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Abstrakt

Internet roku 2015 se potyka s problémy, které jsou dasledky Spatného designu pojmenovavani a
adresovani v TCP/IP a jez maji pfeneseny vliv i na skalovatelnost smérovani. Problémy jako riist patetnich
smérovacich tabulek, neefektivni multihoming siti ¢i mobilita zatizeni a mnohé dals§i zadavaji k otazce,
jestli neni tfeba architekturu Internetu pozménit. V teoretické Casti je kvantifikovan dopad problému,
mozna feSeni a zejména je formalné¢ definovana teorie kompilujici poznatky vyznamnych publikaci
zabyvajicich se problematikou pojmenovani, adresovani a smérovani v pocitaCovych siti. Tato prace se
zabyva dvéma konkrétnimi technologiemi, jez maji ambici Internet ménit - Locator/ld Separation Protocol
a Recursive InterNetwork Architecture. Vystupem prace jsou vylepSeni funkcionality obou vySe
zminénych technologii. Za G¢elem praktického ovéreni dopadti naseho vyzkumu jsou vyvinuty a popsany

nové simula¢ni modely pro OMNeT++, které jsou vérné Grovni detailu popisu ze specifikaci.

Klicova slova

Internetova architektura, pojmenovavani a adresovani, smérovani, oddéleni lokatorti a identifikatoru,

LISP, rekurzivni mezisit'ova architektura, RINA, OMNeT++

Abstract

Internet of the year 2015 struggles with problems that are just implications of flawed naming and
addressing the concept of TCP/IP, which have an impact on overall routing scalability. Problems such
as default-free zone routing table growth, cumbersome multihoming or mobility motivate question
whether the Internet deserves major architecture redesign. In the theoretical part, the impact of problems
above is evaluated, solutions are discussed and unifying theory compiled and described using formal
methods taking into account revered papers about naming, addressing and routing. This work provides
in-depth Investigation of two technologies - Locator/ld Separation Protocol a Recursive InterNetwork
Architecture. Research contribution is an operational improvement of above-mentioned technologies.
New OMNEeT++, full-fledged simulation modules compliant with behavior in the specification are used

to as verification tool.
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1 Introduction

&% —“Yesterday is gone.Tomorrow has not yet come.We have only today.Let us begin.”” Mother Teresa

&% What are goals and motivations of this thesis?

Nowadays Internet routing, naming and addressing concepts (in the sense of common Internet-based
computer networking audience) are facing a variety of challenges that were not so apparent in early days
of the TCP/IP stack. Among those challenges, there are multihoming, mobility, traffic engineering,
renumbering, node (a.k.a. device?) localization and identification and routing scalability connected with
the growth of the global routing tables.

IRTF’s RRG? was, and IETF’s IAB? is for a long time in charge of observing trends in routing,
collecting statistics and suggesting architectural recommendations influencing tendencies in future
networking. In this thesis, we try to describe and evaluate the impact of these trends. Moreover, we
gather relevant proposals and compare them to each other. Among documents and proposals discussed,
there are also Locator/ID Separation Protocol (LISP) and Recursive Internet Architecture (RINA) that
receive both positive and also negative reviews. We believe that both of them are addressing the same
fundamental issues (which serve as the motivation behind our research), but they employ a very different
approaches. While the first one is trying to repair the most apparent problems using existing architecture.
The objective of the second one is to return the Internet to the original architecture model and generalize
from there.

The LISP presents a hew routing architecture based on the idea of splitting the device identity
and the device location into two separate namespaces. Managing identity and location separately provide
necessary scalability and enables device mobility. While the identities of devices remain the same, their
location can change. Contrary to other solutions to mobility, the LISP imposes no overhead because of
identity and location separation. The mobile device has the fixed endpoint identifier and using LISP's
dynamic mapping mechanism its route locator can be found. Since this locator can be associated with
the network graph, the traditional routing is sufficient to reach the mobile device in its actual location.
The key LISP capability is performing efficient mapping of endpoint identifier to locator(s). The
presented thesis performs a detailed analysis of mapping mechanisms and proposes operational
improvements in Chapter 4.

RINA is not just a contribution to the current architecture but a continuation of the original

concept of internetworking. RINA is based on the simple nearly 50 year old observation that every data

! Node or Device: With reference of this thesis it is any equipment connected to Internet capable of communication.
E.g. routers, switches, computers, etc.

2 Routing Research Group (RRG). For more, please visit website of this former ad hoc group
https://trac.tools.ietf.org/group/irtf/trac/wiki/RoutingResearchGroup.

% Internet Architecture Board (IAB). For more, please visit https://www.iab.org/.
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transfer is interprocess communication between two application processes and as such it requires only
a couple of primitive operations. Contrary to LISP, the RINA is less mature. Thus, more research is
needed to address the open issues and to demonstrate that RINA can provide a solution to the current
obstacles of the Internet. This thesis deals with RINA in Chapter 5. First, the detailed explanation of
RINA concepts is presented. The main contribution lies in the formalization of these concepts and
definition of simulation models that provide an environment for analysis of various scenarios. By using
simulation, properties of the RINA can be evaluated in different scenarios.

The encompassing (and challenging) dissertation goal is to define general naming and
addressing theory. Moreover, we want to investigate properties of this theory regarding the impact on
the routing. Because nothing impacts routing more (in either positive or negative way) than how names
and addresses are deployed to network objects. The underlying goal of this dissertation is to provide a
detailed technical overview and analysis of two technologies (LISP and RINA) aimed at improving the
current problems of the Internet. The contribution lies in enhancing LISP cache management algorithm
and related data transfer to improve its performance. Moreover, we verified LISP contribution
functionality with own accurate simulation models. For RINA, fundamental concepts were formalized
using finite-state machine diagrams and a comprehensive set of simulation models was developed.
Besides these two main achievements, this thesis provides a broad review of the building blocks of
internetworking with the focus on naming and addressing concepts. The aim of the thesis is to shed more
lights on the fundamental problems of the current Internet architecture and to evaluate two possible
solutions.

The thesis is divided into the following chapters. Chapter 2 provides an overview of thesis topics
and describes the common theory behind our research. It also introduces current weaknesses of the
Internet and describes factors that influence them. Chapter 3 compares proposed or existing solutions.
Chapter 4 presents the LISP protocol (its implementation in simulator environment) and covers proposed
control plane improvements together with the impact of this proposals on the overall operation. Chapter
5 delineates RINA and its approach towards the system of recursive encapsulation of one general layer,
and then it focuses on its globally first simulator implementation and measured security aspects. Chapter

6 draws conclusions from the research outcomes.



2 Networking Fundamentals

&% —“You realize that our mistrust of the future makes it hard to give up the past.” Chuck Palahniuk
& From which parts does Internet architecture consists of?
% What problems are tormenting the Internet now?

&% How these problems affect current TCP/IP routing concept?

If we want to be thorough when describing theoretical fundaments for this thesis, we need to start with
the high-level overview of networking and work down to low-level parts. We will start with the
fundamental question. Is there an Internet Architecture? In a search for the answer, we must first
establish the common dictionary how to understand the word architecture. When network administrators
and computer network researchers speak about architecture, they often use this term to create “nobler”
context to things like network technology or network protocol. Let us correct this meaning now.

In this document, we borrow definition used by John Day. Architecture is a set of rules and

constraints that characterize a particular style of construction. The architecture is a style of construction

rather than the construction itself. If we speak about some architecture, we refer to a set of general rules

and high-level concepts constituting the architecture. To illustrate this fact, it is just like a making
distinction between gothic architecture and a house built in a style of gothic architecture. The great
example of proper usage is in ISO/IEC 7498-1 [1] describing the OSI Reference Model (OSI-RM) —
Section 5 describes the architecture (“construction style); Sections 6 and 7 describe a concrete
implementation of this architecture using seven layers (“examples of constructions following style”).

The Internet as technology is a continuing sequence of evolutional steps. However, since its
beginning it is all about a few fundamental principles that had not changed. Internet architecture is about
best-effort communication with global connectivity across the simple but resilient network where
intelligence is on an end-to-end basis rather than hidden in the network as RFC 1958 [2] stated.

The goal of this chapter is to layout computer networking foundations and associate them with
more general communication principles. Moreover, we would like to point out present problems of the
Internet and discuss their impact on routing table size and control plane load. Now let us use the formal
approach to describe foundations of a computer network (in Subchapter 2.1) communication followed
by an observation about nowadays problems of the current Internet architecture and their impact
(Subchapters 2.2, 2.3).



2.1  Basic Terminology

This subchapter seems to be filled with an exhaustive number of terms and their definitions. However,
the aim is to get the reader familiar with all cornerstones of computer systems interactions. Moreover,
the goal is to show an association between other cornerstones and to point out their context in the frame
of the big picture, which is a network architecture. The content of this subchapter is loosely based on
[1] and Chapter 2 of the book [3].

Devices communicate in order to share state and exchange data in the frame of applications in

computer networks. Devices communicate using shared schemes known as protocols.

The protocol is a set of prescriptions and procedures that each device participating in
communication must follow. Devices utilize protocols to exchange finite quanta of information in the
form of protocol data unit (PDU).

Any protocol could be formally defined by a finite-state machine (FSM) or using temporal logic,
implementation of this formalism is called protocol machine (PM). PDUs consist of protocol control
information (PCI) and user-data — PM interprets PCI, the data part is relayed above in the hierarchy.

PMs might be assembled to create layered hierarchy so that the output of one PM is the input of
another PM. In this case, a position of the protocol (or its PM) in the hierarchy is denoted by protocol
(or PM) rank. Let (N)-* be an element * with the rank N then (N+1)-* is an element * one rank above
and (N-1)-* is an element * one rank below.

Subsystem is (compound) (N)-element which interacts directly only with (N+1)-elements and
(N-1)-elements within (N)-layer. The layer is a collection of (N)-subsystems of the same rank N. (N)-
service is a capability of the (N)-layer and the layers beneath. Each layer has a scope — limit (or
boundary) of operation within which layer entities can communicate directly without the help of other
layer elements. Subsystem contains active (N)-entities embodying a set of (N)-services, which might
include more than just (N)-PM. (N)-function is a part of the activity of (N)-entities.

PDUs might be encapsulated one into another to reflect the hierarchy of PMs in control. Service
data unit (SDU) is (N+1)-PDU provided to (N)-PM by (N+1)-PM before PCI is prepended to it.
Therefore, SDU (whole or part) is placed into (N)-PDU’s user-data from the perspective of (N)-PM.

We define following kinds of communication according to coupling of shared state:

e Association = minimal shared state without coupling between communicating nodes;

e Flow = shared state without tightly coupled elements, often represented by protocols using two-
way handshake (without feedback between communicating parties);

e Connection = shared state with tightly coupled elements, often represented by protocols using
three-way handshake (with feedback between communicating parties)

e Binding = fully shared state, often represented by applications with shared memory.



Any sender or receiver passes through following phases in order to communicate. Each phase
consists of operations and their inverses, but it does not necessarily imply that PDUs are exchanged:

1) The Enrollment Phase — Objects of communication are prepared (devices initialized, resources
allocated) for a network during this phase. Enrollment includes creation, distribution,
maintenance and deletion of information mandatory to make an instance of communication.
Addressing information are stored in appropriate directories (i.e., address pool, routing table)
and policies are selected. Often this phase covers manual configuration of objects. However,
some operations might be automated (e.g., DHCP*, SLAAC®);

2) The Establishment Phase — The shared state, necessary for (N)-PMs to communicate, is
established in this phase. According to the degree of coupling, associations/bindings between
(N)-PM and (N+1)-PM are created or initially shared state for flow/communication of (N)-PMs
is synchronized. If Quality of Service (QoS)® resources were not allocated during enrollment
phase then they are set here (e.g., RSVPY);

3) The Data Transfer Phase — First sent user-data initiates this phase during which (N+1)-PM
exchanges SDUSs. This phase includes operations necessary to provide the actual transfer of

user-data and functions that support it.

The mechanism is a part of the protocol that is fixed and cannot be changed. On the other hand,
the policy is a part of the protocol that could be deterministically negotiated usually during the
establishment phase (e.g., which CRC® polynomial to use for data corruption detection). Tables Tab. 1,
Tab. 2 and Tab. 3 sum up basic communication mechanisms, which we categorized into following

groups: a) related to establishment phase; b) related to data transfer; c) related to data transfer control.

Name Description

Authentication | Authentication mechanism determines the identity of sender or receiver.

Access control mechanism is used to determine whether the requestor is allowed
Access Control | to use a resource or not after successful authentication. Both mechanisms are
using a variety of different protocols with flexible policies (e.g., IKE®).

Tab. 1: Mechanisms related to enrollment phase

4 Dynamic Host Control Protocol (DHCP). For more, see RFC 2131.

° IPv6 Stateless Address Autoconfiguration (SLAAC). For more, see RFC 4862.

& Quality of Service (QoS): QoS is the overall performance of a telephony or computer network quantitatively
measured using such as like error rates, bit rate, throughput, transmission delay, availability, jitter, etc. For more,
see https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-E.800-200809-1!!PDF-E&type=items.

" Resource Reservation Protocol (RSVP). For more, see RFC 2205.

8 Cyclic Redundancy Check (CRC) is error detecting code used commonly in computer networks. For more, see
http://en.wikipedia.org/wiki/Cyclic redundancy check

® Internet Key Exchange Protocol (IKE). For more, see RFC 7296
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Name " Description

The protocol must have fields how to specify source and destination of PDU in
multi-access network segments (e.g., shared half-duplex Ethernet LANs™). The
Addressing address must be long enough to provide unambiguity for all communicating
devices. On point-to-point interconnections, (e.g., HDLC™, PPP*?) address fields
in protocols are unnecessary because only two devices are present on the link.
Any protocol supporting multiple instances of communication between the same
devices must differentiate between flows/connections in order to deliver PDU to
Flow/Connection | appropriate instance of PM. For this reason, flow/connection-id is included as a
Identifier part of PCI (e.g., pair of source and destination port numbers in UDP/TCP).
Flow/connection-id must be unambiguous within the set of the same rank
protocols.
Delimiting is generally packaging of SDU into User-Data fields so it can be re-
constructed. Delimiting operation may be comprised of following (N)-functions:
e One must be able to determine borders of SDUs. Either external or
internal delimiter is used. In the case of external, the special pattern is
utilized to mark the end of one PDU and beginning of another. The
mechanism must guarantee that this special pattern (usually in the form
of unique bit sequence) does not occur anywhere inside PDU (i.e., bit
stuffing®). In the case of internal delimiter, length (count of bits, bytes or
octets) of inner PDU is explicitly given as a PCI field of outer PDU.
Delimiting e Data-link technologies often pose some limits on acceptable PDU size.
Hence, mechanisms for sender’s fragmentation (splitting single (N)-
SDU to multiple (N)-PDUs) followed by receiver’s reassembling
(putting pieces back together) are needed. For IP, a total number of
fragments and each fragment-id are stored in separate PCI’s fields.
For the sake of efficiency, some protocols might combine several SDUs into
single PDU (e.g., YMSG™) or segment one bigger SDU into multiple smaller
PDUs. Combination/Segmentation happen between (N)-SDUs and (N)-PDUs of
the same rank. Hence, fewer PCI fields are needed when comparing with
fragmentation/reassembling.
Some protocols need that PDUs are delivered to the receiver in the same order as
they were generated by the sender. Sequence numbers in PCI fields achieve this
Ordering goal. However, use of ordering does not imply that all PDUs are always delivered.
The trick is to recognize properly that some PDUs are missing (some of them
could be retransmitted; some of them could be correctly discarded).
Relaying occurs whenever PDU needs to be passed from one PM to another. It
could be provided by (N)-PM and (N+1)-PM whenever device’s (N+1)-PM is the
Relaying receiver of a given PDU. Otherwise, PCI’s addresses are used (a process known
as routing) to determine (N-1)-PM to which PDU is subsequently relayed in order
to get PDU closer to the receiver (a process also known as forwarding).
The multiplexing is a mapping of multiple (N)-PMs communications (either
flows or connections) onto fewer (N-1)-PM communication.
Communication over a longer period without any traffic needs this mechanism to
Keepalives determine that corresponding device is still operational (e.g., routing protocols,
IPsec’, peer-to-peer applications).

Multiplexing

10 _ocal Area Network (LAN). For more, see https://en.wikipedia.org/wiki/Local_area_network.

11 Hig-Level Dat Link Control (HDLC). For more, see 1SO/IEC 13239.

12 point-to-point Protocol (PPP). For more, see RFC 1661.

13 Bit stuffing: Insertion of non-information bits into data in order to protect some special bit patterns. For more,
see http://en.wikipedia.org/wiki/Bit_stuffing.

14 Yahoo Messanger Protocol (YMSG). For more, see http://en.wikipedia.org/wiki/Yahoo! Messenger Protocol
15 1P Security (IPsec) is set of tools and protocols for establishing confidential communication across IP network.
For more, see RFC 6071.
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Data
Anti-Corruption

PDUs transferred over any unreliable medium might experience data corruption
(for instance electromagnetic interference or signal attenuation among others).
Error detection can detect any bit/byte error using checksum or CRC. Error
correction is able not only to detect bit/byte error but also in some cases correct
corrupted data (e.g., Viterbi algorithm®®).

The integrity protects communication from unauthorized manipulation, i.e.,
insertion, deletion and alteration of PDU (e.g., variety of one-way hash functions
used for computing HMAC™Y),

Both error detection/correction and integrity are parts of the unifying mechanism
called data anti-corruption offering service, which prevents user-data from
corruption.

Compression

Policy for this mechanism chooses (if any) available compression algorithm that
could be used to reduce the size of PCI of certain protocols (e.g., RTP* header
compression where whole RTP stream uses same PCI information).

Confidentiality

Confidentiality of communication means that nobody else can understand PDU’s
user-data except receiver and sender (e.g., variety of cryptographic algorithms
such as DES, 3DES™, AES®, RSA?),

Non-repudiation

The non-repudiation mechanism guarantees that all devices of particular
communication cannot deny processing of relevant PDUs.

Tab. 2: Mechanisms related to data transfer

NETp Description

Initial State
Synchronization

Any shared state between devices must be initialized first. Following forms of
initial synchronization are recognized based on [4]:

e Synchronization representing local association between PMs of adjacent
ranks, no PDUs are exchanged, and minimal shared state is required
(e.g., UDP);

e Synchronization for flow communication utilizing request/response
PDUs, used by protocols without any feedback;

e Synchronization  for  connection = communication  utilizing
request/response and acknowledgment PDUs. This operation is
restricted by time constraints — TCP changes synchronization state
explicitly using flags (e.g., SYN, FIN); delta-t [5] protocol utilizes
mainly timer-based mechanism bounding maximum PDU lifetime, the
maximum receiver-waiting period before acknowledging PDU and
maximum duration that sender tries to resend PDU.

Loss and
Duplicity
Detection,
Retransmission
Control,
Acknowledgement

Transmission of data over the Internet is by its nature unreliable. PDUs might
be lost or duplicated. PCI’s numbers are utilized for lost and duplicity detection
mechanism (i.e., remaining a gap in the sequence indicates the loss; multiple
PDUs with the same sequence numbers indicate duplicity). Duplicated PDUs
are discarded; lost PDUs may be retransmitted.

The previous technique cooperates with the acknowledgment (ack) mechanism,
which is used by the receiver to inform the sender about PDUs that has been
received without any problem. Also, the sequence numbers are used inside ack
to inform which PDU was the last received by the receiver. Nevertheless, there

16 The Viterhi algorithm is used to detect and correct bit errors in data streams. More can be discovered at
http://en.wikipedia.org/wiki/Viterbi_algorithm

17 Keyed-hash Message Authentication Code (HMAC). For more, see http://en.wikipedia.org/wiki/HMAC
18 Real-time Transfer Protocol (RTP). For more, see RFC 1889.

19 Data Encryption Standard (DES) and Triple DES (3DES). For more, see
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

20 Advanced Encryption Standard (AES). For more, see http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
21 Rivest, Shamir, Adleman (RSA) asymetric algorithm. http://www.google.com/patents/US4405829
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is separate PCI field for sequence numbers referring to lost/duplicity detection
and another PCI field for acknowledgment purposes.

If an ack is not received in due time, the sender employs retransmission
mechanism to generate missing PDUs. If an ack is received, the sender usually
deletes PDUs that are pending for retransmission.

This mechanism of flow control prevents sender(s) to overwhelm receiver(s)
with data, so it is unable to process them in due time. Flow control is the binary
relation between single sender and receiver. Two forms of flow control are
known:

Clc:JInOtVrVol o '_the credit scheme — receiver te_lls sender what amount of cre_dit (usually
in octets or number of PDUs) it has to send data before getting the new
quantum of credit (e.g., the size of TCP sliding window);

e the pacing scheme — receiver tells sender how fast (usually at which bit
rate) it can send data (e.g., FIR, leaky bucket®?).
Congestion control [6] mechanism tries to protect network from experiencing
congestion collapse (see [7], [8]) — period of low throughput, packet loss and
transmission latency. Congestion control is n-ary relation between subsystems.
Congestion Countermeasures against congestion collapse include:
Control e congestion avoidance built into transport protocol (e.g., TCP, DCCP%);

e active queue management (including differentiate services and dropping
algorithms like RED*) and congestion notification techniques (e.g.,
ECN%).

Tab. 3: Mechanisms related to control of data transfer

Complete network architecture should contain hooks for all previously described mechanisms
even if the implicit policy for particular mechanism does nothing (e.g., support confidentiality but not
applying encryption to outgoing traffic). Tables outline the core set of policies. Nevertheless, we can
assemble them together to create more complex mechanisms (e.g., combine confidentiality, integrity,
and the random nonce to guarantee anti-replay protection mechanism). Hence, the complete set of
mechanisms is practically unlimited. Based on [9], we developed an ontology of data transfer
mechanisms, which is depicted in Fig. 1.

Above mentioned terminology and mechanisms provide the framework for Internet operability

and foundations for a cooperation of different technologies.

