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Abstract 

The first past of this Master's thesis covers theoretical investigation into the principles and usage of 
neural networks, including their usability for the speech recognition tasks. Then it proceeds to 
summarize the multi-task neural networks' operating principles and some recent experiments with 
them. The practical part of the semester project reports changes made to a tool for neural network 
training which support multi-task training. Then the preparation of the settings is described, including 
a number of scripts written especially for this purpose. The experiments presented in the thesis explore 
the idea of using articulatory characteristics of phonemes as secondary tasks for multi-task training. 
The experiments are conducted on two different datasets of different quality and size and representing 
different languages - English and Vietnamese. Articulatory characteristics are occasionally combined 
with different secondary tasks, such as context, to see how wel l they function together. A comparison 
is made between the networks of different sizes to see how their size affects the effectiveness of multi
task training. These experiments show that multi-task training with the use of articulatory 
characteristics as secondary tasks can enhance training and yield better phoneme accuracy as a result. 
Finally, multi-task training is embedded to a speech recognition system as a feature extractor. 
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1 Introduction 
Speech processing is an area of computer science which deals with extracting information from 

human speech by means of computation. For different applications different information is extracted. 
Some of the most essential tasks are language identification, speaker identification and speech 
recognition. Speech recognition is the most complex of them, as the ultimate goal of automatic speech 
recognition (ASR) is to transcribe text from acoustic input. The usability of this technique is very wide 
- from supporting people with different disabilities and military applications to every-day programs for 
dictating. 

For an A S R system to be effective, it needs to incorporate knowledge about phonetics, 
phonotactics, grammar, vocabulary and syntax of the language in question. Moreover, the speaker 
factor adds further complications as each individual speaks differently. Not to mention the additional 
confusion from recording channel, as the microphone characteristics also influence the resulting speech 
recording. A s ideal formalization of all this information is practically impossible, self-learning systems 
are used for this task. 

The key notion for speech recognition is modeling. Acoustic models are statistical 
representations of acoustic units which are then used for recognition and language models assign 
probabilities to sequence of words in speech. In this master's thesis we w i l l investigate one o f the 
methods for training acoustic models, namely neural network approach. 

For a couple of years t i l l now, neural networks have been growing stronger in the field of speech 
recognition. They are typically used to train acoustic models, each of the output usually being a 
phoneme. Recent developments in computer power have enabled training of bigger networks which 
successfully rivaled and even exceeded traditional Gaussian Mixture Models. They also give 
uncountable possibilities as to experimenting with their structure, learning methods and many other 
parameters that can yield better and better results. 

The purpose of this thesis is to experiment with multi-task neural networks in speech recognition 
with the aim of finding out i f their use is effective. If they do prove to be helpful, then the next objective 
is to investigate for which tasks they can be effectively used. 

Multi-task neural networks differ from common neural networks in that its output consists of 
several blocks of nodes, each block representing a different task. The network is trained for all the tasks 
and during the learning error backpropagates from all of them in turn. It has been known that for two 
interconnected tasks which are trained jointly, a significant accuracy increase is possible [7]. If the tasks 
do not add to each other's performance, they can still be trained with the same success as alone and 
used separately as before. Having one network do several connected classifications is not only good in 
terms of universalizing the training, it can also open new possibilities in multilingual training. 

The original idea of the master's thesis is to try and use articulatory characteristics o f phonemes 
as secondary tasks to enhance phoneme recognition accuracy. Articulatory features have been used for 
speech recognition before but never in a multi-task setting. Articulatory characteristics are fairly easily 
extracted, they are mostly universal across languages and the nature contained information suggests 
their suitability for multi-task training. 

The theoretical part of master's thesis includes in-depth studying of neural networks problematic 
(Section 2) and recent papers on the topic of multi-task training (Section 3). It also includes an 

1.1 Thesis Structure 
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introduction into articulatory phonetics, this field containing some useful knowledge which is used in 
the experiments (Section 4). 

The practical part includes getting acquainted with the tool for neural network training - TNet, 
changing TNet source code allowing multi-task training (Section 6), writing scripts for extracting the 
necessary information from the transcription (Section 5) and testing the new setting on a small database 
(Subsection 7.2). The database chosen for these first experiments is TIMET English. 

The experimental part then continues with trying multi-task training with articulatory 
characteristics as a secondary tasks on TIMET English (Section 7) and on B A B E L Vietnamese (Section 
8) databases. In the end, the new multi-task training is embedded to a B A B E L Vietnamese speech 
recognition system as a feature extractor (Section 9). The conclusion is then made about the most 
effective way of using articulatory information to improve neural network training (Section 10). 

In the end, the appendix section (Section 12) shows the samples of the scripts written for the 
needs of this work. 
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2 Neural Networks 
This section presents an overview of neural networks, principles of their operation, basic 

equations and functions, strategies of the error estimation and learning. In the end, usefulness of neural 
networks for speech recognition is investigated. 

2.1 Biological Inspiration 
The idea of neural nets has appeared as an attempt to make a mathematical model of how brain 

works. Relatively complex tasks of vision, recognition and learning are very hard to formalize and yet 
animals perform them with the high degree of success. The natural consequence of these findings was 
an attempt to imitate the structure and the process of learning of an animal brain. A brain is a part of 
nervous system and is comprised of nerve cells (neurons) that are connected to each other in a form of 
a network. Neurobiological studies have achieved a fairly good understanding of how network of 
neurons work. 

A biological neuron consists of a body, an axon and multiple dendrites (see F i g . l ) . A x o n is a 
long protrusion which reaches dendrites of another cells. The connection between an axon of one cell 
and a dendrite of another forms a synapse. Electrostatic impulses are passed between cells through 
synapses. The magnitude of the signal received by a neuron from another neuron depends on the 
efficiency of the synaptic transmission, and can be thought of as the strength of the connection between 
the neurons. The neuron sends an output signal i f the amount of received signal exceeds the threshold 
of the neuron [5]. 

Figure 1: Biological neuron [http://vv.carleton.ca/~neil/neural/neuron-a.html]. 

Different parts of the nervous system have different organizations of neurons. The cerebral 
cortex, for example, is believed to consist of layers, though the boundaries are not strict. In this aspect, 
artificial neural networks are also hereditary to the natural systems. 
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2.2 Mathematics behind Neural Networks 

2.2.1 Neuron 
A l i k e its natural counterpart, an artificial neuron takes information from several other neurons 

and generates an output value which is then transmitted to several other neurons. A l l the connections 
between neurons are characterized with certain weigh, and a neuron is characterized with a function, 
which yields an output based on the inputs (see Fig.2). 

y=g(u)=g(m) 

Figure 2: Artificial neuron [5]. 

Neural networks can differ in structure and in functions that are used in neurons. The type of 
network which is most commonly used in speech processing is a feedforward network with continuous 
activation function. 

The activation function is calculated like this: 

where n is the number of inputs, xi is a value of i-th input, wi is the weight of the connection 
between xi input and the current node and 3 is the neuron's threshold. The argument o f the activation 
function is called basic function. 

Usually, by adding zero input xo - 1 with the weight wo - - we can simplify this equation to 
the following: 

Some of the activation functions don't take weighted summation as an argument, but rather the 
product of weights and inputs, or the distance between the vector of inputs and the vector of weights. 
However, these cases w i l l not be discussed here in particular as they are not so widely used in speech 
recognition as a weighted summation. 

A continuous activation function takes the result of the basic function as an argument and yields 
a result which lies in continuous space between certain boundaries. It's dependent on the type of the 
function. The most widely used continuous activation functions are sigmoid and hyperbole tangent. 
The functions and their graphical representations are the following: 

a) Sigmoid function: 
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Figure 3: Sigmoid Junction. 

b) Hyperbole tangent function: 
y = tan(u" (4) 

y • 1 y • 

u 
0 

- - 1 

Figure 4: Hyperbole tangent function. 

A s you can see, a sigmoid function can be convenient to use because its outputs can be interpreted 
as probabilities for classification. If a layered network is used, all the nodes in the same layer usually 
have the same activation function. 

If we want to treat the outputs of the network as probabilities of a unit belonging to a particular 
class, we need the outputs to conform to the following conditions: 0 < y,-< 1 and Y,tyi = 1- So for the 
output layer a softmax function is usually used to define the value of y'-th output: 

eui 
fj{u1,u2,...,uM) = —^ — , (5) 

where M is the number of the nodes in the output layer, and Uj is the output of the basic function 
of an output neuron [5]. 

For a multi-task neural network softmax needs to be calculated separately for each block, as we 
treat each block as a separate task in which the probabilities of a unit belonging to a certain class in this 
task must sum to 1. 

2.2.2 Network Structure 
A s for the structures of neural networks, only feedforward network w i l l be considered here in 

detail. In this type of network, nodes are divided into subsets, called layers, so, that no connection leads 
from any node to a node in the preceding layer. Moreover, a feedforward network is acyclic, which 
means there is also no connection between nodes in one layer. The final condition is that connections 
are only allowed between a node in layer x to a node in layer x+1 (see Fig.5). 
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Figure 5: Feedforward network [5]. 

The first layer in such a network is called an input layer, the last one an output layer, and all the 
rest are called hidden layers. Nodes in successively higher layers abstract successively higher level 
features from preceding layers. 

This kind of architecture with many layers of non-linear hidden units has become known as Deep 
Neural Network (DNN) [8]. 

2.2.3 Error Function 
It is said that we learn by our mistakes, which is also true for neural networks. To assess the 

performance, some criterion is needed. In case of training with a teacher, this criterion is an error 
between the result yielded by the network and the etalon result. Then we can train the network to 
minimize this error. 

Error function for an output layer looks like this: 
p 

E(Y,D) = ^ £ p ( y p , d p ) , (6) 
p=0 

where Y is the vector of outputs, D is the vector of targets, yp and dp are elements of Y and D 
correspondingly and e in an instant error. 

There are two types of instant errors which are used in neural networks: mean square error and 
cross-entropy. 

a) Mean square error: 
M 

1 X 1 2 

7 = 1 
Mean square error is typically used for regression tasks. 

b) Cross-entropy: 
M 

£ P = - ^ ; ' d p l n ( / y p ) (8) 

Cross-entropy is typically used for classification tasks. 
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2.2.4 Gradient Descent 
Gradient descent is a method of iterative searching for the minimum of the error function. If error 

function is represented in a multi-dimensional space, where one of the dimensions is the error value 
and all the other are parameters of the model, then a specific combination of parameters correspond 
with only one point of the function. For this point, a direction in which error decreases fastest is found 
(see F ig . 6). To this end, we calculate a gradient, which shows the direction in which error increases 
fastest, which is precisely the opposite direction to the one we need. 

J ( 6 0 , 9 i ) 

Figure 6: Gradient descent in 3D [10]. 

The gradient is a vector of first derivations of error E along the space dimensions: 

VE = 
dE dE dE 

d w 1 ' d w 2 ' "' dwM 

(9) 

After gradient is calculated, one iteration of gradient descent is defined like this: 
w ( t + 1) = w( t ) - fiVE, (10) 

where fi is a learning coefficient, which defines how fast the function converges to the minimum. 

If pi is too small, the learning takes a lot of time and may not converge at all. If it is too big, 
training can miss the optimal minimum, JU can be constant through the whole learning, but the more 
effective approach is to gradually make it smaller. To this end, a halving procedure is commonly used. 
The idea of halving is that i f the accuracy on the cross validation set is getting better in one iteration by 
a value smaller than some threshold, the learning coefficient is divided by two. This helps make the 
training more precise in the end. If on some step the accuracy happens to become worse than after the 
previous step, the weights are reversed. 

If the error function is not convex, gradient descend can find different minimums, depending on 
different initializations. 

2.2.5 Backpropagation 
After getting an error for a certain hypothesis generated by the current state of a neural network, 

we want neural network to learn and improve its performance. Learning for neural network means 
updating the weights of the connections between elements in different layers. To calculate how weights 
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need to be updated, the algorithm of backpropagation is used. It goes back to each node in each layer 
and calculates its part in the general error of the last layer. 

