
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

NOVÝ ÚSVIT POJMENOVÁVÁNÍ, ADRESOVÁNÍ A
SMĚROVÁNÍ NA INTERNETU
A NEW DAWN OF NAMING, ADDRESSING AND ROUTING ON THE INTERNET

DIZERTAČNÍ PRÁCE
DISSERTATION THESIS

AUTOR PRÁCE Ing. Vladimír VESELÝ
AUTHOR

VEDOUCÍ PRÁCE Prof. Ing. Miroslav ŠVÉDA, CSc.
SUPERVISOR

BRNO 2013 – 2015

i

Abstrakt

Internet roku 2015 se potýká s problémy, které jsou důsledky špatného designu pojmenovávání a

adresování v TCP/IP a jež mají přeneseny vliv i na škálovatelnost směrování. Problémy jako růst páteřních

směrovacích tabulek, neefektivní multihoming sítí či mobilita zařízení a mnohé další zadávají k otázce,

jestli není třeba architekturu Internetu pozměnit. V teoretické části je kvantifikován dopad problémů,

možná řešení a zejména je formálně definována teorie kompilujicí poznatky významných publikací

zabývajících se problematikou pojmenování, adresování a směrování v počítačových sítí. Tato práce se

zabývá dvěma konkrétními technologiemi, jež mají ambicí Internet měnit - Locator/Id Separation Protocol

a Recursive InterNetwork Architecture. Výstupem práce jsou vylepšení funkcionality obou výše

zmíněných technologií. Za účelem praktického ověření dopadů našeho výzkumu jsou vyvinutý a popsány

nové simulační modely pro OMNeT++, které jsou věrné úrovni detailu popisu ze specifikací.

Klíčová slova

Internetová architektura, pojmenovávání a adresování, směrování, oddělení lokátorů a identifikátorů,

LISP, rekurzivní mezisíťová architektura, RINA, OMNeT++

Abstract

Internet of the year 2015 struggles with problems that are just implications of flawed naming and

addressing the concept of TCP/IP, which have an impact on overall routing scalability. Problems such

as default-free zone routing table growth, cumbersome multihoming or mobility motivate question

whether the Internet deserves major architecture redesign. In the theoretical part, the impact of problems

above is evaluated, solutions are discussed and unifying theory compiled and described using formal

methods taking into account revered papers about naming, addressing and routing. This work provides

in-depth Investigation of two technologies - Locator/Id Separation Protocol a Recursive InterNetwork

Architecture. Research contribution is an operational improvement of above-mentioned technologies.

New OMNeT++, full-fledged simulation modules compliant with behavior in the specification are used

to as verification tool.

Keywords

Internet architecture, naming and addressing, routing, locator/id split, LISP, Recursive InterNetwork

Architecture, RINA, OMNeT++

ii

Poděkování / Acknowledgement

It took seven years of my life to finish this thesis during which I probably became one of the oldest still

studying Ph.D. students in the Czech Republic. There is a legion of people without whom I would never

succeed. I would like to thank them all! If you are a reviewer, defense committee member or knowledge

seeker, then you can skip this part, otherwise be understanding and enjoy. For a moment, I will switch

back to my native language because largest group of astute readers of this section would not appreciate

English acknowledgment.

Posledních sedm let bylo nesmírně krásným obdobím mého života, ve kterém jsem dostal šanci

poznat, jaké to je být akademikem, jaké to je být vědcem. Podařilo se mi za tu dobu nahlédnout a

prozkoumat něco málo v oboru počítačových sítí (oboru, který majoritně ovlivňuje Internet, jeden

z nejúžasnějších lidských vynálezů).

Má první a největší slova díků patří mé rodině. Rád bych poděkoval svým rodičům, mamince

Jeleně a tatínkovi Vladimírovi, za svůj život, protože bez jejich lásky a podpory bych se nikdy nestal

tím, kým jsem, a nedostal tam, kde jsem. Chtěl bych poděkovat i svému bráchovi Ondrovi za báječné

sourozenectví; bez jeho vzorného příkladu a hravosti bych nikdy nenabyl všech klíčových vlastností,

které jsou nyní esenciálními v mém životě. Poděkování patří i mým prarodičům: babičce Evě a

dědečkovi Macíkovi za pečlivost, cílevědomost a za to, že mi pomáhají ukazovat, co je v životě opravdu

důležité; babičce Květě a dědečkovi Kulíškovi za vrozenou zvědavost a pochopení síly lidské dobroty.

Okruh rodinný uzavírá a bezezbytku doplňuje Marie – vyšší bytost, které jsem zavdal své srdce. Marie,

která je mi stabilním vorem na rozbouřeném moři života a která je mou vůbec nejvíc nelepčejší čupr

kamarádkou. S radostnou novinou o dopsání této práce se podělím i s mou širší rodinou – tetě Evě +

strýci Laďovi, tetě Daně + strýci Borkovi, sestřenicím Danušce + Jitušce, bratrancům Honzovi +

Adamovi, švagrové Veronice, synovcům Radimkovi + Honzíkovi, adoptivním doktorským tetičkám

Vlastě, Blance, Jarce a Lidce a adoptivnímu strejdovi Mirkovi – nepřestávám být vděčný, že všechny ty

krásné duše které byly, jsou a budou navždy součástí právě mého života.

Nyní budou následovat všichni ti, kteří se fakticky zasloužili za můj profesní rozvoj. Bez

možnosti konfrontovat s nimi svou (ne)znalost, by konkrétně tato disertační práce skutečně nikdy

nevznikla. V prvé řadě nesmírné díky Mirku Švédovi, tomu nejhodnějšímu Panu Profesorovi, který je

schopen vás chránit a jak lev se za vás bít i ve chvílích, kdy si to možná ani nezasloužíte. Dále bych

chtěl vyjádřit nesmírný vděk Ondrovi Ryšavému a Petrovi Matouškovi, školitelům-specialistům, kteří

mě svými radami a vedením dokázali vždy postrčit správným směrem v mé akademicko-vědecké

kariéře. Zejména pak obzvláštní díky dr./doc. Ryšavému za pomoc a revizi s mnohými pasážemi. Nebýt

Matěje Grégra (± Karolíny Hlobilové) a Svatopluka Šperky, tak bych si nikdy neudržel po ty roky tak

dobrou, nutno však podotknout že ne pracovní morálku. Díky sedánkům s nimi nad pivem a kávou jsem

byl schopen poznat míru své neznalosti, protože pokud nějaký IT problém nejste schopni vysvětlit ani

svým přátelům z oboru, tak tomu prostě nerozumíte. Liboru Polčákovi za rady a záviděníhodné pracovní

iii

prostředí v kanceláři. RINASim by zůstal jen výplodem fantazie, kdyby nebylo mých spolehlivých a

pracovitých kolegů Marcela Marka, Tomáše Hykla a Kamila Jeřábka. ANSAINET jako projekt žije a

pokračuje jen díky nasazení šikovných diplomantů, jako byli Vladimír Kojecký, Zdeněk Kraus, Marek

Černý, Veronika Rybová, Matej Hrnčiřík, Jakub Smejkal, Jakub Mrázek, Tomáš Procházka, Jiří Trhlík,

Adam Malik, Petr Vítek, Jan Bloudíček a Vít Rek. Nikdy bych se sítěmi nezabýval tak horlivě a s

takovým zápalem, kdybych hned na začátku nepoznal opravdové mistry v tomto oboru, Michala Rapca

CCIE R&S #18608, Igora Foulda CCIE Sec #20135 a Petera Palúcha CCIE R&S #23527, kterým

vděčím za svůj osobní rozvoj. Na závěr bych pár slov díků věnoval i paní Sylvě Sadovské za ochotu a

báječné nasazení v poslední fázi realizace dizertace.

K nefyzickým adorantům pak patří čtyři entity: 1) výzkumná skupina NES@FIT, která je

schopna lákat skvělé vědecké naděje, s nimiž je radost spolupracovat; 2) Ústav informačních systémů

(vedené doc. Dušanem Kolářem a organizované péčí paní Michaely Bílkové) za vstřícnost a poskytování

záviděníhodného zázemí; 3) alma mater Fakulta informačních technologií Vysokého učení technického

v Brně, ze všech institucí vysokých škol, na kterých jsem měl tu možnost studovat, je ona tou nejlepší a

nejpřednější; a 4) Městský úřad v Šumperku za nehorázně dlouhé fronty, kde čekání v nich dalo

vzniknout těm nejkritičtějším pasážím této práce.

Nyní bude následovat skupina živočichů hodně mi blízkých leč bez přímého dopadu na můj

profesní život. V šiku na první řadě stojí mí tři nejbližší přátelé Karel Záruba, Jan Beránek a Rostislav

Pumprla; i přes roky, co se známe, mě neustále překvapuje, že jsme se zatím nepovraždili. S těmito

dvěma a ještě s Janem Bělínem (+Janou Hlávkovou), Martinem Zárubou a Martinem Ptaškem (+Marií

Kratochvílovou) mám tu nesmírnou čest čas od času bavit publikum na prknech (která znamenají

ochotnický svět) porcí kvalitní zábavy odpovídající jménu kumpanie Děs/Běs. A díky Martě Fišerové a

Marcinu Cwiklińskému mám z bezprostřední blízkosti možnost pozorovat chování a zvyklosti druhu

Homo sapiens artis v jeho přirozeném prostředí prostor Galerie Klubovna. Za přátelství překonávající

vzdálenosti a léta pak:

 Janu (který chápe, jak je důležité mít nízké THAC0) a Báře (za nevídanou znalost

v problematice parfémů) Sporkovým, Karlu (mému kktkvi) a Kláře Hoškovým, Evě Strnadové

(za to, že je pořád stejná) + Ondru Vávrovi, Martinu (že se nás od Majálesu nepustil) a Radce

Kalbáčovým, Vojtu Beilovi (opravdovému gentlemanovi) + Ivě Hlavěnkové, Luďku

(za poznatky o letadlech) a Jarce (za poznatky o mateřství) Krmelovým, Kláře Krkonoškové

(za cestovní dobrodružství), Jorhu Akritidisovi (za to, že se dá vždycky vstát, když spadnete),

Ireně Valertové (že je hlasitější než já), Evě Suchánkové, Magdě Suché, Markétě Suchánkové

(za nopakovatelné party v domě jejích rodičů), Martině Klusákové;

 jesenickým Svatopluku Sejkorovi a Adamu Perutkovi a Patriku Pavlíčkovi (za stovky partií

desítek her, co jsme spolu hráli);

iv

 brněnským Agnieszce Landowské (za mateřství Alojze Bobka), Karlu a Ivaně Kotrabovým

(za privát), Jaromíru a Evě Výtvarovým (za pískoviště), Stanislavu Židkovi (za první projekt do

IOS a pomoc při laboratorních cvičeních z fyziky), Lence Jalůvkové a Jakubu Křoustkovi, Petře

Hřibové (za překonání strachu k hadům), Tereze Kurovské (za pochopení síly slušnosti),

Kateřině Novotné (za pohledy), Edwardu Robe’mu (for American Madness and American

Hunger), Janě Šafářové (za odhodlání stát se, kým chcete), Elišce Kňobortové (za dopisy);

 měl jsem to štěstí a sílu zdolat již dvakráte (a pevně doufám, že ne naposledy) Svatojakubskou

pouť do Santiaga de Compostely, kde na každé z cest se mi do srdce navždy otiskly bytosti jako

Martina “Levandule” Havlíková (za dýňová semínka a pochopení, že Camino je život),

SangGyu “Sol” Choi (za poznání zázraku splněného snu), Daniel Perloff (one day I will reach

the beginning of Appalachian Trail), Grigory Petrenko, Kyril Pevnev a Denis (Приветствую

моих сибирских друзьями. Это мой первый и наименее важная книга упомянуть тебе,

Григорий! Я должен тебе пиво для долгой дружбы и приключений еще впереди).

Také bych rád poděkoval několika výjimečným zástupcům Canis lupus f. familiaris – mému

psovi Atosovi, bearded-kólii jejíž smrt byla počáteční událostí mého PhD studia; Falkovi I., II. a III. za

náklonnost k smečce Veselých; feně Maye, rhodesian ridgeback psu války +5; psovi Šotkovi, psychicky

narušené pouliční směsce; feně Daisy, bez níž se neobešla žádná správná party – bytostem schopným

rozdávat lásku jen za žrádlo a pohlazení.

Ve velké většině prací, kterou jsem měl tu radost vést, se v poděkování na doporučení vedoucího

nachází (ne)povinně i recept na dobré jídlo. Bylo by ode mě tedy nanejvýš pokrytecké do této pozvolna

vznikající kuchařky nepřispět. Dlouho jsem zvažoval, jaká kulinářská šmakuláda by to měla být, než

jsem se rozhodl pro pokrm nejen chutný, ale i zdraví prospěšný. Zde tedy je algoritmus k přípravě chleba

s česnekem: ① vezměte krajíc chleba; ② namažte ho vrstvou sádla (rodina Veselých) nebo másla

(rodina Přikrylových); ③ posypejte ho dvěma stroužky česneku rozkrájenými na tenká „kolečka“;

④ osolte (gurmáni zvolí sůl bylinkovou); a nakonec ⑤ konzumujte bez zaváhání a bez uroněných slz.

Tato potrava je vhodná jako rychlá svačinka před důležitou schůzkou, či jako lék proti nastuzení, nebo

jako zaručená obrana při boji s upíry.

Moreover, now back to English to praise the last but not least group of people. My biggest and

sincerest appreciation goes to John Day, who opened my eyes, showed me the history of computer

networking and introduced me to other RINA fans. I sincerely treasure all the Socrates-like discussions

with John that showed me the depth of my (computer networking) ignorance. I owe big acknowledgment

to all PRISTINE consortium members for their trust and for letting Faculty of Information Technology

– Brno University of Technology (FIT-BUT) to participate in something meaningful. Namely, I would

like to thank Eduard Grasa and Jordi Perelló for being such patient and extraordinary reviewers.

v

Tato stránka je dedikováno autogramům a dalším podpisům…

© Vladimír VESELÝ, 2015

Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě informačních

technologií. Práce je chráněna autorským zákonem a její užití bez udělení oprávnění autorem je

nezákonné, s výjimkou zákonem definovaných případů.

vi

Contents

1 Introduction ... 1

2 Networking Fundamentals ... 3

2.1 Basic Terminology ... 4

2.2 Present Problems of Internet ... 10

2.2.1 Routing Scalability .. 11

2.2.2 Decoupling Identification and Location .. 14

2.2.3 Multihoming .. 15

2.2.4 Mobility ... 17

2.2.5 Traffic Engineering .. 18

2.2.6 Renumbering ... 18

2.3 Influencing Factors .. 20

2.3.1 Burden on Routing Table Size .. 20

2.3.2 Burden on Routing Table Processing .. 23

2.4 Chapter Summary .. 25

3 Naming and Addressing Concepts ... 26

3.1 Basic Terminology ... 27

3.2 Analogies ... 31

3.2.1 Naming and Addressing in Telephony .. 31

3.2.2 Naming and Addressing in Postal Service .. 32

3.2.3 Naming and Addressing in Operating Systems ... 32

3.3 Theory ... 34

3.4 Praxis ... 37

3.4.1 Internet Protocol Version 6 .. 38

3.4.2 Domain Name System ... 40

3.4.3 Uniform Resource Identifier... 41

3.5 Possible Solution .. 42

3.5.1 Ideal Solution Properties .. 42

vii

3.5.2 Existing Proposals.. 43

3.5.3 Proposals Comparison.. 53

3.6 Chapter Summary .. 57

4 Locator/ID Separation Protocol ... 58

4.1 Overview ... 59

4.1.1 Tunneling .. 61

4.1.2 Mapping System .. 61

4.1.3 Coexistence between LISP and Non-LISP .. 66

4.2 LISP Demonstrations ... 68

4.2.1 Unicast Communication ... 68

4.2.2 Registration ... 69

4.2.3 Mapping Request ... 70

4.2.4 Mapping Reply .. 71

4.2.5 Proxy Communication ... 72

4.3 State-of-the-Art .. 74

4.3.1 Implementations .. 74

4.3.2 Deployment ... 75

4.3.3 Simulators ... 75

4.4 Contribution ... 76

4.4.1 Virtual Router Redundancy Protocol .. 76

4.4.2 Map-Cache Synchronization .. 78

4.4.3 Merged RLOC Probing .. 83

4.4.4 Design and Implementation .. 84

4.4.5 Results ... 89

4.5 Chapter Summary .. 97

5 Recursive Internet Architecture ... 98

5.1 Overview ... 99

5.1.1 Nature of Applications and Application Protocols .. 99

5.1.2 Core Terms .. 100

viii

5.1.3 Connection-oriented vs. Connectionless ... 101

5.1.4 Delta-t Synchronization ... 102

5.1.5 Separation of Mechanism and Policy .. 102

5.1.6 Naming and Addressing ... 103

5.2 RINA Components ... 105

5.2.1 Nodes .. 105

5.2.2 Distributed Application Process Components ... 106

5.2.3 IPC Process Components ... 107

5.3 State-of-the-Art .. 120

5.3.1 Projects .. 120

5.3.2 Implementations .. 120

5.3.3 Simulators ... 120

5.4 Contribution ... 121

5.4.1 Installation ... 121

5.4.2 Design ... 121

5.4.3 RINASim Demonstration ... 129

5.5 Chapter Summary .. 141

6 Conclusion .. 142

6.1 Summary about LISP ... 143

6.2 Summary about RINA .. 144

6.3 Future Work ... 145

6.4 Final Thoughts ... 145

7 Bibliography ... 146

8 Addendum ... 158

8.1 Formats of LISP Control Messages .. 158

8.1.1 LISP Map-Request ... 158

8.1.2 LISP Map-Response .. 159

8.1.3 LISP Map-Register and LISP Map-Notify .. 160

8.2 ANSARouter Module ... 161

ix

8.3 Additional Graphs .. 162

8.3.1 Map-Cache Sync Scenario with Single xTR1 Outage ... 162

8.3.2 Map-Cache Sync Scenario with Three xTR1 Outages ... 162

8.3.3 RLOC Probe Scenario with Eighty EIDs .. 163

8.4 John Day about RINA .. 164

8.5 RINASim Policies .. 165

8.6 RINASim Demonstration ... 167

8.6.1 omnetpp.ini .. 167

8.6.2 config.xml ... 168

8.6.3 EnrollmentStateTable Contents Progress .. 169

8.6.4 NFlowTable Contents Progress .. 170

9 Lists .. 171

9.1 Tables .. 171

9.2 Figures ... 172

9.3 Index .. 175

1

1 Introduction

Nowadays Internet routing, naming and addressing concepts (in the sense of common Internet-based

computer networking audience) are facing a variety of challenges that were not so apparent in early days

of the TCP/IP stack. Among those challenges, there are multihoming, mobility, traffic engineering,

renumbering, node (a.k.a. device1) localization and identification and routing scalability connected with

the growth of the global routing tables.

IRTF’s RRG2 was, and IETF’s IAB3 is for a long time in charge of observing trends in routing,

collecting statistics and suggesting architectural recommendations influencing tendencies in future

networking. In this thesis, we try to describe and evaluate the impact of these trends. Moreover, we

gather relevant proposals and compare them to each other. Among documents and proposals discussed,

there are also Locator/ID Separation Protocol (LISP) and Recursive Internet Architecture (RINA) that

receive both positive and also negative reviews. We believe that both of them are addressing the same

fundamental issues (which serve as the motivation behind our research), but they employ a very different

approaches. While the first one is trying to repair the most apparent problems using existing architecture.

The objective of the second one is to return the Internet to the original architecture model and generalize

from there.

The LISP presents a new routing architecture based on the idea of splitting the device identity

and the device location into two separate namespaces. Managing identity and location separately provide

necessary scalability and enables device mobility. While the identities of devices remain the same, their

location can change. Contrary to other solutions to mobility, the LISP imposes no overhead because of

identity and location separation. The mobile device has the fixed endpoint identifier and using LISP's

dynamic mapping mechanism its route locator can be found. Since this locator can be associated with

the network graph, the traditional routing is sufficient to reach the mobile device in its actual location.

The key LISP capability is performing efficient mapping of endpoint identifier to locator(s). The

presented thesis performs a detailed analysis of mapping mechanisms and proposes operational

improvements in Chapter 4.

RINA is not just a contribution to the current architecture but a continuation of the original

concept of internetworking. RINA is based on the simple nearly 50 year old observation that every data

1 Node or Device: With reference of this thesis it is any equipment connected to Internet capable of communication.

E.g. routers, switches, computers, etc.
2 Routing Research Group (RRG). For more, please visit website of this former ad hoc group

https://trac.tools.ietf.org/group/irtf/trac/wiki/RoutingResearchGroup.
3 Internet Architecture Board (IAB). For more, please visit https://www.iab.org/.

֍ –“Yesterday is gone.Tomorrow has not yet come.We have only today.Let us begin.” Mother Teresa

֍ What are goals and motivations of this thesis?

https://trac.tools.ietf.org/group/irtf/trac/wiki/RoutingResearchGroup
https://www.iab.org/

2

transfer is interprocess communication between two application processes and as such it requires only

a couple of primitive operations. Contrary to LISP, the RINA is less mature. Thus, more research is

needed to address the open issues and to demonstrate that RINA can provide a solution to the current

obstacles of the Internet. This thesis deals with RINA in Chapter 5. First, the detailed explanation of

RINA concepts is presented. The main contribution lies in the formalization of these concepts and

definition of simulation models that provide an environment for analysis of various scenarios. By using

simulation, properties of the RINA can be evaluated in different scenarios.

The encompassing (and challenging) dissertation goal is to define general naming and

addressing theory. Moreover, we want to investigate properties of this theory regarding the impact on

the routing. Because nothing impacts routing more (in either positive or negative way) than how names

and addresses are deployed to network objects. The underlying goal of this dissertation is to provide a

detailed technical overview and analysis of two technologies (LISP and RINA) aimed at improving the

current problems of the Internet. The contribution lies in enhancing LISP cache management algorithm

and related data transfer to improve its performance. Moreover, we verified LISP contribution

functionality with own accurate simulation models. For RINA, fundamental concepts were formalized

using finite-state machine diagrams and a comprehensive set of simulation models was developed.

Besides these two main achievements, this thesis provides a broad review of the building blocks of

internetworking with the focus on naming and addressing concepts. The aim of the thesis is to shed more

lights on the fundamental problems of the current Internet architecture and to evaluate two possible

solutions.

The thesis is divided into the following chapters. Chapter 2 provides an overview of thesis topics

and describes the common theory behind our research. It also introduces current weaknesses of the

Internet and describes factors that influence them. Chapter 3 compares proposed or existing solutions.

Chapter 4 presents the LISP protocol (its implementation in simulator environment) and covers proposed

control plane improvements together with the impact of this proposals on the overall operation. Chapter

5 delineates RINA and its approach towards the system of recursive encapsulation of one general layer,

and then it focuses on its globally first simulator implementation and measured security aspects. Chapter

6 draws conclusions from the research outcomes.

3

2 Networking Fundamentals

If we want to be thorough when describing theoretical fundaments for this thesis, we need to start with

the high-level overview of networking and work down to low-level parts. We will start with the

fundamental question. Is there an Internet Architecture? In a search for the answer, we must first

establish the common dictionary how to understand the word architecture. When network administrators

and computer network researchers speak about architecture, they often use this term to create “nobler”

context to things like network technology or network protocol. Let us correct this meaning now.

In this document, we borrow definition used by John Day. Architecture is a set of rules and

constraints that characterize a particular style of construction. The architecture is a style of construction

rather than the construction itself. If we speak about some architecture, we refer to a set of general rules

and high-level concepts constituting the architecture. To illustrate this fact, it is just like a making

distinction between gothic architecture and a house built in a style of gothic architecture. The great

example of proper usage is in ISO/IEC 7498-1 [1] describing the OSI Reference Model (OSI-RM) –

Section 5 describes the architecture (“construction style”); Sections 6 and 7 describe a concrete

implementation of this architecture using seven layers (“examples of constructions following style”).

The Internet as technology is a continuing sequence of evolutional steps. However, since its

beginning it is all about a few fundamental principles that had not changed. Internet architecture is about

best-effort communication with global connectivity across the simple but resilient network where

intelligence is on an end-to-end basis rather than hidden in the network as RFC 1958 [2] stated.

The goal of this chapter is to layout computer networking foundations and associate them with

more general communication principles. Moreover, we would like to point out present problems of the

Internet and discuss their impact on routing table size and control plane load. Now let us use the formal

approach to describe foundations of a computer network (in Subchapter 2.1) communication followed

by an observation about nowadays problems of the current Internet architecture and their impact

(Subchapters 2.2, 2.3).

֍ –“You realize that our mistrust of the future makes it hard to give up the past.” Chuck Palahniuk

֍ From which parts does Internet architecture consists of?

֍ What problems are tormenting the Internet now?

֍ How these problems affect current TCP/IP routing concept?

4

2.1 Basic Terminology

This subchapter seems to be filled with an exhaustive number of terms and their definitions. However,

the aim is to get the reader familiar with all cornerstones of computer systems interactions. Moreover,

the goal is to show an association between other cornerstones and to point out their context in the frame

of the big picture, which is a network architecture. The content of this subchapter is loosely based on

[1] and Chapter 2 of the book [3].

Devices communicate in order to share state and exchange data in the frame of applications in

computer networks. Devices communicate using shared schemes known as protocols.

The protocol is a set of prescriptions and procedures that each device participating in

communication must follow. Devices utilize protocols to exchange finite quanta of information in the

form of protocol data unit (PDU).

Any protocol could be formally defined by a finite-state machine (FSM) or using temporal logic,

implementation of this formalism is called protocol machine (PM). PDUs consist of protocol control

information (PCI) and user-data – PM interprets PCI, the data part is relayed above in the hierarchy.

PMs might be assembled to create layered hierarchy so that the output of one PM is the input of

another PM. In this case, a position of the protocol (or its PM) in the hierarchy is denoted by protocol

(or PM) rank. Let (N)-* be an element * with the rank N then (N+1)-* is an element * one rank above

and (N-1)-* is an element * one rank below.

Subsystem is (compound) (N)-element which interacts directly only with (N+1)-elements and

(N-1)-elements within (N)-layer. The layer is a collection of (N)-subsystems of the same rank N. (N)-

service is a capability of the (N)-layer and the layers beneath. Each layer has a scope – limit (or

boundary) of operation within which layer entities can communicate directly without the help of other

layer elements. Subsystem contains active (N)-entities embodying a set of (N)-services, which might

include more than just (N)-PM. (N)-function is a part of the activity of (N)-entities.

PDUs might be encapsulated one into another to reflect the hierarchy of PMs in control. Service

data unit (SDU) is (N+1)-PDU provided to (N)-PM by (N+1)-PM before PCI is prepended to it.

Therefore, SDU (whole or part) is placed into (N)-PDU’s user-data from the perspective of (N)-PM.

We define following kinds of communication according to coupling of shared state:

 Association = minimal shared state without coupling between communicating nodes;

 Flow = shared state without tightly coupled elements, often represented by protocols using two-

way handshake (without feedback between communicating parties);

 Connection = shared state with tightly coupled elements, often represented by protocols using

three-way handshake (with feedback between communicating parties)

 Binding = fully shared state, often represented by applications with shared memory.

5

Any sender or receiver passes through following phases in order to communicate. Each phase

consists of operations and their inverses, but it does not necessarily imply that PDUs are exchanged:

 The Enrollment Phase – Objects of communication are prepared (devices initialized, resources

allocated) for a network during this phase. Enrollment includes creation, distribution,

maintenance and deletion of information mandatory to make an instance of communication.

Addressing information are stored in appropriate directories (i.e., address pool, routing table)

and policies are selected. Often this phase covers manual configuration of objects. However,

some operations might be automated (e.g., DHCP4, SLAAC5);

 The Establishment Phase – The shared state, necessary for (N)-PMs to communicate, is

established in this phase. According to the degree of coupling, associations/bindings between

(N)-PM and (N±1)-PM are created or initially shared state for flow/communication of (N)-PMs

is synchronized. If Quality of Service (QoS)6 resources were not allocated during enrollment

phase then they are set here (e.g., RSVP7);

 The Data Transfer Phase – First sent user-data initiates this phase during which (N+1)-PM

exchanges SDUs. This phase includes operations necessary to provide the actual transfer of

user-data and functions that support it.

The mechanism is a part of the protocol that is fixed and cannot be changed. On the other hand,

the policy is a part of the protocol that could be deterministically negotiated usually during the

establishment phase (e.g., which CRC8 polynomial to use for data corruption detection). Tables Tab. 1,

Tab. 2 and Tab. 3 sum up basic communication mechanisms, which we categorized into following

groups: a) related to establishment phase; b) related to data transfer; c) related to data transfer control.

Name Description

Authentication Authentication mechanism determines the identity of sender or receiver.

Access Control

Access control mechanism is used to determine whether the requestor is allowed

to use a resource or not after successful authentication. Both mechanisms are

using a variety of different protocols with flexible policies (e.g., IKE9).

Tab. 1: Mechanisms related to enrollment phase

4 Dynamic Host Control Protocol (DHCP). For more, see RFC 2131.
5 IPv6 Stateless Address Autoconfiguration (SLAAC). For more, see RFC 4862.
6 Quality of Service (QoS): QoS is the overall performance of a telephony or computer network quantitatively

measured using such as like error rates, bit rate, throughput, transmission delay, availability, jitter, etc. For more,

see https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-E.800-200809-I!!PDF-E&type=items.
7 Resource Reservation Protocol (RSVP). For more, see RFC 2205.
8 Cyclic Redundancy Check (CRC) is error detecting code used commonly in computer networks. For more, see

http://en.wikipedia.org/wiki/Cyclic_redundancy_check
9 Internet Key Exchange Protocol (IKE). For more, see RFC 7296

https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-E.800-200809-I!!PDF-E&type=items
http://en.wikipedia.org/wiki/Cyclic_redundancy_check

6

Name Description

Addressing

The protocol must have fields how to specify source and destination of PDU in

multi-access network segments (e.g., shared half-duplex Ethernet LANs10). The

address must be long enough to provide unambiguity for all communicating
devices. On point-to-point interconnections, (e.g., HDLC11, PPP12) address fields

in protocols are unnecessary because only two devices are present on the link.

Flow/Connection

Identifier

Any protocol supporting multiple instances of communication between the same

devices must differentiate between flows/connections in order to deliver PDU to
appropriate instance of PM. For this reason, flow/connection-id is included as a

part of PCI (e.g., pair of source and destination port numbers in UDP/TCP).

Flow/connection-id must be unambiguous within the set of the same rank
protocols.

Delimiting

Delimiting is generally packaging of SDU into User-Data fields so it can be re-

constructed. Delimiting operation may be comprised of following (N)-functions:

 One must be able to determine borders of SDUs. Either external or

internal delimiter is used. In the case of external, the special pattern is
utilized to mark the end of one PDU and beginning of another. The

mechanism must guarantee that this special pattern (usually in the form

of unique bit sequence) does not occur anywhere inside PDU (i.e., bit

stuffing13). In the case of internal delimiter, length (count of bits, bytes or
octets) of inner PDU is explicitly given as a PCI field of outer PDU.

 Data-link technologies often pose some limits on acceptable PDU size.

Hence, mechanisms for sender’s fragmentation (splitting single (N)-

SDU to multiple (N)-PDUs) followed by receiver’s reassembling
(putting pieces back together) are needed. For IP, a total number of

fragments and each fragment-id are stored in separate PCI’s fields.

For the sake of efficiency, some protocols might combine several SDUs into
single PDU (e.g., YMSG14) or segment one bigger SDU into multiple smaller

PDUs. Combination/Segmentation happen between (N)-SDUs and (N)-PDUs of

the same rank. Hence, fewer PCI fields are needed when comparing with

fragmentation/reassembling.

Ordering

Some protocols need that PDUs are delivered to the receiver in the same order as

they were generated by the sender. Sequence numbers in PCI fields achieve this

goal. However, use of ordering does not imply that all PDUs are always delivered.

The trick is to recognize properly that some PDUs are missing (some of them
could be retransmitted; some of them could be correctly discarded).

Relaying

Relaying occurs whenever PDU needs to be passed from one PM to another. It

could be provided by (N)-PM and (N+1)-PM whenever device’s (N+1)-PM is the

receiver of a given PDU. Otherwise, PCI’s addresses are used (a process known
as routing) to determine (N-1)-PM to which PDU is subsequently relayed in order

to get PDU closer to the receiver (a process also known as forwarding).

Multiplexing
The multiplexing is a mapping of multiple (N)-PMs communications (either

flows or connections) onto fewer (N-1)-PM communication.

Keepalives

Communication over a longer period without any traffic needs this mechanism to

determine that corresponding device is still operational (e.g., routing protocols,

IPsec15, peer-to-peer applications).

10 Local Area Network (LAN). For more, see https://en.wikipedia.org/wiki/Local_area_network.
11 Hig-Level Dat Link Control (HDLC). For more, see ISO/IEC 13239.
12 Point-to-point Protocol (PPP). For more, see RFC 1661.
13 Bit stuffing: Insertion of non-information bits into data in order to protect some special bit patterns. For more,

see http://en.wikipedia.org/wiki/Bit_stuffing.
14 Yahoo Messanger Protocol (YMSG). For more, see http://en.wikipedia.org/wiki/Yahoo!_Messenger_Protocol
15 IP Security (IPsec) is set of tools and protocols for establishing confidential communication across IP network.

For more, see RFC 6071.

https://en.wikipedia.org/wiki/Local_area_network
http://en.wikipedia.org/wiki/Bit_stuffing
http://en.wikipedia.org/wiki/Yahoo!_Messenger_Protocol

7

Data

Anti-Corruption

PDUs transferred over any unreliable medium might experience data corruption

(for instance electromagnetic interference or signal attenuation among others).

Error detection can detect any bit/byte error using checksum or CRC. Error

correction is able not only to detect bit/byte error but also in some cases correct

corrupted data (e.g., Viterbi algorithm16).

The integrity protects communication from unauthorized manipulation, i.e.,

insertion, deletion and alteration of PDU (e.g., variety of one-way hash functions
used for computing HMAC17).

Both error detection/correction and integrity are parts of the unifying mechanism

called data anti-corruption offering service, which prevents user-data from
corruption.

Compression

Policy for this mechanism chooses (if any) available compression algorithm that

could be used to reduce the size of PCI of certain protocols (e.g., RTP18 header

compression where whole RTP stream uses same PCI information).

Confidentiality

Confidentiality of communication means that nobody else can understand PDU’s
user-data except receiver and sender (e.g., variety of cryptographic algorithms

such as DES, 3DES19, AES20, RSA21).

Non-repudiation
The non-repudiation mechanism guarantees that all devices of particular

communication cannot deny processing of relevant PDUs.

Tab. 2: Mechanisms related to data transfer

Name Description

Initial State

Synchronization

Any shared state between devices must be initialized first. Following forms of

initial synchronization are recognized based on [4]:

 Synchronization representing local association between PMs of adjacent

ranks, no PDUs are exchanged, and minimal shared state is required
(e.g., UDP);

 Synchronization for flow communication utilizing request/response

PDUs, used by protocols without any feedback;

 Synchronization for connection communication utilizing

request/response and acknowledgment PDUs. This operation is
restricted by time constraints – TCP changes synchronization state

explicitly using flags (e.g., SYN, FIN); delta-t [5] protocol utilizes

mainly timer-based mechanism bounding maximum PDU lifetime, the

maximum receiver-waiting period before acknowledging PDU and
maximum duration that sender tries to resend PDU.

Loss and

Duplicity

Detection,

Retransmission

Control,

Acknowledgement

Transmission of data over the Internet is by its nature unreliable. PDUs might

be lost or duplicated. PCI’s numbers are utilized for lost and duplicity detection

mechanism (i.e., remaining a gap in the sequence indicates the loss; multiple
PDUs with the same sequence numbers indicate duplicity). Duplicated PDUs

are discarded; lost PDUs may be retransmitted.

The previous technique cooperates with the acknowledgment (ack) mechanism,
which is used by the receiver to inform the sender about PDUs that has been

received without any problem. Also, the sequence numbers are used inside ack

to inform which PDU was the last received by the receiver. Nevertheless, there

16 The Viterbi algorithm is used to detect and correct bit errors in data streams. More can be discovered at

http://en.wikipedia.org/wiki/Viterbi_algorithm
17 Keyed-hash Message Authentication Code (HMAC). For more, see http://en.wikipedia.org/wiki/HMAC
18 Real-time Transfer Protocol (RTP). For more, see RFC 1889.
19 Data Encryption Standard (DES) and Triple DES (3DES). For more, see

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
20 Advanced Encryption Standard (AES). For more, see http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
21 Rivest, Shamir, Adleman (RSA) asymetric algorithm. http://www.google.com/patents/US4405829

http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/HMAC
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.google.com/patents/US4405829

8

is separate PCI field for sequence numbers referring to lost/duplicity detection

and another PCI field for acknowledgment purposes.

If an ack is not received in due time, the sender employs retransmission
mechanism to generate missing PDUs. If an ack is received, the sender usually

deletes PDUs that are pending for retransmission.

Flow

Control

This mechanism of flow control prevents sender(s) to overwhelm receiver(s)

with data, so it is unable to process them in due time. Flow control is the binary
relation between single sender and receiver. Two forms of flow control are

known:

 the credit scheme – receiver tells sender what amount of credit (usually

in octets or number of PDUs) it has to send data before getting the new

quantum of credit (e.g., the size of TCP sliding window);

 the pacing scheme – receiver tells sender how fast (usually at which bit

rate) it can send data (e.g., FIR, leaky bucket22).

Congestion

Control

Congestion control [6] mechanism tries to protect network from experiencing

congestion collapse (see [7], [8]) – period of low throughput, packet loss and

transmission latency. Congestion control is n-ary relation between subsystems.
Countermeasures against congestion collapse include:

 congestion avoidance built into transport protocol (e.g., TCP, DCCP23);

 active queue management (including differentiate services and dropping

algorithms like RED24) and congestion notification techniques (e.g.,

ECN25).

Tab. 3: Mechanisms related to control of data transfer

Complete network architecture should contain hooks for all previously described mechanisms

even if the implicit policy for particular mechanism does nothing (e.g., support confidentiality but not

applying encryption to outgoing traffic). Tables outline the core set of policies. Nevertheless, we can

assemble them together to create more complex mechanisms (e.g., combine confidentiality, integrity,

and the random nonce to guarantee anti-replay protection mechanism). Hence, the complete set of

mechanisms is practically unlimited. Based on [9], we developed an ontology of data transfer

mechanisms, which is depicted in Fig. 1.

Above mentioned terminology and mechanisms provide the framework for Internet operability

and foundations for a cooperation of different technologies.

22 Leaky bucket: Algorithm that allows policing or shaping of data traffic to conform some bandwidth or speed

restrictions. For more, see http://en.wikipedia.org/wiki/Leaky_bucket
23 Datagram Congestion Control Protocol (DCCP). For more, see RFC 4340.
24 Random Early Detection (RED). For more, see https://en.wikipedia.org/wiki/Random_early_detection.
25 Explicit Congestion Notification (ECN). Visit https://en.wikipedia.org/wiki/Explicit_Congestion_Notification

http://en.wikipedia.org/wiki/Leaky_bucket

9

Fig. 1: Data transfer mechanisms ontology

Communication mechanisms ontology

Establishment

ontology

Data Transfer

ontology

Data Transfer

Control ontology

Authentication

Access control

Delimiting

Relaying

Multiplexing

Data
Anti-Corruption

Keepalives

Initial State

Synchronization

Ordering

Loss & Duplicity
Detection,

Retransmission
Acks

Flow Control

Compression

Confidentiality

Non-repudiation

Establishment
domain

Data transfer
control domain

Data transfer
content domain

Congestion

Control

Addressing

Flow/Connection

Identifier

10

2.2 Present Problems of Internet

Among some driving factors of today’s Internet [10] are:

 the widespread availability of wireless (including Wi-Fi and cellular networks) connectivity

allowing more non-PC devices perform ad hoc connections;

 deployment of virtualization increasing the number of logical computing systems;

 more cloud computing and peer-to-peer applications changing traffic characteristics towards

less deterministic and stochastic models of CDNs26;

 reaching the Zettabyte era more quickly due to the overall increase in broadband speeds.

Issues below are only consequences of Internet usage, which are completely different comparing

to Internet conventions and user base 30 years ago.

What we are experiencing is that more and more hosts
27

 and routers
28

 are connected to the

Internet every day using different wired and/or wireless technologies. Also growing the amount of

transferred data comes hand in hand with an increasing number of users. Paths between nodes on the

Internet are becoming shorter, faster, more redundant and more reliable. This trend significantly affect

the growth of router table sizes than ever before (observe for instance in chronological order [11], [12]).

More existing IPv4 addresses are used as Provider Independent (PI)29 rather than Provider

Aggregatable (PA)30 addresses of Internet Service Provider (ISP)31. The free IPv4 address space is

depleted, and IPv6 is still fighting to reach at least 5% of overall traffic (see [13] as a representative

statistic example of mid-size NREN32) despite the fact that it has been more than 17 years since its

standardization.

Over the past several years, many discussions were held (for more general information, please

see [14], [15] and [16]) whether current Internet architecture could sustain its expansion in the middle

and long range future. Somebody argues that new better resources are being invented faster than

available technology could keep up with them. Somebody disagree that every resource has physical

boundaries that cannot be passed on, and that poses as a limiting factor. Nevertheless, the impact of the

26 Content delivery network (CDN). For more, see https://en.wikipedia.org/wiki/Content_delivery_network.
27 Host: Device that can send/receive packets, but does not participate in forwarding of packets.
28 Router: Device that forwards packets across the network layer.
29 Provider Independent (PI) addresses: Address prefix that organization receives from its Regional Internet

Registry (RIR). Benefits of using PI addresses relies in fact that if organization needs to change ISP then it does
not need to renumber its address space. ISP change means just slight change of routing information propagated to

to DFZ.
30 Provider Aggregatable (PA) addresses: Address prefix that organization receives from its provider. The PA

address advantage is that all networks of a given ISP – components of ISP’s address space – could be replaced

with single aggregate prefix propagated to DFZ.
31 Numbering of Internet is govern by Internet Corporation for Assigned Names and Numbers (ICANN)

organization which assigns available prefixes to RIRs. RIR delegates prefixes to Local Internet Registries (LIR)

which carry out assignments of address to their customers. LIRs usually operate as ISPs in that area.
32 National research and education network (NREN). For more, see https://en.wikipedia.org/wiki/NREN.

https://en.wikipedia.org/wiki/Content_delivery_network
https://en.wikipedia.org/wiki/NREN

11

current situation on routing on the Internet is something that we can clearly observe and at least partially

predict future tendencies even though we have not yet reached limits of nowadays resources.

The most severe and apparent symptoms of broken Internet architecture – namely routing table

growth, lack of locator/identifier semantics split, cumbersome multihoming and mobility, ineffective

inbound traffic engineering and renumbering due to the change of ISP – are listed down below in

Sections from 2.2.1 to 2.2.6. Some of these issues explanations are based on a review from RFC 6227

[17], RFC 4984 [18], some of them from respective community observations of current trends. These

symptoms are currently being solved by band-aid mechanisms and architecture patches (e.g., mobility

frameworks). However, those solutions usually lack wide-spread deployment to be really deal breakers

and/or do not seem to be long-term scalable.

2.2.1 Routing Scalability

The most affected nodes struggling with the situation are Default Free Zone (DFZ)33 routers. Every

year the size of Routing Information Base (RIB)34 and Forwarding Information Base (FIB)35 of

those routers increases. The rate, at which prefix count is growing in the RIB, is the object of discussions

[19] but it seems to be slightly faster than linear (sometimes called superlinear) for a couple of last years

[20], [21]. We can see historical progress in the size of Border Gateway Protocol (BGP) [22] RIB and

FIB for IPv4 and also IPv6 on the following graphs depicted in Fig. 2, Fig. 3, Fig. 4 and Fig. 5 from

[23]. The year is on the X-axis, and the number of prefixes is on the Y-axis.

Fig. 2: IPv4 – All BGP entries in FIB

33 Default Free Zone (DFZ): Backbone of the Internet where routers must keep complete routing tables with all

reachable destination networks. In opposite of this are Tier 3 ISP or networks or end customers that are using

usually only partial routing information – they have complete knowledge about local connectivity and any other

network beyond is available via default route.
34 Routing Information Base (RIB): Basically abstract data structure holding information from a given routing

source that holds information about all reachable destination networks and paths to those destinations.
35 Forwarding Information Base (FIB): The FIB is optimized version of RIB. It is consulted most of the time

when forwarding packets because it is supported by specialized HW.

12

Fig. 3: IPv4 – Active BGP entries in RIB

Fig. 4: IPv6 – All BGP entries in FIB

Fig. 5: IPv6 – Active BGP entries in RIB

13

Current numbers are taken from a router in one of the APNIC research and development

autonomous systems (AS)36. They are relevant to the date of this publication:

 IPv4 RIB = 1 682 113 prefixes;

 IPv4 FIB = 573 400 prefixes;

 IPv6 RIB = 96 409 prefixes;

 IPv6 FIB = 24 857 prefixes.

Previous numbers mean that this particular router sees 573 400 IPv4 destination networks in

today’s Internet where there are 1 682 113 different paths to them and vice versa for IPv6. The prefixes

count is going to increase with advancing depletion of IPv4 space and progressing deployment of IPv6.

Each prefix must be processed which increases the control plane37 load. This raises

consumption of router’s CPU performance and memory and last but not least increases the size and a

potential number of exchanged routing updates. This presents routing scalability issue for future routers

– sometimes the same problem is also known as DFZ RIB/FIB growth.

It is believed [18] (assuming nowadays growth and available hardware and software) that we

will still have resources to build devices capable of dealing with this problem efficiently. However, what

is becoming a concern is a price of these devices.

The negative consequence can be passing the unreasonable cost of ISP’s investments to

customers. Potentially, only large Tier 1 ISPs could afford such devices/investments which would also

affect maintenance and operation expenses of DFZ routing. Technologically the routers: a) must

maintain increasing state information in RIB and converge usable routes quickly enough; b) must

populate FIB from RIB fast and must be prepared for enlarging the size of FIB itself; c) must perform

forwarding lookups (and at best also routing decisions) at line-rate speeds; d) must use HW that does

have reasonable power consumption or cooling demands. From the business perspective, we must

understand that DFZ is run solely by private entities without any centralized supervision [24]. They are

making a profit from it, so all the policies (like acceptance and processing of prefix) are in their hands.

From their perspective, it is not beneficial that cost of routing infrastructure would grow too rapidly

especially due to the factors they are unable to control (e.g. increasing number of Tier 3 ISP customers

that want to multihome). To put it simpler – no ISP (especially the one operating at DFZ) would be

happy from upgrading its infrastructure (buying better routers) to maintain the same level of service

quality and availability just because of the growing requirements of the routing system.

36 Autonomous System (AS): Set of devices under one administration domain.
37 Control plane: Part of the router that acts as the brain responsible for maintaining various state information

such as routing table with the help of routing protocols and handling L3 issues (defragmentation, filtering, traffic

classification/marking, QoS policing/shaping, cryptographic operations, etc.).