22 |_eaky bucket: Algorithm that allows policing or shaping of data traffic to conform some bandwidth or speed
restrictions. For more, see http://en.wikipedia.org/wiki/Leaky bucket

23 Datagram Congestion Control Protocol (DCCP). For more, see RFC 4340.

24 Random Early Detection (RED). For more, see https://en.wikipedia.org/wiki/Random_early_detection.

25 Explicit Congestion Notification (ECN). Visit https://en.wikipedia.org/wiki/Explicit_Congestion_Notification
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2.2 Present Problems of Internet

Among some driving factors of today’s Internet [10] are:

e the widespread availability of wireless (including Wi-Fi and cellular networks) connectivity
allowing more non-PC devices perform ad hoc connections;

e deployment of virtualization increasing the number of logical computing systems;

e more cloud computing and peer-to-peer applications changing traffic characteristics towards
less deterministic and stochastic models of CDNs?;

e reaching the Zettabyte era more quickly due to the overall increase in broadband speeds.

Issues below are only consequences of Internet usage, which are completely different comparing
to Internet conventions and user base 30 years ago.

What we are experiencing is that more and more hosts?” and routers®® are connected to the
Internet every day using different wired and/or wireless technologies. Also growing the amount of
transferred data comes hand in hand with an increasing number of users. Paths between nodes on the
Internet are becoming shorter, faster, more redundant and more reliable. This trend significantly affect
the growth of router table sizes than ever before (observe for instance in chronological order [11], [12]).
More existing IPv4 addresses are used as Provider Independent (P1)® rather than Provider
Aggregatable (PA)® addresses of Internet Service Provider (ISP)*. The free IPv4 address space is
depleted, and IPv6 is still fighting to reach at least 5% of overall traffic (see [13] as a representative
statistic example of mid-size NREN®*) despite the fact that it has been more than 17 years since its
standardization.

Over the past several years, many discussions were held (for more general information, please
see [14], [15] and [16]) whether current Internet architecture could sustain its expansion in the middle
and long range future. Somebody argues that new better resources are being invented faster than
available technology could keep up with them. Somebody disagree that every resource has physical

boundaries that cannot be passed on, and that poses as a limiting factor. Nevertheless, the impact of the

% Content delivery network (CDN). For more, see https://en.wikipedia.org/wiki/Content_delivery network.

27 Host: Device that can send/receive packets, but does not participate in forwarding of packets.

28 Router: Device that forwards packets across the network layer.

2 Provider Independent (PI) addresses: Address prefix that organization receives from its Regional Internet
Registry (RIR). Benefits of using PI addresses relies in fact that if organization needs to change ISP then it does
not need to renumber its address space. ISP change means just slight change of routing information propagated to
to DFZ.

%0 Provider Aggregatable (PA) addresses: Address prefix that organization receives from its provider. The PA
address advantage is that all networks of a given ISP — components of ISP’s address space — could be replaced
with single aggregate prefix propagated to DFZ.

31 Numbering of Internet is govern by Internet Corporation for Assigned Names and Numbers (ICANN)
organization which assigns available prefixes to RIRs. RIR delegates prefixes to Local Internet Registries (LIR)
which carry out assignments of address to their customers. LIRs usually operate as ISPs in that area.

32 National research and education network (NREN). For more, see https://en.wikipedia.org/wiki/NREN.
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current situation on routing on the Internet is something that we can clearly observe and at least partially
predict future tendencies even though we have not yet reached limits of nowadays resources.

The most severe and apparent symptoms of broken Internet architecture — namely routing table
growth, lack of locator/identifier semantics split, cumbersome multihoming and mobility, ineffective
inbound traffic engineering and renumbering due to the change of ISP — are listed down below in
Sections from 2.2.1 to 2.2.6. Some of these issues explanations are based on a review from RFC 6227
[17], RFC 4984 [18], some of them from respective community observations of current trends. These
symptoms are currently being solved by band-aid mechanisms and architecture patches (e.g., mobility
frameworks). However, those solutions usually lack wide-spread deployment to be really deal breakers

and/or do not seem to be long-term scalable.
2.2.1  Routing Scalability

The most affected nodes struggling with the situation are Default Free Zone (DFZ)® routers. Every
year the size of Routing Information Base (RIB)* and Forwarding Information Base (FIB)* of
those routers increases. The rate, at which prefix count is growing in the RIB, is the object of discussions
[19] but it seems to be slightly faster than linear (sometimes called superlinear) for a couple of last years
[20], [21]. We can see historical progress in the size of Border Gateway Protocol (BGP) [22] RIB and
FIB for IPv4 and also IPv6 on the following graphs depicted in Fig. 2, Fig. 3, Fig. 4 and Fig. 5 from

[23]. The year is on the X-axis, and the number of prefixes is on the Y-axis.
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Fig. 2: IPv4 — All BGP entries in FIB

33 Default Free Zone (DFZ): Backbone of the Internet where routers must keep complete routing tables with all
reachable destination networks. In opposite of this are Tier 3 ISP or networks or end customers that are using
usually only partial routing information — they have complete knowledge about local connectivity and any other
network beyond is available via default route.

34 Routing Information Base (RIB): Basically abstract data structure holding information from a given routing
source that holds information about all reachable destination networks and paths to those destinations.

% Forwarding Information Base (FIB): The FIB is optimized version of RIB. It is consulted most of the time
when forwarding packets because it is supported by specialized HW.
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Current numbers are taken from a router in one of the APNIC research and development
autonomous systems (AS)*. They are relevant to the date of this publication:

e |Pv4 RIB =1682 113 prefixes;
e IPv4 FIB =573 400 prefixes;

e [Pv6 RIB = 96 409 prefixes;

e |Pv6 FIB = 24 857 prefixes.

Previous numbers mean that this particular router sees 573 400 IPv4 destination networks in
today’s Internet where there are 1 682 113 different paths to them and vice versa for IPv6. The prefixes
count is going to increase with advancing depletion of IPv4 space and progressing deployment of IPv6.

Each prefix must be processed which increases the control plane® load. This raises
consumption of router’s CPU performance and memory and last but not least increases the size and a
potential number of exchanged routing updates. This presents routing scalability issue for future routers
— sometimes the same problem is also known as DFZ RIB/FIB growth.

It is believed [18] (assuming nowadays growth and available hardware and software) that we
will still have resources to build devices capable of dealing with this problem efficiently. However, what
is becoming a concern is a price of these devices.

The negative consequence can be passing the unreasonable cost of ISP’s investments to
customers. Potentially, only large Tier 1 ISPs could afford such devices/investments which would also
affect maintenance and operation expenses of DFZ routing. Technologically the routers: a) must
maintain increasing state information in RIB and converge usable routes quickly enough; b) must
populate FIB from RIB fast and must be prepared for enlarging the size of FIB itself; ¢) must perform
forwarding lookups (and at best also routing decisions) at line-rate speeds; d) must use HW that does
have reasonable power consumption or cooling demands. From the business perspective, we must
understand that DFZ is run solely by private entities without any centralized supervision [24]. They are
making a profit from it, so all the policies (like acceptance and processing of prefix) are in their hands.
From their perspective, it is not beneficial that cost of routing infrastructure would grow too rapidly
especially due to the factors they are unable to control (e.g. increasing number of Tier 3 ISP customers
that want to multihome). To put it simpler — no ISP (especially the one operating at DFZ) would be
happy from upgrading its infrastructure (buying better routers) to maintain the same level of service

quality and availability just because of the growing requirements of the routing system.

36 Autonomous System (AS): Set of devices under one administration domain.

37 Control plane: Part of the router that acts as the brain responsible for maintaining various state information
such as routing table with the help of routing protocols and handling L3 issues (defragmentation, filtering, traffic
classification/marking, QoS policing/shaping, cryptographic operations, etc.).
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The final verdict (see [25]) is that vendors and ISPs are (under current conditions) able to deal
with the growth of the Internet. However, scalable and cheaper solution would be welcomed to reduce
costs and prepare for future demands.

2.2.2  Decoupling Identification and Location

What is currently called decoupling of location and identification a.k.a. loc/id split is merely the result
of IPv4 address semantics as described in RFC 2101 [26]. IP address serves multiple roles nowadays:

1) Identification — Identifier is a bit string that is used during the communication’s lifetime. It
identifies communicating parties in a way that IP address verifies the source of packets;

2) Localization — Locator is a bit string that specifies packet destination where it should be
delivered. It locates the place on the Internet, where a device is attached. Routing protocols
interpret IP address as a locator and build up routing tables based on the situation that routers

route traffic towards a destination. The locator is also known as Point of Attachment (PoA)*.

Identifiers and locators have different requirements on uniqueness and lifetime. Identifiers must
be unambiguous on each set of communicating parties while locators must be unambiguous within one
or more routing domains. Identifiers must be valid at least during the maximum lifetime of
communication between given devices. Locators must be valid as long as a routing system within a
routing domain needs them.

Let us focus on real-life implications of the fact that IP address is used both as identifier and
locator. What if any node has more than one IP address, which one identifies it? A device is situated in
the network at one place. However, PoA addresses do not express device’s position but networks to
which device is connected. Moreover, PoA could have an entirely different location from the perspective
of DFZ. Another example is multiple virtual machines on one host system. One approach is that we have
a virtual network inside host system. However, in this case, we might run into the problem that we have
to use NAT®, or we lack address space. Another approach is that virtual machines share host system
address. However, how can we then differentiate between virtual machines from a network perspective?

Those discrepancies were observed by many during the last thirty years (e.g., one of the oldest
notes about it is in [27]). IP address overloading with both previously mentioned functions is one of the
major factors causing routing system inscalability [28]. Yakov Rekhter stated so called Rekhter’s Law

targeting this contradiction:

— “Addressing can follow topology or topology can follow addressing. Choose one!”

3 Point of Attachment (PoA): Device’s interface (and address of this interface) by which it is connected to some
network reachable via Internet. Device could have and use simultaneously more than one PoA for communication.
We will see later in Chapter 3 that this perceiving of POA based on IETF’s view is flawed.

39 Network Address Translation (NAT). For more, see RFC 1631.
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However, it is hard to be in compliance with Rekhter’s Law because usually identifiers are
assigned based on customer's policy, not topological structure. Hence, the single address space can
hardly serve both IP address functions efficiently. Thus, solving wrong IP address semantics dichotomy
seems like a necessary thing to do.

When taking into account current TCP/IP status quo, loc/id split would be the natural solution
for some problems discussed in this subchapter. The most notable advantages (see [29] for details) of
decoupling locator and identifier are: a) reduction of DFZ routing tables because they would contain
only locators, which would improve scalability of control plane; b) be design support for mobility and
multihoming by employing mapping between two distinct namespaces (to one identifier may belong
multiple locators) comparing to hacks when using only single namespace of blurred locators and

identifiers. Nevertheless, we are going to show that core of the problem lies elsewhere.
2.2.3  Multihoming

Internet’s multihoming stands for the situation when the customer is using two or more ISPs for transit
services as it is defined in RFC 4116 [30]. Nevertheless, this definition may be limited in application,
because it refers only about multihoming between autonomous systems. We propose wider definition of

multihoming, which covers following use-cases:

1) multihoming of single host attached redundantly to one or more networks;

2) multihoming of single (LAN) network (containing a set of hosts) interconnected redundantly
with one or more networks;

3) multihoming of autonomous systems (containing a set of networks) interconnected redundantly

with one or more ISPs;

Will focus only to multihoming of network(s) (points 1) and 2) of the previous list) throughout

the whole Chapter 2. Below are some of the reasons why customers demand network multihoming:

e Redundancy — Customers are looking for high availability of their services. Hence, their (both
customers and ISPs) networks should be operational at best 99.999% of all the time (this
represents approximately 5 minutes of allowed outage during whole year) to meet this
constraint. From the perspective of Internet connection, this could be accomplished by having
more than one ISP to avoid a single point of failure;

e |oad-balancing — Traffic could be load-balanced between multiple working links leading
into/out from customers AS to avoid congestion or to increase the available communication
bandwidth;

e Traffic Engineering — Customer wants to influence how traffic is handled beyond default routing
behavior, e.g., for example, to avoid problematic paths, to isolate some sets of addresses, etc.
(for more, see RFC 2260 [31]);

15



e Transport-Layer survivability — BGP driven multihoming provides at some level (i.e,

successful convergence in certain time frame) session survivability for transport protocols.

A mandatory prerequisite for multinoming is that every customer is uniquely identified on the
Internet — this is done by autonomous system number (ASN)®. Multihoming is nowadays
accomplished with the help of BGP, which informs others about the path to customer’s network via two
or more ISP transit systems.

Multihoming works with PA and PI addresses. For both cases, customer’s prefix is propagated
to DFZ. Nevertheless, for PA case only primary ISP (i.e., assignee of customer PA addresses) aggregated
prefix is present in DFZ and additional routing table entry appears only during path failures to this
primary ISP. A multihoming problem arises when a customer's PA prefixes are advertised by non-
primary AS(es). Because of the longest-prefix match* routing lookup, the customer's traffic will be
directed through the non-primary AS(s). The primary ISP is then forced to deaggregate the customer's
PA prefix in order to keep the customer's traffic flowing through it instead of the non-primary AS(s).

The trouble with multihoming is closely connected with IP address semantics described in the
previous section — IP addresses is a POA which is route dependent (i.e., reachability of multihomed
networks depends on the chosen/available route). However, IP routing should be route independent, but
this cannot be satisfied when it takes into account destination and next-hop IP addresses which are route-
dependent PoAs.

Assume network graph in Fig. 6 with one router connected with two interfaces (two PoAs) to
different ISPs for the sake of requested connection redundancy. If one POA experiences outage (e.g.,
192.168.1.1 on primary red route), then it does not imply that router and LANSs behind it are unavailable.
The routing algorithm can find a backup route for LANS, but it cannot help to reroute PDUs intended
for PoA, which is currently down. Multihoming is not inherent use-case to IP. Route dependency of
multihomed networks remains unsolved despite the fact that it firstly appeared in 1972 (more than 40

years ago) as Tinker Air Force Base multihoming request [3].

Fig. 6: Network multihoming use-case illustration employing simplified BGP rerouting

40 Autonomous System Number (ASN): Globally unique identifier 16 or 32 bits long assigned by ICANN and
maintained in online database on http://www.iana.org/assignments/as-numbers/as-numbers.xhtml.

41 Longest-prefix match: Algorithm used by routers to retrieve the best available (the most accurate) entry from
routing/forwarding table or any other table containing IP network entries. For more see D.E.Comer, Computer
Networks and Internets (5th ed.), p. 368, ISBN 978-0-13-606698-9, 2008.
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224  Mobility

During the last years, the idea of the Internet of Things (1oT)* became more real and widely accepted
as probable use-case of Internet. Some predictions expect that 20-75 billion nodes will be connected to
the Internet by the year 2020 [32]. Basically, a throng of devices with own IPv6 addresses would need
access to the Internet. Mobility is the ability of a node or whole network to change its topological
connectivity without disruption of ongoing communication (remark: application mobility is not covered
in this thesis though it is often associated with this term). Authors of TCP/IP stack had never thought
about this use-case. Thus, IETF had to supplement solutions like Mobile IP [33], Mobile IPv6 [34] or
HMIPv6 [35] or Multipath TCP [36] later.

These solutions include:

a) Dynamic renumbering of mobile entity — considered unsuitable because dynamic IP address
change without any further notice may disrupt existing communication;

b) Renumbering and creating a tunnel between old and new location — it requires the deployment
of the home agent and foreign agent concepts known from cellphone networks;

c) The ability of a mobile entity to actively announce its new location — usually comes hand to
hand with dynamic changes to DFZ routing tables as the mobile entity moves from one location

to another.

Portability is another term often discussed with mobility. Portable network address does not
change (its format and structure) despite replacing ISPs. All Pl addresses are by their nature portable.

A looming current problem (for not just 1oT) is how to accommodate possibly billions of
smartphones, tablets, printers, and PDAs with the IPv4/IPv6 capability to access the Internet and to
provide session survivability when those devices roam from one network to another. NAT is often being
used to overcome this limitation by rewriting persistent address to dynamic mobile address. However,
NAT breaks end-to-end principle® [37] and due to that NAT is being considered as the temporary fix
rather than a solution. Mobility should not be attained feature of some special protocol or technique.

Therefore, mobility support should be inherent to the network architecture.

42 Internet of Things (1oT): Refers to unique identification of objects in Internet where nearly any device is
equipped with IP address and capable of communication via IP. It is merely buzzword overused in marketing
expectations of future Internet growth. More at http://en.wikipedia.org/wiki/Internet_of Things

43 End-to-end principle: Application-specific functions ought to reside in the end hosts of a network rather than
in intermediary nodes.
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2.2.,5  Traffic Engineering

Traffic directing and diversion to use other paths than those precomputed by IGP*/EGP* is called
traffic engineering (TE). We differentiate between two types according to direction of traffic flow:

e Outbound traffic engineering — Intra-AS TE, where we try to influence how traffic is leaving
AS. IGP metrics is usually altered to support this goal so that preferred exit from AS is utilized.
Another way, how to accomplish outbound TE, is to depreferentiate or to filter some routes
from BGP neighbors;

e Inbound traffic engineering — Inter-AS TE, where more specific routes are propagated with the
help of BGP to divert traffic from normal paths (aggregated prefixes). Those altered specific
routes are more preferred because they temper BGP decision process [22], [38].

Nowadays inter-AS TE is done rather than intra-AS TE. The reasons to do TE, are similar just
as in the case of multihoming. Among those reasons are policing (to restrict transition of certain traffic
through a given AS), cost reduction and support of various QoS and Service-level Agreements (SLA)*.

TE is performed by tuning BGP attributes of the certain routes and/or introducing more specific
prefixes into DFZ routing tables. This effectively increases RIB and FIB sizes and presents an additional
load to the control the plane. Moreover, network administrators spent hours configuring TE only to
discover that the neighboring BGP peer completely rewrites (or ignores) routes attributes, thus
preventing the rest of the Internet to learn and conform to intended TE. Hence, network architecture

should support nonrefusable TE by design.

2.2.6  Renumbering

Usually, the organization has one ISP where its network is completely inside ISP’s AS. In this case, the
organization®” does not need to advertise its network prefix globally because it is a part of provider
address space — PA addresses is assigned to the organization. However, if an organization wants to
change ISP, then it must be prepared to renumber all its nodes according to PA address block enforced
by a new ISP. Another option is to ask Regional Internet Registry (RIR)* for Pl address block, but there

are two drawbacks associated with it:

4 Interior Gateway Protocol (IGP). For more, see http://en.wikipedia.org/wiki/Interior_gateway protocol.

45 Exterior Gateway Protocol (EGP). For more, see http://en.wikipedia.org/wiki/Exterior_gateway protocol.

46 Service-level Agreement (SLA): SLA is an agreement between two or more parties, where one is the customer
and the others are service providers. SLAs commonly include segments to address: a definition of services,
performance measurement, problem management, customer duties, warranties, disaster recovery, and termination
of agreement. For more, see https://en.wikipedia.org/wiki/Service-level _agreement.

47 Organization a.k.a. Customer: Entity operating end network with own addressing plan and routing policies.
“8 Regional Internet Registry (RIR): Organization that manages allocation and registration of internet numbers
(IP addresses, autonomous system numbers, well-known port, etc.). Currently world is divided into five RIR based
on geographical position: AfriNIC, ARIN, APNIC, LACNIC and RIPE NCC.
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1) The organization still would not avoid at least initial renumbering when changing from PA to
Pl addresses.

2) The demand could not be met because RIR is already missing Pl prefixes large enough
(especially with IPv4 address space depletion), or it is against RIRs regulations. Pl addresses
make the process of migrating between ISP easier; still each Pl prefix must be separately
advertised to DFZ.

Not only renumbering process could be costly and error-prone (see RFC 5887 [39]) even with
the existence of automated tools (e.g. DHCP, SLAAC, etc.), but also some of the organizations may feel
stuck or being held as a hostage of theirs ISPs that provide them with PA prefix.

The renumbering problem grows with the size of the network and number of nodes it contains.
Moreover, change of host’s addresses negatively affects access control lists (ACLs)* and firewall

setups or configuration files outside the scope of renumbered network.

49 Access control lists (ACLs): A list of permissions attached to an object (e.g., interface, file, service). ACL
usually consists of one or more entries (ACE) that are being evaluated whenever object is accessed.
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2.3  Influencing Factors

Previously mentioned problems could be non-disjunctively divided into two major groups as those:
a) negatively influencing routing table size; b) negatively influencing routing table processing. Except
those also some questionable techniques or decisions do exist that are employed by ISPs, and that will
be also described in this subchapter.

2.3.1 Burden on Routing Table Size

When speaking about adding pressure to the routing table size the de-aggregation of address prefixes
(i.e., more specific prefixes) turns out to be a major reason behind DFZ RIB/FIB growth. Among
elements why it is happening belong:

e Traffic Engineering — Additional TE specific prefixes are advertised;

e Multihoming — In case of both Pl and PA addresses, the organization’s non-aggregatable prefix
must be propagated to DFZ so that multihoming could take effect;

e End-site Renumbering — Many customers require Pl address space to avoid possible
renumbering when changing ISP. By its meaning, all Pl addresses are part of DFZ that could
not be aggregated;

e Business Acquisitions — Networking infrastructure could be a constituent part of assets when a
company is selling off some of their business. Unfortunately, this could lead to partition of
address space to smaller blocks that could not be summarized and these fragments must be
advertised separately to DFZ;

e RIR Allocation Policies and IPv4 Address Exhaustion — Organizations, are acquiring address
space from RIRs. If an organization needs more addresses, then it asks for another block.
However, this block is rarely the adjacent one in the address space by the block, which was
already assigned to the organization. This leads to assignment of discontinuous prefix blocks to
same AS;

e Dual-Stackness — Currently IPv6 exists simultaneously together with IPv4 because dual-stack
is the only option for non-failure deployment of a new network protocol without the Flag Day.
Unfortunately, this means that DFZ routers must support coexistence of two routing tables —
one for IPv4 and another for IPv6. However, both routing tables are used to find paths to same
destinations in case of single AS reachable via IPv4 and also IPv6;

e Anti-Route Hijacking — Certain organizations propagate a set of smaller specific prefixes rather
than one aggregate. The reason is to avoid potential (or accidental) hijacking of their address
space by some other unauthorized party. Unfortunately, this technique only stresses DFZ routing

tables more.
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Reader’s discretion is advised (the goal is to provide merely proof of existence) when
interpreting following (simplified) conclusions drawn from (the current snapshot of) BGP metrics.