For each node in a layer, the weights are updated as following: 
dE 

To calculate E, an instant error of each node needs to be calculated. The following formula shows 
the computation of error for node i in layer n-1: 

M 

7 = 1 
where EJ1 is an error of node j in layer n,f is a derivation of the activation function of node j in 

layer n and w[ is the value of weight between node i and node j. 

So, the error is first calculated for the output layer, then for the last hidden layer, and all the way 
to the first hidden layer. After all the errors are known, each weight of the network is updated, and the 
next iteration of training starts with feeding new training data to the network for forward propagation. 

The following illustration (see Fig.7) shows how backpropagation is going. Here, S is the error, 
g is an activation function, z is the basic function and 0 is the weights. In the output layer, a is the output 
value and y is a demanded value. A l l the calculation is written in the vector form for all the values in 
one layer. 

(remove A*',"1) 

Input Layer Hidden Layer Output Layer 

Figure 7: Backpropagation [10]. 

2.3 Neural Networks for Speech Recognition 
Speech recognition is based on the concept of modelling: acoustic and language models are basic 

parts of most speech recognition systems. Acoustic model is a statistical representation of a phoneme 
or a triphone which is a phoneme with left and right context. Art if icial neural networks, especially deep 
neural networks (DNNs) , which are described in 2.2.2, are widely used for acoustic modelling and they 
are usually followed by a Hidden Markov models ( H M M ) system. 

Thus, usually the structure of a D N N used for speech recognition is the following: the input layer 
of the network gets features extracted from every frame of an utterance, and the output layer usually 
represents phonemes or triphones or states, depending on the setting. In the context of D N N - H M M 
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acoustic modeling, the network's task is to compute likelihoods that can be used for the emission 
probabilities of the H M M . 

Sometimes neural networks are also used to provide the feature vectors for Gaussian mixture 
models in a G M M - H M M system. The most common approach is to take the activations of the 
bottleneck hidden units as features, which is known as the tandem approach [8]. A more complex and 
more effective approach uses stacked bottleneck structure for generating features [14]. 

D N N s have also been proved effective for detecting sub-phonetic speech attributes (articulatory 
features). The total of 22 attributes, characterizing manner and place of articulation and additional 
phoneme features were detected with over 90% success with the help of D N N containing 5 hidden 
layers each with 2048 [9]. 
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3 Multi-task Neural Networks 
The idea behind multi-task learning is that it is sometimes more profitable to learn several things 

simultaneously rather than use separate neural networks for them. In multi-task learning, the network 
is trained to perform both the primary classification task and one or more secondary tasks using a shared 
representation (see Fig . 8 and 9). The backpropagation can be used to train artificial neural networks to 
learn these tasks. 

The question of how tasks influence each other can have three answers. First, uncorrelated tasks 
might act as a source of noise, which can sometimes improve generalization when added to 
backpropagation. Second, adding tasks changes weight updating dynamics, so that the learning is more 
effective i f the tasks are related. A third possibility is net capacity; multi-task networks share the hidden 
layer between all tasks, and reduced capacity improves generalization on these problems [7]. 

Task 1 Task 2 Task 3 Task 4 

o o o o o o o o o o O O I xmmv/ w / \mm// 
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 

t t t t 
INPUTS INPUTS INPUTS INPUTS 

Figure 8: Separate networks for each task. 

Task 1 Task 2 

o o o o o 

Task 3 Task 4 

o o o 

o o o o o o o o 

INPUTS 

Figure 9: Multi-task neural network. 

With the addition of the secondary tasks, neural network need not change its structure except for 
the size of the output layer. The additional parameters in the network associated with the secondary 
tasks are used only to aid in the training of the network. After training is complete, the portion of the 
network associated with the secondary tasks is discarded and the classification is performed identically 
to a conventional single task classifier. 
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Experiments have shown that i f the tasks are related, performance is increased with addition of 
more tasks [7]. If tasks are related, it is l ikely that the computed subfeatures needed by some tasks w i l l 
sometimes be useful to other tasks. These subfeatures may not be learnable by the tasks that 
"eavesdrop" on them i f they are trained separately, but might prove valuable sources of information 
when they are learned for other tasks. 

The main drawback of multi-task neural networks is the difficulty of choosing secondary tasks. 
The term "related" is far from being a formal definition, and although sensible guesses can be made 
about the effectiveness of one of another secondary task, it is impossible to be sure that this w i l l appear 
to be true. So the only way to choose secondary tasks is experimenting. 

3.1 Multi-task Neural Networks in Speech 
Recognition 

For speech recognition multi-task structure opens uncountable possibilities of usage, as a lot of 
speech characteristics are interdependent. Multi-task neural networks are not new and have been 
experimented with since 1989, when classic NETta lk application used one net to learn both phonemes 
and their stresses [7]. But this is only one of the many possible combinations of tasks that could yield 
some improvement in speech recognition. Some of the possible settings can include, for example, 
joined learning of segmental and suprasegmental characteristics (e.g. tones in tonal languages), 
phoneme labels and phoneme characteristics, or phoneme inventories of different languages in a 
multilingual task. In a recent paper, [3], the following secondary tasks were explored: the phone label, 
the phone context, and the state context. The best results were achieved with phone context as a 
secondary task, with 1.4% decrease in error rate. 
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4 Articulatory Characteristics of a 
Phoneme 

When working with products of human activity, which speech is, it is always helpful to 
understand how this activity looks like. The production of speech lies in the competence of articulatory 
phonetics which deals with the physiological nature of speech. 

Speech is produced by humans with a help of a complex system called a vocal tract. This system 
has a source of sound (air, which is expired by lungs, goes through the vibrating vocal cords and 
produces sound) and a number of resonators which can be configured and reconfigured to produce 
different sound effects. The position of different parts of vocal tract thus defines the sound which is 
produced, and the dependence between the vocal tract configuration and acoustic characteristics of a 
sound is more or less direct. From this knowledge springs up the classification of the sounds of speech 
according to the configuration and activity o f different parts o f vocal tract when producing it. Let 's 
have a look at some of these articulatory characteristics, as they w i l l be used further in the experiments. 

4.1 Vowel / Consonant Opposition 
The most obvious articulatory characteristic of a sound, which even naive speakers recognize, is 

whether it is a vowel or a consonant. In case of a consonant, a sound is articulated by creating a complete 
or partial closure of a vocal tract, whereas when a vowel is pronounced, the vocal tract is open and there 
is no identifiable place of the biggest pressure. 

Being so very different, vowels and consonants are also characterized differently. Consonants 
are usually defined by a place and manner of articulation and phonation. Vowels are characterized by 
height, backness and roundedness. W e ' l l start with discussing articulatory characteristics of 
consonants, as they lie in the basis for the experiments. Then we proceed to tackle articulatory 
characteristics of vowels. 

4.2 Characteristics of Consonants 
I have chosen consonant characteristics to form secondary tasks in the experiments, so they are 

discussed here with more detail than articulatory characteristics of vowels. 

4.2.1 Place of Articulation 
A place of articulation is a place where an obstruction is created when pronouncing a consonant. 

This obstruction is between a passive location, which is some part of the upper-back palate of the mouth, 
and an active articulator, which is the lower surface of the mouth. Figure 10 lists the possible places of 
articulation, both active and passive. Figure 11 shows the possible interactions between these parts and 
what sounds they result in. 
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Upper Surface Lower Surface 

Figure 10: Places of articulation [http://www.ling.upenn.edu/coursesAing520/LectureNotes2.html]. 

Figure 11: Types of consonants according to the place of articulation [http://www-
01 .sil.org/mexicoAing/glosario/E005ci-PlacesArt.htm]. 

4.2.2 Manner of Articulation 
The manner of articulation characterizes the nature of the interaction between the active and 

passive parts of the vocal tract in the process of producing a consonant. We w i l l discuss 6 main modes 
of interaction, although they can be subdivided more particularly. 

• S t o p . Includes a full occlusion of air flow in a vocal tract with subsequent release. 
Examples: //?/, /?/, /k/. 
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• Nasa l . Implies an occlusion of a vocal tract with air released through nasal cavity instead. 

Examples: M, M. 

• Fr ica t ive . Characterizes a consonant produced by a turbulent airflow which results from 

drawing an articulator close to the surface of the mouth without a complete closure. 

Examples: /f/, /s/, /x/. 
• Affr icate. A sound which begins as a stop, but whish release phase is an affricate. 

Examples: /ts/, /tf/, /dj/. 
• Tap /F l ap . A consonant produced by a very short closure of a vocal tract. Examples: /r/. 
• T r i l l . A sound produced by a vibration articulator. Examples: M, /R/. 

• Approx iman t . A consonant produced with little obtrusion in the vocal tract. Examples: 
/}/, Av/. 

4.2.3 Phonation 
Phonation is another name for voicing which is characterizing i f the vocal cords are under enough 

pressure to oscillate and thus produce sound of not. Thus a lot of the consonants have its 
voiced/unvoiced counterparts, sharing their place and manner and differing only in voicing. Examples: 
/s/and/z/. 

4.2.4 Classification of Consonants According to Their 
Articulatory Characteristics 

Articulatory characteristics provide a great basis for classification of phonemes, so a lot of 
attempts have been made to standardize this classification. I P A (International Phonetic Association) 
has succeeded in it. Their classification is now an international standard for phoneticians all around the 
world. I P A table of consonants which was used for the experiments of this work is shown on Figure 
12. This includes only pulmonic consonants, but as we w i l l not meet any non-pulmonic ones in this 
work, this w i l l suffice. 

T H E I N T E R N A T I O N A L P H O N E T I C A L P H A B E T (revised to 2005) 

CONSONANTS (PULMONIC) € 2005 IPA 

Bilabial Labiodental Dental Alveolar Pc ̂ alveolar Retroflex PakKi] Velar Uvnlar Pharyngeal Glottal 

Plosive P b t d t *\ c J k g q g ? 
Ka->al m l i n i] N 
TriH B r R 
Tap or Flap V r r 
Fricative * ß f V e ö s z 1 3 g \ x y X * h 7 h fi 
Lateral 
fricative 

Approxirnaiir u J •i j ill 
La:ei-cil 
apptoximant 1 L A L 

Wliere syinboli appear in pairs, the one to tbe right iepieseut:: a voiced couiouant. Shaded aieas denote articulations judged impossible. 

Figure 12: Classification of consonants according to their articulatory characteristics [11]. 
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4.3 Characteristics of Vowels 
Vowels are not produced by a closure of vocal tract and they are all inherently voiced. So, it's 

impossible to classify them by the same rules as consonants. Instead, they are categorized according to 
their backness, height and roundedness. 

Backness characterizes the position of the tongue in the horizontal dimension - from back to 
front. Height characterizes its position in vertical dimension - from open to close. Roundness indicates 
participation of lips in the pronunciation - they can be either rounded or not. Figure 13 shows possible 
positions of vowels according to these characteristics [13]. 

V O W E L S 

C l o s e 

C l o s e - m i d 

Open-mid 

Open a • c e 0 4 D 
Where symbols appeal1 in pairs, the one 
to the light represents a rounded vowel. 

Figure 13: Articulatory characteristics of vowels [11]. 

4.4 Suprasegmental Characteristics 
Suprasegmental characteristics are elements of speech that can coexist with multiple segments 

(phonemes) and cannot be discretely ordered by them. Some examples of suprasegmental 
characteristics are stress, tone and intonation. 

Tone is characterized by the use of pitch to distinguish words and word forms. In tonal languages, 
the same syllable with a different tone has different meaning. Some of the experiments in this work are 
conducted on a Vietnamese dataset, and Vietnamese is a tonal language with 6 tones: mid-level, low 
falling, low rising, high broken, high rising and low broken (see F ig . 14) Change of pitch affects 
phoneme's acoustic characteristics a lot, so tone secondary task was chosen as one o f the secondary 
tasks on Vietnamese dataset. 
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Below is a graphical comparison of the six tones in Vietnamese; 

mtd-level low falling low rising htgh broken high rising low brokern 
tow tone tone rone tont Utiio-

Figure 14: Vietnamese tones [http://dylansung.tripod.com/flux/vietnam.htm]. 

