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Abstract
This thesis focuses on a mathematical model for a three-body space robot with the objective
of reconfiguring its structure using only internal joint torques. The aim is to minimize fuel
consumption and achieve efficient reconfiguration without relying on external actuators. The
system exhibits one holonomic and non-holonomic constraint, making the analysis and control
design challenging. To address the complexity of the non-holonomic system, the local behavior is
studied through the nilpotent approximation. The thesis emphasizes understanding the nilpotent
approximation and constructing nilpotent system of the space robot using algebraic coordinates,
along with transforming them into exponential coordinates within the Maple environment.

Keywords
Keywords: Three-body Space Robot, Non-Holonomic System, Nilpotent System, Nilpotent Approx-
imation, Algebraic Coordinates, Exponential Coordinates

Ramasubramaniyan, S.: Geometric Control of Non-Holonomic Systems, Brno University of Tech-
nology, Faculty of Mechanical Engineering, 2023. 71 pp. Supervisor: Mgr. et Mgr. Aleš Návrat,
Ph.D.





I declare that I wrote the diploma thesis Geometric Control of Non-Holonomic Systems independently
under the guidance of Mgr. et Mgr. Aleš Návrat, Ph.D. using the literature included in the list of
references.

Sri Ram Prasath Ramasubramaniyan





I am deeply grateful to my Appa, Amma, and Anna for their unwavering support, continuous
encouragement, love, and belief in me have been my driving force. I extend my heartfelt thanks
to my supervisor for his patience, expertise, and guidance, which have been instrumental in my
academic growth. His dedication and the invaluable feedback have shaped the outcome of this
thesis. Sri Ram Prasath Ramasubramaniyan





Contents 13

Contents

1 Introduction 15

2 Basics of Differential Geometry and Lie Algebra 17
2.1 Differential Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Sub-Riemannian Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Lie Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Flow of the vector field . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Non-Holonomic System 25
3.1 Introduction to Control theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Non Holonomic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Non-holonomic System . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Non-holonomic constraints . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.3 Examples of non-holonomic systems . . . . . . . . . . . . . . . . . . . . 29

3.3 Sub-Riemannian Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 Sub-Riemannian Distance . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Distribution in Non-Holonomic System . . . . . . . . . . . . . . . . . . . 31
3.3.3 Growth Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.4 Adapted Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Reachability in Non-holonomic system . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.1 Chow’s Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.2 Chow-Rashevsky’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Nilpotent Systems and Exponential Coordinates 40
4.1 Nilpotent Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Exponential coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Exponential Coordinate of the First Kind . . . . . . . . . . . . . . . . . 41
4.2.2 Exponential Coordinate of the Second Kind . . . . . . . . . . . . . . . . 48

5 Approximation Theory 52
5.1 Non-Holonomic Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.1 Non-Holonomic order of a function . . . . . . . . . . . . . . . . . . . . 52
5.1.2 Non-Holonomic order of Vector fields . . . . . . . . . . . . . . . . . . . 53

5.2 Privileged Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.1 Algebraic Coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 First Order Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Nilpotent Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Nilpotent Approximation of 3-body Space robot 62
6.1 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2.2 Rotation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2.3 Conservation of Linear Momentum . . . . . . . . . . . . . . . . . . . . . 64
6.2.4 Conservation of angular momentum . . . . . . . . . . . . . . . . . . . . 64
6.2.5 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



14 Contents

6.3 Nilpotent Approximation of the Space Robot . . . . . . . . . . . . . . . . . . . 66
6.3.1 Nilpotent Approximation in Maple . . . . . . . . . . . . . . . . . . . . . 66
6.3.2 Exponential First Kind Coordinate . . . . . . . . . . . . . . . . . . . . . 67
6.3.3 Exponential Second Kind Coordinate . . . . . . . . . . . . . . . . . . . 68

7 Conclusion 69



1 Introduction 15

1 Introduction

The control of nonholonomic systems, such as car parking, robot-trailer systems, poses significant
challenges due to their non-integrable constraints. Nonholonomic systems are characterized
by kinematic constraints that limit their feasible motions, making traditional control techniques
insufficient. To address these challenges, various approaches have been proposed, including
differential-geometric methods and the use of nilpotent approximation.

The differential-geometric approach has proven to be one of the most effective techniques for
studying and controlling nonholonomic systems [12, 19]. By leveraging the geometric properties
of the systems, this approach provides valuable insights into their control behavior. Geometric
control theory, pioneered by Godbillon [15], Abraham and Marsden [2], and Arnol’d [9], has
laid the foundation for understanding the geometrization of mechanical and control systems.
Subsequent works by Nijmeijer and van der Schaft [23], Jurdjevic [18], and Agrachev and Sachkov
[4] have further extended the geometric principles to control theory, offering valuable insights
into the controllability and stabilization of nonlinear systems.

Murray and Sastry [22] investigated the use of trigonometric controls for nonholonomic
systems, specifically those transformable into a chain form. Their work demonstrated the benefits
of trigonometric controls in achieving desired system behaviors. Building upon this, Tilbury et al.
[27] proposed trajectory generation methods for the n-trailer problem using Goursat normal form.
They showed how trigonometric controls can be employed to move a system along all coordinates
simultaneously, facilitating precise control.

Nilpotent systems represent another class of control systems for which exact solutions can be
found. A nilpotent system is defined by the property that the Lie brackets of its control vector fields
become zero after a certain bracket length [20]. The nilpotent approximation method, introduced
by Bellaïche et al. [10], enables the transformation of a general nonholonomic system into a
nilpotent approximating system. By applying the Baker-Campbell-Hausdorff formula, admissible
piecewise constant controls can be calculated to precisely steer the nonholonomic system to the
desired final state [7]. The nilpotent approximation retains the essential properties of the original
system while simplifying its control. This thesis aims to investigate the approximation of 3D space
robots with kinematic constraints

In recent years, several significant contributions have advanced the field of control for non-
holonomic systems. Ardentov and Sachkov [7] proposed a method for controlling mobile robots
with trailers based on the construction of a nilpotent approximation. Their work demonstrated
the effectiveness of the nilpotent approximation approach in simplifying the control of nonholo-
nomic systems. By preserving the important properties of the original system, the nilpotent
approximation provides an efficient means to solve the control problem.

The differential-geometric approach has been widely adopted in the control of nonholonomic
systems. Chitour et al. [12] introduced a global steering method for nonholonomic systems
based on geometric techniques. By exploiting the underlying geometric structure, their approach
allows for effective control design and trajectory planning. Kushner et al. [19] developed contact
geometry and nonlinear differential equations, providing a comprehensive understanding of the
geometric principles applicable to control systems.

In the context of optimal control, Fernandes et al. [14] presented a variational approach to
optimal nonholonomic motion planning. Their method involved expanding the control function in
a Fourier series and truncating the series to a certain order. The resulting solution approximated
the optimal control as the truncation order increased. Agrachev and Sachkov [5] developed
invariant geometric methods for solving optimal control problems on Lie groups. These techniques
leverage the geometric structure of the control system to derive optimal control laws.

Thesis Overview:
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This thesis provides an in-depth exploration of non-holonomic systems and their analysis
using differential geometry, Lie algebra, and approximation techniques. The main objective is to
understand the behavior of constrained mechanical systems and develop effective approximation
methods.

The thesis begins with an introduction that sets the stage for the research, emphasizing the
importance and motivation behind the study. It outlines the research objectives and highlights
the contributions of the thesis.

Chapter 2 focuses on the basics of differential geometry and Lie algebra. It covers essential
concepts such as manifolds, with a particular emphasis on sub-Riemannian manifolds. The chapter
provides an overview of Lie algebra and discusses the flow of vector fields.

Chapter 3 introduces non-holonomic systems and their connection to control theory. It starts
with an introduction to control theory and then delves into the characteristics of non-holonomic
systems, including their constraints and examples. The chapter also explores the application of sub-
Riemannian geometry in the context of non-holonomic systems, discussing the sub-Riemannian
distance, distribution, growth vector, and adapted frames. Additionally, reachability in non-
holonomic systems is examined, encompassing Chow’s Condition and Chow-Rashevsky’s theorem.

In Chapter 4, the focus shifts to nilpotent systems and exponential coordinates. The chapter
introduces exponential coordinates, both of the first and second kinds, along with their significance
in the analysis of these systems.

Chapter 5 delves into approximation theory specifically tailored for non-holonomic systems. The
concept of non-holonomic order for functions and vector fields is discussed, laying the foundation
for studying approximation techniques. Privileged coordinates, such as algebraic coordinates,
are introduced as valuable tools. The chapter also covers first-order approximation techniques
and introduces the concept of nilpotent approximation, a powerful tool for approximating non-
holonomic systems.

In the concluding chapter, Chapter 6, we apply the concepts and techniques established in the
preceding chapters to examine a specific case study involving a 3-body space robot. We begin by
setting up the model and presenting the mathematical representation of the space robot, taking
into account the essential assumptions. Then we focus on the transformation of vector fields from
their original coordinate system to a privileged coordinate system. This crucial conversion enables
us to advance our analysis by employing the powerful tool of nilpotent approximation. Within
this framework, we extensively explore the process of transforming the nilpotent system into
exponential coordinate transformations, encompassing both the first and second kinds. Through
this meticulous investigation, we gain insights into the local behavior of the space robot.

In summary, this thesis provides a comprehensive examination of differential geometry, Lie
algebra, and control theory in the context of non-holonomic systems. It investigates the application
of approximation techniques and their relevance in understanding the behavior of constrained
mechanical systems. The thesis contributes to the field by offering insights into the analysis and
approximation of complex mechanical systems, illustrated through the case study of a 3-body
space robot.
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2 Basics of Differential Geometry and Lie Algebra

Differential geometry is a field of mathematics that employs calculus and analysis to study the
properties of curves, surfaces, and other geometric objects under small changes. Given its wide-
ranging applications, this topic encompasses numerous definitions and theorems.

This thesis aims to contribute to the understanding of differential geometry by providing
definitions and theorems relevant to our work. Furthermore, [24], [13], [17], [3] provide detailed
descriptions of differential geometry andNon-holonomic systems to offer a comprehensive overview
of the subject matter. We will start with basic definitions in calculus and analysis.

2.1 Differential Geometry

Given that the readers of this thesis are assumed to have a basic understanding of sets and
functions, we can proceed with introducing some relevant definitions and concepts.

Given that all functions utilized in this thesis are real-valued function, henceforth they shall be
referred to as function.

Tangent vectors and tangent space:

Definition 2.1. Let 𝑓 be a differentiable function on ℝ𝑛, and let 𝑣 be any vector (direction) on
ℝ𝑛. Then the derivative of 𝑓 with respect to 𝑣 at 𝑝 [24] is defined as

𝑣𝑝 [𝑓 ] =
𝑑

𝑑𝑡
(𝑓 (𝑝 + 𝑡 .𝑣)) |𝑡=0 (2.1)

Basically, it defined as the rate of change of 𝑓 in the direction of 𝑣 at 𝑝. In the context of
Euclidean setting, this is referred to as the directional derivative. In a more general setting, such
as on a manifold, we call 𝑣𝑝 [𝑓 ] a tangent vector at 𝑝. If we consider a trajectory of an object, we
refer to it as a velocity vector.

Definition 2.2. Let 𝑝 be a point on ℝ𝑛. The set 𝑇𝑝ℝ𝑛 consisting of all tangent vectors that have 𝑝
as a point of application is called the tangent space of ℝ𝑛 at 𝑝 [24].

The tangent space captures the notion of the tangent vectors associated with a specific point on
the manifold. Understanding these mathematical concepts will provide the necessary foundation
for comprehending the subsequent discussions and analysis presented in this thesis.

Now, let’s proceed with the lemma and example [24].

Lemma 2.3. If 𝑣 is a vector in ℝ𝑛, then

𝑣𝑝 [𝑓 ] =
𝑛∑︁
𝑖=1

𝑣𝑖
𝜕𝑓

𝜕𝑥𝑖
(𝑝) (2.2)

This lemma states that the derivative of 𝑓 with respect to the vector 𝑣 at point 𝑝 can be
expressed as the sum of the products of the components of 𝑣 and the partial derivatives of 𝑓 with
respect to each coordinate 𝑥𝑖 evaluated at 𝑝.

To illustrate this concept, consider the following example.

Example 2.4. Let 𝑓 = 𝑥𝑦𝑧2, and the vector in ℝ3 is given by (1, 2, 4). We will compute the
directional derivative of 𝑓 at 𝑝 = (−1, 2, 1).
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First, we calculate the partial derivatives of 𝑓 :

𝜕𝑓

𝜕𝑥
= 𝑦𝑧2

𝜕𝑓

𝜕𝑦
= 𝑥𝑧2

𝜕𝑓

𝜕𝑧
= 2𝑥𝑦𝑧

Using the formula from the lemma, we can compute the directional derivative:

𝑣 [𝑓 ] = 1(𝑦𝑧2) + 2(𝑥𝑧2) + 4(2𝑥𝑦𝑧)
𝑣𝑝 [𝑓 ] = 1(2) + 2(−1) + 4(−4) = −16

This result tells us that, in particular, the function 𝑓 is initially decreasing as 𝑝 moves in the
direction of the vector 𝑣 .

These calculations demonstrate how the directional derivative can be computed using the
partial derivatives of the function. This understanding will be essential for further analysis and
applications in this thesis.

Tangent Map:

The tangent map allows us to analyze the behavior of mappings between tangent spaces and
explore the local properties of functions. We define tangent map as follows,

Definition 2.5. Let 𝑓 : ℝ𝑛 → ℝ𝑚 be a mapping. If 𝑣 is a tangent vector to ℝ𝑛 at 𝑝, let 𝑓 ∗(𝑣) be
the initial velocity of the curve 𝑡 → 𝑓 (𝑝 + 𝑡𝑣). The resulting function 𝑓 ∗ sends tangent vectors
from ℝ𝑛 to tangent vectors to ℝ𝑚, and is called the tangent map of 𝑓 .

Corollary 2.6. If 𝑓 : ℝ𝑛 → ℝ𝑚 is a mapping, then at each point 𝑝 of ℝ𝑛 the tangent map
𝑓∗𝑝 : 𝑇𝑝 (ℝ𝑛) → 𝑇𝑓 (𝑝) (ℝ𝑚) is a linear transformation.

The tangent map, denoted as 𝑓∗𝑝 , is a linear transformation that best approximates the behavior
of 𝑓 near the point 𝑝 [24]. The linearity of the tangent map enables us to study the differential
properties of functions, such as differentiability and smoothness, by analyzing the corresponding
linear transformations.

Inverse Mapping Theorem

And one of the fundamental theorems in differential geometry is the Inverse Mapping Theorem,
which establishes the existence of an inverse mapping for a continuously differentiable function in
a neighborhood of any point. This theorem provides important insights into the local properties
of smooth maps [24].

Theorem 2.7 (Inverse Mapping Theorem). Let Ω ⊂ ℝ𝑛 be an open set and 𝑓 : Ω → ℝ𝑛 be a
C𝑘 map, 𝑘 ≥ 1. If the Jacobian matrix 𝐷𝑓 (𝑥0) is invertible for 𝑥0 ∈ Ω, then there exists an open
neighborhood 𝑈 near 𝑥0 such that 𝑓 is a C𝑘 -diffeomorphism on 𝑈 .

The Inverse Mapping Theorem guarantees that if the derivative (Jacobian matrix) of a function
is invertible at a point, then the function is locally invertible around that point. Moreover, the
theorem asserts that the inverse function is also continuously differentiable.
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This theorem allows for the study of local properties of mappings, such as local invertibility
and smoothness, which are crucial in understanding manifold structures and transformations
between them. The Inverse Mapping Theorem serves as a foundational tool in differential
geometry, enabling the investigation of local behavior and providing a bridge between geometric
and algebraic aspects of functions.

2.1.1 Manifolds

A manifold is a fundamental concept in mathematics that plays a central role in various areas such
as differential geometry, topology, and physics. It provides a framework for studying spaces that
locally resemble Euclidean space but may have more complex global structures. Manifolds serve
as a foundation for understanding curved spaces, surfaces, and higher-dimensional geometries.
In simple terms, a manifold is a topological space that locally resembles Euclidean space. It can
have different dimensions, indicating the number of coordinates required to describe points on
the manifold. For example, a surface like a sphere or torus is a two-dimensional manifold, while
three-dimensional space is a three-dimensional manifold.

Homeomorphisms and open sets:

The concept of "resembles" is formalized through homeomorphisms, which are one-to-one cor-
respondences between subsets of Euclidean spaces that preserve the topological structure. A
subset 𝑀 of ℝ𝑘 is locally Euclidean of dimension 𝑛 if each point in 𝑀 has a neighborhood that is
homeomorphic to an open ball in ℝ𝑛. In this thesis, we explore open sets and their relationship
with homeomorphisms. Specifically, we examine how local homeomorphisms can transform open
sets while preserving topological properties. These mappings provide a powerful tool for studying
functions and transformations in a topological setting.

Let 𝑓 : 𝑋 → 𝑌 be a homeomorphism between topological spaces 𝑋 and 𝑌 . Our goal is to
prove that for any open set 𝑈 in 𝑋 , the image set 𝑓 (𝑈 ) is open in 𝑌 .

Proof:
Given that 𝑓 is a homeomorphism, it is a continuous function. Thus, for any open set 𝑉 in 𝑌 ,

the pre-image 𝑓 −1(𝑉 ) is open in 𝑋 .
Let 𝑈 be an open set in 𝑋 . We aim to show that 𝑓 (𝑈 ) is open in 𝑌 . Consider the pre-image of

𝑓 (𝑈 ) in 𝑋 : 𝑓 −1(𝑓 (𝑈 )). Since 𝑓 is a bijection, we have 𝑓 −1(𝑓 (𝑈 )) = 𝑈 .
As 𝑈 is open in 𝑋 and 𝑓 is continuous, we conclude that 𝑓 (𝑈 ) = 𝑓 (𝑓 −1(𝑓 (𝑈 ))) is open in 𝑌 .

Thus, a homeomorphism maps open sets to open sets.
Furthermore, we can demonstrate that a homeomorphism preserves the topological properties

of the spaces involved. In particular, a homeomorphismmaintains properties such as connectedness,
compactness, and separation.

Coordinate chart, Atlas and Manifold:

To further develop our understanding, let’s introduce the concept of a coordinate chart.
Definition 2.8. (Chart) A coordinate chart on a set 𝑋 is a subset 𝑈 ⊆ 𝑋 together with a bijection
[26]

𝜙 : 𝑈 → 𝜙 (𝑈 ) ⊆ ℝ𝑛 (2.3)

onto an open set𝜙 (𝑈 ) inℝ𝑛. The coordinates of a point 𝑝 ∈ 𝑈 in this chart are just the coordinates
of 𝜙 (𝑝) = (𝑥1(𝑝), ..., 𝑥𝑛 (𝑝)) ∈ ℝ𝑛.
A coordinate chart is also called a local chart and denoted by (𝑈 ,𝜙), or (𝑈 ,𝜙;𝑥𝑖) or simply (𝑈 ;𝑥𝑖).
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In other words, each point is associated with a local set through a coordinate chart. However,
a single chart may not cover the entire space, necessitating the need to connect different charts
together and perform transformations between them.

Throughout this thesis, we will leverage the concepts of open sets and homeomorphisms
to establish connections, compare different charts, and derive insights about the underlying
mathematical structures. This approach will enable us to explore the properties of the spaces
under consideration and gain a deeper understanding of the topics at hand.

Definition 2.9. (Atlas) [26] An atlas on 𝑋 is a collection of coordinate charts {(𝑈𝛼 , 𝜙𝛼 )}𝛼∈𝐼 such
that

• X is covered by {𝑈𝛼 }𝛼∈𝐼
• for each 𝛼, 𝛽 ∈ 𝐼 , 𝜙𝛼 (𝑈𝛼 ∩𝑈𝛽) is open in ℝ𝑛

• for each 𝛼, 𝛽 ∈ 𝐼 , the transition map

𝑔𝛼𝛽 := 𝜙𝛽 ◦ 𝜙−1
𝛼 : 𝜙𝛼 (𝑈𝛼 ∩𝑈𝛽) → 𝜙𝛽 (𝑈𝛼 ∩𝑈𝛽)

is a smooth diffeomorphism.

An atlas on 𝑋 provides a collection of compatible charts that cover the entire space. When
two charts overlap on a common domain, we can use transition maps to switch between the
coordinate systems. These transition maps are smooth diffeomorphisms, ensuring the smoothness
of the manifold and allowing for a smooth transition between charts. A differentiable structure on
a manifold refers to a compatible atlas whose transition maps are smooth.

Definition 2.10. An 𝑛-dimensional differentiable manifold is a space 𝑋 with a differentiable
structure [26].

With a differentiable structure, we can define smooth functions, perform differential calculus,
and study differential equations on the manifold.