What is the size of potentially complete IPv6 FIB? Does IPv6 pose a threat to DFZ routing table
sizes and HW of dual-stack routers? Let us quantify the issue of growing size of routing tables based on
data provided by [40], which is the snapshot of BGP state on the router in AS 131 072 from
27" September 2015. Tab. 4 contains relevant absolute numbers and discussion follows below:

Description | Parameter IPv4 IPv6
The total number of pmﬁXIe:SI E|3n Prefix Count 573333 | 24 833
The number of prefixes assigned .
o Root Prefixes
to organizations by RIRE Ia}g;j ak.a. CIDR Aggregates 274608 | 16 892
The number of preflxes beyond More Specific Prefixes 298725 | 7941
root prefixes aggregates.
Single AS Path prefixes from the | Specifics where AS Path
o ) 142 878 | 3883
subset of more specific prefixes. Matches Aggregate
The total number of ASes ths;iglf AS Count 51821 | 10 251
End site or so-called orlgln-oAnISy Origin-only ASes 44 282 8310
ASes that carries only traffic
between other ASes, e.g. Tier 1 Transit-only ASes 214 143
ISPs.
ASes that serves both purposes —
origin and transit, e.g. Tier 2/3 Mixed ASes 7325 1798
ISPs.
ASes that propagate to DFZ or]ly ASes_ Advertls!ng 20 544 7412
one prefix. a Single Prefix
ASes that are not multihomed. Or_|g|n ASS Announced 33391 7633
via a Single AS Path

Tab. 4: Observations about DFZ based on BGP functionality

Some simple yet factual conclusions could be drawn from values in the table. The worst case is
a moment (let us call it saturation point) when the same IPv4 and IPv6 routing tables would coexist
side by side. It is very hard to predict when it will happen. Nevertheless, we can estimate how saturation
point would look alike employing now available data.

Let us assume that the lower bound of complete IPv6 routing table is the same as the number of
active AS reachable via IPv4 in case that each AS would need only the single aggregated route. That

guarantees the smallest yet operational IPv6 routing table:

Minimal IPv6 FIB Size = 51 821 prefixes

Unfortunately, the single prefix for AS cannot allow multihoming or any ingress TE.

Let us look on the multihoming through the following equation catching relationship

Origin ASs Announced via a Single AS Path
AS Count

between . The result tells that:
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e 64.4 % of IPv4 and 74.5 % of IPv6 ASes do not use multihoming because there is only single
path leading to their AS;
e consequently, it could be concluded that 35.6 % of 1Pv4 and 25.5 % of IPv6 ASes deploy

multihoming.

Similarly, employment of traffic engineering could Dbe guessed from

ASes Advertising a Single Prefix
AS Count

. The results are:

e approximately 39.6 % of IPv4 and 72.3 % of all IPv6 ASes do not have any TE requirements

(otherwise they would be advertising more than one prefix);
e the remaining 60.4 % of IPv4 and 27.7 % of IPv6 ASes utilize more specific prefixes in a

manner described above (TE, business mergers, and acquisitions, etc.), or they purposely

fragment address space.

As stated above more specific prefixes are mostly used for purposes of multihoming and ingress

More Specific Prefixes

TE. Hence, let us inspect ratio between . Approximately 52.1 % of 1Pv4 and 32.0

Prefix Count

% of all IPv6 prefixes constitute more specific parts. Figures Fig. 7 and Fig. 8 show the trend of ratio in

percentiles of more specific prefixes in all advertisements. Trend is stable for IPv4, roughly the half of

all prefixes. For IPv6, FIB is experiencing very mild linear increase towards one third of all prefixes.
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0d 05 & o7 05 09 10 11 1z 13 14 13

Fig. 7: Percentil of IPv4 more specific prefixes Fig. 8: Percentil of IPv6 more specific prefixes

Now we can extrapolate the estimation of the “real” IPv6 FIB size based on previous data. We
expect that each autonomous system needs its aggregate plus all more specific prefixes that are necessary
to achieve the same level of multihoming and TE as today. We can use either IPv6 or IPv4 percentile of

more specifics copying trend of each address family.

"Real" IPv6 FIB Size = Minimal IPv6 FIB Size(1 — More Specific Prefixes Ratio)™?
. { 51821(1 — 0.32)71 =[p,¢ 76 207 prefixes
51821(1— 0.521)71 =p,, 108 186 prefixes
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Let us take into account more conservative input from two results and that is the one using IPv4
percentile. The complete "Real" IPv6 FIB would contain approximately 108 000 records. This size
would represent roughly 19 % of nowadays IPv4 FIB. However, IPv6 uses only 24 833 prefixes
currently that is just 23 % of outlined "Real" size, which corresponds with the fact that about one fifth
of all ASes are already dual-stack. Nevertheless, it is expected that real-life IPv6 routing table would be
smaller by number of non-contiguous prefixes assigned to a single organization because of initial larger
address space block (prefix length /48 allows a lot of networks for single entity) and because of lack of
address space preallocation. Hence, presumably IPv6 FIB size would be somewhere between Minimal
and "Real" versions.

Hypothetical DFZ router supporting simultaneously perfect dual-stack environment would need

to hold at least 681 519 prefixes in its FIB, which is 14 % increase comparing to present overall (IPv4
plus IPv6) FIB size.

Let us draw conclusions from previous calculations. We claim that DFZ routing table size will

be still manageable (just 14 % larger than today) even during saturation point. Hence, fears about HW

not keeping the tempo with DFZ routing table size growth are based on false premises.

2.3.2  Burden on Routing Table Processing

The previous section discusses factors impacting routing table. Even if we establish a theoretical lower
bound on the size of FIB, then we must take into account the amount of control plane work needed to
maintain the routing table. The count of routing updates has the major influence on control plane

processing delay. Among elements impacting it belongs:

e Interconnection Richness — The Internet is becoming flatter in a sense that more and more
different paths exist between the same ASes [41]. Increased the number of control plane best
route computations is necessary because of that. These computations occur whenever a new
route becomes available or also during the change of route attributes. Unfortunately, this
interconnection richness is stressing control plane seriously, and it occurs even though the prefix
count remains the same;

e Traffic Engineering — More specific prefixes with different attributes expressing desired TE
effect place more overhead on control plane;

e Multihoming — Multihoming AS neighboring with more than one ISP (transit AS) requires more
than one interconnection leading towards DFZ. Topology change must be propagated in the
form of a routing update whenever a failure occurs. On the contrary, single-homed AS poses no
pressure on DFZ control plane load because ISP internally processes any change in connection
status;

e Rapid Shuffling of Prefixes — Some ASes deploy rapid shuffling of prefixes in order to divert

traffic to less loaded links or to optimize traffic by depreferencing (or even canceling) certain
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routes that do not meet SLA criteria. Any measurement system, which actively alters routing
updates, only increases overall load;

e Anti-Route Hijacking — Owning AS advertises purposely more specific prefixes as the
countermeasure when fighting against 1P hijacking®. Of course this approach has significant
overhead comparing to ideal state when only a single aggregate targeting the same address span
is being advertised by AS;

e Operational Ignorance — A part of routing updates that are propagated to DFZ appears due to
the ignorance of AS network administrators. There might be several reasons for it: a) default
behavior of some BGP configurations advertise everything from RIB; b) good aggreagation of
internal space and optimization of routing updates needs some level of expertise and introduce
additional work, which certain network administrators do not have; c) filtering rules (see
RFC 7454 [42]) at the borders of AS are not applied which often leads to spoofing of IP prefixes

or propagating private addresses.

The previous list outlined some of the reasons, why are there many more specific prefixes in

BGP and why is the router’s control plane bothered with occasional routing updates.
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Fig. 9: IPv4 FIB table updates Fig. 10: IPv6 FIB table updates
Graphs in Fig. 9 and Fig. 10 depict the number of FIB table updates for both IPv4 and IPv6.
Currently, BGP is experiencing approximately 1 500 updates per hour for IPv4. If there are peaks in
IPv4 then they are getting larger and massive (two orders of magnitude) comparing to the usual
state.What is more surprising is that this number is approximately 104 400 updates per hour for IPv6.

This implies that current IPv6 setup is more intensive on the control plane.

%0 IP hijacking: Illegitimate takeover of groups of IP addresses by corrupting Internet routing tables usually by
exploiting BGP functionality. For more, see https://en.wikipedia.org/wiki/IP_hijacking.

24


https://en.wikipedia.org/wiki/IP_hijacking

2.4  Chapter Summary

In this chapter, we tried to define network architecture and its fundaments by settling on basic terms
and definitions. Those basic elements (e.g., connection, layer, scope, rank, protocol-machine, PDU, etc.)
are present in current TCP/IP architecture, just as in any other hypothetical architecture comprising
computer network communication.

Subsequently, we mentioned problems tormenting nowadays Internet — routing (in)scalability,
decoupling location and identification, cumbersome multihoming, overcomplicated mobility, the impact
of inbound traffic engineering and unwieldy renumbering of end-networks. We outlined negative
consequences in the frame of TCP/IP for each mentioned problem. We tried to express the severity of
these issues in numbers focusing on their impact on routing table size and control plane load. We raised
some presumption together with hypothetical future trends drawing on publically available global-scale
routing data.

This chapter content should support the conclusion that also others come to — the current Internet

architecture shows design flaws and sooner or later it will face the crisis emerging from consequences

of its poor design.
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3 Naming and Addressing Concepts

&% —“Now you people have names. That's because you don't know who you are. We know who we
are, so we don't need names.” Neil Gaiman
&% Can we formulate any encompassing theory of naming, addressing and routing?

& Are there any similar concepts? How does current Internet reflect this theory?

& What about any solutions dealing with aforementioned problems?

Problems of addressing and naming are closely connected with networking since its beginning. It
directly affects the efficiency of routing and forwarding. Once syntax and semantic of device addressing
are employed, the whole system is hard to change. The current Internet addressing scheme is the most
obvious example of this problem. Although the present IPv4 address scheme has improved since its
definition in the 1980s, it currently represents the major obstacle not only because of address depletion
problem. IP protocol designers made multihoming and mobility very difficult and missed a chance to
reduce router table size by addressing the interface.

The role of IPv4 is to identify and localize the interfaces of connected devices. However, this
assumption poses a great limitation on communication and affected other design concepts. IPv4 protocol
address semantics works fine if address assignment follows the network graph and network devices are
preserving their membership to local networks. IPv4 communication between network applications
requires identifying addresses of network interfaces where the applications are reachable. Enabling IPv4
address change during communication would require modification of datagram delivery mechanism
causing complications for network devices as well as for end points. IPv4 routing architecture can
efficiently react to connectivity changes detecting dead routes or identifying new routes or routes with
better metrics. While exterior gateway routing protocol BGP provides flexibility for propagating
information about relocating IPv4 address this always leads to growing global routing tables because of
breaking address to topology location dependency. This has a negative impact on routing performance.

The goal of this chapter is to provide the necessary background for the practical part of this
dissertation thesis (next two chapters). We try to outline basic motivation why naming and addressing
are still issues of current Internet architecture, which is majorly based on Vint Cerf’s and Robert Kahn’s
TCP/IP from 1974.

In the first subchapter, we layout basic terminology using formal apparatus. Next, we discuss
other non-computer networking systems, where naming and addressing also occur because we would
like to find similarities. In Subchapter 3.3, we try to synthesize working theory employing knowledge
from acclaimed articles on this topic. Then, we test compliance with TCP/IP related protocols and tools
with this theory. The longest Subchapter 3.5 describes conceptual properties of the ideal solution and

introduces many of existing candidates.
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3.1 Basic Terminology

This introduction provides theoretical foundations of naming and addressing. Namely it puts together
all related knowledge with profound and utmost respect to papers by John Shoch [43], Carl Sunshine
[44], Jerome Saltzer [45], Noel Chiappa [46] and John Day [3].

Natural thinking about basic terms yields following meanings:

e the object is a structure that is considered to be worthy of the specific name or address;
e the name identifies what the object is;

e the address identifies where the object is;

e the route identifies how to get to the object;

S

Naming
Let us start with an object. Object o is a software (or hardware) structure that is e
considered to be worthy of identification (e.g., variable, service, interface). All e e
objects of the same type form a set O = {o]|o is object}. We can work with a
single object or a subset of objects, thus it is important to define power set of
objects P(0).

Now, let us settle on the meaning of the following terms regarding NS
naming. To be more accurate and consistent within this theory, we define name @
as a string over the alphabet™: vn is name <& n € X*. However, it is important to @
note that name may be any kind of identifier (e.g., string, color, number). All
possible names form the namespace as a set of names NS = {n|n is name}: NS < @
x* from which all names for a given set of objects are taken. |I_) 1)

Any name identifies (a subset of) object(s), identify is relation I
I: NS x P(0). Previous definition allows name to identify none, one or even Q — e
more object(s) of 0. Identifying more than one object may be useful for use- @ |I—) °.°
cases such as multi-cast or broadcast communication.

Imagine space of IPv4 addresses; some address blocks are assign to owners (e.g., FIT-BUT’s
address block 147.229.0.0/16), some addresses from these blocks are being assigned and actively used
by devices (e.g., private addresses), some addresses cannot be even sold (e.g., block 240.0.0.0/4 of

reserved class E addresses). Naming theory should be granular enough to support all previous use-cases.

*! Let = be alphabet, the set of symbols {a}. £* is the set of all finite sequences w in alphabet X in form

w = a,a,0as; ...a,, Where any symbol a; € X fori = 1, ...,n. We call w as the string over alphabet.
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Assignment marks name in the namespace as available for binding, ¢

deassignment reverses this operation. Hence, the namespace is composed of

Binding is choosing a mapping from assigned name to a particular (subsets of) object(s) xor

two disjunctive sets of names, assignable NS;,;4 and unassigned NS,,,4ssig-:

NS = NSassig U NSunassig: NSassig n Nsunassig = Q.

(subsets of) name(s); unbinding reverses this operation:
e binding is relation B: NSys5i X M,M = P(NS) U P(0).
Name can be either bound or unbound (available for binding):

® namen € NS, is unbound & vm € M: (n,m) & B. ° | B s e

Please notice, that name can be bound to either object(s) a.k.a. direct e |i) @; e
alias or other name(s) a.k.a. indirect alias. Improper indirect aliasing may

indirect aliasing

cause circular referencing (e.g., name “a” is bound to name “b” and name “b” @ Ii) @

is bound to name “a”), which is undesired. Hence, a chain of bindings should B

end with direct aliasing providing identification of (set of) object(s). > @,@
We can measure distinctiveness of name using following adjectives. Unique indicates that there

is one and only one identifying name, whereas unambiguous indicates that there is possibly more than

one identifying name:

e namen € NS, which identifies 0 € P(0), is unique
o 3In,n€NS:(n,0) EIAN(,0) El] >n =n.

e namen € NS, which identifies 0 € P(0), is unambiguous

unambiguos

© In,n € NS:(n,0) €I A(nn,0) € I

Indirect aliases may be bound to unique name without breaking its uniqueness. Usage of

multiple direct aliases changes the unique name to unambiguous.
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Making Address Topological
Before investigating terms concerning address, we need to define terms related to topology, which are
based on [47]. Topology on a set X is a collection T of subsets X having following properties:

e (QandXareinT,
e The union of the elements of any subcollection of 7" is in T;
e The intersection of the elements of any finite subcollection of T is in T;

Fig. 11 illustrates three examples of topologies 73, 75,75 (in compliance with definition) and
three examples of non-topologies T, 7, 75 (properties of topology are not met).
Topological space is an ordered pair (X, T") consisting of a set X and topology 7 on X.

{00 0!

Fig. 11: Examples of topologies and non-topologies

Function f:X — Y between two topological spaces (X,7x) and (Y,7y) is called a

homeomorphism if it has the following properties:

o f is a bijection (one-to-one and onto);
o f iscontinuous;

o theinverse function f~1 exists (and f is an open mapping);

If topological spaces (X, 7x) and (Y, 7y) are homeomorphic (if homeomorphism exists) then it

is guaranteed that points “near” point x € X are mapped to points “near” point y € Y (e.g. in Fig. 12);

f Y

03

. .,

- .
. K
.

. o

. o

.

-------- ¢

Fig. 12: Homeomorphism illustration
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Addressing

Let us return to terms important for addressing. The address is a

(AS,T)

topologically dependent name (i.e., address contains leads about the
position in topology). Address space AS is a set of addresses AS = {a|a is

address} with a given scope. Address space is topological space, it is a

namespace with a topology 7" imposed on it: (AS,T): AS € NS.
We can perform same operations (e.g., assign, bind) and observe
same properties (e.g., uniqueness) with addresses as with names. Address

locates (a subset of) addressable object(s): locate is relation L: AS x P(0).

Instead of identifying, we are using term locating concerning addresses. 0
However, both identify and locate are relations with same outcomes.
Please note, the address field in a protocol is mechanism but how the address is assigned or its

syntax and semantics is policy. Addresses are associated with layers not protocols.

Resulting Properties

The name need not to be meaningful throughout the domain and need not be drawn from a uniform
namespace, whereas the address must be meaningful and must be drawn from uniform (flat or
hierarchical) address space. Flat address space has limitations; most notably no hierarchy leaves routing
action without any help. Hierarchical address space has pros (reduction of routing table sizes) and also
cons (what is topologically close may be far away on hierarchical tree branches, which leads to
suboptimal routing). However, any structure/hierarchy in the name or address is intended to make some
operation easier (i.e., search for an identifier in a directory).

The address is a name, but the name is not necessarily address. The address is bound either to

name(s) or object(s) in order to locate it(/them). Therefore, the address is always a pointer in topology

(e.g., position of the node in the graph, grid coordinates). The name is merely a label without any context

to location.

The route is the specific information needed to forward a piece of information to its specified
address. Routing action may require one or a series of steps in order to forward information to reach a
destination. There should be mechanism mapping address into an appropriate route.

Address is location dependent if it encodes (even the part of) topology information
(i.e., address string depends on where the address is present in the topology). Address, which is route
dependent, encodes (even the part of) route information. Because there may be more than one route to

a given location, we want addresses to be location dependent but route independent.
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3.2 Analogies

This subchapter summarizes system analogies also employing naming and addressing concepts.
3.2.1  Naming and Addressing in Telephony

The name in PSTN®? usually means the name of the customer (i.e. object) that is reachable via dialing a
particular number, which could be considered as an address. Addressing in telephony service evolved
from flat to (at least partially) hierarchical address namespace. Binding is administrative act conducted
by telephone service provider that assigns a free number from its pool to the customer. Directories
provide a mapping between names and addresses like a telephone book or white/yellow pages. To reach
the abject of a particular name in telephony means to dial its address (i.e. number) on phone board and
wait until a connection is established. However, please notice that phone directory name is address as
well, because for instance people with surname “Vesely” are grouped together (near each other).
Initially telephone users were interconnected using the single exchange office in a given area.
The phone number corresponded with the slot/line number, which allowed only local calls. When the
number of telephone users exceeded the line count on the exchange’s switchboard, multiple exchange
offices interconnected with trunks were deployed. The original number was prefixed with unique
exchange office code to differentiate between users with the same numbers but on different exchanges.

Distance calls are allowed by introducing additional area or even country codes to the number.

Address Name  TimeSpan _ Descripton |

Telephone link established to address
6 Karel Chyba 1960 -1972 Puskinova 634, Jesenik.
Until the year 1972, distance calls were
064 006 Karel Chyba 1972 — 1980 available by using an operator that relied on
a phone call to another exchange office.
Exchange office replaced to accommodate
0645 2448 Karel Chyba 1980 — 1986 more users in a given area; this also included
renumbering.
The telephone changed the owner as an
inheritance after deceased.
Multiple exchange office installed in a given
0645 202448 Jelena Vesela 1990 — 1992 area, thus unique exchange code 20 was
introduced.
International SS7  prefix  introduced.
1992 — 1993 Formerly it was 0042 for Czechoslovakia
1997 — 2001 and currently it is 00420 for the Czech
Republic.
00420 645 202448 | Jelena Vesela 2001 — 2003 Removal of leading zero in the area code.

. Exchange office reinstallation together with
00420 584 413570 | Jelena Veseld | 2003 — onwards the revision of the national numbering plan.

0645 2448 Jelena Vesela 1986 — 1990

00420 0645 202448 | Jelena Vesela

Tab. 5: Example of relationship between address and name in PSTN

52 Public Switched Telephony Network (PSTN). For more, see http://en.wikipedia.org/wiki/PSTN
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Let us inspect this nature of phone names and addresses on a real-life example illustrated in Tab.
5. We can observe changes related to one particular telephone and line that was bought in the year 1960
and successfully operates to nowadays.

Telephone number as the address in telephone world is location dependent. Users share the same
prefix (e.g., exchange/area/country code) that might be perceived as geographically nearby (violet, red
and orange digits in Tab. 5). However, there are exceptions to this syntax like toll-free numbers (800)
or emergency services (112, 150, 155 and 158) that should be considered location independent.

3.2.2 Naming and Addressing in Postal Service

The post is the nice example of the best-effort message delivery service. Envelope conventionally
contains both, the name and the address of the receiver. The whole address is location dependent where
each line specifies geographical location more and more precisely — country, ZIP code, city, district,
street name, house number, and apartment/office. Once the letter is dropped into the post box, it is being
routed and forwarded closer to the object (i.e., recipient’s name) according to “envelope’s PCI” (i.e.,
recipient’s address). The post office aggregates routes based upon topology.

Unambiguity of the name in telephone or postal service depends on the scope in which we are
inspecting its sui generis. For example birth name and surname may be enough for a small town but
does not suffice in whole country scope. However, one person could have multiple names with the same
address, for instance, senders might use the company name or its owner name to reach the same
recipient. Also, multiple persons may have the same name and live on the same address.