4.5 Coarticulation 
Coarticulation is a process occurring in continuous speech, in which the articulation of a 

phoneme is influenced by the preceding or a following phoneme and becomes more like it. 
Coarticulation usually affects place of articulation, as the movement of vocal tract is continuous and in 
the process of switching between two phonemes vocal tract inevitably finds itself in some middle 
position between the two articulations. The result of the coarticulation effect is that phonemes may 
differ depending on the context, that is, on what are the preceding and the following phonemes [13]. 

A s for our experiments context-independent phoneme labels have been chosen, which means 
coarticulation effects were not represented in this model, context information was one of the secondary 
tasks chosen for the multi-task experiments. It has already been found useful in such function [3]. 
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5 Target Generation 
In a multi-task setting, the network is trained to deal with more than one task: the primary task 

of phoneme classification and one or more secondary tasks. The resulting network must create a 
hypothesis for every frame in the utterance assuming either which phoneme or which unit of a 
secondary classification is represented in it. To train such a network, target files need to be created. 

Target file is a file which defines the correct output in each block for each frame in a training 
sequence. It looks like a matrix with the number of rows equaling the number of frames in an utterance. 
The number of columns equals the number of units in the output layer of the network. The target matrix 
consists only of zeroes and ones, ones representing the correct output and zeroes representing wrong 
outputs. A s there are several tasks in the output, there must be only one correct output in each task. To 
better imagine it, let's take a hypothetic language with four "phonemes" and two secondary 
characteristics: let them be voiced and unvoiced, for example. For such a language, one row of the 
output target file can look like this: 

0010 |10 

Here, the red line shows the division between the two tasks. This row means that the frame 
represents "phoneme" number three, and it is voiced. 

The information for generation of target files can be easily extracted from the transcription files 
by a sequence o f scripts, especially written for this work. Let 's proceed to investigate the process step 
by step. 

5.1 Step 1. Transcription to Label Arrays 
The transcription file, also called master label file or simply mlf, contains all the necessary 

information, and is usually structured as following: the first column is the beginning time of a speech 
segment in 100 nanoseconds, the second column is the end of the speech segment in 100 nanoseconds 
and the third column is phoneme label corresponding to this segment. In Vietnamese there is also 
information about the beginning and the end of syllables (See Appendix 12.2.1 for an example of a 
transcription file). 

Each phoneme label is encoded as a number. In our small example we w i l l have only four 
"phonemes" which w i l l be represented by numbers from 0 to 3. A t this step, we want to get an array of 
the length equaling the number of frames in an utterance with its elements being numbers representing 
phonemes. 

0 500000 s i l s p 
500000 1400000 a : _ l 
1400000 2100000 k 

0 silsp 
1 k 
2 a:_l 
3 1 

0 0 0 0 0 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 

Note that while in the transcription file the time is in 100 nanoseconds, we need to extract the 
length of each segment in frames, and frame rate is 10 milliseconds, so 500000 gives us 5 frames. 
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Extracting of gender was done in a similar way, only the information was taken from the first 
letter of the file label: " m " o f f , and the array consisted of zeroes and ones only. 

Extraction of articulatory features was a bit trickier, as each phoneme had to be checked against 
the list of phonetic questions (see Appendix 12.2.2 for an example). If a phoneme was found to possess 
a certain characteristic, the numerical label for this characteristic was put in a corresponding file. On 
our small example with voiced and unvoiced phonemes, w e ' l l get the phonation array which looks like 
this: 

0 500000 s i l s p 
500000 1400000 a : _ l 
1400000 2100000 k 

voiced a:_l d 

unvoiced k silsp 

0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 

Extraction of tones was also done in a similar way, but tone labels were extrapolated for the 
whole length of the syllable. 

The scripts for doing all this were written in Python, as it is a very convenient programming 
language for processing text files. The examples of a couple of such scripts can be found in Appendices 
12.2.3 and 12.2.4. 

5.2 Step 2. Label Arrays to Target Matrices 
A t this step, the files with the label arrays are read in MatLab and converted to the target array. 

First, a matrix is created for each label array with the number of rows equaling the length of this array, 
which is the number of frames, and with the number of columns equaling the number of labels. So for 
example i f we use labels from 0 to 3, there w i l l be 4 columns in the corresponding matrix. The arrays 
are generated to be full of zeroes, and then in each row corresponding to a frame a one is 
placed in the column corresponding to the correct label. So for the first task in our small 
example this conversion would look like this: 

0 0 0 0 0 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 

Then all the matrices for all the tasks are concatenated together to generate the 
resulting target matrix: 

1 0 0 0 1 0 1 0 0 0 1 0 
1 0 0 0 1 0 1 0 0 0 1 0 
1 0 0 0 1 0 1 0 0 0 1 0 
1 0 0 0 1 0 1 0 0 0 1 0 
1 0 0 0 
0 0 1 0 + 1 0 

0 1 
1 0 0 0 1 0 
0 0 1 0 0 1 

0 0 1 0 + 0 1 0 0 1 0 0 1 
0 0 1 0 0 1 0 0 1 0 0 1 
0 0 1 0 0 1 0 0 1 0 0 1 
0 0 1 0 0 1 0 0 1 0 0 1 
0 0 1 0 0 1 0 0 1 0 0 1 
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After the target matrix is ready, it is written to the file of the same format as the feature files, 
with the help of writehtk.m script (free software, Copyright M i k e Brookes 2005). A n example of a 
MatLab script for step 2 can be seen in Appendix 12.3. MatLab was chosen for this part of the target 
preparation because it's a convenient tool to work with matrices. 

5.3 Step 3. Generating Training Lists 
After the target files are ready, training lists have to be generated. The lists for multitask training 

contain the path to the feature file and then on the next line the path to the target file, created according 
to the procedure described above. So the resulting lists look like this: 

Feature file 1 
Target file 1 
Feature file 2 
Target file 2 
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6 TNet Extension 
The second half of the practical part of the semester project included extending Neural Network 

Trainer TNet framework 1 for multi-task training. 
TNet tool, which is used as a basis for this project, is a free tool developed at FIT Speech for 

parallel training of neural networks. It supports both classification and regression tasks. A s an activation 
function either sigmoid, hyperbole tangent or softmax can be chosen. For objective function, the user 
can choose between mean square error and cross entropy. The tool allows initialization and training of 
networks o f any sizes of user's choice and supports training parallelization. 

There are two possibilities for training. The first one is to use master label file (mlf) which 
contains transcription to provide target information. The second possibility is to create custom target 
feature files and submit pairs of features and targets for training instead of features and mlf. This second 
possibility is particularly useful for multi-task training, as targets for the output layer must be 
customized according to the chosen secondary tasks as described in the previous section. 

In multi-task training, the output layer is virtually divided into several parts, each part containing 
outputs for one task. Each of these blocks has one correct output according to the target file, so when it 
comes to calculating the error, they need to be treated separately. 

For the multi-task experiments, ObjFun (src/TNetLib/ObjFun.cc) class was extended with the 
new functionality: MultiCrossEntropy function (see appendix 12.1), which goes block by block over 
the output neurons and calculates cross entropy error function in each block separately. Errors are 
accumulated in an array with one value for each block, averaged across the number of blocks and 
backpropagated. 

The number and size of blocks is set up during the network initialization. It can be seen in the 
end of the generated init file which contains the initial weights of the network. Then the information 
about blocks is passed to the new flavor of objective function where it is used for cutting outputs and 
targets into corresponding blocks for separate error calculation. 

The new flavor of objective function is incorporated in the overall structure of the framework, 
which means that its usage can be called through parameter setting, as all the other objective functions. 
The check is added to assure that the new objective function is used only with block softmax, as it 
doesn't make sense with the others. 

1 http://speech.fit.vutbr.cz/cs/software/neural-network-trainer-tnet 
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7 TIMIT English Experiments 
This section describes the set of experiments on the first of the two databases used in this work 

- T I M I T . For the purpose of testing the new functionality of TNet, an experiment was made with a 
simple setting of two target tasks: phoneme labels and gender of the speaker. After that, the key idea of 
the diploma was tested: i f articulatory secondary tasks prove helpful in the context of multi-task 
training. The previously made experiments with context secondary tasks have been replicated and 
combined with the newly introduced articulatory tasks. In the end, a comparison of the effectiveness of 
different network structures for multitask training has been done. 

7.1 Database Description 
T I M I T Acoustic-Phonetic Continuous Speech Corpus is a corpus of read speech, which is 

designed to provide speech data for acoustic-phonetic studies and for the development and evaluation 
of automatic speech recognition systems. T I M I T contains broadband recordings of 630 speakers of 
eight major dialects of American English, each reading ten phonetically rich sentences. The T I M I T 
corpus includes time-aligned orthographic, phonetic and word transcriptions as well as a 16-bit, 16kHz 
speech waveform file for each utterance. Corpus design was a joint effort among the Massachusetts 
Institute of Technology (MIT) , SRI International (SRI) and Texas Instruments, Inc. (TI). The speech 
was recorded at TI, transcribed at M I T and verified and prepared for C D - R O M production by the 
National Institute of Standards and Technology (NIST). The T I M I T corpus transcriptions have been 
hand verified. Test and training subsets, balanced for phonetic and dialectal coverage, are specified. 
Tabular computer-searchable information is included as wel l as written documentation. 

T I M I T corpus was chosen for the baseline experiments because of its relatively small size, which 
allows for fast testing and for the availability of additional information to be chosen as a second task. 
However, it is necessary to remember that the performance on T I M I T do not necessarily translate into 
performance improvements on large vocabulary tasks with less controlled recording conditions and 
much more training data [8]. 

7.2 Gender Secondary Task 
This first small experiment was designed as a test of the functionality of the new setting, so the 

secondary task was chosen to be rather simple - gender of the speaker, which consists of only two 
classes. The network size was also small, with just one hidden layer of 500 units. The output layer was 
of size 41: 39 phoneme labels + 2 gender labels. Features were extracted on 25ms frames with 10ms 
shift with the use of 23 M e l frequency filterbank. On TIMIT , it usually takes the network around 12 
iterations to converge, with occasional halving of the learning rate. 

To test that the system learn not only the primary task - phonemes, but also the secondary task 
- gender, the part of the output corresponding to gender task was not simply discarded, but used to 
produce gender hypothesis. The setting forbade to change between male and female hypothesis for 
different frames in one utterance. 

On the phoneme task, the system yielded about the same result as the baseline. (The baseline was 
trained on a neural network with the same dimensions with the output layer of the size of 39). The 
accuracy rate for both tasks can be seen in the table (see Tab. 1). Note, that it can differ depending on 
the initialization, but this difference usually doesn't exceed 0.2 percent. 
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baseline multi-task 

69.56 69.41 
Table 1: Accuracy on phoneme label task. 

On the gender task, the multi-task system yielded accuracy 98.07, which means that it 
successfully learned both tasks. 

There was no increase in accuracy for the phoneme label task due to the introduction of the 
secondary task, and this can be explained by the fact that these two tasks are not very correlated. In 
comparison with [3], where context information was chosen to serve as the secondary task and which 
yielded reasonable improvement, it looks discouraging. However, it can help to remember that 
phoneme models are not very dependent on the gender of the speaker and certainly not vice versa, so 
to expect some improvement would be over-optimistic. Anyway, learning two tasks in one network can 
still be helpful and resources-saving. 

Overall, the small experiment on the T I M I T database with two tasks - gender and phoneme label 
- has shown that the new code works correctly and that further more complex experiments can be made 
with this setting. 

7.3 Articulatory Secondary Tasks 
In this section, the original idea of the usability of articulatory characteristics of a phoneme is 

tested on T I M I T database and the results of these experiments are analyzed. 

7.3.1 Preparation of Articulatory Secondary Tasks 
The object of this first set of experiments was to show i f classification according to articulatory 

characteristics added as a secondary task increases the ability of neural network to learn the main task 
- phoneme recognition. For this setting, a bigger network had to be chosen for reasons explored in 
detail in subsection 7.4. Thus, the following set of experiments was conducted on a network with four 
hidden layers, consisting of 2048 units each. 