Examples of manifolds [11]:

Example 2.11. 1. The 2-dimensional sphere S2 = {𝑥 ∈ ℝ3 : |𝑥 | = 1}.
2. The real projective space ℙ𝑛 = {𝑛− dimensional subspaces of ℝ𝑛+1}.
3. Open subsets of a given manifold are called open manifolds, e.g., the general linear group

𝐺𝐿(𝑛) = {𝐴 ∈ 𝑀𝑛×𝑛 |𝑑𝑒𝑡 (𝐴) ≠ 0}

4. Rotation Matrix: Special Orthogonal Group 𝑆𝑂 (3)

𝑆𝑂 (3) = {𝐴 ∈ 𝑀3×3 |𝑑𝑒𝑡 (𝐴) = 1}

There are various types of manifolds, such as smooth manifolds, Riemannian manifolds, Sub-
Riemannian, symplectic manifolds, and algebraic manifolds. Each type has its own additional
structure and properties that make them suitable for studying specific mathematical and physical
phenomena.

Smooth manifolds:

A smoothmanifold is a particular type ofmanifold that possesses additional structure and regularity.
It is equippedwith a differentiable structure, allowing us to define smooth functions on themanifold
and perform differential calculus. The requirement of smoothness ensures that the transition maps
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between overlapping coordinate charts are themselves smooth, meaning they have derivatives of
all orders.

In addition to the differentiable structure, a smooth manifold introduces the concept of tangent
spaces at each point. These tangent spaces represent the set of all possible directions or velocities
in which one can move from a particular point on the manifold. They capture the local linear
behavior of the manifold near the point. The tangent space to a smooth manifold at a given point
is completely intrinsic to the manifold itself. It allows us to calculate distances in an intrinsic
manner by considering velocity vectors. In other words, to define a metric (inner product) and
compute distances within the manifold, we rely on the notion of tangent spaces.

2.1.2 Sub-Riemannian Manifolds

In the context of differential geometry,
• Vector Field: A vector field on a smooth manifoldM is a mapping that assigns to each point
𝑝 ∈ M to a tangent vector in the tangent space 𝑇𝑝M. Formally, a vector field 𝑋 on M is a
smooth assignment of a tangent vector 𝑋 (𝑝) ∈ 𝑇𝑝M to each point 𝑝 ∈ M [11].

• Distribution: A distribution on a smooth manifold M is a sub-bundle Δ of the tangent
bundle 𝑇M that assigns a subspace Δ(𝑝) of the tangent space 𝑇𝑝M to each point 𝑝 ∈ M.
Formally, for each 𝑝 ∈ M, the distribution Δ(𝑝) is a subspace of the tangent space 𝑇𝑝M,
and the collection Δ(𝑝)𝑝∈M forms a smooth sub-bundle of the tangent bundle 𝑇M [11].

The Sub-Riemannianmetric captures the geometry and distance properties of the sub-Riemannian
manifold, while the distribution Δ specifies the allowed directions of motion within the mani-
fold. The Sub-Riemannian manifold concept is important in the field of control theory and has
applications in various areas, including robotics, optimal control, and geometric mechanics.
Definition 2.12. Sub-Riemannian Manifold

A Sub-Riemannian manifold [17] denoted as (M,Δ, 𝑔𝑆𝑅), is a smooth manifold M equipped
with a sub-Riemannian structure (Δ, 𝑔𝑆𝑅), where the following conditions hold:

• Δ is a distribution on M, which is a sub-bundle of the tangent bundle 𝑇M.
• 𝑔𝑆𝑅 is a Sub-Riemannian metric associated with (Δ, 𝑔𝑆𝑅), defined as a bilinear form

𝑔𝑆𝑅 : Δ × Δ → ℝ.

We can extend the sub-Riemannian metric to the entire tangent space 𝑇M by assigning an
infinite value to vectors outside the distribution Δ. The metric is defined in the bilinear form
𝑔 : 𝑇M ×𝑇M → ℝ ∪ {+∞} and is given by

𝑔(𝑞, 𝑣) =
{

𝑔𝑆𝑅, if 𝑣 ∈ Δ(𝑞)
+∞, otherwise

This reflects the constraints imposed by the sub-Riemannian structure, indicating that motions
or vectors outside the allowed directions are not meaningful within the framework of the sub-
Riemannian manifold. In a sub-Riemannian manifold, the sub-Riemannian structure provides a
restricted framework for studying the geometry and dynamics of the manifold. Sub-Riemannian
manifolds find applications in the study of non-holonomic systems, where the non-integrable
constraints limit the available motions or controls of the system.

Riemannian manifolds:

In a Riemannian manifold, the structure allows us to define notions of length, angle, and curvature
on the manifold. It provides the geometric framework necessary for studying concepts such as
geodesics (shortest paths), curvature, and intrinsic geometry of the manifold.
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Definition 2.13. Riemannian Manifold [17]
A Riemannian Manifold is a smooth manifold M equipped with positive inner product

𝑔𝑅 : 𝑇𝑝M ×𝑇𝑝M → ℝ ∀𝑝 ∈ M

such that 𝑝 → 𝑔𝑅 is smooth
The Riemannian metric 𝑔𝑅 associates a symmetric and positive definite bilinear form to each

tangent space𝑇𝑝M at every point 𝑝 in the manifold. While both Riemannian and sub-Riemannian
manifolds involve the notion of metrics, they differ in terms of the properties and structures
they capture. Riemannian manifolds provide a broader framework for studying general smooth
manifolds with a positive definite metric, while sub-Riemannian manifolds focus on specific types
of manifolds with restricted motion patterns determined by the distribution and metric.

2.2 Lie Algebra
This section aims to offer a concise overview of Lie Algebra and Lie group, and how they relate to
the differential structure. It serves as a preliminary introduction to the workings of Lie algebra.
However, for a more detailed understanding, the precise definitions and theorems of Lie Algebra
will be presented in the following section.

Lie algebra provides a way to study the algebraic structure of smooth vector fields on a manifold
and capture the notion of infinitesimal symmetries. A Lie algebra is a vector space equipped with
a binary operation called the Lie bracket, which satisfies specific algebraic properties.
Definition 2.14. A Lie algebra [16] is an algebra in which the operation is

1. antisymmetric, [𝑥,𝑦] = −[𝑦, 𝑥] , and
2. satisfies the Jacobi identity ,

[[𝑥,𝑦], 𝑧] + [[𝑦, 𝑧], 𝑥] + [[𝑧, 𝑥], 𝑦] = 0 (2.4)

Lie Derivative of the vector fields:

By utilizing the 1-parameter group of diffeomorphisms, we can extend the traditional notion of
vector field derivation (as seen in Euclidean spaces) to manifolds in a natural way. [26]
Definition 2.15. Let 𝑋,𝑌 ∈ 𝑉 (𝑀) be two vector fields, and 𝜙𝑡 be the 1-parameter group of
diffeomorphisms generated by 𝑋 . The Lie derivative of 𝑌 with regard to 𝑋 is defined by

L𝑋𝑌 := 𝑑

𝑑𝑡

����
𝑡=0

(𝜙−𝑡 )∗ ◦ 𝑌 ◦ 𝜙𝑡 = lim
𝑡→0

(𝜙−𝑡 )∗ ◦ 𝑌 (𝜙𝑡 (𝑥)) − 𝑌 (𝑥)
𝑡

The Lie derivative of a vector field along another vector field is defined as the commutator,
or Lie bracket, of the two vector fields. The Lie bracket operation, denoted by [X, Y], takes two
vector fields X and Y and produces a new vector field.
Theorem 2.16. For any vector fields 𝑋,𝑌 ∈ 𝑉 (𝑀), we have L𝑋𝑌 = [𝑋,𝑌 ] [26].

Proof: In local coordinates, suppose 𝑋 = 𝑎𝑖
𝜕

𝜕𝑥𝑖
and 𝑌 = 𝑏𝑖

𝜕

𝜕𝑥𝑖
. Let 𝜙𝑡 by the 1-parameter

group of diffeomorphisms generated by 𝑋 and 𝑦 = 𝜙𝑡 (𝑥). Then by definition 𝜕𝑡𝜙𝑡 |𝑡=0 = 𝑋 and

L𝑋𝑌 =
𝑑

𝑑𝑡

����
𝑡=0

(𝜙−𝑡 )∗
(
𝑏𝑖 (𝑦) 𝜕

𝜕𝑦𝑖

)
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=
𝑑

𝑑𝑡

����
𝑡=0

(
𝑏𝑖 (𝑦) 𝜕𝜙−𝑡

𝜕𝑦𝑖

)
=

𝜕𝑏𝑖

𝜕𝑦 𝑗

𝑑𝑦 𝑗

𝑑𝑡

𝜕𝜙−𝑡
𝜕𝑦𝑖

����
𝑡=0

+ 𝑏𝑖 (𝑦) 𝑑
𝑑𝑡

(
𝜕𝜙−𝑡
𝜕𝑦𝑖

)����
𝑡=0

=
𝜕𝑏𝑖

𝜕𝑥 𝑗
𝑎 𝑗

𝜕

𝜕𝑥𝑖
− 𝑏𝑖

𝜕𝑎 𝑗

𝜕𝑥𝑖
𝜕

𝜕𝑥 𝑗

Here in the first term, we use the fact that 𝜙0 = 𝑖𝑑 (identity map), while we interchange the
derivatives of the second term.

One of the key motivations for studying Lie algebras is their connection to infinitesimal
symmetries. Vector fields on a manifold describe transformations or flows, and the Lie bracket
measures the non-commutativity of these transformations. Lie algebras capture the local behavior
of symmetries and provide a framework for studying infinitesimal transformations and Lie groups.

Example: Lie Derivative of the vector fields

Example 2.17. (Martinet case) Consider the following vector fields on ℝ3,

𝑋1 = 𝜕𝑥 and 𝑋2 = 𝜕𝑦 +
𝑥2

2 𝜕𝑧

The only nonzero brackets are

[𝑋1, 𝑋2] = 𝑋1(𝑋2) − 𝑋2(𝑋1)

= 𝜕𝑥

(
𝜕𝑦 +

𝑥2

2 𝜕𝑧

)
−

[
𝜕𝑦 +

𝑥2

2 𝜕𝑧

]
(𝜕𝑥 )

= 0 + 𝑥𝜕𝑧 − 0 − 0
= 𝑥𝜕𝑧

and,

[𝑋1, [𝑋1, 𝑋2]] = 𝑋1( [𝑋1, 𝑋2]) − [𝑋1, 𝑋2] (𝑋1)
= 𝜕𝑥 (𝑥𝜕𝑧) − 𝑥𝜕𝑧 (𝜕𝑥 )
= 𝜕𝑧 − 0
= 𝜕𝑧 .

2.2.1 Flow of the vector field

The flow of a vector field plays a fundamental role in differential geometry and dynamical systems.
It provides a way to study the evolution of points on a manifold under the influence of a vector
field.

The flow of a vector field 𝑋 on a manifold M is a one-parameter group of transformations
denoted by Φ𝑡 : M → M [6]. For every point 𝑝 in M, the flow satisfies the equation:

𝑑Φ𝑡

𝑑𝑡
(𝑝) = 𝑋 (Φ𝑡 (𝑝))

with the initial condition Φ0(𝑝) = 𝑝.
The flow Φ𝑡 has several important properties. At each fixed value of 𝑡 , the flow Φ𝑡 is a local

diffeomorphism of M, meaning that it preserves local smoothness and invertibility. Furthermore,
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the composition property holds, stating that the composition of flows Φ𝑡 and Φ𝑠 is equal to the
flow Φ𝑡+𝑠 .

The flow has desirable properties such as preserving local smoothness and composition, mak-
ing it a useful tool for studying the behavior of vector fields and their effects on the manifold.
Understanding the flow of a vector field is crucial for analyzing dynamical systems, studying the
behavior of the system along trajectories, and investigating the geometric properties of mani-
folds. It provides a framework for describing the dynamics and transformations occurring on the
manifold under the influence of the vector field.

Example: Flow of the vector fields

Example 2.18. Consider a chained system with three states,

¤𝑥1 = 𝑢1 ¤𝑥2 = 𝑢2 ¤𝑥3 = 𝑥2𝑢1

The vector fields of the system are,

𝑋1 = 𝜕𝑥1 + 𝑥2𝜕𝑥3
𝑋2 = 𝜕𝑥2

We compute the flow of the vector field of 𝑋1,
¤𝑋 = 𝑋1 = 𝜕𝑥1 + 𝑥2𝜕𝑥3

¤𝑥1 = 1 ¤𝑥2 = 0 ¤𝑥3 = 𝑧1𝑥2

The integral with respect to time 𝑡 ,

𝑥1(𝑡) = 𝑡 + 𝑥1(0) 𝑥2(𝑡) = 𝑥2(0) 𝑥3(𝑡) = 𝑥2(0)𝑡 + 𝑥3(0)

Consider the initial conditions to be the origin,

𝑥1(0) = 0 𝑥2(0) = 0 𝑥3(0) = 0
𝑥1 = 𝑡 𝑥2 = 0 𝑥3 = 0

Flow of the vector field 𝑋1,

Φ𝑋1
𝑡 =


1 0 0
0 0 0
0 0 0

 𝑡
Similarly, flow of the vector field 𝑋2,

Φ𝑋2
𝑡 =


0 0 0
0 1 0
0 0 0

 𝑡
Understanding the concept of the flow of a vector field will provide valuable insights for the

subsequent proof and analysis. These concepts will be instrumental in establishing the arguments
presented in this thesis.
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3 Non-Holonomic System

In this section, we will introduce several concepts of control theory and explore their relation to
Sub-Riemannian Manifolds. Control theory is a field that focuses on analyzing and designing
control systems to influence the behavior of dynamic systems. Sub-Riemannian Manifolds provide
a mathematical framework for studying systems with non-integrable constraints on their motion.
By investigating the connection between control theory and Sub-Riemannian Manifolds, we can
gain valuable insights into the geometric and structural aspects of these systems. Understanding
this relationship is crucial for developing effective control strategies that account for the specific
characteristics and constraints of non-integrable systems.

3.1 Introduction to Control theory
Consider a non-linear control system in ℝ𝑛 given by the equation:

¤𝑥 = 𝑓 (𝑥,𝑢), 𝑥 ∈ M, 𝑢 ∈ ℝ𝑚 (3.1)
where 𝑥 represents the state of the system and 𝑢 represents the control input. The vector

fields that define the dynamics of the system are given by the function 𝑓 (𝑥,𝑢). Typically, these
non-linear systems are assumed to operate in the Euclidean setting. However, there are cases
where the operating range is constrained to a specific manifold based on the underlying model.

A simple example is a Servo control system, where the operating manifold is S1 (the unit
circle). In many engineering applications, S1 is approximated as ℝ (the real line) for convenience.
However, this approximation leads to the loss of intrinsic properties associated with the true
manifold structure.

It is important to recognize that by treating S1 as ℝ, certain characteristics and geometric
properties inherent to the manifold are disregarded. The intrinsic structure of the operating
manifold, such as periodicity and the wrapping behavior of angles, should be taken into account
for a more accurate analysis and control design in these scenarios.

The Importance of Manifold Structure: An Example

To illustrate the significance of considering the intrinsic properties of a manifold, let’s examine the
difference in the shortest path between two points on S1 (the unit circle) when approximating it
as ℝ (the real line).

Consider the scenario where S1 is approximated as ℝ. We want to find the shortest distance
between 0 and 3𝜋

2 measured in radians.
In the Euclidean setting, the shortest distance between these two points is given by:

𝑑𝐸 =

����3𝜋2 − 0
���� = ����3𝜋2 ���� = 3𝜋

2
However, when considering S1, which accounts for the periodic nature of angles, the shortest

distance is different. We can find the shortest path on S1 by considering the difference between
the endpoints, taking into account the periodicity.

Starting from 0 and moving counterclockwise, the shortest distance on S1 is given by:

𝑑𝑆 =

����3𝜋2 − 2𝜋
���� = ���−𝜋2 ��� = 𝜋

2
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Thus, by treating S1 as ℝ, the Euclidean approximation yields a shortest distance of 3𝜋
2 , while

the true shortest distance on S1 is 𝜋
2 . This example highlights the importance of considering the

intrinsic properties of the manifold, such as periodicity, to accurately determine distances and
paths.

Controllability and Stabilizability:

In the field of control systems, two fundamental questions that arise are controllability and
stabilizability.

Controllability addresses the existence of a control input 𝑢 (𝑡) that can steer the control
system from an initial state 𝐴 to a desired state 𝐵 within a finite time period 𝑇 . In other words,
controllability examines whether it is possible to manipulate the system’s inputs in a way that
allows us to control its behavior and reach a specific target state [4],[3].

Stabilizability focuses on the existence of a control input, represented as a function of the
system’s state 𝑢 = 𝑢 (𝑥 (𝑡)), such that the resulting control system ¤𝑥 = 𝑓 (𝑥,𝑢) becomes stable.
Here, stability refers to the property where the system’s state converges to a desired equilibrium
or reference point [4],[3].

For nonlinear systems, these questions are commonly addressed by linearizing the system
around an equilibrium point. By linearizing the system, we obtain a linear approximation that
facilitates the analysis of controllability and stabilizability properties. If the linearized system is
found to be controllable at a particular point, it implies that the nonlinear system is controllable in
the vicinity of that point. Linear control techniques, such as eigenvalue analysis and controllability
matrices, are often employed to determine the controllability of linear systems.

While various techniques exist to assess the controllability of linear systems, it is important to
maintain a broader perspective on the overall concepts of controllability and stabilizability. These
concepts provide fundamental insights into the behavior and control of dynamic systems, forming
the basis for control system design and understanding the limitations of controlling nonlinear
systems.

Linearization and Manifold Structure

Consider the system described by Equation 3.1, and let (𝑥∗, 𝑢∗) denote an equilibrium point of
the system. The first-order approximation of the system around (𝑥∗, 𝑢∗) is given by [17]:

𝛿 ¤𝑥 =
𝜕𝑓

𝜕𝑥

�����
(𝑥∗,𝑢∗)

𝛿𝑥 + 𝜕𝑓

𝜕𝑢

�����
(𝑥∗,𝑢∗)

𝛿𝑢 (3.2)

where 𝛿 ¤𝑥 represents the perturbation in the state, 𝛿𝑥 and 𝛿𝑢 represent the perturbations in
the state and control input, respectively, and 𝜕𝑓

𝜕𝑥

���
(𝑥∗,𝑢∗)

and 𝜕𝑓

𝜕𝑢

���
(𝑥∗,𝑢∗)

denote the partial derivatives
of 𝑓 with respect to 𝑥 and 𝑢 evaluated at (𝑥∗, 𝑢∗).

If the linearized system described by Equation 3.2 is controllable, it implies that the original
nonlinear system described by Equation 3.1 is controllable in the vicinity of the equilibrium point
(𝑥∗, 𝑢∗). This observation holds in the Euclidean setting, where the concept of controllability
based on linearization is widely applicable.

However, it is important to note that this idea may not hold true in certain manifolds. The
assumption of controllability based on linear approximation fails when dealing with systems
operating on specific manifolds. The geometry and intrinsic properties of the manifold can
significantly impact the controllability characteristics of the system, rendering the linearized
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analysis insufficient. In such cases, alternative methods and techniques that account for the
manifold structure need to be employed to accurately analyze the controllability of the system.
Example 3.1. The Importance of Weighted Pseudo-Norm in Control Analysis [17]

Consider the Brockett integrator system given by:

¤𝑥1 = 𝑢1
¤𝑥2 = 𝑢2
¤𝑥3 = 𝑥1𝑢2 (3.3)

where 𝑥 ∈ M1 ⊂ ℝ3 and 𝑢 ∈ ℝ2. The vector fields of the system in Equation 3.3 are:

𝑉1(𝑥) =

1
0
0

 𝑉2(𝑥) =

0
1
𝑥1


When we linearize the system at the origin, the linearized system is given by:


𝛿 ¤𝑥1
𝛿 ¤𝑥2
𝛿 ¤𝑥3

 =


1
0
0

 𝛿𝑢1 +

0
1
0

 𝛿𝑢2 (3.4)

From Equation 3.4, it is evident that the linearized system is uncontrollable in the 𝑥3 direction.
However, if we desire to move the system in the 𝑥3 direction, we can employ the following

control law:

𝑢 (𝑡) =


(1, 0) if 𝑡 ∈ [0, 𝜖]
(0, 1) if 𝑡 ∈ [𝜖, 2𝜖]
(−1, 0) if 𝑡 ∈ [2𝜖, 3𝜖]
(0,−1) if 𝑡 ∈ [3𝜖, 4𝜖]

(3.5)

This control law enables the system described by Equation 3.3 to move from the origin[
0 0 0

]𝑇 to
[
0 0 𝜖2

]𝑇 in a time span of 𝑡 = 4𝜖. Although the linearized system is uncontrol-
lable in the 𝑥3 direction, this specific control law allows for control over the system and achieves
the desired motion.