14

The final verdict (see [25]) is that vendors and ISPs are (under current conditions) able to deal

with the growth of the Internet. However, scalable and cheaper solution would be welcomed to reduce

costs and prepare for future demands.

2.2.2 Decoupling Identification and Location

What is currently called decoupling of location and identification a.k.a. loc/id split is merely the result

of IPv4 address semantics as described in RFC 2101 [26]. IP address serves multiple roles nowadays:

1) Identification – Identifier is a bit string that is used during the communication’s lifetime. It

identifies communicating parties in a way that IP address verifies the source of packets;

2) Localization – Locator is a bit string that specifies packet destination where it should be

delivered. It locates the place on the Internet, where a device is attached. Routing protocols

interpret IP address as a locator and build up routing tables based on the situation that routers

route traffic towards a destination. The locator is also known as Point of Attachment (PoA)38.

Identifiers and locators have different requirements on uniqueness and lifetime. Identifiers must

be unambiguous on each set of communicating parties while locators must be unambiguous within one

or more routing domains. Identifiers must be valid at least during the maximum lifetime of

communication between given devices. Locators must be valid as long as a routing system within a

routing domain needs them.

Let us focus on real-life implications of the fact that IP address is used both as identifier and

locator. What if any node has more than one IP address, which one identifies it? A device is situated in

the network at one place. However, PoA addresses do not express device’s position but networks to

which device is connected. Moreover, PoA could have an entirely different location from the perspective

of DFZ. Another example is multiple virtual machines on one host system. One approach is that we have

a virtual network inside host system. However, in this case, we might run into the problem that we have

to use NAT39, or we lack address space. Another approach is that virtual machines share host system

address. However, how can we then differentiate between virtual machines from a network perspective?

Those discrepancies were observed by many during the last thirty years (e.g., one of the oldest

notes about it is in [27]). IP address overloading with both previously mentioned functions is one of the

major factors causing routing system inscalability [28]. Yakov Rekhter stated so called Rekhter’s Law

targeting this contradiction:

— “Addressing can follow topology or topology can follow addressing. Choose one!”

38 Point of Attachment (PoA): Device’s interface (and address of this interface) by which it is connected to some

network reachable via Internet. Device could have and use simultaneously more than one PoA for communication.

We will see later in Chapter 3 that this perceiving of PoA based on IETF’s view is flawed.
39 Network Address Translation (NAT). For more, see RFC 1631.

15

However, it is hard to be in compliance with Rekhter’s Law because usually identifiers are

assigned based on customer's policy, not topological structure. Hence, the single address space can

hardly serve both IP address functions efficiently. Thus, solving wrong IP address semantics dichotomy

seems like a necessary thing to do.

When taking into account current TCP/IP status quo, loc/id split would be the natural solution

for some problems discussed in this subchapter. The most notable advantages (see [29] for details) of

decoupling locator and identifier are: a) reduction of DFZ routing tables because they would contain

only locators, which would improve scalability of control plane; b) be design support for mobility and

multihoming by employing mapping between two distinct namespaces (to one identifier may belong

multiple locators) comparing to hacks when using only single namespace of blurred locators and

identifiers. Nevertheless, we are going to show that core of the problem lies elsewhere.

2.2.3 Multihoming

Internet’s multihoming stands for the situation when the customer is using two or more ISPs for transit

services as it is defined in RFC 4116 [30]. Nevertheless, this definition may be limited in application,

because it refers only about multihoming between autonomous systems. We propose wider definition of

multihoming, which covers following use-cases:

1) multihoming of single host attached redundantly to one or more networks;

2) multihoming of single (LAN) network (containing a set of hosts) interconnected redundantly

with one or more networks;

3) multihoming of autonomous systems (containing a set of networks) interconnected redundantly

with one or more ISPs;

Will focus only to multihoming of network(s) (points 1) and 2) of the previous list) throughout

the whole Chapter 2. Below are some of the reasons why customers demand network multihoming:

 Redundancy – Customers are looking for high availability of their services. Hence, their (both

customers and ISPs) networks should be operational at best 99.999% of all the time (this

represents approximately 5 minutes of allowed outage during whole year) to meet this

constraint. From the perspective of Internet connection, this could be accomplished by having

more than one ISP to avoid a single point of failure;

 Load-balancing – Traffic could be load-balanced between multiple working links leading

into/out from customers AS to avoid congestion or to increase the available communication

bandwidth;

 Traffic Engineering – Customer wants to influence how traffic is handled beyond default routing

behavior, e.g., for example, to avoid problematic paths, to isolate some sets of addresses, etc.

(for more, see RFC 2260 [31]);

16

 Transport-Layer survivability – BGP driven multihoming provides at some level (i.e.,

successful convergence in certain time frame) session survivability for transport protocols.

A mandatory prerequisite for multihoming is that every customer is uniquely identified on the

Internet – this is done by autonomous system number (ASN)40. Multihoming is nowadays

accomplished with the help of BGP, which informs others about the path to customer’s network via two

or more ISP transit systems.

Multihoming works with PA and PI addresses. For both cases, customer’s prefix is propagated

to DFZ. Nevertheless, for PA case only primary ISP (i.e., assignee of customer PA addresses) aggregated

prefix is present in DFZ and additional routing table entry appears only during path failures to this

primary ISP. A multihoming problem arises when a customer's PA prefixes are advertised by non-

primary AS(es). Because of the longest-prefix match41 routing lookup, the customer's traffic will be

directed through the non-primary AS(s). The primary ISP is then forced to deaggregate the customer's

PA prefix in order to keep the customer's traffic flowing through it instead of the non-primary AS(s).

The trouble with multihoming is closely connected with IP address semantics described in the

previous section – IP addresses is a PoA which is route dependent (i.e., reachability of multihomed

networks depends on the chosen/available route). However, IP routing should be route independent, but

this cannot be satisfied when it takes into account destination and next-hop IP addresses which are route-

dependent PoAs.

Assume network graph in Fig. 6 with one router connected with two interfaces (two PoAs) to

different ISPs for the sake of requested connection redundancy. If one PoA experiences outage (e.g.,

192.168.1.1 on primary red route), then it does not imply that router and LANs behind it are unavailable.

The routing algorithm can find a backup route for LANs, but it cannot help to reroute PDUs intended

for PoA, which is currently down. Multihoming is not inherent use-case to IP. Route dependency of

multihomed networks remains unsolved despite the fact that it firstly appeared in 1972 (more than 40

years ago) as Tinker Air Force Base multihoming request [3].

Fig. 6: Network multihoming use-case illustration employing simplified BGP rerouting

40 Autonomous System Number (ASN): Globally unique identifier 16 or 32 bits long assigned by ICANN and

maintained in online database on http://www.iana.org/assignments/as-numbers/as-numbers.xhtml.
41 Longest-prefix match: Algorithm used by routers to retrieve the best available (the most accurate) entry from

routing/forwarding table or any other table containing IP network entries. For more see D.E.Comer, Computer

Networks and Internets (5th ed.), p. 368, ISBN 978-0-13-606698-9, 2008.

http://www.iana.org/assignments/as-numbers/as-numbers.xhtml

17

2.2.4 Mobility

During the last years, the idea of the Internet of Things (IoT)42 became more real and widely accepted

as probable use-case of Internet. Some predictions expect that 20-75 billion nodes will be connected to

the Internet by the year 2020 [32]. Basically, a throng of devices with own IPv6 addresses would need

access to the Internet. Mobility is the ability of a node or whole network to change its topological

connectivity without disruption of ongoing communication (remark: application mobility is not covered

in this thesis though it is often associated with this term). Authors of TCP/IP stack had never thought

about this use-case. Thus, IETF had to supplement solutions like Mobile IP [33], Mobile IPv6 [34] or

HMIPv6 [35] or Multipath TCP [36] later.

These solutions include:

a) Dynamic renumbering of mobile entity – considered unsuitable because dynamic IP address

change without any further notice may disrupt existing communication;

b) Renumbering and creating a tunnel between old and new location – it requires the deployment

of the home agent and foreign agent concepts known from cellphone networks;

c) The ability of a mobile entity to actively announce its new location – usually comes hand to

hand with dynamic changes to DFZ routing tables as the mobile entity moves from one location

to another.

Portability is another term often discussed with mobility. Portable network address does not

change (its format and structure) despite replacing ISPs. All PI addresses are by their nature portable.

A looming current problem (for not just IoT) is how to accommodate possibly billions of

smartphones, tablets, printers, and PDAs with the IPv4/IPv6 capability to access the Internet and to

provide session survivability when those devices roam from one network to another. NAT is often being

used to overcome this limitation by rewriting persistent address to dynamic mobile address. However,

NAT breaks end-to-end principle43 [37] and due to that NAT is being considered as the temporary fix

rather than a solution. Mobility should not be attained feature of some special protocol or technique.

Therefore, mobility support should be inherent to the network architecture.

42 Internet of Things (IoT): Refers to unique identification of objects in Internet where nearly any device is

equipped with IP address and capable of communication via IP. It is merely buzzword overused in marketing

expectations of future Internet growth. More at http://en.wikipedia.org/wiki/Internet_of_Things
43 End-to-end principle: Application-specific functions ought to reside in the end hosts of a network rather than

in intermediary nodes.

http://en.wikipedia.org/wiki/Internet_of_Things

18

2.2.5 Traffic Engineering

Traffic directing and diversion to use other paths than those precomputed by IGP44/EGP45 is called

traffic engineering (TE). We differentiate between two types according to direction of traffic flow:

 Outbound traffic engineering – Intra-AS TE, where we try to influence how traffic is leaving

AS. IGP metrics is usually altered to support this goal so that preferred exit from AS is utilized.

Another way, how to accomplish outbound TE, is to depreferentiate or to filter some routes

from BGP neighbors;

 Inbound traffic engineering – Inter-AS TE, where more specific routes are propagated with the

help of BGP to divert traffic from normal paths (aggregated prefixes). Those altered specific

routes are more preferred because they temper BGP decision process [22], [38].

Nowadays inter-AS TE is done rather than intra-AS TE. The reasons to do TE, are similar just

as in the case of multihoming. Among those reasons are policing (to restrict transition of certain traffic

through a given AS), cost reduction and support of various QoS and Service-level Agreements (SLA)46.

TE is performed by tuning BGP attributes of the certain routes and/or introducing more specific

prefixes into DFZ routing tables. This effectively increases RIB and FIB sizes and presents an additional

load to the control the plane. Moreover, network administrators spent hours configuring TE only to

discover that the neighboring BGP peer completely rewrites (or ignores) routes attributes, thus

preventing the rest of the Internet to learn and conform to intended TE. Hence, network architecture

should support nonrefusable TE by design.

2.2.6 Renumbering

Usually, the organization has one ISP where its network is completely inside ISP’s AS. In this case, the

organization47 does not need to advertise its network prefix globally because it is a part of provider

address space – PA addresses is assigned to the organization. However, if an organization wants to

change ISP, then it must be prepared to renumber all its nodes according to PA address block enforced

by a new ISP. Another option is to ask Regional Internet Registry (RIR)48 for PI address block, but there

are two drawbacks associated with it:

44 Interior Gateway Protocol (IGP). For more, see http://en.wikipedia.org/wiki/Interior_gateway_protocol.
45 Exterior Gateway Protocol (EGP). For more, see http://en.wikipedia.org/wiki/Exterior_gateway_protocol.
46 Service-level Agreement (SLA): SLA is an agreement between two or more parties, where one is the customer

and the others are service providers. SLAs commonly include segments to address: a definition of services,

performance measurement, problem management, customer duties, warranties, disaster recovery, and termination

of agreement. For more, see https://en.wikipedia.org/wiki/Service-level_agreement.
47 Organization a.k.a. Customer: Entity operating end network with own addressing plan and routing policies.
48 Regional Internet Registry (RIR): Organization that manages allocation and registration of internet numbers

(IP addresses, autonomous system numbers, well-known port, etc.). Currently world is divided into five RIR based

on geographical position: AfriNIC, ARIN, APNIC, LACNIC and RIPE NCC.

http://en.wikipedia.org/wiki/Interior_gateway_protocol
http://en.wikipedia.org/wiki/Exterior_gateway_protocol
https://en.wikipedia.org/wiki/Service-level_agreement

19

1) The organization still would not avoid at least initial renumbering when changing from PA to

PI addresses.

2) The demand could not be met because RIR is already missing PI prefixes large enough

(especially with IPv4 address space depletion), or it is against RIRs regulations. PI addresses

make the process of migrating between ISP easier; still each PI prefix must be separately

advertised to DFZ.

Not only renumbering process could be costly and error-prone (see RFC 5887 [39]) even with

the existence of automated tools (e.g. DHCP, SLAAC, etc.), but also some of the organizations may feel

stuck or being held as a hostage of theirs ISPs that provide them with PA prefix.

The renumbering problem grows with the size of the network and number of nodes it contains.

Moreover, change of host’s addresses negatively affects access control lists (ACLs)49 and firewall

setups or configuration files outside the scope of renumbered network.

49 Access control lists (ACLs): A list of permissions attached to an object (e.g., interface, file, service). ACL

usually consists of one or more entries (ACE) that are being evaluated whenever object is accessed.

20

2.3 Influencing Factors

Previously mentioned problems could be non-disjunctively divided into two major groups as those:

a) negatively influencing routing table size; b) negatively influencing routing table processing. Except

those also some questionable techniques or decisions do exist that are employed by ISPs, and that will

be also described in this subchapter.

2.3.1 Burden on Routing Table Size

When speaking about adding pressure to the routing table size the de-aggregation of address prefixes

(i.e., more specific prefixes) turns out to be a major reason behind DFZ RIB/FIB growth. Among

elements why it is happening belong:

 Traffic Engineering – Additional TE specific prefixes are advertised;

 Multihoming – In case of both PI and PA addresses, the organization’s non-aggregatable prefix

must be propagated to DFZ so that multihoming could take effect;

 End-site Renumbering – Many customers require PI address space to avoid possible

renumbering when changing ISP. By its meaning, all PI addresses are part of DFZ that could

not be aggregated;

 Business Acquisitions – Networking infrastructure could be a constituent part of assets when a

company is selling off some of their business. Unfortunately, this could lead to partition of

address space to smaller blocks that could not be summarized and these fragments must be

advertised separately to DFZ;

 RIR Allocation Policies and IPv4 Address Exhaustion – Organizations, are acquiring address

space from RIRs. If an organization needs more addresses, then it asks for another block.

However, this block is rarely the adjacent one in the address space by the block, which was

already assigned to the organization. This leads to assignment of discontinuous prefix blocks to

same AS;

 Dual-Stackness – Currently IPv6 exists simultaneously together with IPv4 because dual-stack

is the only option for non-failure deployment of a new network protocol without the Flag Day.

Unfortunately, this means that DFZ routers must support coexistence of two routing tables –

one for IPv4 and another for IPv6. However, both routing tables are used to find paths to same

destinations in case of single AS reachable via IPv4 and also IPv6;

 Anti-Route Hijacking – Certain organizations propagate a set of smaller specific prefixes rather

than one aggregate. The reason is to avoid potential (or accidental) hijacking of their address

space by some other unauthorized party. Unfortunately, this technique only stresses DFZ routing

tables more.

21

Reader’s discretion is advised (the goal is to provide merely proof of existence) when

interpreting following (simplified) conclusions drawn from (the current snapshot of) BGP metrics.

What is the size of potentially complete IPv6 FIB? Does IPv6 pose a threat to DFZ routing table

sizes and HW of dual-stack routers? Let us quantify the issue of growing size of routing tables based on

data provided by [40], which is the snapshot of BGP state on the router in AS 131 072 from

27th September 2015. Tab. 4 contains relevant absolute numbers and discussion follows below:

Description Parameter IPv4 IPv6

The total number of prefixes in

FIB.
Prefix Count 573 333 24 833

The number of prefixes assigned

to organizations by RIRs and

LIRs.

Root Prefixes

a.k.a. CIDR Aggregates
274 608 16 892

The number of prefixes beyond

root prefixes aggregates.
More Specific Prefixes 298 725 7 941

Single AS Path prefixes from the

subset of more specific prefixes.
Specifics where AS Path

Matches Aggregate
142 878 3 883

The total number of ASes that do

exist.
AS Count 51 821 10 251

End site or so-called origin-only

AS.
Origin-only ASes 44 282 8 310

ASes that carries only traffic

between other ASes, e.g. Tier 1

ISPs.

Transit-only ASes 214 143

ASes that serves both purposes –

origin and transit, e.g. Tier 2/3

ISPs.

Mixed ASes 7 325 1 798

ASes that propagate to DFZ only

one prefix.

ASes Advertising

a Single Prefix
20 544 7 412

ASes that are not multihomed.
Origin ASs Announced

via a Single AS Path
33 391 7 633

Tab. 4: Observations about DFZ based on BGP functionality

Some simple yet factual conclusions could be drawn from values in the table. The worst case is

a moment (let us call it saturation point) when the same IPv4 and IPv6 routing tables would coexist

side by side. It is very hard to predict when it will happen. Nevertheless, we can estimate how saturation

point would look alike employing now available data.

Let us assume that the lower bound of complete IPv6 routing table is the same as the number of

active AS reachable via IPv4 in case that each AS would need only the single aggregated route. That

guarantees the smallest yet operational IPv6 routing table:

𝑀𝑖𝑛𝑖𝑚𝑎𝑙 𝐼𝑃𝑣6 𝐹𝐼𝐵 𝑆𝑖𝑧𝑒 = 51 821 prefixes

Unfortunately, the single prefix for AS cannot allow multihoming or any ingress TE.

Let us look on the multihoming through the following equation catching relationship

between
𝑂𝑟𝑖𝑔𝑖𝑛 𝐴𝑆𝑠 𝐴𝑛𝑛𝑜𝑢𝑛𝑐𝑒𝑑 𝑣𝑖𝑎 𝑎 𝑆𝑖𝑛𝑔𝑙𝑒 𝐴𝑆 𝑃𝑎𝑡ℎ

𝐴𝑆 𝐶𝑜𝑢𝑛𝑡
. The result tells that:

22

 64.4 % of IPv4 and 74.5 % of IPv6 ASes do not use multihoming because there is only single

path leading to their AS;

 consequently, it could be concluded that 35.6 % of IPv4 and 25.5 % of IPv6 ASes deploy

multihoming.

Similarly, employment of traffic engineering could be guessed from

𝐴𝑆𝑒𝑠 𝐴𝑑𝑣𝑒𝑟𝑡𝑖𝑠𝑖𝑛𝑔 𝑎 𝑆𝑖𝑛𝑔𝑙𝑒 𝑃𝑟𝑒𝑓𝑖𝑥

𝐴𝑆 𝐶𝑜𝑢𝑛𝑡
. The results are:

 approximately 39.6 % of IPv4 and 72.3 % of all IPv6 ASes do not have any TE requirements

(otherwise they would be advertising more than one prefix);

 the remaining 60.4 % of IPv4 and 27.7 % of IPv6 ASes utilize more specific prefixes in a

manner described above (TE, business mergers, and acquisitions, etc.), or they purposely

fragment address space.

As stated above more specific prefixes are mostly used for purposes of multihoming and ingress

TE. Hence, let us inspect ratio between
𝑀𝑜𝑟𝑒 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑃𝑟𝑒𝑓𝑖𝑥𝑒𝑠

𝑃𝑟𝑒𝑓𝑖𝑥 𝐶𝑜𝑢𝑛𝑡
. Approximately 52.1 % of IPv4 and 32.0

% of all IPv6 prefixes constitute more specific parts. Figures Fig. 7 and Fig. 8 show the trend of ratio in

percentiles of more specific prefixes in all advertisements. Trend is stable for IPv4, roughly the half of

all prefixes. For IPv6, FIB is experiencing very mild linear increase towards one third of all prefixes.

Now we can extrapolate the estimation of the “real” IPv6 FIB size based on previous data. We

expect that each autonomous system needs its aggregate plus all more specific prefixes that are necessary

to achieve the same level of multihoming and TE as today. We can use either IPv6 or IPv4 percentile of

more specifics copying trend of each address family.

"𝑅𝑒𝑎𝑙" 𝐼𝑃𝑣6 𝐹𝐼𝐵 𝑆𝑖𝑧𝑒 = 𝑀𝑖𝑛𝑖𝑚𝑎𝑙 𝐼𝑃𝑣6 𝐹𝐼𝐵 𝑆𝑖𝑧𝑒(1 − 𝑀𝑜𝑟𝑒 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑃𝑟𝑒𝑓𝑖𝑥𝑒𝑠 𝑅𝑎𝑡𝑖𝑜)−1

 =̇ {
51 821(1 − 0.32)−1 =̇IPv6 76 207 prefixes

51 821(1 − 0.521)−1 =̇IPv4 108 186 prefixes

Fig. 7: Percentil of IPv4 more specific prefixes Fig. 8: Percentil of IPv6 more specific prefixes

23

Let us take into account more conservative input from two results and that is the one using IPv4

percentile. The complete "𝑅𝑒𝑎𝑙" IPv6 FIB would contain approximately 108 000 records. This size

would represent roughly 19 % of nowadays IPv4 FIB. However, IPv6 uses only 24 833 prefixes

currently that is just 23 % of outlined "𝑅𝑒𝑎𝑙" size, which corresponds with the fact that about one fifth

of all ASes are already dual-stack. Nevertheless, it is expected that real-life IPv6 routing table would be

smaller by number of non-contiguous prefixes assigned to a single organization because of initial larger

address space block (prefix length /48 allows a lot of networks for single entity) and because of lack of

address space preallocation. Hence, presumably IPv6 FIB size would be somewhere between 𝑀𝑖𝑛𝑖𝑚𝑎𝑙

and "𝑅𝑒𝑎𝑙" versions.

Hypothetical DFZ router supporting simultaneously perfect dual-stack environment would need

to hold at least 681 519 prefixes in its FIB, which is 14 % increase comparing to present overall (IPv4

plus IPv6) FIB size.

Let us draw conclusions from previous calculations. We claim that DFZ routing table size will

be still manageable (just 14 % larger than today) even during saturation point. Hence, fears about HW

not keeping the tempo with DFZ routing table size growth are based on false premises.

2.3.2 Burden on Routing Table Processing

The previous section discusses factors impacting routing table. Even if we establish a theoretical lower

bound on the size of FIB, then we must take into account the amount of control plane work needed to

maintain the routing table. The count of routing updates has the major influence on control plane

processing delay. Among elements impacting it belongs:

 Interconnection Richness – The Internet is becoming flatter in a sense that more and more

different paths exist between the same ASes [41]. Increased the number of control plane best

route computations is necessary because of that. These computations occur whenever a new

route becomes available or also during the change of route attributes. Unfortunately, this

interconnection richness is stressing control plane seriously, and it occurs even though the prefix

count remains the same;

 Traffic Engineering – More specific prefixes with different attributes expressing desired TE

effect place more overhead on control plane;

 Multihoming – Multihoming AS neighboring with more than one ISP (transit AS) requires more

than one interconnection leading towards DFZ. Topology change must be propagated in the

form of a routing update whenever a failure occurs. On the contrary, single-homed AS poses no

pressure on DFZ control plane load because ISP internally processes any change in connection

status;

 Rapid Shuffling of Prefixes – Some ASes deploy rapid shuffling of prefixes in order to divert

traffic to less loaded links or to optimize traffic by depreferencing (or even canceling) certain

24

routes that do not meet SLA criteria. Any measurement system, which actively alters routing

updates, only increases overall load;

 Anti-Route Hijacking – Owning AS advertises purposely more specific prefixes as the

countermeasure when fighting against IP hijacking50. Of course this approach has significant

overhead comparing to ideal state when only a single aggregate targeting the same address span

is being advertised by AS;

 Operational Ignorance – A part of routing updates that are propagated to DFZ appears due to

the ignorance of AS network administrators. There might be several reasons for it: a) default

behavior of some BGP configurations advertise everything from RIB; b) good aggreagation of

internal space and optimization of routing updates needs some level of expertise and introduce

additional work, which certain network administrators do not have; c) filtering rules (see

RFC 7454 [42]) at the borders of AS are not applied which often leads to spoofing of IP prefixes

or propagating private addresses.

The previous list outlined some of the reasons, why are there many more specific prefixes in

BGP and why is the router’s control plane bothered with occasional routing updates.

Graphs in Fig. 9 and Fig. 10 depict the number of FIB table updates for both IPv4 and IPv6.

Currently, BGP is experiencing approximately 1 500 updates per hour for IPv4. If there are peaks in

IPv4 then they are getting larger and massive (two orders of magnitude) comparing to the usual

state.What is more surprising is that this number is approximately 104 400 updates per hour for IPv6.

This implies that current IPv6 setup is more intensive on the control plane.

50 IP hijacking: Illegitimate takeover of groups of IP addresses by corrupting Internet routing tables usually by

exploiting BGP functionality. For more, see https://en.wikipedia.org/wiki/IP_hijacking.

Fig. 9: IPv4 FIB table updates Fig. 10: IPv6 FIB table updates

https://en.wikipedia.org/wiki/IP_hijacking

25

2.4 Chapter Summary

In this chapter, we tried to define network architecture and its fundaments by settling on basic terms

and definitions. Those basic elements (e.g., connection, layer, scope, rank, protocol-machine, PDU, etc.)

are present in current TCP/IP architecture, just as in any other hypothetical architecture comprising

computer network communication.

Subsequently, we mentioned problems tormenting nowadays Internet – routing (in)scalability,

decoupling location and identification, cumbersome multihoming, overcomplicated mobility, the impact

of inbound traffic engineering and unwieldy renumbering of end-networks. We outlined negative

consequences in the frame of TCP/IP for each mentioned problem. We tried to express the severity of

these issues in numbers focusing on their impact on routing table size and control plane load. We raised

some presumption together with hypothetical future trends drawing on publically available global-scale

routing data.

This chapter content should support the conclusion that also others come to – the current Internet

architecture shows design flaws and sooner or later it will face the crisis emerging from consequences

of its poor design.

26

3 Naming and Addressing Concepts

Problems of addressing and naming are closely connected with networking since its beginning. It

directly affects the efficiency of routing and forwarding. Once syntax and semantic of device addressing

are employed, the whole system is hard to change. The current Internet addressing scheme is the most

obvious example of this problem. Although the present IPv4 address scheme has improved since its

definition in the 1980s, it currently represents the major obstacle not only because of address depletion

problem. IP protocol designers made multihoming and mobility very difficult and missed a chance to

reduce router table size by addressing the interface.

The role of IPv4 is to identify and localize the interfaces of connected devices. However, this

assumption poses a great limitation on communication and affected other design concepts. IPv4 protocol

address semantics works fine if address assignment follows the network graph and network devices are

preserving their membership to local networks. IPv4 communication between network applications

requires identifying addresses of network interfaces where the applications are reachable. Enabling IPv4

address change during communication would require modification of datagram delivery mechanism

causing complications for network devices as well as for end points. IPv4 routing architecture can

efficiently react to connectivity changes detecting dead routes or identifying new routes or routes with

better metrics. While exterior gateway routing protocol BGP provides flexibility for propagating

information about relocating IPv4 address this always leads to growing global routing tables because of

breaking address to topology location dependency. This has a negative impact on routing performance.

The goal of this chapter is to provide the necessary background for the practical part of this

dissertation thesis (next two chapters). We try to outline basic motivation why naming and addressing

are still issues of current Internet architecture, which is majorly based on Vint Cerf’s and Robert Kahn’s

TCP/IP from 1974.

In the first subchapter, we layout basic terminology using formal apparatus. Next, we discuss

other non-computer networking systems, where naming and addressing also occur because we would

like to find similarities. In Subchapter 3.3, we try to synthesize working theory employing knowledge

from acclaimed articles on this topic. Then, we test compliance with TCP/IP related protocols and tools

with this theory. The longest Subchapter 3.5 describes conceptual properties of the ideal solution and

introduces many of existing candidates.

֍ –“Now you people have names. That's because you don't know who you are. We know who we

 are, so we don't need names.” Neil Gaiman

֍ Can we formulate any encompassing theory of naming, addressing and routing?

֍ Are there any similar concepts? How does current Internet reflect this theory?

֍ What about any solutions dealing with aforementioned problems?

27

3.1 Basic Terminology

This introduction provides theoretical foundations of naming and addressing. Namely it puts together

all related knowledge with profound and utmost respect to papers by John Shoch [43], Carl Sunshine

[44], Jerome Saltzer [45], Noel Chiappa [46] and John Day [3].

Natural thinking about basic terms yields following meanings:

 the object is a structure that is considered to be worthy of the specific name or address;

 the name identifies what the object is;

 the address identifies where the object is;

 the route identifies how to get to the object;

Naming

Let us start with an object. Object 𝑜 is a software (or hardware) structure that is

considered to be worthy of identification (e.g., variable, service, interface). All

objects of the same type form a set 𝑂 = {𝑜|𝑜 is object}. We can work with a

single object or a subset of objects, thus it is important to define power set of

objects 𝒫(𝑂).

Now, let us settle on the meaning of the following terms regarding

naming. To be more accurate and consistent within this theory, we define name

as a string over the alphabet51: ∀𝑛 is name ⇔ 𝑛 ∈ Σ∗. However, it is important to

note that name may be any kind of identifier (e.g., string, color, number). All

possible names form the namespace as a set of names 𝑁𝑆 = {𝑛|𝑛 is name}:𝑁𝑆 ⊆

Σ∗ from which all names for a given set of objects are taken.

Any name identifies (a subset of) object(s), identify is relation

𝐼: 𝑁𝑆 × 𝒫(𝑂). Previous definition allows name to identify none, one or even

more object(s) of 𝑂. Identifying more than one object may be useful for use-

cases such as multi-cast or broadcast communication.

Imagine space of IPv4 addresses; some address blocks are assign to owners (e.g., FIT-BUT’s

address block 147.229.0.0/16), some addresses from these blocks are being assigned and actively used

by devices (e.g., private addresses), some addresses cannot be even sold (e.g., block 240.0.0.0/4 of

reserved class E addresses). Naming theory should be granular enough to support all previous use-cases.

51 Let Σ be alphabet, the set of symbols {𝑎}. Σ∗ is the set of all finite sequences 𝑤 in alphabet Σ in form

𝑤 = 𝑎1𝑎2𝑎3…𝑎𝑛, where any symbol 𝑎𝑖 ∈ Σ for 𝑖 = 1,… , 𝑛. We call 𝑤 as the string over alphabet.

n1
n2

n3

𝑁𝑆

o1

o2 o3

𝑂

n1

⟼ ,

n2 ⟼

n3

⟼ ∅

o1

o1 o2

𝐼

𝐼

𝐼

28

Assignment marks name in the namespace as available for binding,

deassignment reverses this operation. Hence, the namespace is composed of

two disjunctive sets of names, assignable 𝑁𝑆𝑎𝑠𝑠𝑖𝑔 and unassigned 𝑁𝑆𝑢𝑛𝑎𝑠𝑠𝑖𝑔:

𝑁𝑆 = 𝑁𝑆𝑎𝑠𝑠𝑖𝑔 ∪𝑁𝑆𝑢𝑛𝑎𝑠𝑠𝑖𝑔: 𝑁𝑆𝑎𝑠𝑠𝑖𝑔 ∩ 𝑁𝑆𝑢𝑛𝑎𝑠𝑠𝑖𝑔 = ∅.

Binding is choosing a mapping from assigned name to a particular (subsets of) object(s) xor

(subsets of) name(s); unbinding reverses this operation:

 binding is relation 𝐵:𝑁𝑆𝑎𝑠𝑠𝑖𝑔 ×𝑀,𝑀 = 𝒫(𝑁𝑆) ∪ 𝒫(𝑂).

Name can be either bound or unbound (available for binding):

 name 𝑛 ∈ 𝑁𝑆𝑎𝑠𝑠𝑖𝑔 is bound ⇔ ∃𝑚 ∈ 𝑀: (𝑛,𝑚) ∈ 𝐵;

 name 𝑛 ∈ 𝑁𝑆𝑎𝑠𝑠𝑖𝑔 is unbound ⇔ ∀𝑚 ∈ 𝑀: (𝑛,𝑚) ∉ 𝐵.

Please notice, that name can be bound to either object(s) a.k.a. direct

alias or other name(s) a.k.a. indirect alias. Improper indirect aliasing may

cause circular referencing (e.g., name “a” is bound to name “b” and name “b”

is bound to name “a”), which is undesired. Hence, a chain of bindings should

end with direct aliasing providing identification of (set of) object(s).

We can measure distinctiveness of name using following adjectives. Unique indicates that there

is one and only one identifying name, whereas unambiguous indicates that there is possibly more than

one identifying name:

 name 𝑛 ∈ 𝑁𝑆, which identifies 𝑜 ∈ 𝒫(𝑂), is unique

⇔ ∃𝑛, 𝑛̅ ∈ 𝑁𝑆: (𝑛, 𝑜) ∈ 𝐼 ∧ (𝑛̅, 𝑜) ∈ 𝐼 → 𝑛 = 𝑛̅.

 name 𝑛 ∈ 𝑁𝑆, which identifies 𝑜 ∈ 𝒫(𝑂), is unambiguous

⇔ ∃𝑛, 𝑛̅ ∈ 𝑁𝑆: (𝑛, 𝑜) ∈ 𝐼 ∧ (𝑛̅, 𝑜) ∈ 𝐼.

Indirect aliases may be bound to unique name without breaking its uniqueness. Usage of

multiple direct aliases changes the unique name to unambiguous.

𝑁𝑆

⟼ ,

n3 ⟼

n5

n4

n6 n7

𝐵

𝐵

⟼ ,

n1 ⟼

n2

o1

o2 o3

𝐵

𝐵

𝑑𝑖𝑟𝑒𝑐𝑡 𝑎𝑙𝑖𝑎𝑠𝑖𝑛𝑔

𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑎𝑙𝑖𝑎𝑠𝑖𝑛𝑔

n1

n2

n3

o1

o2

𝐼

𝑁𝑆
𝑂

𝑢𝑛𝑖𝑞𝑢𝑒

𝑢𝑛𝑎𝑚𝑏𝑖𝑔𝑢𝑜𝑠

29

Making Address Topological

Before investigating terms concerning address, we need to define terms related to topology, which are

based on [47]. Topology on a set 𝑋 is a collection 𝒯 of subsets 𝑋 having following properties:

 ∅ and 𝑋 are in 𝒯;

 The union of the elements of any subcollection of 𝒯 is in 𝒯;

 The intersection of the elements of any finite subcollection of 𝒯 is in 𝒯;

Fig. 11 illustrates three examples of topologies 𝒯1, 𝒯2, 𝒯3 (in compliance with definition) and

three examples of non-topologies 𝒯4, 𝒯5, 𝒯6 (properties of topology are not met).

Topological space is an ordered pair (𝑋, 𝒯) consisting of a set 𝑋 and topology 𝒯 on 𝑋.

Fig. 11: Examples of topologies and non-topologies

Function 𝑓: 𝑋 → 𝑌 between two topological spaces (𝑋, 𝒯𝑋) and (𝑌, 𝒯𝑌) is called a

homeomorphism if it has the following properties:

o 𝑓 is a bijection (one-to-one and onto);

o 𝑓 is continuous;

o the inverse function 𝑓−1 exists (and 𝑓 is an open mapping);

If topological spaces (𝑋, 𝒯𝑋) and (𝑌, 𝒯𝑌) are homeomorphic (if homeomorphism exists) then it

is guaranteed that points “near” point 𝑥 ∈ 𝑋 are mapped to points “near” point 𝑦 ∈ 𝑌 (e.g. in Fig. 12);

Fig. 12: Homeomorphism illustration

a b c a b c a b c

a b c a b c a b c

𝒯1 𝒯2 𝒯3

𝒯4 𝒯5 𝒯6

X={ , , } a b c

x1

x2

y1

y2

𝑋
𝑌

𝑈, 𝒯1
𝑉, 𝒯2

𝑓

𝑓(𝑈)

𝑦2 = 𝑓(𝑥2)

30

Addressing

Let us return to terms important for addressing. The address is a

topologically dependent name (i.e., address contains leads about the

position in topology). Address space 𝐴𝑆 is a set of addresses 𝐴𝑆 = {𝑎|𝑎 is

address} with a given scope. Address space is topological space, it is a

namespace with a topology 𝒯 imposed on it: (𝐴𝑆, 𝒯):𝐴𝑆 ⊆ 𝑁𝑆.

We can perform same operations (e.g., assign, bind) and observe

same properties (e.g., uniqueness) with addresses as with names. Address

locates (a subset of) addressable object(s): locate is relation 𝐿: 𝐴𝑆 × 𝒫(𝑂).

Instead of identifying, we are using term locating concerning addresses.

However, both identify and locate are relations with same outcomes.

Please note, the address field in a protocol is mechanism but how the address is assigned or its

syntax and semantics is policy. Addresses are associated with layers not protocols.

Resulting Properties

The name need not to be meaningful throughout the domain and need not be drawn from a uniform

namespace, whereas the address must be meaningful and must be drawn from uniform (flat or

hierarchical) address space. Flat address space has limitations; most notably no hierarchy leaves routing

action without any help. Hierarchical address space has pros (reduction of routing table sizes) and also

cons (what is topologically close may be far away on hierarchical tree branches, which leads to

suboptimal routing). However, any structure/hierarchy in the name or address is intended to make some

operation easier (i.e., search for an identifier in a directory).

The address is a name, but the name is not necessarily address. The address is bound either to

name(s) or object(s) in order to locate it(/them). Therefore, the address is always a pointer in topology

(e.g., position of the node in the graph, grid coordinates). The name is merely a label without any context

to location.

The route is the specific information needed to forward a piece of information to its specified

address. Routing action may require one or a series of steps in order to forward information to reach a

destination. There should be mechanism mapping address into an appropriate route.

Address is location dependent if it encodes (even the part of) topology information

(i.e., address string depends on where the address is present in the topology). Address, which is route

dependent, encodes (even the part of) route information. Because there may be more than one route to

a given location, we want addresses to be location dependent but route independent.

n3

n1 n2

o1 o2

o3

n12

𝐿

𝑂

 (𝐴𝑆, 𝒯)

31

3.2 Analogies

This subchapter summarizes system analogies also employing naming and addressing concepts.

3.2.1 Naming and Addressing in Telephony

The name in PSTN52 usually means the name of the customer (i.e. object) that is reachable via dialing a

particular number, which could be considered as an address. Addressing in telephony service evolved

from flat to (at least partially) hierarchical address namespace. Binding is administrative act conducted

by telephone service provider that assigns a free number from its pool to the customer. Directories

provide a mapping between names and addresses like a telephone book or white/yellow pages. To reach

the object of a particular name in telephony means to dial its address (i.e. number) on phone board and

wait until a connection is established. However, please notice that phone directory name is address as

well, because for instance people with surname “Veselý” are grouped together (near each other).

Initially telephone users were interconnected using the single exchange office in a given area.

The phone number corresponded with the slot/line number, which allowed only local calls. When the

number of telephone users exceeded the line count on the exchange’s switchboard, multiple exchange

offices interconnected with trunks were deployed. The original number was prefixed with unique

exchange office code to differentiate between users with the same numbers but on different exchanges.

Distance calls are allowed by introducing additional area or even country codes to the number.

Address Name Time Span Description

6 Karel Chyba 1960 – 1972
Telephone link established to address

Puškinova 634, Jeseník.

064 006 Karel Chyba 1972 – 1980

Until the year 1972, distance calls were

available by using an operator that relied on
a phone call to another exchange office.

0645 2448 Karel Chyba 1980 – 1986

Exchange office replaced to accommodate

more users in a given area; this also included

renumbering.

0645 2448 Jelena Veselá 1986 – 1990
The telephone changed the owner as an
inheritance after deceased.

0645 202448 Jelena Veselá 1990 – 1992

Multiple exchange office installed in a given

area, thus unique exchange code 20 was

introduced.

00420 0645 202448 Jelena Veselá
1992 – 1993

1997 – 2001

International SS7 prefix introduced.

Formerly it was 0042 for Czechoslovakia

and currently it is 00420 for the Czech

Republic.

00420 645 202448 Jelena Veselá 2001 – 2003 Removal of leading zero in the area code.

00420 584 413570 Jelena Veselá 2003 – onwards
Exchange office reinstallation together with

the revision of the national numbering plan.

Tab. 5: Example of relationship between address and name in PSTN

52 Public Switched Telephony Network (PSTN). For more, see http://en.wikipedia.org/wiki/PSTN

http://en.wikipedia.org/wiki/PSTN

32

Let us inspect this nature of phone names and addresses on a real-life example illustrated in Tab.

5. We can observe changes related to one particular telephone and line that was bought in the year 1960

and successfully operates to nowadays.

Telephone number as the address in telephone world is location dependent. Users share the same

prefix (e.g., exchange/area/country code) that might be perceived as geographically nearby (violet, red

and orange digits in Tab. 5). However, there are exceptions to this syntax like toll-free numbers (800)

or emergency services (112, 150, 155 and 158) that should be considered location independent.

3.2.2 Naming and Addressing in Postal Service

The post is the nice example of the best-effort message delivery service. Envelope conventionally

contains both, the name and the address of the receiver. The whole address is location dependent where

each line specifies geographical location more and more precisely – country, ZIP code, city, district,

street name, house number, and apartment/office. Once the letter is dropped into the post box, it is being

routed and forwarded closer to the object (i.e., recipient’s name) according to “envelope’s PCI” (i.e.,

recipient’s address). The post office aggregates routes based upon topology.

Unambiguity of the name in telephone or postal service depends on the scope in which we are

inspecting its sui generis. For example birth name and surname may be enough for a small town but

does not suffice in whole country scope. However, one person could have multiple names with the same

address, for instance, senders might use the company name or its owner name to reach the same

recipient. Also, multiple persons may have the same name and live on the same address.

Binding between name and address is fixed and predetermined by the location of the receiver.

The mapping between name and receiver is unnecessary because one cannot exist without another.

3.2.3 Naming and Addressing in Operating Systems

Saltzer’s paper [45] tries to provide the comprehensive theory of addressing and naming and applies it

to programs and operating systems. The paper does not address computer networks directly, but many

of the aspects are similar and applicable. By the term, the object could understand any data or computer

program (or its parts).

Basic usage of names and addresses is a simple variable in any programming language.

Variable’s name is unique in particular scope (e.g., FOR cycle, procedure/function/method, the whole

program), and it has some lifetime (e.g., until the end of the program, until garbage collector disposes

of it). There are at least two variable’s addresses: a) fixed logical address that references object; b)

changeable physical address that is object’s absolute placement in memory (allocated by the program or

garbage collector). The value of variable could be accessed by its name or by its address (i.e., pointer).

The goal of naming is to allow object sharing, i.e. a) one object is a component of more than

one other object; b) object may be used by two or more different, parallel activities at the same time.

There are more objectives that we want to be accomplished by naming system:

33

 Modular sharing – A given object can be used without any prior knowledge of the names of

objects that this object uses. Lack of modular sharing leads to name conflicts where we bind the

same name to multiple different objects. This happens when we put together two different

independent programs in a system, i.e., both of them operate under the same namespace;

 Multiple-mappings – One object could have multiple addresses where the reference to any of

those addresses yields the same object. The good naming system should also deal correctly with

unstable bindings (i.e. those that are changing during the time);

 User-dependent bindings – Different object’s users should be able to access their components

privately (e.g., the association between arguments to a function and its parameters). Thus, the

same object may have multiple independent names, where each one is bound with different user-

dependent accessibility. Nevertheless, those user-dependent bindings should not affect or

conflict among each other.

A single object can have multiple names of different kinds, for instance, human-readable vs.

computer-suitable name, local vs. global name, synonyms. Establishing of scope (context) for the name

to address resolution can occur: 1) during compilation of program; 2) just before program first executes;

3) just before each execution; 4) during the execution.

The naming of files and programs in operating systems adopted a hierarchical approach using

pathname that consists of the root directory, subdirectories, and local name. If we move a file from one

folder to another, then pathname changes but the local name remains the same.

34

3.3 Theory

Employing knowledge from ISO/IEC 7498-3 [48], Saltzer’s RFC 1498 [49] and Chapters 5 and 8 of

Day’s book [3], we will try to postulate some synthesis of the naming and addressing theory.

The object address is a name of the object to which it is bound. The object cannot be located

without identification, nor can the object be identified without localization. Therefore, no reason exists,

why to distinguish term name from address because identifying and locating the object are relations

yielding same results. Hence, this means that object name and object address are same because they do

not identify distinct objects. E.g., if “OBJ” is the name, then it is also its address, which help us to

identify/localize an object in the scope of other objects. The previous statement is the final resolution of

name-address dichotomy.

Three objects should be named in computer networks:

1) services/applications – Services are functions that are being used, e.g. service is Internet

browsing. The application is using services, e.g. Internet browser. Difference between service,

application and user are in this sense non-essential, and we are going to use them

indistinguishably within this subchapter;

2) nodes – Nodes are (even virtual) computers that run services. Some nodes are hosts (service

consumers) while other nodes provide auxiliary functions to run services (e.g., routing and

forwarding by routers). When taking into account virtualization technique where one node could

host multiple virtual nodes, more accurate term for node would be (N)-entity;

3) network attachments points a.k.a. PoAs – PoAs are (Internet-connected) interfaces/ports

(i.e., (N-1)-entities) of a given node;

The natural way, how to relate to the preceding objects, is to use terms application/service name,

node address, network attachment point address, even though that we could use application address or

network attachment point name in compliance with this theory.

Following three bindings exist between objects above:

 directory – Directory is service to node mapping used to find service’s location (i.e.,

communication endpoint);

 routes – Route is a sequence of node addresses calculated by the routing algorithm; route

interconnects a given pair of source and destination nodes;

 paths – Path53 is a node to PoA mapping of the nearest neighbor (i.e., next-hop); path

interconnects PoAs of adjacent nodes.

53 Term “path” here differs from path known from graph theory.

35

Naming and addressing are free to use any form of identifier that seems helpful. It could be a

binary or printable character string. The namespace and address space could be flat or hierarchical; the

same object can even use different identifiers a.k.a. aliases, where some of them may be flat and others

hierarchical.

Naming requirements (for more about them in frame of general networking, please see [44]) can

be described in terms of bindings and binding changes among objects mentioned above:

 A given service may run on one or more nodes. Any service may need to move from one node

to another without losing its identity;

 A given node may be connected to one or more PoAs. Any node may need to move from one

PoA to another without losing its identity;

 One or more paths may connect a given pair of PoAs. Any of those paths may need to change

without affecting the identity of the PoAs.

Each requirement contains some identity preservation, which is guaranteed when the name does

not change during the moves – object name must be invariant when referring to some property of

particular scope. This can be accomplished by maintaining a list of bindings between services, nodes,

and PoAs. Basically, we name proper objects and then keep track of bindings between them.

To wit, service/user names do not change with location, node names do not change as PoA

endpoints, and PoAs do not change as particular path endpoints. However, following rules do not mean

that names should be assigned to a given object only once, and they cannot change after that. Essentially,

names could be changed but this act must comply with previous requirements. Also, the identity of an

object exists regardless of whether we can express it with some name.