Articulatory characteristics for secondary tasks can be easily extracted from phonetic questions 
(see Section 5) used for clustering in A S R systems. 

The following groups of articulatory characteristics were chosen: 

• place ('none', 'front', 'semi-front', 'central', 'semi-back, 'back, 'bilabial', 'labiodental', 

'dental', 'alveolar', 'post-alveolar', 'palatal', 'velar', 'glottal') 

• manner ('none', 'open', 'open-mid', 'close-mid', 'close', 'plosive', 'nasal', 'tap-flap', 

'affricate', 'fricative', 'approximant', 'lateral approximant') 

• vowel or consonant ('none', 'vowel', 'consonant') 

• voice ('voiced', 'unvoiced') 

• additional characteristics ('none', 'rounded', 'unrounded', 'diphthong') 
Each of these groups serves as one secondary task. The most important requirement for these 

groups is that no phoneme can belong to more than one class of each group, as there may be only one 
correct answer in each task. Note that as the classification needed to accommodate both vowels and 
consonants, backness characteristics were moved with "place", height - with "manner" and roundness 

- with "additional characteristics". This last group was formed from all the characteristics left in the 
questions which didn't fit into other groups. Item "none" in each group was created to accommodate 
silences, which don't belong to any other group. In the "voice" group, silences belong to "unvoiced" 
class. 
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Targets for calculating of the objective function were generated according to these groupings. 
For example, group 'place' consists of 14 outputs and the frame corresponding to phoneme /p/ w i l l have 
one in the seventh position in this group (bilabial) and the rest w i l l be zeros. In total, the target matrix 
w i l l have 6 ones in the row of the number of the frame corresponding to phoneme /p/, on the positions 
of the following characteristics: p' , 'bilabial', 'plosive', 'consonant', 'unvoiced', 'none'. 

7.3.2 Experimental Results 
The results for this set of experiments can be found in the table below: 

%PhnAcc %diff 

base l ine 72.3 0 

all a r t i cu la tory 71.5 -0,8 

p lace 72.5 +0,2 

manne r 72.5 +0,2 

vowe l / consonan t 72.4 +0,1 

vo ice 72.3 0 

add i t i ona l 72.1 -0,2 

p lace+manner+vowe l /cons 72.6 +0,3 
Table 2: TIMIT articulatory secondary tasks. 

First, all the secondary tasks were added at once, which resulted in 6 tasks overall, but, as shown 
in the table, it didn't work and accuracy only decreased. So a set o f experiments was made with each 
secondary task separately to see which ones help and which ones don't. 

It turned out that the information about the place and manner of articulation of a phoneme and i f 
a phoneme is a vowel or a consonant can yield some improvement in accuracy, the information about 
voicing doesn't help, and additional information is even making matters worse, which is predictable, 
because this information is the least universal. 

7.3.3 Combining Context and Articulatory Secondary Tasks 
A s was mentioned before (see Section 3), the experiments with context secondary tasks have 

already shown good results on T I M I T database [3]. So I've decided to replicate them and combine them 
with articulatory secondary tasks. 

The context tasks represent information about the phoneme label for the previous and next frame. 
There are two context tasks: left context and right context, each consisting of the same number of 
outputs as the man task, 39 in case of T I M I T . This gives us a total 117 units in the output layer. The 
left context of the first frame in an utterance is set to silence, and the right context of the last frame in 
an utterance is l ikely set to silence. 

%PhnAcc %diff 

base l ine 72,3 0 

contex t 72,6 +0,3 

context+p lace+manner+vowe l /cons 72,8 +0,5 
Table 3: Adding context task to articulatory tasks. 

A s can be seen in the Table 3, context secondary tasks has proved to work wel l on T I M I T , as 
expected [3], so context was combined with the best combination of articulatory tasks from previous 
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experiments. The total gain on T I M I T with the help of multi-task training reaches 0.5%, which is quite 
substantial, i f not stunning. 

7.3.4 Sanity Check Experiment 
It has been suggested that the reason multitask training helps is the effect of regularization. That 

is, we provide more information, which is not necessarily new (that is, we can infer any articulatory 
characteristic from the phoneme label), but as the amount of information is bigger, the solution found 
is less l ikely to be overfit. This supposition would suggest that adding any relevant information as a 
secondary task w i l l help. 

To check that the tasks really overhear on each other, and that the choice of secondary tasks is 
important, a sanity check experiment has been conducted. For this, the secondary task was chosen to 
be exactly the same as the primary task - phoneme labels. If this addition turns out to be helpful, it 
means multitask training is just a question of regularization, and i f it doesn't improve the accuracy, it 
proves that multitask training is really something more. 

base l ine 2x phonemes 

72,3 71,9 
Table 4: Accuracy for baseline and multi-task with two equal tasks. 

The results in Table 4 show that this suggestion is not true and just adding more information 
without thinking o f its helpfulness doesn't result in the same accuracy rate as a carefully chosen 
multitask setting. 

7.4 Dependency on the Network Size 
It has been noticed during the network tuning that multitask training doesn't work with networks 

of smaller sizes. Multitask actually worked worse than the baseline on the initial setting of one hidden 
layer with 500 units and started helping the training only when the neural network was increased to the 
size of four hidden layers, each consisting of 2048 units. 

Further work aimed to explore how changing the number of layers affected the performance in 
presence of secondary tasks. For the sake of speed, this set of experiments was conducted on TFMIT 
database, on the networks with the number of hidden layers ranging from 1 to 4, each consisting of 
2048 units. After the addition of the fifth layer, the learning efficiency stops increasing as the neural 
network gets over-trained, so adding more hidden layers doesn't seem reasonable for such a small 
dataset. 
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Figure 15: Dependency between the size of the network and the efficiency of multitask training. 

A s can be seen on Figure 15, multitask setting helps most on bigger (more than two hidden 
layers) neural networks, which probably means that smaller networks are not able to accommodate 
additional information from secondary tasks. 

7.5 TIMIT English Conclusion 
It has been confirmed that for T I M I T English addition of some articulatory characteristics as 

secondary tasks may be helpful. The examples of these successful choices are place and manner of 
articulation and the information about whether a phoneme is a vowel or a consonant. However, the 
information about voicing and other characteristics haven't proved helpful. Further improvement can 
be achieved with the addition of context information as an additional secondary task. The total 
improvement of accuracy rate reaches 0.5%, which is not a breakthrough result, but can be helpful 
anyway. A t least it allows to state that these numbers are not results of different initialization and that 
multi-task learning does improve the learning. 

It has been shown that the network should be big enough to be able to accommodate the increase 
in the amount of information it needs to learn resulting from the addition of secondary tasks. On a small 
network, though, multi-task training can even yield worse results than the regular training. 
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8 BABEL Vietnamese Experiments 
Although very wel l annotated and of a good quality, T I M I T database is fairly small and too 

devoid of noise to represent most real-life speech recognition situations. Therefore, to test T I M I T 
conclusions, another database and another language, very different from English, have been chosen. 

8.1 Database and System Description 
The following set of experiments is conducted on Limited Language Pack (about lOh of clean 

speech) of Vietnamese spontaneous telephone speech collected for B A B E L project (Vietnamese 
IARPA-babel l07b-v0.7 (VI)) . 2 The main task in the Vietnamese experiments is also phoneme label 
classification. Because of the tones, the number of phoneme labels is much bigger than in T I M I T 
experiments and equals to 91 (25 consonants and 45 vowels). The experiments in this section were also 
performed on a network with 4 hidden layers, consisting of 2048 units each. 

The N N input features for Vietnamese are 15 critical band energies (squared F F T magnitudes 
binned by M e l scaled filter-bank and logarithmized) concatenated with estimates of F 0 and probability 
of voicing. It makes 17 dimensional feature stream. The estimation of F 0 (implemented according to 
[15]) is based on normalized cross correlation function. 

The output targets were generated in the similar way as for T I M I T , see section 5 for details and 
appendix 12.2-3 for scripts. 

8.2 Articulatory Secondary Tasks 
Vietnamese is a syllabic tonal language with a phoneme set which differs a lot from that of 

English, so the choice of articulatory characteristics must also be different. The following articulatory 

characteristics were chosen for the experiments: 

• place ('none', 'front', 'central', 'back', 'bi labial ' , 'labiodental', 'dental', 'alveolar', 

'palatal', 'velar', 'glottal') 

• manner ('none', 'open', 'm id ' , 'close', 'plosive' , 'nasal', 'affricate', 'fricative', 

'approximant') 

• vowel or consonant ('none', ' vowel ' , 'consonant') 

• voice ( 'voiced', 'unvoiced') 

• additional ('none', 'rounded', 'unrounded', 'aspirated', 'glottalized', 'unaspirated') 

A s with T IMIT , separate experiments were conducted first using each articulatory characteristic 
as the sole secondary task to see which ones help the learning. 

2 http://www.iarpa.gov/Programs/ia/Babel/babel.html 
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%PhnAcc %diff 

base l ine 35,5 0 

p lace 36,2 +0,7 

manne r 37,4 +1,9 

vowe l / cons 36,3 +0,8 

vo ice 37,0 +1,5 

add i t i ona l 36,1 +0,6 

all a r t i cu la tory 35,6 +0,1 
Table 5: Articulatory secondary tasks on Vietnamese. 

A s can be seen from the table, the situation with Vietnamese is a bit different than with T IMIT . 
For once, all the secondary tasks do help improve the phoneme accuracy. This improvement is also 
much bigger, probably due to the worse quality and greater size of the database. However, when takes 
all together, secondary tasks stop being so effective as when used separately, probably because the 
pattern becomes too complex to be learned. 

8.3 Tones Secondary Task 
Another characteristic feature of Vietnamese language are tones which are suprasegmental 

characteristics affecting pitch, length, contour melody, intensity and phonation of a phoneme. Although 
formally only vowels are "tone-carriers", because of co-articulation, all the phonemes in a syllable are 
affected by the tone (especially voiced ones). The tonal information in B A B E L data is attached only to 
vowels (e.g. for phoneme IOI there are 6 variants: / 0_1 / , IOJ2J, /0_3/ , /0_4/ , / 0 _ 5 / and /0_67) but 
consonants in the same syllable, even voiced ones, are not marked. Therefore, as tones modify the 
pronunciation of phonemes which otherwise are labeled equally, it makes sense to add tonal 
information as a secondary task. 

Thereby, the tonal secondary task was tried for Vietnamese. This secondary task consisted of 7 
outputs: six tones and one 'no tone' for silences. A l l the phonemes in a syllable are targeted with the 
tone of the vowel in the syllable (see subsection 5.1). Again, as with T I M I T gender secondary task, 
instead of just discarding the second half of the output layer (secondary task), it was used to generate 
tones hypothesis mlf in order to check not only how phoneme recognition is influenced be adding tonal 
information as a secondary task, but also how tonal recognition is influenced by training the tone models 
together with phoneme models. 

base l ine mul t i task 

phonemes 35,5 35,4 

tones 43,9 51,0 
Table 6: Phoneme accuracy for phonemes and tones classification with baseline and multi-task setting. 

The results of these experiments are ambiguous. On the one hand, adding tonal information as a 
secondary task doesn't enhance phoneme recognition, and even results in a slight accuracy drop. On 
the other hand, the recognition of tones works much better i f the network for this is not trained 
separately, but with the addition of phonemes as a secondary task. This second result may be 
encouraging, as the increase in accuracy is very big - 6%, but unfortunately the usability of tone 
recognition is much narrower than of phoneme recognition. 
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8.4 Context Secondary Tasks 
A s with T I M I T English, it has been decided to test i f context information is as useful as a 

secondary task for Vietnamese as for English. Context targets were generated in the same way as they 
were for T IMIT , and the resulting output layer consists of 273 units: three times the number of phoneme 
l a b e l s - 9 1 . 