Binding between name and address is fixed and predetermined by the location of the receiver.

The mapping between name and receiver is unnecessary because one cannot exist without another.
3.2.3 Naming and Addressing in Operating Systems

Saltzer’s paper [45] tries to provide the comprehensive theory of addressing and naming and applies it
to programs and operating systems. The paper does not address computer networks directly, but many
of the aspects are similar and applicable. By the term, the object could understand any data or computer
program (or its parts).

Basic usage of names and addresses is a simple variable in any programming language.
Variable’s name is unique in particular scope (e.g., FOR cycle, procedure/function/method, the whole
program), and it has some lifetime (e.g., until the end of the program, until garbage collector disposes
of it). There are at least two variable’s addresses: a) fixed logical address that references object; b)
changeable physical address that is object’s absolute placement in memory (allocated by the program or
garbage collector). The value of variable could be accessed by its name or by its address (i.e., pointer).

The goal of naming is to allow object sharing, i.e. a) one object is a component of more than
one other object; b) object may be used by two or more different, parallel activities at the same time.

There are more objectives that we want to be accomplished by naming system:
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e Modular sharing — A given object can be used without any prior knowledge of the names of
objects that this object uses. Lack of modular sharing leads to name conflicts where we bind the
same name to multiple different objects. This happens when we put together two different
independent programs in a system, i.e., both of them operate under the same namespace;

e Multiple-mappings — One object could have multiple addresses where the reference to any of
those addresses yields the same object. The good naming system should also deal correctly with
unstable bindings (i.e. those that are changing during the time);

e User-dependent bindings — Different object’s users should be able to access their components
privately (e.g., the association between arguments to a function and its parameters). Thus, the
same object may have multiple independent names, where each one is bound with different user-
dependent accessibility. Nevertheless, those user-dependent bindings should not affect or

conflict among each other.

A single object can have multiple names of different kinds, for instance, human-readable vs.
computer-suitable name, local vs. global name, synonyms. Establishing of scope (context) for the name
to address resolution can occur: 1) during compilation of program; 2) just before program first executes;
3) just before each execution; 4) during the execution.

The naming of files and programs in operating systems adopted a hierarchical approach using
pathname that consists of the root directory, subdirectories, and local name. If we move a file from one

folder to another, then pathname changes but the local name remains the same.
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3.3

Theory

Employing knowledge from ISO/IEC 7498-3 [48], Saltzer’s RFC 1498 [49] and Chapters 5 and 8 of
Day’s book [3], we will try to postulate some synthesis of the naming and addressing theory.

The object address is a name of the object to which it is bound. The object cannot be located

without identification, nor can the object be identified without localization. Therefore, no reason exists,

why to distinguish term name from address because identifying and locating the object are relations

yielding same results. Hence, this means that object name and object address are same because they do

not identify distinct objects. E.g., if “OBJ” is the name, then it is also its address, which help us to

identify/localize an object in the scope of other objects. The previous statement is the final resolution of

name-address dichotomy.

1)

2)

3)

Three objects should be named in computer networks:

services/applications — Services are functions that are being used, e.g. service is Internet
browsing. The application is using services, e.g. Internet browser. Difference between service,
application and user are in this sense non-essential, and we are going to use them
indistinguishably within this subchapter;

nodes — Nodes are (even virtual) computers that run services. Some nodes are hosts (service
consumers) while other nodes provide auxiliary functions to run services (e.g., routing and
forwarding by routers). When taking into account virtualization technique where one node could
host multiple virtual nodes, more accurate term for node would be (N)-entity;

network attachments points a.k.a. PoOAs — PoAs are (Internet-connected) interfaces/ports

(i.e., (N-1)-entities) of a given node;

The natural way, how to relate to the preceding objects, is to use terms application/service name,

node address, network attachment point address, even though that we could use application address or

network attachment point name in compliance with this theory.

2)

3)

Following three bindings exist between objects above:

directory — Directory is service to node mapping used to find service’s location (i.e.,
communication endpoint);

routes — Route is a sequence of node addresses calculated by the routing algorithm; route
interconnects a given pair of source and destination nodes;

paths — Path®® is a node to POA mapping of the nearest neighbor (i.e., next-hop); path
interconnects PoAs of adjacent nodes.

%3 Term “path” here differs from path known from graph theory.
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Naming and addressing are free to use any form of identifier that seems helpful. It could be a
binary or printable character string. The namespace and address space could be flat or hierarchical; the
same object can even use different identifiers a.k.a. aliases, where some of them may be flat and others
hierarchical.

Naming requirements (for more about them in frame of general networking, please see [44]) can
be described in terms of bindings and binding changes among objects mentioned above:

e A given service may run on one or more nodes. Any service may need to move from one node
to another without losing its identity;

e A given node may be connected to one or more PoAs. Any node may need to move from one
POA to another without losing its identity;

e One or more paths may connect a given pair of PoAs. Any of those paths may need to change

without affecting the identity of the PoAs.

Each requirement contains some identity preservation, which is guaranteed when the name does
not change during the moves — object name must be invariant when referring to some property of
particular scope. This can be accomplished by maintaining a list of bindings between services, nodes,

and PoAs. Basically, we name proper objects and then keep track of bindings between them.

To wit, service/user names do not change with location, node names do not change as PoA
endpoints, and PoAs do not change as particular path endpoints. However, following rules do not mean
that names should be assigned to a given object only once, and they cannot change after that. Essentially,
names could be changed but this act must comply with previous requirements. Also, the identity of an
object exists regardless of whether we can express it with some name.

If we want to send a packet to a given service, then following actions are done:

1) Find nodes on which the requested service operates. The task is service name resolution, which
consists of directory search in order to discover a proper binding between service and node(s);

2) Find routes between source and destination nodes and pick the next-hop node, where the packet
should be forwarded. This process is a.k.a. routing, where the initial result is route as the
sequence of node names, and following result is next-hop node name;

3) Find PoAs of the next-hop node en route, i.e., perform node name location to reach node(s)
found in the previous step;

4) Find paths between the current and the next-hop node’s PoAs, i.e. discover the binding between
the same PoAs pair and the path. This action is done by identifying a set of paths which leads

among PoAs acquired in the previous step.

Each of previous steps might return either single or multiple alternatives. In the case of multiple

returned objects, a choice must be made which of them to use. While these choices are distinct, they
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might interact — e.g., we may swap communication to a different node running the same service
according to the path aptness.

We can easily satisfy basic object’s properties using this theory — what it is, where it is and
which way it is. To wit, when speaking of network applications, the service name provides an answer
to what, node and PoA names provide answer to where, routes and paths provide answer to which way.
The difference between node address and PoA address allows us to create a logical over the physical
address space relation. A network addressing system must support at least one level of indirection.

Resulting model of this theory is illustrated in Fig. 13. This picture depicts a simple network
with two levels of indirection; Internet use-case (as the network of networks) would require one more

layer. Let us briefly inspect emerging properties of this model:

Application
Namespace

Node

)

Fig. 13: Theoretical naming and addressing model for computer networks

e Directory and path mappings are similar in a way that both of them track the binding of objects
one hop away.

e Two nodes could be interconnected via multiple distinct routes (containing different interim
nodes).

e Two adjacent nodes could be interconnected via multiple distinct paths (separate physical
connections).

e The route could be viewed as a concatenation of paths in a relaxed context.

The application name should be location independent. Node address should be location
dependent (the logical address). POA names are route dependent (the physical address). PoA address
should be unambiguous only within a particular scope, and PoA addresses need not belong to the same

namespace (e.g., Ethernet and FDDI addresses are from different namespaces).
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3.4 Praxis

Despite the fact that Saltzer’s and Schoch’s papers are more than 30 years old and extensively cited,
very few have been done to integrate their ideas into computer networking praxis. To wit, at least two
following fundamental requirements exist for a correct addressing and naming system: 1) recognition
of objects — applications, nodes, and PoAs; 2) distinguishing changeable bindings — application to node,
node to route, node to PoA, and PoA to path.

Unfortunately, IPv4 does not follow those two requirements at all! Current Internet architecture
contains only PoAs and routes; it completely misses application and node names. IPv4 address ought to
identify a node, but it retains semantic of interface address. Unfortunately, this makes multihoming
impracticable because IPv4 address labels only node’s PoA not a node itself. What is worst, IP address
names the same thing as MAC address. Routes are then falsely bound to an IP address. Instead of the
general directory, the Internet is stuck with well-known port numbers (SSH is on 22, Telnet on 23,
SMTP on 25, HTTP on 80 and so on) and they are no more than a suffix to the network address.
Basically, a node layer is missing.

On Fig. 14 current broken model is depicted:

Application
Namespace

Node

Fig. 14: Broken Internet naming and addressing model

The previous figure illustrates that major flaw exists in current TCP/IP naming architecture.
Mostly because of this poor design, Internet suffers from issues described in Subchapter 2.2. The
following attempts tried to provide some redemption, and each one of them is touching some part of the
overall problem. Interesting is that working, accepted and implemented alternative with complete
naming (comparing to TCP/IP) architecture for computer networking already existed — OSI-RM
(namely its part [48]). However, OSI-RM’s experience was not used as a design guide for the
development of IPv6, DNS or URIs.
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3.4.1 Internet Protocol Version 6

As RFC 4292 [50] clearly states, IPv6 addresses are identifiers of (a set of) interfaces, not nodes. Hence,
the same problem leads to the same troubles as in IPv4. An integral part of one of the Saltzer’s naming
requirements is missing in IPv6. However, let us not condemned IPv6 without proper inspection of what
is named and what is addressed by IPv6.

IPv6 gets rid of broadcast (one-to-all) and establishes following three kinds of communication

which are closely coupled with the particular address type:

e Unicast (one-to-one) — IPv6 address identifies a single interface. A packet is delivered to a single
host only;

e Anycast (one-to-nearest) — IPv6 anycast address identifies a set of interfaces (usually on
different nodes). A packet is delivered to one of the interfaces from a set. There is no syntax
difference between anycast and unicast addresses;

e Multicast (one/many-to-many) — IPv6 multicast address identifies a set of interfaces. A packet

is delivered to all interfaces from a set.

IPv6 allows an interface to have more than one IPv6 address, and any interface has at least three
addresses (one link-local, two multicast addresses). There is a long list of specific IPv6 types of
addresses briefly summarized in Tab. 6.

Michael O’Dell’s GSE addressing architecture [51] divided IPv6 address into two parts — one
serves as a routing locator and another as an identifier. Let us focus on the unicast address, because only
unicast prefixes are present in DFZ routing table. Routing part consist of ICANN, RIR, LIR and Subnet
ID fields that allow to create a hierarchy. However, address with this property is aggregatable only when
it is PA address. Identifier part (called Interface ID in Tab. 6) could be: 1) set statically; 2) derived from
computer’s MAC address®; 3) generated cryptographically®®; 4) changed randomly®®. Unfortunately,
neither way can guarantee global identifier unambiguity, thus routing part is always needed as a fail-
safe against identifiers collision.

We observed some trends in aggregated and deaggregated prefix counts in Subchapter 2.3. The
hope for DFZ is to decrease the amount of deaggregation. The IPv6 address is assigned to the interface
(not a node), and when IPv6 tries to embed the unambiguous identifier in the address, it fails. Hence,
we are back at square one with IPv6, when dealing with problems such as multihoming or maobility

mentioned in Subchapter 2.2.

% This kind of identifier is called EUI-64. See http://standards.ieee.org/regauth/oui/tutorials/EUI64.html

% |dentifier is generated using asymmetrical cryptography, thus providing how to verify host identity. For more,
see RFC 3972.

% To ensure anonymity during IPv6 communication, hosts are able to generate own IPv6 addresses and change
them as they want. For more, see RFC 3041.
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Type Syntax / Format / Description

::0/128
Unspecified This address cannot be assigned to an interface. It is used only during initial
enrollment of the interface to the network.
::1/128
Loopback The node uses this address to send a packet to itself. Equivalent of
IPv4 127.0.0.0/8 addresses.
fe80::/10
1111111110 0 Interface ID |
Link-Local " —
10 bits 54 bits 64'bits

Every interface has at least one link-local address that allows
communication with all adjacent (Hop Count = 1) devices.

2000::/3
001 ' ICANN! RIR | LIR | SubnetID Interface ID |
) " — ~— —
Global Unicast 3bits 13bits 16 bits 16 bits 16 bits 64 bits

Currently only prefix 2000::/3 is assigned for global unicast
communication, where usual address starts with “2001:”. However, some
transition mechanisms introduced additional prefixes (2002: for 6to4).

fc::/7
1111110 'L ' Global ID | SubnetID Interface ID |
Unique Local —_—A——— — _
Unicast 7bits 1 bit 40 bits 16 bits 64 bits

Equivalent of private IPv4 addresses® intended for limited, organizational
scope communication.

Prefix 0 |
— N _J/
~ ~
n bits 128 - n bits
Anycast Prefix 1111111 U L1111 AnycastD |
~ ~— A AN — —~ _
n bits 7 bits 1bit 113 —n bits 7 bits

As mentioned before, anycast addresses are part of unicast address space.
However, conventions reserve part of this subspace for potential anycast.

ff00::/10
11111111 0 R P T | Scope Group ID |
"N ~— —
Multicast 8 bits 4 bits 4 bits 112 bits

The multicast address identifies a group of interfaces (Group ID). This
group identifier could be created in multiple ways, thus introducing a variety
of multicast addresses with different syntax — unicast-prefix-based, source-
specific-multicast, interfaceld-based or embedded-RP addresses.

Tab. 6: IPv6 address types

57 Private IPv4 addresses are reserved for private usage by any organization. The list available at RFC 1918.
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3.4.2 Domain Name System

Domain Name System (DNS) was invented as a descendant of the former hosts. txt file®®, which
distributed a list of IPv4 addresses of devices connected to the Internet. DNS is distributed mapping
system of records providing resolution of domain names to IP addresses (i.e., A- and AAAA-record).
Apart from that, DNS supports, reverse resolution (i.e., PTR-record for IP address to name), address of
mail servers (i.e., MX-record), domain name synonyms (i.e., CNAME), geolocation information
(i.e., LOC), service locators (i.e., SRV), storage place for variety of keys, signatures and certificates and
many more.> Fully qualified domain names (FQDN) create DNS’s namespace. Each FQDN consists of
multiple hierarchical parts delimited by dot character — starting from the right the first one is top-level
domain (abbreviated TLD as top-level domain, e.g., ¢z, com, net, sk), followed by first-level domain
(e.g., company name or web service name), followed optionally by subdomain (e.g., organization’s
department) and finally followed by a device’s hostname. Example and FQDN syntax are depicted in
the Fig. 15

<domain> ::= <subdomain> | " "
subdomain TLD <subdomain> ::= <label> | <subdomain> "." <label>
<label> ::= <letter> [ [ <ldh-str> ] <let-dig> ]
/\ /\ <ldh-str> ::= <let-dig-hyp> | <let-dig-hyp> <ldh-str>
<let-dig-hyp> ::= <let-dig> | "-"
<let-dig> ::= <letter> | <digit>

pcvesely.fit.vutbr.cz

<letter> ::= any alphabetic characters
<digit> ::= any one of the ten digits 0 through 9
hostname domain N _

FQDN syntax

Fig. 15: Fully qualified domain name example and syntax

However, FQDN is not an equivalent to a Saltzer’s node name. DNS does not provide a binding
between node and PoA because current TCP/IP architecture of Internet lacks it. For instance, the device
retrieves multiple FQDN-to-IP mappings for a single query and chooses between them in a round-robin
fashion. Each returned A-record represents original PoA, but PoAs might be not only from the same but
also from different devices. Thus, the same FQDN cannot distinguish between the various devices as an
unambiguous node name. Hence, FQDN is nothing more than a (both direct and indirect) alias for IP

address from a different namespace (readable to humans).

%8 For more about hosts file, please see https://en.wikipedia.org/wiki/Hosts_(file).
% For details about DNS resource records, see RFC 1035 and related RFCs.
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3.4.3  Uniform Resource Identifier

Uniform Resource Locators (URL) and Names (URN) later replaced by Uniform Resource Identifiers
(URI) are just a next step of naming evolution started by DNS and inception of World Wide Web
(WWW) service. URI is a string that identifies the abstract or physical resource. URI allows uniform
(i.e., uniform semantic interpretation) identification (i.e., to distinguish between other objects within the
same scope) of resources via an extensible set of naming schemes. URIs also have a hierarchical
structure that consists of multiple components — mandatory scheme, optional authority, mandatory path,
optional query and optional fragments delimited by colon, slash, exclamation and hash characters. Fig.

16 depicts URI’s structure and also some examples.

Scheme authority path querry fragment

foo://example.com:8042/over/there?name=ferret#nose

ftp://ftp.is.co.za/rfc/rfcl808.txt
http://www.ietf.org/rfc/rfc2396.txt
ldap://[2001:db8::7]/c=GB?objectClass?one
mailto:John.Doe@example.com
news:comp.infosystems.www.servers.unix
tel:+1-816-555-1212

telnet://192.0.2.16:80/
urn:oasis:names:specification:docbook:dtd:xml:4.1.2

URI examples

Fig. 16: Uniform Resource ldentifier structure and examples

URI’s scheme part provides application type (e.g., telnet, FTP). However, another part is URI
authority that is either FQDN or IP address followed optionally by port number. Because of that, URI
cannot be treated as the application name but sort of the path to the application. Regarding that,
URI changes whenever application moves to other node. Hence, all previously mentioned problems of
IP addresses and DNS influence URI proper usage, so that URI itself does not satisfy Saltzer’s naming

requirements.
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3.5 Possible Solution

This subchapter succinctly sums up theoretical properties of any solution based on Subchapter 2.2
analysis and RFC 6227 [17]. Moreover, it describes and compares features of some existing candidates.

3.5.1 Ideal Solution Properties

Following section is based on IETF’s observation of current Internet problems and desired qualities.
Unfortunately, it does not necessarily complies with theory that we have outlined and investigated in
Subchapters 3.1, 3.2 and 3.3. However, following description provides at least some guideline how to
compare feasibility of candidates.

One of the major goals for any upcoming change of the Internet architecture is to make the

routing system scalable with respect to a number of prefixes, users and interconnections between

autonomous systems.
As stated above overloading of IP address semantics causes collisions and limited flexibility.

Hence, it is expected that a solution would decouple identifier namespace from location address space.

Nevertheless, there are two approaches how separation should be performed: a) by splitting hosts,
identifiers, and locators; b) by removing end-site prefixes from globally routable prefixes. The solution
should contain the fix and should be compatible with either case. Ideally identifiers should be allocated
at the birth of object, they never change, nor are they re-used (but take into account that one would need

infinitely long address to truly achieve this goal). Hence, identifiers must be location-independent.

Locators should point to device’s position in the network, and they should change whenever the graph

changes, thus locators must be location dependent.

The more scalable solution for multihoming is strongly desired to allow organizations

multihome without adding pressure to DFZ routing tables.

As for mobility more efficient approach is wanted that allows mobile entity topological changes

at a high rate. Hypothetically ideal solution should decouple mobility completely from routing.
TE is a necessity for a network operation of any organization. However, solution for inbound

traffic engineering should pose no burden to the scaling of the routing system.

Renumbering is an inconvenience for either small or large scale networks. Even with the
existence of working methodologies like RFC 4192 [52] how to renumber without a Flag Day it is still
difficult to make this process cheap and smooth for any organization. Therefore, it is required that

organizations could renumber their networks easily with as less disruption as possible.

Previous features refer to existing and above thoroughly described issues. Nevertheless, there
are two more properties, which any solution should incorporate. The routing system is secured through
additional protocol-specific mechanisms (i.e. mutual authentication of routing updates with the help of
HMACSs) that were introduced later during target routing protocol lifecycle. Hence, the solution must

provide the same level of routing security, or better it must be secure by design. Also, any solution must
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be deployable from technical and practical perspective — it must allow incremental deployment and

provide necessary backward compatibility with currently deployed services.

Any possible solution should somehow address all above-stated problems. RRG even prioritizes
them by a degree how mandatory the fix supposes to be a part of the new architecture. Ladder of
obligation is as follow: REQUIRED (which means that solution must support this goal) >
STRONGLY DESIRED (which means that solution should support this goal unless there is a good
reason not to do so) > DESIRED (which means that solution should support this goal). Tab. 7 provides

summarization of community consensus:

Abbreviation Design Goal

RS Routing Scalability STRONGLY DESIRED
DIL Decoupling Ide_:ntification DESIRED
and Localization

MH Multihoming STRONGLY DESIRED
Mob Mobility DESIRED

TE Traffic Engineering STRONGLY DESIRED
Ren Renumbering STRONGLY DESIRED
Sec Routing Security REQUIRED

Dep Deployability REQUIRED

Tab. 7: Design goal importance for a new routing architecture
3.5.2 Existing Proposals

RFC 6115 [53] clearly states that: a) RRG has rough consensus on separating identity and location of
devices but does not have consensus how to do it properly; b) RRG has consensus that multihoming and
traffic engineering issues need to be solved in a scalable manner.

Theoretically, there are three ways how to decouple identity and locality:

e Map-and-encap network-based architecture — It evolves from Robert Hinden’s ENCAPS
protocol [54]. When a source sends the packet towards destination outside of source network,
the packet must traverse through border router between two address spaces (locator space and
identifier space). Here at first border router performs mapping of an identifier to appropriate
locator (“map” phase). Then the packet is encapsulated using returned locator address (“encap”
phase). Hence, map-and-encap principle wraps a new header (called outer header) using locator
addresses around the original header (called inner header) with identifier addresses. When
encapsulated packet reaches the destination network, the border router strips off the outer header
and sends the original packet towards the receiver. Map-and-encap usually does not require
changes to hosts or to the core routing infrastructure (that is DFZ). Unfortunately, with
additional overlay encapsulation comes size overhead.

e Rewriting hybrid network-based architecture — Originally this principle comes from papers
written by Robert Smart and David Clark 8+8 [55] and later by Mike O’Dell GSE [51]. It utilizes
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IPV6 field so that upper part of IPv6 address is locator and the lower part stores an identifier. If
a source sends packet outside its domain, border router takes addresses containing only
identifiers and fills upper bits with appropriate locators. Then locators are removed from
addresses upon reception by destination border router. Rewriting schemes may differ whether
they perform either destination or both destination and source addresses rewrites;

Host-based architecture — Decisions in this architecture are purely in the hands of hosts. Thus,
hosts prepare and fill all relevant PCI fields (including locators and identifiers) as the packet is
being dispatched by the operating system. Interim devices like routers are usually transparent to
this approach.