If we want to send a packet to a given service, then following actions are done:

1) Find nodes on which the requested service operates. The task is service name resolution, which

consists of directory search in order to discover a proper binding between service and node(s);

2) Find routes between source and destination nodes and pick the next-hop node, where the packet

should be forwarded. This process is a.k.a. routing, where the initial result is route as the

sequence of node names, and following result is next-hop node name;

3) Find PoAs of the next-hop node en route, i.e., perform node name location to reach node(s)

found in the previous step;

4) Find paths between the current and the next-hop node’s PoAs, i.e. discover the binding between

the same PoAs pair and the path. This action is done by identifying a set of paths which leads

among PoAs acquired in the previous step.

Each of previous steps might return either single or multiple alternatives. In the case of multiple

returned objects, a choice must be made which of them to use. While these choices are distinct, they

36

might interact – e.g., we may swap communication to a different node running the same service

according to the path aptness.

We can easily satisfy basic object’s properties using this theory – what it is, where it is and

which way it is. To wit, when speaking of network applications, the service name provides an answer

to what, node and PoA names provide answer to where, routes and paths provide answer to which way.

The difference between node address and PoA address allows us to create a logical over the physical

address space relation. A network addressing system must support at least one level of indirection.

Resulting model of this theory is illustrated in Fig. 13. This picture depicts a simple network

with two levels of indirection; Internet use-case (as the network of networks) would require one more

layer. Let us briefly inspect emerging properties of this model:

Fig. 13: Theoretical naming and addressing model for computer networks

 Directory and path mappings are similar in a way that both of them track the binding of objects

one hop away.

 Two nodes could be interconnected via multiple distinct routes (containing different interim

nodes).

 Two adjacent nodes could be interconnected via multiple distinct paths (separate physical

connections).

 The route could be viewed as a concatenation of paths in a relaxed context.

The application name should be location independent. Node address should be location

dependent (the logical address). PoA names are route dependent (the physical address). PoA address

should be unambiguous only within a particular scope, and PoA addresses need not belong to the same

namespace (e.g., Ethernet and FDDI addresses are from different namespaces).

Application

Namespace

Node

Namespace

PoA

Namespace

Route

Path

Directory

37

3.4 Praxis

Despite the fact that Saltzer’s and Schoch’s papers are more than 30 years old and extensively cited,

very few have been done to integrate their ideas into computer networking praxis. To wit, at least two

following fundamental requirements exist for a correct addressing and naming system: 1) recognition

of objects – applications, nodes, and PoAs; 2) distinguishing changeable bindings – application to node,

node to route, node to PoA, and PoA to path.

Unfortunately, IPv4 does not follow those two requirements at all! Current Internet architecture

contains only PoAs and routes; it completely misses application and node names. IPv4 address ought to

identify a node, but it retains semantic of interface address. Unfortunately, this makes multihoming

impracticable because IPv4 address labels only node’s PoA not a node itself. What is worst, IP address

names the same thing as MAC address. Routes are then falsely bound to an IP address. Instead of the

general directory, the Internet is stuck with well-known port numbers (SSH is on 22, Telnet on 23,

SMTP on 25, HTTP on 80 and so on) and they are no more than a suffix to the network address.

Basically, a node layer is missing.

On Fig. 14 current broken model is depicted:

Fig. 14: Broken Internet naming and addressing model

The previous figure illustrates that major flaw exists in current TCP/IP naming architecture.

Mostly because of this poor design, Internet suffers from issues described in Subchapter 2.2. The

following attempts tried to provide some redemption, and each one of them is touching some part of the

overall problem. Interesting is that working, accepted and implemented alternative with complete

naming (comparing to TCP/IP) architecture for computer networking already existed – OSI-RM

(namely its part [48]). However, OSI-RM’s experience was not used as a design guide for the

development of IPv6, DNS or URIs.

Application

Namespace

Node

Namespace

PoA

Namespace MAC address

IP address

Port number

Route

Path

38

3.4.1 Internet Protocol Version 6

As RFC 4292 [50] clearly states, IPv6 addresses are identifiers of (a set of) interfaces, not nodes. Hence,

the same problem leads to the same troubles as in IPv4. An integral part of one of the Saltzer’s naming

requirements is missing in IPv6. However, let us not condemned IPv6 without proper inspection of what

is named and what is addressed by IPv6.

IPv6 gets rid of broadcast (one-to-all) and establishes following three kinds of communication

which are closely coupled with the particular address type:

 Unicast (one-to-one) – IPv6 address identifies a single interface. A packet is delivered to a single

host only;

 Anycast (one-to-nearest) – IPv6 anycast address identifies a set of interfaces (usually on

different nodes). A packet is delivered to one of the interfaces from a set. There is no syntax

difference between anycast and unicast addresses;

 Multicast (one/many-to-many) – IPv6 multicast address identifies a set of interfaces. A packet

is delivered to all interfaces from a set.

IPv6 allows an interface to have more than one IPv6 address, and any interface has at least three

addresses (one link-local, two multicast addresses). There is a long list of specific IPv6 types of

addresses briefly summarized in Tab. 6.

Michael O’Dell’s GSE addressing architecture [51] divided IPv6 address into two parts – one

serves as a routing locator and another as an identifier. Let us focus on the unicast address, because only

unicast prefixes are present in DFZ routing table. Routing part consist of ICANN, RIR, LIR and Subnet

ID fields that allow to create a hierarchy. However, address with this property is aggregatable only when

it is PA address. Identifier part (called Interface ID in Tab. 6) could be: 1) set statically; 2) derived from

computer’s MAC address54; 3) generated cryptographically55; 4) changed randomly56. Unfortunately,

neither way can guarantee global identifier unambiguity, thus routing part is always needed as a fail-

safe against identifiers collision.

We observed some trends in aggregated and deaggregated prefix counts in Subchapter 2.3. The

hope for DFZ is to decrease the amount of deaggregation. The IPv6 address is assigned to the interface

(not a node), and when IPv6 tries to embed the unambiguous identifier in the address, it fails. Hence,

we are back at square one with IPv6, when dealing with problems such as multihoming or mobility

mentioned in Subchapter 2.2.

54 This kind of identifier is called EUI-64. See http://standards.ieee.org/regauth/oui/tutorials/EUI64.html
55 Identifier is generated using asymmetrical cryptography, thus providing how to verify host identity. For more,

see RFC 3972.
56 To ensure anonymity during IPv6 communication, hosts are able to generate own IPv6 addresses and change

them as they want. For more, see RFC 3041.

http://standards.ieee.org/regauth/oui/tutorials/EUI64.html

39

Type Syntax / Format / Description

Unspecified

::0/128

This address cannot be assigned to an interface. It is used only during initial

enrollment of the interface to the network.

Loopback

::1/128
The node uses this address to send a packet to itself. Equivalent of

IPv4 127.0.0.0/8 addresses.

Link-Local

fe80::/10

Every interface has at least one link-local address that allows

communication with all adjacent (Hop Count = 1) devices.

Global Unicast

2000::/3

Currently only prefix 2000::/3 is assigned for global unicast

communication, where usual address starts with “2001:”. However, some
transition mechanisms introduced additional prefixes (2002: for 6to4).

Unique Local

Unicast

fc::/7

Equivalent of private IPv4 addresses57 intended for limited, organizational
scope communication.

Anycast

As mentioned before, anycast addresses are part of unicast address space.

However, conventions reserve part of this subspace for potential anycast.

Multicast

ff00::/10

The multicast address identifies a group of interfaces (Group ID). This

group identifier could be created in multiple ways, thus introducing a variety

of multicast addresses with different syntax – unicast-prefix-based, source-
specific-multicast, interfaceId-based or embedded-RP addresses.

Tab. 6: IPv6 address types

57 Private IPv4 addresses are reserved for private usage by any organization. The list available at RFC 1918.

1111 1111 10 0 Interface ID

10 bits 64 bits 54 bits

001 ICANN RIR

3 bits 13 bits 16 bits 16 bits 64 bits

LIR Subnet ID Interface ID

16 bits

1111 110 L Global ID Subnet ID Interface ID

7 bits 1 bit 40 bits 16 bits 64 bits

Prefix 0

n bits 128 - n bits

Prefix 1111 111 U …1111 Anycast ID

n bits 1 bit 7 bits 113 – n bits 7 bits

1111 1111 0 R

8 bits 4 bits 4 bits 112 bits

P T Scope Group ID

40

3.4.2 Domain Name System

Domain Name System (DNS) was invented as a descendant of the former hosts.txt file58, which

distributed a list of IPv4 addresses of devices connected to the Internet. DNS is distributed mapping

system of records providing resolution of domain names to IP addresses (i.e., A- and AAAA-record).

Apart from that, DNS supports, reverse resolution (i.e., PTR-record for IP address to name), address of

mail servers (i.e., MX-record), domain name synonyms (i.e., CNAME), geolocation information

(i.e., LOC), service locators (i.e., SRV), storage place for variety of keys, signatures and certificates and

many more.59 Fully qualified domain names (FQDN) create DNS’s namespace. Each FQDN consists of

multiple hierarchical parts delimited by dot character – starting from the right the first one is top-level

domain (abbreviated TLD as top-level domain, e.g., cz, com, net, sk), followed by first-level domain

(e.g., company name or web service name), followed optionally by subdomain (e.g., organization’s

department) and finally followed by a device’s hostname. Example and FQDN syntax are depicted in

the Fig. 15

Fig. 15: Fully qualified domain name example and syntax

However, FQDN is not an equivalent to a Saltzer’s node name. DNS does not provide a binding

between node and PoA because current TCP/IP architecture of Internet lacks it. For instance, the device

retrieves multiple FQDN-to-IP mappings for a single query and chooses between them in a round-robin

fashion. Each returned A-record represents original PoA, but PoAs might be not only from the same but

also from different devices. Thus, the same FQDN cannot distinguish between the various devices as an

unambiguous node name. Hence, FQDN is nothing more than a (both direct and indirect) alias for IP

address from a different namespace (readable to humans).

58 For more about hosts file, please see https://en.wikipedia.org/wiki/Hosts_(file).
59 For details about DNS resource records, see RFC 1035 and related RFCs.

<domain> ::= <subdomain> | " "

<subdomain> ::= <label> | <subdomain> "." <label>

<label> ::= <letter> [[<ldh-str>] <let-dig>]

<ldh-str> ::= <let-dig-hyp> | <let-dig-hyp> <ldh-str>

<let-dig-hyp> ::= <let-dig> | "-"

<let-dig> ::= <letter> | <digit>

<letter> ::= any alphabetic characters

<digit> ::= any one of the ten digits 0 through 9

FQDN syntax

pcvesely.fit.vutbr.cz

subdomain TLD

domain hostname

https://en.wikipedia.org/wiki/Hosts_(file)

41

3.4.3 Uniform Resource Identifier

Uniform Resource Locators (URL) and Names (URN) later replaced by Uniform Resource Identifiers

(URI) are just a next step of naming evolution started by DNS and inception of World Wide Web

(WWW) service. URI is a string that identifies the abstract or physical resource. URI allows uniform

(i.e., uniform semantic interpretation) identification (i.e., to distinguish between other objects within the

same scope) of resources via an extensible set of naming schemes. URIs also have a hierarchical

structure that consists of multiple components – mandatory scheme, optional authority, mandatory path,

optional query and optional fragments delimited by colon, slash, exclamation and hash characters. Fig.

16 depicts URI’s structure and also some examples.

Fig. 16: Uniform Resource Identifier structure and examples

URI’s scheme part provides application type (e.g., telnet, FTP). However, another part is URI

authority that is either FQDN or IP address followed optionally by port number. Because of that, URI

cannot be treated as the application name but sort of the path to the application. Regarding that,

URI changes whenever application moves to other node. Hence, all previously mentioned problems of

IP addresses and DNS influence URI proper usage, so that URI itself does not satisfy Saltzer’s naming

requirements.

ftp://ftp.is.co.za/rfc/rfc1808.txt

http://www.ietf.org/rfc/rfc2396.txt

ldap://[2001:db8::7]/c=GB?objectClass?one

mailto:John.Doe@example.com

news:comp.infosystems.www.servers.unix

tel:+1-816-555-1212

telnet://192.0.2.16:80/

urn:oasis:names:specification:docbook:dtd:xml:4.1.2

URI examples

foo://example.com:8042/over/there?name=ferret#nose

scheme authority path querry fragment

42

3.5 Possible Solution

This subchapter succinctly sums up theoretical properties of any solution based on Subchapter 2.2

analysis and RFC 6227 [17]. Moreover, it describes and compares features of some existing candidates.

3.5.1 Ideal Solution Properties

Following section is based on IETF’s observation of current Internet problems and desired qualities.

Unfortunately, it does not necessarily complies with theory that we have outlined and investigated in

Subchapters 3.1, 3.2 and 3.3. However, following description provides at least some guideline how to

compare feasibility of candidates.

One of the major goals for any upcoming change of the Internet architecture is to make the

routing system scalable with respect to a number of prefixes, users and interconnections between

autonomous systems.

As stated above overloading of IP address semantics causes collisions and limited flexibility.

Hence, it is expected that a solution would decouple identifier namespace from location address space.

Nevertheless, there are two approaches how separation should be performed: a) by splitting hosts,

identifiers, and locators; b) by removing end-site prefixes from globally routable prefixes. The solution

should contain the fix and should be compatible with either case. Ideally identifiers should be allocated

at the birth of object, they never change, nor are they re-used (but take into account that one would need

infinitely long address to truly achieve this goal). Hence, identifiers must be location-independent.

Locators should point to device’s position in the network, and they should change whenever the graph

changes, thus locators must be location dependent.

The more scalable solution for multihoming is strongly desired to allow organizations

multihome without adding pressure to DFZ routing tables.

As for mobility more efficient approach is wanted that allows mobile entity topological changes

at a high rate. Hypothetically ideal solution should decouple mobility completely from routing.

TE is a necessity for a network operation of any organization. However, solution for inbound

traffic engineering should pose no burden to the scaling of the routing system.

Renumbering is an inconvenience for either small or large scale networks. Even with the

existence of working methodologies like RFC 4192 [52] how to renumber without a Flag Day it is still

difficult to make this process cheap and smooth for any organization. Therefore, it is required that

organizations could renumber their networks easily with as less disruption as possible.

Previous features refer to existing and above thoroughly described issues. Nevertheless, there

are two more properties, which any solution should incorporate. The routing system is secured through

additional protocol-specific mechanisms (i.e. mutual authentication of routing updates with the help of

HMACs) that were introduced later during target routing protocol lifecycle. Hence, the solution must

provide the same level of routing security, or better it must be secure by design. Also, any solution must

43

be deployable from technical and practical perspective – it must allow incremental deployment and

provide necessary backward compatibility with currently deployed services.

Any possible solution should somehow address all above-stated problems. RRG even prioritizes

them by a degree how mandatory the fix supposes to be a part of the new architecture. Ladder of

obligation is as follow: REQUIRED (which means that solution must support this goal) >

STRONGLY DESIRED (which means that solution should support this goal unless there is a good

reason not to do so) > DESIRED (which means that solution should support this goal). Tab. 7 provides

summarization of community consensus:

Abbreviation Design Goal Priority

RS Routing Scalability STRONGLY DESIRED

DIL
Decoupling Identification

and Localization
DESIRED

MH Multihoming STRONGLY DESIRED

Mob Mobility DESIRED

TE Traffic Engineering STRONGLY DESIRED

Ren Renumbering STRONGLY DESIRED

Sec Routing Security REQUIRED

Dep Deployability REQUIRED

Tab. 7: Design goal importance for a new routing architecture

3.5.2 Existing Proposals

RFC 6115 [53] clearly states that: a) RRG has rough consensus on separating identity and location of

devices but does not have consensus how to do it properly; b) RRG has consensus that multihoming and

traffic engineering issues need to be solved in a scalable manner.

Theoretically, there are three ways how to decouple identity and locality:

 Map-and-encap network-based architecture – It evolves from Robert Hinden’s ENCAPS

protocol [54]. When a source sends the packet towards destination outside of source network,

the packet must traverse through border router between two address spaces (locator space and

identifier space). Here at first border router performs mapping of an identifier to appropriate

locator (“map” phase). Then the packet is encapsulated using returned locator address (“encap”

phase). Hence, map-and-encap principle wraps a new header (called outer header) using locator

addresses around the original header (called inner header) with identifier addresses. When

encapsulated packet reaches the destination network, the border router strips off the outer header

and sends the original packet towards the receiver. Map-and-encap usually does not require

changes to hosts or to the core routing infrastructure (that is DFZ). Unfortunately, with

additional overlay encapsulation comes size overhead.

 Rewriting hybrid network-based architecture – Originally this principle comes from papers

written by Robert Smart and David Clark 8+8 [55] and later by Mike O’Dell GSE [51]. It utilizes

44

IPv6 field so that upper part of IPv6 address is locator and the lower part stores an identifier. If

a source sends packet outside its domain, border router takes addresses containing only

identifiers and fills upper bits with appropriate locators. Then locators are removed from

addresses upon reception by destination border router. Rewriting schemes may differ whether

they perform either destination or both destination and source addresses rewrites;

 Host-based architecture – Decisions in this architecture are purely in the hands of hosts. Thus,

hosts prepare and fill all relevant PCI fields (including locators and identifiers) as the packet is

being dispatched by the operating system. Interim devices like routers are usually transparent to

this approach.

According to [56], possible solutions could be categorized into two classes that are not

opposites. Over the years following terms were established to describe them:

 Core-Edge Separation (CES) – A subset address space (edge) corresponding to end site

addresses is separated from the transit DFZ (core). This “edge” address space is then handled

differently for routing. Subsequently DFZ routing table increases its site only a new ISP transit

network instead of a new edge network. Some mapping system is needed to glue core and edge

address spaces. CES is depicted schematically in Fig. 17 where it shows communication

between PC-A and PC-B using (green) identifiers and (red) locators;

Fig. 17: Core-Edge Separation solution

 Core-Edge Elimination (CEE) – The goal of CEE is to eliminate all PI and de-aggregated PA

prefixes from the core. Hosts then use either PA addresses provided by ISPs or usually

something different (not in IP address namespace) as an identifier. Some changes in host

network behavior are necessary to deploy CEE. Illustrated in Fig. 18.

PC-A

10.0.1.99

PC-B

10.0.2.99

xTR-BxTR-A

147.229.1.1 D 147.229.2.1

10.0.1.99 D 10.0.2.99

10.0.1.99 D 10.0.2.99

Edge

(endsite networks)

Core a.k.a. DFZ

(transit network of ISPs)

Mapping System

Mapping database

10.0.1.99  147.229.1.0

10.0.2.99  147.229.2.0

DFZ routing table

147.229.1.0/24

147.229.2.0/24

45

Fig. 18: Core-Edge Elimination solution

Down below is the short list of solution candidates. It is outside the scope of this thesis to

describe them in depth. Hence, the astute reader is advised to follow bibliography links. Neither is this

dissertation able to cover all candidates.

Locator/ID Separation Protocol

LISP focuses on the separation of locators and identifiers into two distinct address spaces using mapping

and encapsulation on routers residing on the borders between those two spaces. Only locators are present

in DFZ, thus are a possible subject of topological aggregation. With the separation of identifiers comes

the ability to renumber cost effectively. LISP contains by design traffic engineering techniques so that

more-specific prefixes could be removed from the global routing table.

When using LISP, there is no need to change anything on hosts or DFZ routers. LISP has well-

defined deployment plan and interoperability with existing Internet architecture. LISP is beneficial to

adopter since the first day. Moreover, implementations already exist and are undergoing testing in

SOHO and also enterprise environments.

LISP utilizes robust mapping system based on a pull model, where queries are data driven.

However, it may introduce an additional delay or even packet losses when the identifier-to-locator

mapping is being discovered. Also, reachability and liveliness of locators are not yet sufficiently

resolved issues.

Chapter 4 covers LISP in more detail – operational principles, syntax, and semantics of control

messages and hypothesis how to improve its functionality as one of the main contributions of this

dissertation. LISP employs map-and-encap principle and it is CES solution.

Host Identifier Protocol

Host Identifier Protocol (HIP) is host-based approach how to perform locator/id split. Network layer

employs IP address as locator, transport and application layer uses the identifier in the form of the

cryptographic private-public key pair. Each host handles this kind of pair generation. Host Identity Tag

Multihomed notebook

147.229.181.99 / identifier1

153.171.29.99 / identifier2

ISP2

153.171.0.0/16

ISP1

147.229.0.0/16
Core a.k.a. DFZ

(transit network of ISPs)
DFZ routing table

147.229.0.0/16

153.171.0.0/16

Edge network BR-A1

147.229.181.1/24

147.229.1.2/30

BR-A2

153.171.29.1/24

153.171.1.2/30

46

(HITs) – 128 bit long hashed public part of identifier pair – is used for communication and stored in the

extension header. HIP makes use of DNS or distributed hash table (DHT) to obtain the identifier.

Among advantages of HIP is that it allows mobility and multihoming across different address

families. HIP offers end-to-end encryption via IPsec. Most notably, it moves away from binding

application to IP addresses.

When traversing NAT, HIP needs rendezvous server or sponge on Teredo. However, both of

those approaches introduce unnecessary triangle routing between parties. Critique of HIP points out that

HITs are without any inner structure, thus creating a flat namespace.

HIP is host-based CEE solution. More about HIP in RFC 4423 [57] and RFC 5201 [58].

Level 3 Multihoming Shim Protocol for IPv6

Level 3 Multihoming Shim Protocol for IPv6 (Shim6) splits locator/id in a manner that IPv6 PCI field

address contains locator and extension header contains Upper Layer ID (ULID). It is the host-based

solution with network layer approach working per host pairs rather than per transport layer session.

ULID is used by upper layer protocol (i.e. TCP or UDP). When current locators become unavailable,

Shim6 looks up for new locators and rewrites IPv6 addresses, thus providing session survivability.

DNS queries provide a possibly incomplete set of locators to hosts. It employs initial 4-way

handshake during which locator sets are also exchanged. Keepalive mechanism is used to track locator’s

reachability.

Shim6 allows host-multihoming not site-multihoming also traffic engineering is not a part of

Shim6 standard because TE does not concern hosts.

Shim6 is host-based CEE solution. More about SHIM6 in RFC 5533 [59].

Routing Architecture for the Next Generation Internet

Routing Architecture for the Next Generation Internet (RANGI) append one new layer between network

and transport layer just as HIP. Hence, flows and connection are bound to host identifier instead of IP

address that now serves as a locator. Unlike to HIP, RANGI host identifiers are hierarchical in organized

structure. RANGI appends identifiers as special IPv6 destination options header, and locators are

embedded as special IPv4 address into IPv6 PCI fields. RANGI utilizes: a) DNS for the translation of

FQDN onto host identifiers; b) hierarchical DHT for host identifier to locator mapping.

Routing scalability is accomplished by decoupling locators and identifiers. Mobility and

multihoming are supported because communication is now bound to an identifier, not a locator. Thus,

sessions are not interrupted due to locator change or failure in redundant scenarios. Hosts might suggest

TE while Locator Domain Border Router has the authoritative power to enforce TE. Deployment and

compatibility with current Internet architecture leverage ISATAP60 tunneling principle.

60 Intra-Site Automatic Tunnel Addressing Protocol (ISATAP). For more, see RFC 5214.

47

The most severe disadvantage of RANGI is that change to TCP/IP stack is necessary for devices.

Special proxy routers (called Site Proxy and Transit Proxy) are needed for communication with legacy

hosts. Also, cryptography is seen as an issue for devices that are incapable of or do not want to support

crypto algorithms.

RANGI employs host-based principle and is CEE solution. More about RANGI in [60] and

IETF’s Work in Progress papers [61] and [62].

Internet Vastly Improved Plumbing

Internet Vastly Improved Plumbing (abbreviated Ivip, pronounced [aɪvɪp]) is another locator/identifier

splitter. It works with map-and-encap principle same as LISP. However, Ivip uses global mapping

system instead of hierarchical LISP pull model. Mapping changes are propagated to full database query

servers, which could be run by ISPs and/or end-sites. These servers create distributed network of cross-

linked multicast trees. To reduce the load, new mappings could be cached by query servers with the

cache. The difference from LISP is that Ivip maps always only single locator to a given identifier and

mappings are updated in real-time. Ivip employs direct IP-in-IP encapsulation unlike LISP’s interim

header between inner and outer IP.

One of doubtful consideration of Ivip is whether global mapping database could attain real-time

synchronization. Also, Ivip is missing clear deployment plan that can work without Flag Day and huge

investments in resources.

Ivip employs map-and-encap principle and is considered to be a CES solution. More about Ivip

on Ivip website [63] and in papers [64], [65], [66], [67], [68] and [69].

Hierarchical IPv4 Framework

The Hierarchical IPv4 Framework (hIPv4) introduces an additional hierarchy of IPv4 address space by

dividing it into area locators (ALOCs) and endpoint locators (ELOCs). ALOCs are globally unique;

ELOCs are unambiguous only locally. ALOC and ELOC are inserted as PCI fields into new shim header

that resides between network and transport headers.

Instead of tunneling, hIPv4 employs swapping of addresses inside IPv4 header with ALOCs and

ELOCs in shim header (appended to IP as a new PCI option field). This swapping is performed by

dedicated routers called Locator Swap Router (LSR) which resides in ISP’s ALOC realm. LSR RIB

contains only ALOCs and local ELOCs. When ISP migrates its network to an ALOC realm, only ELOCs

are exchanged via routing updates with LSRs from other realms.

The hIPv4 utilizes DNS for distribution of ELOC to ALOC mappings. To support multihoming

and TE, hIPv4 must be combined with transport protocols such as MPTCP61 and SCTP62. ALOC (so to

say PoA) is returned upon DNS request for a given ELOC – more than one ALOC might be retrieved.

61 Multipath TCP (MPTCP). For more, see http://tools.ietf.org/wg/mptcp/
62 Stream Control Transmission Protocol (SCTP). For more, see RFC 4960.

http://tools.ietf.org/wg/mptcp/

48

As with all locator/id splitters, it is easy to renumber sites when changing ISPs because only different

ALOC is mapped to the same ELOC.

The major disadvantage is that TCP/IP stack requires a change for devices communicating with

the non-hIPv4 world. This means that benefits for hIPv4 adopters will be apparent only after the majority

of devices migrate. Besides that, also change is needed for some application protocols that convey IP

addresses in its SDUs. Another negative feature is that hIPv4 takes into account only IPv4 address space;

there is no support for IPv6 addressing.

The hIPv4 employs rewrite principle, and it is neither CES nor CEE solution. More about hIPv4

in RFC 6306 [70].

Name Overlay Service for Scalable Internet Routing

Name Overlay Service for Scalable Internet Routing (NOL) adds to TCP/IP stack new functions that

manage configuration, registration and authentication of host names together with management of

transport channels using those names and mobility for data transport. NOL utilizes session layer between

transport and application layers. It uses rewrite principle, which introduces a new device called Name

Transfer Relay (NTR) that carries out translation between reserved PI addresses representing names and

globally routable PA addresses. This separation prevents PI prefixes from entering DFZ, thus reducing

DFZ routing table size. Legacy devices accessing NOL-devices use special NOL proxy or to assign

some of the globally routable PA addresses to specific servers behind NOL.

There is no requirement to change TCP/IP stack and no need for a new mapping system. NOL

make use of DNS by storing name as a new kind of DNS record. The name is similar to email address

hostname@example.com. Entry in DNS exists for @example.com, which points to NTR’s PA

address. PI address of the hostname is known only to NTR. Enforced utilization of PI addresses avoids

the need for any renumbering. The mobility of transport sessions is achieved by checkpointing sequence

numbers, but it works only between NOL-enabled hosts. NTR deployment is unilateral just as NAT.

Despite the fact that TCP/IP stack is left intact, applications on host need to be re-implemented

to support NOL. Rapid updates to DNS’s name-to-NTR mapping are needed when considering

functional NOL multihoming scenario between different NTRs.

NOL employs rewrite principle and is neither CES nor CEE solution. More about NOL in [71].

Global Locator, Local Locator, and Identifier Split

Global Locator, Local Locator, and Identifier Split (GLI-Split) decouples identifiers and locators in a

undermentioned manner. It differentiates between global locators (GLs) used in DFZ and local locators

(LLs) used in edge networks. Besides that, GLI-Split also presents static identifiers (IDs) to identify

endpoints of communication. Locators and IDs are embedded into IPv6 addresses, thus allowing

backward compatibility with the IPv6 world. The higher 64 bits of GLI-formed IPv6 address contain

49

locators; the lower 64 bits contains an identifier. It encodes two different namespaces (each one 64 bits

or less) onto single IPv6 address.

Separation of core and edge routing helps to aggregate prefixes. As any other locator/id splitter,

renumbering is not an issue for GLI-Split. Besides that, internal rearranging of local locators is not

visible globally. In comparison with LISP, Ivip or NOL, communication with legacy Internet is without

any proxies or stateful NATs. GLI-Split uses global (i.e. ID-to-GL) and local (i.e. ID-to-LL) mappings,

where global mappings leverage DNS.

The major criticism of GLI-split is that host TCP/IP stack change is required to interpret

appropriately GLI-Split address and possibly perform mapping lookups. However, no changes to the

application are needed in opposite to other CEEs. GLI-Split uses rewriting instead of map-and-encap.

Thus, no additional state is needed for devices, where rewriting occurs. Moreover, as with all proposals

depending on DNS, there is always an issue with the updating speed of DNS.

GLI-Split is CEE solution that employs rewriting. More about GLI-Split in [72] and [73].

Tunneled Inter-Domain Routing

Tunneled Inter-Domain Routing (TIDR) is locator/id splitter that is employing dedicated tunnels at the

borders of DFZ. It works as an improvement of BGP that defines new attributes used for a distribution

of identifier-to-locator mapping.

Identifier prefixes are stored in a new control plane structure called Tunnel Information Base

(TIB). When a packet to identifier prefix is being routed, first TIB is searched to perform tunneling

followed by RIB lookup regarding the routing. All interim routers route packet until it reaches tunnel

endpoint where it is decapsulated. TIDR improves BGP convergence time for the specific scenarios. It

supports TE and limited multihoming by design and as such it spares depletion of ASN namespace.

Despite the fact, it reduces RIB, TIDR only offloads information from RIB to TIB. Moreover,

it does not take into account FIB whatsoever. Hence, it does not help with the scaling problem to

accommodate the increasing number of organizational networks. Also, TIDR benefits will not be

apparent unless all DFZ routers migrate to TIDR.

TIDR is a CES solution. More about TIDR in IETF draft [74] and mailing list (namely [75] and

[76]).

Identifier-Locator Network Protocol

Identifier-Locator Network Protocol (ILNP) decouples identity and locality inside IPv6 PCI field. First

64 bits are used as locator name that might change; remaining 64 bits are used as a node name.

Applications bind only to identifiers, which remain constant during a lifetime of transport layer session.

Multiple locators might be used by a node simultaneously. ILNP insists on the establishment of new

DNS records to support node backward/forward resolution of locators/identifiers to FQDNs.

50

ILNP supports site and also node mobility and multihoming. No changes are needed to exist

DFZ routers, and it has well-stated incremental deployment plan. As with other solutions sponging on

DNS, ILNP hurdle is a silent expectation of near-zero time to live of some DNS records and their

maintenance.

ILNP is CEE solution using rewriting principle. Development of ILNP is pursued further by

IETF and its RRG. More about ILNP on project website [77], previous draft [78] and subsequent RFCs

6740-6748 [79], [80], [81], [82], [83], [84], [85], [86] and [87].

Evolution

Rather than a new architecture, Evolution is the best-practice proposal. Evolution employs the idea of

applying FIB Aggregation (FA) with increasing scopes to evolve more scalable routing system. Unlike

CES proposals, Evolution does not start with some predefined border between core and edge networks.

Aggregation scopes start from the single router, and then to single network, ending with aggregation of

neighbor networks.

Evolution is stepwise process consisting of following phases:

1) FA on a single router where FIB is algorithmically compressed without changing RIB. Software

upgrade is needed for this;

2) Intentional configuration of provider edge routers, autonomous system boundary routers, and

BGP route reflectors as next-hop-self default gateways for a given AS;

3) Virtual Aggregation (VA) in a single network where some routers in AS are marked as

Aggregation Point Routers (APR). APRs maintain full FIB table, others may suppress some of

their FIB entries and deliberately route packets to APRs;

4) VA across neighbor networks that also applied VA so that in BGP updates path to egress router

is available directly;

5) Reduction of RIB size by outsourcing control plane to external controllers, which perform eBGP

peering (and provide necessary information) to forwarding DFZ routers;

6) Isolation of DFZ routers from routing churn for instance by handling certain prefix

inaccessibility locally.

Evolution proposal is comparing to others easiest for deployment with immediate impact for

adopters. Among concerns is that improperly accomplished Evolution may introduce routing loops or

reverse path forwarding (RPF) check63 failures. On the contrary to other proposals, Evolution does

not address mobility.

63 Reverse Path Forwarding (RPF) check: When using RPF check, packet incoming interface is checked whether

it is the same one as outgoing interface towards a netowrk of sender by a routing table. If it is true, then packet is

forwarded, otherwise it is dropped. See http://www.cisco.com/web/about/security/intelligence/unicast-rpf.html

http://www.cisco.com/web/about/security/intelligence/unicast-rpf.html

51

Evolution is neither CES nor CEE solution. Development of Evolution is pursued further by

IETF and its RRG. More about Evolution in [88], [89] and [90].

Name-Based Sockets

Name-Base Sockets (NBS) are a new alternative for socket-based communication. Unlike nowadays

sockets (e.g. BSD sockets) that are bind to IP addresses, NBS are bind to domain names as their name

suggests. As consequence, applications start to communicate using domain names as endpoint selectors

where appropriate IP address re-/selection is left on TCP/IP stack itself.

NBS helps organizations to prefer PA address by making them more acceptable to use for

multihoming and less avoided for renumbering. Thus, NBS decrease reliance on PI addresses.

A necessary prerequisite for NBS is their adoption by host’s operating systems (OS) which is

also its major disadvantage due to the usual inflexibility of OS vendors. Existing applications should be

augmented, and new applications developed directly using updated socket API64 to profit from NBS.

However, there is an immediate benefit for NBS adopters. NBS deployment is incremental and does not

pose any threat to legacy applications.

NBS is CEE solution that does not use neither map-and-encap nor rewrite principle. More about

NBS in [91] and [92].

A Practical Transit-Mapping Service

A Practical Transit-Mapping Service (APT) is similar to LISP that it is CES solution using map-and-

encap principle with additional UDP header. Tunnel routers for LISP are customer’s edge devices, for

APT they are provider’s edge – the APT is more ISP-centric.

Instead of a globally available hierarchical mapping system, all APT-enabled AS has default

mappers (DM) that periodically synchronize. Mapping information is then retrieved using local pull to

default mapper. APT tries to handle packet loss by rerouting between DMs, which also maintains

reachability status of RLOCs.

New BGP attributes carry EID-to-RLOC mappings between peering DM. However, mapping

announcements must be cryptographically signed to be accepted by DM. This is to limit mapping

corruption or spoofing in APT, but it is also one of the major disadvantages.

The development of APT is no longer active. More about APT in [93].

Internet Routing Overlay Network with Routing and Addressing in Networks with

Global Enterprise Recursion

The Internet Routing Overlay Network with Routing and Addressing in Networks with Global

Enterprise Recursion (altogether IRON-RANGER) uses IRON routers that interconnect recursively-

nested RANGER networks. IRON-RANGER utilizes own tunneling and path MTU discovery

64 Application programming interface (API). For more, see http://en.wikipedia.org/wiki/API.

http://en.wikipedia.org/wiki/API

52

(operation of MTU discovery along the path is often abbreviated as PMTUD) management protocol

called Subnetwork Encapsulation and Adaptation Layer (SEAL) [94] for separating identity of the node

from its locality. IRON-RANGER is architecturally derived from ISATAP. From the IRON-RANGER

point of view, DFZ is understood as one non-broadcast multi-access (NBMA) network. IRON-

RANGER utilizes two approaches: a) proactive routing protocol distributes highly aggregated virtual

prefixes (VP); b) data-driven protocol distributes more specifics into IRON router’s FIBs.

A major criticism of IRON-RANGER is that protocol SEAL is rigidly using ICMP Packet Too

Big and ICMP Fragmentation Needed messages to enforce sizes typically below 1500 B, thus preventing

any jumbo grams. It does not provide true location independent identity. These together with mobility

as disadvantages are left to other disjunctive proposals that can cooperate with IRON-RANGER (e.g.

HIP, RANGI).

IRON-RANGER is CES solution with map-and-encap principle. More about IRON-RANGER

in RFC 5720 [95].

Tunneling Route Reduction Protocol

Tunneling Route Reduction Protocol (TRRP) interconnects tunnel routers (xTR) through GRE65 tunnels.

Other BGP-peering routers point their default routes towards xTRs which perform DNS lookup to find

endpoint tunnel destinations.

TRRP does not need new DNS records, instead of that it redefines the meaning of TXT record

to carry information regarding the feasibility of router (to prefer or to avoid it) and applicable GRE mode

(direct, GRE over IPv4 or GRE over IPv6). Despite the fact that TRRP cleverly reuses existing

technologies, it has some disadvantages. TRRP does not take multicasting into account, and its proposal

provides no mentions about multihoming.

The development of TRRP is no longer active. TRRP employs map-and-encap principle and is

CES solution. More about TRRP in [96].

Six/One Router

Six/One is yet another CES solution utilizing rewriting principle on the border so-called Six/One

Routers. It separates edge as local addresses and core as remote addresses. Six/One takes advantage of

the special IPv6 extension header.

It helps with routing scaling, renumbering concern and multi-homing but does not address any

mobility issue. Besides that, Six/One does not have any interim device that can mediate communication

between Six/One and non-Six/One host. Also as another disadvantage, it supports only IPv6 address

family. Mapping system sponges on DNS where it assumes the definition of new resource records, but

no detail specification is provided.

The development of Six/One is no longer active. More about Six/One in [97].

65 Generic Routing Encapsulation protocol (GRE). For more, see RFC 2784.

53

Recursive Internet Architecture

All previous proposals boldly consider themselves as another or even new Internet architecture. As it is

apparent from this chapter introduction, they are not, because they do not satisfy the definition of the

term architecture. They more or less just suggests some alternations how to treat addressing and naming

differently on the current Internet, thus being nothing else than a band-aid.

In opposite to this, RINA takes all the pieces, which are part of computer communication (as

mentioned in Subchapter 2.1, and reassembles them into a new fundamental model of real Internet

architecture. Instead of rigid TCP/IP or OSI-RM hierarchical stack of layers with disjunctive functions,

RINA postulates the existence of only one general layer with all mechanisms, principles and functions

that could be recursively stacked as needed. Besides that, RINA perceives the existence of only two

separate protocols that could be used for interprocess communication between RINA layers or

applications. The first protocol controls and manages layer, the second one is for data transfer.

RINA is explored and described more in Chapter 5.

3.5.3 Proposals Comparison

The following table Tab. 8 summarizes properties of each proposal above. Abbreviations used as

columns names mean:

 type – Whether proposal employs map-and-encap (“M”), rewrite (“R”), host-based principle

(“H”) or it is something inherently different (“diff”);

 CE – Whether proposal is Core-Edge Separation (“CES”), Core-Edge Elimination (“CEE”) or

generally different (“diff”) solutions;

 IPv = Internet Protocol version – Which IP version does proposal supports (“v4/v6/v4v6”);

 RS = Routing Scalability – Whether proposal reduces DFZ routing tables sizes (“yes/no”);

 DIL = Decoupling of Identification and Localization – Whether proposal performs (“yes”)

locator/identifier split or not (“no”);

 MH = Multihoming – Whether proposal supports better multihoming or not (“yes/no”), or it is

supported conditionally together with utilization of multipath transport protocol (“cond”);

 Mob = Mobility – Whether proposal supports seamless mobility or not (“yes/no”), or it is

supported conditionally together with utilization of multipath transport protocol (“cond”);

 TE = Traffic Engineering – Whether proposal contains TE by design or not (“yes/no”), or it is

supported conditionally with utilization of multipath transport protocol (“cond”);

 Ren = Renumbering – Whether proposal supports easier renumbering (“yes/no”);

 Dep = Deployability – Whether proposal allows communication between upgraded and non-

upgraded devices (“yes/no”) or whether it is not applicable (“n/a”).

54

Name type CE IPv RS DIL MH Mob TE Ren Dep

LISP M CES v4v6 yes yes yes yes yes yes yes

HIP H CEE v6 yes yes yes yes no yes no

SHIM6 H CEE v6 no yes yes no no no yes

RANGI H CEE v6 yes yes yes yes yes yes yes

Ivip M CES v4v6 yes yes yes yes yes yes yes

hIPv4 diff diff v4 yes yes cond cond cond yes no

NOL R diff v4v6 yes yes yes yes yes no no

GLI-Split R CEE v6 yes yes yes yes yes yes yes

TIDR M CES v4v6 no yes yes no yes yes yes

ILNP R CEE v6 yes yes yes yes yes yes yes

Evolution diff diff v4v6 yes no no no no no n/a

NBS diff CEE v4v6 yes yes cond cond cond no no

APT M CES v4v6 yes yes yes yes yes yes yes

IRON-RANGER M CES v4v6 yes yes yes yes yes yes yes

TRRP M CES v4v6 yes no yes no yes no yes

Six/One R CES v6 yes yes yes no no yes yes

RINA diff diff v4v6 yes yes yes yes yes yes yes

Tab. 8: Properties comparison of existing proposals

Let us focus on comparing CES and CEE solutions because they are a majority of proposals.

CES are believed to be superior to CEE, and subsequent paragraphs provide some overview about pros

and cons of both.

Main CES features are summarized in the following list:

 Locator/Identifier split is commonly performed as depicted in the Fig. 19;

 Edge networks are separated from DFZ routing tables or are at least highly aggregated. Routing

scalability is visible in direct proportion to how widely is CES solution adopted;

 CES benefits are available immediately to adopters – multihoming, inbound TE and if possible

also mobility;

 Deployment of CES does not affect DFZ routers, but new devices on the border between core

and edge are needed to interconnect this two address spaces together with mapping system;

 CES solutions do not require host stack, API or application changes;

 Tunneling and overlaying impose additional size overhead on fragments, thus introducing MTU

concerns when employing CES.

55

Fig. 19: CES kinds

Main CEE features are summarized in the list below:

 The most of CEE solutions separates locators and identifiers into two completely different

namespaces. Some representatives are depicted in Fig. 20;

 CEE benefits are visible and widely available to adopters only after majority of network migrate;

 Routing scalability is attained in a way that applications are no longer dependent on stable PI

(or de-aggregated PA) addresses. Hence, PA addresses could be easily preferred and

administratively more available than PI addresses.

 CEE host stack must determine which locator should use. Besides that, potential set of locators

could be retrieved, thus implying resolving multihoming, inbound TE issues, and ideally

mobility issues;

 DFZ routers are not affected, and no additional tunneling devices are needed, however, a new

infrastructure (or at least upgrade of current one, i.e. DNS) must be present to provide mapping

between identifiers and locators;

 CEE solutions need host stack changes and applications augmentations;

 The most of CEE solutions do not support IPv4 and have some troubles with NAT so

additionally clutches are needed.

FQDN

Name Identifier Locator

IP address IP address

LISP, APT, Ivip, IRON-RANGER, TRRP:

outer header inner header

FQDN

Name Identifier Locator

IP address IP address

Six/One:

IPv6 extension header PCI field

56

Fig. 20: CEE kinds

It is assumed that CES are easier for voluntarily adoption rather than CEE. On the one hand, the

purpose of the routing system is to serve hosts. Hence, the goal is to make routing system more scalable

with the help of CES solution that targets network, not hosts. On the other hand, CEE solutions are

believed to lead to better final shape of the Internet, because of: a) routing should be as simple as possible

without unnecessary tunneling clutches; b) utilization of IP address as identifier is a fundamentally

wrong concept. One can say that CES is “network-centric” and CEE is “host-centric”. Unfortunately,

no hybrid solution between CES and CEE does exist.

Both of them need a scalable mapping system. Nevertheless, CES mapping system is arguably

more efficient because: a) CES lookups are needed only for initial communication towards a host inside

edge network in opposite to CEE lookups that must be performed by senders and receivers for any newly

established communications; b) CES mapping system is better designed for caching to alleviate

unnecessary resolutions; c) it is unlikely that organizations already using PI addresses would downgrade

for PA addresses.

FQDN

Name Identifier Locator

HIT/ULID/HI IPv6 address

HIP, Shim6, RANGI:

FQDN

Name Identifier Locator

64 bit long identifier 64 bit long locator

ILNP, GLI-Split:

IPv6 address PCI field

IPv6 extension header PCI field

57

3.6 Chapter Summary

This chapter offered theoretical background on naming, addressing, and routing issues. We took into

account analogies from other communication sectors to capture invariances and find similarities. We

postulated complete naming and addressing model based on a synthesis of important works in this field.

Employing previous, we showed contradictions just as in current TCP/IP stack, together with existing

band-aids (i.e., IPv6, DNS, and URI).

In the last Subchapter 3.5, we discussed possible solutions. Before anything else, we outlined

ideal solution properties and organized their goals according to the importance and beneficial effect. We

enumerated existing suitable candidates and briefly mention their specifics. Then we compared and

categorized all possible solutions.

Ideal solution should have following properties:

 provide complete naming architecture with one or more levels of addressing indirection, where

employed addresses are location dependent but route independent;

 inherently support use-cases like network multihoming, device’s mobility, and owner regulated

traffic engineering.

Drawing on overall results and findings, we decided to pursue LISP and RINA more closely to

see whether they comply with postulated naming and addressing model and at the same time fit to

achieve the most of the ideal solution goals.

58

4 Locator/ID Separation Protocol

LISP is currently one of the most discussed Core-Edge Separation solutions that could bring alleviation

to “pain points” of nowadays Internet, such as mobility, multihoming, decoupling identity and locality.

LISP introduces map and encapsulation technique (map-and-encap) that enables it to be transparent to

end-devices and non-LISP network areas. The map and encapsulate principle benefiting from own

mapping system to distribute information about identifier-locator pairs. Separation of device

identification from its location information is the LISP receipt to the mentioned Internet issues. While

the identification of the device should remain constant which is important for addressing network

applications, the location information may change depending on the actual position of the node on the

Internet. The scalable mapping mechanism is necessary for LISP to work efficiently. The significant

research effort was spent on proposing various algorithms for mapping identifiers to locators. These

algorithms are discussed and evaluated in this chapter. The second component of LISP’s core principle

is encapsulation. The encapsulation takes place at domain borders when the packet needs to be sent

outside the local domain. In this case, the packet is encapsulated within a new packet, which header is

filled with target address obtained from mapping identifier of the target device to its actual locator

address. The advantage of the map-and-encap approach is that it does not require host changes or

changes to the core routing infrastructure.

LISP development started after IAB Workshop in 2006, and it supposes to be the response

dealing with major problems introduced in Subchapter 2.2. LISP should reduce DFZ routing table

growth, stop prefix deaggregation, allow easier multihoming and mobility without the BGP and split

locator and identifier namespaces. LISP should be deployed without any changes to hosts or DNS. It

must support both IPv4 and IPv6 seamlessly. Moreover, it is agnostic to any network protocol (it could

be used with future IPv7 or any new invention working on this layer). Transition mechanisms are part

of LISP protocol standard. Thus, it supports communication with the legacy non-LISP world.