%PhnAcc %diff 

base l ine 35,5 0 

contex t 32,2 -3,3 
Table 7: BABEL Vietnamese context secondary task 

Unlike on TIMIT , on B A B E L addition o f context information doesn't prove successful and 
results in a drastic decrease in accuracy rate. A possible explanation for this can be that B A B E L 
database is bigger than T I M I T database and instead of just a several phrases, although context rich, 
contains spontaneous speech. Or it can be because of Vietnamese being structurally a very different 
language - syllabic, in which prediction of context on the syllable boundaries can be a difficult task. 

8.5 BABEL Vietnamese Conclusion 
The main resume of this second set of experiments is that the effectiveness of multi-task training 

depends a lot on the database and the language it's applied to. In case o f Vietnamese, adding all 
articulatory characteristics can help increase phoneme accuracy and by a much bigger percent than on 
T I M I T . However, context information proves useless on Vietnamese. Experiments with tones have 
shown that adding tones as a secondary task doesn't help phoneme recognition, but the recognition of 
tones improves a lot i f the network is trained together with phonemes. 
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9 Bottleneck Training 
Using neural network for phoneme recognition is not too effective in itself. M u c h more useful is 

to incorporate neural networks in a Large Vocabulary Continuous Speech Recognition system 
( L V C S R ) . In the further experiments, multi-task neural networks are used for feature extraction in 
Hidden Markov M o d e l ( H M M ) based system. 

In our B A B E L Vietnamese system, bottleneck features are used, as they have been shown to 
outperform probabilistic features [12]. B N features use five-layers M L P with a narrow layer in the 
middle (bottle-neck). The fundamental difference between probabilistic and B N features is that the 
latter are not derived from the class posteriors. Instead, they are obtained as linear outputs of the neurons 
in the bottle-neck layer. This structure makes the size of the features independent of the number of the 
M L P training targets. It is important for multi-task experiments, as it is easy to replace the phoneme 
targets by more complex multi-task targets, while retaining a small feature vector without a need of a 
dimensionality reduction. 

The bottle-neck M L P training process is the same as for probabilistic features and employs all 
five layers. During feature extraction only the first three layers are involved. It is illustrated in Figure 
16. 
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Figure 16: Block diagram of the Bottle-Neck feature extraction [12]. 

A n even more complex neural network structure which has been found to overcome standard 
bottleneck is a stacked bottle neck neural network [16]. It contains two neural networks: the bottleneck 
outputs from the first one are stacked, down-sampled, and taken as an input vector for the second neural 
network. This second neural network has again a bottleneck layer, of which the outputs are taken as 
input features for G M M / H M M recognition system. 

context +/-5 
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Figure 17: Stacked bottleneck neural network feature extraction [14]. 
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9.1 Articulatory Secondary Tasks for Bottleneck 
Networks 

In the following experiments two neural network architectures were used for feature extraction: 
one with 30 linear units in the bottleneck layer and another with 80 units in the bottleneck layer. In 
both cases the bottleneck layer is the third out of four hidden layers, the rest consisting of 2048 units 
each, as usual. 

On top of the features obtained from the bottleneck layer a G M M - H M M recognition system 
was trained. In all the following experiments the results are given in word error rate ( W E R ) instead of 
phoneme accuracy. 

%WER %diff 

base l ine 72,2 0 

place 73,9 1,7 

manne r 73,4 1,2 

vowe l / cons * * 
vo ice 73,6 1,4 

add i t i ona l 73,2 1 

all a r t i cu la tory * * 
Table 8: WER on Vietnamese with BN 30 units. 

Several problems were encountered during this training. First, some settings were not able to 
train at all (marked with an asterisk). Different initializations and different training parameters have 
been chosen, but the learning always got stuck at about 1 % C V accuracy. The most probable reason 
for it is that there is too much of too diverse information to be compressed into just 30 units of the 
bottleneck. Anyway, even in the settings in which training went normally, the resulting W E R is still 
worse for the multitask setting than for the baseline, the difference being about 1%. 

In order to amend for possible insufficiency of 30 units of the bottleneck for accommodating 
all the information provided by the multi-task training, another setting was tried, now with 80 units in 
the bottleneck layer. 

%WER %diff 

Base l ine 72,7 0 

M a n n e r 74,0 +1,3 

all a r t i cu la tory 74,3 +1,6 
Table 9: WER on Vietnamese with BN 80 units. 

Not all the possible combinations of the secondary tasks have been tried here, as the same 
dynamics as with 30 units in a bottleneck can be observed from just a couple of experiments. 

Unfortunately, having more units in the bottleneck layer doesn't seem to help. One possible 
conclusion is that for word error rate articulatory characteristics don't add any useful information. 
Another explanation can be that some other bottleneck structure should be found to accommodate 
articulatory multi-task settings. 

36 



9.2 Context Secondary Tasks for Bottleneck 
Networks 

After the memorable failure with articulatory secondary tasks in a bottleneck setting, context 
secondary task has been tried on the bottleneck network with both 30 and 80 units in the bottleneck 
layer. 

30 units 80 units 

base l ine 72,2 72,7 

contex t 72,9 73,0 
Table 10: Context secondary task for bottleneck training 

On 30 units W E R increase, although smaller than in case of articulatory characteristics, is still 
present. On 80 units the situation is exactly the same. Remembering that context secondary tasks didn't 
help even with phoneme recognition setting on B A B E L Vietnamese, this is not surprising. 

9.3 Bottleneck Training Conclusion 
To our disappointment, we have to conclude that multitask training doesn't work wel l with 

bottleneck networks, and provides a lamentable error rate increase on the task of word recognition. 
There can be several possible explanations to that. 

First, it is possible that several different tasks just don't compress wel l into the bottleneck units, 
and even taking a fairly big (80) amount o f units in the bottleneck layer doesn't help. 

Second, it is possible that the effectiveness of a dictionary just overrides the effectiveness of 
everything else for word recognition. Even in case of one or several phonemes wrongly recognized the 
word can be recognized correctly, so additional information about context or articulatory characteristics 
of phonemes is useless. 

Thirdly, it just may be that the training parameters which have been found to be optimal for 
normal training are not suitable for multi-task training. Tuning these parameters may be material for 
future research. Another possibility of improving the results can be to use stacked bottleneck method 
for feature extraction instead of a single bottleneck. 

A s it is, the conclusion seem to be that multi-task learning is better left for more simple tasks, as 
phoneme recognition. In a more complex language recognition system they prove useless. 
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10 Conclusion and Future Plans 
The aim of this master's thesis was to experiment with multi-task neural networks in the context 

of speech recognition and particularly test the usability of articulatory characteristics of phonemes as 
secondary tasks for the multi-task setting. 

The theoretical part of the thesis started with obtaining a more in-depth understanding of neural 
networks, the principles of their operating and their usage in speech recognition. Then the more specific 
problematic of multi-task neural networks was researched, including the more recent paper 
experimenting with their usability for speech recognition. 

A s the original idea of the thesis was to work with articulatory characteristics of phonemes, an 
introduction into articulatory phonetics has been made in the end of the theoretical part. 

The practical part included modifying the existing TNet framework for training neural networks 
to allow new functionality of multi-task neural networks. To this end, a new method has been added 
and its functionality was integrated into existing the framework. Moreover, a number of scripts have 
been written for extracting articulatory, context and other information from the transcriptions and for 
creating target files with this information. 

For the experimental part of the thesis, two databases have been chosen: T I M I T English and 
B A B E L Vietnamese. The first is broadband recordings of read speech, and second is spontaneous 
telephone conversation. 

The first short experiment on TFMIT database was with just one secondary task - speaker's 
gender. It has shown full functionality of the new multi-task setting of TNet. It was proved that a multi
task neural network can be successfully trained to perform more than one task without any accuracy 
decrease on any of the tasks. 

Further experiments were conducted with different articulatory characteristics as secondary 
tasks. It has been proven that for T I M I T the information about the place and manner of articulation and 
whether a phoneme is a vowel or a consonant is helpful, and the best phoneme accuracy increase (0,5%) 
has been reached by the combination of context and some articulatory secondary tasks. 

The last group of experiments on TFMIT has shown that multi-task training works best on bigger 
neural networks which are able to accommodate the increased amount of information. 

Similar experiments on Vietnamese have shown that, unlike in English, all articulatory secondary 
tasks enhance phoneme accuracy rate. However, context information on Vietnamese has proven 
useless, as wel l at the information about tones. 

In the end, multi-task neural networks have been integrated in an L V C S R system in the role of 
feature extractors. For this, bottleneck neural network structures wit 30 and 80 units in the bottleneck 
layer have been used. However, either because bottleneck structure is not able to learn several tasks 
simultaneously or because on the higher level of recognition - on word error rate measurements -
articulatory characteristics don't play such a big role, multi-task training has proved useless in this 
setting. Context information also didn't add anything to the recognizer. 

The resume of this work can be that using multi-task learning can help a bit in certain cases, but 
the benefits are far from tremendous. It is very difficult to guess what settings w i l l work and what w i l l 
not, and this also differs across languages and datasets, so multi-task training is not predictable either. 
However, i f used in favorable circumstances, adding secondary tasks to the training may help to gain a 
couple percents of phoneme accuracy, and in some cases it may be very helpful. 
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10.1 Publications 
The experimental results have been presented at E E I C T student conference3 (2 n d place in the 

group) and included in a paper for I N T E R S P E E C H 2014 4 , with review results still unknown. 

10.2 Future Research Plans 
Experimenting with multi-task neural networks opens more suggestions and possibilities than is 

possible to test. A s shown above, on different languages and different databases different things prove 
to be effective, so each new setting needs to be experimented with before it can be said i f multi-task 
training w i l l be helpful for it. Instead of listing all the possible further developments of the topic, which 
w i l l be a tedious task, I have chosen just a couple of the more promising areas where research can be 
done. 

First, future work with multi-task neural networks can include tuning bottleneck training to 
achieve successful training in a multi-task setting. It is also possible to train a stacked bottleneck with 
multitask target, as two-step compression of the information can prove more effective. Another 
possibility is to use outputs themselves as emission probabilities. 

Second, it is possible to train a multi-lingual multi-task neural network with articulatory 
characteristics. A s most of them are shared across languages, especially i f the languages are chosen to 
be close enough, this approach can be proved advantageous. 

O f course, it is also always possible to choose new interesting secondary tasks that can enhance 
the learning. Although tones have proved less than helpful on Vietnamese, in other languages 
suprasegmental characteristics may be more helpful. The information about the speaker and about the 
recording devices can also be tested. There are literally endless possibilities. 