The minimal time required to reach a point 𝑋 from the origin using controls 𝑢 such that
| |𝑢 | | ≤ 1 is denoted as 𝑇 (𝑋 ). The bounds on the minimal time can be expressed as follows:

1
3 ( |𝑥1 | + |𝑥2 | + |𝑥3 |

1
2 ) ≤ 𝑇 (𝑋 ) ≤ 4( |𝑥1 | + |𝑥2 | + |𝑥3 |

1
2 )

This implies that the minimal time 𝑇 (𝑋 ) needs to be compared with the weighted pseudo-norm
( |𝑥1 |+|𝑥2 |+|𝑥3 |

1
2 ) rather than the usual Euclidean norm. It highlights the importance of considering

the specific pseudo-norm for the given system.
When making first-order approximations or linearizations, it is crucial to take into account this

pseudo-norm. The linearizations should be performed with respect to such a pseudo-norm rather
than the Euclidean norm. This is essential to capture the appropriate dynamics and behavior of
the system under consideration.

By considering the weighted pseudo-norm and incorporating it into the analysis, a more
accurate understanding of the system’s controllability and behavior can be obtained.
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3.2 Non Holonomic systems
In this section, our focus is on understanding non-holonomic systems from both a mathematical
and mechanical perspective. We will start by presenting the mathematical definition of a non-
holonomic system, followed by a brief motivation for the necessity of using sub-Riemannian
distance when linearizing such systems.

A non-holonomic system refers to a type of mechanical system characterized by constraints
on its motion that cannot be fully integrated. These constraints restrict the system’s velocity and
cannot be expressed in terms of a potential function.

3.2.1 Non-holonomic System

Definition 3.2. A Non-holonomic System on Manifold M is a control system which is of the form
[17]

¤𝑞 = 𝑢1𝑋1(𝑞) + ........ + 𝑢𝑚𝑋𝑚 (𝑞) 𝑥 ∈ M, 𝑢 ∈ ℝ𝑚 (3.6)

where𝑚 > 1 and 𝑋1, 𝑋2, ..., 𝑋𝑚 are C∞ vector fields on M
The distribution at 𝑝 of Eq. 3.6 is given by

Δ(𝑝) = 𝑠𝑝𝑎𝑛{𝑋1(𝑝), ...., 𝑋𝑚 (𝑝)} ⊂ 𝑇𝑝M 𝑝 ∈ M (3.7)

where, 𝑇𝑝M is the tangent space of Manifold M at point 𝑝.
Linearizing the system described by Eq. 3.6 at the equilibrium point (𝑥∗, 𝑢∗) yields the following

linearized system:
¤𝛿𝑥 = 𝛿𝑢1𝑋1(𝑥∗) + . . . + 𝛿𝑢𝑚𝑋𝑚 (𝑥∗) (3.8)

The reachable set of the linearized system given by Eq. 3.8 is determined by the vector fields:

Δ(𝑥∗) = 𝑠𝑝𝑎𝑛{𝑋1(𝑥∗), . . . , 𝑋𝑚 (𝑥∗)}

If the 𝑑𝑖𝑚(Δ(𝑥∗)) = 𝑛, then the linearized system is controllable. In this case, the Euclidean
norm is suitable for linearization.

However, if the 𝑑𝑖𝑚(Δ(𝑥∗)) ≤ 𝑛, then the linearized system is uncontrollable. It is important
to note that the actual system described by Eq. 3.6 may still be controllable. In such scenarios,
linearization using the Euclidean norm becomes ineffective. Therefore, first-order approximations
should be taken with respect to a suitable pseudo-norm instead [17].

It is worth mentioning that the linearization mentioned above corresponds to a first-order
approximation based on Euclidean or Riemannian distances. However, nonholonomic systems
rely on a sub-Riemannian distance, which exhibits different behavior compared to the Euclidean
distance. Consequently, understanding the local behavior of nonholonomic systems requires
studying first-order approximations relative to the sub-Riemannian distance, rather than relying
solely on the linearized system.

3.2.2 Non-holonomic constraints

Consider a mechanical system described by a state vector 𝑞 ∈ ℝ𝑛, where the velocity of the states
is denoted by ¤𝑞 (i.e., the tangent vector).

In the context of a mechanical system, there can be geometric constraints that depend solely
on the states and are expressed as [21]:

ℎ𝑖 (𝑞) = 0 for 𝑖 = 1, . . . , 𝑘
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These constraints restrict the motion of the system to a sub-manifold of dimension (𝑛 − 𝑘). Such
constraints are known as holonomic constraints.

Another type of constraint is based on the kinematics of the mechanical system and involves
both the states and their velocities:

𝑎(𝑞, ¤𝑞) = 0

In many cases, these constraints are linear with respect to the velocities, taking the form:

𝑎(𝑞) ¤𝑞 = 0 (3.9)

These are referred to as Paffian constraints.
If the Paffian constraint given by Eq. 3.9 is integrable, it is equivalent to having holonomic

constraints. Mathematically, this means that the vector fields in Eq. 3.7 satisfy Δ(𝑝) = 𝑇𝑝M for
all 𝑝 ∈ M, indicating the presence of holonomic constraints.

On the other hand, if the Paffian constraint Eq. 3.9 is not integrable, it is classified as a
non-holonomic constraint. Similarly, if the vector fields in Eq. 3.7 satisfy 𝑑𝑖𝑚(Δ(𝑝)) ≤ 𝑛, it
indicates the presence of non-holonomic constraints in the system.

3.2.3 Examples of non-holonomic systems

Example 3.3. Wheeled mobile robot
Consider a wheeled mobile robot with the state vector 𝑞 =

[
𝑥 𝑦 𝜃

]𝑇 , where 𝑥 represents
the robot’s position along the 𝑥 -axis, 𝑦 represents the position along the 𝑦-axis, and 𝜃 represents
the heading angle of the robot. The corresponding velocity is denoted as ¤𝑞 =

[
¤𝑥 ¤𝑦 ¤𝜃

]𝑇 . The
input to the system is given by 𝑢 = [𝑢1, 𝑢2], where 𝑢1 represents the linear velocity of the robot
and 𝑢2 represents the angular velocity of the robot.

The Paffian constraint of the system is defined by ¤𝑥 sin(𝜃 ) − ¤𝑦 cos(𝜃 ) = 0. Using Eq. 3.9, we
can express this constraint as:

𝑎(𝑞) =
[
sin(𝜃 ) − cos(𝜃 ) 0

]
𝑘𝑒𝑟 (𝑎𝑇 (𝑞)) = 𝑠𝑝𝑎𝑛

{ 
cos(𝜃 )
sin(𝜃 )

0

 ,

0
0
1


}
= Δ(𝑞)

The tangent vector fields of the wheeled robot system are defined as:

𝑋1(𝑞) =

cos(𝜃 )
sin(𝜃 )

0

 𝑋2(𝑞) =

0
0
1


Hence, the mathematical model of the wheeled robot can be represented as:

¤𝑞 = 𝑋1𝑢1 + 𝑋2𝑢2 =⇒

¤𝑥
¤𝑦
¤𝜃

 =


cos(𝜃 )
sin(𝜃 )

0

 𝑢1 +

0
0
1

 𝑢2

Example 3.4. Game of Chess
The game of chess serves as an intriguing example of a non-trivial system in physics that can

be analyzed using the principles of non-holonomic mechanics. In chess, specific constraints govern
the movement of each piece. For instance, bishops are restricted to diagonal paths, knights move
in an L-shaped pattern, and pawns can only advance one or two squares on their initial move.
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Figure 3.1: Number of moves required for a knight to reach each square starting from f5.

It’s important to note that chess is a discrete system where movement is not solely determined
by position or velocity. Let’s consider the example of a knight. While its movement is confined to
an L-shaped pattern, it still has the ability to traverse the entire board. Figure 3.1 illustrates the
possible movements of a knight from the starting position f5 and indicates the number of moves
required to reach each square [1].

3.3 Sub-Riemannian Geometry
The motivation behind incorporating sub-Riemannian distance when linearizing non-holonomic
systems stems from the need to capture their intrinsic geometric structure. Sub-Riemannian
geometry provides a framework for studying the geometry of systems with non-integrable con-
straints, where the notion of distance is defined in relation to admissible curves that adhere to
the imposed motion constraints. This appropriate linearization techniques facilitates the study of
controllability, stabilization, and other significant properties of non-holonomic systems.

This mathematical framework provides a powerful tool for understanding and analyzing the
behavior of non-holonomic systems, enabling the development of effective control strategies and
theoretical investigations.

3.3.1 Sub-Riemannian Distance

A non-holonomic system 3.6 induces a distance on M with the metric 𝑔𝑆𝑅 : 𝑇M × 𝑇M → ℝ

given by [17]

𝑔𝑆𝑅 (𝑞, 𝑣) =
{
𝑢2
1 + ... + 𝑢2

𝑚 if ∑𝑚
𝑖=1𝑢𝑖𝑋𝑖 (𝑞) = 𝑣

+∞ otherwise

𝑑𝑆𝑅 (𝑞, 𝑣) = inf{𝑔𝑆𝑅} (3.10)
for 𝑞 ∈ M and 𝑣 ∈ 𝑇𝑞M.

In this induced metric, two cases can be distinguished:
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• If 𝑣 ∉ Δ(𝑞), where Δ(𝑞) is the set of feasible velocities at point 𝑞, then 𝑔𝑆𝑅 (𝑞, 𝑣) = +∞. This
indicates that the velocity 𝑣 is not achievable within the constraints of the non-holonomic
system.

• If 𝑣 ∈ Δ(𝑞), then there exists a unique minimal control 𝑢∗ ∈ ℝ𝑚 that achieves the velocity 𝑣 ,
and the metric is given by 𝑔𝑆𝑅 (𝑞, 𝑣) = | |𝑢∗ | |2. This corresponds to feasible velocities within
the constraints of the non-holonomic system.

Another way to define the sub-Riemannian distance is as the minimal time required for the
non-holonomic control system to traverse from point 𝑝 to 𝑞 under bounded controls:

𝑑 (𝑝, 𝑞) = 𝑖𝑛𝑓
{
𝑇 ≥ 0 : ∃ a path with 𝛾 (0) = 𝑝,𝛾 (𝑇 ) = 𝑞 and | |𝑢 (𝑡) | | ≤ 1∀ a.e. 𝑡 ∈ [0,𝑇 ]

}
where 𝛾 (𝑡) is the trajectory of the non-holonomic system it is defined by one parameter represen-
tation of time.

For example, consider the Brockett integrator described by Eq. 3.3. Using the control in
Eq. 3.5, we can move in the positive 𝑥3 direction to a point 𝑞 =

[
0 0 𝜖2

]
. In this case, the

sub-Riemannian distance 𝑑 (0, 𝑞) is equal to 4𝜖.
Any reparameterization of a minimizing trajectory remains minimizing. In other words, if we

have a trajectory that minimizes a certain quantity, such as distance or energy, any change in the
parameterization of that trajectory will still result in a trajectory that minimizes the same quantity.
This property allows us to construct minimizing trajectories between any pair of sufficiently close
points. Specifically, given two points that are close enough to each other on a manifold, we can
find a trajectory that connects them and minimizes the desired quantity. In the case of distance
minimization, this trajectory is chosen to have a unit velocity, meaning that the inner product
between the position vector and the velocity vector along the trajectory is equal to one for almost
every 𝑡 .

As a consequence of this property, we can associate a control function𝑢 (𝑡) with the trajectory 𝛾
such that the norm of 𝑢 (𝑡) is equal to one almost everywhere, i.e., | |𝑢 (𝑡) | | = 1 almost everywhere.
This control function captures the direction in which the trajectory moves at each point in time.
In other words, the distance between the point 𝑝 and the trajectory 𝛾 increases linearly with the
parameter 𝑡 along the trajectory. This property of minimizing trajectories and their associated
controls is crucial in the study of optimization problems on manifolds, where the goal is to
find trajectories or paths that optimize certain criteria. By ensuring that reparameterizations of
minimizing trajectories remain minimizing, we can construct and analyze optimal paths between
points on a manifold.

From the above definitions, it can be inferred that there is a local one-to-one correspondence
between sub-Riemannian structures and non-holonomic systems, where the dimension of Δ(𝑞) =
𝑠𝑝𝑎𝑛{𝑋1(𝑞), . . . , 𝑋𝑚 (𝑞)} remains constant and equal to𝑚. However, globally, the dimension of
Δ(𝑞) may vary [17].

3.3.2 Distribution in Non-Holonomic System

Let 𝑉𝐹 (M) denote the set of smooth vector fields on the manifold M, and let Δ1 be the linear
subspace of 𝑉𝐹 (M) generated by the vector fields 𝑋1, . . . , 𝑋𝑚 associated with the non-holonomic
system [17]. In other words, Δ1 is the distribution formed by the vector fields 𝑋1, . . . , 𝑋𝑚,

Δ1 = 𝑠𝑝𝑎𝑛{𝑋1, . . . , 𝑋𝑚}

For 𝑠 ≥ 1, define Δ𝑠+1 = Δ𝑠 + [Δ1,Δ𝑠] where, the Lie bracket of two vector fields 𝑋 and 𝑌 ,
denoted by [𝑋,𝑌 ], is another vector field defined as the commutator of the two vector fields:

[𝑋,𝑌 ] = 𝑋𝑌 − 𝑌𝑋 .



32 3 Non-Holonomic System

Thus, we have:

[Δ1,Δ𝑠] = 𝑠𝑝𝑎𝑛{[𝑋,𝑌 ] : 𝑋 ∈ Δ1, 𝑌 ∈ Δ𝑠}

In this way, Δ𝑠+1 is generated by Δ1 and the Lie brackets of elements from Δ1 with elements from
Δ𝑠 . The Lie algebra generated by 𝑋1, . . . , 𝑋𝑚 is defined as the union of all the subspaces Δ𝑠 for
𝑠 ≥ 1:

𝐿𝑖𝑒 (𝑋1, ..., 𝑋𝑚) =
⋃
𝑠≥1

Δ𝑠

In other words, 𝐿𝑖𝑒 (𝑋1, . . . , 𝑋𝑚) is the smallest linear subspace of𝑉𝐹 (M) that contains𝑋1, . . . , 𝑋𝑚

and is closed under the Lie brackets.

Example: Lie Algebra

Example 3.5. Consider a chained system defined by the following differential equations:

¤𝑥1 = 𝑢1
¤𝑥2 = 𝑢2
¤𝑥3 = 𝑥2𝑢1
¤𝑥4 = 𝑥3𝑢1
...

¤𝑥𝑛 = 𝑥𝑛−1𝑢1

Let 𝑒1 =
[
1 0 0 . . 0

]𝑇 , 𝑒2 =
[
0 1 0 . . 0

]𝑇 , and so on, up to 𝑒𝑛 =
[
0 0 . . . 1

]𝑇 .
The tangent vector fields of the chained system can be expressed as:

𝑋1 =



1
0
𝑥2
.

.

𝑥𝑛−1


, 𝑋2 =



0
1
0
.

.

0


= 𝑒2

Now, let’s construct the linear subspaces using the Lie algebra evaluated at the origin:

Δ1(𝑝) = 𝑠𝑝𝑎𝑛{𝑋1(𝑝), 𝑋2(𝑝)} = 𝑠𝑝𝑎𝑛{𝑒1, 𝑒2}
𝑋3(𝑝) = [𝑋1(𝑝), 𝑋2(𝑝)] = −𝑒3
Δ2(𝑝) = Δ1(𝑝) + {𝑋3(𝑝)} = 𝑠𝑝𝑎𝑛{𝑒1, 𝑒2, 𝑒3}
𝑋4(𝑝) = [𝑋1(𝑝), 𝑋3(𝑝)] = 𝑒4

Δ3(𝑝) = Δ2(𝑝) + {𝑋4(𝑝)} = 𝑠𝑝𝑎𝑛{𝑒1, 𝑒2, 𝑒3, 𝑒4}
𝑋𝑛 = [𝑋1, 𝑋𝑛−1] = (−1)𝑛𝑒𝑛

Δ𝑛−1(𝑝) = Δ𝑛−2(𝑝) + {𝑋𝑛 (𝑝)} = 𝑠𝑝𝑎𝑛{𝑒1, 𝑒2, . . . , (−1)𝑛𝑒𝑛}

The Lie algebra generated by 𝑋1 and 𝑋2 is given by:

𝐿𝑖𝑒 (𝑋1, 𝑋2) = Δ1 ∪ Δ2 ∪ Δ3 ∪ ... ∪ Δ𝑛−1 = 𝑠𝑝𝑎𝑛{𝑒1, 𝑒2, .., (−1)𝑛𝑒𝑛}
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Length of an element:

Now, we define the length of an element 𝑋𝐼 of L(𝑋1, . . . , 𝑋𝑚), denoted by |𝑋𝐼 |, inductively as
follows [17]:

|𝑋𝐼 | = 1 for 𝑋𝐼 = 𝑋1, . . . , 𝑋𝑚, and
|𝑋𝐼 | = |𝑋1 | + |𝑋2 | for 𝑋 = [𝑋1, 𝑋2] .

For the example given earlier, the lengths of the elements in L(𝑋1, 𝑋2) are as follows:
|𝑋1 | = 1, |𝑋2 | = 1
|𝑋3 | = | [𝑋1, 𝑋2] | = |𝑋1 | + |𝑋2 | = 1 + 1 = 2
|𝑋4 | = | [𝑋1, [𝑋1, 𝑋2] | = |𝑋1 | + | [𝑋1, 𝑋2] | = |𝑋1 | + |𝑋1 | + |𝑋2 | = 1 + 1 + 1 = 3

.

.

.

|𝑋𝑛 | = | [𝑋1, 𝑋𝑛−1] | = |𝑋1 | + |𝑋𝑛−1 | = 1 + 𝑛 − 2 = 𝑛 − 1
Verifying the Jacobi Identity in Eq. 2.4 for the given example:

[[𝑋1, 𝑋2], 𝑋3] + [[𝑋2, 𝑋3], 𝑋1] + [[𝑋3, 𝑋1], 𝑋2] = [𝑋3, 𝑋3] + [0, 𝑋1] + [𝑋4, 𝑋2]
= 0 + 0 + 0 = 0

Due to the Jacobi identity, we have
Δ𝑠 = 𝑠𝑝𝑎𝑛{𝑋𝐼 : |𝐼 | ≤ 𝑠}

Therefore, Δ𝑛−1 = 𝑠𝑝𝑎𝑛{𝑋𝐼 : |𝑋𝐼 | ≤ 𝑛 − 1}.
For 𝑞 ∈ M, the lie algebra 𝐿𝑖𝑒 (𝑋1, 𝑋2) (𝑞) = {𝑋 (𝑞) : 𝑋 ∈ 𝐿𝑖𝑒 (𝑋1, 𝑋2)}, and, for 𝑠 ≥ 1,

Δ𝑠 (𝑞) = {𝑋 (𝑞) : 𝑋 ∈ Δ𝑠}.
By definition these sets are linear subspaces of{

{𝑒1, 𝑒2}, {𝑒1, 𝑒2, 𝑒3}, ..., {𝑒1, .., 𝑒𝑛}
}
⊆ 𝑇𝑞M .

Therefore, for the chained system the Lie algebra generated by 𝑋1, 𝑋2, . . . , 𝑋𝑛 spans the entire
tangent space 𝑇𝑞M at every point 𝑞 in the manifold.

3.3.3 Growth Vector

Consider the distribution of a non-holonomic system in Eq. 3.6, that gives rise to a flag of subspaces
of 𝑇𝑝M at point 𝑝:

Δ1(𝑝) ⊂ Δ2(𝑝) ⊂ . . . ⊂ Δ𝑟−1(𝑝) ⊂ Δ𝑟 (𝑝) = 𝑇𝑝M, (3.11)
Here, 𝑟 = 𝑟 (𝑝) is referred to as the degree of nonholonomy at 𝑝 [17].

Let 𝑛𝑖 (𝑝) = dim(Δ𝑖 (𝑝)). The 𝑟 -tuple of integers
(𝑛1(𝑝), . . . , 𝑛𝑟 (𝑝))

is known as the growth vector at 𝑝. In this vector,
𝑛1(𝑝) =𝑚 and 𝑛𝑟 (𝑝) = 𝑛 = dim(M)

Example 3.6. In the case of the chained system example, the growth vector is given by
𝐺 = (2, 3, . . . , 𝑛) ∈ ℝ𝑛−1, 𝑟 = 𝑛 − 1
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Regular and Singular points in a Non-holonomic system

Definition 3.7. A point 𝑝 is considered a regular point if the growth vector of a non-holonomic
system remains constant in a neighborhood of 𝑝. Otherwise, 𝑝 is referred to as a singular point
[17].

The growth vector provides important information about the behavior of a non-holonomic
system at a particular point. It represents the dimensions of the subspaces Δ𝑖 (𝑝), which form a flag
of nested subspaces. For a regular point 𝑝, the growth vector remains constant in a neighborhood,
indicating a consistent pattern of subspace dimensions.

On the other hand, for a singular point 𝑝, the growth vector varies within the neighborhood,
indicating a lack of regularity in the system’s behavior. Singular points often correspond to critical
or special configurations where the system exhibits distinct characteristics.