Nevertheless, the enterprise is always skeptical and slow when adopting new technology. Hence, it is a

significant research challenge to investigate LISP features using modeling and simulation as the

referential testbed tools producing meaningful outcomes.

In this chapter, we would like to dive into the LISP and explore its capabilities and limitations.

The main goal of this chapter is: a) to provide an in-depth presentation of LISP; b) to illustrate known

֍ –“Perhaps it's impossible to wear an identity without becoming what you pretend to be.” O.S.Card

֍ What is LISP? What components, messages and function does LISP employ?

֍ Where and how should be LISP used? What is technology readiness level of LISP?

֍ Can we improve LISP’s operation?

59

LISP issues; c) to propose improvements and implement them in the form of new simulation models for

OMNeT++; and d) to evaluate the impact of suggested improvements.

4.1 Overview

Majority of this subchapter is based on RFC 6830-6834 [98], [99], [100], [101] that standardize LISP

protocol and its interfaces as experimental.

The initial idea behind Internet was to create a simple decentralized connectionless packet

switching network that could survive the unpredictable outage of its nodes. From straightforward

TCP/IP stack as it was enacted thirty years ago, we moved towards layered model with a variety of

“hacks” like MPLS66, GRE, IPsec, PPTP67, MPTCP that are adding desired functionality but diverting

from the original idea, where each layer is present only once, and its function is not repeated. Does this

seem like a “simple networking architecture”? IP address functionality is nowadays overloaded as it is

explained in Section 2.2.2; it serves both localization and identification purposes. The consequence of

this overloading is the inability to build scalable and long-term effective DFZ routing system.

The main idea behind LISP is to separate localization and identification. Following the example

of GSM network could serve as an analogy for this. Cellphone identifier is a telephone number, and cell

phone localizator is operator’s network, which connects the device. If somebody calls the number (“to

identify”) then operator’s network searches for particular base transceiver station (“to localize”) with

which cell phone is associated right now in order to establish the call. Whenever owner travels with cell

phone abroad, cell phone changes also operator’s network (locator). However, callers are still using the

same number (identifier) to reach owner despite the fact that locality has changed.

LISP accomplishes similar behavior by splitting the IP address into two namespaces:

 Routing Locator (RLOC) namespace where addresses fulfill their localization purposes by

telling where is device connected to the network (red cloud on Fig. 21);

 Endpoint Identifier (EID) namespace where each device has a unique name that identifies it

from each other (green cloud on Fig. 21).

Also a non-LISP namespace exists (and probably always will exist), where direct LISP

communication is (even intentionally) not supported (blue cloud on Fig. 21). Apart from namespaces

also exist: a) specialized routers performing map-and-encap that interconnects different namespaces;

b) dedicated devices maintaining mapping system; and c) proxy routers allowing communication

between LISP and the non-LISP world.

66 Multiprotocol Label Switching (MPLS).For more, see RFC 3031.
67 Point-to-Point Tunneling Protocol (PPTP). For more, see RFC 2637.

60

Fig. 21: Basic LISP scheme

Fig. 22: LISP packet variants

61

4.1.1 Tunneling

A LISP mapping system performs lookups to retrieve a set of RLOCs for a given EID. Tunnel routers

between namespaces utilize these EID-to-RLOC mappings to perform map-and-encapsulation. The

original (inner) header (with EIDs as addresses) is encapsulated by a new (outer) header (with RLOCs

as addresses), which is appended when crossing borders from EID to RLOC namespace. Whenever a

packet is crossing back from RLOC to EID namespace, the packet is decapsulated by stripping outer

header off.

LISP supports both IPv4 and IPv6. Moreover, LISP is agnostic to address family thus it can

seamlessly work with any future network protocol. Transition mechanisms are part of the protocol

standard. Hence, LISP supports communication with the legacy non-LISP world. LISP places between

inner and outer header additional PCI in the form of UDP header succeeded by LISP header. LISP uses

reserved port numbers – 4341 for data and 4342 for signalization. Currently, any combination of IP

headers is supported – IPv4 outer / IPv4 inner, IPv4 outer / IPv6 inner, IPv6 outer / IPv4 inner, IPv6

outer / IPv6 inner. However, the map-and-encap principle is so generic that LISP could inherently

support any network layer protocol. Fig. 22 depicts all variants of LISP packets.

Basic components are Ingress Tunnel Router (ITR) and Egress Tunnel Router (ETR). Both

are border devices between EID and RLOC space; the only difference is in which direction they operate.

The single device could be either ITR-only or ETR-only or ITR and ETR at the same time (thus

abbreviation xTR).

ITR is the exit point from EID space (a.k.a. LISP site) to RLOC space, which encapsulates the

original packet. This process may consist of querying mapping system followed by updating local map-

cache of recently used mappings. Map-cache improves the performance of the system (i.e., EID-to-

RLOC mapping pairs are stored for a limited time to reduce signalization overhead).

ETR is the exit from RLOC space to EID space that decapsulates original header. Outer header,

auxiliary UDP, and LISP headers are stripped off. ETR is also announcing all LISP sites (their EID

addresses) and by which RLOCs they are accessible.

If we inspect structure of LISP packet somewhere in RLOC space then:

 Inner header source IP = sender’s EID address;

 Inner header destination IP = receiver’s EID address;

 Outer header source IP = ITR’s RLOC address;

 Outer header destination IP = ETR’s RLOC address.

4.1.2 Mapping System

Before moving to LISP mapping system concretely, let us discuss how those things are handled

theoretically. Any Internet mapping system is nothing else than the huge distributed database. Simple

62

mapping information is represented in a single database record. We have ended up with two

diametrically different approaches how to operate these kinds of databases:

 Push model – Any node in the network has the information, or the information is actively

propagated through the network to the node. With this approach, “everyone knows everything”.

Clear disadvantages are signalization overhead (the number of messages) and resource

consumption (CPU and memory requirements) to maintain shared state. The larger the database

is, the more computation power is needed. Among existing push model examples are routing

protocols maintaining RIB between routers;

 Pull model – Information is available to any node, but only upon solicitated request. With this

approach, “everyone knows just what is needed”. Disadvantages are the level of indirection

where the answer to the querier might be altered, outdated or untrusted. DNS is an example of

the pull model. DNS divides the whole namespace hierarchically to the tree structure in order

to avoid single node against knowing all mappings. Then DNS resolver only needs to know

whom to ask to retrieve the authoritative answer.

Both approaches have some advantages. However, disadvantages of push model prevent it to be

a scalable and dynamic solution beyond a certain point of system size. To illustrate it, IGP protocols are

used at the scale of single AS to guarantee the speed of routing convergence. DNS is common protocol

handling even more information than just resolving FQDN to IPv4 and/or IPv6 addresses. LISP

specifications based on both models exist – LISP-ALT, LISP-DDT, LISP-DHT (previous three will be

explained later in text), LISP-EMACS (see [102]) as pull models, LISP-NERD as push model (see RFC

6837 [103]) and LISP-CONS (see draft [104]) as hybrid push/pull model. However, only the ones based

on pull model are implemented and operational.

LISP mapping system is primarily employing two components – Map Resolver (MR) and

Map Server (MS). Looking for EID-to-RLOC mapping is an analogous process as DNS name

resolution (see Fig. 23). In the case of DNS, the host asks its DNS resolver (configured within OS)

which IP address belongs to a given FQDN. DNS server responds with a cached answer or delegates the

question recursively or iteratively to another DNS server according to the name hierarchy. In the case

of LISP, querier is ITR that needs to find out which RLOCs could be used to reach a given EID. ITR

has preconfigured MR, which is bothered each time mapping is needed.

Queries performing EID-to-RLOC mapping are data-driven. This behavior means that a new

data transfer between LISP sites may require a mapping lookup, which causes that data dispatch is

stopped until a mapping is retrieved. This behavior allows LISP to operate a decentralized database of

EID-to-RLOC mappings. Replication of whole (potentially large-scale) database is unnecessary because

mappings are accessed on-demand, just like as in DNS a host does not need to know complete domain

database. Tunnel routers maintain map-cache of recently used mappings to improve the performance of

the system.

63

Fig. 23: Comparison between DNS and LISP mapping system

Following list contains all LISP mapping signalization messages with their brief description.

They are without inner header – just the outer header, followed by UDP header (with source and

destination ports set on 4342), and followed by appropriate LISP message header. Structural details of

each message can be seen in Addendum 8.1.

 LISP Map-Register – Each ETR announces as authority one or more LISP site(s) to the MS with

this message. Each registration contains authentication data and the list of mappings and their

properties;

 LISP Map-Notify – UDP cannot guarantee message delivery. MS may optionally (when the

particular bit is set) confirm reception of LISP Map-Register with this message;

 LISP Map-Request – ITR generates this request whenever it needs to discover current EID-to-

RLOC mapping and sends it preconfigured MR;

 LISP Map-Reply – This is solicited a response from the mapping system to a previous request

and contains all RLOCs to a certain EID together with their attributes. Each ITR has its map-

cache where reply information is stored for a limited time and used locally to reduce

signalization overhead of mapping system. Moreover, mapping system generates LISP Negative

Map-Reply as a response whenever given identifier is not the EID, and thus proxy routing for

external LISP communication must occur.

MR processes ITR’s LISP Map-Requests. Either MR responds with LISP Negative Map-Reply

if queried address is from a non-LISP world (not EID), or LISP Map-Requests is delegated further into

a mapping system to appropriate MS.

Every MS maintains mapping database of LISP sites that are advertised by LISP Map-Register

messages. If MS receives LISP Map-Request then: either a) MS responds directly to querying ITR (it is

allowed to do that because MS has all the necessary information in its mapping database); or b) MS

forwards request towards designated ETR that is successfully registered to MS for target EID.

Each RLOC is accompanied by two attributes – priority and weight. Priority (one-byte long

value in the range from 0 to 255) expresses each RLOC preference. The locator with the lowest priority

DNS Resolver/ServerHost

ITR

LISP

LISP

Map Resolver

What is address of

www.fit.vutbr.cz?

It is 147.229.9.43

What is RLOC behind

which is 153.16.1.1?

LISP

ETR

LISP

Map

Server

64

is preferred and is going to be used as the outer header address. Priority value 255 means that the locator

must not be used for traffic forwarding. Incoming communication may be load-balanced based on the

weight value (in the range from 0 to 100) between multiple RLOCs sharing the same priority. Zero

weight means that RLOC usage for load-balancing depends on ITR preferences.

xTRs perform RLOC probing (checking of non-local locator liveness) to always use current

information. RLOC probing is done with the help of special variant LISP Map-Request and LISP Map-

Reply messages (with the appropriate bit set on). Let us called them LISP Map-Request Probe and LISP

Map-Reply Probe.

ETR registers itself only to a limited number of MSs. It is technically impossible for all ETRs

to be registered to the same MS. Hence, there must be a way how to distribute mapping database and

interconnect different MS between each other in order to guarantee the availability of mapping

information to all MRs. Following three approaches are the most common:

 Alternative Topology (LISP-ALT) – MS are connected via dedicated GRE tunnels across the

non-LISP world. LISP routing information are carried as external routes redistributed into BGP.

LISP-ALT aggregates EID prefixes and enforces allocation policy. LISP-ALT is not a scalable

solution when the number of MSs starts to increase. However, LISP-ALT copes easily with

situations when EID identifier blocks are not assigned hierarchically. Fig. 24 depicts three LISP

sites exchanging routing information via three dedicated GRE tunnels across the non-LISP

core). For more, see RFC 6836 [105].

Fig. 24: LISP-ALT infrastructure example

65

 Delegated Distributed Tree (LISP-DDT) – LISP-DDT is hierarchical distributed database,

where each EID block is delegated to some authoritative organization. The concept is similar to

DNS with its hierarchy of local, TLD and root nameservers. Analogously, mapping request

traverses from MR via tree towards the leaf, which is either designated MR, or ETR (see violet

dashed arrow in Fig. 25). Iterative query delegation between LISP-DDT nodes is accomplished

by special LISP Map-Referral message. For more, see IETF draft in progress [106].

Fig. 25: LISP-DDT infrastructure example

 Distributed Hash Tables (LISP-DHT) - LISP-DHT leverages DHT technology, namely Chord

protocol and algorithm [107]. LISP mapping system forms ring-shaped overlay network (see

Fig. 26), where ChordIDs are highest numerical EIDs instead of being randomly chosen. Nodes

are divided into two groups: a) MSs as service nodes that are full-fledged DHT nodes; b) xTRs

as stealth nodes that can inject messages into DHT but neither do the route nor provide key

management. LISP-DHT allows a mapping request to be automatically forwarded to the owner

without any previous specific advertisements. For more, see paper [108].

PITR

PETR

xTR

xTR

xTR

PITRxTR

xTR

xTR

PITRxTR

xTR

MR

MR-MS

MR-MS

MS

MR-MS

MS

MR-MS
DDT

DDT

MR-MS

MR-MS

DDT

66

Fig. 26: LISP-DHT infrastructure example

4.1.3 Coexistence between LISP and Non-LISP

Flag Day is not an option in case of migration to LISP just as in the case of IPv6. Moreover, there will

always be networks that do not intend to deploy LISP or where LISP deployment is not beneficiary or

possible. Special devices are needed to interconnect LISP and a non-LISP world where IP address

locality and identity are not decoupled. Communication between those two worlds differs according to

the direction, how IP addresses are interpreted during routing procedure and what issues are connected

with it:

 non-LISP  LISP – Hosts and routers do not know anything about loc/id split. Hence, EIDs are

considered as ordinary addresses and natively routed to “EID network entry point”;

 LISP  non-LISP – ITR must recognize that the destination address is not EID. Hence, there

are no RLOCs associated with it. The packet is then delivered to “LISP world exit point”.

Two approaches are proposed for LISP/non-LISP coexistence purposes: a) address translation;

b) proxies providing ITR and ETR roles (both briefly documented bellow and in [99]).

ISP4

ISP3

ISP2

ISP1

Site B

Site A

xTR

LISP

xTR

LISP

MR-MS

MR-MS

LISP-DHT

DHT

service node

DHT

stealth node

DHT

service node

DHT

stealth node

Overlay network

Real network

67

No matter whether a) or b) is used, the both of them supports Day 1 benefits so that the number

of adopters does not determine overall functionality and quality of LISP deployment. Therefore, site

profits from LISP (i.e. easier mobility or multihoming) immediately after migration. Full control over

inbound TE is the most noticeable adoption gain because of priority and weight attributes that are

mandatory to follow by any LISP implementation. Compare LISP load-balancing (according to

priority/weight – integral parts of LISP protocol design) and BGP policies that should accomplish the

same goal. Unfortunately, BPG policies cannot be enforced and are prone to reconfiguration when

traversing ASes.

LISP Network Address Translation

LIST Network Address Translation (LISP-NAT) employs the same principle as classical NAT,

which means that xTR translates from EID to global routing prefix and back. A typical use-case is for

LISP  non-LISP communication or for LISP sites using same EIDs (e.g. RFC 1918 private addresses

as EIDs). This approach is not widely deployed. However, it is easier to integrate it to the control plane

of active network devices.

Proxy Ingress and Egress Tunnel Routers

This migration idea is built over proxies that provide ITR and ETR functionality to non-LISP hosts and

routers. Two new devices are introduced to LISP architecture – Proxy Ingress Tunnel Router (PITR)

and Proxy Egress Tunnel Router (PETR).

PITR provides non-LISP  LISP communication, and its goal is to help non-LISP users reach

LISP sites. PITR announces highly aggregated EID prefix via routing protocols to the non-LISP world

in order to lure and route traffic destined for LISP sites. LISP outer header is wrapped around original

data upon sending it via one of the PITR’s RLOC interfaces.

PETR provides LISP  non-LISP communication anytime mapping system returns

LISP Negative Map-Reply as the answer. In this case, the data receiver is non-LISP, and PETR primary

serves as a gateway to the non-LISP world. Secondary PETR’s objective is to provide communication

between LISP sites using different RLOCs address families (e.g. one site is IPv4 and another IPv6).

As in the case of ITR and ETR, the PITR and PETR roles may be delivered dually by a single

device called PxTR. If communication between hosts goes via two non-dual PITR and PETR then

unicast RPF principle might be broken. Therefore, ETR is ignoring unicast RPF checks to prevent any

traffic lost.

68

4.2 LISP Demonstrations

Following demonstrations should help the reader to get more familiar with LISP data traffic and various

signalization processes. Each one begins with network graph description, step-by-step walkthrough of

each relevant phase accompanied by a picture. Numbers in pictures (the black digit in a yellow hexagon)

and walkthroughs (numbered list item) correspond.

4.2.1 Unicast Communication

Fig. 27 depicts two LISP sites (Site A using EID prefix 100.0.0.0/24 and Site B with prefix 200.0.0.0/24)

that are interconnected via RLOC space composed of five ISP networks. PC-A with address 100.0.0.99

wants to unicast some data to PC-B with address 200.0.0.99. EIDs are transparent from the perspective

of hosts; they do not concern about LISP routing.

 Typically DNS query may proceed any IP communication. In the case of LISP, DNS resolver

returns EID as IP address associated with PC-B’s. DNS A record holds IPv4 EID; DNS AAAA

record holds IPv6 EID (e.g. pc.siteb.com A 200.0.0.99);

 The packet traverses Site A until it reaches xTR-A2 employing usual IGP routing. xTR-A2 acts

as ITR and prepares appropriate outer header. RLOC is looked up in map-cache based on

destination EID 200.0.0.99. Each locator in map-cache has two attributes – priority and weight

– where both serve for load-balancing purposes. In case of above demonstration, RLOC 4.0.0.1

is chosen because of the lowest priority;

 Packet traverses RLOC space with 2.0.0.1 as the source address and 4.0.0.1 as the destination

address in the outer header (employing locators). The inner header contains 100.0.0.99 as the

source address and 200.0.0.99 as the destination address (employing identifiers). Encapsulation

of headers is just as same as depicted in Fig. 22, outer header uses protocol number 17, UDP

destination port is set on 4341 (reserved value for LISP data);

 The packet is routed via ISPs until it reaches xTR-B2’s interface with address 4.0.0.1. This router

performs decapsulation (stripping off outer plus auxiliary UDP and LISP headers) and forwards

packet to Site B based on destination EID address;

 The packet is delivered to PC-B having the same structure (single IP header, EIDs as addresses)

as it was in #1. LISP functionality is transparent for end-systems, which means there is no need

to install or update network stacks or perform additional configurations within OS.

69

Fig. 27: Illustrative LISP unicast data transfer

4.2.2 Registration

Three routers (ETR-B1, ETR-B2, and ETR-B3) connect Site B with RLOC namespace where each one

uses different ISP and locator (3.0.0.1, 4.0.0.1 and 5.0.0.1). Available MS are connected via dedicated

tunnels employing LISP-ALT. Registration example for MRMS-B’s mapping database is shown in Fig.

28.

#1) ETR periodically generates (by default every 60 seconds) LISP Map-Registration message to

its preconfigured MS. This message contains EID-prefix and all belonging locators with status

vector expressing locators current availability (1 means up, 0 means down);

#2) LISP Map-Registration is delivered to MS where it is processed. Every message implicitly

contains an SHA-1 hash of the pre-shared password to protect control plane and provide

authentication. Information from message updates existing or creates a new record in mapping

database;

#3) If LISP-ALT is deployed then routing information (existence of successfully registered LISP

site) are propagated between MRMS-A and MRMS-B as redistributed BGP routing updates

through GRE tunnel across the non-LISP network. In this scenario, MRMS-B announces EID

prefix 200.0.0.0/24 to lure traffic intended for Site B.

1

2

3

4

5

EID-to-RLOC map cache

EID-prefix: 200.0.0.0/24

RLOCs:

 3.0.0.1, priority 254, weight 50

 4.0.0.1, priority 1, weight 100

 5.0.0.1, priority 254, weight 50

ISP1

1.0.0.0/8

ISP2

2.0.0.0/8
ISP5

5.0.0.0/8

ISP4

4.0.0.0/8

xTR-A1

xTR-A2

LISP

LISP xTR-B2

ISP3

3.0.0.0/8

xTR-B1

LISP

LISP

xTR-B3

LISP

Site A

100.0.0.0/24
Site B

200.0.0.0/24

1.0.0.1

2.0.0.1

3.0.0.1

4.0.0.1

5.0.0.1

100.0.0.99

200.0.0.99

100.0.0.99  200.0.0.99

2.0.0.1  4.0.0.1

100.0.0.99  200.0.0.99
UDP dst.port 4341 + LISP

100.0.0.99  200.0.0.99

PC-A PC-B

70

Fig. 28: Illustrative LISP registration process

4.2.3 Mapping Request

Let us revisit scenario of unicast data transfer where a computer with EID 100.0.0.99 wants to

communicate with EID 200.0.0.99. The difference is that now ITR-A2 does not have mapped in its

mapping cache. Therefore, ITR-A2 initializes mapping query to obtain a current set of locators which is

illustrated in Fig. 29.

#1) Data traffic drives the generation of ITR-A1's LISP Map-Request message. ITR-A1 (outer

header source address 2.0.0.1) sends a request to its preconfigured MR (inner header destination

address 2.0.0.255), where the inner header contains EID addresses of ITR-A2 (100.0.0.99) and

recipient’s computer (200.0.0.99). The message body is more complicated than what is depicted

in Fig. 29, LISP Map-Request contains among others:

 Nonce that must be repeated in mapping replies, and that serves as a control plane

protection against unsolicited response

 Original sender’s address (i.e., 100.0.0.99);

 Input EID list that allows to ask for more than one identifier in a single query

(i.e., 200.0.0.99/32);

 RLOC caching data for ETR that answers the request to speed optionally up process

(i.e., to EID prefix 100.0.0.0/24 are available locators 1.0.0.1 and 2.0.0.1);

#2) MRMS-A accepts mapping request. Subsequently it strips off the outer header and is concerned

only with the routing decision based on inner header destination address 200.0.0.99. According

ETR-B2

ETR-B1

ETR-B3

Site B

200.0.0.0/24

3.0.0.1

4.0.0.1

5.0.0.1

200.0.0.99

MRMS-A
MRMS-B

ALT ALT

ALTALT

5.0.0.255

2.0.0.255

192.0.2.1
192.0.2.2

200.0.0.1

200.0.0.2

200.0.0.3

3.0.0.1 5.0.0.255

UDP ports 4342

Map-Register
SHA1 hash

EID prefix: 200.0.0.0/24

local, 3.0.0.1, priority 254, weight 50

4.0.0.1, priority 1, weight 100

5.0.0.1, priority 254, weight 50

1

23

71

to the routing table, the packet is forwarded through the LISP-ALT tunnel to MRMS-B from

source address 192.0.2.1 to destination 192.0.2.2.

#3) MRMS-B receives LISP Map-Request and following next MRMS-B lookups its mapping

database for ETR that registered requested input EID list item. LISP Map-Request is then

delegated to one of the registrars, in demonstration scenario to ETR-B1.

Fig. 29: Illustrative LISP mapping request

4.2.4 Mapping Reply

Two different devices might answer upon receiving mapping request during previously started

demonstration scenario.

#1) LISP Map-Reply response message has two ways how it could be generated:

#a) Either MRMS-B previously delegated LISP Map-Request to the one ETR registraries

that answers (it is ETR-B1 sending it from 3.0.0.1 to 2.0.0.1 in above Fig. 30 labeled as

1a);

#b) Or registering ETR allows MS to respond to mapping requests instead of ETR with the

help of LISP proxy-reply option during the registration process. MS responding on

behalf of ETR is possible because MS has the same information as ETR in its mapping

ITR-A1

ITR-A2

ETR-B2

ETR-B1

ETR-B3

Site A

100.0.0.0/24
Site B

200.0.0.0/24

1.0.0.1

2.0.0.1

3.0.0.1

4.0.0.1

5.0.0.1

100.0.0.99

200.0.0.99

MRMS-A
MRMS-B

ALT ALT

ALTALT

5.0.0.255

2.0.0.255

192.0.2.1
192.0.2.2

100.0.0.1

100.0.0.2

200.0.0.1

200.0.0.2

200.0.0.3

5.0.0.255 3.0.0.1

UDP ports 4342

2.0.0.1 2.0.0.255

UDP ports 4342

Map-Request
nonce

ITR administering EID 100.0.0.0/24

with RLOCs 1.0.0.1 and 2.0.0.1 asks

for RLOCs of EID 200.0.0.99

100.0.0.2 200.0.0.99

UDP ports 4342
192.0.2.1 192.0.2.2

GRE

Map-Request

100.0.0.2 200.0.0.99

UDP ports 4342

1

2

3

Map-Request

100.0.0.2 200.0.0.99

UDP ports 4342

72

database. This option shortens respond delay and overall signalization overhead of

protocol that might be appealing for mobile ETRs. In the previous case, it is labeled

with option 1b where MRMS-B responds with source address 5.0.0.255 towards

destination 2.0.0.1.

#2) Sooner or later some response is delivered to ITR-A2 that initiated mapping query. Upon

received, ITR stores current EID-to-RLOC mapping (EID 200.0.0.0/24 could be reached via

three RLOCs 3.0.0.1, 4.0.0.1 and 5.0.0.1) into its mapping cache. Finally, unicast

communication between PCs 100.0.0.99 and 200.0.0.99 can occur with 4.0.0.1 chosen as locator

based on its priority. Data traffic between PCs is discarded (not cached) until mapping query is

finished just like as ARP throttling [109]. The previous sentence means that first few packets

might be lost during any brand new communication that needs RLOCs that are yet unknown

according to the swiftness of mapping response.

Fig. 30: Illustrative LISP mapping reply

4.2.5 Proxy Communication

Let us focus on bi-directional data transfers between LISP and the non-LISP world. The host with

address 9.0.0.99 from the non-LISP world begins communication with PC in Site B with address

200.0.0.99. Incoming gateway to LISP world is PITR router that advertises coarsely aggregated prefix

200.0.0.0/8 (depicted with dark green nearby PITR on Fig. 31) into which also fits Site B EID prefix

ITR-A1

ITR-A2

ETR-B2

ETR-B1

ETR-B3

Site A

100.0.0.0/24
Site B

200.0.0.0/24

1.0.0.1

2.0.0.1

3.0.0.1

4.0.0.1

5.0.0.1

100.0.0.99

200.0.0.99

MRMS-A
MRMS-B

ALT ALT

ALTALT

5.0.0.255

2.0.0.255

192.0.2.1
192.0.2.2

100.0.0.1

100.0.0.2

200.0.0.1

200.0.0.2

200.0.0.3

1a) 3.0.0.1 2.0.0.1

1b) 5.0.0.255 2.0.0.1

UDP ports 4342

Map-Reply
nonce

EID prefix 200.0.0.0/24 has RLOCs

local, 3.0.0.1, priority 254, weight 50

4.0.0.1, priority 1, weight 100

5.0.0.1, priority 254, weight 50

1a

1b

2

73

200.0.0.0/24. Outgoing gateway from LISP world is PETR device (called PETR on Fig. 31) which Site

B ITRs are using as an intermediate router to pass traffic to the non-LISP world.

#1) PC with address 9.0.0.99 from non-LISP sends data packet to PC with address 200.0.0.99 in

Site B. Packet is routed through non-LISP world towards PITR because it advertises EID

prefixes from LISP world;

#2) PITR wraps the original packet with outer IP header, followed by UDP with destination port

4341 accompanied by LISP header. Outer header has 3.0.0.254 as source and 4.0.0.1 as

destination address because it is a locator for destination identifier;

#3) The packet traverses RLOC namespace until it reaches ETR’s locator interface 4.0.0.1. xTR-B2

removes additional headers and packet are forwarded to Site B and to end receiver with address

200.0.0.99;

#4) Communication is usually bidirectional, hence 200.0.0.99 replies to 9.0.0.99. Classical routing

delivers answer to ITR xTR-B2;

#5) ITR performs mapping query to lookup 9.0.0.99. However, mapping system returns LISP

Negative Map-Reply, which means that destination is not a part of LISP world, and it should be

routed via Proxy ETR. Auxiliary headers are added and then the packet is sent towards

preconfigured PETR with address 1.0.0.254.

#6) PETR decapsulates additional headers and forwards packet towards recipient 9.0.0.99 in the

non-LISP world.

Fig. 31: Illustrative communication between LISP and non-LISP world using PITR and PETR

xTR-A1

xTR-A2

xTR-B2

xTR-B1

xTR-B3

Site A

100.0.0.0/24 Site B

200.0.0.0/24

PITR

non-LISP

9.0.0.0/8

200.0.0.0/8

200.0.0.99

3.0.0.1

9.0.0.99

3.0.0.254

1.0.0.254

1

2

3

4

5

6

9.0.0.99  200.0.0.99

9.0.0.99  200.0.0.99

UDP dst. port 4341 + LISP

3.0.0.254  3.0.0.1

9.0.0.99  200.0.0.99

200.0.0.99  9.0.0.99

UDP dst. port 4341 + LISP

4.0.0.1  1.0.0.254

200.0.0.99  9.0.0.99

4.0.0.1

200.0.0.99  9.0.0.99

PETR

74

4.3 State-of-the-Art

This subchapter discusses available LISP implementations for both real and simulated environment.

Moreover, it outlines LISP test-bed network and adoption level by the enterprise.

4.3.1 Implementations

Despite the fact that Cisco employees did major LISP protocol design, Cisco does not claim any legal

rights. LISP is being further developed within IETF open standardization process and its working group

[110]. Hence, more than one referential implementation is available for customers and developers.

OpenLISP

OpenLISP [111] is the first open-source implementation of Unix-based systems, namely for FreeBSD 7

and FreeBSD 8. Unfortunately, it is not being developed anymore. Thus, the latest LISP control plane

version is from April 2012, and it does not contain any additional functional improvements.

Cisco IOS/IOS-XR/NX-OS

Operating systems in Cisco devices contains the most up-to-date LISP implementation [112]. LISP is

available in relevant releases of:

 IOS since version 15.1 for Catalyst 6000, Cisco 810, Cisco 880, Cisco 890, Cisco 1941, Cisco

2900, Cisco 3900 and Cisco 7200 platforms;

 IOS-XE since version 3.3 for ASR 1000 platform;

 IOS-XR since version 4.3 for ASR 9000 platform;

 NX-OS since version 5.2 for Nexus 7000 platform.

LISPmob

LISPmob [113] is an open-source project which offers LISP control plane and also LISP mobile node

[114] implementation, which allows devices like smartphones or tablets to benefit from LISP seamless

mobility. The project is multiplatform and currently supports all Linux-based systems including Android

or OpenWRT.

AVM Fritz!OS

AVM Fritz!OS [115] contains LISP implementation intended for Fritz!Box 7390 platform that offers

xTR and MS functionality.

75

4.3.2 Deployment

LISP BetaNetwork [116] is one of the first project focusing on widespread deployment. Currently,

600+ organizations (among others e.g. Google, Facebook, Cisco, Qualcomm, AT&T, Lufthansa and

Microsoft) from more than 34+ countries have joined it voluntarily during its five years existence.

Any organization may request to participate. After the quick review process, IPv4 pool of

address from prefix 153.16.0.0/16 and an IPv6 pool of address from prefix 2610:d0::/32 are assigned to

the organization. Both prefixes belong to ASN 3943 [117] so that PITR and PETR routers have own AS

from the perspective of the non-LISP world. Other information like assigned MSs, MRs and PxTRs are

provided by the registrar as shown for FIT-BUT in Fig. 32.

Fig. 32: FIT-BUT’s LISP BetaNetwork registration

Global connectivity to LISP BetaNetwork could be verified by: a) LISP Internet Groper (LIG)

(see RFC 6835 [118]), which is versatile usually command line tool for generating mapping requests

capable of retrieving locators to a given identifier; b) tools like LISPmon [119], which can verify

successfulness of ETR site registration.

4.3.3 Simulators

The research community has limited options how to observe and expand LISP features in a safe

environment of simulator where different scenarios could be easily scheduled and verified later.

One of a few attempts is CoreSim developed by Coras et al. [120]. It is written in Perl, and it

allows predict ITR and MS behavior at a macro-scale level using traffic traces, BGP data, and latency

estimations. However, CoreSim estimations use rather a general mathematical model taking into account

only the distance [121]. Currently, limited LISP implementation exists authored by Hoefling et al. [122]

to support LISP MobileNode NAT traversal [123]. However, it is intended for outdated INET-20100323

and OMNeT++ 4.0. Previously, LISP map-cache performance have been evaluated employing high-

level simulation that is not taking into account protocol implementation specifics [124].

Among other goals of this thesis is to provide the community with a variety of simulation models

supporting up-to-date version of LISP protocol.

fit-xtr:

Device Type - {IOS/FreeBSD}

Geographic - Czech Republic

DNS Name - fit-xtr

EID-Prefix Set - {153.16.48.112/28, 2610:D0:214D::/48}

RLOC Set - {tbd}

Map-Servers - {RIPE}{l3-london-mr-ms 195.50.116.18 intouch-ams-mr-ms-1 217.8.98.42}

- {RIPE}{tdc-mr-ms 193.162.145.50 intouch-ams-mr-ms-2 217.8.98.46}

Map-Resolvers - {RIPE}{l3-london-mr-ms 195.50.116.18 intouch-ams-mr-ms-1 217.8.98.42}

- {RIPE}{tdc-mr-ms 193.162.145.50 intouch-ams-mr-ms-2 217.8.98.46}

PXTR (RIPE) - {intouch-pxtr-1}{217.8.98.33, 2001:67C:21B4:107::b}

76

4.4 Contribution

LISP architectural implications are discussed in IETF draft [125] followed by companion paper [126].

Previous papers outline and discuss two major issues for LISP threatening its scalability – Site-Based

State Synchronization Problem and Locator Path Liveness Problem.

Site-Based Synchronization Problem occurs whenever EID-to-RLOC mappings (including

locator statuses) may need to be shared among nodes. Remember that LISP mapping queries are data-

driven. There is no need to rediscover mapping for the same data traffic by one xTR if this mapping is

already known to other site’s xTRs. Sharing of mapping improves routing of packets in case of

asymmetrical traffic flows. Imagine that traffic is leaving the site via two xTRs – one is actively

dispatching all traffic, another is backing up its functionality. Map-cache on active xTR is populated

with records whereabouts map-cache on backup has no mapping state. Whenever traffic shifts from

active path to backup path, former backup xTR experiences map-cache misses

Locator Path Liveness Problem is formulated by a question whether given set of source

locators and a set of destination locators, can bi-directional connectivity be determined between the

〈srcRLOC, dstRLOC〉 address pairs? Locator Path Liveness Problem is present not only in LISP but its

variants also apply to other candidates like HIP, SHIM6 or IRON-RANGER. In the case of LISP, if ITR

chooses destination RLOC, which is not reachable, then traffic is discarded somewhere along the path

towards destination LISP site.

This subchapter introduces two proposed improvements targeting some of the issues from

previously mentioned papers that increase LISP performance – map-cache synchronization and merged

RLOC probing. In order to evaluate contribution, we developed brand new OMNeT++ simulation

modules for LISP and also for Virtual Router Redundancy Protocol that is being deployed

simultaneously on ITR.

4.4.1 Virtual Router Redundancy Protocol

This section briefly outlines Virtual Router Redundancy Protocol because it is closely connected with

Site-Based Synchronization Problem scenarios. LISP is being successfully deployed in enterprise

networks, and one of its most beneficial use-cases is for data-centers networking. An important feature

of any data center is its ability to maintain high-availability of provided services. This feature is

accomplished mainly with redundancy. In the case of an outage, service delivery is not affected because

of redundant links, devices or power sources. Virtual Router Redundancy Protocol (VRRP) is among

related protocols and technologies guaranteeing redundancy and helping to achieve high-availability.

VRRP is widely adopted protocol providing redundancy of default-gateway68.

68 Default gateway: A crucial L3 device that serves as exit/entry point to a given network. For more, see

http://en.wikipedia.org/wiki/Default_gateway

77

VRRP combines redundant first hop routers into virtual groups. One master router actively

forwards client's traffic within each group, where others in the group are backing its functionality.

Backup routers are periodically checking the liveness of the master waiting ready to substitute it in the

case of failure. Switching to a new active router is transparent from the host’s perspective thus no

additional configuration or special software is needed.

VRRP specification is publicly available as RFC standard – RFC 3768 [127] describes IPv4-

only VRRPv2 and RFC 5798 [128] describes dual IPv4+IPv6 VRRPv3. VRRPv2 routers send control

messages to multicast address 224.0.0.18. VRRPv3 routers use ff02::12 for IPv6 communication. VRRP

has its own reserved IP protocol number 112.

Clustered redundant routers form a VRRP group identified by Virtual Router ID (VRID).

Within the group, a single router (called Master) is elected based on announced VRRP priority (a

number in the range from 1 to 255). Higher priority means a superior willingness to become Master,

zero priority causes the router to abstain from being Master. In the case of equal priority, binary higher

IP address serves as tie-breaker. VRRP election process is always preemptive (unlike to non-preemptive

HSRP or GLBP), which means that router with the highest priority always wins to be the Master no

matter whether group already have got other Master elected. Only Master actively forwards traffic.

Remaining routers (called Backups) are just listening and checking for Master’s keep-alive messages.

Hosts have configured virtual IP address as their default gateway. Only Master responds to ARP

Requests for this IP. This IP address has assigned reserved MAC address – 00:00:5e:00:01:$$ for

VRRPv2 and 00:00:5e:00:02:$$ for IPv6 (where $$ is VRID). Whenever VRRP group changes to a new

Master, ARP Gratuitous Reply is generated to rewrite association between an interface and reserved

MAC in CAM table(s) of the switch(es). This behavior allows transparent changing of Masters (in the

case of an outage) from host’s perspective.

VRRP has only one type of control message – VRRP Advertisement. If Master is not elected,

then VRRP routers exchange advertisements to determine which one is going to be a new Master. If

Master is already elected then, only Master is sending VRRP Advertisements to inform Backups that it

is up and correctly running. VRRP Advertisement is generated whenever advertisement timer (𝐴𝑇)

expires (by default every 1 second). If this interval is set to a lower value then Master’s failure is detected

faster but protocol overhead increases. Master down interval (𝑀𝐷𝐼) resets with each reception of an

advertisement message. Backup, which expires the 𝑀𝐷𝐼 sooner, becomes a new Master. Value of 𝑀𝐷𝐼

depends on priority of each VRRP router according to (1). The highest (best) priority Backup times out

first (because of the lowest 𝑠𝑘𝑒𝑤 𝑡𝑖𝑚𝑒) and thus takes over role as a new Master before others.

𝑀𝐷𝐼 = 3 × 𝐴𝑇 +
(256 − 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦) × 𝐴𝑇

256

⏞
𝑠𝑘𝑒𝑤 𝑡𝑖𝑚𝑒

OMNeT++ VRRP module is a byproduct of this thesis needed for accurate simulation of high-

availability scenarios allowing easy forming of active and backup paths for traffic.

78

4.4.2 Map-Cache Synchronization

Assume multiple redundant routers are acting as first hops in the high-availability scenario like in Fig.

33. Those routers are simultaneously clustered into VRRP groups and act as LISP’s xTRs – they run

LISP and VRRP at the same time.

The performance of map-and-encap depends on the fact whether xTR’s map-cache contains

valid EID-to-RLOC mapping or not. Dispatched data traffic drives map-cache record creation. If map-

cache misses the mapping, then, a mapping system needs to be asked, and initiating data traffic is

meantime dropped. This fact is illustrated in Fig. 33 for EID address y.y.y.y. On the one hand, packets

(with y.y.y.y as destination) can traverse ITR1 without any problem (locator c.c.c.c is present in map-

cache). On the other hand, same packets are discarded on ITR2, which misses the mapping. Packet

dropping is a logical step as long as the mapping is not discovered because map-and-encap cannot occur

without proper information. The rationale behind this behavior is the same as in the case of ARP

throttling [11], where any triggering traffic should be discarded to protect control-plane processing and

prevent superfluously recurrent mapping system queries.

Fig. 33: Site-Based State Synchronization Problem illustration

Each xTR has its map-cache, and its content may differ even within the same LISP site because

other traffic may initialize various map-cache entries. Hence, xTRs can easily experience severe packet

drops and LISP control message storms due to the map-cache misses when Master change occurs within

VRRP group.

Previous is known as Site-Based State Synchronization Problem. If we have two or more

redundant xTRs, then we want to reduce packet drops as much as possible in case there is a traffic shift

from an active to a backup device. xTR outage leads to the off-site signalization storm (lots of LISP

Map-Request/Reply messages being exchanged) and dispatching delay for ordinary traffic.

79

This problem is described as the one of LISP weak-points in [129] and theoretically investigated

in [130]. The viable solution would be to provide map-cache content synchronization that should

minimize map-cache misses upon failure. Inspired by that, we present our solution addressing this

problem.

We have decided to implement it as a technique maintaining synchronized map-caches within a

predefined synchronization set (SS) of ITRs. Any solicited LISP Map-Reply triggers synchronization

process among SS members.

SS members are identified and reached using the IP address. Following strategies might be used

when choosing appropriate SS member address:

 SS address comes from non-LISP world – Either IP address should be loopback or address of

dedicated interconnection shared by all SS members. In the first case, unique device loopbacks

need to employ additional routing. In the second case, the additional port for the dedicated

connection is seldom available. Also, tracking of SS member needs additional LISP control

plane updates;

 SS address comes from LISP world:

o SS address is RLOC – SS membership is bound to the operability of a given RLOC

interface, but this has negative implications for the situation, where xTR has more than

one RLOC available. Although, it is easy to track SS member status using return value

of RLOC probing;

o SS address is EID – The best option reflecting LISP’s ideology. EID as SS address

should be reachable via direct routing (xTRs share common EID segment) or unless all

RLOCs to this EID are down (which could be also used to track peer synchronization

status).

 Each record in the map-cache is equipped with a time-to-live (TTL) parameter. TTL expresses

how long the record is considered to be valid and usable for map-and-encap. By default, every record

uses the same initial TTL value. Map-caches within SS must maintain the same TTL on shared records;

otherwise a loss of synchronization might occur (on some ITRs, identical records could expire because

of no demand for traffic).

Either SS membership may be completely stateless, or SS member may maintain a state of its

synchronization peers. The stateful approach allows sending of partial synchronization updates. We

have implemented two modes of synchronization reflecting previous observation:

1) Naïve – The whole content of map-cache is transferred to SS. All mappings are then updated

according to the new content and TTLs are reset. This approach works fine, but it obviously

introduces significant transfer overheads;

80

2) Smart – Only record that caused synchronization is transferred. However, peer synchronization

status have to be employed to deal with the situation when SS member goes back up and

completely lacks any mapping. At that time, a whole set of map-cache content must be sent (not

just a partial update). Moreover, we bound this mode with the following policy. When TTL

expires, the ITR must check record usage during the last minute (one minute should be a period

long enough to detect ongoing communication). If the mapping has not been used (based on the

last lookup time of cache record), then it is removed from the cache. Otherwise, its state is

refreshed by query followed by synchronization.

Both approaches guarantee that devices within SS could forward rerouted LISP data traffic

without packet loss or interruption because they share the same content as ITR’s map-cache of

malfunctioned former Master.

Synchronization itself is done with the help of two new LISP messages – one carries

synchronization data, another optionally acknowledges successful synchronization:

 LISP CacheSync – It contains map-cache records, which are being synchronized, and

authentication data, which protect SS members from spoofed messages;

 LISP CacheSync Ack(nowledgement) – Because LISP leverages UDP, it cannot guarantee

message delivery. However, we decided to employ the same principle as for LISP Map-Register

and LISP Map-Notify. Hence, LISP CacheSync delivery may be optionally confirmed by

echoing back LISP CacheSync Ack message.

Message structure of LISP CacheSync is depicted in Fig. 34 and LISP CacheSync Ack in Fig.

35. Notable differences when comparing to LISP CacheSync/(Ack) with the structure of LISP Map-

Register/Notify are:

 Both messages also include new Type values – LISP CacheSync is 5, LISP CacheSync

Acknowledge is 6;

 LISP CacheSync header contains C flag. When C flag is set on, then synchronization

acknowledgment is requested by a sender. Receiver (i.e., SS member) must reply with LISP

CacheSync Ack containing all the map-cache records that have been successfully processed.

LISP CacheSync message is resent after the acknowledgment awaiting timeout (by default with

cumulative value 2numOfRetries);

 There is no need for A flag in Cache Record and L and p flags in RLoc (for details about flag

meanings, please see [98]);

 As in the case of LISP Map-Register/Notify, LISP CacheSync/(Ack) mandatorily contain nonce

and authentication using HMAC to avoid spoofing of false unsolicited cache synchronization

information.

81

Fig. 34: LISP CacheSync message format

Fig. 35: LISP CacheSync Acknowledgment message format

0
8

16
24

P

N
o

nc
e

..
.

T
yp

e=
5

R
e

se
rv

e
d

C
a

ch
e

R
ec

or
d

 C
o

un
t

R
e

co
rd

 T
T

L
 1

R
L

oc
 C

o
un

t 1
E

ID
 m

as
k-

le
ng

th
 1

E
ID

-P
re

fix
-A

F
I 1

E
ID

-P
re

fix
 1

 ..
.

P
ri

or
ity

 1

A
C

T
R

e
se

rv
e

d

R
sv

d
M

ap
-V

e
rs

io
n

 N
u

m
b

er

W
e

ig
ht

 1
M

 P
ri

or
ity

 1
M

 W
e

ig
ht

 1

U
n

us
ed

 F
la

g
s

R
L

oc
at

o
r

A
F

I 1

L
oc

at
o

r
1

 ..
.

P
ri

or
ity

 m
W

e
ig

ht
 m

M
 P

ri
or

ity
 m

M
 W

e
ig

ht
 m

U
n

us
ed

 F
la

g
s

R
L

oc
at

o
r

A
F

I m

L
oc

at
o

r
m

 ..
.

C
a

ch
e

R
ec

or
d

 n
 ..

.

A
u

th
e

n
tic

at
io

n
D

a
ta

 ..
.

K
e

y
ID

A
u

th
e

n
tic

at
io

n
D

a
ta

 L
e

ng
th

RLoc

n = Cache Record Count

m = RLoc Count

Cache Record

C

32
0

8
16

24

P

N
o

nc
e

..
.

T
yp

e=
6

R
e

se
rv

e
d

C
a

ch
e

R
ec

or
d

 C
o

un
t

R
e

co
rd

 T
T

L
 1

R
L

oc
 C

o
un

t 1
E

ID
 m

as
k-

le
ng

th
 1

E
ID

-P
re

fix
-A

F
I 1

E
ID

-P
re

fix
 1

 ..
.

P
ri

or
ity

 1

A
C

T
R

e
se

rv
e

d

R
sv

d
M

ap
-V

e
rs

io
n

 N
u

m
b

er

W
e

ig
ht

 1
M

 P
ri

or
ity

 1
M

 W
e

ig
ht

 1

U
n

us
ed

 F
la

g
s

R
L

oc
at

o
r

A
F

I 1

L
oc

at
o

r
1

 ..
.

P
ri

or
ity

 m
W

e
ig

ht
 m

M
 P

ri
or

ity
 m

M
 W

e
ig

ht
 m

U
n

us
ed

 F
la

g
s

R
L

oc
at

o
r

A
F

I m

L
oc

at
o

r
m

 ..
.