According to [56], possible solutions could be categorized into two classes that are not

opposites. Over the years following terms were established to describe them:

Core-Edge Separation (CES) — A subset address space (edge) corresponding to end site
addresses is separated from the transit DFZ (core). This “edge” address space is then handled
differently for routing. Subsequently DFZ routing table increases its site only a new ISP transit
network instead of a new edge network. Some mapping system is needed to glue core and edge
address spaces. CES is depicted schematically in Fig. 17 where it shows communication

between PC-A and PC-B using (green) identifiers and (red) locators;

10.0.1.99 5 10.0.2.99

Edge
(endsite networks)

PC-B
10.0.2.99

DFZ routing table
147.229.1.0/24
147.229.2.0/24

~
Mapping database

10.0.1.99 > 147.229.1.0

10.0.2.99 > 147.229.2.0

100199 : 100299 Mapping System

147.229.1.1 5 147.229.2.1
Fig. 17: Core-Edge Separation solution

Core a.k.a. DFZ
(transit network of ISPs)

Core-Edge Elimination (CEE) — The goal of CEE is to eliminate all Pl and de-aggregated PA
prefixes from the core. Hosts then use either PA addresses provided by ISPs or usually
something different (not in IP address namespace) as an identifier. Some changes in host

network behavior are necessary to deploy CEE. Illustrated in Fig. 18.
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Fig. 18: Core-Edge Elimination solution
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Down below is the short list of solution candidates. It is outside the scope of this thesis to
describe them in depth. Hence, the astute reader is advised to follow bibliography links. Neither is this

dissertation able to cover all candidates.

Locator/ID Separation Protocol

LISP focuses on the separation of locators and identifiers into two distinct address spaces using mapping
and encapsulation on routers residing on the borders between those two spaces. Only locators are present
in DFZ, thus are a possible subject of topological aggregation. With the separation of identifiers comes
the ability to renumber cost effectively. LISP contains by design traffic engineering techniques so that
more-specific prefixes could be removed from the global routing table.

When using LISP, there is no need to change anything on hosts or DFZ routers. LISP has well-
defined deployment plan and interoperability with existing Internet architecture. LISP is beneficial to
adopter since the first day. Moreover, implementations already exist and are undergoing testing in
SOHO and also enterprise environments.

LISP utilizes robust mapping system based on a pull model, where queries are data driven.
However, it may introduce an additional delay or even packet losses when the identifier-to-locator
mapping is being discovered. Also, reachability and liveliness of locators are not yet sufficiently
resolved issues.

Chapter 4 covers LISP in more detail — operational principles, syntax, and semantics of control
messages and hypothesis how to improve its functionality as one of the main contributions of this

dissertation. LISP employs map-and-encap principle and it is CES solution.

Host Identifier Protocol

Host Identifier Protocol (HIP) is host-based approach how to perform locator/id split. Network layer
employs IP address as locator, transport and application layer uses the identifier in the form of the

cryptographic private-public key pair. Each host handles this kind of pair generation. Host Identity Tag
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(HITs) — 128 bit long hashed public part of identifier pair — is used for communication and stored in the
extension header. HIP makes use of DNS or distributed hash table (DHT) to obtain the identifier.

Among advantages of HIP is that it allows mobility and multihoming across different address
families. HIP offers end-to-end encryption via IPsec. Most notably, it moves away from binding
application to IP addresses.

When traversing NAT, HIP needs rendezvous server or sponge on Teredo. However, both of
those approaches introduce unnecessary triangle routing between parties. Critique of HIP points out that
HITs are without any inner structure, thus creating a flat namespace.

HIP is host-based CEE solution. More about HIP in RFC 4423 [57] and RFC 5201 [58].

Level 3 Multihoming Shim Protocol for 1Pv6
Level 3 Multihoming Shim Protocol for IPv6 (Shim6) splits locator/id in a manner that IPv6 PCI field
address contains locator and extension header contains Upper Layer ID (ULID). It is the host-based
solution with network layer approach working per host pairs rather than per transport layer session.
ULID is used by upper layer protocol (i.e. TCP or UDP). When current locators become unavailable,
Shim6 looks up for new locators and rewrites IPv6 addresses, thus providing session survivability.

DNS queries provide a possibly incomplete set of locators to hosts. It employs initial 4-way
handshake during which locator sets are also exchanged. Keepalive mechanism is used to track locator’s
reachability.

Shim6 allows host-multihoming not site-multihoming also traffic engineering is not a part of
Shim6 standard because TE does not concern hosts.

Shimé6 is host-based CEE solution. More about SHIMG6 in RFC 5533 [59].

Routing Architecture for the Next Generation Internet

Routing Architecture for the Next Generation Internet (RANGI) append one new layer between network
and transport layer just as HIP. Hence, flows and connection are bound to host identifier instead of IP
address that now serves as a locator. Unlike to HIP, RANGI host identifiers are hierarchical in organized
structure. RANGI appends identifiers as special IPv6 destination options header, and locators are
embedded as special IPv4 address into IPv6 PCI fields. RANGI utilizes: a) DNS for the translation of
FQDN onto host identifiers; b) hierarchical DHT for host identifier to locator mapping.

Routing scalability is accomplished by decoupling locators and identifiers. Mobility and
multihoming are supported because communication is now bound to an identifier, not a locator. Thus,
sessions are not interrupted due to locator change or failure in redundant scenarios. Hosts might suggest
TE while Locator Domain Border Router has the authoritative power to enforce TE. Deployment and

compatibility with current Internet architecture leverage ISATAP® tunneling principle.

80 Intra-Site Automatic Tunnel Addressing Protocol (ISATAP). For more, see RFC 5214,
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The most severe disadvantage of RANGI is that change to TCP/IP stack is necessary for devices.
Special proxy routers (called Site Proxy and Transit Proxy) are needed for communication with legacy
hosts. Also, cryptography is seen as an issue for devices that are incapable of or do not want to support
crypto algorithms.

RANGI employs host-based principle and is CEE solution. More about RANGI in [60] and
IETF’s Work in Progress papers [61] and [62].

Internet Vastly Improved Plumbing

Internet Vastly Improved Plumbing (abbreviated Ivip, pronounced [arvip]) is another locator/identifier
splitter. 1t works with map-and-encap principle same as LISP. However, Ivip uses global mapping
system instead of hierarchical LISP pull model. Mapping changes are propagated to full database query
servers, which could be run by ISPs and/or end-sites. These servers create distributed network of cross-
linked multicast trees. To reduce the load, new mappings could be cached by query servers with the
cache. The difference from LISP is that Ivip maps always only single locator to a given identifier and
mappings are updated in real-time. lvip employs direct IP-in-IP encapsulation unlike LISP’s interim
header between inner and outer IP.

One of doubtful consideration of Ivip is whether global mapping database could attain real-time
synchronization. Also, Ivip is missing clear deployment plan that can work without Flag Day and huge
investments in resources.

Ivip employs map-and-encap principle and is considered to be a CES solution. More about Ivip
on lvip website [63] and in papers [64], [65], [66], [67], [68] and [69].

Hierarchical IPv4 Framework

The Hierarchical IPv4 Framework (hIPv4) introduces an additional hierarchy of IPv4 address space by
dividing it into area locators (ALOCS) and endpoint locators (ELOCs). ALOCs are globally unique;
ELOCs are unambiguous only locally. ALOC and ELOC are inserted as PCI fields into new shim header
that resides between network and transport headers.

Instead of tunneling, hIPv4 employs swapping of addresses inside IPv4 header with ALOCs and
ELOCs in shim header (appended to IP as a new PCI option field). This swapping is performed by
dedicated routers called Locator Swap Router (LSR) which resides in ISP’s ALOC realm. LSR RIB
contains only ALOCs and local ELOCs. When ISP migrates its network to an ALOC realm, only ELOCs
are exchanged via routing updates with LSRs from other realms.

The hIPv4 utilizes DNS for distribution of ELOC to ALOC mappings. To support multihoming
and TE, hIPv4 must be combined with transport protocols such as MPTCP® and SCTP®. ALOC (so to
say PoA) is returned upon DNS request for a given ELOC — more than one ALOC might be retrieved.

81 Multipath TCP (MPTCP). For more, see http:/tools.ietf.org/wg/mptcp/
62 Stream Control Transmission Protocol (SCTP). For more, see RFC 4960.
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As with all locator/id splitters, it is easy to renumber sites when changing ISPs because only different
ALOC is mapped to the same ELOC.

The major disadvantage is that TCP/IP stack requires a change for devices communicating with
the non-h1Pv4 world. This means that benefits for hiPv4 adopters will be apparent only after the majority
of devices migrate. Besides that, also change is needed for some application protocols that convey IP
addresses in its SDUs. Another negative feature is that hiPv4 takes into account only IPv4 address space;
there is no support for IPv6 addressing.

The h1Pv4 employs rewrite principle, and it is neither CES nor CEE solution. More about hiPv4
in RFC 6306 [70].

Name Overlay Service for Scalable Internet Routing

Name Overlay Service for Scalable Internet Routing (NOL) adds to TCP/IP stack new functions that
manage configuration, registration and authentication of host names together with management of
transport channels using those names and mobility for data transport. NOL utilizes session layer between
transport and application layers. It uses rewrite principle, which introduces a new device called Name
Transfer Relay (NTR) that carries out translation between reserved PI addresses representing names and
globally routable PA addresses. This separation prevents Pl prefixes from entering DFZ, thus reducing
DFZ routing table size. Legacy devices accessing NOL-devices use special NOL proxy or to assign
some of the globally routable PA addresses to specific servers behind NOL.

There is no requirement to change TCP/IP stack and no need for a new mapping system. NOL
make use of DNS by storing name as a new kind of DNS record. The name is similar to email address
hostname@example.com. Entry in DNS exists for Rexample.com, which points to NTR’s PA
address. Pl address of the hostname is known only to NTR. Enforced utilization of Pl addresses avoids
the need for any renumbering. The mobility of transport sessions is achieved by checkpointing sequence
numbers, but it works only between NOL-enabled hosts. NTR deployment is unilateral just as NAT.

Despite the fact that TCP/IP stack is left intact, applications on host need to be re-implemented
to support NOL. Rapid updates to DNS’s name-to-NTR mapping are needed when considering
functional NOL multihoming scenario between different NTRs.

NOL employs rewrite principle and is neither CES nor CEE solution. More about NOL in [71].

Global Locator, Local Locator, and Identifier Split

Global Locator, Local Locator, and Identifier Split (GLI-Split) decouples identifiers and locators in a
undermentioned manner. It differentiates between global locators (GLs) used in DFZ and local locators
(LLs) used in edge networks. Besides that, GLI-Split also presents static identifiers (IDs) to identify
endpoints of communication. Locators and IDs are embedded into IPv6 addresses, thus allowing

backward compatibility with the IPv6 world. The higher 64 bits of GLI-formed IPv6 address contain
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locators; the lower 64 bits contains an identifier. It encodes two different namespaces (each one 64 bits
or less) onto single IPv6 address.

Separation of core and edge routing helps to aggregate prefixes. As any other locator/id splitter,
renumbering is not an issue for GLI-Split. Besides that, internal rearranging of local locators is not
visible globally. In comparison with LISP, Ivip or NOL, communication with legacy Internet is without
any proxies or stateful NATs. GLI-Split uses global (i.e. ID-to-GL) and local (i.e. ID-to-LL) mappings,
where global mappings leverage DNS.

The major criticism of GLI-split is that host TCP/IP stack change is required to interpret
appropriately GLI-Split address and possibly perform mapping lookups. However, no changes to the
application are needed in opposite to other CEEs. GLI-Split uses rewriting instead of map-and-encap.
Thus, no additional state is needed for devices, where rewriting occurs. Moreover, as with all proposals
depending on DNS, there is always an issue with the updating speed of DNS.

GLI-Split is CEE solution that employs rewriting. More about GLI-Split in [72] and [73].

Tunneled Inter-Domain Routing
Tunneled Inter-Domain Routing (TIDR) is locator/id splitter that is employing dedicated tunnels at the
borders of DFZ. It works as an improvement of BGP that defines new attributes used for a distribution
of identifier-to-locator mapping.

Identifier prefixes are stored in a new control plane structure called Tunnel Information Base
(TIB). When a packet to identifier prefix is being routed, first TIB is searched to perform tunneling
followed by RIB lookup regarding the routing. All interim routers route packet until it reaches tunnel
endpoint where it is decapsulated. TIDR improves BGP convergence time for the specific scenarios. It
supports TE and limited multihoming by design and as such it spares depletion of ASN namespace.

Despite the fact, it reduces RIB, TIDR only offloads information from RIB to TIB. Moreover,
it does not take into account FIB whatsoever. Hence, it does not help with the scaling problem to
accommodate the increasing number of organizational networks. Also, TIDR benefits will not be
apparent unless all DFZ routers migrate to TIDR.

TIDR is a CES solution. More about TIDR in IETF draft [74] and mailing list (namely [75] and

[76]).

Identifier-Locator Network Protocol

Identifier-Locator Network Protocol (ILNP) decouples identity and locality inside IPv6 PCI field. First
64 bits are used as locator name that might change; remaining 64 bits are used as a node name.
Applications bind only to identifiers, which remain constant during a lifetime of transport layer session.
Multiple locators might be used by a node simultaneously. ILNP insists on the establishment of new

DNS records to support node backward/forward resolution of locators/identifiers to FQDNSs.
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ILNP supports site and also node mobility and multihoming. No changes are needed to exist
DFZ routers, and it has well-stated incremental deployment plan. As with other solutions sponging on
DNS, ILNP hurdle is a silent expectation of near-zero time to live of some DNS records and their
maintenance.

ILNP is CEE solution using rewriting principle. Development of ILNP is pursued further by
IETF and its RRG. More about ILNP on project website [77], previous draft [78] and subsequent RFCs
6740-6748 [79], [80], [81], [82], [83], [84], [85], [86] and [87].

Evolution

Rather than a new architecture, Evolution is the best-practice proposal. Evolution employs the idea of
applying FIB Aggregation (FA) with increasing scopes to evolve more scalable routing system. Unlike
CES proposals, Evolution does not start with some predefined border between core and edge networks.
Aggregation scopes start from the single router, and then to single network, ending with aggregation of
neighbor networks.

Evolution is stepwise process consisting of following phases:

1) FAonasingle router where FIB is algorithmically compressed without changing RIB. Software
upgrade is needed for this;

2) Intentional configuration of provider edge routers, autonomous system boundary routers, and
BGP route reflectors as next-hop-self default gateways for a given AS;

3) Virtual Aggregation (VA) in a single network where some routers in AS are marked as
Aggregation Point Routers (APR). APRs maintain full FIB table, others may suppress some of
their FIB entries and deliberately route packets to APRs;

4) VA across neighbor networks that also applied VA so that in BGP updates path to egress router
is available directly;

5) Reduction of RIB size by outsourcing control plane to external controllers, which perform eBGP
peering (and provide necessary information) to forwarding DFZ routers;

6) Isolation of DFZ routers from routing churn for instance by handling certain prefix

inaccessibility locally.

Evolution proposal is comparing to others easiest for deployment with immediate impact for
adopters. Among concerns is that improperly accomplished Evolution may introduce routing loops or
reverse path forwarding (RPF) check® failures. On the contrary to other proposals, Evolution does

not address mobility.

83 Reverse Path Forwarding (RPF) check: When using RPF check, packet incoming interface is checked whether
it is the same one as outgoing interface towards a netowrk of sender by a routing table. If it is true, then packet is
forwarded, otherwise it is dropped. See http://www.cisco.com/web/about/security/intelligence/unicast-rpf.html

50


http://www.cisco.com/web/about/security/intelligence/unicast-rpf.html

Evolution is neither CES nor CEE solution. Development of Evolution is pursued further by
IETF and its RRG. More about Evolution in [88], [89] and [90].

Name-Based Sockets

Name-Base Sockets (NBS) are a new alternative for socket-based communication. Unlike nowadays
sockets (e.g. BSD sockets) that are bind to IP addresses, NBS are bind to domain names as their name
suggests. As consequence, applications start to communicate using domain names as endpoint selectors
where appropriate IP address re-/selection is left on TCP/IP stack itself.

NBS helps organizations to prefer PA address by making them more acceptable to use for
multihoming and less avoided for renumbering. Thus, NBS decrease reliance on PI addresses.

A necessary prerequisite for NBS is their adoption by host’s operating systems (OS) which is
also its major disadvantage due to the usual inflexibility of OS vendors. Existing applications should be
augmented, and new applications developed directly using updated socket AP1®* to profit from NBS.
However, there is an immediate benefit for NBS adopters. NBS deployment is incremental and does not
pose any threat to legacy applications.

NBS is CEE solution that does not use neither map-and-encap nor rewrite principle. More about
NBS in [91] and [92].

A Practical Transit-Mapping Service

A Practical Transit-Mapping Service (APT) is similar to LISP that it is CES solution using map-and-
encap principle with additional UDP header. Tunnel routers for LISP are customer’s edge devices, for
APT they are provider’s edge — the APT is more ISP-centric.

Instead of a globally available hierarchical mapping system, all APT-enabled AS has default
mappers (DM) that periodically synchronize. Mapping information is then retrieved using local pull to
default mapper. APT tries to handle packet loss by rerouting between DMs, which also maintains
reachability status of RLOCs.

New BGP attributes carry EID-to-RLOC mappings between peering DM. However, mapping
announcements must be cryptographically signed to be accepted by DM. This is to limit mapping
corruption or spoofing in APT, but it is also one of the major disadvantages.

The development of APT is no longer active. More about APT in [93].

Internet Routing Overlay Network with Routing and Addressing in Networks with

Global Enterprise Recursion

The Internet Routing Overlay Network with Routing and Addressing in Networks with Global
Enterprise Recursion (altogether IRON-RANGER) uses IRON routers that interconnect recursively-
nested RANGER networks. IRON-RANGER utilizes own tunneling and path MTU discovery

& Application programming interface (API). For more, see http://en.wikipedia.org/wiki/API.
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(operation of MTU discovery along the path is often abbreviated as PMTUD) management protocol
called Subnetwork Encapsulation and Adaptation Layer (SEAL) [94] for separating identity of the node
from its locality. IRON-RANGER is architecturally derived from ISATAP. From the IRON-RANGER
point of view, DFZ is understood as one non-broadcast multi-access (NBMA) network. IRON-
RANGER utilizes two approaches: a) proactive routing protocol distributes highly aggregated virtual
prefixes (VP); b) data-driven protocol distributes more specifics into IRON router’s FIBs.

A major criticism of IRON-RANGER is that protocol SEAL is rigidly using ICMP Packet Too
Big and ICMP Fragmentation Needed messages to enforce sizes typically below 1500 B, thus preventing
any jumbo grams. It does not provide true location independent identity. These together with mobility
as disadvantages are left to other disjunctive proposals that can cooperate with IRON-RANGER (e.g.
HIP, RANGI).

IRON-RANGER is CES solution with map-and-encap principle. More about IRON-RANGER
in RFC 5720 [95].

Tunneling Route Reduction Protocol

Tunneling Route Reduction Protocol (TRRP) interconnects tunnel routers (XTR) through GRE® tunnels.
Other BGP-peering routers point their default routes towards xTRs which perform DNS lookup to find
endpoint tunnel destinations.

TRRP does not need new DNS records, instead of that it redefines the meaning of TXT record
to carry information regarding the feasibility of router (to prefer or to avoid it) and applicable GRE mode
(direct, GRE over IPv4 or GRE over IPv6). Despite the fact that TRRP cleverly reuses existing
technologies, it has some disadvantages. TRRP does not take multicasting into account, and its proposal
provides no mentions about multihoming.

The development of TRRP is no longer active. TRRP employs map-and-encap principle and is
CES solution. More about TRRP in [96].

Six/One Router

Six/One is yet another CES solution utilizing rewriting principle on the border so-called Six/One
Routers. It separates edge as local addresses and core as remote addresses. Six/One takes advantage of
the special IPv6 extension header.

It helps with routing scaling, renumbering concern and multi-homing but does not address any
mobility issue. Besides that, Six/One does not have any interim device that can mediate communication
between Six/One and non-Six/One host. Also as another disadvantage, it supports only IPv6 address
family. Mapping system sponges on DNS where it assumes the definition of new resource records, but
no detail specification is provided.

The development of Six/One is no longer active. More about Six/One in [97].

8 Generic Routing Encapsulation protocol (GRE). For more, see RFC 2784.
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Recursive Internet Architecture

All previous proposals boldly consider themselves as another or even new Internet architecture. As it is
apparent from this chapter introduction, they are not, because they do not satisfy the definition of the
term architecture. They more or less just suggests some alternations how to treat addressing and naming
differently on the current Internet, thus being nothing else than a band-aid.

In opposite to this, RINA takes all the pieces, which are part of computer communication (as
mentioned in Subchapter 2.1, and reassembles them into a new fundamental model of real Internet
architecture. Instead of rigid TCP/IP or OSI-RM hierarchical stack of layers with disjunctive functions,
RINA postulates the existence of only one general layer with all mechanisms, principles and functions
that could be recursively stacked as needed. Besides that, RINA perceives the existence of only two
separate protocols that could be used for interprocess communication between RINA layers or
applications. The first protocol controls and manages layer, the second one is for data transfer.

RINA is explored and described more in Chapter 5.