Weights of the Non-holonomic system

Definition 3.8. The weights at 𝑝 are denoted as

𝑤𝑖 = 𝑤𝑖 (𝑝), 𝑖 = 1, . . . , 𝑛,

and are defined as

𝑤 𝑗 = 𝑠 if 𝑛𝑠−1(𝑝) < 𝑗 ≤ 𝑛𝑠 (𝑝),

where 𝑛0 = 0. In other words, we have

𝑤1 = . . . = 𝑤𝑛1 = 1,
𝑤𝑛1+1 = . . . = 𝑤𝑛2 = 2,

. . .

𝑤𝑛𝑟−1+1 = . . . = 𝑤𝑛 = 𝑟

The weights provide a way to categorize the dimensions of the subspaces in the flag. Each
weight 𝑤𝑖 represents a distinct level or stratum within the flag. For example, if 𝑤𝑖 = 1, it means
that the subspace Δ𝑖 (𝑝) has dimension 𝑛1(𝑝), while 𝑤𝑖+1 = 2 indicates that the subspace Δ𝑖+1(𝑝)
has dimension 𝑛2(𝑝), and so on.

Examples of Regular and Singular Non-Holonomic Systems

Let’s consider some examples of regular and singular non-holonomic systems to illustrate these
concepts:
Example 3.9. Examples of Regular and Singular Non-Holonomic Systems

1. Regular: The Chained System The chained system is regular for all 𝑝 ∈ M. The growth
vector is given by 𝐺 = (2, 3, . . . , 𝑛), and the weights of the system are

𝑤1 = 𝑤2 = 1, 𝑤3 = 2, 𝑤4 = 3, . . . ,𝑤𝑛 = 𝑛 − 1

2. Singular: The Martinet Case
Consider the non-holonomic system with vector fields

𝑋1 = 𝜕𝑥 , 𝑋2 = 𝜕𝑦 +
𝑥2

2 𝜕𝑧
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The Lie brackets are given by

[𝑋1, 𝑋2] = 𝑥𝜕𝑧, [𝑋1, [𝑋1, 𝑋2]] = 𝜕𝑧 .

Consequently, the growth vector is equal to

𝐺 (𝑝) =
{
(2, 2, 3) if ∀𝑝 ∈ {𝑥 = 0}
(2, 3) otherwise

In this case, the set of singular points is the plane {𝑥 = 0}. Hence, the weights of the system
are given by

𝑤 (𝑝) =
{
𝑤1 = 𝑤2 = 1,𝑤3 = 2 if ∀𝑝 ∈ {𝑥 = 0}
𝑤1 = 1,𝑤2 = 2 otherwise

These examples illustrate the distinction between regular and singular points in a non-
holonomic system. Regular points exhibit a constant growth vector and have a consistent pattern
of subspace dimensions. Singular points, on the other hand, deviate from this regular pattern and
indicate points of special behavior.

Properties of the Growth Vector:

It is worth noting some important properties of the Growth Vector:
• At a regular point, the growth vector forms an ordered and non-decreasing sequence, and

the difference between two consecutive weights is either 0 or 1. When the regular point
𝑝 locally exhibits an involutive distribution, the set of vector fields in Δ𝑠 shares the same
weight 𝑤𝑖 , and the successive linear subspace Δ𝑠+1 will have a weight 𝑤𝑖+1 = 𝑤𝑖 + 1.

• The weight 𝑤𝑖 is an upper semi-continuous function. Moreover, if Chow’s condition is
satisfied, it has an upper bound equal to 𝑑𝑖𝑚(M).

Understanding the growth vector and weights provides valuable insights into the local behavior
and structure of non-holonomic systems, allowing for the identification of regular and singular
points and characterizing their properties.

3.3.4 Adapted Frames

To establish a comprehensive understanding of privileged coordinates, we first need to introduce
the concept of adapted frames. These frames provide us with valuable insights into the Lie brackets
and associated vector fields of the non-holonomic system.

In the previous section, we defined the linear subspaces of vector fields on the manifold as
follows:

Δ1 = {𝑋1, ..., 𝑋𝑚1}
Δ2 = Δ1 + [Δ1,Δ1] = {𝑋1, ..., 𝑋𝑚1} + {𝑋𝑚1+1, ..., 𝑋𝑚2}

...

Δ𝑠+1 = Δ𝑠 + [Δ1,Δ𝑠] = {𝑋1, ..., 𝑋𝑚𝑠
} + {𝑋𝑚𝑠+1, ..., 𝑋𝑛}

Recalling the definition of weights and the degree of non-holonomy, we can state that:{
𝑋1, ..., 𝑋𝑛 is a basis of 𝑇𝑝M .

𝑋𝑖 ∈ Δ𝑤𝑖 𝑖 = 1, ..., 𝑠 (3.12)
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A family of 𝑛 vector fields satisfying (3.12) is known as an adapted frame at point 𝑝. In other
words, these vector fields are "adapted to the flag (3.11)" and provide a suitable basis for studying
the system’s behavior [17].

By establishing an adapted frame, we can gain a better understanding of the system’s structure
and dynamics. These adapted frames pave the way for constructing privileged coordinates that
simplify the analysis and approximation of non-holonomic systems. In the following sections, we
will explore the detailed explanation of privileged coordinates and the techniques of nilpotent
approximation, that estimates represent the local behavior of non-holonomic systems.

3.4 Reachability in Non-holonomic system

In this section, we explore the concept of reachability in non-holonomic systems and examine
Chow’s condition, a fundamental result that characterizes the reachable set of states in these
systems. Chow’s condition provides valuable insights into the controllability and limitations of
non-holonomic systems.

3.4.1 Chow’s Condition

Definition 3.10. Chow’s Condition
The Non-Holonomic system Eq. 3.6 (or the vector fields 𝑋1, ..., 𝑋𝑚) satisfies Chow’s Condition

if

𝐿𝑖𝑒 (𝑋1, ..., 𝑋𝑚) (𝑞) = 𝑇𝑞M, ∀𝑞 ∈ 𝑀. (3.13)

Equivalently, Chow’s Condition can be expressed as follows: For every point 𝑞 in the manifold
M, there exists an integer 𝑟 = 𝑟 (𝑞) ∈ ℤ such that the dimension of the 𝑟 -th iterated commutator
space [Δ𝑟 (𝑞)] (where Δ𝑟 (𝑞) is defined as before) is equal to the dimension of the tangent space
at that point, i.e.,

∀𝑞 ∈ M, ∃𝑟 = 𝑟 (𝑞) ∈ ℤ : dim[Δ𝑟 (𝑞)] = 𝑛,

where 𝑛 is the dimension of the manifold M.
This property is also known as the Lie algebra rank condition (LARC) in control theory, and it

is analogous to the Hormander condition in the context of partial differential equations (PDEs)
[17].

Chow’s Condition plays a crucial role in the study of sub-Riemannian geometry and control for
non-holonomic systems. It ensures that the non-holonomic system has sufficient maneuverability
and allows for controllability from any initial configuration to any final configuration within the
manifold. When Chow’s Condition is satisfied, the control system can access any point in the
manifold using appropriate control inputs, and the associated sub-Riemannian geometry exhibits
interesting properties that can be studied using the tools of geometric control theory.
Remark. The chained system statisfies Chow’s condition,

𝐿𝑖𝑒 (𝑋1, 𝑋2) = 𝑠𝑝𝑎𝑛{𝑒1, ..., 𝑒𝑛} and 𝑠𝑝𝑎𝑛{𝑒1, ..., 𝑒𝑛} = 𝑇𝑞M
Equivalently, ∀𝑞 ∈ M, 𝑟 = 𝑛 − 1 : 𝑑𝑖𝑚[Δ𝑛−1(𝑞)] = 𝑛

Lemma 3.11. If the Non-Holonomic system Eq. 3.6 satisfies Chow’s Condition, then for every 𝑝 ∈ 𝑀 ,
the reachable set ℝ𝑝 is a neighbourhood of 𝑝 [17].
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The reachability property of the system is directly linked to the fulfillment of Chow’s Condition.
We can prove this lemma using the example of the chained system provided earlier, but it is

important to note that the result can be generalized to any Non-Holonomic system defined by Eq.
3.6.

In the case of the chained system example, we have shown that the Lie algebra generated by
the vector fields 𝑋1, 𝑋2, . . . , 𝑋𝑛 spans the tangent space 𝑇𝑞M at every point 𝑞 in 𝑀 . This means
that for any given point 𝑝 in 𝑀 , we can construct a trajectory starting from 𝑝 that can reach any
point in a neighborhood of 𝑝. The reachable set ℝ𝑝 of 𝑝 consists of all the points that can be
reached from 𝑝 by following the trajectories defined by the vector fields 𝑋1, 𝑋2, . . . , 𝑋𝑛. Since the
Lie algebra satisfies Chow’s Condition, it implies that the reachable set ℝ𝑝 is a neighborhood of 𝑝.

Proof: Take a small neighbourhood 𝑈 ⊂ M of 𝑝 that we identify with a neighbourhood of 0
in ℝ𝑛.

Let 𝜙𝑋𝑖

𝑡 = exp(𝑡𝑋𝑖) be the flow of the vector field 𝑋𝑖, 𝑖 = 1, 2. Every curve 𝑡 → 𝜙
𝑋𝑖

𝑡 (𝑞) is a
trajectory of the chained system and we have

𝜙
𝑋𝑖

𝑡 = exp(𝑡𝑋𝑖) =
∑︁
𝑘≥0

1
𝑘! (𝑡𝑋𝑖)𝑘 = 𝑖𝑑 + 𝑡𝑋𝑖 + 𝑜 (𝑡)

where For every element 𝐼 ∈ 𝐿(1, 2), we define the local diffeomorphisms 𝜙𝑋𝑖

𝑡 on 𝑈 by induction
on the length |𝑋𝐼 | of 𝑋𝐼 : if 𝑋𝐼 = [𝑋1, 𝑋2], then

𝜙
𝑋3
𝑡 = [𝜙𝑋1

𝑡 , 𝜙
𝑋2
𝑡 ] := 𝜙

𝑋2
−𝑡 ◦ 𝜙

𝑋1
−𝑡 ◦ 𝜙

𝑋2
𝑡 ◦ 𝜙𝑋1

𝑡

By construction, 𝜙 𝐼
𝑡 may be expanded as a composition of flows of the vector field 𝑋𝑖, 𝑖 = 1, 2. As a

consequence, 𝜙 𝐼
𝑡 (𝑞) is the endpoint of a trajectory of the chained system issued from 𝑞.

Moreover, on a neighbourhood of 𝑝 there holds

𝜙
𝑋1
𝑡 = 𝑖𝑑 + 𝑡𝑋1 + 𝑜 (𝑡)

𝜙
𝑋2
𝑡 = 𝑖𝑑 + 𝑡𝑋2 + 𝑜 (𝑡)

𝜙
𝑋3
𝑡 = 𝑖𝑑 + 𝑡 |𝑋3 |𝑋3 + 𝑜 (𝑡 |𝑋3 |)

= 𝑖𝑑 + 𝑡2𝑋3 + 𝑜 (𝑡2)
𝜙
𝑋4
𝑡 = 𝑖𝑑 + 𝑡3𝑋4 + 𝑜 (𝑡3)
.

.

.

𝜙
𝑋𝑛

𝑡 = 𝑖𝑑 + 𝑡𝑛−1𝑋3 + 𝑜 (𝑡𝑛−1)

To obtain a diffeomorphism whose derivative with respect to the time is exactly 𝑋𝐼 , we set

𝜓
𝑋𝑛

𝑡 =



𝜙
𝑋𝑛

𝑡1/|𝑋𝑛 | if 𝑡 ≥ 0

𝜙
𝑋𝑛

−|𝑡 |1/|𝑋𝑛 | if 𝑡 < 0 and |𝑋𝑛 | is odd

[𝜙𝑋1
|𝑡 |1/|𝑋𝑛 | , 𝜙

𝑋𝑛−1
|𝑡 |1/|𝑋𝑛 | ] if 𝑡 < 0 and |𝑋𝑛 | is even
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𝜓
𝑋1
𝑡 =


𝜙
𝑋1
𝑡 if 𝑡 ≥ 0

𝜙
𝑋1
−|𝑡 | if 𝑡 < 0 and |𝑋1 | = 1

𝜓
𝑋2
𝑡 =


𝜙
𝑋2
𝑡 if 𝑡 ≥ 0

𝜙
𝑋2
−|𝑡 | if 𝑡 < 0 and |𝑋2 | = 1

𝜓
𝑋3
𝑡 =


𝜙
𝑋3
𝑡1/2

if 𝑡 ≥ 0

𝜙
𝑋2
−|𝑡 |1/2 ◦ 𝜙

𝑋1
−|𝑡 |1/2 ◦ 𝜙

𝑋2
|𝑡 |1/2 ◦ 𝜙

𝑋1
|𝑡 |1/2 if 𝑡 < 0 and |𝑋3 | = 2

𝜓
𝑋4
𝑡 =


𝜙
𝑋4
𝑡1/3

if 𝑡 ≥ 0

𝜙
𝑋4
−|𝑡 |1/3 if 𝑡 < 0 and |𝑋4 | = 3

where 𝑋3 = [𝑋1, 𝑋2]. Hence, we have the equation

𝜓
𝑋𝐼

𝑡 = 𝑖𝑑 + 𝑡𝑋𝐼 + 𝑜 (𝑡) (3.14)

where 𝜓𝑋𝐼

𝑡 (𝑞) represents the endpoint of a trajectory of the chained system originating from
the point 𝑞.

By satisfying Chow’s Condition, we can select commutators 𝑋1, ..., 𝑋𝑛 such that their values at
the point 𝑝 span the tangent space 𝑇𝑝M. This choice is possible due to the linear independence
condition provided by Chow’s Condition.

Next, we introduce the map 𝜑 , defined on a small neighborhood Ω of the origin in ℝ𝑛, as
follows:

𝜑 (𝑡1, ..., 𝑡𝑛) = 𝜓𝑋𝑛𝑡𝑛 ◦ ... ◦𝜓𝑋1𝑡1(𝑝) ∈ M

We can conclude from the expression in Eq. 3.14 that 𝜑 is continuously differentiable (C1) in
the vicinity of the origin and possesses an invertible derivative at the origin. Consequently, 𝜑 is a
local C1-diffeomorphism. Thus, the image 𝜑 (Ω) includes a neighborhood of the point 𝑝.

For any 𝑡 belonging to Ω, the point 𝜑 (𝑡) corresponds to the endpoint of a concatenation of
trajectories, with the initial trajectory emanating from 𝑝. Therefore, 𝜑 (𝑡) represents the endpoint
of a trajectory that originates from 𝑝. Consequently, we can deduce that 𝜑 (Ω) ⊂ ℝ𝑝 , which
implies that ℝ𝑝 is a neighborhood of the point 𝑝.

3.4.2 Chow-Rashevsky’s theorem

The Chow-Rashevsky’s theorem is a fundamental result in the theory of non-holonomic systems.
It establishes a key property of connected non-holonomic manifolds satisfying Chow’s Condition.
The theorem states that [17],
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Theorem 3.12. (Chow-Rashevsky’s theorem)
IfM is connected and if the non-holonomic system satisfies Chow’s Condition, then any two points

of M can be joined by a trajectory of the non-holonomic system.

Proof: Let 𝑝 ∈ M. If 𝑞 ∈ ℝ𝑝 , then 𝑝 ∈ ℝ𝑞. Consequently, ℝ𝑝 = ℝ𝑞 for any 𝑞 ∈ M. By
applying the lemma mentioned above, we deduce that ℝ𝑝 is an open set. Thus, the manifold M
is covered by the union of pairwise disjoint open sets ℝ𝑝 . Since M is connected, there exists only
one such open set [17].

Chow-Rashevsky’s theorem, also known as Chow’s theorem, provides a significant result in the
study of non-holonomic systems. The essence of Chow-Rashevsky’s theorem is that if a connected
manifold satisfies Chow’s Condition, indicating that the constraints imposed on the system are
appropriate, then it is possible to find a trajectory within the non-holonomic system that connects
any two points in the manifold. This result is of great significance as it guarantees the existence of
feasible paths for motion planning and control in non-holonomic systems, providing a theoretical
basis for designing control strategies and achieving desired behaviors in such systems.
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4 Nilpotent Systems and Exponential Coordinates

4.1 Nilpotent Systems

Nilpotent Lie Algebra

A Lie algebra is said to be nilpotent if there exists a positive integer 𝑘 such that the 𝑘th iteration of
the Lie bracket yields zero [16], i.e.,

[𝑥1, [𝑥2, [...[𝑥𝑘−1, 𝑥𝑘] ...]]] = 0

for all elements 𝑥1, 𝑥2, ..., 𝑥𝑘 in the Lie algebra .
In other words, in a nilpotent Lie algebra, repeated applications of the Lie bracket eventually

result in zero. The smallest value of 𝑘 for which this condition holds is called the nilpotency class
of the Lie algebra.
Example 4.1. The upper triangular matrices Lie algebra:

Consider the set of 𝑛 × 𝑛 upper triangular matrices with real entries. This forms a Lie algebra
under matrix commutation. The Lie bracket of two matrices is given by the matrix commutator.
This Lie algebra is nilpotent of class 𝑛 − 1, where 𝑛 is the dimension of the matrices.

The nilpotent property has important implications for the structure and properties of the Lie
algebra. It implies that the Lie algebra has a stratified structure, with each layer obtained by taking
the iterated Lie brackets of the previous layer. The number of layers is equal to the nilpotency
class of the Lie algebra.

Nilpotent Lie algebras are extensively studied in mathematics and physics, as they arise in
various areas, including differential geometry, representation theory, and the theory of dynamical
systems. They provide a rich framework for understanding the algebraic and geometric structures
underlying many physical phenomena and mathematical objects.

Nilpotent Systems

In the context of control systems, a system that satisfies a nilpotent Lie algebra is referred to as a
nilpotent system.

A nilpotent system is characterized by the property that repeated Lie bracket operations of the
vector fields associated with the system eventually yield zero. In other words, starting from the
vector fields of the system, if we iteratively compute their Lie brackets, the process will terminate
after a finite number of steps with the result being the zero vector field.
Example 4.2. The Heisenberg Case: Nilpotent System

Consider the Heisenberg case, where the vector fields are defined as follows:

𝑋1 = 𝜕𝑥 𝑋2 = 𝜕𝑦 + 𝑥𝜕𝑧

The Lie brackets are computed as follows:

[𝑋1, 𝑋2] = 𝜕𝑧 = 𝑋3, [𝑋1, 𝑋3] = [𝑋2, 𝑋3] = 0

Here, the Lie bracket of any two given vector fields yields the third vector field, and the third
vector field commutes with every other vector field. Consequently, the Lie brackets eventually
result in zero. This Lie algebra is nilpotent of class 2.

This example demonstrates the concept of nilpotency in Lie algebras and provides an instance
of an algebraic structure where repeated Lie bracket operations eventually result in zero.
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Example 4.3. Wheeled Robot Case: Not a Nilpotent System
Consider the dynamics of a wheeled robot, where the vector fields are defined as follows:

𝑋1 = cos𝜃𝜕𝑥 + sin𝜃𝜕𝑦 𝑋2 = 𝜕𝜃

The Lie brackets are computed as follows:

𝑋3 = [𝑋1, 𝑋2] = sin𝜃𝜕𝑥 − cos𝜃𝜕𝑦, [𝑋1, 𝑋3] = 0
𝑋4 = [𝑋2, 𝑋3] = cos𝜃𝜕𝑥 + sin𝜃𝜕𝑦
𝑋5 = [𝑋2, 𝑋4] = − sin𝜃𝜕𝑥 + cos𝜃𝜕𝑦
𝑋6 = [𝑋2, 𝑋5] = − cos𝜃𝜕𝑥 − sin𝜃𝜕𝑦

Here, the Lie bracket of𝑋1 and𝑋2 vector fields yields the third vector field𝑋3, and the third vector
field 𝑋3 commutes with the vector field 𝑋1, resulting in zero. However, 𝑋2 does not commute
with 𝑋3 and any other derived vector fields such as 𝑋4, 𝑋5, 𝑋6, and so on. Therefore, this system
is not a nilpotent system.

The nilpotency condition reflects a specific structural property of the system and has implica-
tions for its controllability and behavior. The study of nilpotent systems contributes to various
areas of control theory, including nonlinear control, differential geometry, and robotics.

4.2 Exponential coordinate

Given a nilpotent system, we can express a point on a manifold by "exponentiating" tangent
vectors from a chosen frame at a reference point. Exponential coordinates are a useful tool
in differential geometry for representing points on a manifold in terms of tangent vectors and
exponential mappings. This subsection introduces two types of exponential coordinates: the first
kind and the second kind.