3 http://www.feec.vutbr.cz/EEICT/ 
4 http://www.interspeech2014.org/ 
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12 Appendices 

12.1 ObjFun Appendix 
c l a s s M u l t i C r o s s E n t r o p y : p u b l i c O b j e c t i v e F u n c t i o n 

{ 
p u b l i c : 
M u l t i C r o s s E n t r o p y ( ) 
: O b j e c t i v e F u n c t i o n ( ) , frames ( ) , e r r o r ( ) , c o r r (0) 

{ } 

~ M u l t i C r o s s E n t r o p y ( ) 
{ } 

ObjFunType GetType() 
{ return MULTI_CROSS_ENTROPY; } 

co n s t c h a r * GetName() 
{ return " < m u l t i c r o s s e n t r o p y > " ; J 

O b j e c t i v e F u n c t i o n * C l o n e ( ) 
{ return new M u l t i C r o s s E n t r o p y ( * t h i s ) ; } 

v o i d E v a l u a t e ( c o n s t M a t r i x < B a s e F l o a t > & n e t o u t , c o n s t 
M a t r i x < B a s e F l o a t > & t a r g e t , M a t r i x < B a s e F l o a t > * e r r ) ; 

s i z e t GetFrames() 
{ return frames ; } 

double G e t E r r o r ( ) 
{ return e r r o r ; } 

v o i d S e t D i m e n s i o n s ( V e c t o r < i n t > mDim) 
{ 
mDim . I n i t ( m D i m . D i m ( ) ) ; 
f o r ( i n t i = ; i < mDim.Dim(); i++) 
mDim [ i ] = m D i m [ i ] ; 

} 

s t d : : s t r i n g R e p o r t ( ) ; 

v o i d M e r g e S t a t s ( c o n s t O b j e c t i v e F u n c t i o n S i n s t ) ; 

p r i v a t e : 
s i z e t frames ; 
double e r r o r ; 
s i z e t c o r r ; 
V e c t o r < i n t > mDim ; 

} ; 

v o i d M u l t i C r o s s E n t r o p y : : E v a l u a t e ( c o n s t M a t r i x < B a s e F l o a t > & n e t o u t , c o n s t 
M a t r i x < B a s e F l o a t > & t a r g e t , M a t r i x < B a s e F l o a t > * e r r ) 
{ 

if(!mDim . I s l n i t i a l i z e d ( ) ) { 
KALDI ERR « "Dimensions v e c t o r n ot i n i t i a l i z e d ! " ; 

} 
i f ( n e t _ o u t . C o l s ( ) != t a r g e t . C o l s ( ) ) { 
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KALDI_ERR « "Nonmatching dim o f d a t a : n e t _ o u t " « n e t _ o u t . C o l s ( ) 
« " t a r g e t " « t a r g e t . C o l s () ; 

} 
i n t sum = 0; 
f o r ( i n t i = 0; i < mDim .Dim(); i++){ 

sum = sum + mDim [ i ] ; 
} 
i f ( s u m != n e t o u t . C o l s ( ) ) { 

KALDI ERR « "sum o f v e c t o r s v a l u e s does not match d a t a d i m e n s i o n s ! " ; 
} 
i f ( e r r - > R o w s ( ) != net_out.Rows() II e r r - > C o l s ( ) != n e t _ o u t . C o l s ( ) ) { 

e r r - > I n i t ( n e t o u t . R o w s ( ) , n e t o u t . C o l s ( ) ) ; 
} 

e r r - > C o p y ( n e t o u t ) ; 
e r r - > A d d S c a l e d ( - 1 , t a r g e t ) ; 

i n t c u r B l o c k C o l = 0; 
Vec t o r < d o u b l e > sumerr(mDim . D i m ( ) ) ; 
i n t c o r r = ; 

s u m e r r . Z e r o ( ) ; 

f o r ( i n t blockNum = ; blockNum < mDim .Dim(); blockNum++) { 

/ / a l l o c a t e and copy b l o c k s u b m a t r i x 
M a t r i x < B a s e F l o a t > n e t out sub b l o c k ; 
M a t r i x < B a s e F l o a t > t a r g e t sub b l o c k ; 
net out sub b l o c k . I n i t ( n e t o u t . R o w s ( ) , mDim [blockNum]); 
net out sub b l o c k . C o p y ( n e t out.Range( , n e t o u t . R o w s ( ) , c u r B l o c k C o l , 

mDim [ b l o c k N u m ] ) ) ; 
t a r g e t sub b l o c k . I n i t ( t a r g e t . R o w s ( ) , mDim [blockNum]); 
t a r g e t sub b l o c k . C o p y ( t a r g e t . R a n g e ( 0 , t a r g e t . R o w s ( ) , c u r B l o c k C o l , 

mDim [ b l o c k N u m ] ) ) ; 

/ / a s s e r t i o n s f o r b l o c k s c o p y i n g 
a s s e r t ( m D i m [blockNum] == n e t out sub b l o c k . C o l s ( ) ) ; 
a s s e r t ( m D i m [blockNum] == n e t out sub b l o c k . C o l s ( ) ) ; 

/ / c o l l e c t max v a l u e s 
s t d : : v e c t o r < s i z e t> max t a r g e t i d ( t a r g e t . R o w s ( ) ) ; 
s t d : : v e c t o r < s i z e t> max n e t o u t i d ( t a r g e t . R o w s ( ) ) ; 

//check c o r r e c t c l a s s i f i c a t i o n 
f o r ( s i z e t r= ; r<net out sub b l o c k . R o w s ( ) ; r++) { //goes t h r o u g h rows 

i n t i d n e t o u t = 
F i n d M a x I d ( n e t out sub b l o c k [ r ] . p D a t a ( ) , n e t out sub b l o c k . C o l s ()) ; 

i n t i d t a r g e t = 
F i n d M a x I d ( t a r g e t sub b l o c k [ r ] . p D a t a ( ) , t a r g e t sub b l o c k . C o l s ( ) ) ; 

i f ( b l o c k N u m == && i d n e t o u t == i d t a r g e t ) corr++; 
max t a r g e t i d [ r ] = i d t a r g e t ; / / s t o r e t h e max v a l u e 
max n e t o u t i d [ r ] = i d n e t o u t ; 

> 

//compute l o s s f u n c t i o n 
f o r ( s i z e t r=0; r<net o u t . R o w s ( ) ; r++) { 

i f ( t a r g e t ( r , m a x t a r g e t i d [ r ] ) == 1.0) { 
/ / p i c k t h e max v a l u e . . . , r e s t i s ze r o 

B a s e F l o a t v a l = l o g ( n e t out sub b l o c k ( r , m a x t a r g e t i d [ r ] ) ) ; 
i f ( v a l < - l e l O f ) v a l = - l e i O f ; 
sumerr[blockNum] += v a l ; 
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} else { 
/ / p r o c e s s whole p o s t e r i o r v e c t . 

f o r ( s i z e t c=0; c<net out sub b l o c k . C o l s ( ) ; C++) { 
i f ( t a r g e t sub b l o c k ( r , c ) != 0.0) { 

B a s e F l o a t v a l = 
t a r g e t sub b l o c k ( r , c ) * l o g ( n e t out sub b l o c k ( r , c ) ) ; 

i f ( v a l < - l e l O f ) v a l = - l e l O f ; 
sumerr[blockNum] += v a l ; 

} 
} 

J 
J 

//go t o t h e b e g i n n i n g o f t h e n e x t b l o c k 
c u r B l o c k C o l = c u r B l o c k C o l + mDim [blockNum]; 

d o u b l e sumerror = sumerr.Sum()/mDim .Dim(); 

e r r o r -= s u m e r r o r ; 
frames += n e t o u t . R o w s ( ) ; 
c o r r += c o r r ; 

s t d : : s t r i n g M u l t i C r o s s E n t r o p y : : R e p o r t ( ) { 
s t d : : s t r i n g s t r e a m s s ; 
ss « "Xent:" « e r r o r « " frames:" « frames 

« " e r r / f r m : " « e r r o r /frames 
« " c o r r e c t ! " « 1 0 0 . 0 * c o r r _ / f r a m e s _ « " % ] " 
« "\n"; 

return s s . s t r ( ) ; 

v o i d M u l t i C r o s s E n t r o p y : : M e r g e S t a t s ( c o n s t O b j e c t i v e F u n c t i o n S i n s t ) { 
c o n s t M u l t i C r o s s E n t r o p y f i x e n t = dynamic_cast<const 

M u l t i C r o s s E n t r o p y & > ( i n s t ) ; 
frames += x e n t . f r a m e s ; e r r o r += x e n t . e r r o r ; c o r r += x e n t . c o r r 

} 



12.2 Python Appendix (for Vietnamese) 

12.2.1 Source Transcription File 
#!MLF!# 
"*/90559il_20120608_184439_01236_01762-012 70-0132 3 . l a b " 
0 500000 s i l s p -2341.275146 
500000 1500000 s i l s p -1056.613159 
1500000 1600000 a : _ l -112.157066 s i l - a : _ l + l -616.848877 A 
1600000 2000000 a : _ l -394.328949 
2000000 2100000 a : _ l -110.362877 
2100000 2200000 1 -104.193024 E _ l - l + o _ l -471.323975 L\303\224 
2200000 2300000 1 -96.849724 
2300000 2600000 1 -270.281219 
2600000 3200000 o _ l -473.293396 l - o _ l + s i l -1120.518555 
3200000 3300000 o _ l -91.544006 
3300000 3900000 o _ l -555.681091 
3900000 4700000 s i l s p -503.755432 s i l -27926.580078 
4700000 5100000 s i l s p -299.730530 
5100000 5400000 s i l s p -237.993744 

"*/9 055 9il_20120608_184439_01236_01762-0167 5-01762.lab" 
0 1000000 s i l s p -1810.889160 
1000000 1100000 s i l s p -108.765495 sp -571.199524 
1100000 1400000 s i l s p -337.070892 
1400000 1500000 s i l s p -121.915863 
1500000 2200000 d< -831.994507 s i l - d < + a : _ l -1180.271729 \304\220ANG 
2200000 2300000 d< -128.749054 
2300000 2500000 d< -219.528229 