3.5.3 Proposals Comparison

The following table Tab. 8 summarizes properties of each proposal above. Abbreviations used as

columns names mean:

e type — Whether proposal employs map-and-encap (“M”), rewrite (“R”), host-based principle
(“H”) or it is something inherently different (“diff”);

e CE — Whether proposal is Core-Edge Separation (“CES”), Core-Edge Elimination (“CEE”) or
generally different (“diff”) solutions;

e |Pv = Internet Protocol version — Which IP version does proposal supports (‘“v4/v6/v4v6”);

e RS = Routing Scalability — Whether proposal reduces DFZ routing tables sizes (‘“yes/no™);

e DIL = Decoupling of Identification and Localization — Whether proposal performs (“yes”)
locator/identifier split or not (“no”);

e MH = Multihoming — Whether proposal supports better multihoming or not (“yes/no”), or it is
supported conditionally together with utilization of multipath transport protocol (“cond”);

e Mob = Mobility — Whether proposal supports seamless mobility or not (“yes/no™), or it is
supported conditionally together with utilization of multipath transport protocol (“cond”);

e TE = Traffic Engineering — Whether proposal contains TE by design or not (“yes/no”), or it is
supported conditionally with utilization of multipath transport protocol (“cond”);

e Ren = Renumbering — Whether proposal supports easier renumbering (“yes/no”);

e Dep = Deployability — Whether proposal allows communication between upgraded and non-

upgraded devices (“yes/no”) or whether it is not applicable (“n/a”).
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type | CE IPv RS DIL MH Mob TE

LISP M CES | v4v6 | yes yes yes yes yes yes yes
HIP H CEE | v6 yes yes yes yes no yes no
SHIM6 H CEE | v6 no yes | yes no no no yes
RANGI H CEE | v6 yes yes yes yes yes yes yes
lvip M CES | v4v6 | yes yes yes yes yes yes yes
hlPv4 diff | diff v4 yes yes | cond | cond | cond | yes no
NOL R diff | v4v6 | yes yes yes yes yes no no
GLI-Split R CEE | v6 yes yes yes yes yes yes yes
TIDR M CES | v4v6 | no yes yes no yes yes yes
ILNP R CEE | v6 yes yes yes yes yes yes yes
Evolution diff | diff | v4v6 | yes no no no no no n/a
NBS diff | CEE | v4v6 | yes yes | cond | cond | cond | no no
APT M CES | v4v6 | yes yes yes yes yes yes yes
IRON-RANGER M CES | v4v6 | yes yes yes yes yes yes yes
TRRP M CES | v4v6 | yes no yes no yes no yes
Six/One R CES | v6 yes yes yes no no yes yes
RINA diff | diff | v4v6 | yes yes yes yes yes yes yes

Tab. 8: Properties comparison of existing proposals

Let us focus on comparing CES and CEE solutions because they are a majority of proposals.
CES are believed to be superior to CEE, and subsequent paragraphs provide some overview about pros
and cons of both.

Main CES features are summarized in the following list:

e L ocator/Identifier split is commonly performed as depicted in the Fig. 19;

e Edge networks are separated from DFZ routing tables or are at least highly aggregated. Routing
scalability is visible in direct proportion to how widely is CES solution adopted;

e CES benefits are available immediately to adopters — multihoming, inbound TE and if possible
also mobility;

e Deployment of CES does not affect DFZ routers, but new devices on the border between core
and edge are needed to interconnect this two address spaces together with mapping system;

e CES solutions do not require host stack, APl or application changes;

e Tunneling and overlaying impose additional size overhead on fragments, thus introducing MTU

concerns when employing CES.
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LISP, APT, Ivip, IRON-RANGER, TRRP:

Locator Identifier Name
~ ™~
IP address IP address FQDN
NG v
—~ ~— —~ —
outer header inner header
Six/One:
Locator Identifier Name
~ N
IP address IP address FQDN
N v
——

IPv6 extension header PCI field

Fig. 19: CES kinds

Main CEE features are summarized in the list below:

The most of CEE solutions separates locators and identifiers into two completely different
namespaces. Some representatives are depicted in Fig. 20;

CEE benefits are visible and widely available to adopters only after majority of network migrate;
Routing scalability is attained in a way that applications are no longer dependent on stable Pl
(or de-aggregated PA) addresses. Hence, PA addresses could be easily preferred and
administratively more available than P1 addresses.

CEE host stack must determine which locator should use. Besides that, potential set of locators
could be retrieved, thus implying resolving multihoming, inbound TE issues, and ideally
mobility issues;

DFZ routers are not affected, and no additional tunneling devices are needed, however, a new
infrastructure (or at least upgrade of current one, i.e. DNS) must be present to provide mapping
between identifiers and locators;

CEE solutions need host stack changes and applications augmentations;

The most of CEE solutions do not support IPv4 and have some troubles with NAT so

additionally clutches are needed.

55



HIP, Shim6, RANGI:

Locator Identifier Name
/_/\ _— A — "
IPv6 address HIT/ULID/HI FQDN
~—

IPv6 extension header PCI field

ILNP, GLI-Split:
Locator Identifier Name
A /_/\ A
~ —~ ~ —
64 bit long locator 64 bit long identifier FQDN
IPv6 address PCI field

Fig. 20: CEE kinds

It is assumed that CES are easier for voluntarily adoption rather than CEE. On the one hand, the
purpose of the routing system is to serve hosts. Hence, the goal is to make routing system more scalable
with the help of CES solution that targets network, not hosts. On the other hand, CEE solutions are
believed to lead to better final shape of the Internet, because of: a) routing should be as simple as possible
without unnecessary tunneling clutches; b) utilization of IP address as identifier is a fundamentally
wrong concept. One can say that CES is “network-centric” and CEE is “host-centric”. Unfortunately,
no hybrid solution between CES and CEE does exist.

Both of them need a scalable mapping system. Nevertheless, CES mapping system is arguably
more efficient because: a) CES lookups are needed only for initial communication towards a host inside
edge network in opposite to CEE lookups that must be performed by senders and receivers for any newly
established communications; b) CES mapping system is better designed for caching to alleviate
unnecessary resolutions; c) it is unlikely that organizations already using P1 addresses would downgrade

for PA addresses.
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3.6  Chapter Summary

This chapter offered theoretical background on naming, addressing, and routing issues. We took into
account analogies from other communication sectors to capture invariances and find similarities. We
postulated complete naming and addressing model based on a synthesis of important works in this field.
Employing previous, we showed contradictions just as in current TCP/IP stack, together with existing
band-aids (i.e., IPv6, DNS, and URI).

In the last Subchapter 3.5, we discussed possible solutions. Before anything else, we outlined
ideal solution properties and organized their goals according to the importance and beneficial effect. We
enumerated existing suitable candidates and briefly mention their specifics. Then we compared and
categorized all possible solutions.

Ideal solution should have following properties:

e provide complete naming architecture with one or more levels of addressing indirection, where
employed addresses are location dependent but route independent;
e inherently support use-cases like network multihoming, device’s mobility, and owner regulated

traffic engineering.

Drawing on overall results and findings, we decided to pursue LISP and RINA more closely to
see whether they comply with postulated naming and addressing model and at the same time fit to

achieve the most of the ideal solution goals.
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4 Locator/ID Separation Protocol

&% —“Perhaps it's impossible to wear an identity without becoming what you pretend to be.” O.S.Card
% What is LISP? What components, messages and function does LISP employ?
&% Where and how should be LISP used? What is technology readiness level of LISP?

& Can we improve LISP’s operation?

LISP is currently one of the most discussed Core-Edge Separation solutions that could bring alleviation
to “pain points” of nowadays Internet, such as mobility, multihoming, decoupling identity and locality.
LISP introduces map and encapsulation technique (map-and-encap) that enables it to be transparent to
end-devices and non-LISP network areas. The map and encapsulate principle benefiting from own
mapping system to distribute information about identifier-locator pairs. Separation of device
identification from its location information is the LISP receipt to the mentioned Internet issues. While
the identification of the device should remain constant which is important for addressing network
applications, the location information may change depending on the actual position of the node on the
Internet. The scalable mapping mechanism is necessary for LISP to work efficiently. The significant
research effort was spent on proposing various algorithms for mapping identifiers to locators. These
algorithms are discussed and evaluated in this chapter. The second component of LISP’s core principle
is encapsulation. The encapsulation takes place at domain borders when the packet needs to be sent
outside the local domain. In this case, the packet is encapsulated within a new packet, which header is
filled with target address obtained from mapping identifier of the target device to its actual locator
address. The advantage of the map-and-encap approach is that it does not require host changes or
changes to the core routing infrastructure.

LISP development started after IAB Workshop in 2006, and it supposes to be the response
dealing with major problems introduced in Subchapter 2.2. LISP should reduce DFZ routing table
growth, stop prefix deaggregation, allow easier multihoming and mobility without the BGP and split
locator and identifier namespaces. LISP should be deployed without any changes to hosts or DNS. It
must support both IPv4 and IPv6 seamlessly. Moreover, it is agnostic to any network protocol (it could
be used with future IPv7 or any new invention working on this layer). Transition mechanisms are part
of LISP protocol standard. Thus, it supports communication with the legacy non-LISP world.
Nevertheless, the enterprise is always skeptical and slow when adopting new technology. Hence, it is a
significant research challenge to investigate LISP features using modeling and simulation as the
referential testbed tools producing meaningful outcomes.

In this chapter, we would like to dive into the LISP and explore its capabilities and limitations.

The main goal of this chapter is: a) to provide an in-depth presentation of LISP; b) to illustrate known
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LISP issues; c) to propose improvements and implement them in the form of new simulation models for

OMNEeT++; and d) to evaluate the impact of suggested improvements.

4.1 Overview

Majority of this subchapter is based on RFC 6830-6834 [98], [99], [100], [101] that standardize LISP
protocol and its interfaces as experimental.

The initial idea behind Internet was to create a simple decentralized connectionless packet
switching network that could survive the unpredictable outage of its nodes. From straightforward
TCP/IP stack as it was enacted thirty years ago, we moved towards layered model with a variety of
“hacks” like MPLS®, GRE, IPsec, PPTP®, MPTCP that are adding desired functionality but diverting
from the original idea, where each layer is present only once, and its function is not repeated. Does this
seem like a “‘simple networking architecture”? IP address functionality is nowadays overloaded as it is
explained in Section 2.2.2; it serves both localization and identification purposes. The consequence of
this overloading is the inability to build scalable and long-term effective DFZ routing system.

The main idea behind LISP is to separate localization and identification. Following the example
of GSM network could serve as an analogy for this. Cellphone identifier is a telephone number, and cell
phone localizator is operator’s network, which connects the device. If somebody calls the number (“to
identify”) then operator’s network searches for particular base transceiver station (“to localize) with
which cell phone is associated right now in order to establish the call. Whenever owner travels with cell
phone abroad, cell phone changes also operator’s network (locator). However, callers are still using the
same number (identifier) to reach owner despite the fact that locality has changed.

LISP accomplishes similar behavior by splitting the IP address into two namespaces:

e Routing Locator (RLOC) namespace where addresses fulfill their localization purposes by
telling where is device connected to the network (red cloud on Fig. 21);
e Endpoint Identifier (EID) namespace where each device has a unique name that identifies it

from each other (green cloud on Fig. 21).

Also a non-LISP namespace exists (and probably always will exist), where direct LISP
communication is (even intentionally) not supported (blue cloud on Fig. 21). Apart from namespaces
also exist: a) specialized routers performing map-and-encap that interconnects different namespaces;
b) dedicated devices maintaining mapping system; and c) proxy routers allowing communication
between LISP and the non-LISP world.

8 Multiprotocol Label Switching (MPLS).For more, see RFC 3031.
57 Point-to-Point Tunneling Protocol (PPTP). For more, see RFC 2637.
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Fig. 22: LISP packet variants
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41.1  Tunneling

A LISP mapping system performs lookups to retrieve a set of RLOCs for a given EID. Tunnel routers
between namespaces utilize these EID-to-RLOC mappings to perform map-and-encapsulation. The
original (inner) header (with EIDs as addresses) is encapsulated by a new (outer) header (with RLOCs
as addresses), which is appended when crossing borders from EID to RLOC namespace. Whenever a
packet is crossing back from RLOC to EID namespace, the packet is decapsulated by stripping outer
header off.

LISP supports both IPv4 and IPv6. Moreover, LISP is agnostic to address family thus it can
seamlessly work with any future network protocol. Transition mechanisms are part of the protocol
standard. Hence, LISP supports communication with the legacy non-LISP world. LISP places between
inner and outer header additional PCI in the form of UDP header succeeded by LISP header. LISP uses
reserved port numbers — 4341 for data and 4342 for signalization. Currently, any combination of IP
headers is supported — IPv4 outer / IPv4 inner, IPv4 outer / IPv6 inner, IPv6 outer / IPv4 inner, IPv6
outer / IPv6 inner. However, the map-and-encap principle is so generic that LISP could inherently
support any network layer protocol. Fig. 22 depicts all variants of LISP packets.

Basic components are Ingress Tunnel Router (ITR) and Egress Tunnel Router (ETR). Both
are border devices between EID and RLOC space; the only difference is in which direction they operate.
The single device could be either ITR-only or ETR-only or ITR and ETR at the same time (thus
abbreviation XTR).

ITR is the exit point from EID space (a.k.a. LISP site) to RLOC space, which encapsulates the
original packet. This process may consist of querying mapping system followed by updating local map-
cache of recently used mappings. Map-cache improves the performance of the system (i.e., EID-to-
RLOC mapping pairs are stored for a limited time to reduce signalization overhead).

ETR is the exit from RLOC space to EID space that decapsulates original header. Outer header,
auxiliary UDP, and LISP headers are stripped off. ETR is also announcing all LISP sites (their EID
addresses) and by which RLOCs they are accessible.

If we inspect structure of LISP packet somewhere in RLOC space then:

e Inner header source IP = sender’s EID address;
e Inner header destination IP = receiver’s EID address;
e Outer header source IP =ITR’s RLOC address;
e Quter header destination [P = ETR’s RLOC address.

4.1.2 Mapping System

Before moving to LISP mapping system concretely, let us discuss how those things are handled

theoretically. Any Internet mapping system is nothing else than the huge distributed database. Simple
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mapping information is represented in a single database record. We have ended up with two
diametrically different approaches how to operate these kinds of databases:

e Push model — Any node in the network has the information, or the information is actively
propagated through the network to the node. With this approach, “everyone knows everything”.
Clear disadvantages are signalization overhead (the number of messages) and resource
consumption (CPU and memory requirements) to maintain shared state. The larger the database
is, the more computation power is needed. Among existing push model examples are routing
protocols maintaining RIB between routers;

e Pull model — Information is available to any node, but only upon solicitated request. With this
approach, “everyone knows just what is needed”. Disadvantages are the level of indirection
where the answer to the querier might be altered, outdated or untrusted. DNS is an example of
the pull model. DNS divides the whole namespace hierarchically to the tree structure in order
to avoid single node against knowing all mappings. Then DNS resolver only needs to know

whom to ask to retrieve the authoritative answer.

Both approaches have some advantages. However, disadvantages of push model prevent it to be
a scalable and dynamic solution beyond a certain point of system size. To illustrate it, IGP protocols are
used at the scale of single AS to guarantee the speed of routing convergence. DNS is common protocol
handling even more information than just resolving FQDN to IPv4 and/or IPv6 addresses. LISP
specifications based on both models exist — LISP-ALT, LISP-DDT, LISP-DHT (previous three will be
explained later in text), LISP-EMACS (see [102]) as pull models, LISP-NERD as push model (see RFC
6837 [103]) and LISP-CONS (see draft [104]) as hybrid push/pull model. However, only the ones based
on pull model are implemented and operational.

LISP mapping system is primarily employing two components — Map Resolver (MR) and
Map Server (MS). Looking for EID-to-RLOC mapping is an analogous process as DNS name
resolution (see Fig. 23). In the case of DNS, the host asks its DNS resolver (configured within OS)
which IP address belongs to a given FQDN. DNS server responds with a cached answer or delegates the
question recursively or iteratively to another DNS server according to the name hierarchy. In the case
of LISP, querier is ITR that needs to find out which RLOCs could be used to reach a given EID. ITR
has preconfigured MR, which is bothered each time mapping is needed.

Queries performing EID-to-RLOC mapping are data-driven. This behavior means that a new
data transfer between LISP sites may require a mapping lookup, which causes that data dispatch is
stopped until a mapping is retrieved. This behavior allows LISP to operate a decentralized database of
EID-to-RLOC mappings. Replication of whole (potentially large-scale) database is unnecessary because
mappings are accessed on-demand, just like as in DNS a host does not need to know complete domain
database. Tunnel routers maintain map-cache of recently used mappings to improve the performance of

the system.
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Fig. 23: Comparison between DNS and LISP mapping system

Following list contains all LISP mapping signalization messages with their brief description.
They are without inner header — just the outer header, followed by UDP header (with source and
destination ports set on 4342), and followed by appropriate LISP message header. Structural details of

each message can be seen in Addendum 8.1.

e LISP Map-Register — Each ETR announces as authority one or more LISP site(s) to the MS with
this message. Each registration contains authentication data and the list of mappings and their
properties;

e LISP Map-Notify — UDP cannot guarantee message delivery. MS may optionally (when the
particular bit is set) confirm reception of LISP Map-Register with this message;

e LISP Map-Request — ITR generates this request whenever it needs to discover current EID-to-
RLOC mapping and sends it preconfigured MR;

e LISP Map-Reply — This is solicited a response from the mapping system to a previous request
and contains all RLOCs to a certain EID together with their attributes. Each ITR has its map-
cache where reply information is stored for a limited time and used locally to reduce
signalization overhead of mapping system. Moreover, mapping system generates LISP Negative
Map-Reply as a response whenever given identifier is not the EID, and thus proxy routing for

external LISP communication must occur.

MR processes ITR’s LISP Map-Requests. Either MR responds with LISP Negative Map-Reply
if queried address is from a non-LISP world (not EID), or LISP Map-Requests is delegated further into
a mapping system to appropriate MS.

Every MS maintains mapping database of LISP sites that are advertised by LISP Map-Register
messages. If MS receives LISP Map-Request then: either a) MS responds directly to querying ITR (it is
allowed to do that because MS has all the necessary information in its mapping database); or b) MS
forwards request towards designated ETR that is successfully registered to MS for target EID.

Each RLOC is accompanied by two attributes — priority and weight. Priority (one-byte long

value in the range from 0 to 255) expresses each RLOC preference. The locator with the lowest priority
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is preferred and is going to be used as the outer header address. Priority value 255 means that the locator
must not be used for traffic forwarding. Incoming communication may be load-balanced based on the
weight value (in the range from 0 to 100) between multiple RLOCs sharing the same priority. Zero
weight means that RLOC usage for load-balancing depends on ITR preferences.

XTRs perform RLOC probing (checking of non-local locator liveness) to always use current
information. RLOC probing is done with the help of special variant LISP Map-Request and LISP Map-
Reply messages (with the appropriate bit set on). Let us called them LISP Map-Request Probe and LISP
Map-Reply Probe.

ETR registers itself only to a limited number of MSs. It is technically impossible for all ETRs
to be registered to the same MS. Hence, there must be a way how to distribute mapping database and
interconnect different MS between each other in order to guarantee the availability of mapping
information to all MRs. Following three approaches are the most common:

e Alternative Topology (LISP-ALT) — MS are connected via dedicated GRE tunnels across the
non-LISP world. LISP routing information are carried as external routes redistributed into BGP.
LISP-ALT aggregates EID prefixes and enforces allocation policy. LISP-ALT is not a scalable
solution when the number of MSs starts to increase. However, LISP-ALT copes easily with
situations when EID identifier blocks are not assigned hierarchically. Fig. 24 depicts three LISP
sites exchanging routing information via three dedicated GRE tunnels across the non-LISP
core). For more, see RFC 6836 [105].

ISP3
: 30008 659
ISP1 xTR \,-_:,/@
1.0.0.0/8
o Y
xTR a ®
Site B

~$¢200.0.0.0/8

ISP4
4.0.0.0/8

xTR

6.0.0.0/8

Site C
150.0.0.0/8

Fig. 24: LISP-ALT infrastructure example
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Delegated Distributed Tree (LISP-DDT) — LISP-DDT is hierarchical distributed database,
where each EID block is delegated to some authoritative organization. The concept is similar to
DNS with its hierarchy of local, TLD and root nameservers. Analogously, mapping request
traverses from MR via tree towards the leaf, which is either designated MR, or ETR (see violet
dashed arrow in Fig. 25). Iterative query delegation between LISP-DDT nodes is accomplished
by special LISP Map-Referral message. For more, see IETF draft in progress [106].

Fig. 25: LISP-DDT infrastructure example

Distributed Hash Tables (LISP-DHT) - LISP-DHT leverages DHT technology, namely Chord
protocol and algorithm [107]. LISP mapping system forms ring-shaped overlay network (see
Fig. 26), where ChordIDs are highest numerical EIDs instead of being randomly chosen. Nodes
are divided into two groups: a) MSs as service nodes that are full-fledged DHT nodes; b) XTRs
as stealth nodes that can inject messages into DHT but neither do the route nor provide key
management. LISP-DHT allows a mapping request to be automatically forwarded to the owner

without any previous specific advertisements. For more, see paper [108].
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Fig. 26: LISP-DHT infrastructure example

4.1.3 Coexistence between LISP and Non-LISP

Flag Day is not an option in case of migration to LISP just as in the case of IPv6. Moreover, there will
always be networks that do not intend to deploy LISP or where LISP deployment is not beneficiary or
possible. Special devices are needed to interconnect LISP and a non-LISP world where IP address
locality and identity are not decoupled. Communication between those two worlds differs according to
the direction, how IP addresses are interpreted during routing procedure and what issues are connected
with it:

e non-LISP = LISP — Hosts and routers do not know anything about loc/id split. Hence, EIDs are
considered as ordinary addresses and natively routed to “EID network entry point™;

e LISP = non-LISP — ITR must recognize that the destination address is not EID. Hence, there
are no RLOCs associated with it. The packet is then delivered to “LISP world exit point”.