C
a

ch
e

R
ec

or
d

 n
 ..

.

A
u

th
e

n
tic

at
io

n
D

a
ta

 ..
.

K
e

y
ID

A
u

th
e

n
tic

at
io

n
D

a
ta

 L
e

ng
th

RLoc

n = Cache Record Count

m = RLoc Count

Cache Record

32

82

The diagram in Fig. 36 depicts FSM implementing map-cache synchronization where transitions

are denoted with “input / action” labels. Our solution provides a clean-slate way how to alter the content

of the map-cache reliably. Nevertheless, others might try to leverage options already available in LISP.

Unfortunately, each one has some disadvantage.

The first approach is to alter existing LISP Map-Requests by forcing included map-reply record

field to contain more than one record. However, this approach is unreliable because it lacks

acknowledgment scheme and cannot solve all following wrong goings. What if receiver side does not

recognize this option inside LISP Map-Request? What if LISP Map-Request did not reach receiver?

What if the receiver wants to process only part of synchronization information? What if SS-members

need to synchronize map-cache when the condition for sending LISP Map-Request is not met?

The second approach is that LISP already contains an on-demand renewal of mapping

information called Solicit-Map-Request (SMR). SMR is a mechanism how ETRs may rate-limit

requests and notify ITRs about mapping change. When mapping changes, ETR starts to send LISP Map-

Request (with the SMR-bit set on) messages to ITRs with which it recently exchanged data. Then, ITR

generates SMR-invoked LISP Map-Request to discover new mapping. If we want to use SMR to push

new mappings into ITR’s map-cache, then the best way seems to be extending the functionality of MR

(see [130]). However, this approach yields significant off-site signalization overhead.

Fig. 36: Map-cache synchronization operation

Initiate Map-Cache Synchronization

Process Map-Cache Synchronization

Acknowledgment Awaiting Timer Expiration
Null

Syncing mode?

Prepare all

map-cache entries

Prepare single

map-cache entry

Naive

Smart

Ack required?

true

/ send LISP CacheSync with C=1 to all SS members

 && enqueue LISP CacheSync for retransmission

 upon ack awaiting timer expiration

false

/ send LISP CacheSync with C=0 to all SS members

Process received

map-cache entries
Ack required?

true

/ send LISP CacheSync Ack

 with all successfully processed

 map-cache entries

false

Proper

CacheSync Ack

received?

true

false

/ numOfRetries++

Prepare enqueued

LISP CacheSync

numOfRetries

<=

MaxRetries

false

Dequeue

LISP CacheSync

true
message prepared

/ send prepared LISP CacheSync

 && reset ack awaiting timer to 2numOfRetries

all map-cache

entries processed

SS member

recovering?

true

false

sync data

prepared

re
ce

iv
e

LI
S

P
 C

ac
h

eS
yn

c
A

ck

/ r
e

m
em

be
r

re
ce

pt
io

n
fo

r
ac

k
aw

ai
tin

g

 t
im

e
r

ch
ec

k

83

4.4.3 Merged RLOC Probing

Locator Path Liveness Problem concerns whether a destination locator is reachable via particular source

locator or, in other words, whether bi-directional connectivity exists between a given pair of locators.

Problem relevant to LISP is depicted in Fig. 37 where xTR-A1 asks for Site B locators. In this case, two

locators are available (1.0.0.1 and 2.0.0.1). xTR-A1 chooses the second one as a destination address for

packets. If the link between ISP1 and ISP2 goes (un)intentionally down, 2.0.0.1 is not reachable

anymore, and xTR-A1 must somehow find out this fact.

Fig. 37: Locator Path Liveness Problem illustration

Locator Path Liveness detection (checking whether RLOC is reachable or not) does not scale

very well in large networks because the reachability of every destination locator must be probed against

every source locator of a given device. Complexity of such a task is generally 𝑂(𝑛 ×𝑚), where 𝑛 is a

number of source and 𝑚 a number of destination locators. However, instead of brute-force probing some

hints might be used to mitigate (but not to avoid) such complexity, e.g. piggybacking, timeouts,

existence of underlying routing, positive feedback from protocol control messages or other protocols.

To make Locator Path Liveness Problem even more complicated, let us imagine a situation when

LISP site has two or more ITRs with different destination locator reachability. One ITR has connectivity,

and another has not (e.g. xTR-A1 and xTR-A2 on Fig. 37). Hence, all packets processed by that ITR are

going to be discarded somewhere in the network. Unfortunately, neither IGP responsible for routing the

packet to faulty ITR nor hosts have capabilities to detect this issue from their subjective point of view.

In order to find a remedy for this problem, we focused on the behavior of Cisco referential

implementations and their RLOC-probing algorithm checking locator reachability. ITR is probing

assigned locators for each configured EID. This behavior is in compliance with [98] but it leads to

repeated check of the same locator multiple times, which represents scalability issue in larger networks.

xTR-A1

xTR-B

3.0.0.13.0.0.1

1.0.0.1 2.0.0.1

×

xTR-A2

84

We decided to decrease protocol overhead by merging EIDs to check locator liveness with a

single RLOC probe that we call merged RLOC probing.

The simple but rather a trivial approach would be to make the following assumption: “If the

same locator is reachable for one EID then it would also be reachable for other EID.” Hence, the router

can generate only single RLOC probe during one liveness checking period. If it receives positive LISP

Map-Reply Probe, it may consider probed locator as alive for all EIDs in map-cache that are using it.

More sophisticated approach is to:

1) On sender, check liveness of a given locator with a single LISP Map-Request Probe containing

one or more query records. Each query record specifies cached EID that uses probed RLOC;

2) On receiver, respond with LISP Map-Reply Probe that includes locator status updates for all

queried EIDs contained in request (or only subset of those EIDs that are in up state);

3) Back on the sender, refresh locator status of relevant EIDs in map-cache according to answer(s)

in reply.

Above described mechanism is compatible with RFC description and does not need any protocol

extensions. It preserves the accuracy of Cisco’s RLOC probing algorithm but with only single RLOC

probe exchanged. We have integrated all above described algorithms – Cisco’s, Simple and

Sophisticated – in our LISP simulation module.

4.4.4 Design and Implementation

The ANSA project (Automated Network Simulation and Analysis) running at our university is dedicated

to developing the variety of simulation models compatible with RFC specifications or referential

implementations. Subsequently, these tools allow formal analysis of real networks and their

configurations. They may be publicly used as the routing/switching baseline for further research

initiatives, i.e., in simulations for proving (or disproving) certain aspects of technologies and/or related

protocols. In the frame of this project, we have developed ANSARouter as simulation module

mimicking behavior of real generic Cisco router.

We have implemented LISP as OMNeT++ compound module called LISPRouting, which

provides independent xTR, MR, and MS functionality. It consists of five submodules that are depicted

in Fig. 38 and described in subsections below the figure. LISPRouting exchanges messages with

UDP submodule, IPv4 networkLayer and IPv6 networkLayer6 modules of INET framework.

LISPRouting integration within ANSARouter is depicted in Appendix 8.2. Implementation is fully

in compliance with namely [98] and [100], which has been proved in our papers [131], [132] and [133].

85

Fig. 38: LISPRouting module structure

All LISP abstract data structures and settings contain dynamic state according to simulation

setup and run, or could be statically preconfigured using XML file prior to simulation beginning. Map-

cache or map/site database are implemented using generic class LISPMapStorage that is extended

via C++ inheritance to accommodate different requirements of each control plane component. Every

LISPMapStorage contains the ordered list of LISPMapEntry instances.

Following subchapters contain a brief description of implementation notes regarding each

implemented submodule. Illustrative figures refer to the testing scenario depicted in Fig. 39.

Fig. 39: LISP illustrative scenario

eth0
192.168.1.99/24

2001:db8:a::99/64

eth0
192.168.2.99/24

2001:db8:b::99/64

31.0.0.1/30
eth0

RLOC space

EID space
 Site A

EID space
 Site B

86

The scenario contains two sites – green areas Site-A (interconnected by switch S1, bordered by

xTR_A1 and xTR_A2) and Site-B (interconnected by S2, bordered by xTR_B1 and xTR_B2). The network

graph contains router MRMS, which acts as MR and MS for both sites. IPv4 only capable core (red area)

is simulated by a single Core router. Static routing is employed to achieve mutual connectivity across

the core. HostA and HostB are dual-stack devices, where HostA is scheduled to ping HostB after second

successful site registration. MRMS is allowed to proxy-reply on mapping requests for Site-A. All RLOCs

are configured with priority 1 and weight 50 to achieve equal load balancing for incoming traffic. This

scenario (named “LispHA” located in /examples/ansa/lispHA) is contained in contributed LISP

source codes thus it is easy to reproduce results.

LISPMsgLogger Submodule

This submodule records and collects statistics about the LISP control plane operation, i.e., number, type,

timestamp and size of each sent/received message. The statistics collection is integrated into OMNeT++

as a special signal, and build-in result analysis allows the creation of complex data sets.

LISPCore Submodule

Module independently combines the functionality of ITR, ETR, MR and MS. Each role could be enabled

from configuration thus creating different kinds of high-level devices. Roles are connected with

following tasks: a) encapsulation and decapsulation of data traffic; b) ETR’s site registrations and MS

site maintenance; c) ITR performing mapping lookups; and d) MR delegating queries.

This module handles all LISP control and data traffic. Messages are processed according to

finite-state machines that are based on RFC description. Various timer expirations govern some states

transitions (e.g., RLOC probing, regular site registration) others by message events (e.g., mapping

request-reply scheme). Control messages may cause an internal state change of another LISP submodule

such as new mapping added to map-cache or locator state refreshed by RLOC probe. Control messages

pass to/from UDP submodule. Data messages are properly encapsulated/decapsulated and passed to

appropriate network layer submodule.

LISPMapDatabase Submodule

Each xTR is designated to maintain a state of its LISP sites. This involves responsibility to retrieve

results of probed non-local locators or to know, which local interfaces are used for LISP routing. The

necessary amount of state information is similar as in the case of Cisco’s control plane for show

{ip|ipv6} lisp database command [134].

Fig. 40 illustrates map database with two LISP sites (192.168.1.0/24 and 2001:db8:a::/64) and

their state.

87

Fig. 40: Content of xTR_A1’s LISPMapDatabase

LISPMapCache Submodule

The module contains local map-cache that is populated on demand by routing data traffic between LISP

sites. Each record (EID-to-RLOC mapping) has its separate handling (i.e., expiration timer, status,

available RLOCs, associated LISP routing action). Submodule also contains synchronization type

parameter that tells LISPCore whether to perform map-cache syncing or not. Map-cache lookups are

implemented as standard longest prefix match operation that tries to return the most exact EID mapping

that is currently available. In real routers, there are separate map-caches for IPv4 and IPv6 EIDs, but in

simulator we can afford to simulate them using one abstract data structure. Nevertheless, all entries are

sorted according to EID’s binary IP address value, where IPv6 come after IPv4. Cisco’s control plane

maintains similar information, what could be seen in the output of show {ip|ipv6} lisp map-

cache command [134].

Fig. 41 shows map-cache with two records:

0) default one for IPv4 and IPv6 EIDs that are not matched by any subsequent record and that

causes LISPCore to initiate mapping query;

1) record for EID 2001:db8:b::/64 that is reachable via two locators 21.0.0.1 and 22.0.0.2.

Fig. 41: Content of xTR_A1’s LISPMapCache

88

LISPSiteDatabase Submodule

Submodule contains MS’s site database that maintains LISP site registration from ETRs. Each site may

have one or more ETR servers, where each one registers set of EIDs. Apart from ETR’s independent

EID-to-RLOC mappings, LISP site database consist of site-specific parameters such as shared key,

proxy capability or registrar’s statistics. State information is similar to the content of Cisco’s control

plane for the show lisp site detail command [134].

Illustration in Fig. 42 shows MRMS’s site-database with two successfully registered sites: 0)

Site-A with ETRs 11.0.0.1 and 12.0.0.1; and 1) Site-B with ETRs 21.0.0.1 and 22.0.0.1. Site-A’s ETRs

register EIDs 192.168.1.0/24 and 2001:db8:a::1/64 reachable via RLOCs 11.0.0.1 and 12.0.0.1. Site-B’s

ETRs register EIDs 192.168.2.0/24 and 2001:db8:b::1/64 reachable via RLOCs 21.0.0.1 and 22.0.0.1.

Fig. 42: Content of MRMS's LISPSiteDatabase

89

4.4.5 Results

This section presents results of evaluation of newly implemented mechanisms. Each measured

phenomenon has its subsection with dedicated network graph and scenario. The goal of this subchapter

is to show: a) the impact of synchronization on a packet drop rate (and a number of map-cache misses)

and to enumerate the burden of deploying it on control plane; and b) the impact of merged RLOC

probing on control plane processing.

Impact of Map-Cache Synchronization

We prepared simulation network that contains a LISP site (network EID 192.168.1.0/24 reachable via

two RLOCs 11.0.0.1 and 12.0.0.1) with two routers (xTR1 and xTR2), which provide highly-available

VRRP default gateway (192.168.1.254) for two hosts interconnected by switch SW. Host1 and Host2

are pinging IPv4 EIDs (172.16.[0-19].0/24) randomly thus generating traffic that triggers LISP mapping

system queries. All routing is done statically. Hence, there is no need to employ routing protocol on

Core router. We prepared special xTR called xTR_Responder1 that: a) registers destination EIDs to

MRMS; and b) responds to hosts ICMP messages. The whole network graph is depicted in Fig. 43. Also

this scenario (named “LispSyncTest”) is located in /examples/ansa/lispSyncTest folder of

available source codes.

Fig. 43: LISP testing network for Map-Cache synchronization

The testing scenario is focused on cache misses due to the missing mapping rather than expired

ones because of default TTL value (1 day). Five minutes time slot with the single VRRP Master outage

is the simplest illustration of how to compare the impact of map-cache synchronization. During the

outage, all xTR1’s interfaces shut down (i.e., they are physically disconnected from the network). The

xTR1’s control plane is operational (generating scheduled LISP messages, which are not delivered).

eth0
eth3 21.0.0.1/30

31.0.0.1/30
eth0

eth0

192.168.1.101/24

eth0

192.168.1.102/24

RLOC space
EID space

e
th

2

1
0

.0
.0

.0
/3

0

VRRP 10
virt.IP

192.168.1.254

lo[0-19]

172.16.[0-19].0/24

1

90

We scheduled following phases for the test run focusing on map-cache synchronization:

#1) At first, all xTRs register their EIDs. In the case of xTR_Responder1, EID space is modeled

with the help of loopback interfaces – twenty of them ranging with addresses from

172.16.0.0/24 to 172.16.19.0/24 reachable via single RLOC 21.0.0.1. In case of xTR1 and

xTR2, EID 192.168.1.0/24 is reachable via two RLOCs 11.0.0.1 and 12.0.0.1;

#2) xTR1 and xTR2 form VRRP group with VID 10 and virtual address 192.168.1.254, which

is used by Host1 and Host2 as default-gateway. xTR1 is Master because of higher priority

(xTR1 has 150, xTR2 only 100) as long as it is operational.

#3) Host1 starts pinging ten random EIDs in the range from 172.16.0.0/24 to 172.16.9.0/24.

Because EIDs are chosen randomly, they may be duplicate. Each first ICMP packet causes

mapping query and is dropped.

#4) Then right before a new LISP registration (at t=119s), xTR1 failure occurs. Hosts traffic

is diverted to a new VRRP Master, which is xTR2.

#5) After phase 4), also Host2 starts to ping ten random EIDs from 172.16.10.0/24 to

172.16.19.0/24. Same duplicity rule as in 3) applies.

#6) xTR1 recovers from the outage at t=235s and once again all hosts traffic goes through it.

Depending on the map-cache synchronization type, additional map-cache misses might occur.

xTR1 and xTR2 synchronized themselves via their RLOCs (11.0.0.1 for xTR1 and 12.0.0.1 for xTR2).

The scenario has been tested with three simulation configurations, which we can divide

according to the used map-cache synchronization technique: α) no synchronization at all (default LISP

behavior); β) naïve mode; and γ) smart mode. Impact on map-cache is summarized in Tab. 9 for all

previously mentioned different configuration runs. Fewer map-cache misses are considered better.

We do not employ LISP synchronization acknowledgment scheme for β/γ-runs, the impact of

acks is analyzed later. The scenario offers testing of all three kinds of addressed for SS member

identification – e.g., nonLISP with 10.0.0.0/30; RLOC with 11.0.0.1 and 12.0.0.1; and EID with

192.168.1.1 and 192.168.1.2) with same results. Nevertheless, we use EIDs as the most feasible options.

Before interpreting results, please note that Host1 randomly (using same random generator

seeds) chose eight different EIDs, Host2 six EIDs, fourteen various ping destinations in the summary.

Phase

α cache

misses
β cache

misses
γ cache

misses

xTR1 xTR2 xTR1 xTR2 xTR1 xTR2

#3 8 0 8 0 8 0

#5 0 14 0 6 0 6

#6 14 0 0 0 0 0

Total 22 14 8 6 8 6

Tab. 9: Count of map-cache misses under different configurations in scenario with one outage

91

Without any synchronization, traffic diversion to a new VRRP Master always causes misses due

to unknown mappings. We can see it in phases #5 and #6 for α-run when the router starts to dispatch

LISP data with the empty map-cache.

If synchronization is employed, then, only new destinations lead to map-cache miss. This is

because a new VRRP Master already has mappings discovered by neighbor xTR. Hence, there is a

difference in phase #5 for α-run (empty cache) and β/γ-runs (cache in sync with SS member). The

difference (36 cache misses versus 14) would be even more significant in the case of multiple VRRP

Master outages. Please note that every map-cache miss is also connected with the data packet drop.

In order to compare synchronization modes, we conducted measurement taking into account all

LISP control messages processed by LISPCore module, namely their packet sizes. We assume that

larger size is always a greater burden for router’s control plane processing. Fig. 44 shows results (α-run

= blue crosses, β-run = green triangles, γ-run = red circles), where each symbol represents one LISP

control message.

Fig. 44: xTR1’s LISP control messages occurrence and total processed byte size in scenario with single outage

We can see that smart outperforms naïve because it is less intensive while only single mapping

is transferred during synchronization, not a whole map-cache. Moreover, both synchronization modes

are better than no synchronization on protocol overhead because they decrease the number of mapping

queries (i.e., exchanged messages count). The difference is not so significant on Fig. 44, especially

between naïve and no sync mode. However, it is getting more obvious as the number of VRRP outages

increases. Following table and figure prove this claim for the same network but with two xTR1 outages

– basically phases #4 and #6 repeat twice.

92

Phase

α cache

misses

β cache

misses

γ cache

misses

xTR1 xTR2 xTR1 xTR2 xTR1 xTR2

#3a 8 0 8 0 8 0

#5a 0 14 0 6 0 6

#6a 14 0 0 0 0 0

#5b 0 0 0 0 0 0

#6b 14 0 0 0 0 0

Total 36 14 8 6 8 6

Tab. 10: Count of map-cache misses under different configurations in scenario with two outages

Fig. 45: xTR1’s LISP control messages occurrence and total processed byte size in scenario with two outages

Repetition of phases 4), 5) and 6) is denoted in Tab. 10 with letters: “a” for the first outage; and

“b” for the second outage. In Tab. 10, we can observe that a total number of cache misses for α-run has

increased by 14. xTR1 had gone down (losing its map-cache content), then went back (repopulating

map-cache once again with 14 EIDs) and then this cycle repeats once again. For β-run and γ-run,

additional outages pose no change, because xTR1 completely synchronizes itself with xTR2 (xTR2 sends

the whole map-cache as soon as it detects the status of the one of xTR1’s RLOCs up), when it is once

again operational. Fig. 45 shows an increase in a number of processed LISP control message for no

synchronization, where impacts of other synchronization techniques remain same.

LISP synchronization acknowledgment mechanism poses an additional control plane burden. In

order to evaluate acknowledgment impact, we conducted measurement on the same network with two

outages. The results in a number of processed LISP control messages bytes are depicted in Fig. 46 and

can be compared with Fig. 44.

93

Fig. 46: xTR1’s LISP control messages occurrence and total processed byte size in scenario with two outages + ack

It is apparent that protocol overhead on the number of messages has increased. In the case of no

synchronization, it slightly outperforms naïve mode by a total size of processed bytes. However, the

smart mode still has the best characteristic even with enabled acknowledgments. Once again, we can

expect that additional outages or more EID ping destinations would influence results in favor of β/γ-

runs over α-run.

To summarize the evaluation of map-cache synchronization technique, we provide Tab. 11,

which shows α/β/γ-run (i.e., none, naïve and smart sync) statistics for different scenarios (i.e.,

one/two/three outage(s) with or without acknowledgment). xTR1’s statistic numbers are depicted with

following column meanings: “miss” as the number of map-cache miss occurrence; “cnt” as the total

count of LISP control plane messages sent and received; “size” as processed messages count by LISP

control plane measured in total byte size. We added to Tab. 11 also same statistics section for the

scenario with three outages in order to analyze trends even thou that it is not described via dedicated

table and graph above (nevertheless, we appended them to Addendum 8.3.2 for completeness). Results

show a linear growth in complexity.

94

single xTR1 outage scenario single xTR1 outage with sync ack scenario

α β γ α β γ
miss cnt size miss cnt size miss cnt size miss cnt size miss cnt size miss cnt size

22 81 4 458 8 62 4 328 8 62 3 796 22 81 4 458 8 71 5 458 8 71 4 394

two xTR1 outages scenario two xTR1 outages with sync ack scenario

α β γ α β γ
 miss cnt size miss cnt size miss cnt size miss cnt size miss cnt size miss cnt size

36 109 5 718 8 63 4 614 8 63 4 082 36 109 5 718 8 73 6 030 8 73 4 966

three xTR1 outages scenario three xTR1 outages with sync ack scenario

α β γ α β γ
 miss cnt size miss cnt size miss cnt size miss cnt size miss cnt size miss cnt size

50 137 6 978 8 64 4 900 8 64 4 368 50 137 6 978 8 75 6 602 8 75 5 538

Tab. 11: xTR1’s statistics for different map-cache synchronization scenarios

Impact of Merged RLOC Probing

We took the previous network and adjusted it. Currently, it contains a LISP site with just one xTR router

and one end-device called Host1. More important are LISP sites that are reachable via xTR_Responder1

and xTR_Responder2. We simulate multiple EID networks reachable via the same xTRs with the help

of loopback interfaces. Each xTR_Responder has forty loopbacks with EID addresses in the range of

172.16.[0-39].0/24. Each EID is being registered towards MRMS as reachable via xTR_Responder1’s

RLOC 21.0.0.1 and xTR_Responder2’s RLOC 22.0.0.1. VRRP functionality on xTR is disabled because

it is not needed for this scenario. Host1 might randomly generate ICMP traffic towards destination EIDs,

but this is not necessary for merged RLOC probing analysis. All communicating parties are

interconnected via Core employing static routing configuration. The whole network graph is depicted

in Fig. 47. Also this scenario (named “LispProbeTest”) is located in

/examples/ansa/lispProbeTest folder of available source codes.

Fig. 47: LISP testing network for merged RLOC probing

11.0.0.1/30
eth0 eth1

3
1

.0
.0

.1
/3

0
et

h
0

eth0
192.168.1.101

192.168.1.1/24

eth1

lo[0-39]
172.16.[0-39].0/24
2001:db8:ac10:[0-39]::/64

lo[0-39]
172.16.[0-39].0/24
2001:db8:ac10:[0-39]::/64

95

RLOC probing starts immediately after LISP routing control plane is initialized. Following

phases occur no matter on used RLOC probing algorithm:

 Probing xTR sends LISP Map-Request Probe to RLOC address for a given set of EIDs;

 Probed xTR responds with LISP Map-Reply Probe announcing that RLOC is up;

 In case that LISP Map-Request Probe was not replied, probing xTR repeats the probe at time

𝑡𝑛𝑒𝑥𝑡 = 𝑡𝑙𝑎𝑠𝑡 + 2
𝑛𝑢𝑚𝑂𝑓𝑅𝑒𝑡𝑟𝑖𝑒𝑠 , where 𝑡𝑙𝑎𝑠𝑡 is the time last probe was sent and 𝑛𝑢𝑚𝑂𝑓𝑅𝑒𝑡𝑟𝑖𝑒𝑠

is a number of retry attempts to send this probe. By default, after three unsuccessful LISP Map-

Request Probe, RLOC is marked as down and the next probe is scheduled after 60 seconds.

Optional phase 3) behavior is solely based on Cisco implementation observations. Also Cisco’s

LISP implementation has some other specifics: a) postponed start of first EID registration (𝑡 + 60

seconds since control plane initialization); b) postponed start of RLOC probing for IPv6 RLOCs

(𝑡 + 30 since the first IPv4 probe). We have integrated this behavior into the LISP simulator. However,

we are not employing it in order to provide better readability of this scenario’s results.

These phases repeat by default every minute to keep RLOC reachability up-to-date. This interval

could be decremented to a lower value, but protocol overhead increases in an inverse relationship.

Measurement is focused on a number of LISP Map-Request/Reply Probes exchanged between

xTR_Responder1 and xTR_Responder2 and the amount of corresponding bytes processed by

xTR_Responder1’s LISP control plane. We assume that five minutes simulation time is a period long

enough to show the trend of each RLOC probing algorithm. During this time, five RLOC probe batches

occur. Except mandatory EID registrations, no other LISP control traffic is spoiling the results.

We have conducted two simulation scenarios in order to observe complexity trends. The first

one is for the network with forty different EIDs (twenty IPv4 172.16.[0-19].0/24 and twenty IPv6

2001:db8:ac10:[0-19]::/64) on xTR_Responders reachable via RLOCs 21.0.0.1 and 22.0.0.1, the second

with eighty different EIDs (forty IPv4 172.16.[0-39].0/24 and forty IPv6 2001:db8:ac10:[0-39]::/64).

All three algorithms are evaluated separately as different configuration simulation runs - Cisco’s default

algorithm as δ-run, simple as ε-run and sophisticated as λ-run algorithm variants of merged RLOC

probing.

40 EIDs scenario 80 EIDs scenario

δ ε λ δ ε λ
cnt size cnt size cnt size cnt size cnt size cnt size

805 55 500 25 8 520 25 28 530 1 605 110 900 25 15 920 25 56 330

Tab. 12: xTR_Responder1’s statistics for different RLOC probing algorithm scenarios

Total count of sent and received LISP control messages are shown in Tab. 12. Columns have

following meaning: “cnt” as the total count of LISP control plane messages sent and received; “size” as

the amount processed messages by LISP control plane measured in total byte size.

96

Apart from five LISP Map-Register, xTR_Responder1 five times: a) sends LISP Map-Request

Probe and receives LISP Map-Reply Probe; b) receives xTR_Responder2’s probes and responds to them

with replies. It is apparent that a count of exchanged messages is drastically lower when using any

merged RLOC probing algorithm. Cisco’s algorithm generates RLOC probe for each EID-to-RLOC

mapping, which means forty/eighty LISP Map-Request Probe and forty/eighty LISP Map-Reply Probe

messages per single phases #1 and #2 occurrences. Opposite to that any merged RLOC algorithm

exchanges only single LISP Map-Request/Reply Probe pair between xTR_Responders.

Fig. 48: xTR_Responder1’s LISP messages occurrence and total processed byte size in scenario with forty EIDs

In Fig. 48, we can see that ε-run has better protocol overhead measured in the total amount of

bytes processed by xTR_Responder1. This is because each probe carries only single EID chosen in a

round-robin fashion, where successful reception of LISP Map-Reply Probe refreshes RLOC state for all

EIDs that are using it. In the case of the sophisticated algorithm, all relevant EIDs are packed in single

probe thus (significantly) increasing its size (but still half of Cisco’s total processed byte size). On the

other hand simple merged RLOC probing algorithm might seem to be too simple and lacking of accuracy

if we want the use-case where the same RLOC is up for some EIDs, and down for another EIDs. In that

case, sophisticated variant offers the same functionality but with better granularity.

For completeness, the same graph as Fig. 48 but for a scenario with eighty EIDs is in

Addendum 8.3.3. Because scenarios are linearly dependent, the only difference is in Y-axis values and

a higher amount of RLOC probe (symbol) occurrences.

97

4.5 Chapter Summary

This chapter described in great detail all routing aspects of LISP. In the first subchapter, we started with

a basic overview of LISP functionality and its main components. We focused on the distributed mapping

system of LISP including how map-cache content impacts LISP routing performance. We outlined LISP

signalization messages together with their syntax and semantics. We discussed ways how LISP coexists

with traditional TCP/IP networks and what are transition possibilities and deployment options.

In the next subchapter, we demonstrated LISP theory of operation on concrete examples. We

started with simple unicast data transfer focusing on map-and-encap parts of packet handling.

Proceeding next, we illustrated mapping system behavior including LISP site registration, EID-to-

RLOC mapping query, and subsequent response. As the last demonstration, we depicted communication

between LISP and the non-LISP world.

The Subchapter 4.3 provided Rather a brief information regarding LISP global deployment

(i.e., LISP BetaNetwork) and available vendor’s implementations. We also mentioned existing

simulators and simulation modules that have been used for LISP research in the past.

The last subchapter described one of the main contributions of this thesis. Two major issues are

introduced that limit LISP operation – Site-based Synchronization Problem and Locator Path Liveness

Problem. Furthermore, we proposed specific map-cache synchronization techniques and merger RLOC

probing algorithms, which should reduce protocol overhead and increase LISP routing performance.

Hence, these improvements should at least partially deal with problems above. Moreover, we developed

and implemented brand new simulation modules of LISP (and as a byproduct also VRRP) intended for

OMNeT++. Employing these modules, we tested and successfully proved the effectiveness of proposed

improvements.

If we want to qualify and quantify impact of our propositions the following items hold:

 Both naïve and smart map-cache synchronization modes significantly reduce (theoretically to

zero) map-cache misses for sites with multiple ITRs;

 Smart mode outperforms naïve mode in protocol overhead (in number of processed bytes):

o having approx. 11% lower overhead for scenarios without acknowledgment and both

are better than no synchronization;

o having approx. 17% lower overhead for scenarios with acknowledgment, where smart

is always better than no synchronization, and naïve gets better with more outages;

 Merged RLOC probing decreases radically protocol overhead (in processed bytes count) of

locator liveness checking:

o the simple algorithm reduces overhead by approx. 85%;

o the sophisticated algorithm reduces overhead by approx. 50%;

98

5 Recursive Internet Architecture

RINA is the clean-slate architecture aimed to change the whole Internet unlike just temporary fixes for

current status quo. RINA concept is based on John Day’s thoughts, lectures and book [3] regarding

ISO/OSI initiative failure, TCP/IP development, commercial adoption of the Internet and other

technical/political events in Internet history (see Addendum 8.4 for more).

While proposals and approaches discussed in the previous chapters deal with extending or

correcting the current Internet architecture, RINA attempts to define a novel Internet architecture, RINA

is a continuation of the original internetworking ideas from the mid-1970s. The architecture as proposed

by RINA is fundamentally different from the current TCP/IP networking. The RINA approach is based

on a few principles instead of a broad and complex eco-system of modern Internet. The idea of the

recursive composition of layers arises naturally from the structure of repeating computer networking

patterns. Instead of strictly separating network functions into a predefined set of layers, RINA enables

to compose a stack from layers that may offer a nearly the same set of functions. In RINA, each layer

only has to provide data transfer between nodes of the layer. Depending on the other functionality

represented as mechanisms and policies, the RINA nodes can communicate reliably or securely. Another

difference to the current TCP/IP’s Internet is that every communication in RINA is considered as

communication between a pair of networking processes regardless the layer at which this

communication occurs. Assuming the single communication paradigm simplifies the overall design. It

was shown that only a couple primitive operations need to be implemented in the communication

protocol. Also, all layers employ the same protocols which contrast to TCP/IP model in which each

layer defines its set of protocols. RINA was designed to provide a simpler and efficient alternative to

the current Internet architecture.

This chapter familiarizes the reader with RINA basics. Based on our experience, we must admit

that “mental-shift” from nowadays networking towards RINA is not easy at all. Hence, the reader is

advised to seek further in related references when confused.

Among main goals of this chapter are the following items: a) to introduce RINA as a new

networking paradigm; b) to provide in-depth explanation of RINA’s operation; c) to revisit and improve

some of RINA specifications; d) to develop the first RINA simulator as a new educational and research

tool; and e) to demonstrate RINA theory on practical example employing our enhancements of

enrollment and flow (de)allocation procedures.

֍ –“In order to understand recursion, one must first understand recursion.” Anonymous

֍ What is RINA and what are its most distinctive features?

֍ What is technology readiness level of RINA?

֍ Can we prove RINA’s feasibility as the clean-slate architecture?

99

5.1 Overview

This subchapter introduces theoretical background. However, explanation of the whole Recursive

Internet Architecture is far beyond the scope of this thesis. Hence, only parts relevant to the current

RINASim functionality are captured. Synthesis of RINA information provided below comes from the

following sources: [135], [136], [137], [138] and [139].

5.1.1 Nature of Applications and Application Protocols

Is application a part of IPC environment or not? The set of Internet applications was rather simplistic

before WWW – one application with a single instance using only one protocol. Hence, there is nearly

no distinction between an application and its networking part. However, the web completely changed

this situation – one application protocol may be used by more than one application and also one

application may have many application protocols.

Following terms are recognized in the frame of RINA, and their relationship is depicted in Fig. 49:

 Application Process (AP) – Program instantiation to accomplish some purpose;

 Application Entity (AE) – AE is the part of AP, which represents application protocol and

application aspects concerned with communication.

Fig. 49: Application Protocol and Application Entities relationship

There may be multiple instances of the Application Process in the same system. AP may have

multiple AEs, each one may process different application protocol. There also may be more than one

instance of each AE type within a single AP.

All application protocols are stateless; the state is and should be maintained in the application.

Thus, all application protocols modify shared state external to the protocol itself on various objects

(e.g. data, file, HW peripherals). Because of that, there is only one application protocol that contains

atomic operations (e.g., read/write, start/stop). Data transfer protocols modify state internal to the

protocol, the only external effect is the delivery of SDUs.

AE AE

Application Process

(AP)

Application entities

Outside network

Inside network

100

5.1.2 Core Terms

The data transport and internetworking tasks together (generally known as networking) are functions of

inter-process communication (IPC). IPC between two APs on the same operating system needs to

locate processes, evaluate permission, pass data, schedule tasks and manage memory. IPC between two

APs on different systems works similarly plus adding functionality to overcome the lack of shared

memory.

In traditional networking stack, the layer provides a service to the layer immediately above it.

As RINA name suggests, recursion and repeating of patterns are the main feature of the robust

architecture. Layer recursion became more popular even in TCP/IP with technologies like Virtual

Private Networks (VPNs) or overlay networks (e.g., OTV69). Recursion is a natural thing whenever we

need to affect the scope of communicating parties. However, so far it was just recursion of repeating

functions in existing layers. RINA is based on following core ideas:

— “Networking is interprocess communication…and IPC only!” [140]

— “Application Processes communicate via a service provided by a distributed application that

provides IPC. The application processes that make up this Distributed IPC Facility provide a protocol

that implements an IPC mechanism, and a protocol for managing distributed IPC (routing, security and

other management tasks).” [141]

In ISO/OSI or TCP/IP, there is a set of layers each with entirely different functions. RINA, on

the other hand, yields idea of the single generic layer with fixed mechanisms but configurable policies.

This layer is in RINA called Distributed IPC Facility (DIF) – a set of cooperating APs providing IPC.

There is not a fixed number of DIFs in RINA; we can stack them according to application or network

needs. From the DIF point of view actual stack depth is irrelevant, DIF may provide a service to (N+1)-

layer above and use the service of the (N-1)-layer below. DIF stacking partitions network into smaller,

thus, more manageable parts.

The concept of RINA layer could be further generalized to Distributed Application Facility

(DAF) – a set of cooperating APs in one or more computing systems, which exchange information using

IPC and maintain shared state. A DIF is a DAF that does only IPC. Distributed Application Process

(DAP) is a member of a DAF. IPC Process (IPCP) is an AP within DIF delivering inter-process

communication. IPCP is an instantiation of DIF membership; computing system is container for IPCPs

that perform IPC with other DIF members. An IPCP is specialized DAP. The relationship between all

newly defined terms is depicted in Fig. 50.

69 Overlay Transport Virtualization (OTV). For more, see http://www.cisco.com/c/en/us/solutions/data-center-

virtualization/overlay-transport-virtualization-otv/index.html

http://www.cisco.com/c/en/us/solutions/data-center-virtualization/overlay-transport-virtualization-otv/index.html
http://www.cisco.com/c/en/us/solutions/data-center-virtualization/overlay-transport-virtualization-otv/index.html

101

Fig. 50: DIF, DAF, DAP and IPCP illustration

DIF limits and encloses cooperating processes in the one scope. However, its functionality is

more general and versatile apart from rigid TCP/IP layers with dedicated functionality (i.e., data-link

layer for adjacent node communication, a transport layer for reliable data transfer between applications).

DIF provides IPC to either another DIF or to DAF. Therefore, DIF uses a single application protocol

with generic primitive operations to support intra-DIF communication.

5.1.3 Connection-oriented vs. Connectionless

The clash between connection-oriented and connectionless approaches (that also corrupted ISO/OSI

tendencies) is from RINA perspective quite easy to settle. Connection-oriented and connectionless

communication are both just functions of the layer that should not be visible to applications. Both

approaches are equal, and it depends on how application requirements are going to be imposed by layer

(i.e., which approach is going to be used). On the other hand, connection-oriented limits the

dissemination and tends toward static resource allocation. The first one is good for low volume

stochastic traffic. The second one is useful for scenarios with deterministic traffic flows.

If the applications request the allocation of communication resources, then layer determines

what mechanisms and policies to use. Allocation is accompanied by access rights and description of

QoS demands (e.g., what minimum bandwidth or delay is needed for correct operation of application).

(N
-1

)-
D

IF
s

(N
)-

D
IF

D
A

F

DIF B DIF C

DIF A

DAF Y

DAF Z

102

5.1.4 Delta-t Synchronization

All properly designed data transfer protocols are soft-state. There is no need for explicit state

synchronization (hard-state) and tools like SYNs and FINs are unnecessary.

Initial synchronization of communicating parties is done with the help of Delta-t protocol (see

[5] and [142]). Delta-t was developed by Richard Watson as the proof-of-concept that time-based

synchronization technique is necessary and sufficient for reliable data transfer. He proved that conditions

for distributed synchronization were met if the next three timers are realized: a) Maximum Packet

Lifetime (MPL), which denotes the upper bound time (value 𝑀𝑃𝐿) that a packet can exists in a network;

b) Retransmission-timer specifies maximum period (value 𝑅) that a sender is willing to retransmit its

unacknowledged messages; c) Acknowledgment-timer defines maximum delay (value 𝐴) that the

receiver of data can wait before sending acknowledgment. Delta-t’s main variable 𝛥𝑡 is enumerated as:

𝛥𝑡 = 𝑀𝑃𝐿 + 𝑅 + 𝐴

Delta-t assumes that all connections exist all the time. Synchronization state (e.g., sequence

numbers) is maintained only during the active data transfer, but after maximum 2𝛥𝑡 (on receiver’s side)

or 3𝛥𝑡 (on sender’s side) periods without any traffic state may be discarded which effectively resets the

connection. Because of that, there are no hard-state (with explicit synchronization) protocols only soft-

state ones. Delta-t postulates that port allocation and synchronization are distinct.

5.1.5 Separation of Mechanism and Policy

We understand terms mechanism and policy as they have been defined in Subchapter 2.1. Just to remind

the reader that mechanism is invariant, the policy is variant part of any IPC. In the same subchapter, the

most common mechanisms has been cataloged using ontology. Nevertheless, this mechanism list is not

final and even to several mechanisms exist dozens/hundreds of different policies, how exactly are these

mechanisms implemented and enforced.

If we focus only on mechanisms connected with data transfer, then we can clearly separate them

into two groups:

 tightly-bound that must be associated with every PDU, which handle fundamental aspects of

data transfers (e.g., the sequence number of every PDU, integrity check using hashes associated

with the PDU content);

 loosely-bound that could be associated with data transfer PDUs (but there is no requirement

that these mechanisms must be associated with them), which provide additional features

(namely reliability and flow control).

Both groups are coupled through state vector maintained separately per flow; every active flow

has its state vector holding state information. Tightly-bound mechanisms (e.g., ordering of sequence

103

number) write to state vector, whereabouts loosely-bound mechanisms (e.g., loss detection) read it. For

instance, the behavior of retransmission and flow control can be heavily influenced by chosen policies

and they can be used independently on each other.

This and the use of abstract/concrete syntax implies that only single generic data transfer

protocol based on Delta-t is needed, which may be governed by different transfer control policies. This

data transfer protocol modifies state internal to its PM, where application protocol (carried inside)

modifies state external to PM.

5.1.6 Naming and Addressing

Application Process communicates in order to share state. In 5.1.1, we mentioned that AP consists of

AEs. We need to differentiate between different APs and also different AEs within the same AP. Thus,

RINA is using Application Process Name (APN) as globally unambiguous, location-independent,

system-dependent name. Application Process Instance Identifier (API-id) differentiates between

multiple instances of the same AP in the system. Application Entity Instance Identifier (AEI-id),

which is unambiguous for a single AP, helps us to identify different AE instances of same Application

Entity Name (AEN) within AP. Application Naming Information (ANI) references a complete set of

identifiers to name particular application; it consists of four-tuple APN, API-id, AEN, and AEI-id. The

only required part of ANI is APN; others are optional. Distributed Application Name (DAN) is

globally unambiguous name for a set of system-independent APs.

IPC Process has APN to identify it among other DIF members. A RINA address is a synonym

for IPCP’s APN with a scope limited to the layer and structured to facilitate forwarding. APN is useful

for management purposes but not for forwarding. Address structure may be topologically dependent

(indicating the nearness of IPCPs). APN and address are simply two different means to locate an object

in different contexts. There are two local identifiers necessary for IPCP functionality – port-id and

connection-endpoint-id. Port-id binds this (N)-IPCP and (N+1)-IPCP/AP; both of them use the same

port-id when passing messages. Port-id is returned as a handle to the communication allocator and is

unambiguous within a computing system. Connection-endpoint-id (CEP-id) identifies a shared state

of one communication endpoint. Since there may be more than one flow between the same IPCP pair,

it is necessary to distinguish them. For this purpose, Connection-id is formed by combining source and

destination CEP-ids with QoS requirements descriptor. CEP-id is unambiguous within IPCP and

Connection-id is unambiguous between a given pair of IPCPs. Fig. 51 depicts all relevant identifiers

between two IPCPs.

Watson’s delta-t implies port-id and CEP-id in order to help separate port allocation and

synchronization. RINA’s connection is a shared state between N-PMs – ends identified by CEP-ids.

RINA’s flow is when connection ends are bound to ports identified by port-ids. The lifetimes of flow

and its connection(s) are independent of each other.

104

The relationship between node and PoA is relative – node address is (N)-address, and its PoA

is (N-1)-address. Routes are sequences of (N)-addresses, where (N)-layer routes based on this addresses

(not according to (N-1)-addresses). Hence, the layer itself should assign addresses because it

understands address structure.

Fig. 51: IPCP local identifiers overview

src CEP-id dst CEP-id

Ports with

port-ids

EFCPIs with

CEP-ids

Connection-id

N-PDU

Structured

IPCP address

src

CEP-id

dst

CEP-id
user-data

Port allocation

State synchronization

Connection

Flow

105

5.2 RINA Components

To understand RINA architecture means to understand each of its elements. This subchapter starts with

a description of high-level RINA network nodes and then goes deeper and outlines various IPC

Management and IPCP components.

5.2.1 Nodes

There are only three basic kinds of nodes in RINA network (illustrated in Fig. 52). Each kind represents

computing system running RINA:

 Hosts – end-devices for IPC containing AEs in the top layer; they employ two or more DIF

levels;

 Interior routers – interim devices, which are interconnecting (N)-DIF neighbors via multiple

(N-1)-DIFs; they employ two or more DIF levels;

 Border routers – interim devices, which are interconnecting (N)-DIF neighbors via (N-1)-

DIFs, where some of (N-1)-DIFs are reachable only through (N-2)-DIFs; they employ three or

more DIF levels.

Fig. 52: Example of RINA network with three levels of DIFs and different nodes

Border

Router

Interior

Router
Border

Router
Host

(N
)-

D
IF

(N
+

1)
-D

IF
(N

-1
)-

D
IF

Host

Physical medium

Relaying RMT

Multiplexing RMTs Physical medium

106

As seen in Fig. 52, the main difference between node kinds is in an overall number of DIF levels

present in a computing system. Due to the limited number of network interface cards (NIC), Hosts

usually have a single 0-DIF (connected to the physical medium) and a few 1-DIFs leveraging on this

lowest level DIF. Interior routers have potentially a lot of 0-DIFs (for each interface) but only a few

relaying 1-DIFs. Border routers also perform relaying but serve as gateways between those (N-1)-IPCs,

which are not connected directly. Thus, (N-2)-DIF is needed to reach physical medium.

5.2.2 Distributed Application Process Components

IPC Management is an integral part of any DAP responsible for managing supporting DIFs and

providing their services to participating APs. IPC Management consists of following components

depicted in Fig. 53:

Fig. 53: Distributed Application Process components

Only IPC Resource Manager and DIF Allocator interface are exclusive to IPC Management,

other components are also present in IPC Process and described later.

DIF Allocator

The primary task of DIF Allocator (DA) is to return a list of DIFs where destination application may

be found given ANI and access control information. Additional and more complex DA description is

available in [143]. DA contains and works with multiple mapping tables to provide its services:

 Naming information table – provides association between APN and its synonyms;

 Search table – provides mapping between requested APN and the list of DAs where to search

for it next;

 Neighbor table – maintains a list of adjacent peers when trying to reach other DAs;

Relaying & Multiplexing

Task

RIB

Daemon

IPC Resource

Manager

DIF Allocator

Interface

Common Distributed

Application Protocol

SDU Protection

RIB

AP

IPC Management

Application Process

with

Application Entities

107

 Directory – contains records mapping APNs with access rights to the list of supporting DIFs

including DIF’s name, access control information and provided QoS.

IPC Resource Manager

IPC Resource Manager (IRM) (see specification [144]) as its name suggests manages DAF resources.

This involves multiple different tasks:

 IRM processes allocate calls by delegating them to appropriate local IPCPs in relevant DIFs;

 IRM manages DA queries and acts upon their responses. When the DA response contains more

than one DIF, IRM chooses which DIF to use;

 IRM administers the use of flows between AEs and DIFs. IRM may choose to multiplex a single

or multiple AE flows into a single/multiple flows to a set of DIFs;

 IRM initiates joining or creating DAF and/or DIF. IRM acts upon the DAF, or DIF lost (e.g.,

sending notifications or perform subsequent actions).