4.2.1 Exponential Coordinate of the First Kind

Consider an adapted frame 𝑋1, . . . , 𝑋𝑛 at a point 𝑝 on a manifold. The inverse of the local
diffeomorphism

(𝑧1, . . . , 𝑧𝑛) ↦→ exp(𝑧1𝑋1 + . . . + 𝑧𝑛𝑋𝑛) (𝑝) (4.1)

defines a canonical coordinates of the first kind [17]. The exponential mapping takes tangent
vectors multiplied by corresponding coefficients 𝑧𝑖 and generates points on the manifold starting
from the reference point 𝑝. The inverse of this mapping allows us to express points on the manifold
in terms of these coefficients, yielding the canonical coordinates of the first kind. These coordinates
are particularly valuable in certain areas of research where the specific properties of hypoelliptic
operators and certain types of Lie groups are of interest.

Example 4.4. Consider the Heisenberg case, where the growth vector is (2, 3). We have the
following vector fields and coordinate transformations:

Vector fields:

𝑋1 = 𝜕𝑥1

𝑋2 = 𝜕𝑥2 + 𝑥1𝜕𝑥3
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In Step 1, we compute the distribution at point 𝑝. Here, at the origin 𝑝, the distribution is
given by:

Δ1(𝑝) = {𝑋1(𝑝), 𝑋2(𝑝)} = {𝑒1, 𝑒2}
𝑉3 = [𝑋1, 𝑋2] = 𝜕𝑥3

Δ2(𝑝) = {𝑋1(𝑝), 𝑋2(𝑝), 𝑋3(𝑝)} = {𝑒1, 𝑒2, 𝑒3}

In Step 2, we compute the flow of the vector field at 𝑝 using exponential coordinates. The
vector field 𝑉 is defined as:

𝑉 := 𝑧1𝑋1 + 𝑧2𝑋2 + 𝑧3𝑋3

𝑉 =


𝑧1
𝑧2

𝑥1𝑧2 + 𝑧3


Rewrite the vector field as the differential equations,

𝑉 := ¤𝑥1 = 𝑧1 ¤𝑥2 = 𝑧2 ¤𝑥3 = 𝑥1𝑧2 + 𝑧3

Computing the flow of the vector field 𝑉 at 𝑝 yields:

Φ𝑉
𝑡 := 𝑥1(𝑡) = 𝑧1𝑡 + 𝑥1(0)

𝑥2(𝑡) = 𝑧2𝑡 + 𝑥2(0)

𝑥3(𝑡) =
(1
2𝑧1𝑡

2 + 𝑥1(0)𝑡
)
𝑧2 + 𝑧3𝑡 + 𝑥3(0)

Substituting the initial condition 𝑝 = (𝑥1(0), 𝑥2(0), 𝑥3(0)) = (0, 0, 0), we get:

Φ𝑉
𝑡 := 𝑥1(𝑡) = 𝑧1𝑡

𝑥2(𝑡) = 𝑧2𝑡

𝑥3(𝑡) =
1
2𝑧1𝑧2𝑡

2 + 𝑧3𝑡

In Step 3, we compute the vector field in the exponential coordinate of the first kind. Substi-
tuting 𝑡 = 1 in the flow equations, we get the flow of the vector field in the (𝑥1, 𝑥2, 𝑥3) coordinate
on the M:

𝑥1 = 𝑧1, 𝑥2 = 𝑧2, 𝑥3 =
1
2𝑧1𝑧2 + 𝑧3

Rearranging and substituting, we obtain the inverse mapping to define the flow in the (𝑧1, 𝑧2, 𝑧3)
coordinate on the same manifold M:

𝑧1 = 𝑥1, 𝑧2 = 𝑥2, 𝑧3 = −1
2𝑥1𝑥2 + 𝑥3

To find the Jacobian between these tensors, we compute the derivatives of (𝑧1, 𝑧2, 𝑧3) with respect
to (𝑥1, 𝑥2, 𝑥3):

¤𝑧1 = ¤𝑥1, ¤𝑧2 = ¤𝑥2, ¤𝑧3 = −1
2𝑥1 ¤𝑥2 −

1
2𝑥2 ¤𝑥1 + ¤𝑥3
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This can be written in matrix form as:
¤𝑧1
¤𝑧2
¤𝑧3

 =


1 0 0
0 1 0
−𝑥2

2 −𝑥1
2 1



¤𝑥1
¤𝑥2
¤𝑥3


𝐽 =


1 0 0
0 1 0
−𝑥2

2 −𝑥1
2 1


With the Jacobian matrix, we can perform the transformation of the vector field defined in the
(𝑥1, 𝑥2, 𝑥3) coordinate to the new coordinate (𝑧1, 𝑧2, 𝑧3). Let 𝑋1 be the vector field defined in the
(𝑥1, 𝑥2, 𝑥3) coordinate and 𝑍1 be the vector field defined in the (𝑧1, 𝑧2, 𝑧3) coordinate:

𝑍1 = 𝐽𝑋1

𝑍1 =


1 0 0
0 1 0
−𝑥2

2 −𝑥1
2 1



1
0
0


=


1
0

−𝑥22


Now we change the coordinates from (𝑥1, 𝑥2, 𝑥3) to the new coordinate (𝑧1, 𝑧2, 𝑧3):

𝑍1 =


1
0

−𝑧22


Similarly, let 𝑍2 be the vector field defined in the (𝑧1, 𝑧2, 𝑧3) coordinate:

𝑍2 = 𝐽𝑋2

𝑍2 =


1 0 0
0 1 0
−𝑥2

2 −𝑥1
2 1



0
1
𝑥1


=


0
1

−𝑥12 + 𝑥1


Now we change the coordinates from (𝑥1, 𝑥2, 𝑥3) to the new coordinate (𝑧1, 𝑧2, 𝑧3):

𝑍2 =


0
1
𝑧1
2


Hence, the system defined in the exponential coordinate is given by:

¤𝑧1
¤𝑧2
¤𝑧3

 =


1 0 0
0 1 0

−𝑧22
𝑧1
2 1



𝑢1
𝑢2
0


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=


𝑢1
𝑢2

−𝑧22 𝑢1 +
𝑧1
2 𝑢2


The vector fields of the wheeled robot in the first canonical form are:

𝑍1 = 𝜕𝑧1 −
𝑧2
2 𝜕𝑧3 (4.2)

𝑍2 = 𝜕𝑧2 +
𝑧1
2 𝜕𝑧3 (4.3)

We can verify the distribution in the new coordinate at 𝑝 = (0, 0, 0):

𝑍1(𝑝) = 𝜕𝑧1

𝑍2(𝑝) = 𝜕𝑧2

𝑍3(𝑝) = [𝑍1, 𝑍2] (𝑝) =
1
2𝜕𝑧3 −

(
−1
2𝜕𝑧3

)
= 𝜕𝑧3

The vector fields (4.8) satisfy the Chow’s condition.

Example 4.5. Consider the Heisenberg case, where the growth vector is (2, 3, 4). We have the
following vector fields and coordinate transformations:

Vector fields:

𝑋1 = 𝜕𝑥1

𝑋2 = 𝜕𝑥2 + 𝑥1𝜕𝑥3 +
𝑥2
1
2 𝜕𝑥4

In Step 1, we compute the distribution at point 𝑝. Here, at the origin 𝑝, the distribution is
given by:

Δ1(𝑝) = {𝑋1(𝑝), 𝑋2(𝑝)} = {𝑒1, 𝑒2}
𝑋3 = [𝑋1, 𝑋2] = 𝜕𝑥3 + 𝑥1𝜕𝑥3
𝑋4 = [𝑋1, 𝑋2] = 𝜕𝑥3

Δ2(𝑝) = {𝑋1(𝑝), 𝑋2(𝑝), 𝑋3(𝑝), 𝑋4(𝑝)} = {𝑒1, 𝑒2, 𝑒3, 𝑒4}

In Step 2, we compute the flow of the vector field at 𝑝 using exponential coordinates. The
vector field 𝑉 is defined as:

𝑉 := 𝑧1𝑋1 + 𝑧2𝑋2 + 𝑧3𝑋3 + 𝑧4𝑋4

𝑉 =


𝑧1
𝑧2

𝑥1𝑧2 + 𝑧3
𝑥2
1
2 𝑧2 + 𝑧4


Rewrite the vector field as the differential equations,

𝑉 := ¤𝑥1 = 𝑧1 ¤𝑥2 = 𝑧2 ¤𝑥3 = 𝑥1𝑧2 + 𝑧3 ¤𝑥4 =
𝑥2
1
2 𝑧2 + 𝑧4
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Computing the flow of the vector field 𝑉 at 𝑝 yields:

Φ𝑉
𝑡 := 𝑥1(𝑡) = 𝑧1𝑡 + 𝑥1(0)

𝑥2(𝑡) = 𝑧2𝑡 + 𝑥2(0)

𝑥3(𝑡) =
(1
2𝑧1𝑡

2 + 𝑥1(0)𝑡
)
𝑧2 + 𝑧3𝑡 + 𝑥3(0)

𝑥4(𝑡) =
1
6𝑧2𝑡

3𝑧21 +
1
2 ((𝑥1(0)𝑧1𝑧2 + 𝑧1𝑧3))𝑡2) +

1
2 (𝑥

2
1 (0)𝑧2 + 2𝑥1(0)𝑧3)𝑡 + 𝑡𝑧4 + 𝑥4(0)

Substituting the initial condition 𝑝 = (𝑥1(0), 𝑥2(0), 𝑥3(0), 𝑥4(0)) = (0, 0, 0, 0), we get:

Φ𝑉
𝑡 := 𝑥1(𝑡) = 𝑧1𝑡

𝑥2(𝑡) = 𝑧2𝑡

𝑥3(𝑡) =
1
2𝑧1𝑧2𝑡

2 + 𝑧3𝑡

𝑥4(𝑡) =
1
6𝑧

2
1𝑧2𝑡

3 + 1
2𝑧1𝑧3𝑡

2 + 𝑧4𝑡

In Step 3, we compute the vector field in the exponential coordinate of the first kind. Substitut-
ing 𝑡 = 1 in the flow equations, we get the flow of the vector field in the (𝑥1, 𝑥2, 𝑥3, 𝑥4) coordinate
on the M:

𝑥1 = 𝑧1, 𝑥2 = 𝑧2, 𝑥3 =
1
2𝑧1𝑧2 + 𝑧3 𝑥4 =

1
6𝑧

2
1𝑧2 +

1
2𝑧1𝑧3 + 𝑧4

Rearranging and substituting, we obtain the inverse mapping to define the flow in the (𝑧1, 𝑧2, 𝑧3, 𝑧4)
coordinate on the same manifold M:

𝑧1 = 𝑥1, 𝑧2 = 𝑥2, 𝑧3 = −1
2𝑥1𝑥2 + 𝑥3 𝑧4 =

1
12𝑥

2
1𝑥2 −

1
2𝑥1𝑥3 + 𝑥4

To find the Jacobian between these tensors, we compute the derivatives of (𝑧1, 𝑧2, 𝑧3, 𝑧4) with
respect to (𝑥1, 𝑥2, 𝑥3, 𝑥4):

¤𝑧1 = ¤𝑥1, ¤𝑧2 = ¤𝑥2, ¤𝑧3 = −1
2𝑥1 ¤𝑥2 −

1
2𝑥2 ¤𝑥1 + ¤𝑥3

¤𝑧4 =
(1
6𝑥1𝑥2 −

1
2𝑥3

)
¤𝑥1 +

1
12𝑥

2
1 ¤𝑥2 −

1
2𝑥1 ¤𝑥3 + ¤𝑥4

This can be written in matrix form as:
¤𝑧1
¤𝑧2
¤𝑧3
¤𝑧4

 =


1 0 0 0
0 1 0 0

−1
2𝑥2 −1

2𝑥1 1 0
1
6𝑥1𝑥2 −

1
2𝑥3

1
12𝑥

2
1 −1

2𝑥1 1



¤𝑥1
¤𝑥2
¤𝑥3
¤𝑥4


𝐽 =


1 0 0 0
0 1 0 0

−1
2𝑥2 −1

2𝑥1 1 0
1
6𝑥1𝑥2 −

1
2𝑥3

1
12𝑥

2
1 −1

2𝑥1 1


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With the Jacobian matrix, we can perform the transformation of the vector field defined in the
(𝑥1, 𝑥2, 𝑥3, 𝑥4) coordinate to the new coordinate (𝑧1, 𝑧2, 𝑧3, 𝑧4). Let 𝑋1 be the vector field defined
in the (𝑥1, 𝑥2, 𝑥3, 𝑥4) coordinate and 𝑍1 be the vector field defined in the (𝑧1, 𝑧2, 𝑧3, 𝑧4) coordinate:

𝑍1 = 𝐽𝑋1

𝑍1 =


1 0 0 0
0 1 0 0

−1
2𝑥2 −1

2𝑥1 1 0
1
6𝑥1𝑥2 −

1
2𝑥3

1
12𝑥

2
1 −1

2𝑥1 1



1
0
0
0


=


1
0

−𝑥221
6𝑥1𝑥2 −

1
2𝑥3


Now we change the coordinates from (𝑥1, 𝑥2, 𝑥3, 𝑥4) to the new coordinate (𝑧1, 𝑧2, 𝑧3, 𝑧4):

𝑍1 =


1
0

−𝑧22
− 1

12𝑥1𝑥2 −
1
2𝑥3


Similarly, let 𝑍2 be the vector field defined in the (𝑧1, 𝑧2, 𝑧3, 𝑧4) coordinate:

𝑍2 = 𝐽𝑋2

𝑍2 =


1 0 0 0
0 1 0 0

−1
2𝑥2 −1

2𝑥1 1 0
1
6𝑥1𝑥2 −

1
2𝑥3

1
12𝑥

2
1 −1

2𝑥1 1



0
1
𝑥1
𝑥2
1
2


=



0
1

−𝑥12 + 𝑥1
𝑥2
1

12 −
𝑥2
1
4


Now we change the coordinates from (𝑥1, 𝑥2, 𝑥3, 𝑥4) to the new coordinate (𝑧1, 𝑧2, 𝑧3, 𝑧4):

𝑍2 =


0
1
𝑧1
2
𝑧21
12


.

Let 𝑍3 be the vector field defined in the (𝑧1, 𝑧2, 𝑧3, 𝑧4) coordinate:

𝑍3 = 𝐽𝑋3
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𝑍3 =


1 0 0 0
0 1 0 0

−1
2𝑥2 −1

2𝑥1 1 0
1
6𝑥1𝑥2 −

1
2𝑥3

1
12𝑥

2
1 −1

2𝑥1 1



0
0
1
𝑥1


=


0
0
1

−1
2𝑥1 + 𝑥1


Now we change the coordinates from (𝑥1, 𝑥2, 𝑥3, 𝑥4) to the new coordinate (𝑧1, 𝑧2, 𝑧3, 𝑧4):

𝑍2 =


0
0
1
𝑧1
2


Hence, the system defined in the exponential coordinate is given by:


¤𝑧1
¤𝑧2
¤𝑧3
¤𝑧4

 =


1 0 0 0
0 1 0 0

−𝑧22
𝑧1
2 1 0

− 1
12𝑧1𝑧2 −

1
2𝑧3

𝑧21
12

1
2𝑧1 1



𝑢1
𝑢2
0
0


=


𝑢1
𝑢2

−𝑧22 𝑢1 +
𝑧1
2 𝑢2

−
( 1
12𝑧1𝑧2 +

1
2𝑧3

)
𝑢1 +

𝑧21
12𝑢2


The vector fields in the first canonical form are:

𝑍1 = 𝜕𝑧1 −
𝑧2
2 𝜕𝑧3 −

(𝑧1𝑧2
12 + 𝑧3

2
)
𝜕𝑧4 (4.4)

𝑍2 = 𝜕𝑧2 +
𝑧1
2 𝜕𝑧3 +

𝑧21
12𝜕𝑧4 (4.5)

We can verify the distribution in the new coordinate at 𝑝 = (0, 0, 0, 0):

𝑍1(𝑝) = 𝜕𝑧1

𝑍2(𝑝) = 𝜕𝑧2

𝑍3(𝑝) = [𝑍1, 𝑍2] (𝑝) =
1
2𝜕𝑧3 +

𝑧1(𝑝)
6 𝜕𝑧4 −

(
−1
2𝜕𝑧3 −

𝑧1(𝑝)
12 𝜕𝑧4 −

𝑧1(𝑝)
4 𝜕𝑧4

)
= 𝜕𝑧3 +

𝑧1(𝑝)
2 𝜕𝑧4 = 𝜕𝑧3

𝑍4(𝑝) = [𝑍1, 𝑍3] (𝑝) =
1
2𝜕𝑧4 −

(
−1
2𝜕𝑧4

)
= 𝜕𝑧4

The vector fields (4.5) satisfy the Chow’s condition.
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4.2.2 Exponential Coordinate of the Second Kind

Similarly, let us consider an adapted frame 𝑋1, . . . , 𝑋𝑛 at a point 𝑝 on a manifold. The inverse of
the local diffeomorphism

(𝑧1, . . . , 𝑧𝑛) ↦→ exp(𝑧𝑛𝑋𝑛) ◦ . . . ◦ exp(𝑧2𝑋2) ◦ exp(𝑧1𝑋1) (𝑝) (4.6)

defines another system at 𝑝, called canonical coordinates of the second kind [17]. In canonical
coordinates of the second kind, each exponential mapping exp(𝑧𝑖𝑋𝑖) successively transforms the
reference point 𝑝 along the direction of the corresponding tangent vector 𝑋𝑖 multiplied by the
coefficient 𝑧𝑖 . This sequential application of the exponential mappings results in a clear step-by-step
interpretation of the coordinate transformation.

Canonical coordinates of the second kind are often favored due to their simplicity and ease
of interpretation, making them valuable in practical applications and intuitive understanding of
geometric structures.

Both types of exponential coordinates provide alternative representations of points on a
manifold in terms of tangent vectors and exponential mappings, offering distinct advantages
depending on the specific context and application.

Example 4.6. Consider the Heisenberg case, where the growth vector is (2, 3). We have the
following vector fields and coordinate transformations:

Vector fields:

𝑋1 = 𝜕𝑥1 −
𝑥2
2 𝜕𝑥3

𝑋2 = 𝜕𝑥2 +
𝑥1
2 𝜕𝑥3

In Step 1, we compute the distribution at point 𝑝. Here, at the origin 𝑝, the distribution is
given by:

Δ1(𝑝) = {𝑋1(𝑝), 𝑋2(𝑝)} = {𝑒1, 𝑒2}
𝑋3 = [𝑋1, 𝑋2] = 𝜕𝑥3

Δ2(𝑝) = {𝑋1(𝑝), 𝑋2(𝑝), 𝑋3(𝑝)} = {𝑒1, 𝑒2, 𝑒3}

In Step 2, we compute the flow of the vector field at 𝑝 using exponential coordinates. The
vector field 𝑉 is defined as:

(𝑧1, 𝑧2, 𝑧3) → exp (𝑧3𝑋3) ◦ exp (𝑧2𝑋2) ◦ exp (𝑧1𝑋1) (𝑝)

Computing the flow of the vector field 𝑋1 along 𝑧1 at 𝑝 yields:

𝑋1 := ¤𝑥1(𝑡) = 1 ¤𝑥2 = 0 ¤𝑥3 = −𝑥22
𝑧1𝑋1 := ¤𝑥1(𝑡) = 𝑧1 ¤𝑥2 = 0 ¤𝑥3 = −𝑥2𝑧12
Φ𝑉
𝑡 := 𝑥1(𝑡) = 𝑧1𝑡 + 𝑥1(0) 𝑥2(𝑡) = 𝑥2(0)

𝑥3(𝑡) = −𝑥2(0)𝑧12 𝑡 + 𝑥3(0)

Substituting the initial condition 𝑝 = (𝑥1(0), 𝑥2(0), 𝑥3(0)) = (0, 0, 0), we get:

Φ𝑋1
𝑡 := 𝑥1(𝑡) = 𝑧1𝑡 𝑥2(𝑡) = 0 𝑥3(𝑡) = 0
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Φ𝑋1 := 𝑥1 = 𝑧1 𝑥2 = 0 𝑥3 = 0

Computing the flow of the vector field 𝑋2 along 𝑧2 at 𝑝 yields:

𝑋2 := ¤𝑥1(𝑡) = 0 ¤𝑥2 = 1 ¤𝑥3 =
𝑥1
2

𝑧2𝑋2 := ¤𝑥1(𝑡) = 0 ¤𝑥2 = 𝑧2 ¤𝑥3 =
𝑥1𝑧2
2

Φ𝑋2
𝑡 := 𝑥1(𝑡) = 𝑥1(0) 𝑥2(𝑡) = 𝑧2𝑡 + 𝑥2(0)

𝑥3(𝑡) =
𝑥1(0)𝑧2

2 𝑡 + 𝑥3(0)

Substituting the new initial condition 𝑝 = (𝑥1(0), 𝑥2(0), 𝑥3(0)) = (𝑧1𝑡, 0, 0), we get:

Φ𝑋2
𝑡 := 𝑥1(𝑡) = 𝑧1𝑡 𝑥2(𝑡) = 𝑧2𝑡 𝑥3(𝑡) =

1
2𝑧1𝑧2𝑡

2

Φ𝑋2 := 𝑥1 = 𝑧1 𝑥2 = 𝑧2 𝑥3 =
1
2𝑧1𝑧2

Computing the flow of the vector field 𝑋3 along 𝑧3 at 𝑝 yields:

𝑋3 := ¤𝑥1(𝑡) = 0 ¤𝑥2 = 0 ¤𝑥3 = 1
𝑧3𝑋3 := ¤𝑥1(𝑡) = 0 ¤𝑥2 = 0 ¤𝑥3 = 𝑧3

Φ𝑉
𝑡 := 𝑥1(𝑡) = 𝑥1(0) 𝑥2(𝑡) = 𝑥2(0)

𝑥3(𝑡) = 𝑧3𝑡 + 𝑥3(0)

Substituting the new initial condition 𝑝 = (𝑥1(0), 𝑥2(0), 𝑥3(0)) = (𝑧1, 𝑧2, 12𝑧1𝑧2), we get:

Φ𝑋3
𝑡 := 𝑥1(𝑡) = 𝑧1𝑡 𝑥2(𝑡) = 𝑧2𝑡 𝑥3(𝑡) = 𝑧3𝑡 +

1
2𝑧1𝑧2𝑡

2

Φ𝑋3 := 𝑥1 = 𝑧1 𝑥2 = 𝑧2 𝑥3 = 𝑧3 +
1
2𝑧1𝑧2

In Step 3, we compute the vector field in the exponential coordinate of the second kind. The flow
of the vector field in the (𝑥1, 𝑥2, 𝑥3) coordinate on the manifold M:

𝑥1 = 𝑧1, 𝑥2 = 𝑧2, 𝑥3 =
1
2𝑧1𝑧2 + 𝑧3

Rearranging and substituting, we obtain the inverse mapping to define the flow in the (𝑧1, 𝑧2, 𝑧3)
coordinate on the same manifold M:

𝑧1 = 𝑥1, 𝑧2 = 𝑥2, 𝑧3 = −1
2𝑥1𝑥2 + 𝑥3

To find the Jacobian between these tensors, we compute the derivatives of (𝑧1, 𝑧2, 𝑧3) with respect
to (𝑥1, 𝑥2, 𝑥3):

¤𝑧1 = ¤𝑥1, ¤𝑧2 = ¤𝑥2, ¤𝑧3 = −1
2𝑥1 ¤𝑥2 −

1
2𝑥2 ¤𝑥1 + ¤𝑥3
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This can be written in matrix form as:
¤𝑧1
¤𝑧2
¤𝑧3

 =


1 0 0
0 1 0
−𝑥2

2 −𝑥1
2 1



¤𝑥1
¤𝑥2
¤𝑥3


𝐽 =


1 0 0
0 1 0
−𝑥2

2 −𝑥1
2 1


With the Jacobian matrix, we can perform the transformation of the vector field in the

(𝑥1, 𝑥2, 𝑥3) coordinate to the new coordinate (𝑧1, 𝑧2, 𝑧3). Let 𝑋1 be the vector field defined in the
(𝑥1, 𝑥2, 𝑥3) and 𝑍1 be the vector field defined in the (𝑧1, 𝑧2, 𝑧3) coordinate:

𝑍1 = 𝐽𝑋1

𝑍1 =


1 0 0
0 1 0
−𝑥2

2 −𝑥1
2 1




1
0

−𝑥22


=


1
0

−𝑥22 − 𝑥2
2


Now we change the coordinates from (𝑥1, 𝑥2, 𝑥3) to the new coordinate (𝑧1, 𝑧2, 𝑧3):

𝑍1 =


1
0
−𝑧2


Similarly, let 𝑍2 be the vector field defined in the (𝑧1, 𝑧2, 𝑧3) coordinate:

𝑍2 = 𝐽𝑋2

𝑍2 =


1 0 0
0 1 0
−𝑥2

2 −𝑥1
2 1



0
1
𝑥1
2


=


0
1

𝑥1
2 − 𝑥1

2


Now we change the coordinates from (𝑥1, 𝑥2, 𝑥3) to the new coordinate (𝑧1, 𝑧2, 𝑧3):

𝑍2 =


0
1
0


Hence, the system defined in the exponential coordinate is given by:

¤𝑧1
¤𝑧2
¤𝑧3

 =


1 0 0
0 1 0
−𝑧2 0 1



𝑢1
𝑢2
0


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=


𝑢1
𝑢2

−𝑧2𝑢1


The vector fields in the second canonical form are:

𝑍1 = 𝜕𝑧1 − 𝑧2𝜕𝑧3 (4.7)
𝑍2 = 𝜕𝑧2 (4.8)

We can verify the order of the privileged coordinate at 𝑝 = (0, 0, 0):

𝑍1(𝑝) = 𝜕𝑧1 − 𝑧2(𝑝)𝜕𝑧3 = 𝜕𝑧1

𝑍2(𝑝) = 𝜕𝑧2

𝑍3(𝑝) = [𝑍1, 𝑍2] (𝑝) = 0 − (−1)𝜕𝑧3 = 𝜕𝑧3

The vector fields (4.8) satisfy the Chow’s condition.
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5 Approximation Theory

In this section, we define the necessary terminology for approximating the Non-Holonomic system.
We will start with the definition of order and how to calculate the order of the system. Based on
the definition, we approximate the system locally to that corresponding order.

5.1 Non-Holonomic Order

5.1.1 Non-Holonomic order of a function

Definition 5.1. Let 𝑓 : M → ℝ be a continuous function. The non-holonomic order of 𝑓 at 𝑝,
denoted by ord𝑝 (𝑓 ) [17], is the real number defined by

ord𝑝 (𝑓 ) = sup
{
𝑠 ∈ ℝ : 𝑓 (𝑞) = O(𝑑 (𝑝, 𝑞)𝑠)

}
(5.1)

This order is always nonnegative. Moreover ord𝑝 (𝑓 ) = 0 if 𝑓 (𝑝) ≠ 0, and ord𝑝 (𝑓 ) = +∞ if
𝑓 (𝑝) ≡ 0. Equivalently,

ord𝑝 (𝑓 ) = min
{
𝑠 ∈ ℕ : ∃𝑖1, ..., 𝑖𝑠 ∈ {1, ...,𝑚}, 𝑠 .𝑡 .(𝑋𝑖1 ...𝑋𝑖𝑠 𝑓 ) (𝑝) ≠ 0

}
, (5.2)

For every 𝑓 , 𝑔 ∈ C∞(𝑝) and every 𝜆 ∈ ℝ\0,

ord𝑝 (𝑓 𝑔) ≥ ord𝑝 (𝑓 ) + ord𝑝 (𝑔),
ord𝑝 (𝜆𝑓 ) = ord𝑝 (𝑓 ),

ord𝑝 (𝑓 + 𝑔) ≥ min(ord𝑝 (𝑓 ), ord𝑝 (𝑔)).

Example 5.2. Heisenberg Case

¤𝑥 = 𝑢1𝜕𝑥
¤𝑦 = 𝑢2𝜕𝑦

¤𝑧 =
𝑥

2𝑢2𝜕𝑧 −
𝑦

2𝑢1𝜕𝑦

where, 𝑋1 = 𝜕𝑥 −
𝑦

2𝜕𝑧

𝑋2 = 𝜕𝑦 +
𝑥

2𝜕𝑧

Consider several functions
1. 𝑓1(𝑥) = 𝑥

𝑋1𝑓1 = 1. 𝜕𝑓
𝜕𝑥

+ 0. 𝜕𝑓
𝜕𝑦

− 𝑦

2 .
𝜕𝑓

𝜕𝑧
= 1 + 0 + 0 = 1

𝑋1𝑓1(0) = 1

𝑋2𝑓1 = 0. 𝜕𝑓
𝜕𝑥

+ 1. 𝜕𝑓
𝜕𝑦

+ 𝑥

2 .
𝜕𝑓

𝜕𝑧
= 0 + 0 + 0 = 0

From Eq. 5.2 =⇒ ord𝑝 (𝑓1) = 1
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2. 𝑓2(𝑦) = 𝑦2/2

𝑋1𝑓2 = 1.0 + 0 − 𝑦

2 .0 = 0

𝑋2𝑓2 = 0 + 1.𝑦 + 𝑥

2 .0 = 𝑦

𝑋2𝑓2(0) = 0
𝑋2𝑋2𝑓2(0) = 0 + 1.1 + 0 = 1

From Eq. 5.2 =⇒ ord𝑝 (𝑓2) = 2
3. 𝑓3(𝑧) = 𝑧2

𝑋1𝑓3 = 1.0 + 0 − 𝑦

2 .2𝑧 = −𝑦𝑧

𝑋1𝑓3(0) = 0

𝑋1𝑋1𝑓3 = 1.0 + 0 − 𝑦

2 .(−𝑦) =
𝑦2

2
𝑋1𝑋1𝑓3(0) = 0

𝑋2𝑋2𝑋1𝑋1𝑓3 = 1

From Eq. 5.2 =⇒ ord𝑝 (𝑓3) = 4
4. 𝑓4(𝑦) = 𝑥𝑦2/2 = 𝑓1𝑓2

ord𝑝 (𝑓1𝑓2) ≥ ord𝑝 (𝑓1) + ord𝑝 (𝑓2)
≥ 1 + 2 = 3

𝑋2𝑋2𝑋1𝑓4 = 1

From Eq. 5.2 =⇒ ord𝑝 (𝑓4) = 3

5.1.2 Non-Holonomic order of Vector fields

Definition 5.3. Let 𝑋 ∈ 𝑉𝐹 (𝑝). The non-holonomic order of 𝑋 at 𝑝, denoted by ord𝑝 (𝑋 ) [17], is
the real number defined by:

ord𝑝 (𝑋 ) = sup
{
𝜎 ∈ ℝ : ord𝑝 (𝑋 𝑓 ) ≥ 𝜎 + ord𝑝 (𝑓 ),∀𝑓 ∈ C∞(𝑝)

}
. (5.3)

For every 𝑋,𝑌 ∈ 𝑉𝐹 (𝑝) and every 𝑓 ∈ C∞(𝑝),

ord𝑝 ( [𝑋,𝑌 ]) ≥ ord𝑝 (𝑋 ) + ord𝑝 (𝑌 ),
ord𝑝 (𝑓 𝑋 ) ≥ ord𝑝 (𝑓 ) + ord𝑝 (𝑋 ),
ord𝑝 (𝑋 ) ≤ ord𝑝 (𝑋 𝑓 ) − ord𝑝 (𝑓 ),

ord𝑝 (𝑋 + 𝑌 ) ≥ 𝑚𝑖𝑛(ord𝑝 (𝑋 ), ord𝑝 (𝑌 )).

As a consequence of the above properties, 𝑋1, ..., 𝑋𝑚 are of order ≥ −1, [𝑋𝑖, 𝑋 𝑗 ] of order ≥ −2,
and more generally, every 𝑋 in the set Δ𝑘 is of order ≥ −𝑘.

Example 5.4. Chained System

ord𝑝 (𝑋1) = −1
ord𝑝 (𝑋2) = −1
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ord𝑝 (𝑋3) = −2
.

.

.

ord𝑝 (𝑋𝑛) = −(𝑛 − 1)

5.2 Privileged Coordinates

In the realm of differential geometry and coordinate systems, the term "privileged coordinates"
refers to a specific choice of coordinates that offers simplifications in the analysis or equations
describing a given system or geometry. These coordinates are selected based on the particular
properties or symmetries exhibited by the system under investigation. The designation of "privi-
leged" signifies that these coordinates possess distinct advantages or special properties compared
to other possible choices of coordinates. By employing privileged coordinates, one can exploit the
inherent structure of the system to streamline calculations, uncover hidden symmetries, or reveal
important relationships between different variables.

Definition 5.5. Privileged Coordinate
A system of privileged coordinates at point 𝑝 [17] is a set of local coordinates (𝑧1, . . . , 𝑧𝑛) such

that ord𝑝 (𝑧 𝑗 ) = 𝑤 𝑗 for 𝑗 = 1, . . . , 𝑛 that satisfy the following conditions [17]:

𝑑𝑧𝑖 (Δ𝑤𝑖 (𝑝)) ≠ 0, 𝑑𝑧𝑖 (Δ𝑤𝑖−1(𝑝)) = 0, 𝑖 = 1, . . . , 𝑛, (5.4)

Alternatively, we can state that 𝜕𝑧𝑖 |𝑝 belongs to Δ𝑤𝑖 (𝑝) but not to Δ𝑤𝑖−1(𝑝). Local coordinates
satisfying (5.4) are called linearly adapted coordinates.

Example 5.6. Here are a few examples of privileged coordinates:
1. In a planar robotic arm with revolute joints, the joint angles serve as privileged coordinates

that are linearly adapted to the rotational distribution of the robotic arm.
2. Exponential coordinates are also regarded as privileged coordinates.

The selection of privileged coordinates relies on the specific problem or context at hand. In
some instances, these privileged coordinates may correspond to natural or canonical choices that
arise from the geometry or symmetries of the system. In other instances, privileged coordinates
can be defined based on physical considerations or mathematical properties that render certain
calculations or equations more manageable. For instance, in systems exhibiting translational
symmetry, it is advantageous to employ coordinates that align with the directions of translation,
as this simplifies the equations of motion.

5.2.1 Algebraic Coordinate

In certain situations, the construction of exponential coordinates may not be computationally
efficient or feasible, as it requires integrating flows of vector fields. In such cases, alternative
methods for constructing privileged coordinates, known as algebraic privileged coordinates, can
be employed. One such effective construction method is Bellaïche’s algorithm [17].

1. Choose an adapted frame 𝑌1, ..., 𝑌𝑛 at 𝑝.
2. Choose coordinates (𝑦1, ..., 𝑦𝑛) centered at 𝑝 such that 𝜕𝑦𝑖 |𝑝 = 𝑌𝑖 (𝑝).
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3. For 𝑗 = 1, ..., 𝑛, set

𝑧 𝑗 = 𝑦 𝑗 −
𝑤 𝑗−1∑︁
𝑘=2

ℎ𝑘 (𝑦1, ..., 𝑦 𝑗−1)

Here, the function ℎ𝑘 (𝑦1, ..., 𝑦 𝑗−1) is defined for 𝑘 = 2, ...,𝑤 𝑗−1 as:

ℎ𝑘 (𝑦1, ..., 𝑦 𝑗−1) =
∑︁
|𝛼 |=𝑘,

𝑤 (𝛼)<𝑤 𝑗

𝑌
𝛼1
1 ...𝑌

𝛼 𝑗−1
𝑗−1

(
𝑦 𝑗 −

𝑘−1∑︁
𝑞=2

ℎ𝑞 (𝑦)
)
(𝑝)

𝑦
𝛼1
1

𝛼1!
...
𝑦
𝛼 𝑗−1
𝑗−1

𝛼 𝑗−1!

Here, |𝛼 | = 𝛼1 + ... + 𝛼𝑛, and 𝑤 (𝛼) denotes the weight of the multi-index 𝛼 .
The resulting privileged coordinates, denoted as (𝑧1, 𝑧2, . . . , 𝑧𝑛), are derived from the original

coordinates (𝑦1, 𝑦2, . . . , 𝑦𝑛) using an expression of the form in step 3 where each 𝑧𝑖 is obtained by
adding a polynomial function of the preceding variables 𝑦1, 𝑦2, . . . , 𝑦𝑖−1 to the corresponding 𝑦𝑖
value.

Algebraic privileged coordinates offer an alternative representation of points on a manifold by
incorporating polynomial functions of the preceding variables, enabling a different perspective
for analyzing and describing the manifold’s properties. This construction is particularly useful
in scenarios where computing exponential mappings or integrating vector field flows may be
computationally intensive or impractical.

Example: Mobile robot with trailer

Example 5.7. In this example, we consider a mobile robot with a trailer [8]. The vector field and
algebraic coordinates of the system are derived and analyzed.

The dynamics of the system are given by a set of differential equations,

¤𝑋 =


¤𝑥
¤𝑦
¤𝜃
¤𝜙

 =


cos𝜃
sin𝜃
0

−sin𝜙
𝑙𝑡


𝑢1 +


0
0
1

−1 − 𝑙𝑟 cos𝜙
𝑙𝑡


𝑢2

𝑋1 = cos𝜃𝜕𝑥 + sin𝜃𝜕𝑦 −
sin𝜙
𝑙𝑡

𝜕𝜙

𝑋2 = 𝜕𝜃 −
(
1 + 𝑙𝑟 cos𝜙

𝑙𝑡

)
𝜕𝜙

where, 𝑋 = (𝑥,𝑦, 𝜃, 𝜙) ∈ M = ℝ2 × S1 × S1

The vector fields are represented by the differential equations, where the state of the system is
denoted by 𝑋 = (𝑥,𝑦, 𝜃, 𝜙). The control inputs of the system are 𝑢1 and 𝑢2, and the lengths of the
robot and trailer are denoted by 𝑙𝑟 and 𝑙𝑡 respectively.

Next, we compute the Lie derivatives and weights of the vector field at the origin. The Lie
derivatives help us understand the behavior of the system and identify privileged coordinates. We
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obtain the Lie derivatives up to the second order, resulting in the vector fields Δ1(𝑝), Δ2(𝑝), and
Δ3(𝑝). Consider 𝑙𝑟 = 𝑙𝑡 = 1, the distribution of the vector field at the origin 𝑝 is

Δ1(𝑝) = {𝑋1(𝑝), 𝑋2(𝑝)} =
{
𝜕𝑥 , 𝜕𝜃 − 2𝜕𝜙

}
𝑋3 = [𝑋1, 𝑋2] = sin𝜃𝜕𝑥 − cos𝜃𝜕𝑦 − (1 + cos𝜙)𝜕𝜙

Δ2(𝑝) = {𝑋1(𝑝), 𝑋2(𝑝), 𝑋3(𝑝)} =
{
𝜕𝑥 , 𝜕𝜃 − 2𝜕𝜙 ,−𝜕𝑦 − 2𝜕𝜙

}
𝑋4 = [𝑋1, 𝑋3] = −(1 + cos𝜙)𝜕𝜙

Δ3(𝑝) = {𝑋1(𝑝), 𝑋2(𝑝), 𝑋3(𝑝), 𝑋4(𝑝)} =
{
𝜕𝑥 , 𝜕𝜃 − 2𝜕𝜙 ,−𝜕𝑦 − 2𝜕𝜙 ,−2𝜕𝜙

}
Based on the given distribution of vector fields at the origin 𝑝, we can conclude that the system
satisfies Chow’s condition. Therefore, we can affirm that the system is reachable locally around
the origin. Moreover, by applying Chow-Rashevsky’s theorem, we can establish that the system is
globally reachable since the underlying manifold M is connected.
The non-holonomic order of the each coordinate at 𝑝 is,

ord𝑝 (𝑥) = 1 ord𝑝 (𝑦) = 2 ord𝑝 (𝜃 ) = 1 ord𝑝 (𝜙) = 1

The weights of this example is,

(𝑤1,𝑤2,𝑤3,𝑤4) = (1, 1, 2, 3)

Step 1: The adapted frames 𝑋1, 𝑋2, 𝑋3, 𝑋4 at 𝑝,

𝑋1(𝑝) = 𝜕𝑥 𝑋2(𝑝) = 𝜕𝜃 − 2𝜕𝜙 𝑋3(𝑝) = −𝜕𝑦 − 2𝜕𝜙 𝑋4(𝑝) = −2𝜕𝜙
Step 2: Change of coordinates- To analyze the system further, we introduce a change of coor-

dinates using a Jacobian matrix. The new vector fields are expressed in terms of the transformed
coordinates. We define 𝑃 = [𝑋1(𝑝), 𝑋2(𝑝), 𝑋3(𝑝), 𝑋4(𝑝)],

𝑃 =


1 0 0 0
0 0 −1 0
0 1 0 0
0 −2 −2 −2


𝑃−1 =


1 0 0 0
0 0 −1 0
0 1 0 0
0 −2 −1 −1

2


We use Jacobian matrix to change the vector field from (𝑥,𝑦, 𝜃, 𝜙) coordinate to the new coordinate
(𝑧1, 𝑧2, 𝑧3, 𝑧3).

𝑋 = 𝑃−1𝑍 =


𝑥1
𝑥2
𝑥3
𝑥4

 =


1 0 0 0
0 0 −1 0
0 1 0 0
0 −2 −1 −1

2



𝑧1
𝑧2
𝑧3
𝑧4


𝑥1 = 𝑧1 𝑥2 = −𝑧3 𝑥3 = 𝑧2 𝑥4 = −2𝑧1 − 𝑧3 −

1
2𝑧4

Thus, the new vector fields are given by

𝑍1 = cos 𝑧2𝜕𝑧1 − sin 𝑧2𝜕𝑧3 +
(
sin 𝑧2 −

sin 2(𝑧2 + 𝑧3 + 𝑧4)
2

)
𝜕𝑧4
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𝑍2 = 𝜕𝑧2 +
(
−1
2 + cos 2(𝑧2 + 𝑧3 + 𝑧4)

2

)
𝜕𝑧4

𝑍3 = sin 𝑧2𝜕𝑧1 + cos 𝑧2𝜕𝑧3 −
(
−1
2 + cos(𝑧2) −

cos 2(𝑧2 + 𝑧3 + 𝑧4)
2

)
𝜕𝑧4

𝑍4 =

(1
2 + cos 2(𝑧2 + 𝑧3 + 𝑧4)

2

)
𝜕𝑧4

Step 3: New Algebric coordinates
We then proceed to construct the algebraic coordinates by examining the derivatives of the

coordinate function along the new vector fields 𝑍1 and 𝑍2. Using the derivatives, we calculate the
algebraic coordinates and obtain the transformed vector fields 𝑍1, 𝑍2, 𝑍3, and 𝑍4 at the origin.