Two approaches are proposed for LISP/non-LISP coexistence purposes: a) address translation;

b) proxies providing ITR and ETR roles (both briefly documented bellow and in [99]).
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No matter whether a) or b) is used, the both of them supports Day 1 benefits so that the number
of adopters does not determine overall functionality and quality of LISP deployment. Therefore, site
profits from LISP (i.e. easier mobility or multihoming) immediately after migration. Full control over
inbound TE is the most noticeable adoption gain because of priority and weight attributes that are
mandatory to follow by any LISP implementation. Compare LISP load-balancing (according to
priority/weight — integral parts of LISP protocol design) and BGP policies that should accomplish the
same goal. Unfortunately, BPG policies cannot be enforced and are prone to reconfiguration when

traversing ASes.

LISP Network Address Translation
LIST Network Address Translation (LISP-NAT) employs the same principle as classical NAT,

which means that XTR translates from EID to global routing prefix and back. A typical use-case is for
LISP = non-LISP communication or for LISP sites using same EIDs (e.g. RFC 1918 private addresses
as EIDs). This approach is not widely deployed. However, it is easier to integrate it to the control plane

of active network devices.

Proxy Ingress and Egress Tunnel Routers
This migration idea is built over proxies that provide ITR and ETR functionality to non-LISP hosts and
routers. Two new devices are introduced to LISP architecture — Proxy Ingress Tunnel Router (PITR)
and Proxy Egress Tunnel Router (PETR).

PITR provides non-LISP = LISP communication, and its goal is to help non-LISP users reach
LISP sites. PITR announces highly aggregated EID prefix via routing protocols to the non-LISP world
in order to lure and route traffic destined for LISP sites. LISP outer header is wrapped around original
data upon sending it via one of the PITR’s RLOC interfaces.

PETR provides LISP = non-LISP communication anytime mapping system returns
LISP Negative Map-Reply as the answer. In this case, the data receiver is non-LISP, and PETR primary
serves as a gateway to the non-LISP world. Secondary PETR’s objective is to provide communication
between LISP sites using different RLOCs address families (e.g. one site is IPv4 and another IPv6).

As in the case of ITR and ETR, the PITR and PETR roles may be delivered dually by a single
device called PXTR. If communication between hosts goes via two non-dual PITR and PETR then
unicast RPF principle might be broken. Therefore, ETR is ignoring unicast RPF checks to prevent any

traffic lost.
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4.2 LISP Demonstrations

Following demonstrations should help the reader to get more familiar with LISP data traffic and various
signalization processes. Each one begins with network graph description, step-by-step walkthrough of
each relevant phase accompanied by a picture. Numbers in pictures (the black digit in a yellow hexagon)
and walkthroughs (numbered list item) correspond.

4.2.1 Unicast Communication

Fig. 27 depicts two LISP sites (Site A using EID prefix 100.0.0.0/24 and Site B with prefix 200.0.0.0/24)
that are interconnected via RLOC space composed of five ISP networks. PC-A with address 100.0.0.99
wants to unicast some data to PC-B with address 200.0.0.99. EIDs are transparent from the perspective
of hosts; they do not concern about LISP routing.

#1) Typically DNS query may proceed any IP communication. In the case of LISP, DNS resolver
returns EID as IP address associated with PC-B’s. DNS A record holds IPv4 EID; DNS AAAA
record holds IPv6 EID (e.g. pc.siteb.com A 200.0.0.99);

#2) The packet traverses Site A until it reaches xXTR-A2 employing usual IGP routing. XTR-A2 acts
as ITR and prepares appropriate outer header. RLOC is looked up in map-cache based on
destination EID 200.0.0.99. Each locator in map-cache has two attributes — priority and weight
—where both serve for load-balancing purposes. In case of above demonstration, RLOC 4.0.0.1
is chosen because of the lowest priority;

#3) Packet traverses RLOC space with 2.0.0.1 as the source address and 4.0.0.1 as the destination
address in the outer header (employing locators). The inner header contains 100.0.0.99 as the
source address and 200.0.0.99 as the destination address (employing identifiers). Encapsulation
of headers is just as same as depicted in Fig. 22, outer header uses protocol humber 17, UDP
destination port is set on 4341 (reserved value for LISP data);

#4) The packet is routed via ISPs until it reaches XTR-B2’s interface with address 4.0.0.1. This router
performs decapsulation (stripping off outer plus auxiliary UDP and LISP headers) and forwards
packet to Site B based on destination EID address;

#5) The packet is delivered to PC-B having the same structure (single IP header, EIDs as addresses)
as it was in #1. LISP functionality is transparent for end-systems, which means there is no need

to install or update network stacks or perform additional configurations within OS.
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Fig. 27: lllustrative LISP unicast data transfer

4.2.2 Registration

Three routers (ETR-B1, ETR-B2, and ETR-B3) connect Site B with RLOC namespace where each one
uses different ISP and locator (3.0.0.1, 4.0.0.1 and 5.0.0.1). Available MS are connected via dedicated
tunnels employing LISP-ALT. Registration example for MRMS-B’s mapping database is shown in Fig.
28.

#1) ETR periodically generates (by default every 60 seconds) LISP Map-Registration message to
its preconfigured MS. This message contains EID-prefix and all belonging locators with status
vector expressing locators current availability (1 means up, 0 means down);

#2) LISP Map-Registration is delivered to MS where it is processed. Every message implicitly
contains an SHA-1 hash of the pre-shared password to protect control plane and provide
authentication. Information from message updates existing or creates a new record in mapping
database;

#3) If LISP-ALT is deployed then routing information (existence of successfully registered LISP
site) are propagated between MRMS-A and MRMS-B as redistributed BGP routing updates
through GRE tunnel across the non-LISP network. In this scenario, MRMS-B announces EID
prefix 200.0.0.0/24 to lure traffic intended for Site B.
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Fig. 28: lllustrative LISP registration process

4.2.3 Mapping Request

Let us revisit scenario of unicast data transfer where a computer with EID 100.0.0.99 wants to

communicate with EID 200.0.0.99. The difference is that now ITR-A2 does not have mapped in its

mapping cache. Therefore, ITR-A2 initializes mapping query to obtain a current set of locators which is
illustrated in Fig. 29.

#1) Data traffic drives the generation of ITR-Al's LISP Map-Request message. ITR-ALl (outer

header source address 2.0.0.1) sends a request to its preconfigured MR (inner header destination
address 2.0.0.255), where the inner header contains EID addresses of ITR-A2 (100.0.0.99) and

recipient’s computer (200.0.0.99). The message body is more complicated than what is depicted

in Fig. 29, LISP Map-Request contains among others:

Nonce that must be repeated in mapping replies, and that serves as a control plane

protection against unsolicited response
Original sender’s address (i.e., 100.0.0.99);

Input EID list that allows to ask for more than one identifier in a single query

(i.e., 200.0.0.99/32);

RLOC caching data for ETR that answers the request to speed optionally up process

(i.e., to EID prefix 100.0.0.0/24 are available locators 1.0.0.1 and 2.0.0.1);

#2) MRMS-A accepts mapping request. Subsequently it strips off the outer header and is concerned

only with the routing decision based on inner header destination address 200.0.0.99. According
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to the routing table, the packet is forwarded through the LISP-ALT tunnel to MRMS-B from
source address 192.0.2.1 to destination 192.0.2.2.

#3) MRMS-B receives LISP Map-Request and following next MRMS-B lookups its mapping
database for ETR that registered requested input EID list item. LISP Map-Request is then
delegated to one of the registrars, in demonstration scenario to ETR-B1.

ISP3

3.0.0.0/8 3.0.0.1 ‘@. 00.0.0.

N
ETRB1 £ sl s@
200.0.0.2
Y
. 00.0.0.99

! N

Site B

200.0.0.0/24
2.00.1 >20.0.2% 5.0.0.255 - 3.0.0.1

UDP ports 4342 UDP ports 4342
100.0.0.2 > 200.0.0.99 100.0.0.2 -> 200.0.0.99

UDP ports 4342 192.0.2.1 - 192.0.2.2 UDP ports 4342

Map-Request GRE Map-Request

nonce
ITR administering EID 100.0.0.0/24 100.0.0.2 = 200.0.0.99
ith RLOCs 1.0.0.1 and 2.0.0.1 ask
N OrRLOCS OFEID 2000099 UDP ports 4342
Map-Request
Fig. 29: Hllustrative LISP mapping request
4.2.4  Mapping Reply

Two different devices might answer upon receiving mapping request during previously started

demonstration scenario.

#1) LISP Map-Reply response message has two ways how it could be generated:

#a) Either MRMS-B previously delegated LISP Map-Request to the one ETR registraries
that answers (it is ETR-B1 sending it from 3.0.0.1 to 2.0.0.1 in above Fig. 30 labeled as
1a);

#b) Or registering ETR allows MS to respond to mapping requests instead of ETR with the
help of LISP proxy-reply option during the registration process. MS responding on

behalf of ETR is possible because MS has the same information as ETR in its mapping
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database. This option shortens respond delay and overall signalization overhead of
protocol that might be appealing for mobile ETRs. In the previous case, it is labeled
with option 1b where MRMS-B responds with source address 5.0.0.255 towards
destination 2.0.0.1.

#2) Sooner or later some response is delivered to ITR-A2 that initiated mapping query. Upon
received, ITR stores current EID-to-RLOC mapping (EID 200.0.0.0/24 could be reached via
three RLOCs 3.0.0.1, 4.0.0.1 and 5.0.0.1) into its mapping cache. Finally, unicast
communication between PCs 100.0.0.99 and 200.0.0.99 can occur with 4.0.0.1 chosen as locator
based on its priority. Data traffic between PCs is discarded (not cached) until mapping query is
finished just like as ARP throttling [109]. The previous sentence means that first few packets
might be lost during any brand new communication that needs RLOCs that are yet unknown
according to the swiftness of mapping response.

ISP3
3.0.0.0/8

00.0.0.99
\

o Site B
Q7 200.0.0.0/24
K

5001 grRaps )

500355 | 12)3.0.0.1 - 2.00.1
10) 5.0.0.255 > 2.0.0.1

UDP ports 4342
Map-Reply

nonce
EID prefix 200.0.0.0/24 has RLOCs
local, 3.0.0.1, priority 254, weight 50
4.0.0.1, priority 1, weight 100
5.0.0.1, priority 254, weight 50

Fig. 30: Hlustrative LISP mapping reply

425 Proxy Communication

Let us focus on bi-directional data transfers between LISP and the non-LISP world. The host with

address 9.0.0.99 from the non-LISP world begins communication with PC in Site B with address

200.0.0.99. Incoming gateway to LISP world is PITR router that advertises coarsely aggregated prefix
200.0.0.0/8 (depicted with dark green nearby PITR on Fig. 31) into which also fits Site B EID prefix
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200.0.0.0/24. Outgoing gateway from LISP world is PETR device (called PETR on Fig. 31) which Site
B ITRs are using as an intermediate router to pass traffic to the non-LISP world.

#1) PC with address 9.0.0.99 from non-LISP sends data packet to PC with address 200.0.0.99 in
Site B. Packet is routed through non-LISP world towards PITR because it advertises EID
prefixes from LISP world;

#2) PITR wraps the original packet with outer IP header, followed by UDP with destination port
4341 accompanied by LISP header. Outer header has 3.0.0.254 as source and 4.0.0.1 as
destination address because it is a locator for destination identifier;

#3) The packet traverses RLOC namespace until it reaches ETR’s locator interface 4.0.0.1. XTR-B2
removes additional headers and packet are forwarded to Site B and to end receiver with address
200.0.0.99;

#4) Communication is usually bidirectional, hence 200.0.0.99 replies to 9.0.0.99. Classical routing
delivers answer to ITR xTR-B2;

#5) ITR performs mapping query to lookup 9.0.0.99. However, mapping system returns LISP
Negative Map-Reply, which means that destination is not a part of LISP world, and it should be
routed via Proxy ETR. Auxiliary headers are added and then the packet is sent towards
preconfigured PETR with address 1.0.0.254.

#6) PETR decapsulates additional headers and forwards packet towards recipient 9.0.0.99 in the
non-LISP world.

(1) 900992000099 |

{6 )[[ 2000099 > 90099 | 3.0.0254 > 3.00.1
- X~ (2)[UDP st port4341 + Liop

, . hon-LISP

- ol 5 9.0.0.99 9.0.0.99 - 200.0.0.99
4.0.0.1 > 1.0.0.254 S
@ UDP dst. port 4341 + LISP ~ Y 1000 - @| 20099 2000099
200.0.0.99 = 9.0.0.99 )

isp3 - )3L01

3.0.0,0'8

@l 200.0.0.99 - 9.0.0.99

Fig. 31: lllustrative communication between LISP and non-LISP world using PITR and PETR
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4.3  State-of-the-Art

This subchapter discusses available LISP implementations for both real and simulated environment.
Moreover, it outlines LISP test-bed network and adoption level by the enterprise.

4.3.1 Implementations

Despite the fact that Cisco employees did major LISP protocol design, Cisco does not claim any legal
rights. LISP is being further developed within IETF open standardization process and its working group

[110]. Hence, more than one referential implementation is available for customers and developers.

OpenLISP
OpenLISP [111] is the first open-source implementation of Unix-based systems, namely for FreeBSD 7
and FreeBSD 8. Unfortunately, it is not being developed anymore. Thus, the latest LISP control plane

version is from April 2012, and it does not contain any additional functional improvements.

Cisco 10S/10S-XR/NX-0OS

Operating systems in Cisco devices contains the most up-to-date LISP implementation [112]. LISP is

available in relevant releases of:

e [0S since version 15.1 for Catalyst 6000, Cisco 810, Cisco 880, Cisco 890, Cisco 1941, Cisco
2900, Cisco 3900 and Cisco 7200 platforms;

e |OS-XE since version 3.3 for ASR 1000 platform;

e |OS-XR since version 4.3 for ASR 9000 platform;

e NX-OS since version 5.2 for Nexus 7000 platform.

LISPmob

LISPmob [113] is an open-source project which offers LISP control plane and also LISP mobile node
[114] implementation, which allows devices like smartphones or tablets to benefit from LISP seamless
mobility. The project is multiplatform and currently supports all Linux-based systems including Android
or OpenWRT.

AVM Fritz!OS
AVM Fritz!OS [115] contains LISP implementation intended for Fritz!Box 7390 platform that offers
XTR and MS functionality.
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4.3.2 Deployment

LISP BetaNetwork [116] is one of the first project focusing on widespread deployment. Currently,
600+ organizations (among others e.g. Google, Facebook, Cisco, Qualcomm, AT&T, Lufthansa and
Microsoft) from more than 34+ countries have joined it voluntarily during its five years existence.

Any organization may request to participate. After the quick review process, IPv4 pool of
address from prefix 153.16.0.0/16 and an IPv6 pool of address from prefix 2610:d0::/32 are assigned to
the organization. Both prefixes belong to ASN 3943 [117] so that PITR and PETR routers have own AS
from the perspective of the non-LISP world. Other information like assigned MSs, MRs and PXTRs are
provided by the registrar as shown for FIT-BUT in Fig. 32.

fit-xtr:

Device Type - {IOS/FreeBSD}

Geographic - Czech Republic

DNS Name - fit-xtr

EID-Prefix Set - {153.16.48.112/28, 2610:D0:214D::/48}

RLOC Set - {tbd}

Map-Servers - {RIPE}{13-london-mr-ms 195.50.116.18 intouch-ams-mr-ms-1 217.8.98.42}
- {RIPE}{tdc-mr-ms 193.162.145.50 intouch-ams-mr-ms-2 217.8.98.46}

Map-Resolvers - {RIPE}{13-london-mr-ms 195.50.116.18 intouch-ams-mr-ms-1 217.8.98.42}
- {RIPE}{tdc-mr-ms 193.162.145.50 intouch-ams-mr-ms-2 217.8.98.46}

PXTR (RIPE) - {intouch-pxtr-1}{217.8.98.33, 2001:67C:21B4:107::b}

Fig. 32: FIT-BUT’s LISP BetaNetwork registration

Global connectivity to LISP BetaNetwork could be verified by: a) LISP Internet Groper (LIG)
(see RFC 6835 [118]), which is versatile usually command line tool for generating mapping requests
capable of retrieving locators to a given identifier; b) tools like LISPmon [119], which can verify

successfulness of ETR site registration.
4.3.3  Simulators

The research community has limited options how to observe and expand LISP features in a safe
environment of simulator where different scenarios could be easily scheduled and verified later.

One of a few attempts is CoreSim developed by Coras et al. [120]. It is written in Perl, and it
allows predict ITR and MS behavior at a macro-scale level using traffic traces, BGP data, and latency
estimations. However, CoreSim estimations use rather a general mathematical model taking into account
only the distance [121]. Currently, limited LISP implementation exists authored by Hoefling et al. [122]
to support LISP MobileNode NAT traversal [123]. However, it is intended for outdated INET-20100323
and OMNeT++ 4.0. Previously, LISP map-cache performance have been evaluated employing high-
level simulation that is not taking into account protocol implementation specifics [124].

Among other goals of this thesis is to provide the community with a variety of simulation models

supporting up-to-date version of LISP protocol.
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4.4  Contribution

LISP architectural implications are discussed in IETF draft [125] followed by companion paper [126].
Previous papers outline and discuss two major issues for LISP threatening its scalability — Site-Based
State Synchronization Problem and Locator Path Liveness Problem.

Site-Based Synchronization Problem occurs whenever EID-to-RLOC mappings (including
locator statuses) may need to be shared among nodes. Remember that LISP mapping queries are data-
driven. There is no need to rediscover mapping for the same data traffic by one XTR if this mapping is
already known to other site’s xTRs. Sharing of mapping improves routing of packets in case of
asymmetrical traffic flows. Imagine that traffic is leaving the site via two XTRs — one is actively
dispatching all traffic, another is backing up its functionality. Map-cache on active xTR is populated
with records whereabouts map-cache on backup has no mapping state. Whenever traffic shifts from
active path to backup path, former backup XTR experiences map-cache misses

Locator Path Liveness Problem is formulated by a question whether given set of source
locators and a set of destination locators, can bi-directional connectivity be determined between the
(srcRLOC, dstRLOC) address pairs? Locator Path Liveness Problem is present not only in LISP but its
variants also apply to other candidates like HIP, SHIM6 or IRON-RANGER. In the case of LISP, if ITR
chooses destination RLOC, which is not reachable, then traffic is discarded somewhere along the path
towards destination LISP site.

This subchapter introduces two proposed improvements targeting some of the issues from
previously mentioned papers that increase LISP performance — map-cache synchronization and merged
RLOC probing. In order to evaluate contribution, we developed brand new OMNeT++ simulation
modules for LISP and also for Virtual Router Redundancy Protocol that is being deployed

simultaneously on ITR.

4.4.1 Virtual Router Redundancy Protocol

This section briefly outlines Virtual Router Redundancy Protocol because it is closely connected with
Site-Based Synchronization Problem scenarios. LISP is being successfully deployed in enterprise
networks, and one of its most beneficial use-cases is for data-centers networking. An important feature
of any data center is its ability to maintain high-availability of provided services. This feature is
accomplished mainly with redundancy. In the case of an outage, service delivery is not affected because
of redundant links, devices or power sources. Virtual Router Redundancy Protocol (VRRP) is among
related protocols and technologies guaranteeing redundancy and helping to achieve high-availability.

VRRP is widely adopted protocol providing redundancy of default-gateway®,

8 Default gateway: A crucial L3 device that serves as exit/entry point to a given network. For more, see
http://en.wikipedia.org/wiki/Default_gateway
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VRRP combines redundant first hop routers into virtual groups. One master router actively
forwards client's traffic within each group, where others in the group are backing its functionality.
Backup routers are periodically checking the liveness of the master waiting ready to substitute it in the
case of failure. Switching to a new active router is transparent from the host’s perspective thus no
additional configuration or special software is needed.

VRRP specification is publicly available as RFC standard — RFC 3768 [127] describes IPv4-
only VRRPV2 and RFC 5798 [128] describes dual IPv4+IPv6 VRRPv3. VRRPV2 routers send control
messages to multicast address 224.0.0.18. VRRPv3 routers use ff02::12 for IPv6 communication. VRRP
has its own reserved IP protocol number 112.

Clustered redundant routers form a VRRP group identified by Virtual Router ID (VRID).
Within the group, a single router (called Master) is elected based on announced VRRP priority (a
number in the range from 1 to 255). Higher priority means a superior willingness to become Master,
zero priority causes the router to abstain from being Master. In the case of equal priority, binary higher
IP address serves as tie-breaker. VRRP election process is always preemptive (unlike to non-preemptive
HSRP or GLBP), which means that router with the highest priority always wins to be the Master no
matter whether group already have got other Master elected. Only Master actively forwards traffic.
Remaining routers (called Backups) are just listening and checking for Master’s keep-alive messages.

Hosts have configured virtual IP address as their default gateway. Only Master responds to ARP
Requests for this IP. This IP address has assigned reserved MAC address — 00:00:5e:00:01:$$ for
VRRPvV2 and 00:00:5€:00:02:$$ for IPv6 (where $$ is VRID). Whenever VRRP group changes to a new
Master, ARP Gratuitous Reply is generated to rewrite association between an interface and reserved
MAC in CAM table(s) of the switch(es). This behavior allows transparent changing of Masters (in the
case of an outage) from host’s perspective.

VRRP has only one type of control message — VRRP Advertisement. If Master is not elected,
then VRRP routers exchange advertisements to determine which one is going to be a new Master. If
Master is already elected then, only Master is sending VRRP Advertisements to inform Backups that it
is up and correctly running. VRRP Advertisement is generated whenever advertisement timer (AT)
expires (by default every 1 second). If this interval is set to a lower value then Master’s failure is detected
faster but protocol overhead increases. Master down interval (MDI) resets with each reception of an
advertisement message. Backup, which expires the MDI sooner, becomes a new Master. Value of MDI
depends on priority of each VRRP router according to (1). The highest (best) priority Backup times out
first (because of the lowest skew time) and thus takes over role as a new Master before others.

skew time

(256 — priority) X AT
256

MDI = 3 X AT +

OMNeT++ VRRP module is a byproduct of this thesis needed for accurate simulation of high-

availability scenarios allowing easy forming of active and backup paths for traffic.
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442  Map-Cache Synchronization

Assume multiple redundant routers are acting as first hops in the high-availability scenario like in Fig.
33. Those routers are simultaneously clustered into VRRP groups and act as LISP’s xXTRs — they run
LISP and VRRP at the same time.