5.2.3 IPC Process Components

IPC Process is instance within DIF, which allows the computing system to do IPC with other DIF

members. Each IPC process performs (secure/reliable) data transport, (authenticated) enrollment,

(de)allocation of resources, routing, management and more. Functions could be categorized under one

of following categories: a) data transfer; b) data transfer control; and c) IPC management. Each category

with different processing timescale and complexity – a) is simplest and performed the most often, c) the

least often but the functionality is rather complex.

Fig. 54: IPC Process components

State Vector

Relaying & Multiplexing

Task

RIB

Daemon

Flow Allocator

Resource Allocator

Common Distributed

Application Protocol

Delimiting

Data Transfer

SDU Protection

RIB
Flow ControlError Control

a) Data Transfer c) Managementb) DT Control

Enrollment

108

IPC provides API to a DIF/DAF above, which requested its service. Basic IPC API offers four

operations: allocate (allocates communication resources); deallocate (releases previously allocated

resources); send (passes SDU to IPC) and receive (retrieves SDU from IPC). Calls may be further

subdifferentiated as allocate request, allocate response, deallocate submit and deallocate deliver.

Graphical representation of IPC Process and its most important components is depicted in Fig.

54. A brief description of each component and their functionality is provided below figure. Some

components outlined below also contain policy descriptions. Those policies are mentioned because they

are relevant to our contribution. The complete list of current policies with a brief info is in Addendum

8.5.

Enrollment

Enrollment takes place whenever IPCP joins existing DIF. IPCP newcomer creates a connection with

another IPCP (which is already a member) allocating (N-1)-flow. It is then authenticated to whatever

degree required by the policy. Enrollment occurs after successful connection establishment. Enrollment

procedure of a new member should be dependent on a connection use-case. For instance, there may be

a different exchange of messages for: a) the new member joining DIF for the first time; b) the IPCP that

had been already a member of DIF and right now is rejoining. The new member either tells or gets its

address to/from a DIF. Enrollment procedure is codified in [145].

Fig. 55: Message passing between RINA components

Delimiting

EFCPI

SDU Protection

RMT

Delimiting

EFCPI

SDU Protection

RMT

SDU Protection

IRM-controlled RMT

AP with AE
AE

CDAP message

SDU

user-data field

PDU

SDU

user-data field

PDU

SDU

opCode invokeId

version
src

Address

dst

Address
Connection-Id

 .

SDU

delimiter flags

SDU sequence

number

SDU

delimiter flags

SDU sequence

number

SDU

data

PDU

data

PDU

length

PDU

type
flags

sequence

number
user-data field

src

CEP-id

dst

CEP-id
QoS-id

109

Delimiting

SDU in RINA is a unit of data that is delivered as a whole at the destination. IPC might fragment SDU

(when passing it down) or re-assemble user-data (when passing it up). Hence, the operation performed

by Delimiting module (for specification see [146] and [147]) is to delimit SDU into/from PDU’s user-

data preserving its identity. Employed mechanism indicates the beginning and/or the end of SDUs.

Either internal (special pattern) or external (SDU length in PCI) delimiting could be used.

Encapsulation/Decapsulation of data messages happens in RINA components lying in the data

path. Fig. 55 depicts this process DIF/DAF together with messages nomenclature.

Data Transfer with Error/Flow Control

Error and Flow Control Protocol (EFCP) is split into two independent PMs coupled and coordinated

through a state vector. As EFCP name suggests, EFCP guarantees data transfer and data control. Full

EFCP functionality is described in [148]. However, these specifications are currently being revisited.

Data Transfer Protocol (DTP) implements mechanisms tightly coupled with transported

SDUs, e.g., fragmentation, reassembly, sequencing. DTP PM operates on a data PDU’s PCI with fields

requiring minimal processing – source/destination addresses, QoS requirements, Connection-id,

optionally sequence number or checksum. DTP carries user-data.

Data Transfer Control Protocol (DTCP) implements mechanisms that are loosely coupled

with transported SDUs, e.g., (re)transmission control using various acknowledgment schemes and flow

control with data-rate limiting. DTCP functionality is based on Watson’s Delta-t and DTCP PM

processes control PDUs. DTCP provides error and flow control over user-data.

There is EFCP instance (EFCPI) module per every active flow. EFCPI consists of DTP and

DTCP submodules. DTCP policies are driven by the quality of service demands. DTCP submodule is

unnecessary for flows that do not need it, i.e., flows without any requirements for reliability. The

relationship between DTP and DTCP is illustrated in Fig. 56. Depicted are also data transfer and data

control transfer paths. Control traffic stays out of the main data transfer.

Fig. 56: EFCP instance divided into DTP and DTCP part

State VectorTightly-bound

DTP

Loosely-bound

DTCP

EFCP instance

data traffic control traffic

110

Relaying and Multiplexing Task

Relaying and Multiplexing Task (RMT) modules have two primary responsibilities – relaying and

multiplexing as characterized in [149]. The goal of multiplexing is to pass PDUs from EFCPIs and RIB

Daemon to appropriate (N-1)-flows and reverse of that. Relaying handles incoming PDUs from (N-1)-

ports that are not directed to its IPCP and forwards them to other (N-1)-ports using the information

provided by its forwarding policy.

RMT instances in hosts and bottom layers of routers usually perform just the multiplexing task,

while RMTs in top layers of interior/border routers do both multiplexing and relaying. In addition to

that, RMTs in top layers of border routers perform flow aggregation. Primary RMT functions are

demonstrated in Fig. 52.

Each (N-1)-port handled by RMT has its set of input and output buffers. The number of buffers,

their monitoring, their scheduling discipline and classification of traffic into separate buffers are all

matter of policies.

RMT is a straightforward high-speed component. As such, most of its management (state

configuration, forwarding policy input, buffer allocation, and data rate regulation) is handled by the

Resource Allocator, which makes the decisions based on observed IPC process performance.

Each IPC process has to solve the forwarding problem: given a set of EFCP PDUs and (N-1)-

flows leading to various destinations, to which flow should be each PDU forwarded? In RINA, the

decision is handled by the RMT and its PDUForwardingPolicy. The PDUForwardingPolicy may

consist of looking up the PDU's destination in its forwarding table (resembling the forwarding

mechanism in traditional TCP/IP routers). When in need of deciding for an output (N-1)-port for a PDU,

the PDUForwardingPolicy is given the PDU's PCI and then it returns a set of (N-1)-ports to which the

PDU has to be sent. This provides enough granularity to implement multiple communication schemes

apart from unicast (such as multicast or load-balancing) because the decision is left to the

PDUForwardingPolicy. E.g., a simple forwarding policy would return a single (N-1)-port based on

PDU's destination address and QoS-id, whereas in case of a load-spreading policy and multiple (N-1)-

ports leading to the same destination, the policy could split traffic by PDUs' flow-ids and always return

a single (N-1)-port from the set.

SDU Protection

SDU Protection is the last part of the IPCP data path, before an SDU is handed over to an underlying

DIF. It is responsible for protecting SDUs from untrusted (N-1)-DIFs by providing mechanisms for

lifetime limiting, error checking, data integrity protection and data encryption. It also provides

mechanisms for data compression and a potential placeholder for other two-way manipulations.

SDU Protection handles each (N-1)-flow separately due to different levels of trust. This gives

SDU Protection the ability to skip some mechanisms in favor of performance for trusted networks while

still being protected from untrusted networks. Therefore, SDU Protection employs various policies, e.g:

111

a) NullSDUProtection that performs no transformations; b) BasicSDUProtection that applies life time

limiting and error checking; c) CryptographicSDUProtection that extends the BasicSDUProtection by

adding cryptographic encryption of data and an integrity check using a cryptographic hash of the content.

Flow Allocator

Flow Allocator (FA) processes allocate/deallocate IPC API calls and further management of all IPCP’s

flows. FA instantiates a Flow Allocator Instance to manage each flow; FA is controller/container for all

Flow Allocator Instances.

Flow Allocator Instance (FAI) is created upon allocate request call, and it manages a given

flow for its whole lifetime. FAI handles creating/deleting EFCPI(s) while managing a single flow’s

connection. FAI returns port-id to the allocation requestor upon successful allocation as a referencing

handle. FAI participates only on port allocation, not on synchronization, which is the responsibility of

EFCPI. The FAI maintains a mapping between flow’s local port-id and connection’s local CEP-id.

FA contains Namespace Management (NSM) interface for assigning and resolving names

(including synonyms) within DIF. This activity involves maintaining the table with entries that map

requested ANI to IPCP’s address.

Flow object contains all information necessary to manage any given flow between

communicating parties. It is carried inside create/delete flow request/response messages controlling FA

and FAI operation. Flow object contains: source and destination ANI, source and destination port-ids,

connection-id, source and destination address, QoS requirements, a set of policies, access control

information, hop-count, current and maximal retries of create flow requests.

Flow allocation processes for (N)-DIF between two APs on different systems is depicted in Fig.

57. It assumes that relevant (N-1)-flows have been already allocated using the same principle as the one

being described but on different DIF’s rank.

 AP1 issues allocate request that is delivered to IPCP A.1. If it is valid and well-formed then it

spawns FAI to manage requested flow. FAI resolves AP3’s APN to one of DIF A addresses

(A.3). It instantiates EFCPI (with CEP-id) and creates bindings between EFCPI and RMT.

Create flow request is sent as the last step;

 Create flow request arrives at “System 2”. IPCP A.2’s FA processes the request and discuss

NMS. It discovers that request is not intended for any local AP. FA looks up the destination

discovering that A.3 should be a next-hop. FA forwards the request to “System 3”;

 The request arrives at IPCP A.3. Over there, FA determines by querying NMS that create flow

request destination address is its address. Thus, destination AP resides on this system. FAI is

spawned and determine whether the request can be accommodated. If not then negative create

flow response is sent back to the requestor. Otherwise, FAI notifies destination AP with allocate

request;

112

 If destination AP accepts or rejects the request then either positive, or negative allocate response

is returned to FAI. Based on the response, FAI binds port-id, instantiates EFCPI, creates

bindings. Flow object is updated (with local port-id and CEP-id) and sent back as

positive/negative create flow response. Response is just relayed (not processed) on interior

routers (IPCP A.2);

 Originating A.1’s FAI receives create flow response and updates relevant flow object. If the

response is positive, then, FAI notifies source AP with positive allocate response and APs may

commence data transfer. If the response is negative, then FAI invokes retry policy to correct

flow creation or deal appropriately with failure (i.e., passing negative allocate response).

Fig. 57: Flow allocation process

Original specification [150] were refined as the subject of this thesis contribution. Detail

description of flow allocation and deallocation is provided in Figures Fig. 58, Fig. 59, Fig. 60 and Fig.

61. Transitions are denoted with “input / action” labels. FA and FAI maintain state for any given flow

and refuse inappropriate transitions (e.g., initiating deallocation before the allocation is successful).

These transitions are omitted for clarity. There are four different FSMs. Fig. 58 depicts FA operation

reacting upon notification from RIBd. Fig. 59 and Fig. 60 show flow allocation procedure for initiating

and responding FAIs. Fig. 61 illustrates flow’s lifecycle after successful allocation, and it is mutual for

both initiating and responding FAIs.

Interior

Router

(N
-1

)-
D

IF
(N

)-
D

IF

HostHost

1 32

D
A

F

4
5

113

NewFlowRequstPolicy is invoked after FAI’s instantiation. Policy subtasks involve both

1) evaluation of access control rights; and 2) translation of QoS requirements specified in allocate

request to appropriate RA’s QoS-cubes. AllocateRetryPolicy occurs whenever initiating FAI receives

negative create flow response. This policy allows FAI to reformulate the request and/or to recover

properly from failure. AllocateNotifyPolicy controls a proper time when source AP is going to be notified

of the result of allocation by initiating FAI. It may be either when EFCPI is created, or when allocation

is confirmed by destination or any other notification strategy may be employed. SeqRollOverPolicy is

invoked simultaneously by both initiating and responding FAIs whenever PDU’s sequence number

threshold is reached. The policy usually spawns new EFCPIs and changes bindings.

Fig. 58: Flow Allocator operation

Allocate Request

M_CREATE(flow)

Deallocate Request

NewFlowRequestPolicy

Null

Is malformed? Create FAI

true

/ send negative allocate response

false

FAI successfully created

/ pass allocate request to FAI

Map QoS to

RA s Qos-cubes

Has resources to

honor QoS?
Has access rights?

true true
policy succeeded

/ return positive result

policy failed

/ return negative result

false false

Is dst AP local?

Create FAI

hopCount == 0

FAI successfully created

/ pass allocate request to FAI

false

/ hopCount--

true
false

/ forward M_CREATE(flow)

true

/ send negative M_CREATE_R(flow)

/ pass deallocate request to FAI

policy invoked

114

Fig. 59: Flow Allocator Instance operation of initiating IPCP

Allocate Request

Degenerate Data Transfer

M_CREATE_R(flow)

AllocateRetryPolicy

AllocateNotifyPolicy

Instantiated

Is dst AP local?
Is policy

acceptable?
Create EFCPI Create bindings

false

/ invoke NewFlowRequestPolicy

true

/ pass allocate request

 to dst AP

false

/ invoke AllocateNotifyPolicy

true

bindings successfully created

/ send M_CREATE(flow)

 && invoke AllocateNotifyPolicy

EFCPI successfully created

Is response positive?
Establish IPC

between local APs
Create bindings

false

/ invoke AllocateNotifyPolicy

bindings successfully created

/ invoke AllocateNotifyPolicy

establishment successful

Is response positive? Create bindings
true

false

/ invoke AllocateRetryPolicy

bindings successfully created

/ invoke AllocateNotifyPolicy

Flow Allocation Failed

Flow Allocated

receive allocate response

from dst AP

Is policy

acceptable?

false

/ invoke AllocateNotifyPolicy

true

true

/ invoke NewFlowRequestPolicy

receive M_CREATE_R(flow)

numOfCreReq

<=

MaxCreReqRetries

false

/ invoke AllocateNotifyPolicy

true

/ send M_CREATE(flow)

policy invoked

/ numOfCreReq++

timer expired

/ invoke AllocateRetryPolicy

policy evaluation requested

receive allocate request
w

a
itin

g for M
_C

R
E

A
T

E
_R

(flow
)

w
a

itin
g for M

_C
R

E
A

T
E

_R
(flow

)

allocation succeeded

allocation failed

false

true

 / send positive allocate response

policy invoked
Is positive

allocate response

criteria met?

false

 / send negative allocate response

allocation failed

allocation succee
ded

policy evaluation requested

policy evaluation requested

policy evaluation requested

policy evaluation requested

115

Fig. 60: Flow Allocator Instance operation of responding IPCP before the flow was allocated

Fig. 61: Flow Allocator Instance operation after the flow was allocated

M_CREATE(flow)

Allocation Response

Instantiated

Is policy

acceptable?

receive M_CREATE(flow)

/ invoke NewFlowRequestPolicy

false

/ send negative

 M_CREATE_R(flow)

Is response positive? Create EFCPI Create bindings

bindings successfully created

/ send positive

 M_CREATE_R(flow)

EFCPI successfully created

Flow Allocated

receive allocate response

true

true

/ pass allocation request

false

/ send negative

 M_CREATE_R(flow)

allocation succee
ded

w
a

itin
g for allocate re

spo
nse

allocation failed

Deallocate Submit

M_DELETE(flow)

M_DELETE_R(flow)

SeqRollOverPolicy

receive deallocate submit

Delete bindings

bindings successfully deleted

/ send M_DELETE(flow)

/ send deallocate deliver

Delete bindings

bindings successfully deleted

/ send M_DELETE_R(flow)

receive M_DELETE_R(flow)

|| timer expired

Deinstantiated

Flow Deallocated

after 2×MPL

/ deinstantiate FAI

Create EFCPI

bindings successfully changed
sequence numbers threshold reached

Change bindings

EFCPI successfully created

Flow Allocated

116

Resource Allocator

If a DIF has to support different qualities of service, then different flows will have to be allocated to

different policies and traffic for them treated differently. Resource Allocator (RA) delineated in [151]

is a component accomplishing this goal by handling management of various IPCP resources, namely it:

 controls creating/deleting and enlarging/shrinking of RMT queues;

 modifies EFCPI’s DTCP policy parameters;

 controls creating/deleting of (N-1)-flows and their assignment to appropriate RMT queue(s);

 manages QoS classes and their assignment to RMT queue(s);

 manages routing information affecting RMT’s relaying or initiates congestion control.

RA maintains a catalog of meters and dials by monitoring various management resources. Each

catalog item can be manipulated and shared with other IPC processes within DIF.

Generating information necessary for PDUForwardingPolicy is one of the tasks of RA, namely

its subcomponent called PDU Forwarding Table Generator. For this purpose, RA uses pieces of

information provided by other sources, most notably the RoutingPolicy.

The RoutingPolicy exchanges information with other IPCPs in the DIF in order to generate a

next-hop table for each PDU (usually based on the destination address and the id of the QoS class the

PDU belongs to). The next-hop table is then converted into a PDU Forwarding Table with input from

the PDU Forwarding Table Generator, by selecting an N-1 flow for each "next-hop". RoutingPolicy may

resemble distance vector and link-state routing protocols used in today's Internet, but the current research

is also aimed at other paradigms such as topological/hierarchical routing, greedy routing or MANET-

like routing.

RIB Daemon

All information maintained by IPC tasks such as FA, RA, and others is available and updated through

RIB Daemon (RIBd) described in [152] and [153]. Information exchange is necessary to coordinate

the distributed IPC. Different update strategies for different kinds of information may be used to

synchronize state between different DIF member subsets.

Resource Information Base (RIB) is a logical database of information accessible via RIB

Daemon. By logical database, we mean that some of RIB information may be stored in the dedicated

database and the rest of IPCP components. Periodic or solicited events can cause RIB to be

queried/updated by IPCP peers via management CDAP messages (e.g., routing updates). RIBd provides

an API to perform an operation on both local and remote RIB.

Common Distributed Application Protocol

Subsection 5.1.1 postulates that there is only a single application protocol required and this is the

Common Distributed Application Protocol (CDAP). DIFs use CDAP for all non-data communication

117

(i.e., IPC management such as maintaining RIB, controlling flow allocation, joining a DIF). DAFs may

not use CDAP for backward compatibility. However, CDAP expressiveness should allow the transition

of legacy protocols. CDAP is based and patterned on two existing protocols – ACSE (see [154] and

[155]) for the establishment phase, CMIP [156] for the data transfer phase.

Establishment subpart is called out separately (for legacy protocols it may be used as a wrapper

providing authentication service). Data transfer subpart is object-oriented (with built-in scope and filter

support) protocol offering six primitive operations: create; delete; read (i.e., get value); write (i.e., put

or set value); start (i.e., execute action) and stop (i.e., suspend action). The collection of objects is

dependent on used AE, which provides access rights to them.

CDAP has modular structure composed of three submodules to provide flexibility:

 The common application connection establishment (CACE) submodule;

 The authentication (Auth) submodule provides authentication of the communication endpoints.

A range of submodules will be available to support different kinds (e.g., none authentication,

shared password, certificates) of authentication policies employing different cryptographic tools

(e.g., a-/symmetric ciphers for confidentiality, MAC codes for integrity);

 The CDAP submodule.

CDAP offers following eighteen message types summarized in Tab. 13 [157]:

Opcode Description

M_CONNECT Initiate a connection from a source application to a destination application

M_CONNECT_R
Response to M_CONNECT carries connection information or an error

indication

M_RELEASE Orderly close of a connection

M_RELEASE_R Response to M_RELEASE carries final resolution of close operation

M_CREATE Create an application object

M_CREATE_R
Response to M_CREATE carries result of creating request, including
identification of the created object

M_DELETE Delete a specified application object

M_DELETE_R Response to M_DELETE carries result of deletion attempt

M_READ Read the value of a specified application object

M_READ_R Response to M_READ carries part or all of object value or error indication

M_CANCELREAD
Cancel a prior read issued using M_READ for which a value has not been
completely returned

M_CANCELREAD_R Response to M_CANCELREAD indicates outcome of cancelation

M_WRITE Write a specified value to a specified application object

M_WRITE_R Response to M_WRITE carries result of write operation

M_START
Start the operation of a specified application object, used when the object

has operational and non-operational states

M_START_R Response to M_START indicates the result of the operation

M_STOP
Stop the operation of a specified application object, used when the object

has operational and non-operational states

M_STOP_R Response to M_STOP indicates the result of the operation

Tab. 13: CDAP message types

118

Connection management between two applications is divided into two traditional phases –

establishment and data transfer. An AP issues allocate request to underlying DIF’s IPCP specifying the

destination APN and QoS requirements. If the allocation is successful, IPCP returns port-id to be used

as a handle for all communication leveraging this flow. When the previous phase is completed, CACE

sends a M_CONNECT message to start authentication using Auth submodule. Additional message

exchange might follow in order to support different authentication mechanisms. If it is successful then

the connection is established and CDAP transits to data transfer phase.

Another contribution is further refinement of CACE specifications [158]. Detail description of

CDAP operation is provided in Figures Fig. 62, Fig. 63 and Fig. 64. Once again transitions are denoted

with “input / action” labels. There are three different FSMs. Fig. 62 depicts establishment phase on

initiating the process. Fig. 63 shows the same but from the perspective of the responding process. Fig.

64 outlines data transfer phase for both initiator and responder once they successfully reach

“Established“. For the sake of readability, only correct transitions are shown. Incorrect transitions upon

receiving unexpected CDAP message terminate from any state in “Error” marked as “wrong input”.

Both initiator and responder might “indicate deallocation”, thus entering “Deallocating” state at any

given moment.

Fig. 62: Establishment phase on initiating process

Initiating process

Authenticating

ConnectRetry

entry:

int numOfConnects++

FlowPending

receive negative

allocation response

ConnectPending

entry: reset timer

receive positive

allocation response

commence authentication

/ send M_CONNECT

receive negative

M_CONNECT_R

receive postive

M_CONNECT_R

numOfConnects

 >

MaxConnectRetries

Null Established

timer expired

numOfConnects

 <=

MaxConnectRetries

wrong input

terminate connection

 / send M_RELEASE

Error

indicate deallocation

!keepFlow

/ deallocate

keepFlow

Deallocating

entry:

bool keepFlow

119

Fig. 63: Establishment phase on responding process

Fig. 64: Data transfer phase on initiating/responding process

Depending on whether (N-1)-flow should be preserved or not, the transition from

“Deallocating” (based on keepFlow boolean) may delete any state associated with connection and

transit to the “Null” state.

Responding process

Authenticating

allocation failed

 / send negative allocation response

ConnectPending

entry:

int numOfConnects++

receive valid M_CONNECT

authentication succeeded

/ send positive

 M_CONNECT_R

Null Established

authentication failed

/ send negative M_CONNECT_R

 && reset timer

receive invalid M_CONNECT

/ send negative M_CONNECT_R

allocation succeeded

 / send positive

 allocation response

wrong input

numOfConnects

> .

MaxConnectRetries

|| timer expired

terminate connection

 / send M_RELEASE

Error

indicate deallocation

Deallocating

entry:

bool keepFlow
!keepFlow

/ deallocate

keepFlow

Initializing and Responding processes

Releasing

entry: reset timer

Established Null

Release

entry:

bool requireResponse

requireResponse

/ send M_RELEASE_R

terminate connection

/ send M_RELEASE with requireResponse = false

receive M_RELEASE_R

|| timer expired

receive M_RELEASE

terminate connection

/ send M_RELEASE with

requireResponse = true

Deallocating

entry:

bool keepFlow

!keepFlow

/ deallocate

wrong input

Error

te
rm

in
a

te
 c

on
n

ec
tio

n

 /
 s

en
d

M
_R

E
L

E
A

S
E

keepFlow

120

5.3 State-of-the-Art

This subchapter mentions coordinated research activities concerning RINA. Moreover, notable

implementations are introduced and facts about RINA readiness and deployment status.

5.3.1 Projects

RINA is successfully targeted in the frame of multiple EU projects as an alternative to traditional TCP/IP

stack. Here is a list of projects and their main interests concerning RINA:

 IRATI [159] – IRATI advances the state-of-the-art of RINA towards an architecture reference

model and specifications that are closer to enable implementations deployable in production

scenarios. The design and implementation of IRATI prototype on top of Ethernet permits further

evaluation and deployment of RINA in real computer networks;

 IRINA [160] – IRINA aims to compare RINA against TCP/IP in a lab environment using IRATI

prototype. Moreover, it proposes use-cases, where RINA is better option for NREN70 scenarios;

 PRISTINE [161] – PRISTINE investigates programmability of RINA architecture, namely its

separation of mechanisms and policies to achieve more flexible behavior of network

components;

5.3.2 Implementations

IRATI Stack

IRATI [162] is an open source network stack implementation of the RINA targeted to the OS/Linux

system written in C. It consists of a kernel (packet handling) and user-space (IPCP configuration) parts.

Currently RINA stack may operate either over TCP (using port numbers) or directly over Ethernet (using

VLAN tags) employing Shim DIFs (see [163] and [164]). The main component is IPC Manager that

handles creation/destroying of IPCPs and governs flow allocation.

ProtoRINA

ProtoRINA [165] is a Boston University's RINA user-space prototype written in Java. ProtoRINA

provides a limited framework for experimenting with RINA concepts within GENI71 testbed (see [166]).

5.3.3 Simulators

We are not aware of any existing discrete-event simulator that could be used for research or educational

tool. None, apart from our own RINASim exhaustively described in the following section.

70 National research and education network (NREN): E.g., Czech CESNET or European GEANT. For more,

see https://en.wikipedia.org/wiki/National_research_and_education_network
71 Global Environment for Network Innovations (GENI). For more, see http://www.geni.net

https://en.wikipedia.org/wiki/National_research_and_education_network
http://www.geni.net/

121

5.4 Contribution

Simulation often serves for validating and verifying new technologies, which do not have a yet

implementation. The simulation also finds weak points and drawbacks during test runs and subsequently

allows one to enhance development process based on feedbacks. Hence, the implementation of the

RINA Simulator (RINASim) is a natural step to support ongoing research and development of the

Recursive Internet Architecture.

We are developing the RINASim in the frame of European project PRISTINE. RINASim is a

stand-alone framework for OMNeT++ discrete event simulator environment. RINASim is coded from

scratch and independent on another library. The main purpose is to offer the community with reliable

and the most up-to-date tool (in the sense of RINA specification compliance) for simulating RINA-

based computer networks. Thanks to the OMNeT++’s built-in result analysis and graphical simulation

output, RINASim may be used not only for research but also as an educational tool.

This subchapter introduces RINASim installation guideline, development design and

description of components interactions. Moreover, it illustrates RINA principles and RINASim

functionality on one of the basic examples. Subchapter contains only the most relevant information due

to the limited space, for more, please see PRISTINE deliverable 2.4 [167].

5.4.1 Installation

RINASim is developed in OMNeT++ 4.6, but its source codes are fully backward compatible with older

OMNeT++ versions that support C+11 language standard and GCC 4.9.2 compiler. All source codes

(including master and other thematic branches) are publicly available on the project’s GitHub repository

[168]. Apart from this official channel, RINASim stable release snapshots are periodically published on

Open Source Project repository [169].

RINASim installation is a straightforward process with two phases: 1) importing the project into

OMNeT++ IDE; 2) compiling the project, which creates one static library (librinasimcore

containing simulation core) and one dynamic library (librinasim also containing various policies

linked together with core).

5.4.2 Design

This subsection provides a general overview of RINASim components design, which includes high-

level abstract models of computing systems (like hosts and routers) and also their low-level submodules

(like IPCP). In general, a structure of RINASim models follows the structure proposed in the RINA

specification. This intentional correspondence enables anyone understanding the RINA specifications

to easily orient in RINASim too. Though this structure does not always stand for the most natural

representation of RINA concepts in simulation models, it provides a framework for evaluating properties

122

of the architecture and to identify missing or inaccurate information in the original specification. During

the design of simulation models, we were able to identify several places where specifications should be

refined to provide complete and unambiguous information. Following lines reflect RINASim design

relevant to a date of this thesis.

Computing System Modules

RINASim offers a variety of high-level models simulating the behavior of independent computing

system. These models can be employed to set quickly up simulation experiments. Through

parameterization and extension, it is possible to test different deployments and settings. Based on the

RINA specifications, we can distinguish between the following node types:

 Host nodes, which represent devices or systems that run distributed applications. These nodes

implement the full RINA stack and, also, contains an application process(es). AP instances are

configured to communicate with each other to simulate the behavior of an arbitrary RINA

application. Currently, there are several predefined host nodes depending on a number of APs

and AEs. Fig. 65 illustrates some of host nodes internal structure. The most of depicted hosts

contain two IPCPs, which models usual end-system with a single NIC. The host may contain

only single IPCPs, which would allow IPC with only one directly connected neighbor.

Alternatively, host may contain more than two IPCPs; (0)-rank IPCPs represent multiple NICs,

and (1+)-rank IPCPs represent different DIFs host memberships;

Fig. 65: Host nodes structure examples

 Routers (intermediate nodes), which can be either interior or border. A router is a device that

interconnects different underlying DIFs and often does not run user applications. Just as in

RINA specification, there are either interior or border routers depending on DIF stack depth

(influenced partially also by a number of interfaces). Fig. 66 illustrates two interior routers and

one border router simulation models.

123

Fig. 66: Router nodes structure examples

Of course, there are many more possible combinations of host and router configurations than

the ones currently defined in RINASim. However, the aim of providing predefined node models is not

to cover all of the possible combinations but rather to offer the most used ones enabling to set quickly

up simulation scenarios. Defining new node or router with suitable structure is not a complicated task.

Nevertheless, the present collection of available models seems to be enough.

Policies

RINA specifications present the proposed network architecture as a generic framework, where

mechanisms are intended to perform basic common functionality and policies are defined to select the

most appropriate implementation of variable functionality. Rather than providing an exhaustive

implementation of policies for each parameterized function, RINASim provides interfaces that are used

by the core implementation to call functions defined by the selected policies.

The RINASim policy framework is based on OMNeT++ NED module interfaces [170], which

helps to minimize the need for modifying existing C++/NED source codes. Instead of placing a simple

module with a policy implementation inside the simulation network graph, a placeholder interface

module is used. This design allows the potentially unlimited amount of user policy implementations to

be defined and easily switchable via the configuration files (by setting a proper parameter of the

encompassing module). Each policy consists of an NED module interface and a base C++ class. Fig. 68

shows an example of policy module interfaces (modules with “Policy” suffix in names) with loaded

policies (blue labels above them).

DAF Modules

DAF components can be divided into three submodules: a) Application Processes (containing one or

more Application Entities), which represents IPC endpoints; b) IPC Resource Manager, which

interconnects APs and available IPCPs; c) DIF Allocator, which helps during APN discovery and

management process. Components relationship and internal structure (described below) are depicted in

Fig. 67.

124

The applicationProcess module contains applicationEntity submodules for each

flow representing the connection between two applications. applicationEntity handles enforcing

access control (by evaluating flow allocation requests), flow management and governing application

protocol. Each applicationEntity contains iae (submodule interface, which allows pluggable

change of application protocols) and the commonDistributedApplicationProtocol

submodule that sends and receives messages on behalf of applicationEntity.

The commonDistributedApplicationProtocol submodule provides a simple object-

based protocol for distributed applications. Currently, it is the part of RIBd and AE. CDAP is modeled

as a compound module consisting of five main submodules:

 cace – Common Application Connection Establishment protocol instance processing

M_CONNECT and M_RELEASE requests and responses;

 auth – providing authentication services during connection initialization); cdap (providing

usual CDAP message exchange;

 cdapSplitter – delivering messages to appropriate upper submodules;

 cdapMsgLog – logger for an accounting of processed messages.

The difAllocator module handles locating a destination application based on its name. DA

is a component of the DAP’s IPC Management that takes ANI and access control information and returns

a list of DIF-names through which the requested application is available. Moreover, the

difAllocator module provides statically configured knowledge about simulation network graph.

The difAllocator modules consists of five auxiliary submodules that maintain state information

and help to deliver DA services:

 da – core functionality;

 namingInformation – mapping between APN synonyms;

 directory – mapping between APN and DIF-names;

 searchTable – mapping between APN and peer DA instance where to continue search;

 neighborTable – mapping between peer DA and neighboring DA instances.

The ipcResourceManager module currently queries DA module to find suitable IPCP and

relays communication between AE and IPCP. The ipcResourceManager consists of two

submodules:

 irm – acting as a broker between APs and IPCPs when handling the flow (de)allocation calls;

 connectionTable – maintaining state information for a given flows.

125

Fig. 67: DAF components for RINASim

D
A

F
 c

o
m

p
o

n
en

ts

126

DIF Modules

All currently implemented DIF components are enclosed to the IPCProcess container module

(instantiation of IPCP). The IPCProcess contains following submodules, and overall structure is

shown in Fig. 68:

 Enrollment, which governs enrollment of IPCP into DIF;

 Flow Allocator, which processes flow (de)allocation;

 EFCP, which provides data transfer services optionally with transfer control;

 Relaying and Multiplexing module, which handles incoming and outgoing PDUs;

 Resource Allocator, which monitors resources namely (N-1)-flows and available QoS;

 RIBDaemon, which is in charge of processing management messages;

 Routing policy, which maintains PDU forwarding rules.

The enrollment module is in charge of enrollment procedure, which occurs upon successful

connection establishment between IPCPs. It consists of core functionality submodule and table

(enrollmentTable) maintaining connection state of each enrollment FSM.

The flowAllocator module handles (de)allocation request and response calls from the IRM,

RIBDaemon or AE. The flowAllocator module consists of three submodules (and currently three

supported policy interfaces):

 fa – core functionality involving instantiation of FAIs;

 nFlowTable – mapping between (N)-flow and bound FAI;

 fai_<portId>_<CEPid> – managing a whole flow lifecycle.

The Error and Flow Control Protocol is modeled as one compound module. This module

dynamically spawns efcpi_<CEPid> (EFCP instance) and delimiting submodules per one flow.

There is also the efcpTable module maintaining bindings between Delimiting and EFCPI. Apart

from that, the MockEFCPI processes management PDUs sent/received by local RIBDaemon. Each

EFCPI contains the dtp submodule (providing data transfer services), the dtpState submodule

(maintaining state-vector) and a few policies related to DTP functionality. Optionally, EFCPI may also

contain the dtcp submodule and several DTCP policies, whenever transfer control is requested for a

communication (i.e., due to the reliable transmission demand).

The relayAndMux module represents a stateless function that takes incoming PDUs and relay

them within current IPC or pass them to an outgoing port. In particular the RMT takes PDUs from (N-

1)-ports, consults their address fields and perform one of the following actions: a) relay PDU between

(N-1)-ports; b) pass PDU to EFCPI; and c) multiplex PDU from EFCPI to (N-1)-port.

The relayAndMux consists of multiple simple modules of various types, some of them are

static, and some of them are instantiated dynamically at runtime. Among dynamically created modules

127

are RMT ports (representing (N-1)-flow communication endpoints) and associated input/output queues.

Among static submodules are:

 rmt – core functionality;

 allocator – managing addition, removal and reconfiguration of RMT queues and ports;

 pduForwardingPolicy – mapping table of destination addresses and QoS-ids to output

ports that is used by the relaying functionality of the RMT;

 other policy module interfaces monitoring queue lengths and scheduling PDU departures.

The resourceAllocator monitors the operation of the IPCP and makes adjustments to its

operation to keep it within the specified operational range. Its forwarding and queuing functionality are

customizable by policies. The resourceAllocator consists of multiple simple modules of various

types, namely:

 ra – core functionality that manages connections to other local IPCPs with the help of

nm1FlowTable submodule;

 pduFwdGenerator – uses custom policies to manage pduForwardingPolicy entries;

 other policies executed upon RMT queue allocation.

The ribDeamon is the IPCP’s management heart. It receives/sends CDAP management

messages and notifies other submodules about management changes. RINASim’s RIBDaemon consists

of three submodules:

 ribd – core functionality mainly listening to calls from other DIF components and notifying

them upon CDAP message reception;

 commonDistributedApplicationProtocol – same submodule as in case of DAF

components description;

 ribdSplitter – splitter is delegating CDAP management messages to/from the

mockEFCPI or appropriate EFCPIs.

The routingPolicy module is used by pduFwdGenerator to populate/update correctly

the pduForwardingPolicy.

128

Fig. 68: IPCP’s DIF components for RINASim

129

5.4.3 RINASim Demonstration

This subchapter presents one of the many demonstration RINA simulations available in RINASim. The

goals are: a) to give a reader overview of RINASim capabilities; and b) to familiarize the reader with

RINA concepts on simple computer network example.

Network Graph and Setup

The motivation behind this particular simulation is to show ping-like application communication within

the simple network consisting of all different node types. Topology contains two host nodes (called

HostA and HostB), two border routers (called BorderRouterA and BorderRouterB) and one interior

router (called InteriorRouter) interconnected together as depicted in Fig. 69. Links between nodes are

configured with one millisecond fixed transmission delay, which means that sending a packet from

HostA to HostB takes four milliseconds.

There are totally six DIFs of three different ranks (network is just as in Fig. 52). Please notice

addressing scheme where the same node may use the same address on different DIF as long as they are

unambiguous within the layer’s scope. RINA address length and syntax is policy-dependent. The

demonstration uses flat address space with simple string addresses.

 Top most TopLayer DIF common to HostA (with address hA), BorderRouterA (address rA and

self-enrolled), BorderRouterB (address rB) and HostB (hB);

 Three middle DIFs MediumLayerA, MediumLayerAB and MediumLayerB. MediumLayerA is

common to HostA (ha) and BorderRouterA (address ra and self-enrolled). MediumLayerAB is

common to BorderRouterA (rA), InteriorRouter (address rC and self-enrolled) and

BorderRouterB (rB). MediumLayerB is common to BorderRouterB (address rb and self-

enrolled) and HostB (hb).

 Two bottom most DIFs BottomLayerA and BottomLayerB. BottomLayerA is common to

BorderRouterA (ra) and InteriorRouter (address rc and self-enrolled). BottomLayerB is common

to InteriorRouter (address rc and self-enrolled) and BorderRouterB (rb).

130

Fig. 69: RINASim demonstration topology

Top

Layer
Medium

LayerB

Bottom

LayerB

Top

Layer
Medium

LayerA

Bottom

LayerA

Medium

LayerAB

A
ll

no
de

s
to

p
ol

og
y

w
ith

 th
re

e
le

ve
ls

 o
f D

IF

Interior

Router2Int

131

Multiple noticeable events happen during demonstration:

1) If another IPCP wants to communicate within a given DIF, then, it needs to be enrolled by a

DIF member. Self-enrolled IPCPs are members of certain DIFs from the beginning of the

simulation, and they help other IPCPs to join a DIF. In order to allow IPC between any node,

the simulation is scheduled to commence enrollment of: BorderRouterA into BottomLayerA at

t=1s; BorderRouterA into MediumLayerAB at t=1.5s; BorderRouterB into TopLayer at

t=2s; and HostB into TopLayer at t=5s. The enrollment usually involves recursive calls of

enrollment procedures in lower rank DIFs.

2) The IPC comprises of flow allocation, data transfer, and optional flow deallocation. HostA and

HostB are configured for IPC using ping-like application (measuring one-way and round-trip

delays). In this case, flow allocation is initiated at t=10s, first ping is sent at t=15s and flow

deallocation occurs at t=20s.

Source codes of demonstration are located in /examples/Demos/UseCase5 folder and

include following files, which may be used as templates when creating other RINASim scenarios:

 UseCase5.ned – OMNeT++ simulation network graph description which contains nodes and

interconnections definitions;

 omnetpp.ini (see Addendum 8.6.1 for details) – scheduled simulation setup with models

configuration (e.g., nodes addresses, ANI for AEs, pointers to XML configurations) applied

during network initialization;

 config.xml (see Addendum 8.6.2 for details) – additional more structured and complex

models configuration (e.g., DA’s mappings, RA’s QoS-cubes sets, preallocation and

preenrollment settings) in the form of XML data is loaded to the simulation using this file;

 *.anf – statistic collection setup file(s);

 ./results/* – results of various simulation runs containing gathered scalar and vector data.

By default, every RA contains implicit QoSCube (with QoS-id “MGMT-QoSCube”) that

defines QoS parameters (e.g., reliability, minimum bandwidth) for management traffic and guarantees

successful mapping of management SDUs onto appropriate (N)-flow. Apart from this default QoS-cube,

each RA loads QoS-cube set according to the simulation configuration. For demonstration, there are two

more QoS-cubes available for each RA called “QoSCube-RELIABLE” and “QoSCube-

UNRELIABLE” (same QoS parameters differing only in data transfer reliability). Please see Fig. 70 for

visualization of loaded QoS-cube.

DA implementation currently allows only static change of its settings (namely different kinds

of mappings). Hence, necessary configuration step is to initialize DA properly in order to provide

services to FA, RA and other components depending on naming information. Namely two DA’s tables

132

are important for overall functionality – Directory (helps to search target IPCP for a given APN)

and NeighborTable (used by FA to find a neighbor IPCP for a given IPCP). Fig. 71 shows shared

directory information by all DA instances within the demonstration.

Simulation description is divided into two subsections. All events connected with enrollment

procedures are described in “Enrollment Phase” subsection and events related to data transfer between

HostA and HostB are in “Data Transfer Phase” subsection. The most important parts are descriptions of

the trivial enrollment use-case (steps marked with ᴇ*), trivial flow allocation use-case (steps marked

with ᴄ*), trivial recursion call (steps marked with н*). They outline steps, which repeat upon similar

use-cases employing recursive calls.

Enrollment Phase

Whole enrollment phase is divided into four events. The first event is enrollment of BorderRouterA into

BottomLayerA at t=1s with the help of InteriorRouter as enroller:

Fig. 70: Visualization RA's available QoS-cubes Fig. 71: Visualization of Directory mappings

133

The previous description outlines the most straightforward enrollment procedure that happens

between joining member and enroller. The contents of EnrollmentStateTable (as abstract data

structures holding information for IPCP’s DIF membership) illustrating above-mentioned event is

available in Addendum 8.6.3. Subsequent descriptions mention only notable changes because

enrollment steps ᴇ1-ᴇ8 (CACEP message exchange) are present in all of them.

The second event is joining of BorderRouterA into MediumLayerAB at t=1.5s once again

with the help of InteriorRouter as enroller:

134

Create request/response flow calls are always accompanied by aforementioned steps ᴄ3-ᴄ7 and

exchange of M_CREATE and M_CREATE_R messages. State information for each flow are stored in

flowAllocator’s submodule called nFlowTable. Illustration of related BottomLayerA’s state

tables is depicted in Fig. 84.

The third event is an enrollment of BorderRouterB into TopLayer at t=2s. Enrollment is

scheduled on the top ranked IPCP (which is relayIpc) using BorderRouterA as enroller. Nevertheless,

neither BorderRouterB’s ipcProcess2, nor BorderRouterB’s bottomIpc is enrolled to its DIF. Hence,

135

MediumLayerAB enrollment must occur before TopLayer enrollment, and BottomLayerB enrollment

must precede MediumLayerAB enrollment:

 relayIpc’s Enrollment asks FA for management (N-1)-flow in order to send CACEP messages

from rB to rA within TopLayer. Because it does not exist, RA delegates flow allocation to

ipcProcess2;

 ipcProcess2’s FA receives a call. FA checks whether there is management (N-1)-flow for create

request flow messages between rB (BorderRouterB’s ipcProcess2) and rA (BorderRouterA’s

ipcProcess2) within MediumLayerAB. There is none flow and more over BorderRouterB’s

ipcProcess2 is not even enrolled into MediumLayerAB. Hence, ipcProcess2’s FA notifies RA

that it need underlying management (N-1)-flow (from perspective of relayIpc it is (N-2)-flow)

for enrollment procedure;

 bottomIpc’s FA receives a call. Because bottomIpc is in 0-level DIF, then RA returns

automatically successful binding of the management (N-1)-flow. Enrollment procedure occurs

between BorderRouterB’s bottomIpc and InteriorRouter’s ipcProcess1, which both are in

BottomLayerB DIF. Basically, IPCP with address rb successfully enrolls into BottomLayerB

using IPCP with address rc going through steps ᴇ1-ᴇ8;

 bottomIpc’s FA is notified about successful enrollment into BottomLayerB and continues with

flow allocation initiated during step #3. Hence, BorderRouterB’s bottomIpc and

InteriorRouter’s ipcProcess1 RIBds and FAs exchange messages as in steps ᴄ3-ᴄ7. Eventually,

management flow between rb and rc for MediumLayerAB communication is ready, and

BorderRouterB’s ipcProcess2 is alerted about this;

 ipcProcess2’s RA is notified about successful management flow allocation. Hence, enrollment

procedure initiated in step #2 may continue. IPCP with address rB (ipcProcess2 of

BorderRouterB) successfully enrolls into MediumLayerAB using IPCP with address rC

(relayIpc of InteriorRouter) going through steps ᴇ1-ᴇ8;

 ipcProcess2’s FA is notified about successful enrollment into MediumLayerAB and continues

with flow allocation initiated during step #2. Hence, BorderRouterB’s ipcProcess2 and

BorderRouterA’s ipcProcess2 exchange create request/response flow as in steps ᴄ3-ᴄ7. Notable

difference comparing to flow allocation in step #4 is that messages pass through InteriorRouter

(namely its relayIpc) as an interim device. Management flow between InteriorRouter’s relayIpc

and BorderRouterA’s ipcProcess2 is already present as the result of the second event of

“Enrollment Phase”. Eventually, management flow between rC and rA for TopLayer

communication is in place, and BorderRouterB’s relayIpc is informed;

 relayIpc’s RA is notified about successful management flow allocation. Hence, enrollment

procedure initiated in step #1 may continue. All underlying connections are ready, and data path

for management messages exists between BorderRouterB and BorderRouterA on relevant DIFs.

136

IPCP with address rB (relayIpc of BorderRouterB) successfully enrolls into TopLayer using

IPCP with address rA (relayIpc of BorderRouterA) going through steps ᴇ1-ᴇ8.

The fourth and the last event is an enrollment of HostB into TopLayer at t=5s. Enrollment is

scheduled on the top ranked IPCP (which is ipcProcess1) using BorderRouterB as enroller.

Nevertheless, BorderRouterB’s ipcProcess0 is also not enrolled into its DIF (MediumLayerB). Hence,

MediumLayerB enrollment must occur before TopLayer enrollment. Situation is similar due to the

recursions as in previous use-cases. Hence, we will omit unnecessary details when describing this event:

The final state after “Enrollment Phase” is that all nodes IPCPs are enrolled (or self-enrolled)

into their DIFs except HostA’s IPCPs. All flows created during “Enrollment Phase” carries only CACEP

messages (for connection establishment) and they are intended for direct RIBd-to-RIBd communication

employing various management messages, thus, these flows are called management flows.

Data Transfer Phase

The main outcome of this scenario is a simulation of data transfer events between HostA and HostB

employing ping-like application (AEMyPing). This application sends probe request (M_READ) from

HostA to HostB, where HostB replies with the response (M_READ_R). One-way and round-trip time

delays are measured employing this simple application.

“Data Transfer Phase” is divided into three notable events – flow allocation, data transfer, and

flow deallocation. We will describe them in a similar fashion as the previous phase.