1. The weight of the third coordinate 𝑤 (𝑧3) is 2. Hence, we need the first order derivative of
𝑧3 along the vector fields 𝑍1 and 𝑍2 to construct the algebraic coordinate,

ℎ1 := 𝑍1𝑧3 = − sin 𝑧2
ℎ2 := 𝑍2𝑧3 = 0

At the origin: ℎ1(𝑝) = 0 ℎ2(𝑝) = 0. Hence, the new coordinate (𝑧1, 𝑧2, 𝑧3, 𝑧4) ∈ P is ,

𝑧1 = 𝑧1
𝑧2 = 𝑧2
𝑧3 = 𝑧3 + ℎ1(𝑝)𝑧1 + ℎ2(𝑝)𝑧2

=⇒ 𝑧1 = 𝑧1, 𝑧2 = 𝑧2, 𝑧3 = 𝑧3

2. The weight of the fourth coordinate𝑤 (𝑧4) is 3. Hence, we need the second order of 𝑧4 along
the vector fields 𝑍1 and 𝑍2 to construct the algebraic coordinate,

ℎ11 := 𝑍1𝑍1𝑧3

= sin(𝑧2) cos 2(𝑧4 + 𝑧3 + 𝑧2) −
(
sin(𝑧2) −

sin 2(𝑧4 + 𝑧3 + 𝑧2)
2

)
cos 2(𝑧4 + 𝑧3 + 𝑧2)

ℎ12 := 𝑍1𝑍2𝑧3

= sin(𝑧2) sin 2(𝑧4 + 𝑧3 + 𝑧2) −
(
sin(𝑧2) −

sin 2(𝑧4 + 𝑧3 + 𝑧2)
2

)
sin 2(𝑧4 + 𝑧3 + 𝑧2)

ℎ22 := 𝑍2𝑍2𝑧3

= − sin 2(𝑧4 + 𝑧3 + 𝑧2) −
(1
2 + cos 2(𝑧4 + 𝑧3 + 𝑧2)

2

)
sin 2(𝑧4 + 𝑧3 + 𝑧2)

At the origin : ℎ11(𝑝) = 0, ℎ12(𝑝) = 0, ℎ22(𝑝) = 0. Hence, the new coordinate
(𝑧1, 𝑧2, 𝑧3, 𝑧4) ∈ P is,

𝑧1 = 𝑧1
𝑧2 = 𝑧2
𝑧3 = 𝑧3 + ℎ1(𝑝)𝑧1 + ℎ2(𝑝)𝑧2

𝑧4 = 𝑧3 +
1
2 (ℎ11(𝑝)𝑧21 + ℎ12(𝑝)𝑧1𝑧2 + ℎ22(𝑝)𝑧22)

=⇒ 𝑧1 = 𝑧1, 𝑧2 = 𝑧2, 𝑧3 = 𝑧3 𝑧4 = 𝑧4
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The new vector fields 𝑍1, 𝑍2, 𝑍3, 𝑍4 at the origin 𝑝 are ,

𝑍1(𝑝) = 𝜕𝑧1 𝑍2(𝑝) = 𝜕𝑧2 𝑍3(𝑝) = 𝜕𝑧3 𝑍4(𝑝) = 𝜕𝑧4

The non-holonomic order of the new coordinates at 𝑝 is,

ord𝑝 (𝑧1) = 1 ord𝑝 (𝑧2) = 1 ord𝑝 (𝑧3) = 2 ord𝑝 (𝑧4) = 3

The system is defined in the privileged coordinate,

𝑍1 = cos 𝑧2𝜕𝑧1 + sin 𝑧2𝜕𝑧3 +
(
sin 𝑧2 −

sin 2(𝑧2 + 𝑧3 + 𝑧4)
2

)
𝜕𝑧4

𝑍2 = 𝜕𝑧2 −
(
−1
2 + cos 2(𝑧2 + 𝑧3 + 𝑧4)

2

)
𝜕𝑧4 .

In this example, we consider the dynamics of a robot with a trailer modeled in algebraic
coordinates. The choice of algebraic coordinates allows us to describe the system in a privileged
coordinate system that simplifies the analysis. By utilizing the privileged coordinate system, we
can approximate the system locally, study and analyze the dynamics of the non-holonomic system
in a simplified manner.

5.3 First Order Approximation
In the study of vector fields, the concept of first-order approximation plays a crucial role in
understanding the behavior of a system near a specific point. It provides an approximation that
captures the leading-order terms of the vector fields and enables the analysis of their properties
and dynamics.
Definition 5.8. A family of 𝑚 vector fields (𝑋1, . . . , 𝑋𝑚) defined near 𝑝 is called a first-order
approximation of (𝑋1, . . . , 𝑋𝑚) at 𝑝 if the vector fields (𝑋𝑖 − 𝑋𝑖), 𝑖 = 1, . . . ,𝑚, are of order ≥ 0 at
𝑝.

The definition [17] states that the first-order approximation consists of vector fields that differ
from the original vector fields by terms of at least the first order in a neighborhood around the
point of interest. It allows us to focus on the dominant contributions of the vector fields and
neglect higher-order effects in the analysis.
Example 5.9. Consider the Wheeled mobile robot in Example (3.4). The mathematical model of
the wheeled robot is given by

¤𝑞 = 𝑋1𝑢1 + 𝑋2𝑢2
𝑋1 = cos𝜃𝜕𝑥 + sin𝜃𝜕𝑦, 𝑋2 = 𝜕𝑧

Using the Taylor series approximation of sin and cos at the origin 𝑝:

sin𝜃 = 𝜃 − 𝜃3

3! +
𝜃5

5! − . . .

cos𝜃 = 1 + 𝜃2

2! +
𝜃4

4! − . . .

We can determine the order of the vector fields 𝑋1 and 𝑋2 at 𝑝 as follows:

ord𝑝 (𝑋1) = −∞
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ord𝑝 (𝑋2) ≥ −1

Now, let’s consider the first-order approximation:

𝑋1 = (1 + 𝜃2

2! +
𝜃4

4! − . . .)𝜕𝑥 + (𝜃 − 𝜃3

3! +
𝜃5

5! − . . .)𝜕𝑦

Let, 𝑋1 = 𝜕𝑥 + 𝜃𝜕𝑦

𝑋1 − 𝑋1 = (𝜃
2

2! +
𝜃4

4! − . . .)𝜕𝑥 + (−𝜃
3

3! +
𝜃5

5! − . . .)𝜕𝑦

ord𝑝 (𝑋1 − 𝑋1) ≥ −2

Thus, 𝑋1 serves as the first-order approximation of 𝑋1 at 𝑝. The first-order approximation allows
us to capture the dominant terms of 𝑋1 near 𝑝 while neglecting higher-order effects, facilitating
the analysis of the system’s behavior in the vicinity of the point of interest.

The concept of first-order approximation provides a valuable tool for analyzing the behavior of
vector fields and understanding their dynamics near specific points. By considering the dominant
terms and neglecting higher-order effects, we can gain insights into the essential characteristics
of the vector fields and simplify the analysis of complex systems. This approach is widely used
in various fields, including control theory, differential geometry, and mathematical physics, to
study the behavior of systems in local neighborhoods and derive useful conclusions about their
properties.

5.4 Nilpotent Approximation
Let (𝑧1, . . . , 𝑧𝑛) be a system of privileged coordinates at point 𝑝. In these coordinates, every vector
field 𝑋𝑖 can be represented as a Taylor expansion of the form:

𝑋𝑖 (𝑧) ∼
∑︁
𝛼,𝑗

𝑎𝛼,𝑗𝑧
𝛼𝜕𝑧 𝑗 ,

where 𝑤 (𝛼) ≥ 𝑤 𝑗 − 1 if 𝑎𝛼,𝑗 ≠ 0. Here, 𝛼 represents a multi-index, 𝑗 ranges from 1 to 𝑛, and 𝑎𝛼,𝑗
are coefficients.

By grouping together the monomial vector fields of the same weighted degree, we can express
𝑋𝑖 as a series:

𝑋𝑖 = 𝑋
(−1)
𝑖

+ 𝑋
(0)
𝑖

+ 𝑋
(1)
𝑖

+ . . . ,

where 𝑋 (𝑠)
𝑖

is a homogeneous vector field of degree 𝑠.
Now, consider the family of vector fields (𝑋1, . . . , 𝑋𝑚) defined as 𝑋𝑖 = 𝑋

(−1)
𝑖

for 𝑖 = 1, . . . ,𝑚.
This family serves as a first-order approximation of (𝑋1, . . . , 𝑋𝑚) at point 𝑝 and generates a
nilpotent Lie algebra of step 𝑟 = 𝑤𝑛.

In the context of Lie algebras, a Lie algebra 𝐿𝑖𝑒 (𝑋1, . . . , 𝑋𝑚) is said to be nilpotent of step 𝑠 if
all brackets 𝑋𝐼 of length |𝐼 | greater than 𝑠 are zero.

Therefore, the family (𝑋1, . . . , 𝑋𝑚) is referred to as the (homogeneous) nilpotent approxi-
mation of (𝑋1, . . . , 𝑋𝑚) at point 𝑝 [17], associated with the coordinates 𝑧. It provides a useful
approximation that simplifies the analysis of the vector fields and their properties in the vicinity
of the point 𝑝.

We can compute the nilpotent approximation of example of a wheeled mobile robot from
Example (4.7) .
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Example 5.10. The given mathematical model describes the dynamics of a robot, where the state
vector 𝑋 belongs to ℝ2 × S1, and the control input vector 𝑢 belongs to ℝ2. The dynamics are
represented by the equations:

¤𝑋 = 𝑋1𝑢1 + 𝑋2𝑢2
𝑋1 = cos𝜃𝜕𝑥 + sin𝜃𝜕𝑦
𝑋2 = 𝜕𝜃

Here, 𝜃 represents the orientation of the robot, and the vectors 𝑋1 and 𝑋2 are the corresponding
vector fields associated with the state components. The Lie bracket 𝑋3 = [𝑋1, 𝑋2] is defined as
sin𝜃𝜕𝑥 − cos𝜃𝜕𝑦 , indicating that the system is regular at every point, and the weights of the vector
fields are (1, 1, 2) at every point.

In this system, the coordinate system (𝑥,𝑦, 𝜃 ) is considered privileged, which allows us to use
Taylor series approximations for sin𝜃 and cos𝜃 . By expanding these trigonometric functions, we
obtain the homogeneous components of the vector fields:

𝑋
(−1)
1 = 𝜕𝑥 + 𝜃𝜕𝑦, 𝑋

(0)
1 = 0, 𝑋

(1)
1 =

𝜃2

2! 𝜕𝑥 −
𝜃3

3! 𝜕𝑦, . . .

𝑋
(−1)
2 = 𝜕𝜃

Hence, the homogeneous nilpotent approximation of (𝑋1, 𝑋2) at the origin in the privileged
coordinates (𝑥,𝑦, 𝜃 ) is given by:

𝑋1 = 𝜕𝑥 + 𝜃𝜕𝑦 𝑋2 = 𝜕𝜃

It can be verified that the Lie brackets of length 3 of these vector fields are zero, meaning that
[𝑋1, [𝑋1, 𝑋2]] = [𝑋2, [𝑋1, 𝑋2]] = 0. Consequently, the Lie algebra 𝐿𝑖𝑒 (𝑋1, 𝑋2) is nilpotent of step
2.

It’s important to note that the homogeneous nilpotent approximation is not uniquely defined
by the vector field tuple (𝑋1, . . . , 𝑋𝑚) because it depends on the chosen system of privileged coordi-
nates. However, if (𝑋1, . . . , 𝑋𝑚) and (𝑋 ′

1, . . . , 𝑋
′
1) are the nilpotent approximations associated with

two different systems of coordinates, then their Lie algebras 𝐿𝑖𝑒 (𝑋1, . . . , 𝑋𝑚) and 𝐿𝑖𝑒 (𝑋
′
1, . . . , 𝑋

′
𝑚)

are isomorphic, meaning they possess the same algebraic structure despite being represented in
different coordinate systems.

In summary, the nilpotent approximation is a method that simplifies the analysis of vector
fields by providing a first-order approximation using privileged coordinates. It allows expressing
vector fields as Taylor expansions and generates a family of vector fields called the homogeneous
nilpotent approximation. This approximation captures the essential behavior of the vector fields
at the point of interest and facilitates further analysis and computations.
Example 5.11. Robot with a Trailer: Continuation

From the previous example 5.7, the vector fields of the robot with a trailer system in the
privileged coordinate are given by:

𝑍1 = cos 𝑧2𝜕𝑧1 + sin 𝑧2𝜕𝑧3 +
(
sin 𝑧2 −

sin 2(𝑧2 + 𝑧3 + 𝑧4)
2

)
𝜕𝑧4

𝑍2 = 𝜕𝑧2 −
(
−1
2 + cos 2(𝑧2 + 𝑧3 + 𝑧4)

2

)
𝜕𝑧4 .

To approximate the system, we take the Taylor series polynomial based the weights of the vector
fields (1, 1, 2, 3). By calculating the nilpotent approximations of the transformed coordinates, we
obtain the vector fields 𝑍1 and 𝑍2.
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1. The first-order Taylor series polynomial of the coefficients of the vector fields 𝑍1 and 𝑍2 in
terms of 𝑧1:

𝑍1 = 𝜕𝑧1 𝑍2 = 0

2. The first-order Taylor series polynomial of the coefficients of the vector fields 𝑍1 and 𝑍2 in
terms of 𝑧2:

𝑍1 = 0 𝑍2 = 𝜕𝑧2

3. The second-order Taylor series polynomial of the coefficients of the vector fields 𝑍1 and 𝑍2
in terms of 𝑧3:

𝑍1 = −𝑧2𝜕𝑧3 𝑍2 = 0

4. The third-order Taylor series polynomial of the coefficients of the vector fields 𝑍1 and 𝑍2 in
terms of 𝑧4:

𝑍1 = −𝑧3𝜕𝑧4 𝑍2 = −𝑧22𝜕𝑧4

Thus the nilpotent approximation of the robot with the trailer is given by:

𝑍1 = 𝜕𝑧1 − 𝑧2𝜕𝑧3 − 𝑧3𝜕𝑧4
𝑍2 = 𝜕𝑧2 − 𝑧22𝜕𝑧4 (5.5)

This example highlights the process of obtaining nilpotent approximations from the privileged
system of coordinates. The nilpotent approximations 𝑍1 and 𝑍2 provide simplified representations
of the dynamics of the robot with a trailer system, allowing for a more manageable analysis of its
behavior.
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6 Nilpotent Approximation of 3-body Space robot

6.1 Model Setup

For the thesis, we investigate a scenario involving a 3-body robot floating freely, as depicted in
Fig. 6.1. In this setup, the body in the middle represents the main space structure (a satellite),
while the other two bodies serve as manipulator links. An intriguing control problem arises when
the satellite’s attitude cannot be controlled using gas jets, and the only available control inputs
for reconfiguring the space structure are the manipulator joint torques, which act as internal
generalized forces. This approach aims to minimize fuel consumption by avoiding the use of
satellite actuators. As we will demonstrate, it is generally feasible to alter the entire structure’s
configuration solely by manipulating the manipulator joints.

Figure 6.1: Three-body Space Robot

Coordinate Frames

We establish a coordinate system for analysis, assuming an inertial frame at the space station 𝐼

denoted as (𝑥𝐼 , 𝑦𝐼 , 𝑧𝐼 ). The center of gravity of the entire robot coincides with the center of gravity
of the main body, denoted as 𝐺 . The body frame is defined at the center of gravity 𝐶, where the
𝑥𝑏-axis aligns with the right side of the manipulator, the 𝑧𝑏-axis represents the heading angle
of the satellite, and the 𝑦𝑏-axis points towards the top of the satellite. Additionally, two hinge
points, 𝐻1 and 𝐻2, introduce hinge frames (𝑥𝐻1, 𝑦𝐻1, 𝑧𝐻1) and (𝑥𝐻2, 𝑦𝐻2, 𝑧𝐻2), respectively, which
are parallel to the body frame when no rotation occurs in any axis.
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Mass and Inertia

The model includes the mass and inertia properties of the main body and the manipulators. The
mass of the main body is denoted as𝑚3, while the masses of the right and left manipulators are
represented as𝑚1 and𝑚2, respectively. Furthermore, the inertia matrices of the main body, right
manipulator, and left manipulator are denoted as 𝐼3, 𝐼𝐻1

1 , and 𝐼
𝐻1
2 , respectively.

Vector Definitions

We define various vectors within the model. The vector from the center of gravity𝐺 to hinge point
𝐻1 is denoted as 𝑟𝑏

ℎ1
in the body frame. Similarly, the distance from 𝐻1 to the center of gravity

of the right manipulator 𝐺1 is represented as 𝑟𝐻1
𝑚1 and defined in the hinge frame (𝑥𝐻1, 𝑦𝐻1, 𝑧𝐻1).

Analogously, the vector from 𝐺 to hinge point 𝐻2 is denoted as 𝑟𝑏
𝐻2

in the body frame, and the
distance from 𝐻2 to the center of gravity of the left manipulator 𝐺2 is represented as 𝑟𝐻1

𝑚2 in the
hinge frame (𝑥𝐻2, 𝑦𝐻2, 𝑧𝐻2).

State Variables

The state variables of the model consist of the rotation angles along the (𝑥𝐼 , 𝑦𝐼 , 𝑧𝐼 ) axes, denoted
as (𝜙, 𝜃,𝜓 ), respectively. Additionally, (𝛼1, 𝛽1) represent the rotations of the right manipulator
about hinge axis 𝐻1 with respect to the (𝑧𝑏, 𝑦𝑏) axes, while (𝛼2, 𝛽2) represent the rotations of the
left manipulator about hinge axis 𝐻2 with respect to the (𝑧𝑏, 𝑦𝑏) axes.

Control Inputs

The model incorporates four control inputs. 𝑢1 and 𝑢2 represent the angular velocities of the right
manipulator, while 𝑢3 and 𝑢4 represent the angular velocities of the left manipulator, both with
respect to their respective hinge axes.

6.2 Mathematical Model

6.2.1 Assumptions

In the analysis of the multibody system, the following assumptions are made:
No External Forces: In the absence of external forces, and considering no gravity or dissipation

forces, the linear and angular momenta of the system are conserved.
Initial Momentum: Initially, the linear and angular momenta of the system are assumed to be

zero.

6.2.2 Rotation Matrix

In order to describe the orientations of different frames in the system, we introduce rotation
matrices. Specifically, we define the following rotation matrices:

1. The rotation matrix 𝑅𝑏
𝐻1

represents the rotation from the first hinge frame (𝑥𝐻1, 𝑦𝐻1, 𝑧𝐻1)
to the body frame (𝑥𝑏, 𝑦𝑏, 𝑧𝑏). This rotation is achieved by first rotating about the 𝑦𝐻1 axis,
followed by a rotation about the 𝑧𝐻1 axis. The resulting rotation matrix 𝑅𝑏

𝐻1
can be expressed

as:

𝑅𝑏𝐻1 =


cos𝛼1 − sin𝛼1 0
sin𝛼1 cos𝛼1 0
0 0 1



cos 𝛽1 0 − sin 𝛽1

0 1 0
sin 𝛽1 0 cos 𝛽1


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2. Similarly, the rotation matrix 𝑅𝑏
𝐻2

describes the rotation from the second hinge frame
(𝑥𝐻2, 𝑦𝐻2, 𝑧𝐻2) to the body frame (𝑥𝑏, 𝑦𝑏, 𝑧𝑏). It involves rotating first about the 𝑦𝐻2 axis,
followed by a rotation about the 𝑧𝐻2 axis. The resulting rotation matrix 𝑅𝑏

𝐻2
is given by:

𝑅𝑏𝐻2 =


cos𝛼2 − sin𝛼2 0
sin𝛼2 cos𝛼2 0
0 0 1



cos 𝛽2 0 − sin 𝛽2

0 1 0
sin 𝛽2 0 cos 𝛽2


3. Additionally, we define the rotation matrix 𝑅𝑏

𝑏𝐼
, which represents the rotation from the body

frame (𝑥𝑏, 𝑦𝑏, 𝑧𝑏) to the inertial frame (𝑥𝐼 , 𝑦𝐼 , 𝑧𝐼 ). This rotation is achieved using the Euler
𝑍 −𝑌 −𝑋 rotation sequence, where we first rotate about the 𝑧𝑏 axis, followed by a rotation
about the 𝑦𝑏 axis, and finally a rotation about the 𝑥𝑏 axis. The resulting rotation matrix 𝑅𝑏

𝑏𝐼
can be expressed as [25]:

𝑅𝐼
𝑏
=


1 sin𝜙 tan𝜃 cos𝜙 tan𝜃 0
0 cos𝜙 − sin𝜙
0 sin𝜙 sec𝜃 cos𝜙 sec𝜃


These rotation matrices play a crucial role in relating the orientations of different frames

within the system, allowing us to describe the transformations between them accurately.

