M - U B M system achieved similar results. Th is is because these simple systems 
do not consider channel effects and noise. It is interesting, from our point of view, that 
both B B F and G M M - U B M again achieved similar results. 
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Chapter 5 

Conclusions and future work 

The B B F technique for feature extraction and speaker modeling was investigated in this 
work. We confirm the results given i n the original paper [23] and we present some new 
results, ideas and propositions. A s proposed i n [23], the B B F system was evaluated on the 
N I S T S R E data, which was also the main goal of this work - objectively compare classical 
feature extraction techniques wi th the system based on computer graphics features. 

The results of this evaluation are not very optimist ic, but this could be expected, due 
to the s implic i ty of the classifier and difficult evaluation data. Performance of simple 
G M M - U B M and our B B F system was similar, which means, again, that the M F C C and 
B B F features are comparable. The main problem wi th B B F is, that there are no t raining 
methods available so far, that consider channel/speaker var iabi l i ty and/or noise in t raining 
data. So, it w i l l be always worse, than advanced systems wi th this knowledge, on such 
data. This does not mean, that the B B F system is not worthy of further interest. There 
are applications and scenarios, like mobile biometry, where it is proven to work finely and 
wi th many advantages over other methods (simplicity, quick score computat ion, robustness 
to unknown noise). Wel l , it was designed for this task. 

5.1 Future work 

There are many possibilities, how to continue on this topic. D u r i n g our work, we have 
encountered several problems. We think that these problems deserves more attention and 
time, we had not had. 

We briefly touched the topic of phonetic class-specific modeling (something similar to 
phoneme-specific G M M from [ ]), that we have not documented i n this paper. The idea 
behind this is, that speaker features extracted from, for example vowels, uses total ly differ­
ent frequency regions, opposed to consonants. If we have divided speech into these classes 
before t ra ining and testing, we could benefit from better accuracy. 

Previous direction was short term, i.e. straightforward and quick to t ry out and test. 
W h a t would be more complicated, but very interesting, is to exploit the information about 
feature dis t r ibut ion (see F i g . 4.5) i n some way. In Section 4.3.3, we propose an idea, how to 
enhance features extracted from unclean data by re-weighting their feature weights. This 
is an example of such exploit. 

It could be useful, to somehow improve the boosting process itself, for example using 
the Tota l ly Corrective AdaBoos t [' ] or incorporate boosting algorithms more appropriate 
for noisy data like the BrownBoos t [9]. 
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Appendix A 

Implementation details 

We used the M A T L A B ® for a l l computations and B B F system implementation. A l l the 
source code, results, figures etc. is available on the attached C D - R O M . 

A . l Directory structure 

Here we highlight only something from the C D - R O M contents (we omit the libraries and 
less important files): 

{TIMIT | srelO>_eval/ T I M I T and N I S T specific evaluation code 

scores/ evaluation scores in B O S A R I S friendly format 
bbf . m extractor of B B F features 
constants .m system parameters can be altered here 
*. sh Sun G r i d Engine shell scripts for parallel task management 

l i b / code for data preprocessing and the AdaBoos t implementat ion 
tex/ WFgfi. source code for this paper 

f i g s / several .eps figures used i n this text and scripts for its creation 
gmm-ubm/ G M M - U B M implementat ion for T I M I T data 
ubm_srelO_eval/ G M M - U B M implementat ion for N I S T S R E data 

A.2 How to use it? 

The main objective for us were the results, and how to get them quickly. So we apologize 
for d i r ty and messy code, w i th only a l i t t le documentation. Also , there is nothing like 
graphical front-end. Every th ing is done by cal l ing scripts from command line. Here, we 
would like to provide a smal l programming guide, at least to allow others to repeat the 
experiments. 

Fi rs t thing to do is to set paths correctly. Paths are defined for different datasets in 
files constants .m. Loca t ion of the T I M I T database is defined i n TIMIT_eval/submit. sh 
as an environment variable TPATH. This variable must be set before running any script 
from the TIMIT_eval/ directory. P a t h definitions for N I S T data should be altered in 
srelO_eval/constants.m. 

The root directory for t ra ining outputs (extracted features and cache) is defined in the 
variable savedir. The outputs for different parameter settings are stored in subdirectories 
called after the i d s t r i n g variable (this variable is created automatical ly from current 
settings). 
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The AdaBoos t a lgori thm is implemented i n two files: lib/AB_train.m and 
lib/AB_step.m. The main function AB_train(data, labels, n i t e r , savefile, nthd) 
is called from the main t ra ining script bbf .m. If savefile exists, it is loaded and the train­
ing continues, where it has stopped previously (this can be altered by setting continue_train 
variable). The extracted features are being saved together w i th a big vector of sample 
weights to make this possible. 

For T I M I T , you can use eval_preproc .m for score generation of actual parameter 
settings or eval_NfDepend.m to generate results like from F i g . 4.1. For the N I S T database, 
use score_subset .m for score generation of actual parameter settings. The subset of 128 
females we use i n this work is defined i n file subsetl0c05f_key.txt. 

Scores can be processed using the B O S A R I S Toolki t or the N I S T evaluation tools. 
We used the Sun G r i d Engine ( S G E ) environment for parallel feature extraction. Shell 

script submit. sh can be used to submit array job to gr id and t ra in a l l the models defined 
in c l i e n t s _ i d s . t x t for T I M I T and i n subsetl0c05f_clients.txt for N I S T data. 

There are some helper scripts that w i l l output summary of feature extraction so far. 
lib/desc_f eas .m should output a list of features already extracted in the format „ ids t r ing 
number-of-selected-features". ccat.m outputs detailed information about features already 
selected for current parameter settings. 

A.3 Libraries and toolkits used 

This is a complete list of second party software used in our work. A l l is freely available on 
the Internet. 

• V O I C E B O X 1 - S p e e c h Processing Toolbox for M A T L A B 

• B O S A R I S Too lk i t 2 - M A T L A B code for calibrating, fusing and evaluating scores 
from (automatic) binary classifiers 

• N e t l a b 3 - N e t l a b Neura l Network Software from A s t o n Univers i ty 

• M a t l a b A D T 4 - M A T L A B A u d i o Database Toolki t enables easy access and filtering 
of audio databases such as T I M I T and Y O H O by their metadata 

• N I S T valuation tools 5 

• Useful M a t l a b Functions for Speaker Recognition Us ing A d a p t e d G M M 6 

by M d Sahidul lah (requires Netlab) 

• I K R course demos 7 

1http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html  
2 h t t p : / / s i t e s . g o o g l e . c o m / s i t e / b o s a r i s t o o l k i t / 
3http://wwwl.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/ 
4http://www.mathworks.com/matlabcentral/fileexchange/23843-matlab-audio-database-toolbox  
5http://www.itl.nist.gov/iad/mig//tools/ 
6http://www.mathworks.com/matlabcentral/fileexchange/31678-useful-matlab-functions-f or-

speaker-recognition-using-adapted-gaussian-mixture-model 
7http://www.fit.vutbr.cz/study/courses/IKR/public/demos/ 
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