12.2.2 Source Question File 
f r o n t a: a: l a : 2 a : 3 a : 4 a : 5 a : 6 a a l a 2 a 3 a 4 a 5 a 6 E E l 
E_2 E_3 E_4 E_5 E_6 e e _ l e_2 e_3 e_4 e_5 e_6 i i _ l i _ 2 i _ 3 i _ 4 i _ 5 i _ 6 
mid @: @:_1 @:_2 @:_3 @:_4 @:_5 @:_6 @ @_1 @_2 @_3 @_4 @_5 @_6 E E _ l 
E_2 E_3 E_4 E_5 E_6 e e _ l e_2 e_3 e_4 e_5 e_6 0 0_1 0_2 0_3 0_4 0_5 0_6 
o o 6 o l o 2 o 3 o 4 o 5 
n a s a l m m l m 2 m 3 m 4 m 5 m 6 n n l n 2 n 3 n 4 n 5 n 6 N N 1 N 2 N 3 
N_4 N_5 N_6 J J _ l J_2 J_3 J_4 J_5 J_6 
v e l a r k x G G _ l G_2 G_3 G_4 G_5 G_6 N N _ l N_2 N_3 N_4 N_5 N_6 w w_l w_2 
w 3 w 4 w 5 w 6 
c l o s e e e l e 2 e 3 e 4 e 5 e 6 i i l i 2 i 3 i 4 i 5 i 6 o o 6 o l o 2 
o_3 o_4 o_5 u _ u _ l _ u _ 2 _ u _ 3 _ u _ 4 ~ u _ 5 u_6 _1~ _T_2 ~1_3~_1_4 _T_5 ~1_6~ 
p a l a t a l c J<back> J<back>_l J<back>_2 J<back>_3 J<back>_4 J<back>_5 
J<back>_6 ts<back> J J _ l J_2 J_3 J_4 J_5 J_6 j j _ l j _ 2 j _ 3 j_4 j _ 5 j _ 6 
a s p i r a t e d t h 
g l o t t a l i z e d b< b<_l b<_2 b<_3 b<_4 b<_5 b<_6 d< d<_l d<_2 d<_3 d<_4 d<_5 
d<_6 
b i l a b i a l p b< b<_l b<_2 b<_3 b<_4 b<_5 b<_6 m m_l m_2 m_3 m_4 m_5 m_6 
open a: a: l a : 2 a : 3 a : 4 a : 5 a : 6 a a l a 2 a 3 a 4 a 5 a 6 E E l 
E_2 E_3 E_4 E_5 E_6 0 0_1 0_2 0_3 0_4 0_5 0_6 
v o i c e d b< b<_l b<_2 b<_3 b<_4 b<_5 b<_6 d< d<_l d<_2 d<_3 d<_4 d<_5 d<_6 
J<back> J<back>_l J<back>_2 J<back>_3 J<back>_4 J<back>_5 J<back>_6 v 
v _ l v_2 v_3 v_4 v_5 v_6 z z _ l z_2 z_3 z_4 z_5 z_6 G G _ l G_2 G_3 G_4 G_5 
G_6 m m_l m_2 m_3 m_4 m_5 m_6 n n _ l n_2 n_3 n_4 n_5 n_6 N N _ l N_2 N_3 
N_4 N_5 N_6 J J _ l J_2 J_3 J_4 J_5 J_6 1 1_1 1_2 1_3 1_4 1_5 1_6 r<back> 
r<back> 1 r<back> 2 r<back> 3 r<back> 4 r<back> 5 r<back> 6 j j 1 j 2 j 3 
j 4 j 5 j 6 w w l w 2 w 3 w 4 w 5 w 6 a : a: l a : 2 a: 3 a: 4 a: 5 a: 6 a 
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a _ l a_2 a_3 a_4 a_5 a_6 @: @:_1 @:_2 @:_3 @:_4 @:_5 @:_6 @ @_1 @_2 @_3 
@_4 @_5 @_6 E E _ l E_2 E_3 E_4 E_5 E_6 e e _ l e_2 e_3 e_4 e_5 e_6 i i _ l 
i _ 2 i _ 3 i _ 4 i _ 5 i _ 6 0 0_1 0_2 0_3 0_4 0_5 0_6 o o_6 o _ l o_2 o_3 o_4 o_5 
u u _ l u_2 u_3 u_4 u_5 u_6 _1 _1_1 _1_2 _1_3 _1_4 _1_5 _1_6 a:I a:U aU @U 
a l @I EU eU i@ i U Oa: Oa OE 01 o l @:I u@ _1@ ue u l _ 1 I u@: _1U u i : i@U o a l 
o a l : u@I ul@ _1@I _1@U 
p l o s i v e p b< b<_l b<_2 b<_3 b<_4 b<_5 b<_6 t t h d< d<_l d<_2 d<_3 d<_4 
d<_5 d<_6 c J<back> J<back>_l J<back>_2 J<back>_3 J<back>_4 J<back>_5 
J<back>_6 k 
c e n t r a l @: @:_1 @:_2 @:_3 @:_4 @:_5 @:_6 @ @_1 @_2 @_3 @_4 @_5 @_6 _1 
_1_1 _1_2 _1_3 _1_4 _1_5 _1_6 
approximant 1 1 1 1 2 1 3 1 4 1 5 1 6 r<back> r<back> 1 r<back> 2 
r<back> 3 r<back> 4 r<back> 5 r<back> 6 j J l j 2 j 3 j 4 j 5 j 6 w w l 
w 2 w 3 w 4 w 5 w 6 
rounded 0 0_1 0_2 0_3 0_4 0_5 0_6 o o_6 o _ l o_2 o_3 o_4 o_5 u u _ l u_2 
u 3 u 4 u 5 u 6 
unrounded a: a: l a : 2 a : 3 a : 4 a : 5 a : 6 a a l a 2 a 3 a 4 a 5 a 6 E 
E _ l E_2 E_3 E_4 E_5 E~6 e ~ e _ l e_2 e~3 e_4 e_5 e~6 i ~ i _ l i _ 2 i _ 3 i _ 4 i _ 5 
i _ 6 _1 _1_1 _1_2 _1_3 _1_4 _1_5 _1_6 
vowel a: a: l a : 2 a : 3 a : 4 a : 5 a : 6 a a l a 2 a 3 a 4 a 5 a 6 @ : 
@:_1 @:_2 @:̂ 3 @:̂ 4 @:̂ 5 @:̂ 6 @ ~@_1 @_2 @_3_@_4_@_5_@_6_E E _ l E_2 E_3 
E_4 E_5 E_6 e e _ l e_2 e_3 e_4 e_5 e_6 i i _ l i _ 2 i _ 3 i _ 4 i _ 5 i _ 6 0 0_1 
0_2 0_3 0_4 0_5 0_6 o o_6 o _ l o_2 o_3 o_4 o_5 u u _ l u_2 u_3 u_4 u_5 u_6 
_1 _1_1 _1_2 _1_3 _1_4 _1_5 _1_6 a:I a:U aU @U a l @I EU eU i@ i U Oa: Oa 
OE 01 o l @:I u@ _1@ ue u l _ 1 I u@: _1U u i : i@U o a l o a l : u@I ul@ _1@I _1@U 
g l o t t a l h 
l a b i o d e n t a l f v v l v 2 v 3 v 4 v 5 v 6 
a f f r i c a t e ts<back> t s N 

a l v e o l a r t d< d< 1 d< 2 d< 3 d< 4 d< 5 d< 6 c ts<back> s z z l z 2 z 3 
z_4 z_5 z_6 n n _ l n_2 n_3 n_4 n_5 n_6 J J _ l J_2 J_3 J_4 J_5 J_6 r<back> 
r<back>_l r<back>_2 r<back>_3 r<back>_4 r<back>_5 r<back>_6 
d e n t a l t h s z z _ l z_2 z_3 z_4 z_5 z_6 1 1_1 1_2 1_3 1_4 1_5 1_6 
consonant p b< b<_l b<_2 b<_3 b<_4 b<_5 b<_6 t t h d< d<_l d<_2 d<_3 d<_4 
d<_5 d<_6 c J<back> J<back>_l J<back>_2 J<back>_3 J<back>_4 J<back>_5 
J<back> 6 ts<back> t s ~ k f v v l v 2 v 3 v 4 v 5 v 6 s z z l z 2 z 3 z 4 
z_5 z_6 s ~ x G G _ l G_2 G_3 G_4 G_5 G_6 h m m_l m_2 m_3 m_4 m_5 m_6 n 
n _ l n_2 n_3 n_4 n_5 n_6 N N _ l N_2 N_3 N_4 N_5 N_6 J J _ l J_2 J_3 J_4 J_5 
J_6 1 1_1 1_2 1_3 1_4 1_5 1_6 r<back> r<back>_l r<back>_2 r<back>_3 
r<back> 4 r<back> 5 r<back> 6 j J l j 2 j 3 j 4 j 5 j 6 w w l w 2 w 3 
w 4 w 5 w 6 
back Ö 0~1 0_2 0_3 0_4 0_5 0_6 o o_6 o _ l o_2 o_3 o_4 o_5 u u _ l u_2 u_3 
u 4 u 5 u 6 
f r i c a t i v e f v v l v 2 v 3 v 4 v 5 v 6 s z z l z 2 z 3 z 4 z 5 z 6 s " x G 
G _ l G_2 G_3 G_4 G_5 G_6 h ~ ~ ~ 
u n v o i c e d p t t h c ts<back> t s " k f s s" x h s i l s p 
u n a s p i r a t e d p t c ts<back> t s " k 

12.2.3 Extracting Articulatory Characteristics 
m l f = o p e n ( ' d i c t s / m l f sub wo u n k . m l f , 'r') 
f o u t p l a c e = o p e n ( ' P r e p a r e d a t a s c r i p t s / p l a c e s u b . t x t ' , 'w') 
f o u t manner = o p e n ( ' P r e p a r e d a t a s c r i p t s / m a n n e r s u b . t x t ' , 'w') 
f o u t vowel cons = o p e n ( ' P r e p a r e d a t a s c r i p t s / v o w e l cons s u b . t x t ' , 'w') 
f o u t v o i c e = o p e n ( ' P r e p a r e d a t a s c r i p t s / v o i c e s u b . t x t ' , 'w') 
f o u t a d d i t i o n a l = o p e n ( ' P r e p a r e d a t a s c r i p t s / a d d i t i o n a l s u b . t x t ' , 'w') 

p l a c e = ['none', ' f r o n t ' , ' c e n t r a l ' , 'back', ' b i l a b i a l ' , ' l a b i o d e n t a l ' , 
' d e n t a l ' , ' a l v e o l a r ' , ' p a l a t a l ' , ' v e l a r ' , ' g l o t t a l ' ] 
manner = ['none', 'open', 'mid', ' c l o s e ' , ' p l o s i v e ' , ' n a s a l ' , ' a f f r i c a t e ' , 
' f r i c a t i v e ' , 'approximant'] 
vowel cons = ['none', 'vowel', 'consonant'] 
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v o i c e = [ ' v o i c e d ' , 'unvoiced'] 
a d d i t i o n a l = ['none', 'rounded', 'unrounded', ' a s p i r a t e d ' , ' g l o t t a l i z e d ' 
1 u n a s p i r a t e d ' ] 

f o r l i n e i n m l f : # P r o c e s s i n g m l f f i l e l i n e by l i n e 

l i n e l i s t = l i s t ( l i n e ) 

i f l i n e _ l i s t [ 0 ] == '.': # End o f f i l e 
f o u t p l a c e . w r i t e ( ' \ n ' ) 
f o u t m a n n e r . w r i t e ( ' \ n ' ) 
f o u t vowel c o n s . w r i t e ( 1 \ n ' ) 
f o u t v o i c e . w r i t e ( ' \ n ' ) 
f o u t a d d i t i o n a l . w r i t e ( 1 \ n ' ) 

e l i f l i n e _ l i s t [ 0 ] != " " and l i n e _ l i s t [ 0 ] != '#': # P r o c e s s i n g 
t r a n s c r i p t i o n i t s e l f 

s p l i t s t r i n g = l i s t ( l i n e . s p l i t ( ) ) 

phoneme = s t r ( s p l i t s t r i n g [2]) 
d u r a t i o n f r = ( i n t ( s p l i t s t r i n g [1]) -

i n t ( s p l i t _ s t r i n g [ 0 ] )T//100000 

p l a c e found = 0 
manner found = 0 
vowel cons found = 0 
v o i c e found = 0 
a d d i t i o n a l found = 0 

que s t = o p e n ( ' d i e t s / Q u e s t i o n s c l e a n e d . q u e s t ' , ' r ' ) 

f o r q u e s t l i n e i n q u e s t : 

c u r s p l i t = l i s t ( q u e s t l i n e . s p l i t ()) 

i f c u r s p l i t [0] i n p l a c e : 
i f phoneme i n c u r s p l i t : 

p l a c e found = 1 
f o r x i n r a n g e ( 0 , d u r a t i o n f r ) : 

f o u t p l a c e . w r i t e ( s t r ( p l a c e . i n d e x ( c u r s p l i t [ 0 ] ) ) + ' ') 

e l i f c u r s p l i t [0] i n manner: 
i f phoneme i n c u r s p l i t : 

manner found = 1 
f o r x i n r a n g e ( 0 , d u r a t i o n f r ) : 

f o u t m a n n e r . w r i t e ( s t r ( m a n n e r . i n d e x ( c u r s p l i t [ 0 ] ) ) + ' ') 

e l i f c u r s p l i t [0] i n vowel cons: 
i f phoneme i n c u r s p l i t : 

vowel cons found = 1 
f o r x i n r a n g e ( 0 , d u r a t i o n f r ) : 

f o u t vowel c o n s . w r i t e ( s t r ( v o w e l c o n s . i n d e x ( c u r s p l i t [ 0 ] ) ) + ' ') 

e l i f c u r s p l i t [0] i n v o i c e : 
i f phoneme i n c u r s p l i t : 

v o i c e found = 1 
f o r x i n r a n g e ( 0 , d u r a t i o n f r ) : 



f o u t v o i c e . w r i t e ( s t r ( v o i c e . i n d e x ( c u r s p l i t [ 0 ] ) ) + ' ') 

e l i f c u r s p l i t [0] i n a d d i t i o n a l : 
i f phoneme i n c u r s p l i t : 

a d d i t i o n a l found = 1 
f o r x i n r a n g e ( 0 , d u r a t i o n f r ) : 

f o u t a d d i t i o n a l . w r i t e ( s t r ( a d d i t i o n a l . i n d e x ( c u r s p l i t [ 0 ] ) ) + ' ') 

else: 
print('Unknown name o f c h a r a c t e r i s t i c ! ' ) 

i f p l a c e found == 0: 
f o r t i n range (0, d u r a t i o n f r ) : 

f o u t p l a c e . w r i t e ( s t r ( p l a c e . i n d e x ( ' n o n e ' ) ) + ' ') 

i f manner found == 0: 
f o r t i n r a n g e ( 0 , d u r a t i o n f r ) : 

f o u t m a n n e r . w r i t e ( s t r ( m a n n e r . i n d e x ( ' n o n e ' ) ) + ' ') 

i f vowel cons found == 0: 
f o r t i n r a n g e ( 0 , d u r a t i o n f r ) : 

f o u t vowel c o n s . w r i t e ( s t r ( v o w e l c o n s . i n d e x ( ' n o n e ' ) ) 

i f v o i c e found == 0: 
p r i n t ( ' N o v o i c e i n f o r m a t i o n f o r phoneme ' + phoneme + 

i f a d d i t i o n a l found == 0: 
f o r t i n r a n g e ( 0 , d u r a t i o n f r ) : 

f o u t a d d i t i o n a l . w r i t e ( s t r ( a d d i t i o n a l . i n d e x ( ' n o n e ' ) ) 

q u e s t . c l o s e ( ) 