6.2.3 Conservation of Linear Momentum

We define the law of conservation of linear momentum with respect to the inertial frame and it
can be expressed as:

𝑚𝑎 ¤𝑟 𝐼𝐺 +𝑚2 ¤𝑟 𝐼𝐺1 +𝑚2 ¤𝑟 𝐼𝐺2 = 0 (6.1)

Here, 𝑟𝐺 represents the vector from the inertial frame 𝐼 to the center of gravity 𝐺 , 𝑟𝐺1 represents
the vector from 𝐼 to the center of gravity 𝐺1 of the second body, and 𝑟𝐺1 represents the vector
from 𝐼 to the center of gravity 𝐺2 of the third body.

The equation (6.1) is integrable, resulting in:

𝑚𝑎𝑟
𝐼
𝐺 +𝑚2𝑟

𝐼
𝐺1 +𝑚2𝑟

𝐼
𝐺2 = 𝑐 (6.2)

where 𝑐 is a constant vector. Consequently, the conservation of linear momentum imposes three
holonomic constraints, indicating that the system’s center of mass remains stationary.

6.2.4 Conservation of angular momentum

The conservation of angular momentum is another important principle governing the dynamics of
the system. It can be expressed as in the body frame as:

𝐼𝑏1𝜔
𝑏
1 +𝑚1(𝑟𝑏1 × ¤𝑟𝑏1) + 𝐼𝑏2𝜔

𝑏
2 +𝑚𝑏

2(𝑟𝑏2 × ¤𝑟𝑏2) + 𝐼𝑏3𝜔
𝑏
3 = 0 (6.3)

In this equation, 𝐼𝑏1 and 𝐼𝑏2 represent the inertia matrices of the right manipulators, 𝜔𝑏
1 and 𝜔𝑏

2
are their respective angular velocities in the body frame. The terms𝑚1(𝑟𝑏1 ×

¤𝑟𝑏1) and𝑚𝑏
2(𝑟𝑏2 × ¤𝑟2𝑏)

account for the angular momentum contributions due to the linear motions of the manipulators.
Here, 𝑟𝑏1 represents the vector from the center of gravity of the right manipulator 𝐺1 to the center
of gravity 𝐺 of the body, expressed in the body frame. Similarly, 𝑟𝑏2 represents the vector from the
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center of gravity of the right manipulator𝐺2 to the center of gravity𝐺 of the body, also written in
the body frame.

The conservation of angular momentum, as expressed by Equation (6.3), ensures that the total
angular momentum of the system remains constant in the absence of external torques or other
dissipative forces. By considering the contributions from the individual manipulators and their
relative motions, we can gain insights into the rotational dynamics and stability of the system.
The conservation of angular momentum, as expressed in Equation (6.3), introduce non-integrable
constraints and make a system non-holonomic.

6.2.5 Mathematical Model

In this section, we present the mathematical model of the space robot, incorporating the con-
servation of angular momentum. The model is described in the body frame and subsequently
transformed to the inertial frame using the rotation matrix 𝑅𝐼

𝑏
.

The kinematic equation for the angular velocity of the main body in the body frame is given
by:

𝜔𝑏
3 = −(𝐼𝑏3)−1

(
𝐼𝑏1𝑅

𝑏
𝐻1𝜔

𝐻1
1 +𝑚1(𝑟𝑏1 × ¤𝑟𝑏1) + 𝐼𝑏2𝑅𝐻2

𝑏𝜔
𝐻2
2 +𝑚𝑏

2(𝑟𝑏2 × ¤𝑟𝑏2)
)

(6.4)

Here, 𝜔𝐻1 represents the angular velocity control input for the right manipulator, and 𝜔𝐻2 repre-
sents the angular velocity control input for the left manipulator. The cross products involve the
control input terms associated with them.

To obtain the model in the inertial frame, we use the rotation matrix 𝑅𝐼
𝑏
to transform the body

frame to the inertial frame. The resulting equations for the Euler angles (𝜙, 𝜃,𝜓 ) in the inertial
frame are given by:

¤𝑞 =


¤𝜙
¤𝜃
¤𝜓

 = −𝑅𝐼
𝑏
(𝐼𝑏3)−1

(
𝐼𝑏1𝑅

𝑏
𝐻1𝜔

𝐻1
1 +𝑚1(𝑟𝑏1 × ¤𝑟𝑏1) + 𝐼𝑏2𝑅𝐻2

𝑏𝜔
𝐻2
2 +𝑚𝑏

2(𝑟𝑏2 × ¤𝑟𝑏2)
)

(6.5)

The state vector of the mathematical model for the space robot is defined as:
𝑞 =

[
𝜙 𝜃 𝜓 𝑢1 𝑢2 𝑢3 𝑢4

]
∈ S3 ×ℝ4

Here, 𝜙 , 𝜃 , and 𝜓 represent the Euler angles that describe the orientation of the robot in the
inertial frame. The Euler angles provide a way to express the robot’s orientation by specifying
the rotation angles about three orthogonal axes. The first angle 𝜙 represents the rotation about
the 𝑥𝐼 -axis, the second angle 𝜃 represents the rotation about the 𝑦𝐼 -axis, and the third angle 𝜓
represents the rotation about the 𝑧𝐼 -axis.

The control inputs 𝑢1, 𝑢2, 𝑢3, and 𝑢4 correspond to the angular velocities of the robot’s right
and left manipulator about specific axes. Specifically, 𝑢1 represents the angular velocity about the
𝑧𝐻1 axis (right manipulator’s first axis of rotation), 𝑢2 represents the angular velocity about the
𝑦𝐻1 axis (right manipulator’s second axis of rotation), 𝑢3 represents the angular velocity about
the 𝑧𝐻2 axis (left manipulator’s first axis of rotation), and 𝑢4 represents the angular velocity about
the 𝑦𝐻2 axis (left manipulator’s second axis of rotation).

The state vector 𝑞 belongs to the state space S3 ×ℝ4, which combines the three-dimensional
space of possible orientations (represented by 𝜙 , 𝜃 , and 𝜓) with the space of angular velocities
(represented by 𝑢1, 𝑢2, 𝑢3, and 𝑢4). This state space captures the complete information necessary
to describe the robot’s current orientation and the rates at which it is changing.

By using this mathematical model, it is possible to simulate and analyze the behavior of the
space robot’s orientation over time. The control inputs 𝑢1, 𝑢2, 𝑢3, and 𝑢4 influence the rotational
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dynamics of the robot, allowing for the execution of desired maneuvers and tasks. The state vector
𝑞 represents the current orientation state of the robot, enabling the tracking of its orientation
throughout the simulation or control process.

Understanding and utilizing this mathematical model facilitates the study of the space robot’s
dynamics, evaluation of its performance under different control inputs, and design of control
strategies to achieve specific orientations and execute complex tasks in space exploration or other
related domains.

6.3 Nilpotent Approximation of the Space Robot
To derive the nilpotent approximation for the space robot, we first need to calculate the privileged
coordinates and then determine the corresponding vector fields.

In order to obtain the privileged coordinates, we can use algebraic coordinate to transform
the original coordinates into a set of privileged coordinates (𝑧1, . . . , 𝑧𝑛) at a given point 𝑝. These
privileged coordinates provide a convenient representation for analyzing the vector fields near
the point 𝑝.

Once we have the privileged coordinates, we can express each vector field 𝑋𝑖 in terms of a
Taylor expansion. Next, we group the monomial vector fields of the same weighted degree and
express 𝑋𝑖 as a series:

𝑋𝑖 = 𝑋
(−1)
𝑖

+ 𝑋
(0)
𝑖

+ 𝑋
(1)
𝑖

+ . . . ,

where 𝑋 (𝑠)
𝑖

is a homogeneous vector field of degree 𝑠. The degree corresponds to the order of
the Taylor expansion, with 𝑋

(−1)
𝑖

representing the linear terms.
Finally, we define the family of vector fields (𝑋1, . . . , 𝑋𝑚) as 𝑋𝑖 = 𝑋

(−1)
𝑖

for 𝑖 = 1, . . . ,𝑚. This
family serves as a first-order approximation of (𝑋1, . . . , 𝑋𝑚) at point 𝑝 and generates a nilpotent
Lie algebra of step 𝑟 = 𝑤𝑛.

We compute the approximation in the Maple using Differential Geometry package [6]. The
DifferentialAlgebra package builds upon the differential algebra theories developed by Ritt and
Kolchin, implementing their ideas in an algorithmic framework. It allows for the elimination of
redundant variables and equations from systems of polynomial differential equations, leading to
simplified forms that are easier to analyze and manipulate. Additionally, the package facilitates
the computation of formal power series solutions for these equations, enabling the study of their
behavior and properties [6].

By leveraging the capabilities of the DifferentialAlgebra package, researchers and practitioners
can effectively tackle complex systems of polynomial differential equations encountered in various
scientific and engineering fields. The package provides powerful tools for understanding the
algebraic and differential structure of these equations and extracting meaningful information
from them.

6.3.1 Nilpotent Approximation in Maple

Before implementation, download the DifferentialGeometry package from the website. Follow
these steps to implement the approximation in Maple:

1. Setting up the environment:
The restart command clears any previously defined variables and functions.
The libname command sets the path to a specific directory where additional Maple libraries
or packages are stored.
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Several packages are loaded using the with command: DifferentialGeometry, LieAlgebras,
Tensor, LinearAlgebra, and MTM.

2. Defining the configuration space:
The variable 𝑛 is set to 7, representing the number of coordinates in the configuration space.
The DGEnvironment[Coordinate] command defines the coordinates of the space robot
using the symbols [a, b, c, a1, a2, b1, b2] and associates them with a manifold 𝑀 .
The vectors 𝑞, 𝑑𝑞, and 𝐷𝑞 are defined as placeholders for the configuration, velocity, and
derivative variables, respectively.

3. Defining parameters and the model:
Assign specific values to various parameters such as masses (𝑚1,𝑚2,𝑚3) and moments of
inertia (𝐼1, 𝐼2, 𝐼3).
Define the vector fields of the mathematical model in Maple.

4. Calculating Lie brackets:
Compute the Lie brackets of the variables 𝑋 [1] to 𝑋 [7] using the LieBracket function and
substitute the variables [a, b, c, a1, a2, b1, b2] with the corresponding values [0,
0, Pi/6, 0, Pi/3, 0, 0].

5. Building a frame:
Use DGbasis to create a frame using the initial basis vectors.

6. Defining the new coordinate system:
The command DGEnvironment[Coordinate]([x1, x2, x3, x4, x5, x6, x7], M1) cre-
ates a new coordinate system with variables [x1, x2, x3, x4, x5, x6, x7] associated
with the manifold 𝑀1.

7. Transforming coordinates:
Transform the original coordinates [a, b, c, a1, a2, b1, b2] to the new coordinates
[x1, x2, x3, x4, x5, x6, x7] using the Jacobian Matrix:
Y[i]:=PushPullTensor(A1,InvA1,X[i])
This calculates the Jacobian and transforms the initial vector field to the new coordinate
system.

8. Algebraic Coordinate:
Compute the Lie derivatives of the states along the vector fields using LieDerivative and
compute the polynomial based on the weights. Obtain the privileged coordinate.

9. Taylor series expansion:
Expand the vector fields of the privileged coordinate into Taylor series representations using
the mtaylor command.

Thus we compute the nilpotent system of the complex system in Maple.

6.3.2 Exponential First Kind Coordinate

We use the nilpotent system from Maple and transform it to the exponential first kind coordinate.
1. Compute the Flow of the Vector Field:

We can compute the flow of the linear combination of the vector field using the command:
V = z1*Y1 + z2*Y2 + z3*Y3 + z4*Y4 + z5*Y5 + z6*Y6 + z7*Y7
F:=Flow(V,t)

2. Defining the New Coordinate System:
The command DGEnvironment[Coordinate]([z1, z2, z3, z4, z5, z6, z7], M2) cre-
ates a new coordinate system with variables [z1, z2, z3, z4, z5, z6, z7] associated
with the manifold 𝑀2.

3. Transforming Coordinates:
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Transform the original coordinates [x1, x2, x3, x4, x5, x6, x7] to the new coordi-
nates
[z1, z2, z3, z4, z5, z6, z7] using the Jacobian Matrix:
Z[i]:=PushPullTensor(F,InvF,Y[i]). This calculates the Jacobian and transforms the
initial vector field to the new coordinate system.

Thus, we compute the exponential first kind coordinate of the nilpotent system in Maple.

6.3.3 Exponential Second Kind Coordinate

We use the nilpotent system fromMaple and transform it to the exponential second kind coordinate.
1. Compute the Flow of the Vector Field:

We can compute the flow of the each vector field using the command:
F1:=Flow(z1*Y1,t) ... F7:=Flow(z7*Y7,t)

2. Composition of the Flow:
We can compute the composition of the flow using the command:
F:=ComposeTransformations(F7,F6,F5,F4,F3,F2,F1)

3. Defining the New Coordinate System:
The command DGEnvironment[Coordinate]([z1, z2, z3, z4, z5, z6, z7], M2) cre-
ates a new coordinate system with variables [z1, z2, z3, z4, z5, z6, z7] associated
with the manifold 𝑀2.

4. Transforming Coordinates:
Transform the original coordinates [x1, x2, x3, x4, x5, x6, x7] to the new coordi-
nates
[z1, z2, z3, z4, z5, z6, z7] using the Jacobian Matrix:
Z[i]:=PushPullTensor(F,InvF,Y[i]). This calculates the Jacobian and transforms the
initial vector field to the new coordinate system.

Thus, we compute the exponential second kind coordinate of the nilpotent system in Maple.
In summary, this section provides a detailed overview of the steps involved in constructing a

nilpotent system using algebraic coordinates and subsequently transforming it into exponential
coordinate systems within Maple. The process begins with the setup of the Maple environment,
followed by the definition of the configuration space and specification of model parameters.
Subsequently, the computation of Lie brackets and the creation of a frame using initial basis
vectors take place. The next step involves defining a new coordinate system and utilizing the
Jacobian matrix to transform the original coordinates to the new system. The algebraic coordinate
is then computed, and the system dynamics are approximated using Taylor series. Finally, the
computation of the exponential first kind coordinate is performed based on the obtained nilpotent
system. This entire process is replicated for the exponential second kind coordinate, involving the
computation of vector field flows, composition, and coordinate transformation using the Jacobian
matrix.
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7 Conclusion

In conclusion, this thesis explores the application of differential geometry, Lie algebra, and control
theory in the context of non-holonomic systems. It aims to understand and analyze the behavior of
these systems by employing the nilpotent approximation method. The thesis covers fundamental
concepts such as manifolds, Lie algebra, and non-holonomic systems with their constraints. It
introduces privileged coordinates, including algebraic and exponential coordinates, as useful
tools for analyzing and approximating these systems. The thesis also discusses approximation
theory, emphasizing the importance of first-order approximations and the concept of nilpotent
approximation. Additionally, it applies the developed concepts and techniques to a specific case
study involving a 3-body space robot, demonstrating their practical relevance. Overall, this
research contributes to the understanding of control theory for constrained systems and provides
insights into the analysis and approximation of complex mechanical systems. By bridging the
disciplines of differential geometry, Lie algebra, and control theory, this thesis opens up possibilities
for further advancements in the field of robotics and control systems.



70 References

References

[1] An easy way to figure out how many moves it’ll take a knight to a given square. https:
//www.chess.com/forum. Accessed: 2023-01-15.

[2] Ralph Abraham and Jerrold E Marsden. Foundations of mechanics. Benjamin/Cummings,
1978.

[3] Andrei A Agrachev, Davide Barilari, and Ugo Boscain. Introduction to riemannian and
sub-riemannian geometry. 2012.

[4] Andrei A Agrachev and Yuri L Sachkov. Control theory from the geometric viewpoint. Springer
Science & Business Media, 2004.

[5] Andrei A Agrachev and Yuri L Sachkov. Geometric control theory and sub-riemannian
geometry. Mathematical Surveys and Monographs, 200:86–115, 2005.

[6] Ian M Anderson and Charles G Torre. The differentialgeometry package. 2022.
[7] Andrei A Ardentov and Yuri L Sachkov. Optimal control of nonholonomic systems by direct

approximation of their kinematic constraints. SIAM Journal on Control and Optimization,
54(6):3071–3098, 2016.

[8] Andrei Andreevich Ardentov and Alexey Pavlovich Mashtakov. Control of a mobile robot
with a trailer based on nilpotent approximation. Automation and Remote Control, 82:73–92,
2021.

[9] Vladimir Igorevich Arnol’d. Mathematical methods of classical mechanics. Springer Science
& Business Media, 1978.

[10] Alain Bellaïche and Jean-Jacques Risler. Nilpotent approximations of nonintegrable distribu-
tions. Selecta Mathematica, New Series, 1(3):375–404, 1993.

[11] Francesco Bullo and Andrew D Lewis. Geometric control of mechanical systems. 2005.
[12] Yacine Chitour and Frédéric Jean. Global steering of nonholonomic systems using two

feedback laws. IEEE Transactions on Automatic Control, 58(11):2832–2846, 2013.
[13] Manfredo P Do Carmo. Differential geometry of curves and surfaces: revised and updated

second edition. Courier Dover Publications, 2016.
[14] Paulo R Fernandes, Manuel R Pereira, and Paula A Rocha. Optimal nonholonomic motion

planning: A variational approach. Journal of Optimization Theory and Applications, 71(1):37–
55, 1991.

[15] Jacques Godbillon. Géométrie différentielle et mécanique analytique. Annales scientifiques
de l’École normale supérieure, 2(4):429–455, 1969.

[16] Brian C Hall. Lie groups, Lie algebras, and representations. Springer, 2013.
[17] Frédéric Jean. Control of nonholonomic systems: from sub-Riemannian geometry to motion

planning. Springer, 2014.
[18] Velimir Jurdjevic. Geometric control theory. Cambridge University Press, 1997.
[19] Alexander Kushner and Pierre Lécuyer. Contact geometry and nonlinear differential equations.

Cambridge University Press, 2007.
[20] Gerardo Lafferriere and Daniel Williams. Nilpotent approximations of control systems. SIAM

Journal on Control and Optimization, 30(5):1225–1238, 1992.
[21] A De Luca and Giuseppe Oriolo. Modelling and control of nonholonomic mechanical systems.

Springer, 1995.

https://www.chess.com/forum
https://www.chess.com/forum


References 71

[22] Richard M Murray. Differential geometry and nonholonomic systems. Mathematical
programming, 49(1-3):433–438, 1990.

[23] Henk Nijmeijer and Arjan van der Schaft. Nonlinear dynamical control systems. Springer
Science & Business Media, 1990.

[24] Barrett O’neill. Elementary differential geometry. Elsevier, 2006.
[25] Euler-Angle Rates and Body-Axis Rates. Aircraft equations of motion-2. 2012.
[26] Chong Song. Differential geometry. Lecture Notes, 2020.
[27] Dawn M Tilbury and Richard M Murray. Trailer backstepping control with goursat normal

form. IEEE Transactions on automatic control, 40(2):417–421, 1995.


	Introduction
	Basics of Differential Geometry and Lie Algebra
	Differential Geometry
	Manifolds
	Sub-Riemannian Manifolds

	Lie Algebra
	Flow of the vector field


	Non-Holonomic System
	Introduction to Control theory
	Non Holonomic systems
	Non-holonomic System
	Non-holonomic constraints
	Examples of non-holonomic systems

	Sub-Riemannian Geometry
	Sub-Riemannian Distance
	 Distribution in Non-Holonomic System
	Growth Vector
	Adapted Frames

	Reachability in Non-holonomic system
	Chow's Condition
	Chow-Rashevsky’s theorem


	Nilpotent Systems and Exponential Coordinates
	Nilpotent Systems
	Exponential coordinate
	Exponential Coordinate of the First Kind
	Exponential Coordinate of the Second Kind


	Approximation Theory
	Non-Holonomic Order
	Non-Holonomic order of a function
	Non-Holonomic order of Vector fields

	Privileged Coordinates
	Algebraic Coordinate

	First Order Approximation
	Nilpotent Approximation

	Nilpotent Approximation of 3-body Space robot
	Model Setup
	Mathematical Model
	Assumptions
	Rotation Matrix
	Conservation of Linear Momentum
	Conservation of angular momentum
	Mathematical Model

	Nilpotent Approximation of the Space Robot
	Nilpotent Approximation in Maple
	Exponential First Kind Coordinate
	Exponential Second Kind Coordinate


	Conclusion