137

Data flow allocation starts at t=10s. HostA’s applicationProcess1 (with APN SourceA, API-

id 0, AEN MyPing, AE-id 0 as ANI parameters) requests flow for communication with HostB’s

applicationProcess1 (with APN DestinationB, API-id 0, AEN MyPing, AE-id 0 as ANI parameters).

Event goes through following set of steps:

 Allocate request is delivered to IRM. Over there, DA is asked to resolve destination ANI onto

IPC address within certain DIF available to HostA. The following result is returned yielding that

DestinationB is reachable via IPCP hB in TopLayer DIF;

 HostA can access TopLayer leveraging ipcProcess1. Hence, IRM delegates allocate request call

to ipcProcess1’s FA. As usually, FA instantiates EFCPI and verifies whether IPCP is enrolled

into DIF before any attempt for sending create request flow (analogous to steps ᴄ1-ᴄ2). The

situation is now similar to enrollment procedure of HostB because neither ipcProcess1 nor

ipcProcess0 are enrolled into their DIFs. Therefore, HostA repeats same steps ʜ1-5, which

involve following actions performed due to the recursive calls in this order of finalization: a)

enrollment of HostA’s ipcProcess0 into MediumLayerA by BorderRouterA; b) creation of

management flow between IPCP ha and IPCP ra within MediumLayerA; c) enrollment of

HostA’s ipcProcess1 into TopLayer by BorderRouterA;

 After successful enrollment of ipcProcess1, FA may continue with flow allocation. FA

exchanges create request/respond flow with HostB (analogously to ᴄ3-ᴄ7). This includes the

creation of (N-1)-flow between ha and ra in MediumLayerA and creation of (N)-flow between

hA and hB in TopLayer. However, it gets more complex in TopLayer DIF because M_CREATE

and M_CREATE_R messages must be relayed by border routers to reach HostB, which causes

additional recursive flow allocations between interim devices (i.e., BorderRouterA,

InteriorRouter, BorderRouterB). All interim devices are already enrolled into their DIFs, thus

established flows serve as carriers for HostA and HostB data transfer. The next steps briefly

describe this multi-action step;

 M_CREATE from HostA to HostB is received by BorderRouterA’s relayIpc. BorderRouterA

inspects create request flow and determines BorderRouterB with the help of DA as the next-

hop. Because border routers are not directly connected, they can communicate via

InteriorRouter as a proxy. Therefore, BorderRouterA establishes flow between ra and rc of

BottomLayerA and sends create request flow in MediumLayerAB.

 M_CREATE from BorderRouterA to BorderRouterB is received by InteriorRouter’s relayIpc.

The message needs to be relayed to BorderRouterB. Hence, flow is created between rc and rb

in BottomLayerB. Then, create request flow is forwarded within this DIF;

 M_CREATE from BorderRouterA to BorderRouterB within MediumLayerAB is received by

BorderRouterB’s ipcProcess2. BorderRouterB accepts flow and sends create respond flow that

138

travels back to BorderRouterA. Because flow connecting both border routers (rA and rB within

MediumLayerAB) is established, flow allocation from #4 may continue;

 M_CREATE from HostA to HostB is received by BorderRouterB’s relayIpc after passing

through flows created during #5 and #6. BorderRouterB inspects create request flow and

determines that HostB is reachable via its MediumLayerB. In order to successfully relay

M_CREATE to its final destination, BorderRouterB allocates flow between rb and hb in

MediumLayerB. Subsequently, M_CREATE is forwarded to HostB;

 M_CREATE is received by HostB’s ipcProcess1. FA notifies applicationProcess1 about current

flow allocation. applicationProcess1 accepts flow for data transfer between APs. The decision

is returned to ipcProcess1’s FA. IRM is asked to create bindings between AP and IPCP. FA

instantiates EFCPI, updates Flow object and replies back to requestor with M_CREATE_R;

 M_CREATE_R is relayed via all flows formed during #4-#7 to HostA until ipcProcess1’s FA

receives this message. FA updates Flow object and notifies applicationProcess1 about

successful flow allocation. Then IRM adds missing bindings and whole data path between

HostA and HostB is ready. (N)-flow in TopLayer can carry data traffic between AEs with the

help of all underlying flows.

The next event is a transfer of data traffic between AEs. HostA sends five ping-like probes

employing individual object inside M_READ message starting at t=15s. Upon reception of these

messages, HostB replies with probe response, which is dedicated M_READ_R message. Data path and

consistent flows are depicted in with different colors to get oriented in the following the description.

Event consists of five repetitions of two steps:

 HostA’s applicationProcess1 sends a M_READ message, which is passed through IRM into

ipcProcess1 to flow prepared during the previous event and descends to ipcProcess0. The

message travels through the medium and flow connecting HostA with BorderRouterA within

MediumLayerA, where it is received by ipcProcess1. It is relayed by BorderRouterA’s relayIpc

to ipcProcess2 and flow interconnecting BorderRouterA and BorderRouterB in

MediumLayerAB. Because border routers are not directly connected, the message is passed to a

lower bottomIpc into flow interconnecting BorderRouterA with the neighboring InteriorRouter

in BottomLayerA. Message traverses through the medium and it reaches InteriorRouter’s

ipcProcess0. Over there, message ascends to relayIpc, where is relayed within

MediumLayerAB. Then it descends to ipcProcess1 into flow interconnecting InteriorRouter and

BorderRouterB in BottomLayerB. The message travels through medium to BorderRouterB’s

bottomIpc. It ascends to ipcProcess2 and is relayed by relayIpc to ipcProcess1. Finally, the

message reaches HostB’s ipcProcess0 through medium inside flow within MediumLayerB. It

ascends to flow in ipcProcess1 (member of TopLayerB) and through IRM to HostB’s

applicationProcess1 as recipient;

139

 HostB’s applicationProcess1 responds with M_READ_R message that returns to HostA

traveling in opposite direction through the same data (marked with violet line) path as in #1.

Depending on direction message is either encapsulated (from HostA to HostB green circles) or

decapsulated (from HostA to HostB orange circles) into/from PDU or relayed (brown circles).

Fig. 72: Data transfer phase illustration

After APs exchanged pings, HostA’s AE closes the connection and sends deallocate submit to

HostB at t=20s. Deallocation affects only flow present in TopLayer. Current RINASim

implementation leaves underlying (N-1/2)-flows (i.e., those not directly connected with APs) intact

because they may be reused later by other applications. This event is accompanied by following steps:

 HostA’s applicationProcess1 tells IRM to deliver deallocate submit. IRM disconnects from its

side port binding. Then, IRM delegates flow deallocation to ipcProcess1’s FA;

 This FA generates a M_DELETE message with updated Flow object state inside and sends it

towards HostB through flow in TopLayer. Message follows data path leveraging existing

management flows created during enrollment phase;

 HostB’s ipcProcess1 receives M_DELETE. FA updates its version of Flow object. FA delivers

deallocation submit to HostB’s applicationProcess1, which tells IRM to remove bindings.

 ipcProcess1’s FA on HostB then replies with M_DELETE_R acknowledging successful flow

deallocation. This message is carried back to HostA;

T
op

 L
a

ye
r

M
ed

iu
m

L
a

ye
rA

B
o

tt
om

L
ay

er
A

M
edium

LayerB

B
o

ttom
L

aye
rB

Border

RouterA

Interior

Router
Border

RouterB
HostA HostB

Physical medium Physical medium

M
e

diu
m

L
a

yerA
B

140

 HostA’s ipcProcess1 receives M_DELETE_R. FA marks flow as deallocated and disconnects

remaining bindings between IPCP and IRM.

The result of flow (de)allocation and flow’s state is maintained in ipcProcess1’s NFlowTable

of HostA and HostB. We can inspect flow parameters in these tables as illustrated in Fig. 73. We can

see that two EFCPIs handled endpoints of data transfer – EFCPI with CEP-id 18 430 in HostA’s

ipcProcess1 and EFCPI with CEP-id 60 067 in HostB’s ipcProcess1. Bindings between AP and IPCP

are ports identified with port-id 7 877 for HostA and port-id 57 495 for HostB. The only QoS demand

by AEMyPing is the reliability of data transfer (expressed with QoS attribute “force order” set to true).

Therefore, RA assigned QoSCube named “QoSCube-RELIABLE” to flows requested by this AE. Flow

object between HostA and HostB in TopLayer was created at t=10s/10.026s and was deleted at

t=20.008s/20.004s.

Fig. 73: Content of TopLayer ipcProcess1 NFlowTables for HostA and HostB

Source
ANI, IPCP address

Port-id, CEP-id

Destination
ANI, IPCP address

Port-id, CEP-id

Timestamps

QoS

attributes

Mapped QoSCube

Other parameters

141

5.5 Chapter Summary

In this chapter, we described core RINA principles. We tried to summarize RINA theory in the text that

lacks any usage of the term without previous thorough definition / context explanation because we know,

how hard the “mental shift” from TCP/IP concepts towards RINA is.

The second subchapter went into more details about various RINA components. It started with

a description of different kinds of high-level RINA nodes including hosts, interior routers, and border

routers. Subsequently, we dived deep into low-level RINA components that are being used by DIF and

DAF. Besides that as the research contribution, we thoroughly analyzed and enhanced (particularizing

functional descriptions and equipping them with FSMs) RINA specifications namely for FA and

CACEP operation.

Subchapter 5.3 briefly mentioned relevant research grant activities and available

implementations to reveal current RINA state-of-the-art.

The last subchapter described RINASim including installation guideline, design notes, and

demonstration. RINASim philosophy benefits from clever OMNeT++ module interfacing in order to

allow flexible change of used policies. Moreover, Subchapter 5.4 ending contained a detailed illustration

of RINA principles using RINASim demo scenario. Demonstration description should show the impact

of recursion and help others to understand enrollment and flow (de)allocation procedures in praxis.

Moreover, demonstration setup may be employed as the template when creating new scenarios.

We have designed and implemented RINASim as the first full-scale RINA simulator containing

a wide gamut of functions that are extensible and replaceable. RINASim reliably proves following RINA

properties: isolation of namespaces and address spaces across DIFs; enrollment and flow allocation

recursion and their impact; routing based on available resources reflecting QoS attributes; easy

application protocol prototyping when employing CDAP messages (and action primitives they

substitute); and others. Hence, RINA offers by design complete naming scheme and fulfills most of the

ideal solution properties as described in Chapter 3.

The main contribution of this chapter is RINASim as a tool that helps: 1) researchers to

prototype and test new policies and mechanisms in native and full-compliant RINA environment;

2) others to visualize and understand RINA principles.

142

6 Conclusion

We pursue a difficult and complex task to define and to discuss elementary naming, addressing and

routing principles of computer networks.

The thesis begins with an overview of networking fundamentals and points out design issues of

traditional TCP/IP stack that are becoming more apparent as more users and devices are accessing the

Internet each day. We tried to qualify causes and quantify their (future) impact (when following current

trends). Internet developed incrementally throughout previous 40 years. However, the Internet struggles

to redesign its communication schemes after the adoption of TCP/IP and its global expansion.

We collected and studied relevant papers and works written on the topic of naming, addressing

and routing. We formulated low-level foundations using formal math apparatus. We compiled

encompassing high-level theory and checked its compliance among existing addressing and naming

techniques. This work allowed us to reevaluate problems of current Internet in the new light, which

confirmed that aforementioned problems of TCP/IP are consequences of incomplete architecture that

lacks necessary levels of indirection. We investigated properties of existing candidates, which aspire to

deal with this situation. We decided to follow LISP and RINA further with our research efforts.

We thoroughly analyzed LISP use-cases and protocol details (namely the split of locator address

space and identifier namespace). We were able to identify and investigate certain shortcomings of LISP

design. Based on that, we developed improvements to LISP operations and verified them using discrete

event simulator. We implemented the first low-level LISP simulation modules and successfully checked

their compliance with the referential Cisco implementation in the real network. The principle of our

LISP research is included in papers [131], [132] and [133].

We conducted a similar analysis of RINA and its properties that aim to the clean-slate design of

not only naming and addressing but also other aspects of computer networking. We revisited all

available RINA specifications and try to improve their clarity, particularly parts describing enrollment

and flow (de)allocation procedures. Subsequently, we designed and implemented the first RINA discrete

event simulator called RINASim, which provides a standalone framework with full-fledged RINA

simulation modules for OMNeT++. The core contribution of our RINA research has been published as

an independent framework in [171] and explained in PRISTINE Deliverable 2.4 [167] and Deliverable

2.6 [172].

Following two subchapters outline some conclusions and results of our research efforts

involving Locator/Id Separation Protocol and Recursive InterNetwork Architecture.

֍ –“A story has no beginning or end: arbitrarily one chooses that moment of experience from which

 to look back or from which to look ahead.” Graham Green

֍ What has been done and accomplished in frame of this dissertation thesis?

֍ What are the important results?

143

6.1 Summary about LISP

Precise LISP (and VRRP) simulation modules for OMNeT++, which are used as the basis for ongoing

research, represent the main code contribution. Based on well-known designed issues (see [108]), we

investigated, proposed, implemented and tested two improvements – map-cache synchronization and

merged RLOC probing. Our map-cache synchronization techniques minimize map-cache misses, thus

significantly decreasing packet loss. Furthermore, employing our merged RLOC probing algorithms has

an outstanding impact on LISP protocol overhead comparing to simple RLOC probing per every EID.

Despite the accomplished achievements in LISP operation tuning, LISP is unfortunately not an

ultimate solution for current Internet troubles. It breaks several RFC 1958 concepts, and some problems

were revealed during its worldwide deployment (RFC 7215 [173]). Moreover, LISP deployment needs

additional configuration effort to secure LISP against possible attacks and threats (see [174]).

Basically, any solution decoupling locator and identifier has to deal with Locator Path Liveness

problem, and any non-host-based loc/id split has to cope with Site-based State Synchronization problem.

Their impact can be diminished (with for instance map-cache synchronization described above) but not

completely treated. Hence, neither LISP nor any CES/CEE proposal reviewed in Chapter 3.5 is the

desired solution.

Another and probably the most serious rebuke of any hybrid or network-based loc/id split is

when a packet is traversing locator namespace then the routing is performed according to the locator,

not an identifier. Previous is strictly in contradiction to the theory reviewed in Chapter 3, and

implications are thoroughly investigated in [126]. LISP suffers from three major problems:

 Routing should be done based on node names (see Saltzer’s [49]). However, “routes” in

nowadays Internet use PoAs (IP addresses in Fig. 14). Therefore, all IP “routing” is based on

false premises and would always be route dependent (which is unwanted based on knowledge

in Subchapter 3.3). Routing should be performed based on identifier not locator (otherwise, it

leads to Locator Path Liveness problem);

 Locator and identifier are not bound to the same object – locator address is an address of the

interim device (which performs header alternation relevant to loc/id split) not the end-device of

communication;

 All identifiers are used in some sense also for locating. An object cannot be located without

identifying it and vice versa (see Saltzer’s [45]). There could neither be identification without

localization, nor localization without identification. Thus, there should be no semantic

distinction between identifier and locator on the Internet but yet there is.

Therefore, LISP does not provide proper naming and addressing concept, nor it is even scalable

routing solution for TCP/IP architecture.

144

6.2 Summary about RINA

RINA as the new (and complete) clean-slate architecture tries to touch and codify every part of

communication within computer networks. Therefore, RINA’s knowledge base spans from high-level

reference model description to low-level characterization of each component functionality. Pouzin

Society [175] is a formal body in charge of maintaining specifications with FIT-BUT as one of its

members. In the theoretical part of this dissertation, we revisited and extended parts of RINA

specifications concerning flow allocation and connection establishment procedure. We supplemented

them with FSMs illustrating FA and CACE operations.

RINASim is the main contribution, and RINASim’s development process helped to clarify and

progress some RINA specifications. As the RINASim’s chief designers and implementers, we authored

FA, DA, AE, RIBd and RA simulation modules in the frame of this thesis.

RINA is still young in its technological readiness level. Hence, some of RINA’s concepts were

doubtful whether they will work or not. Following RINA features would not be possible to prove or

verify without RINASim:

 We simulated and shown basic RINA functionality (enrollment, flow allocation and data

transfer) in this thesis (and in [171]). RINA can achieve IPC employing recursively the same

(DIF and DAF) components, which simplifies implementation of the network stack.

Furthermore, DIF scope isolation allows reusing IPCP’s APNs without any duplicity address

problems. Hence, there is no need for global address space due to the DIF isolation;

 RINA allows an easy employment of Aggregated Congestion Control (ACC), see PRISTINE

Deliverable 3.2 [176] for more. ACC improves QoS experience for communicating parties

whenever congestion occurs in the network. RINA offers built-in mechanisms with

programmable policies to handle resource allocation in compliance with QoS demands;

 Custom routing algorithm taking into account division of (location dependent) address space

reduces significantly routing table sizes for distributed cloud installations. Aforementioned

solution – called Scalable Forwarding with RINA (SFR), see paper [177] for details –

provides proofs for real-life use-case that topologically dependent (hierarchical) addresses help

in routing comparing to flat address space.

RINA theory seems to offer complete naming, addressing and routing concepts. Moreover,

RINA’s design separating mechanisms and policies is flexible enough to allow scalable changes

reflecting demands of future Internet. Nevertheless, RINA needs more validation and verification testing

(preferably) on real-life deployment to support previous claims.

145

6.3 Future Work

We take this thesis just as the beginning of more advanced research involving OMNeT++ simulator as

a validation tool for new routing paradigms (such as LISP) and alternative architectures (such as RINA).

We would like to discuss our LISP improvements – map-cache synchronization and merged

RLOC probing – within IETF to see whether they can be submitted as draft proposals. Our plans with

LISP simulation modules include to add support for proxy xTR functionality and to recognize more

LISP control flags (like SMR bits). We would like to use further our LISP simulation modules and test

effectiveness of different distributed mapping systems (e.g., LISP-ALT, LISP-DDT). Also, we intend

to upgrade VRRP to support IPv6 addresses and all features of VRRP version 3. We would like our low-

level LISP simulation modules to be considered as the verification tool for other LISP related use-cases

and technologies. Therefore, we want to integrate LISP source codes with official INET framework as

the first step (which is something we already accomplished before [178] or [179]).

We plan to carry on work on RINA research topics and further refine RINASim based on new

knowledge and up-to-date specifications. An additional goal is to conduct a comparative evaluation of

our simulation models with RINA implementation for Linux environment called IRATI. Adoption of

the newest version 6.5 of EFCP, SDU protection module integration, NSM and dynamic DA

functionality are on our development roadmap for the nearest future.

6.4 Final Thoughts

This subchapter contains a few thoughts that helped to shape this thesis and that are worthy to be

considered by any young scientist interested in computer networks.

— “The Internet is at its core an unfinished demo.”

John Day

— “(6) It is easier to move a problem around (for example, by moving the problem to a different part of

the overall network architecture) than it is to solve it.”

— “(11) Every old idea will be proposed again with a different name and a different presentation,

regardless of whether it works.”

RFC 1925 [180]

— “Ninety percent of everything is crap!”

Theodore Sturgeon

— „Hlavu vzhůru nos mezi mraky!”

Arnošt Veselý

146

7 Bibliography

[1] ISO, "Information technology – Open Systems Interconnection – Basic Reference Model: The

Basic Model". Patent ISO/IEC 7498-1:1994, 1994.

[2] B. Carpenter, "RFC 1958: Architectural Principles of the Internet," June 1996. [Online].

Available: http://tools.ietf.org/html/rfc1958.

[3] J. Day, Patterns in Network Architecture: A Return to Fundamentals, Boston: Prentice Hall,

2008.

[4] P. Ji, Z. Ge, J. Kurose and D. Towsley, "A Comparison of Hard-State and Soft-State Signaling

Protocols," IEEE/ACM Transactions On Networking, vol. 15, no. 2, pp. 281-294, 2007.

[5] R. Watson, "Delta-t Protocol Specification," Lawrence Livermore Laboratory, December 1981.

[Online]. Available: http://www.osti.gov/scitech/servlets/purl/5542785.

[6] S. Floyd, "RFC 2914: Congestion Control Principles," September 2000. [Online]. Available:

https://tools.ietf.org/html/rfc2914. [Accessed January 2016].

[7] B. Braden, D. Clark, J. Crowcroft, B. Davie, S.Deering, D. Estrin, S. Floyd and V. Jacobson,

"RFC 2309: Recommendations on Queue Management and Congestion Avoidance in the

Internet," April 1998. [Online]. Available: https://tools.ietf.org/html/rfc2309. [Accessed January

2016].

[8] M. Allman, V. Paxson and E. Blanton, "RFC 5681: TCP Congestion Control," September 2009.

[Online]. Available: https://tools.ietf.org/html/rfc5681. [Accessed January 2016].

[9] M. A. Rahman, A. Pakštas and F. Z. Wang, "Towards Communications Network Modelling

Ontology for Designers and Researchers," in Proceedings of International Conference on

Intelligent Engineering Systems INES '06, London, United Kingdom, 2006.

[10] Cisco Systems, Inc., "The Zettabyte Era Trends and Analysis - Cisco," May 2015. [Online].

Available: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-

networking-index-vni/VNI_Hyperconnectivity_WP.html. [Accessed September 2015].

[11] R. Atkinson, "IPv6 Routing Table Size Issues," October 1996. [Online]. Available:

https://tools.ietf.org/html/draft-ietf-ipngwg-ipv6-routing-00. [Accessed January 2016].

[12] J. Yu, "RFC 2791: Scalable Routing Design Principles," July 2000. [Online]. Available:

https://tools.ietf.org/html/rfc2791. [Accessed January 2016].

[13] M. Grégr and T. Podermanski, "IPv6 @ CESNET nework | 6lab.cz," Brno University of

Technology, September 2015. [Online]. Available: http://6lab.cz/live-statistics/ipv6-cesnet-

nework/. [Accessed September 2015].

147

[14] IRTF, "Routing Research Group (RRG)," [Online]. Available: https://irtf.org/concluded/rrg.

[Accessed February 2015].

[15] IRTF, "rrg Discussion Archive - Date Index," [Online]. Available: http://www.ietf.org/mail-

archive/web/rrg/current/maillist.html. [Accessed February 2015].

[16] IETF, "Open discussion forum for long/wide-range architectural issues Discussion Archive -

Date Index," [Online]. Available: http://www.ietf.org/mail-archive/web/architecture-

discuss/current/maillist.html. [Accessed February 2015].

[17] T. Li, "RFC 6227: Design Goals for Scalable Internet Routing," May 2011. [Online]. Available:

http://tools.ietf.org/html/rfc6227.

[18] D. Meyer, L. Zhang and K. Fall, "RFC 4984: Report from the IAB Workshop on Routing and

Addressing," September 2007. [Online]. Available: http://tools.ietf.org/html/rfc4984.

[19] G. Huston, "BGP Growth Revisited," November 2011. [Online]. Available:

http://www.potaroo.net/ispcol/2011-11/bgp2011.html.

[20] G. Huston, "BGP in 2014," January 2015. [Online]. Available:

http://www.potaroo.net/ispcol/2015-01/bgp2014.html.

[21] G. Huston, "Addressing 2014 - And then there were 2!," January 2015. [Online]. Available:

http://www.potaroo.net/ispcol/2015-01/addressing2014.html.

[22] Y. Rekhter, T. Li and S. Hares, "RFC 4271: A Border Gateway Protocol 4 (BGP-4)," January

2006. [Online]. Available: http://tools.ietf.org/html/rfc4271.

[23] G. Huston, "BGP Reports - BGP Table Data," 7 August 2013. [Online]. Available:

http://bgp.potaroo.net/index-bgp.html.

[24] D. Mowery and T. Simcoe, "Is the Internet a US invention?—an economic and technological

history of computer networking," Research Policy, vol. 31, no. 8-9, pp. 1369-1387, December

2002.

[25] M. Boucadair and D. Binet, Solutions for Sustaining Scalability in Internet Growth, France: IGI

Global, 2014.

[26] B. Carpenter, J. Crowcroft and Y. Rekhter, "RFC 2101: IPv4 Address Behaviour Today,"

February 1997. [Online]. Available: http://tools.ietf.org/html/rfc2101.

[27] C. J. Bennet, S. W. Edge and A. J. Hinchley, "IEN #1: Issues in the Interconnection of Datagram

Networks," 29 July 1977. [Online]. Available: http://www.postel.org/ien/pdf/ien001.pdf.

[28] D. Massey, L. Wang, B. Zhang and L. Zhang, "A scalable routing system design for future

internet," in Proceedings of ACM SIGCOMM Workshop on IPv6, Kyoto, Japan, 2007.

[29] S. Brim, "LISP Analysis," March 2008. [Online]. Available: https://tools.ietf.org/html/draft-

brim-lisp-analysis-00.

148

[30] J. Abley, K. Lindqvis, E. Davies, B. Black and V. Gill, "IPv4 Multihoming Practices and

Limitations," [Online]. Available: http://tools.ietf.org/html/rfc4116.

[31] T. Bates and Y. Rekhter, "RFC 2260: Scalable Support for Multi-homed Multi-provider

Connectivity," January 1998. [Online]. Available: http://tools.ietf.org/html/rfc2260.

[32] Postscapes, "Internet of Things Market Forecast," [Online]. Available:

http://postscapes.com/internet-of-things-market-size. [Accessed February 2015].

[33] C. Perkins, "RFC 5944: IP Mobility Support for IPv4, Revised," November 2010. [Online].

Available: http://tools.ietf.org/html/rfc5944.

[34] C. Perkins, D. Johnson and J. Arkko, "RFC 6275: Mobility Support in IPv6," July 2011. [Online].

Available: https://tools.ietf.org/html/rfc6275.

[35] H. Soliman, C. Castelluccia, K. ElMalki and L. Bellier, "RFC 5380: Hierarchical Mobile IPv6

(HMIPv6) Mobility Management," October 2008. [Online]. Available:

https://tools.ietf.org/html/rfc5380.

[36] IETF, "Multipath TCP (mptcp)," [Online]. Available:

https://datatracker.ietf.org/wg/mptcp/documents/. [Accessed February 2015].

[37] J. Saltzer, D. Reed and D. Clark, "End-to-end arguments in system design," ACM Transactions

on Computer Systems (TOCS) , vol. 2, no. 4, pp. 277-288, 1984.

[38] Cisco Systems, Inc., "Document ID 13753: BGP Best Path Selection Algorithm," 21 May 2012.

[Online]. Available:

http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a0080094431.shtml.

[39] B. Carpenter, R. Atkinson and H. Flinck, "Renumbering Still Needs Work," May 2010. [Online].

Available: http://tools.ietf.org/html/rfc5887.

[40] G. Huston, "IPv6: IPv6 / IPv4 Comparative Statistics," [Online]. Available:

http://bgp.potaroo.net/v6/v6rpt.html. [Accessed 22 August 2013].

[41] G. Huston, "The BGP World is flat," November 2011. [Online]. Available:

http://www.potaroo.net/ispcol/2011-12/flat.html. [Accessed July 2015].

[42] J. Durand, I. Pepelnjak and G. Doering, "RFC 7454: BGP Operations and Security," February

2015. [Online]. Available: https://tools.ietf.org/html/rfc7454.

[43] J. Shoch, "IEN #19: A note on Inter-Network Naming, Addressing, and Routing," XEROX

PARC, January 1978. [Online]. Available: http://www.postel.org/ien/pdf/ien019.pdf.

[44] C. Sunshine, "IEN #178: Addressing Problems in Multi-Network Systems," University of

Southern California, April 1981. [Online]. Available: http://www.postel.org/ien/pdf/ien178.pdf.

[45] J. Saltzer, "Name Binding of Objects," Massachusetts Institute of Technology, 1978. [Online].

Available: web.mit.edu/Saltzer/www/publications/nbo/nbo.pdf.

149

[46] J. N. Chiappa, "Endpoints and Endpoint Names: A Proposed Enhancement to the Internet

Architecture," 1999. [Online]. Available: http://www.chiappa.net/~jnc/tech/endpoints.txt.

[47] J. Munkres, Topology: A First Course, Prentice Hall College Div, 1974.

[48] ISO, "Information technology – Open Systems Interconnection – Basic Reference Model:

Naming and addressing". Patent ISO/IEC 7498-3:1997, 1997.

[49] J. Saltzer, "On the Naming and Binding of Network Destinations," Local Computer Networks,

pp. 311-317, August 1982.

[50] R. Hinden and S. Deering, "RFC 4291: IP Version 6 Addressing Architecture," February 2006.

[Online]. Available: http://tools.ietf.org/html/rfc4291.

[51] M. O'Dell, "GSE: The Alternative Addressing Architecture for IPv6," February 1997. [Online].

Available: http://tools.ietf.org/html/draft-ietf-ipngwg-gseaddr-00.

[52] F. Baker, E. Lear and R. Droms, "RFC 4192: Procedures for Renumbering an IPv6 Network

without a Flag Day," [Online]. Available: http://tools.ietf.org/html/rfc4192.

[53] T. Li, "RFC 6115: Recommendation for a Routing Architecture," February 2011. [Online].

Available: http://tools.ietf.org/html/rfc6115.

[54] R. Hinden, "RFC 1955: New Scheme for Internet Routing and Addressing (ENCAPS) for IPng,"

June 1996. [Online]. Available: http://tools.ietf.org/html/rfc1955.

[55] R. Smart and D. Clark, "[RRG] GSE History," January 1995. [Online]. Available:

http://www.ietf.org/mail-archive/web/rrg/current/msg02455.html.

[56] D. Jen, M. Meisel, H. Yan, D. Massey, L. Wang, B. Zhang and L. Zhang, "Towards A New

Internet Routing Architecture: Arguments for Separating Edges from Transit Core," 2008.

[57] R. Moskowitz and P. Nikander, "RFC 4423: Host Identity Protocol (HIP) Architecture," May

2006. [Online]. Available: http://tools.ietf.org/html/rfc4423.

[58] R. Moskowitz, P. Nikander, P. Jokela and T. Henderson, "RFC 5201: Host Identity Protocol,"

April 2008. [Online]. Available: http://tools.ietf.org/html/rfc5201.

[59] E. Nordmark and M. Bagnulo, "RFC 5533: Shim6: Level 3 Multihoming Shim Protocol for

IPv6," June 2009. [Online]. Available: http://tools.ietf.org/html/rfc5533.

[60] X. Xu, "Hierarchical Routing Architecture," in 4th Euro-NGI Conference, Krakow, Poland,

April, 2008.

[61] X. Xu, "Routing Architecture for the Next Generation Internet (RANGI)," August 2010.

[Online]. Available: http://tools.ietf.org/html/draft-xu-rangi-04.

[62] X. Xu, "Transition Mechanisms for Routing Architecture for the Next Generation Internet

(RANGI)," July 2009. [Online]. Available: http://tools.ietf.org/html/draft-xu-rangi-proxy-01.

[63] R. Whittle, "Ivip Page," [Online]. Available: http://www.firstpr.com.au/ip/ivip/.

150

[64] R. Whittle, "Glossary of some Ivip and scalable routing terms," March 2010. [Online]. Available:

http://tools.ietf.org/html/draft-whittle-ivip-glossary-01.

[65] R. Whittle, "Ivip (Internet Vastly Improved Plumbing) Architecture," March 2010. [Online].

Available: http://tools.ietf.org/html/draft-whittle-ivip-arch-04.

[66] R. Whittle, "Ivip4 ETR Address Forwarding," July 2010. [Online]. Available:

http://tools.ietf.org/html/draft-whittle-ivip-etr-addr-forw-01.

[67] R. Whittle and S. Russert, "TTR Mobility Extensions for Core-Edge Separation Solutions to the

Internet's Routing Scaling Problem," October 2011. [Online]. Available:

http://www.firstpr.com.au/ip/ivip/TTR-Mobility.pdf.

[68] R. Whittle, "IPTM - Ivip's approach to solving the problems with encapsulation overhead, MTU,

fragmentation and Path MTU Discovery," January 2010. [Online]. Available:

http://www.firstpr.com.au/ip/ivip/pmtud-frag/.

[69] R. Whittle, "DRTM - Distributed Real Time Mapping for Ivip and LISP," March 2010. [Online].

Available: https://tools.ietf.org/html/draft-whittle-ivip-drtm-01.

[70] P. Frejborg, "RFC 6306: Hierarchical IPv4 Framework," July 2011. [Online]. Available:

http://tools.ietf.org/html/rfc6306.

[71] Y. Wang, W. Zhang and J. Bi, "Name overlay (NOL) Service for Improving Internet Routing

Scalability," Venice, Italy, July, 2010.

[72] M. Menth, M. Hartmann and D. Klein, "Global Locator, Local Locator, and Identifier Split (GLI-

Split)," April 2010. [Online]. Available: http://www3.informatik.uni-

wuerzburg.de/TR/tr470.pdf.

[73] M. Menth, M. Hartmann and D. Klein, "Global Locator, Local Locator, and Identifier Split (GLI-

Split)," Future Internet 2013, vol. V, no. 1, pp. 67-94, January, 2013.

[74] J. Adan, "Tunneled Inter-domain Routing (TIDR)," April 2007. [Online]. Available:

http://tools.ietf.org/html/draft-adan-idr-tidr-01.

[75] J. Adan, "TIDR using the IDENTIFIERS attribute," April 2007. [Online]. Available:

http://www.ietf.org/mail-archive/web/ram/current/msg01308.html.

[76] J. Adan, "LISP etc architecture," December 2007. [Online]. Available: http://www.ietf.org/mail-

archive/web/rrg/current/msg00869.html.

[77] R. Atkinson, S. Bhatti, S. Hailes, D. Rehunathan and M. Lad, "ILNP - Identifier-Locator Network

Protocol," June 2011. [Online]. Available: http://ilnp.cs.st-andrews.ac.uk.

[78] R. Atkinson, "ILNP Concept of Operations," July 2011. [Online]. Available:

http://tools.ietf.org/html/draft-rja-ilnp-intro-11.

151

[79] R. Atkinson and S. Bhatti, "RFC 6740: Identifier-Locator Network Protocol (ILNP) Architectural

Description," November 2012. [Online]. Available: http://tools.ietf.org/html/rfc6740.

[80] R. Atkinson and S. Bhatti, "RFC 6741: Identifier-Locator Network Protocol (ILNP) Engineering

Considerations," November 2012. [Online]. Available: http://tools.ietf.org/html/rfc6741.

[81] R. Atkinson, S. Bhatti and S. Rose, "RFC 6742: DNS Resource Records for ILNP," November

2012. [Online]. Available: http://tools.ietf.org/html/rfc6742.

[82] R. Atkinson and S. Bhatti, "RFC 6743: ICMP Locator Update Message for the Identifier-Locator

Network Protocol for IPv6 (ILNPv6)," November 2012. [Online]. Available:

http://tools.ietf.org/html/rfc6743.

[83] R. Atkinson and S. Bhatti, "RFC 6744: ILNP Nonce Destination Option," November 2012.

[Online]. Available: http://tools.ietf.org/html/rfc6744.

[84] R. Atkinson and S. Bhatti, "RFC 6745: ICMP Locator Update Message," November 2012.

[Online]. Available: http://tools.ietf.org/html/rfc6745.

[85] R. Atkinson, "RFC 6746: IPv4 Options for the Identifier-Locator Network Protocol (ILNP),"

November 2012. [Online]. Available: http://tools.ietf.org/html/rfc6746.

[86] R. Atkinson and S. Bhatti, "RFC 6747: Address Resolution Protocol (ARP) for the Identifier-

Locator Network Protocol for IPv4 (ILNPv4)," November 2012. [Online]. Available:

http://tools.ietf.org/html/rfc6747.

[87] R. Atkinson and S. Bhatti, "RFC 6748: Optional Advanced Deployment Scenarios for the

Identifier-Locator Network Protocol (ILNP)," November 2012. [Online]. Available:

http://tools.ietf.org/html/rfc6748.

[88] B. Zhang and L. Zhang, "Evolution Towards Global Routing Scalability," October 2009.

[Online]. Available: http://tools.ietf.org/html/draft-zhang-evolution-02.

[89] B. Zhang, L. Wang, X. Zhao, Y. Liu and L. Zhang, "An Evaluation Study of Router FIB

Aggregatability," [Online]. Available: http://www.ietf.org/proceedings/76/slides/grow-2.pdf.

[90] L. Zhang, P. Francis, X. Xu, H. Ballani, D. Jen and R. Raszuk, "Virtual Aggregation (VA),"

November 2009. [Online]. Available: http://www.ietf.org/proceedings/76/slides/grow-5.pdf.

[91] C. Vogt, "Simplifying Internet Applications Development With A Name-Based Sockets

Interface," December 2009. [Online]. Available: http://christianvogt.mailup.net/pub/vogt-2009-

name-based-sockets.pdf.

[92] J. Ubillos, M. Xu, Z. Ming and C. Vogt, "Name-Based Sockets Architecture," September 2010.

[Online]. Available: http://tools.ietf.org/html/draft-ubillos-name-based-sockets-03.

152

[93] D. Jen, M. Meisel, H. Yan, D. Massey, L. Wang, B. Zhang and L. Zhang, "APT: A Practical

Transit Mapping Service," November 2007. [Online]. Available: http://tools.ietf.org/html/draft-

jen-apt-01.

[94] F. Templin, "RFC 5320: The Subnetwork Encapsulation and Adaptation Layer (SEAL)," January

2011. [Online]. Available: http://tools.ietf.org/html/rfc5320.

[95] F. Templin, "RFC 5720: Routing and Addressing in Networks with Global Enterprise Recursion

(RANGER)," February 2010. [Online]. Available: http://tools.ietf.org/html/rfc5720.

[96] W. Herrin, "Tunneling Route Reduction Protocol (TRRP)," [Online]. Available:

http://bill.herrin.us/network/trrp.html.

[97] C. Vogt, "Six/One Router: A Scalable and Backwards Compatible Solution for Provider-

Independent Addressing," Seattle, USA, 2008.

[98] D. Farinacci, V. Fuller, D. Meyer and D. Lewis, "RFC 6830: The Locator/ID Separation Protocol

(LISP)," January 2013. [Online]. Available: http://tools.ietf.org/html/rfc6830.

[99] D. Lewis, D. Meyer, D. Farinacci and V. Fuller, "RFC 6832: Interworking between Locator/ID

Separation Protocol (LISP) and Non-LISP Sites," January 2013. [Online]. Available:

http://tools.ietf.org/html/rfc6832.

[100] V. Fuller, "RFC 6833: Locator/ID Separation Protocol (LISP) Map-Server Interface," January

2013. [Online]. Available: http://tools.ietf.org/html/rfc6833.

[101] L. Iannone, D. Saucez and O. Bonaventure, "RFC 6834: Locator/ID Separation Protocol (LISP)

Map-Versioning," January 2013. [Online]. Available: http://tools.ietf.org/html/rfc6834.

[102] J. Curran, S. Brim, D. Farinacci and D. Meyer, "EID Mappings Multicast Across Cooperating

Systems for LISP," November 2007. [Online]. Available: http://tools.ietf.org/html/draft-curran-

lisp-emacs-00.

[103] E. Lear, "RFC 6837: NERD - A Not-so-novel Endpoint ID (EID) to Routing Locator (RLOC)

Database," January 2013. [Online]. Available: http://tools.ietf.org/html/rfc6837.

[104] D. Meyer, S. Brim, N. Chiappa, D. Farinacci, V. Fuller and D. Lewis, "LISP-CONS: A Content

distribution Overlay Network Service for LISP," April 2008. [Online]. Available:

http://tools.ietf.org/html/draft-meyer-lisp-cons-04.

[105] V. Fuller, D. Farinacci, D. Meyer and D. Lewis, "RFC 6836: Locator/ID Separation Protocol

Alternative Logical Topology (LISP+ALT)," January 2013. [Online]. Available:

http://tools.ietf.org/html/rfc6836.

[106] V. Fuller, D. Lewis, D. Ermagan and A. Jain, "draft-fuller-lisp-ddt: LISP Delegated Database

Tree," September 2012. [Online]. Available: http://tools.ietf.org/html/draft-fuller-lisp-ddt.

153

[107] I. Stoica, R. Morris, D. Karger, F. Kaashoek and H. Balakrishnan, May 2013. [Online].

Available: https://github.com/sit/dht/wiki.

[108] L. Mathy and L. Iannone, "LISP-DHT: Towards a DHT to map identifiers onto locators," in

Proceedings of the 2008 ACM CoNEXT Conference, Madrid, Spain, 2008.

[109] R. Froom, E. Frahim and B. Sivasubramanian, CCNP Self-Study: Understanding and

Configuring Multilayer Switching, 4th Edition ed., Cisco Press, 2007.

[110] IETF, January 2014. [Online]. Available: https://datatracker.ietf.org/wg/lisp/charter/.

[111] L. Iannone, October 2011. [Online]. Available: http://www.openlisp.org/.

[112] Cisco Systems, Inc., November 2013. [Online]. Available: http://lisp.cisco.com/.

[113] UPC BarcelonaTECH, 2014. [Online]. Available: http://lispmob.org/home.

[114] D. Farinacci, D. Lewis, D. Meyer and C. White, "draft-meyer-lisp-mn: LISP Mobile Node," July

2013. [Online]. Available: http://tools.ietf.org/html/draft-meyer-lisp-mn.

[115] AVM GmbH, "Unterstützung für das Locator Identifier Separation Protocol (LISP)," 2013.

[Online]. Available: http://www.avm.de/de/Service/Service-Portale/Service-

Portal/Sonstige_Dokumente/labor_lisp.php.

[116] LISP4/LISP6.net, "LISP BetaNetwork," 2011. [Online]. Available: http://www.lisp4.net/beta-

network/.

[117] American Registry for Internet Numbers, "ASN3943," January 2014. [Online]. Available:

http://whois.arin.net/rest/asn/AS3943/pft.

[118] D. Farinacci and D. Meyer, "RFC 6835: The Locator/ID Separation Protocol Internet Groper

(LIG)," January 2013. [Online]. Available: http://tools.ietf.org/html/rfc6835.

[119] UPC BarcelonaTECH, 2014. [Online]. Available: http://lispmon.net/.

[120] F. Coras, A. Cabellos and L. Jakab, "CoreSim: A Simulator for Evaluating LISP Mapping

Systems," Cluj-Napoca, 2009.

[121] A. Cabellos, J. Domingo Pascual, D. Saucez and O. Bonaventure, "Validation of a LISP

simulator," 2011. [Online]. Available: http://upcommons.upc.edu/e-

prints/bitstream/2117/14351/1/Cabellos.pdf.

[122] D. Klein, M. Hoefling, M. Hartmann and M. Menth, "Integration of LISP and LISP-MN into

INET," in Proceedings of the IEEE 5th International ICST Conference on Simulation Tools and

Techniques, Desenzano del Garda, 2012.

[123] D. Klein, M. Hartmann and M. Menth, "NAT Traversal for LISP Mobile Node," July 2010.

[Online]. Available: http://tools.ietf.org/html/draft-klein-lisp-mn-nat-traversal.

154

[124] J. Kim, L. Iannone and A. Feldmann, "A deep dive into the LISP cache and what ISPs should

know about it," NETWORKING 2011, vol. 6640, no. ISBN: 978-3-642-20756-3, pp. 367-378,

2011.

[125] D. Meyer and D. Lewis, "Architectural Implications of Locator/ID Separation," January 2009.

[Online]. Available: http://tools.ietf.org/html/draft-meyer-loc-id-implications-01.

[126] J. Day, "Why Loc/Id Split Isn’t the Answer," Pouzin Society, 2008. [Online]. Available:

http://pouzinsociety.org/images/LocIDSplit090309.pdf.

[127] R. Hinden, "RFC 3768: Virtual Router Redundancy Protocol (VRRP)," April 2004. [Online].

Available: https://tools.ietf.org/html/rfc3768.

[128] S. Nadas, "RFC 5798: Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and

IPv6," March 2010. [Online]. Available: https://tools.ietf.org/html/rfc5798.

[129] D. Saucez, O. Bonaventure, L. Iannone and C. Filsfils, "LISP ITR Graceful Restart," December

2013. [Online]. Available: https://tools.ietf.org/html/draft-saucez-lisp-itr-graceful-03.

[130] D. Saucez, J. Kim, L. Iannone, O. Bonaventure and C. Filsfils, "A Local Approach to Fast Failure

Recovery of LISP Ingress Tunnel Routers," NETWORKING 2012, vol. 7289, pp. 397-408, 2012.

[131] V. Veselý, M. Marek, O. Ryšavý and M. Švéda, "Multicast, TRILL and LISP Extensions for

INET," Journal On Advances in Networks and Services, vol. 7, no. 3&4, pp. 240-251, 2014.

[132] V. Veselý and O. Ryšavý, "Locator/Id Split Protocol Improvement for High-Availability

Environment," in Proceedings of The Tenth International Conference on Networking and

Services, Roma, Italy, 2015.

[133] V. Veselý and O. Ryšavý, "Map-Cache Synchronization and Merged RLOC Probing Study for

LISP," International Journal On Advances in Intelligent Systems, vol. 8, no. 3&4, 2015.

[134] Cisco Systems, Inc., "Cisco IOS IP Routing: LISP Command Reference - LISP Show Commands

[Support]," [Online]. Available: http://www.cisco.com/c/en/us/td/docs/ios-

xml/ios/iproute_lisp/command/ip-lisp-cr-book/ip-lisp-cr-book_chapter_01011.html. [Accessed

February 2014].

[135] J. Day, "RINARefModelPart1-0 130925: Part 1 - Basic Concepts of Distributed Systems,"

Pouzin Society, 2013.

[136] J. Day, "RINARefModelPart2-1 130925: Part 2 - Distributed Applications, Chapter 1 - Basic

Concepts of Distributed Applications," Pouzin Society, 2013.

[137] J. Day and E. Trouva, "RINARefModelPart2-2 140102: Part 2 - Distributed Applications,

Chapter 2 - Introduction to Distributed Management Systems," Pouzin Society, 2014.

[138] J. Day, "RINARefModelPart3-1 140102: Part 3 - Distributed InterProcess Communication,

Chapter 1 - Fundamental Structure," Pouzin Society, 2012.

155

[139] J. Day, "RINARefModelPart3-2 140102: Part 3 - Distributed InterProcess Communication,

Chapter 2 - DIF Operations," Pouzin Society, 2012.

[140] J. Day, "An introduction to the Recursive InterNetwork Architecture," January 2015. [Online].

Available: http://ict-pristine.eu/wp-content/uploads/2014/12/GhentIntroRINAPt1-150119.pdf.

[Accessed April 2015].

[141] J. Day, I. Matta and K. Mattar, "Networking is IPC: a guiding principle to a better internet," in

CoNEXT '08 Proceedings of the 2008 ACM CoNEXT Conference , New York, NY, USA, 2008.

[142] R. Watson, "The Delta-t transport protocol: features and experience," in Proceedings 14th

Conference on Local Computer Networks, Minneapolis, USA, 1989.

[143] E. Trouva, E. Grasa, J. Day and S. Bunch, "Layer discovery in RINA networks," in IEEE 17th

International Workshop on Computer Aided Modeling and Design of Communication Links and

Networks (CAMAD), Barcelona, Spain, 2012.

[144] J. Day, "D-Base-2011-017: IPC Resource Manager (IRM) Specification," Pouzin Society, 2012.

[145] J. Day, "D-Base-2012-014: Basic Enrollment Specification," Pouzin Society, 2012.