12.2.4 Extracting Phonemes and Tones 
def r e a d d i e t ( d i e t f i l e ) : 

n i i M 

Reads l i s t o f phonemes from d i e t f i l e 
n II M 

f = o p e n ( d i e t f i l e , 'r') 
phonemes = [] 
f o r l i n e i n f: 

s p l i t s t r i n g = l i s t ( l i n e . s p l i t ( ) ) 
p h o n e m e s . a p p e n d ( s p l i t s t r i n g [0]) 

return phonemes 

f = o p e n ( ' d i c t s / m l f sub wo u n k . m l f , 'r') 
f o u t p = open('phn m a t r i x s i l f i x e d . t x t ' , 'w') 
f o u t t = o p e n ( ' P r e p a r e d a t a s c r i p t s / t o n e m a t r i x s u b . t x t ' , 'w') 
f o u t 1 = o p e n ( ' P r e p a r e d a t a s c r i p t s / f i l e l a b e l s s u b . t x t ' , 'w') 

f l a g = 0 
i s f i r s t s y l l a b l e = 1 
sum frames s y l = 0 
tone = ' 0 , _ 
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phonemes = r e a d diet('monophones w i t h o u t tones c l e a n e d . t x t ' ) 

f o r l i n e i n f: # P r o c e s s i n g m l f f i l e l i n e by l i n e 

l i n e l i s t = l i s t ( l i n e ) 

i f f l a g == 0: # B e g i n n i n g o f new f i l e 

i f l i n e l i s t [ 0 ] == # P r o c e s s i n g f i l e header 

f l a g = 1 

f o u t 1 . w r i t e ( ' ' . j o i n ( l i n e l i s t [ 3 : l i n e l i s t . i n d e x ( ' . ' ) ] ) + 
'\n') # W r i t e c u r r e n t f i l e name t o t h e o u t p u t 

else: # C o n t i n u e p r o c e s s i n g f i l e 

i f l i n e _ l i s t [ 0 ] == '.': # End o f f i l e 

# W r i t e i n f o about t h e l a s t s y l l a b l e o f t h e p r e v i o u s f i l e 
f o r x i n r a n g e ( 0 , sum frames s y l ) : 

f o u t t . w r i t e ( s t r ( t o n e ) + ' ') 

tone = 1 0 1 

sum frames s y l = 0 
f l a g = 0 
i s f i r s t s y l l a b l e = 1 

f o u t p . w r i t e ( 1 \ n ' ) 
f o u t ~ t . w r i t e ( ' \ n ' ) 

else: # P r o c e s s i n g t r a n s c r i p t i o n i t s e l f 
s p l i t s t r i n g = l i s t ( l i n e . s p l i t ( ) ) 

i f l e n ( s p l i t s t r i n g ) > 6: # S y l l a b l e b e g i n n i n g 
# W r i t e t o f i l e s i n f o about t h e p r e v i o u s s y l l a b l e 
f o r x i n r a n g e ( 0 , sum frames s y l ) : 

f o u t t . w r i t e ( s t r ( t o n e ) + ' ') 
tone = '0' 
sum frames s y l = 0 

i f l e n ( s t r ( s p l i t s t r i n g [ 2 ] ) ) > 2 and s t r ( s p l i t s t r i n g [ 2 ] ) [-2] 
== '_': # Has tone 

tone = s t r ( s p l i t s t r i n g [ 2 ] ) [ - 1 ] 
phoneme = s t r ( s p l i t s t r i n g [2]) [0:-2] 

else: # No tone 
phoneme = s t r ( s p l i t s t r i n g [ 2 ] ) 

i f phoneme == ' s i l s p ' : t s i l e n c e ! F i n i s h t h e s y l l a b l e 
f o r x i n r a n g e ( 0 , sum frames s y l ) : 

f o u t t . w r i t e ( s t r ( t o n e ) + ' ') 
tone = '0' 
sum frames s y l = 0 

d u r a t i o n f r = ( i n t ( s p l i t s t r i n g [1]) -
i n t ( s p l i t _ s t r i n g [ 0 ] ) ) / / 1 0 0 0 0 0 # Phoneme d u r a t i o n 

sum frames s y l = sum frames s y l + d u r a t i o n f r # Add t o c u r r e n t 
s y l l a b l e d u r a t i o n 

# W r i t e phoneme i n d i c e s 
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i n d e x = phonemes.index(phoneme 
f o r x i n r a n g e ( 0 , d u r a t i o n _ f r ) 

f o u t p . w r i t e ( s t r ( i n d e x ) + 



12.3 Matlab Appendix 
f i d l = 
fopen('/mnt/matylda6/xegoro00/nn exp/trunk/examples/BABEL Vietnamese b a s i c 
/ P r e p a r e d a t a s c r i p t s / p h o n e m e s w i t h tones no unk m a t r i x . t x t ' ) ; 
f i d 2 = 
fopen('/mnt/matylda6/xegoro00/nn exp/trunk/examples/BABEL Vietnamese b a s i c 
/ P r e p a r e d a t a s c r i p t s / t o n e m a t r i x s u b . t x t ' ) ; 
f i d 3 = 
fopen('/mnt/matylda6/xegoro00/nn exp/trunk/examples/BABEL Vietnamese b a s i c 
/ P r e p a r e d a t a s c r i p t s / p l a c e s u b . t x t ' ) ; 
f i d 4 = 
fopen('/mnt/matylda6/xegoro00/nn exp/trunk/examples/BABEL Vietnamese b a s i c 
/ P r e p a r e d a t a s c r i p t s / m a n n e r s u b . t x t ' ) ; 
f i d 5 = 
fopen('/mnt/matylda6/xegoro00/nn exp/trunk/examples/BABEL Vietnamese b a s i c 
/ P r e p a r e d a t a s c r i p t s / v o w e l cons s u b . t x t ' ) ; 
f i d 6 = 
fopen('/mnt/matylda6/xegoro00/nn exp/trunk/examples/BABEL Vietnamese b a s i c 
/ P r e p a r e d a t a s c r i p t s / v o i c e s u b . t x t ' ) ; 
f i d 7 = 
fopen('/mnt/matylda6/xegoro00/nn exp/trunk/examples/BABEL Vietnamese b a s i c 
/ P r e p a r e d a t a s c r i p t s / a d d i t i o n a l s u b . t x t ' ) ; 
f i d 8 = 
fopen('/mnt/matylda6/xegoro00/nn exp/trunk/examples/BABEL Vietnamese b a s i c 
/ P r e p a r e d a t a s c r i p t s / f i l e l a b e l s s u b . t x t ' ) ; 

l i n e phon = f g e t s ( f i d l ) ; 
l i n e tone = f g e t s ( f i d 2 ) ; 
l i n e p l a c e = f g e t s ( f i d 3 ) ; 
l i n e manner = f g e t s ( f i d 4 ) ; 
l i n e vowel cons = f g e t s ( f i d 5 ) ; 
l i n e v o i c e = f g e t s ( f i d 6 ) ; 
l i n e a d d i t i o n a l = f g e t s ( f i d 7 ) ; 

while i s c h a r ( l i n e phon) 
phon a r r a y = s t r 2 n u m ( l i n e phon); 
[m,n] = s i z e ( p h o n a r r a y ) ; % m = 1, n = number o f frames 
phon m a t r i x = z e r o s ( n , 9 1 ) ; % <- Set number o f phonemes! 
f o r i = 1:n 

phon m a t r i x ( i , phon a r r a y ( i ) + l ) = 1; 
end 

tone a r r a y = s t r 2 n u m ( l i n e t o n e ) ; 
tone m a t r i x = z e r o s ( n , 7 ) ; % <- Set number o f se c o n d a r y 

c h a r a c t e r i s t i c s (tone) 
f o r i = 1:n 

tone m a t r i x ( i , tone a r r a y ( i ) + l ) = 1; 
end 

p l a c e a r r a y = s t r 2 n u m ( l i n e p l a c e ) ; 
p l a c e m a t r i x = z e r o s ( n , 1 1 ) ; % <- Set number o f se c o n d a r y 

c h a r a c t e r i s t i c s ( p l a c e ) 
f o r i = 1:n 

p l a c e m a t r i x ( i , p l a c e a r r a y ( i ) + l ) = 1; 
end 

manner a r r a y = s t r 2 n u m ( l i n e manner); 
manner m a t r i x = z e r o s ( n , 9 ) ; % <- Set number o f se c o n d a r y 

c h a r a c t e r i s t i c s (manner) 
f o r i = 1:n 
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manner m a t r i x ( i , manner a r r a y ( i ) + l ) = 1; 
end 

vowel cons a r r a y = s t r 2 n u m ( l i n e vowel c o n s ) ; 
vowel cons m a t r i x = z e r o s ( n , 3); % <- Set number o f s e c o n d a r y 

c h a r a c t e r i s t i c s (vowel/cons) 
f o r i = 1:n 

vowel cons m a t r i x ( i , vowel cons a r r a y ( i ) + l ) = 1; 
end 

v o i c e a r r a y = s t r 2 n u m ( l i n e v o i c e ) ; 
v o i c e m a t r i x = z e r o s ( n , 2 ) ; % <- Set number o f s e c o n d a r y 

c h a r a c t e r i s t i c s ( v o i c e ) 
f o r i = 1:n 

v o i c e m a t r i x ( i , v o i c e a r r a y ( i ) + l ) = 1; 
end 

a d d i t i o n a l a r r a y = s t r 2 n u m ( l i n e a d d i t i o n a l ) ; 
a d d i t i o n a l m a t r i x = z e r o s ( n , 6 ) ; % <- Set number o f s e c o n d a r y 

c h a r a c t e r i s t i c s ( a d d i t i o n a l ) 
f o r i = 1:n 

a d d i t i o n a l m a t r i x ( i , a d d i t i o n a l a r r a y ( i ) + l ) = 1; 
end 

r e s m a t r i x = [phon m a t r i x tone m a t r i x p l a c e m a t r i x manner m a t r i x 
vowel cons m a t r i x v o i c e m a t r i x a d d i t i o n a l m a t r i x ] ; 

f i l e _ l a b e l = f g e t s ( f i d 8 ) ; 
f i l e name = 

s t r c a t ( ' / m n t / m a t y l d a 6 / x e g o r o 0 0 / n n exp/trunk/examples/BABEL Vietnamese b a s i 
c / g e n e r a t e d t a r g e t s a r t i c u l a t o r y sub/', f i l e l a b e l , ' . t g t ' ) ; 

w r i t e h t k ( f i l e name,res m a t r i x , 0 . 0 1 , 1 2 ) ; 

l i n e phon = f g e t s ( f i d l ) ; 
l i n e tone = f g e t s ( f i d 2 ) ; 
l i n e p l a c e = f g e t s ( f i d 3 ) ; 
l i n e manner = f g e t s ( f i d 4 ) ; 
l i n e vowel cons = f g e t s ( f i d 5 ) ; 
l i n e v o i c e = f g e t s ( f i d 6 ) ; 
l i n e a d d i t i o n a l = f g e t s ( f i d 7 ) ; 

end 

f c l o s e ( f i d l ) ; 
f c l o s e ( f i d 2 ) ; 
f c l o s e ( f i d 3 ) ; 
f c l o s e ( f i d 4 ) ; 
f c l o s e ( f i d 5 ) ; 
f c l o s e ( f i d 6 ) ; 
f c l o s e ( f i d 7 ) ; 
f c l o s e ( f i d 8 ) ; 
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4 Contents of the DVD 
1. P D F of the thesis 
2. D O C of the thesis 
3. Modif ied TNet too l 
4. Python scripts folder 
5. MatLab scripts folder 