[146] J. Day, "D-Base-2010-007: Delimiting Module," Pouzin Society, 2009.

[147] J. Day, "DelimitingGeneral130904: Delimiting Module," Pouzin Society, 2013.

[148] J. Day, M. Marek, L. Bergesio and M. Tarzan, "EFCPSpec140824_MT_LBJD_MM_v6.6: Error

and Flow Control Protocol Specification, Data Transfer + Data Transfer Control," Pouzin

Society, 2015.

[149] J. Day, "D-Base-2012-010: Relaying and Multiplexing Task Specification," Pouzin Society,

2012.

[150] J. Day, "D-Base-2011-015: Flow Allocator Specification," Pouzin Society, 2011.

[151] J. Day, "RINA-RFC-2010-002: Notes on the Resource Allocator," Pouzin Society, 2010.

[152] E. Grasa, S. Bunch and P. deWolf, "Specification of Managed Objects for the Demo DIF," Pouzin

Society, 2012.

[153] J. Day, "Notes on the OIB/RIB Daemon," Pouzin Society, 2010.

[154] ISO, "Information technology – Open Systems Interconnection – Service definition for the

Application Service Object Association Control Service Element". Patent ISO/IEC 15953:1999,

1999.

[155] ISO, "Information technology – Open Systems Interconnection – Connectionless protocol for the

Association Control Service Element: Protocol specification". Patent ISO/IEC 10035-1:1995,

1995.

[156] ISO, "Information technology – Open Systems Interconnection – Common Management

Information Protocol: Specification". Patent ISO/IEC 9596-1:1998, 1997.

156

[157] S. Bunch, "D-Base-2010-009: CDAP – Common Distributed Application Protocol," Pouzin

Society, 2010.

[158] S. Bunch, J. Day and E. Trouva, "D-Base-2012-016: Common Application Connection

Establishment Phase (CACEP)," Pouzin Society, 2012.

[159] IRATI consortium, "IRATI Investigating RINA as an Alternative to TCP/IP," 2015. [Online].

Available: http://irati.eu/. [Accessed July 2015].

[160] IRINA consortium, "IRINA," 2015. [Online]. Available:

http://www.geant.net/opencall/Optical/Pages/IRINA.aspx. [Accessed July 2015].

[161] PRISTINE consortium, "PRISTINE | PRISTINE will take a major step forward in the integration

of networking and distributed computing," 2015. [Online]. Available: http://ict-pristine.eu/.

[Accessed July 2015].

[162] IRATI consortium, "IRATI · GitHub," [Online]. Available: https://github.com/IRATI.

[Accessed September 2015].

[163] J. Day, E. Grasa, S. Bunch and P. deWolf, "RINA-2012-005: Specification for shim IPC

Processes over IP Layers," Pouzin Society, 2012.

[164] IRATI consortium, "Specification for shim IPC Processes over 802.1Q," Pouzin Society, 2013.

[165] Boston University, "Boston University's prototype of the RINA architecture · GitHub," [Online].

Available: https://github.com/ProtoRINA. [Accessed September 2015].

[166] Y. Wang, I. Matta, F. Esposito and J. Day, "Introducing ProtoRINA: A Prototype for

Programming Recursive-Networking Policies," ACM SIGCOMM Computer Communication

Review, vol. 44, no. 3, pp. 129-131, 2014.

[167] V. Veselý, M. Marek, T. Hykel and K. Rausch, "Deliverable 2.4: RINA Simulator, basic

functionality," January 2015. [Online]. Available: http://ict-pristine.eu/wp-

content/uploads/2013/12/PRISTINE-D24-RINASim-draft.pdf. [Accessed July 2015].

[168] Brno University of Technology, "kvetak/RINA," GitHub, 2014. [Online]. Available:

https://github.com/kvetak/RINA. [Accessed July 2015].

[169] PRISTINE consortium, "RINASimulator / RINA Sim Code," Open Source Projects, 2014.

[Online]. Available: https://opensourceprojects.eu/p/pristine/rinasimulator/. [Accessed July

2015].

[170] OpenSim Ltd., "OMNeT++ - Manual version 4.6," 2015. [Online]. Available:

https://omnetpp.org/doc/omnetpp/manual/usman.html#sec534. [Accessed July 2015].

[171] V. Veselý, M. Marek, T. Hykel and O. Ryšavý, "Skip This Paper - RINASim: Your Recursive

InterNetwork Architecture Simulator," in Proceedings of the 2nd OMNeT++ Community

Summit, Zurich, Switzerland, 2015.

157

[172] V. Veselý, "Deliverable 2.6: RINA Simulator, advanced functionality," November 2015.

[Online]. [Accessed November 2015].

[173] L. Jakab, A. Cabellos-Aparicio, F. Coras, J. Domingo-Pascual and D. Lewis, "RFC 7215:

Locator/Identifier Separation Protocol (LISP) Network Element Deployment Considerations,"

April 2014. [Online]. Available: https://tools.ietf.org/html/rfc7215.

[174] D. Saucez, L. Iannone and O. Bonaventure, "LISP Threats Analysis," August 2015. [Online].

Available: https://tools.ietf.org/html/draft-ietf-lisp-threats-13.

[175] Pouzin Society, "The Pouzin Society - Building A Better Network," 2012. [Online]. Available:

http://www.pouzinsociety.org/. [Accessed November 2015].

[176] PRISTINE consortium, "Deliverable 3.2: Initial specification and proof of concept

implementation of techniques to enhance performance and resource utilization in networks,"

April 2015. [Online]. Available: http://ict-pristine.eu/wp-content/uploads/2013/12/pristine-d32-

enhance-performance-and-resource-utilization-in-networks-v1_0.pdf. [Accessed September

2015].

[177] F. Hrizi, A. Laouiti and H. Chaouchi, "SFR: Scalable Forwarding with RINA for Distributed

Clouds," in Proceedings of 6th International Conference On Network of the Future (NoF 2015)

, Montreal, Canada, 2015.

[178] V. Veselý, O. Ryšavý and M. Švéda, "IPv6 Unicast and IPv4 Multicast Routing in OMNeT++,"

in Proceedings of the IEEE 6th International ICST Conference on Simulation Tools and

Techniques, Cannes, France, 2013.

[179] V. Veselý, O. Ryšavý and M. Švéda, "Protocol Independent Multicast in OMNeT++," in The

Tenth International Conference on Networking and Services, Chamonix, France, 2014.

[180] R. Callon, "RFC 1925: The Twelve Networking Truths," 1st April 1996. [Online]. Available:

https://tools.ietf.org/html/rfc1925.

158

8 Addendum

8.1 Formats of LISP Control Messages

8.1.1 LISP Map-Request

Fig. 74: LISP Map-Request message format

0 328 16 24

A M P S p

Nonce ...

Type=1 s Reserved IRC Rec Count

Source-EID-AFI Source EID Address

ITR-RLOC-AFI 1 ITR-RLOC Address 1 ...

ITR-RLOC-AFI n ITR-RLOC Address n ...

Reserved EID-Prefix-AFI 1EID mask-length 1

EID-Prefix 1 ...

IT
R

-R
L

O
C

R
e

c
n

 =
 IR

C
m

 =
 R

e
c C

ou
nt

Record ...

Reserved EID-Prefix-AFI mEID mask-length m

EID-Prefix m ...

159

8.1.2 LISP Map-Response

Fig. 75: LISP Map-Reply message format

0 8 16 24

P E S

Nonce ...

Type=2 Reserved Record Count

Record TTL 1

Locator Count 1 EID mask-length 1

EID-Prefix-AFI 1

EID-Prefix 1 ...

Priority 1

ACT A Reserved

Rsvd Map-Version Number

Weight 1 M Priority 1 M Weight 1

Unused Flags L p R Locator AFI 1

Locator 1 ...

R
e

co
rd

L
oc

at
o

r

Priority m Weight m M Priority m M Weight m

Unused Flags L p R Locator AFI m

Locator m ...

Record n ...

n
 =

 R
e

co
rd C

ou
nt

m
 =

 L
ocato

r C
o

un
t

AD Type Authentication Data Content ...

32

160

8.1.3 LISP Map-Register and LISP Map-Notify

Fig. 76: LISP Map-Register message format

Fig. 77: LISP Map-Notify message format

0
8

16
24

P
M

N
o

nc
e

..
.

T
yp

e=
3

R
e

se
rv

e
d

R
e

co
rd

 C
ou

nt

R
e

co
rd

 T
T

L
 1

L
oc

at
o

r
C

o
un

t 1
E

ID
 m

as
k-

le
ng

th
 1

E
ID

-P
re

fix
-A

F
I 1

E
ID

-P
re

fix
 1

 ..
.

P
ri

or
ity

 1

A
C

T
A

R
e

se
rv

e
d

R
sv

d
M

ap
-V

e
rs

io
n

 N
u

m
b

er

W
e

ig
ht

 1
M

 P
ri

or
ity

 1
M

 W
e

ig
ht

 1

U
n

us
ed

 F
la

g
s

L
p

R
L

oc
at

o
r

A
F

I 1

L
oc

at
o

r
1

 ..
.

P
ri

or
ity

 m
W

e
ig

ht
 m

M
 P

ri
or

ity
 m

M
 W

e
ig

ht
 m

U
n

us
ed

 F
la

g
s

L
p

R
L

oc
at

o
r

A
F

I m

L
oc

at
o

r
m

 ..
.

R
e

co
rd

 n
 ..

.

A
u

th
e

n
tic

at
io

n
D

a
ta

 ..
.

K
e

y
ID

A
u

th
e

n
tic

at
io

n
D

a
ta

 L
e

ng
th

Locator

n = Record Count

m = Locator Count

Record

32
0

8
16

24

P

N
o

nc
e

..
.

T
yp

e=
4

R
e

se
rv

e
d

R
e

co
rd

 C
ou

nt

R
e

co
rd

 T
T

L
 1

L
oc

at
o

r
C

o
un

t 1
E

ID
 m

as
k-

le
ng

th
 1

E
ID

-P
re

fix
-A

F
I 1

E
ID

-P
re

fix
 1

 ..
.

P
ri

or
ity

 1

A
C

T
A

R
e

se
rv

e
d

R
sv

d
M

ap
-V

e
rs

io
n

 N
u

m
b

er

W
e

ig
ht

 1
M

 P
ri

or
ity

 1
M

 W
e

ig
ht

 1

U
n

us
ed

 F
la

g
s

L
p

R
L

oc
at

o
r

A
F

I 1

L
oc

at
o

r
1

 ..
.

P
ri

or
ity

 m
W

e
ig

ht
 m

M
 P

ri
or

ity
 m

M
 W

e
ig

ht
 m

U
n

us
ed

 F
la

g
s

L
p

R
L

oc
at

o
r

A
F

I m

L
oc

at
o

r
m

 ..
.

R
e

co
rd

 n
 ..

.

A
u

th
e

n
tic

at
io

n
D

a
ta

 ..
.

K
e

y
ID

A
u

th
e

n
tic

at
io

n
D

a
ta

 L
e

ng
th

Locator

n = Record Count

m = Locator Count

Record

32

161

8.2 ANSARouter Module

Fig. 78: ANSARouter module structure

162

8.3 Additional Graphs

8.3.1 Map-Cache Sync Scenario with Single xTR1 Outage

Fig. 79: xTR1’s LISP control messages occurrence and total processed byte size in scenario with single outages + ack

8.3.2 Map-Cache Sync Scenario with Three xTR1 Outages

Fig. 80: xTR1’s LISP control messages occurrence and total processed byte size in scenario with three outages

163

Fig. 81: xTR1’s LISP control messages occurrence and total processed byte size in scenario with two outages + ack

8.3.3 RLOC Probe Scenario with Eighty EIDs

Fig. 82: xTR_Responder1’s LISP messages occurrence and total processed byte size in scenario with eighty EIDs

164

8.4 John Day about RINA

-----Original Message-----

From: John Day
Sent: 26. prosince 2015 22:47
To: Vladimír Veselý
Cc: John Day
Subject: Comments on Section 5

Vesely,

[…]

I have a major comment on the first page of Chapter 5. It isn’t in the attached document it is here. I believe that this is very
important.

RINA is not a clean-slate architecture, nor was it developed to replace the Internet, nor is it John Day’s ideas. In a very real

sense, RINA is a continuation of the original internetworking ideas from the mid-1970s. The Internet is the aberration caused
by having too much money and making it all free seduced everyone. We have uncovered pieces of the puzzle over the years.
The concept of scope of a layer comes from the work of Elie and Zimmermann on CYCLADES. The idea of an overlay comes
from them and INWG; Watson’s discoveries on synchronization; making protocols invariant wrt syntax; the AP/AE distinction;
the re-discovery of the internet layer, etc.

I merely tried to assemble all of the principles and patterns into a single whole, which turned out to imply a much simpler and
powerful implementation.

Just think how many things in the Internet require adding something that simply fall out as a consequence of the structure?

I truly believe that if we had not been so embroiled in the politics of standardization and the push to move this stuff to product
quickly, others would have seen these patterns much earlier. This is what people should have been doing over the last 40 years.

I did not start out to do a “future internet architecture.” As you have heard me say, I was trying to figure out what I didn’t
understand. This has been all about finding the really fundamental principles. I didn’t see the answer and the write it down.
It was the product of digging deeply into things to understand what was really going on. I didn’t invent that EFCPs cleave
into DTP and DTCP. I did the exercise in of separating mechanism and policy for each function in a protocol. I had no idea
what it would tell me when I did it. I didn’t do it to prove anything. I did it to learn something. Once I had done it, then it was
a matter of seeing what it told me. Do you see the difference? I wasn’t trying to find a way to fix something or do something
new. I was trying to understand.

Now experience did play a role. For example, we kept finding we needed fragmentation in essentially every layer. It was
apparent in the early 70s that if one relayed one had to do error and flow control over the top of it.

Why did some layers have a lot of layer management (network layer) and others didn’t (transport). It became obvious that the
reason was that all layers did the same complement of functions. The IPC Model confirmed that.

The same kind of logic goes with where everything else is and what it does.

(You won’t believe how many times I re-visited what order delimiting and SDU protection were and where in the layer.)
Looking carefully at what the problem was telling me about the structure.

Why is this important? We are investigating the fundamental principles. We are doing science. We aren’t trying to build the

future Internet or a replacement for it. It turns out that what we are figuring out to build does solve that problem too, but that
wasn’t our goal and it shouldn’t be our research goal. The Future Internet is trying to figure out what to build.

Their proposals are their opinions on how to do that. We don’t have opinion. We are doing what the problem says. Not what
John Day says. You don’t have to build a network the way RINA says (obviously) but if you take that route it will be inferior in
some way probably in a major way.

To lump us in with either the Future Internet efforts or the Internet patches is to detract from what we are doing. We are trying
to do for Networking what Maxwell did for Electricity and Magnetism, not because we

(I) have delusions of grandeur, but because IT IS WHAT A SCIENTIST DOES. We are demonstrating the power of theory.

Every insight we have had has come from the clarity the theory (RM) provides,not from implementation. We are doing science,
not craft. My hope is that our example will get others to return to doing science.

Do you understand what I am trying to say?

Hope Santa was good to you!!

Take care,

John

165

8.5 RINASim Policies

Parent/Child Name Owner Description

AllocateRetry FA
What happen when M_CREATE is resent by Flow

Allocator?

LimitedRetries Allocation is discontinued, when retransmit threshold is met.

NewFlowRequest FA
When new flow is being allocated, how are its

requirements mapped to RA QoS-cubes?

ScoreComparer QoSCube with best score wins.

MinComparer QoSCube with minimal feasibility wins.

AddressComparator RA
Policy used for determining whether a PDU address matches

the IPCP's address.

ExactMatch Exact address matching.

PrefixMatch Matching based on the best address prefix match.

PDUFG RA
PDU Forwarding Generator providing data used by the PDU
Forwarding policy.

BiDomainGenerator
Populates forwarding policy with entries on the form

samePrefix.Id -> port and distinctPrefix.

LatGenerator
Informs of flow metrics to routing as latency based on (N-1)-
QoS-cube instead of hops.

MSimpleGenerator
Informs of flow metrics to routing as hops, populates

forwarding policy with all existing best next-hops.

QoSDomainGenerator
Populates forwarding policy with best next-hop per

destination + QoS.

SimpleGenerator Informs of flow metrics to routing as hops.

SingleDomainGenerator
Informs of flow metrics to routing as hops intended for

domain based routing.

StaticGenerator Load forwarding information from XML configuration.

QueueAlloc RA (N-1)-port queue allocation strategy.

QueuePerNCU One queue per (N)-Cherish/Urgency class.

QueuePerNFlow One queue per (N)-flow.

QueuePerNQoS One queue per (N)-QoS cube.

SingleQueue One queue for all traffic.

QueueIDGen RA
Companion policy to QueueAlloc; returns queue ID for a

given PDU or Flow object.

IDPerNCU Used with QueueAlloc::QueuePerNCU.

IDPerNFlow Used with QueueAlloc::QueuePerNFlow.

IDPerNQoS Used with QueueAlloc::QueuePerNQoS.

SingleID Used with QueueAlloc::SingleQueue.

MaxQueue RMT Policy invoked when a queue size grows over its threshold.

DumbMaxQ
Used with Monitor::SmartMonitor. Request drop probability

to monitor, drop random on that.

ECNMarker
IF queue size >= threshold THEN apply ECN marking on
new PDUs. IF size >= max THEN drop.

ReadRateReducer
IF queue size >= allowed_maximum THEN stop receiving

data from input ports.

REDDropper
Used with Monitor::REDMonitor; Random Early Detection
implementation.

TailDrop IF queue size >= allowed_maximum THEN drop new PDUs.

UpstreamNotifier
IF queue size >= allowed maximum THEN send a

notification to the PDU sender.

166

Monitor RMT

BEMonitor
Used with Monitor::SmartMonitor. Best-effort using

multiple queues.

DLMonitor
Used with Monitor::SmartMonitor. Dela/Loss monitor

implementation.

eDLMonitor
Used with Monitor::SmartMonitor. Enhanced-Dela/Loss

monitor implementation.

REDMonitor
Used with MaxQueue::REDDropper; Random Early

Detection implementation.

DummyMonitor No operation.

SmartMonitor
Monitor interface for use with dumbMaxQ/dumbSch, which

can be queried for drop probability and next queue.

PDUForwarding RMT Policy used to decide where to forward a PDU.

DomainTable
A table with {domain:{prefix, QoS} -> { Table:{dstAddr ->

port}, default:port } }.

MiniTable A table with {dstAddr -> port} mappings.

MultiMiniTable A table with {dstAddr -> vectior<port>} mappings.

QoSTable A table with {(dstAddr, QoS) -> port} mappings.

SimpleTable A table with {(dstAddr, QoS) -> port} mappings.

Scheduler RMT
Policy deciding which (N-1)-port queue should be processed

next.

DumbSch
Used with Monitor::SmartMonitor. Queries the monitor for

the next queue to serve.

LongestQFirst Pick the queue which contains the most PDUs.

DomainRouting Routing

DV A distance vector-like domain routing protocol.

LS A link-state-like domain routing protocol.

DummyRouting Routing No operation.

SimpleRouting Routing

SimpleDV A simple distance vector-like protocol.

SimpleLS A simple link-state-like protocol.

Tab. 14: Implemented RINASim policies

167

8.6 RINASim Demonstration

8.6.1 omnetpp.ini

[General]
network = UseCase5
check-signals = true
sim-time-limit = 5min
debug-on-errors = true
#Application setup
**.HostA.applicationProcess1.apName = "SourceA"
**.HostB.applicationProcess1.apName = "DestinationB"
**.iae.aeName = "MyPing"
**.applicationEntity.aeType = "AEMyPing"

#DIF Naming
**.Host*.ipcProcess1.difName = "TopLayer"
**.BorderRouter*.relayIpc.difName = "TopLayer"
**.HostA.ipcProcess0.difName = "MediumLayerA"
**.BorderRouterA.ipcProcess1.difName = "MediumLayerA"
**.HostB.ipcProcess0.difName = "MediumLayerB"
**.BorderRouterB.ipcProcess1.difName = "MediumLayerB"
**.BorderRouterA.ipcProcess2.difName = "MediumLayerAB"
**.InteriorRouter.relayIpc.difName = "MediumLayerAB"
**.BorderRouterB.ipcProcess2.difName = "MediumLayerAB"
**.BorderRouterA.bottomIpc.difName = "BottomLayerA"
**.InteriorRouter.ipcProcess0.difName= "BottomLayerA"
**.BorderRouterB.bottomIpc.difName = "BottomLayerB"
**.InteriorRouter.ipcProcess1.difName= "BottomLayerB"

#Static IPC Addressing
**.HostA.ipcProcess1.ipcAddress = "hA"
**.HostB.ipcProcess1.ipcAddress = "hB"
**.BorderRouterA.relayIpc.ipcAddress = "rA"
**.BorderRouterB.relayIpc.ipcAddress = "rB"
**.HostA.ipcProcess0.ipcAddress = "ha"
**.BorderRouterA.ipcProcess1.ipcAddress = "ra"
**.HostB.ipcProcess0.ipcAddress = "hb"
**.BorderRouterB.ipcProcess1.ipcAddress = "rb"
**.BorderRouterA.ipcProcess2.ipcAddress = "rA"
**.InteriorRouter.relayIpc.ipcAddress = "rC"
**.BorderRouterB.ipcProcess2.ipcAddress = "rB"
**.BorderRouterA.bottomIpc.ipcAddress = "ra"
**.InteriorRouter.ipcProcess0.ipcAddress = "rc"
**.BorderRouterB.bottomIpc.ipcAddress = "rb"
**.InteriorRouter.ipcProcess1.ipcAddress = "rc"

#DIF Allocator settings
**.HostA.difAllocator.configData = xmldoc("config.xml",
"Configuration/Host[@id='HostA']/DA")
**.HostB.difAllocator.configData = xmldoc("config.xml",
"Configuration/Host[@id='HostB']/DA")
**.BorderRouterA.difAllocator.configData =
xmldoc("config.xml",
"Configuration/Router[@id='BorderRouterA']/DA")
**.BorderRouterB.difAllocator.configData =
xmldoc("config.xml",
"Configuration/Router[@id='BorderRouterB']/DA")
**.InteriorRouter.difAllocator.configData =
xmldoc("config.xml",
"Configuration/Router[@id='InteriorRouter']/DA")
**.HostB.difAllocator.directory.configData =
xmldoc("config.xml",
"Configuration/Host[@id='HostA']/DA")
**.BorderRouterA.difAllocator.directory.configData =
xmldoc("config.xml",
"Configuration/Host[@id='HostA']/DA")
**.BorderRouterB.difAllocator.directory.configData =
xmldoc("config.xml",
"Configuration/Host[@id='HostA']/DA")
**.InteriorRouter.difAllocator.directory.configData =
xmldoc("config.xml",
"Configuration/Host[@id='HostA']/DA")

#Enrollment settings
.InteriorRouter..enrollment.isSelfEnrolled = true
.BorderRouterA.relayIpc..enrollment.isSelfEnrolled =
true
.BorderRouterA.ipcProcess1..enrollment.isSelfEnrolled
= true
.BorderRouterB.ipcProcess1..enrollment.isSelfEnrolled
= true
**.BorderRouterA.bottomIpc.enrollment.configData =
xmldoc("config.xml",
"Configuration/Router[@id='BorderRouterA']/Enrollment[@id
='bottomIpc']")
**.BorderRouterA.ipcProcess2.enrollment.configData =
xmldoc("config.xml",
"Configuration/Router[@id='BorderRouterA']/Enrollment[@id
='ipcProcess2']")
**.BorderRouterB.relayIpc.enrollment.configData =
xmldoc("config.xml",
"Configuration/Router[@id='BorderRouterB']/Enrollment[@id
='relayIpc']")
**.HostB.ipcProcess1.enrollment.configData =
xmldoc("config.xml",
"Configuration/Host[@id='HostB']/Enrollment")

#QoS Cube sets
**.ra.qoscubesData = xmldoc("config.xml",
"Configuration/QoSCubesSet")

[Config Ping]
#PingApp setup
**.forceOrder = true
**.HostA.applicationProcess1.applicationEntity.iae.dstApN
ame = "DestinationB"
**.HostA.applicationProcess1.applicationEntity.iae.dstAeN
ame = "MyPing"
**.HostA.applicationProcess1.applicationEntity.iae.startA
t = 10s
**.HostA.applicationProcess1.applicationEntity.iae.pingAt
= 15s
**.HostA.applicationProcess1.applicationEntity.iae.rate =
5
**.HostA.applicationProcess1.applicationEntity.iae.stopAt
= 20s
**.HostA.applicationProcess1.applicationEntity.iae.size =
1024B

168

8.6.2 config.xml

<?xml version="1.0"?>

<Configuration>

 <Host id="HostA">

 <DA>

 <Directory>

 <APN apn="SourceA">

 <DIF difName="TopLayer" ipcAddress="hA" />

 </APN>

 <APN apn="DestinationB">

 <DIF difName="TopLayer" ipcAddress="hB" />

 </APN>

 <APN apn="hA_TopLayer">

 <DIF difName="MediumLayerA" ipcAddress="ha" />

 </APN>

 <APN apn="hB_TopLayer">

 <DIF difName="MediumLayerB" ipcAddress="hb" />

 </APN>

 <APN apn="rA_TopLayer">

 <DIF difName="MediumLayerA" ipcAddress="ra" />

 <DIF difName="MediumLayerAB" ipcAddress="rA" />

 </APN>

 <APN apn="rB_TopLayer">

 <DIF difName="MediumLayerB" ipcAddress="rb" />

 <DIF difName="MediumLayerAB" ipcAddress="rB" />

 </APN>

 <APN apn="rA_MediumLayerAB">

 <DIF difName="BottomLayerA" ipcAddress="ra" />

 </APN>

 <APN apn="rB_MediumLayerAB">

 <DIF difName="BottomLayerB" ipcAddress="rb" />

 </APN>

 <APN apn="rC_MediumLayerAB">

 <DIF difName="BottomLayerA" ipcAddress="rc" />

 <DIF difName="BottomLayerB" ipcAddress="rc" />

 </APN>

 </Directory>

 <NeighborTable>

 <APN apn="hA_TopLayer">

 <Neighbor apn="rA_TopLayer" />

 </APN>

 <APN apn="hB_TopLayer">

 <Neighbor apn="rA_TopLayer" />

 </APN>

 </NeighborTable>

 </DA>

 </Host>

 <Host id="HostB">

 <DA>

 <NeighborTable>

 <APN apn="hA_TopLayer">

 <Neighbor apn="rB_TopLayer" />

 </APN>

 <APN apn="hB_TopLayer">

 <Neighbor apn="rB_TopLayer" />

 </APN>

 </NeighborTable>

 </DA>

 <Enrollment>

 <Preenrollment>

 <SimTime t="5">

 <Connect src="hB_TopLayer" dst="rB_TopLayer" />

 </SimTime>

 </Preenrollment>

 </Enrollment>

 </Host>

 <Router id="BorderRouterA">

 <DA>

 <NeighborTable>

 <APN apn="hB_TopLayer">

 <Neighbor apn="rB_TopLayer" />

 </APN>

 <APN apn="rB_MediumLayerAB">

 <Neighbor apn="rC_MediumLayerAB" />

 </APN>

 </NeighborTable>

 </DA>

 <Enrollment id='bottomIpc'>

 <Preenrollment>

 <SimTime t="1">

 <Connect src="ra_BottomLayerA "

dst="rc_BottomLayerA" />

 </SimTime>

 </Preenrollment>

 </Enrollment>

 <Enrollment id='ipcProcess2'>

 <Preenrollment>

 <SimTime t="1.5">

 <Connect src="rA_MediumLayerAB"

dst="rC_MediumLayerAB" />

 </SimTime>

 </Preenrollment>

 </Enrollment>

 </Router>

 <Router id="BorderRouterB">

 <DA>

 <NeighborTable>

 <APN apn="hA_TopLayer">

 <Neighbor apn="rA_TopLayer" />

 </APN>

 <APN apn="rA_MediumLayerAB">

 <Neighbor apn="rC_MediumLayerAB" />

 </APN>

 </NeighborTable>

 </DA>

 <Enrollment id='relayIpc'>

 <Preenrollment>

 <SimTime t="2">

 <Connect src="rB_TopLayer" dst="rA_TopLayer" />

 </SimTime>

 </Preenrollment>

 </Enrollment>

 </Router>

 <Router id="InteriorRouter">

 <DA>

 <NeighborTable>

 <APN apn="hA_TopLayer">

 <Neighbor apn="rB_TopLayer" />

 </APN>

 </NeighborTable>

 </DA>

 </Router>

 <QoSCubesSet>

 <QoSCube id="QoSCube-UNRELIABLE">

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandDuration>24000000</PeakBandDuration>

 <PeakSDUBandDuration>2000</PeakSDUBandDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <PDUDropProbability>0</PDUDropProbability>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>0</ForceOrder>

 <MaxAllowableGap>0</MaxAllowableGap>

 <Delay>1000000</Delay>

 <Jitter>500000</Jitter>

 <CostTime>0</CostTime>

 <CostBits>0</CostBits>

 <ATime>0</ATime>

 </QoSCube>

 <QoSCube id="QoSCube-RELIABLE">

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandDuration>24000000</PeakBandDuration>

 <PeakSDUBandDuration>2000</PeakSDUBandDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <PDUDropProbability>0</PDUDropProbability >

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>1</ForceOrder>

 <MaxAllowableGap>0</MaxAllowableGap>

 <Delay>1000000</Delay>

 <Jitter>500000</Jitter>

 <CostTime>0</CostTime>

 <CostBits>0</CostBits>

 <ATime>0</ATime>

 </QoSCube>

 </QoSCubesSet>

</Configuration>

169

8.6.3 EnrollmentStateTable Contents Progress

Fig. 83: Content of BottomLayerA’s EnrollmentStateTables of BorderRouterA and InteriorRouter

B
o

rd
er

R
o

u
te

rA
 (

jo
in

in
g

 m
em

b
er

)

In
te

ri
o

rR
o

u
te

r
(e

n
ro

lle
r)

ᴇ2
)

ᴇ1
)

ᴇ3
)

ᴇ4
)

ᴇ7
)

ᴇ8
)

ᴇ5
)

E
nr

ol
lm

en
tS

ta
te

T
ab

le

170

8.6.4 NFlowTable Contents Progress

Fig. 84: Content of BottomLayerA’s NFlowTables of BorderRouterA and InteriorRouter

BorderRouterA (allocator)

InteriorRouter

ᴄ4)

ᴄ2) ᴄ6)

171

9 Lists

9.1 Tables

Tab. 1: Mechanisms related to enrollment phase ...5

Tab. 2: Mechanisms related to data transfer ...7

Tab. 3: Mechanisms related to control of data transfer ...8

Tab. 4: Observations about DFZ based on BGP functionality .. 21

Tab. 5: Example of relationship between address and name in PSTN .. 31

Tab. 6: IPv6 address types... 39

Tab. 7: Design goal importance for a new routing architecture .. 43

Tab. 8: Properties comparison of existing proposals .. 54

Tab. 9: Count of map-cache misses under different configurations in scenario with one outage 90

Tab. 10: Count of map-cache misses under different configurations in scenario with two outages 92

Tab. 11: xTR1’s statistics for different map-cache synchronization scenarios 94

Tab. 12: xTR_Responder1’s statistics for different RLOC probing algorithm scenarios 95

Tab. 13: CDAP message types .. 117

Tab. 14: Implemented RINASim policies .. 166

172

9.2 Figures

Fig. 1: Data transfer mechanisms ontology ..9

Fig. 2: IPv4 – All BGP entries in FIB .. 11

Fig. 3: IPv4 – Active BGP entries in RIB .. 12

Fig. 4: IPv6 – All BGP entries in FIB .. 12

Fig. 5: IPv6 – Active BGP entries in RIB .. 12

Fig. 6: Network multihoming use-case illustration employing simplified BGP rerouting.................... 16

Fig. 7: Percentil of IPv4 more specific prefixes ... 22

Fig. 8: Percentil of IPv6 more specific prefixes ... 22

Fig. 9: IPv4 FIB table updates ... 24

Fig. 10: IPv6 FIB table updates ... 24

Fig. 11: Examples of topologies and non-topologies .. 29

Fig. 12: Homeomorphism illustration .. 29

Fig. 13: Theoretical naming and addressing model for computer networks .. 36

Fig. 14: Broken Internet naming and addressing model ... 37

Fig. 15: Fully qualified domain name example and syntax ... 40

Fig. 16: Uniform Resource Identifier structure and examples... 41

Fig. 17: Core-Edge Separation solution ... 44

Fig. 18: Core-Edge Elimination solution ... 45

Fig. 19: CES kinds .. 55

Fig. 20: CEE kinds .. 56

Fig. 21: Basic LISP scheme .. 60

Fig. 22: LISP packet variants .. 60

Fig. 23: Comparison between DNS and LISP mapping system .. 63

Fig. 24: LISP-ALT infrastructure example .. 64

Fig. 25: LISP-DDT infrastructure example .. 65

Fig. 26: LISP-DHT infrastructure example .. 66

Fig. 27: Illustrative LISP unicast data transfer ... 69

Fig. 28: Illustrative LISP registration process .. 70

Fig. 29: Illustrative LISP mapping request .. 71

Fig. 30: Illustrative LISP mapping reply .. 72

Fig. 31: Illustrative communication between LISP and non-LISP world using PITR and PETR 73

Fig. 32: FIT-BUT’s LISP BetaNetwork registration .. 75

Fig. 33: Site-Based State Synchronization Problem illustration .. 78

Fig. 34: LISP CacheSync message format ... 81

Fig. 35: LISP CacheSync Acknowledgment message format ... 81

file:///F:/Documents/Studium/VUT/VTI/Dizertace/Dizertace_2016-02-07.docx%23_Toc442712963
file:///F:/Documents/Studium/VUT/VTI/Dizertace/Dizertace_2016-02-07.docx%23_Toc442712964
file:///F:/Documents/Studium/VUT/VTI/Dizertace/Dizertace_2016-02-07.docx%23_Toc442712965
file:///F:/Documents/Studium/VUT/VTI/Dizertace/Dizertace_2016-02-07.docx%23_Toc442712966

173

Fig. 36: Map-cache synchronization operation .. 82

Fig. 37: Locator Path Liveness Problem illustration... 83

Fig. 38: LISPRouting module structure ... 85

Fig. 39: LISP illustrative scenario ... 85

Fig. 40: Content of xTR_A1’s LISPMapDatabase ... 87

Fig. 41: Content of xTR_A1’s LISPMapCache ... 87

Fig. 42: Content of MRMS's LISPSiteDatabase... 88

Fig. 43: LISP testing network for Map-Cache synchronization ... 89

Fig. 44: xTR1’s LISP control messages occurrence and total processed byte size in scenario with single

outage ... 91

Fig. 45: xTR1’s LISP control messages occurrence and total processed byte size in scenario with two

outages ... 92

Fig. 46: xTR1’s LISP control messages occurrence and total processed byte size in scenario with two

outages + ack .. 93

Fig. 47: LISP testing network for merged RLOC probing .. 94

Fig. 48: xTR_Responder1’s LISP messages occurrence and total processed byte size in scenario with

forty EIDs ... 96

Fig. 49: Application Protocol and Application Entities relationship ... 99

Fig. 50: DIF, DAF, DAP and IPCP illustration .. 101

Fig. 51: IPCP local identifiers overview .. 104

Fig. 52: Example of RINA network with three levels of DIFs and different nodes 105

Fig. 53: Distributed Application Process components .. 106

Fig. 54: IPC Process components .. 107

Fig. 55: Message passing between RINA components ... 108

Fig. 56: EFCP instance divided into DTP and DTCP part .. 109

Fig. 57: Flow allocation process .. 112

Fig. 58: Flow Allocator operation.. 113

Fig. 59: Flow Allocator Instance operation of initiating IPCP .. 114

Fig. 60: Flow Allocator Instance operation of responding IPCP before the flow was allocated 115

Fig. 61: Flow Allocator Instance operation after the flow was allocated ... 115

Fig. 62: Establishment phase on initiating process ... 118

Fig. 63: Establishment phase on responding process .. 119

Fig. 64: Data transfer phase on initiating/responding process ... 119

Fig. 65: Host nodes structure examples ... 122

Fig. 66: Router nodes structure examples .. 123

Fig. 67: DAF components for RINASim ... 125

Fig. 68: IPCP’s DIF components for RINASim ... 128

174

Fig. 69: RINASim demonstration topology ... 130

Fig. 70: Visualization RA's available QoS-cubes ... 132

Fig. 71: Visualization of Directory mappings .. 132

Fig. 72: Data transfer phase illustration ... 139

Fig. 73: Content of TopLayer ipcProcess1 NFlowTables for HostA and HostB 140

Fig. 74: LISP Map-Request message format .. 158

Fig. 75: LISP Map-Reply message format ... 159

Fig. 76: LISP Map-Register message format ... 160

Fig. 77: LISP Map-Notify message format .. 160

Fig. 78: ANSARouter module structure ... 161

Fig. 79: xTR1’s LISP control messages occurrence and total processed byte size in scenario with single

outages + ack .. 162

Fig. 80: xTR1’s LISP control messages occurrence and total processed byte size in scenario with three

outages ... 162

Fig. 81: xTR1’s LISP control messages occurrence and total processed byte size in scenario with two

outages + ack .. 163

Fig. 82: xTR_Responder1’s LISP messages occurrence and total processed byte size in scenario with

eighty EIDs ... 163

Fig. 83: Content of BottomLayerA’s EnrollmentStateTables of BorderRouterA and InteriorRouter . 169

Fig. 84: Content of BottomLayerA’s NFlowTables of BorderRouterA and InteriorRouter 170

file:///F:/Documents/Studium/VUT/VTI/Dizertace/Dizertace_2016-02-07.docx%23_Toc442713026
file:///F:/Documents/Studium/VUT/VTI/Dizertace/Dizertace_2016-02-07.docx%23_Toc442713027

175

9.3 Index

A

A Practical Transit-Mapping Service (APT) 51

access control ... 5

access-lists (ACLs) ... 19

acknowledgement (ack) .. 7

address ... 27, 30

address overloading .. 14

address space .. 30

addressing .. 6

advertisement timer (AT) 77

Aggregated Congestion Control (ACC) 144

AllocateNotifyPolicy .. 113

AllocateRetryPolicy .. 113

Alternative Topology (LISP-ALT) 64

ANSA project ... 84

ANSARouter .. 84

anti-route hijacking ... 20

Application Entity (AE) 99

Application Entity Instance Identifier (AEI-id) .. 103

Application Entity Name (AEN) 103

Application Naming Information (ANI) 103

Application Process (AP) 99

Application Process Instance Identifier (API-id) 103

Application Process Name (APN) 103

application protocols ... 99

architecture ... 3

assignment.. 28

association .. 4

authentication ... 5

autonomous system number (ASN) 16

autonomous systems (AS) 13

AVM Fritz!OS.. 74

B

Backup ... 77

binding ... 4, 28

bit stuffing ... 6

Border Gateway Protocol (BGP) 11

Border routers ...105

bound .. 28

BSD sockets .. 51

business acquisitions .. 20

C

combination ... 6

Common Distributed Application Protocol (CDAP)

 ...116

compression ... 7

confidentiality .. 7

config.xml ..131

congestion control .. 8

connection .. 4, 103

Connection-endpoint-id (CEP-id)103

Connection-id ...103

control plane .. 13

Core-Edge Elimination (CEE) 44

Core-Edge Separation (CES) 44

D

Data Anti-Corruption ... 7

Data Transfer Control Protocol (DTCP).............109

Data Transfer Phase ... 5

Data Transfer Protocol (DTP)............................109

Data transfer protocols 99

deassignment ... 28

Default Free Zone (DFZ).................................... 11

Delegated Distributed Tree (LISP-DDT) 65

delimiting .. 6

Delimiting ..109

Delta-t ..102

device .. 1

DFZ RIB/FIB growth ... 13

DIF Allocator (DA) ...106

176

direct alias .. 28

Directory .. 107

Distributed Application Facility (DAF) 100

Distributed Application Name (DAN) 103

Distributed Application Process (DAP) 100

Distributed Hash Tables (LISP-DHT) 65

Distributed IPC Facility (DIF)........................... 100

Domain Name System (DNS) 40

dual-stack ... 20

E

EFCP instance (EFCPI) 109

Egress Tunnel Router (ETR) 61

Endpoint Identifier (EID) 59

end-site renumbering .. 20

end-to-end principle .. 17

Enrollment.. 108

Enrollment Phase .. 5

Error and Flow Control Protocol (EFCP)........... 109

error correction ... 7

error detection .. 7

Establishment Phase ... 5

Evolution .. 50

Exterior Gateway Protocol (EGP) 18

F

Flag Day... 20

flow .. 4, 103

Flow Allocator (FA) ... 111

Flow Allocator Instance (FAI) 111

Flow object... 111

forwarding .. 6

Forwarding Information Base (FIB) 11

fragmentation ... 6

fully qualified domain name (FQDN) 40

G

Global Locator, Local Locator, and Identifier Split

(GLI-Split) ... 48

H

Hierarchical IPv4 Framework (hIPv4) 47

homeomorphism .. 29

Host Identifier Protocol (HIP) 45

I

identification .. 14

Identifier .. 14

Identifier-Locator Network Protocol (ILNP) 49

inbound traffic engineering 18

indirect alias .. 28

Ingress Tunnel Router (ITR) 61

Initial State Synchronization................................. 7

interconnection richness 23

Interior Gateway Protocol (IGP) 18

Interior routers ..105

Internet Architecture Board (IAB) 1

Internet Corporation for Assigned Names and

Numbers (ICANN) .. 10

Internet of Things (IoT) 17

Internet Service Provider (ISP) 10

Internet Vastly Improved Plumbing (Ivip) 47

inter-process communication (IPC)100

IP hijacking.. 24

IPC API ..108

IPC Management ..106

IPC Process (IPCP) ...100

IPC Resource Manager (IRM)107

IPv4 address exhaustion 20

IRATI ...120

IRINA ..120

K

keepalives .. 6

L

layer .. 4

Level 3 Multihoming Shim Protocol for IPv6

(Shim6) ... 46

177

LISP BetaNetwork .. 75

LISP CacheSync ... 80

LISP CacheSync Ack.. 80

LISP Internet Groper (LIG)................................. 75

LISP Map-Notify .. 63

LISP Map-Referral ... 65

LISP Map-Register ... 63

LISP Map-Reply... 63

LISP Map-Request ... 63

LISP mobile node ... 74

LISP Negative Map-Reply 63

LISPmob .. 74

LIST Network Address Translation (LISP-NAT) 67

load-balancing .. 15

Local Internet Registries (LIR)............................ 10

localization ... 14

locate.. 30

location dependent .. 30

locator .. 14

Locator Path Liveness Problem 76

Locator/ID Split Protocol (LISP)........................... 1

loosely-bound ... 102

lost and duplicity detection 7

M

management flows .. 136

map cache .. 61

Map Resolver (MR) .. 62

Map Server (MS) .. 62

map-and-encap ... 43

mapping database ... 63

master .. 77

Master down interval (MDI) 77

Maximum Packet Lifetime (MPL) 102

mechanism ... 5

merged RLOC probing 84

mobility .. 17

more specific prefixes ... 20

multihoming ... 15

multiplexing ... 6

Multiprotocol Label Switching (MPLS) 59

N

naïve synchronization... 79

name .. 27

Name Overlay Service for Scalable Internet

Routing (NOL) .. 48

name space .. 27

Name-Base Sockets (NBS) 51

Namespace Management (NSM)111

Naming information table..................................106

National research and education network (NREN)

 ...120

Neighbor table ..106

Network Address Translation (NAT) 14

network interface cards (NIC)106

NewFlowRequstPolicy113

node... 1

non-broadcast multi-access (NBMA) 52

nonLISP .. 59

nonrepudiation ... 7

O

object ... 27

object sharing... 32

omnetpp.ini ...131

OpenLISP .. 74

ordering ... 6

organization ... 18

OSI Reference Model (OSI-RM) 3

outbound traffic engineering............................... 18

P

pathname ... 33

PDU Forwarding Table116

PDU Forwarding Table Generator116

perform routing .. 35

Point of Attachment (PoA) 14

Point-to-Point Tunneling Protocol (PPTP) 59

policy .. 5

178

portability ... 17

Port-id .. 103

PRISTINE .. 120

protocol .. 4

protocol control information (PCI) 4

protocol data unit (PDU) 4

protocol machine (PM) ... 4

ProtoRINA ... 120

Provider Aggregatable (PA) 10

Provider Independent (PI) 10

Proxy Egress Tunnel Router (PETR) 67

Proxy Ingress Tunnel Router (PITR) 67

Pull model .. 62

Push model ... 62

PxTR .. 67

Q

Quality of Service (QoS)....................................... 5

R

rank .. 4

rapid shuffling of prefixes 23

reassembling... 6

Recursive Internet Architecture (RINA) 1

redundancy ... 15

Regional Internet Registry (RIR)......................... 18

Rekhter’s Law .. 14

relaying .. 6

Relaying and Multiplexing Task (RMT) 110

renumbering ... 18

Resource Allocator (RA) 116

Resource Information Base (RIB) 116

retransmission .. 8

reverse path forwarding (RPF) check 50

rewriting ... 43

RIB Daemon (RIBd) ... 116

RINA Simulator (RINASim)............................. 121

RIR allocation policies .. 20

RLOC probing .. 64

route ... 27, 30

route dependent .. 30

router ... 10

routing ... 6

Routing Architecture for the Next Generation

Internet (RANGI) .. 46

Routing Information Base (RIB)......................... 11

Routing Locator (RLOC) 59

Routing Research Group (RRG) 1

routing scalability .. 13

R-timer ...102

S

saturation point .. 21

Scalable Forwarding with RINA (SFR)144

scope ... 4

SDU Protection ...110

Search table ..106

segmentation .. 6

SeqRollOverPolicy ...113

sequence numbers .. 6

Service data unit (SDU) 4

Service-level Agreements (SLA) 18

simple merged RLOC probing 84

Site-Based State Synchronization Problem 78

Site-Based Synchronization Problem 76

Six/One Router .. 52

smart synchronization .. 80

Solicit-Map-Request (SMR) 82

sophisticated merged RLOC probing 84

state vector..102

string over alphabet .. 27

Subnetwork Encapsulation and Adaptation Layer

(SEAL) .. 52

T

three-way handshake .. 4

tightly-bound ..102

time to live (TTL) .. 50

time-to-live (TTL) .. 79

top-level domain .. 40

179

topological space .. 29

topologically dependent 30

topology ... 29

traffic engineering (TE) 18

Tunneled Inter-Domain Routing (TIDR) 49

Tunneling Route Reduction Protocol (TRRP) 52

two-way handshake .. 4

U

unambiguous .. 28

Uniform Resource Identifier (URI) 41

Uniform Resource Locator (URL) 41

Uniform Resource Name (URN) 41

unique .. 28

URI authority ... 41

URI scheme ... 41

V

Virtual Private Networks (VPNs)100

Virtual Router ID (VRID) 77

Virtual Router Redundancy Protocol (VRRP) 76

VRRP priority .. 77

W

World Wide Web (WWW) 41

X

xTR ... 61