The performance of map-and-encap depends on the fact whether xXTR’s map-cache contains
valid EID-to-RLOC mapping or not. Dispatched data traffic drives map-cache record creation. If map-
cache misses the mapping, then, a mapping system needs to be asked, and initiating data traffic is
meantime dropped. This fact is illustrated in Fig. 33 for EID address y.y.y.y. On the one hand, packets
(with y.y.y.y as destination) can traverse ITR1 without any problem (locator c.c.c.c is present in map-
cache). On the other hand, same packets are discarded on ITR2, which misses the mapping. Packet
dropping is a logical step as long as the mapping is not discovered because map-and-encap cannot occur
without proper information. The rationale behind this behavior is the same as in the case of ARP
throttling [11], where any triggering traffic should be discarded to protect control-plane processing and

prevent superfluously recurrent mapping system queries.

ITR1 map-cache ITR2 map-cache
XXX K P aaaa ®¥xx Paaaa

- bbhbb —bbbhb
YWY P COCS

Fig. 33: Site-Based State Synchronization Problem illustration

Each XTR has its map-cache, and its content may differ even within the same LISP site because
other traffic may initialize various map-cache entries. Hence, XTRs can easily experience severe packet
drops and LISP control message storms due to the map-cache misses when Master change occurs within
VRRP group.

Previous is known as Site-Based State Synchronization Problem. If we have two or more
redundant XTRs, then we want to reduce packet drops as much as possible in case there is a traffic shift
from an active to a backup device. XTR outage leads to the off-site signalization storm (lots of LISP

Map-Request/Reply messages being exchanged) and dispatching delay for ordinary traffic.
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This problem is described as the one of LISP weak-points in [129] and theoretically investigated
in [130]. The viable solution would be to provide map-cache content synchronization that should
minimize map-cache misses upon failure. Inspired by that, we present our solution addressing this
problem.

We have decided to implement it as a technique maintaining synchronized map-caches within a
predefined synchronization set (SS) of ITRs. Any solicited LISP Map-Reply triggers synchronization
process among SS members.

SS members are identified and reached using the IP address. Following strategies might be used

when choosing appropriate SS member address:

e SS address comes from non-LISP world — Either IP address should be loopback or address of
dedicated interconnection shared by all SS members. In the first case, unique device loopbacks
need to employ additional routing. In the second case, the additional port for the dedicated
connection is seldom available. Also, tracking of SS member needs additional LISP control
plane updates;

e SS address comes from LISP world:

oSS address is RLOC — SS membership is bound to the operability of a given RLOC
interface, but this has negative implications for the situation, where XTR has more than
one RLOC available. Although, it is easy to track SS member status using return value
of RLOC probing;

o SS address is EID — The best option reflecting LISP’s ideology. EID as SS address
should be reachable via direct routing (XTRs share common EID segment) or unless all
RLOCs to this EID are down (which could be also used to track peer synchronization

status).

Each record in the map-cache is equipped with a time-to-live (TTL) parameter. TTL expresses
how long the record is considered to be valid and usable for map-and-encap. By default, every record
uses the same initial TTL value. Map-caches within SS must maintain the same TTL on shared records;
otherwise a loss of synchronization might occur (on some ITRs, identical records could expire because
of no demand for traffic).

Either SS membership may be completely stateless, or SS member may maintain a state of its
synchronization peers. The stateful approach allows sending of partial synchronization updates. We

have implemented two modes of synchronization reflecting previous observation:

1) Nuaive — The whole content of map-cache is transferred to SS. All mappings are then updated
according to the new content and TTLs are reset. This approach works fine, but it obviously

introduces significant transfer overheads;
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2) Smart — Only record that caused synchronization is transferred. However, peer synchronization

status have to be employed to deal with the situation when SS member goes back up and
completely lacks any mapping. At that time, a whole set of map-cache content must be sent (not
just a partial update). Moreover, we bound this mode with the following policy. When TTL
expires, the ITR must check record usage during the last minute (one minute should be a period
long enough to detect ongoing communication). If the mapping has not been used (based on the
last lookup time of cache record), then it is removed from the cache. Otherwise, its state is
refreshed by query followed by synchronization.

Both approaches guarantee that devices within SS could forward rerouted LISP data traffic

without packet loss or interruption because they share the same content as ITR’s map-cache of

malfunctioned former Master.

Synchronization itself is done with the help of two new LISP messages — one carries

synchronization data, another optionally acknowledges successful synchronization:

LISP CacheSync — It contains map-cache records, which are being synchronized, and
authentication data, which protect SS members from spoofed messages;

LISP CacheSync Ack(nowledgement) — Because LISP leverages UDP, it cannot guarantee
message delivery. However, we decided to employ the same principle as for LISP Map-Register
and LISP Map-Notify. Hence, LISP CacheSync delivery may be optionally confirmed by
echoing back LISP CacheSync Ack message.

Message structure of LISP CacheSync is depicted in Fig. 34 and LISP CacheSync Ack in Fig.

35. Notable differences when comparing to LISP CacheSync/(Ack) with the structure of LISP Map-

Register/Notify are:

Both messages also include new Type values — LISP CacheSync is 5, LISP CacheSync
Acknowledge is 6;

LISP CacheSync header contains C flag. When C flag is set on, then synchronization
acknowledgment is requested by a sender. Receiver (i.e., SS member) must reply with LISP
CacheSync Ack containing all the map-cache records that have been successfully processed.
LISP CacheSync message is resent after the acknowledgment awaiting timeout (by default with
cumulative value 2numOfRetries).

There is no need for A flag in Cache Record and L and p flags in RLoc (for details about flag
meanings, please see [98]);

As in the case of LISP Map-Register/Notify, LISP CacheSync/(Ack) mandatorily contain nonce
and authentication using HMAC to avoid spoofing of false unsolicited cache synchronization

information.
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Fig. 34: LISP CacheSync message format
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The diagram in Fig. 36 depicts FSM implementing map-cache synchronization where transitions
are denoted with / ”” labels. Our solution provides a clean-slate way how to alter the content
of the map-cache reliably. Nevertheless, others might try to leverage options already available in LISP.
Unfortunately, each one has some disadvantage.

The first approach is to alter existing LISP Map-Requests by forcing included map-reply record
field to contain more than one record. However, this approach is unreliable because it lacks
acknowledgment scheme and cannot solve all following wrong goings. What if receiver side does not
recognize this option inside LISP Map-Request? What if LISP Map-Request did not reach receiver?
What if the receiver wants to process only part of synchronization information? What if SS-members
need to synchronize map-cache when the condition for sending LISP Map-Request is not met?

The second approach is that LISP already contains an on-demand renewal of mapping
information called Solicit-Map-Request (SMR). SMR is a mechanism how ETRs may rate-limit
requests and notify ITRs about mapping change. When mapping changes, ETR starts to send LISP Map-
Request (with the SMR-bit set on) messages to ITRs with which it recently exchanged data. Then, ITR
generates SMR-invoked LISP Map-Request to discover new mapping. If we want to use SMR to push
new mappings into ITR’s map-cache, then the best way seems to be extending the functionality of MR

(see [130]). However, this approach yields significant off-site signalization overhead.

Initiate Map-Cache Synchronization

Ack required?

AN

Proper
CacheSync Ack
eceived?

Process Map-Cache Synchronization

/

<
. > =><__Ack required? >©
map-cache entries

Fig. 36: Map-cache synchronization operation
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4.4.3 Merged RLOC Probing

Locator Path Liveness Problem concerns whether a destination locator is reachable via particular source
locator or, in other words, whether bi-directional connectivity exists between a given pair of locators.
Problem relevant to LISP is depicted in Fig. 37 where XTR-A1 asks for Site B locators. In this case, two
locators are available (1.0.0.1 and 2.0.0.1). xTR-A1 chooses the second one as a destination address for
packets. If the link between ISP1 and ISP2 goes (un)intentionally down, 2.0.0.1 is not reachable
anymore, and XTR-A1 must somehow find out this fact.

Y- SiteA
10.0.1.0/24

3.0.0.0/8
XTR-A2

ISP2
2.0.0.0/8

1.0.0.0/8

Fig. 37: Locator Path Liveness Problem illustration

Locator Path Liveness detection (checking whether RLOC is reachable or not) does not scale
very well in large networks because the reachability of every destination locator must be probed against
every source locator of a given device. Complexity of such a task is generally O(n x m), where n is a
number of source and m a number of destination locators. However, instead of brute-force probing some
hints might be used to mitigate (but not to avoid) such complexity, e.g. piggybacking, timeouts,
existence of underlying routing, positive feedback from protocol control messages or other protocols.

To make Locator Path Liveness Problem even more complicated, let us imagine a situation when
LISP site has two or more ITRs with different destination locator reachability. One ITR has connectivity,
and another has not (e.g. XTR-A1 and XTR-A2 on Fig. 37). Hence, all packets processed by that ITR are
going to be discarded somewhere in the network. Unfortunately, neither IGP responsible for routing the
packet to faulty ITR nor hosts have capabilities to detect this issue from their subjective point of view.

In order to find a remedy for this problem, we focused on the behavior of Cisco referential
implementations and their RLOC-probing algorithm checking locator reachability. ITR is probing
assigned locators for each configured EID. This behavior is in compliance with [98] but it leads to

repeated check of the same locator multiple times, which represents scalability issue in larger networks.
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We decided to decrease protocol overhead by merging EIDs to check locator liveness with a
single RLOC probe that we call merged RLOC probing.

The simple but rather a trivial approach would be to make the following assumption: “If the
same locator is reachable for one EID then it would also be reachable for other EID.” Hence, the router
can generate only single RLOC probe during one liveness checking period. If it receives positive LISP
Map-Reply Probe, it may consider probed locator as alive for all EIDs in map-cache that are using it.
More sophisticated approach is to:

1) On sender, check liveness of a given locator with a single LISP Map-Request Probe containing
one or more query records. Each query record specifies cached EID that uses probed RLOC,;

2) On receiver, respond with LISP Map-Reply Probe that includes locator status updates for all
queried EIDs contained in request (or only subset of those EIDs that are in up state);

3) Back on the sender, refresh locator status of relevant EIDs in map-cache according to answer(s)

in reply.

Above described mechanism is compatible with RFC description and does not need any protocol
extensions. It preserves the accuracy of Cisco’s RLOC probing algorithm but with only single RLOC
probe exchanged. We have integrated all above described algorithms — Cisco’s, Simple and

Sophisticated — in our LISP simulation module.
4.4.4  Design and Implementation

The ANSA project (Automated Network Simulation and Analysis) running at our university is dedicated
to developing the variety of simulation models compatible with RFC specifications or referential
implementations. Subsequently, these tools allow formal analysis of real networks and their
configurations. They may be publicly used as the routing/switching baseline for further research
initiatives, i.e., in simulations for proving (or disproving) certain aspects of technologies and/or related
protocols. In the frame of this project, we have developed ANSARouter as simulation module
mimicking behavior of real generic Cisco router.

We have implemented LISP as OMNeT++ compound module called LI SPRouting, which
provides independent XTR, MR, and MS functionality. It consists of five submodules that are depicted
in Fig. 38 and described in subsections below the figure. LTSPRouting exchanges messages with
UDP submodule, IPv4 networkLayer and IPv6 networkLayer6 modules of INET framework.
LISPRouting integration within ANSARouter is depicted in Appendix 8.2. Implementation is fully

in compliance with namely [98] and [100], which has been proved in our papers [131], [132] and [133].
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Fig. 38: LISPRouting module structure
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All LISP abstract data structures and settings contain dynamic state according to simulation
setup and run, or could be statically preconfigured using XML file prior to simulation beginning. Map-
cache or map/site database are implemented using generic class LI SPMapStorage that is extended
via C++ inheritance to accommodate different requirements of each control plane component. Every
LISPMapStorage contains the ordered list of LI SPMapEntry instances.

Following subchapters contain a brief description of implementation notes regarding each
implemented submodule. Illustrative figures refer to the testing scenario depicted in Fig. 39.
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Fig. 39: LISP illustrative scenario
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The scenario contains two sites — green areas Site-A (interconnected by switch S1, bordered by
XTR_A1 and XTR_A2) and Site-B (interconnected by S2, bordered by xTR_B1 and xTR_B2). The network
graph contains router MRMS, which acts as MR and MS for both sites. 1Pv4 only capable core (red area)
is simulated by a single Core router. Static routing is employed to achieve mutual connectivity across
the core. HostA and HostB are dual-stack devices, where HostA is scheduled to ping HostB after second
successful site registration. MRMS is allowed to proxy-reply on mapping requests for Site-A. All RLOCs
are configured with priority 1 and weight 50 to achieve equal load balancing for incoming traffic. This
scenario (named “LispHA” located in /examples/ansa/11ispHA) is contained in contributed LISP

source codes thus it is easy to reproduce results.

LISPMsgLogger Submodule
This submodule records and collects statistics about the LISP control plane operation, i.e., number, type,
timestamp and size of each sent/received message. The statistics collection is integrated into OMNeT++

as a special signal, and build-in result analysis allows the creation of complex data sets.

LISPCore Submodule

Module independently combines the functionality of ITR, ETR, MR and MS. Each role could be enabled
from configuration thus creating different kinds of high-level devices. Roles are connected with
following tasks: a) encapsulation and decapsulation of data traffic; b) ETR’s site registrations and MS
site maintenance; c) ITR performing mapping lookups; and d) MR delegating queries.

This module handles all LISP control and data traffic. Messages are processed according to
finite-state machines that are based on RFC description. Various timer expirations govern some states
transitions (e.g., RLOC probing, regular site registration) others by message events (e.g., mapping
request-reply scheme). Control messages may cause an internal state change of another LISP submodule
such as new mapping added to map-cache or locator state refreshed by RLOC probe. Control messages
pass to/from UDP submodule. Data messages are properly encapsulated/decapsulated and passed to

appropriate network layer submodule.

LISPMapDatabase Submodule
Each xTR is designated to maintain a state of its LISP sites. This involves responsibility to retrieve
results of probed non-local locators or to know, which local interfaces are used for LISP routing. The
necessary amount of state information is similar as in the case of Cisco’s control plane for show
{iplipv6} lisp database command [134].

Fig. 40 illustrates map database with two LISP sites (192.168.1.0/24 and 2001:db8:a::/64) and

their state.
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Fields Contents (3)

Class MName Info
@ cPar configData <LISP> frem configaml:29
& cPar advertOnlyOwnEids  true
2EIDs @ sto:list<LISPMapEntry> MappingStorage size=2

MappingStorage (stdulist<LISPMapEntry>)
MappingStorage[2] (LISPMapEntry)

lispMapDatabase [0] = 192.168.1.0/24, expires: never
11.0.0.1 (up) prifwei=1/50 Local
12.0.0.1 (down)  prifwei=1/50
[1] = 2001:db&a::/ 64, expires: never
11.0.0.1 (up) prifwei=1/50 Local
12.0.0.1 (down)  prifwei=1/50

Fig. 40: Content of xTR_A1’s LISPMapDatabase

LISPMapCache Submodule

The module contains local map-cache that is populated on demand by routing data traffic between LISP
sites. Each record (EID-to-RLOC mapping) has its separate handling (i.e., expiration timer, status,
available RLOCs, associated LISP routing action). Submodule also contains synchronization type
parameter that tells LISPCore whether to perform map-cache syncing or not. Map-cache lookups are
implemented as standard longest prefix match operation that tries to return the most exact EID mapping
that is currently available. In real routers, there are separate map-caches for IPv4 and IPv6 EIDs, but in
simulator we can afford to simulate them using one abstract data structure. Nevertheless, all entries are
sorted according to EID’s binary IP address value, where IPv6 come after IPv4. Cisco’s control plane
maintains similar information, what could be seen in the output of show {ip|ipv6} lisp map-
cache command [134].

Fig. 41 shows map-cache with two records:

0) default one for IPv4 and IPv6 EIDs that are not matched by any subsequent record and that
causes LISPCore to initiate mapping query;
1) record for EID 2001:db8:b::/64 that is reachable via two locators 21.0.0.1 and 22.0.0.2.

Fields Contents {5

Class Mame Info
@& cPar configData <LISP > from configaxml:29
1 entries @& cPar cacheSynchronization "Mone”
& cPar cachedynchck true
i@ LISPMapCachenEMapSync  syncType 0
iga stdulist<LISPMapEntre = Mappingstorage size=2
lispklapCache é‘ MappingStorage (std:list<LISPMapEntry =)

Mappingstarage[2] (LISPMapEntry)
[0] = <unspec:/0, expires: newver, state! incomplete, action: send-map-request

[1] = 200T:dbib:fed, expires: 1440min (86470.00011547999%0, state: complete, action: no-action
21.0.0.1 upl prifuei=1,50 Local
22,001 upl prifuei=1/30

Fig. 41: Content of XTR_A1’s LISPMapCache
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LISPSiteDatabase Submodule

Submodule contains MS’s site database that maintains LISP site registration from ETRs. Each site may
have one or more ETR servers, where each one registers set of EIDs. Apart from ETR’s independent
EID-to-RLOC mappings, LISP site database consist of site-specific parameters such as shared key,
proxy capability or registrar’s statistics. State information is similar to the content of Cisco’s control
plane for the show lisp site detail command [134].

Ilustration in Fig. 42 shows MRMS’s site-database with two successfully registered sites: 0)
Site-A with ETRs 11.0.0.1 and 12.0.0.1; and 1) Site-B with ETRs 21.0.0.1 and 22.0.0.1. Site-A’s ETRs
register EIDs 192.168.1.0/24 and 2001:db8:a::1/64 reachable via RLOCs 11.0.0.1 and 12.0.0.1. Site-B’s
ETRs register EIDs 192.168.2.0/24 and 2001:db8:b::1/64 reachable via RLOCs 21.0.0.1 and 22.0.0.1.

Fields| Caontents (£}

Class MNarne Info
@ cPar configData <LIZP > from configumli2 70
i stdnlist<LISPSite > SiteDatabasze size=2

SiteDatabasze (stdilist<LIZPSite =)

SiteDatabase[2] (LISPSite)

= [0] = Site-A4, key: "Heslod"

Maintained EIDs »

192.168.1.0/24

2001:db a6

Registered ETRs >

ETR 17.0.0.1, last at: 120.00002378, prosy-reply
192.168.1.0/24

11.0.01 fup) prifuvei=1750 Local
12.0.01 fup)  prifwei=1/50
2001:db&ia:n/ 64
11.0.01 {up) prifuei=1F50 Local
] 12.0.01 {up) prifavei=1,50
j Eﬁ; ETR 12.0.0.1, last at: 120,000036579900, proxy-reply

192,168.1.0/24

11.0.0.1 {up) prifwei=1750
12.0.01 fup) prifuvei=1750 Local
2001:db8ian/ 64

lispSiteDatabase 11.0.01 {up) prifwei=1/50
12.0.01 {up) prifuei=1F50 Local

El—[#] = ite-B, key: "HesloB"

Maintained EIDs »

192.168.2.0024

2001:db b6

Registered ETRs:

ETR 21.0.0.1, last at: 140.00002378
192.168.2.0/24

21.0.01 {up) prifuei=1F50 Local

22.0.01 {up) prifwei=1750
2001:dbb: /B

21.0.01 {up) prifwei=1750 Local

22,001 {up) prifwei=1750

ETR 22.0.0.1, last at: 120.000043373393
192.168.2.0/24

21.0.01 {up) prifwei=1/50

22.0.01 {up) prifuei=1F50 Local
2001 dbib: /B

21.0.01 fup) prifwei=1750

22,001 {up) prifwei=1750 Local

Fig. 42: Content of MRMS's LISPSiteDatabase
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445 Results

This section presents results of evaluation of newly implemented mechanisms. Each measured
phenomenon has its subsection with dedicated network graph and scenario. The goal of this subchapter
is to show: a) the impact of synchronization on a packet drop rate (and a number of map-cache misses)
and to enumerate the burden of deploying it on control plane; and b) the impact of merged RLOC
probing on control plane processing.

Impact of Map-Cache Synchronization

We prepared simulation network that contains a LISP site (network EID 192.168.1.0/24 reachable via
two RLOCs 11.0.0.1 and 12.0.0.1) with two routers (XTR1 and xTR2), which provide highly-available
VRRP default gateway (192.168.1.254) for two hosts interconnected by switch SW. Hostl and Host2
are pinging IPv4 EIDs (172.16.[0-19].0/24) randomly thus generating traffic that triggers LISP mapping
system queries. All routing is done statically. Hence, there is no need to employ routing protocol on
Core router. We prepared special XTR called XTR_Responderl that: a) registers destination EIDs to
MRMS; and b) responds to hosts ICMP messages. The whole network graph is depicted in Fig. 43. Also
this scenario (named “LispSyncTest”) is located in /examples/ansa/lispSyncTest folder of

available source codes.

eth0 ~"RLOC space
192.168.1.101/24
-

e ; MRS
# Q
t1 R @U% 31.0.0.1/30
Al .0
| eth0
2

eth3 21.0.0.1/30

*TR_Responder1
lo[0-19]
172.16.[0-19].0/24

192.168.1.102/24

Fig. 43: LISP testing network for Map-Cache synchronization

The testing scenario is focused on cache misses due to the missing mapping rather than expired
ones because of default TTL value (1 day). Five minutes time slot with the single VRRP Master outage
is the simplest illustration of how to compare the impact of map-cache synchronization. During the
outage, all xXTR1’s interfaces shut down (i.e., they are physically disconnected from the network). The

xTR1’s control plane is operational (generating scheduled LISP messages, which are not delivered).
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We scheduled following phases for the test run focusing on map-cache synchronization:

#1) At first, all XTRs register their EIDs. In the case of XTR_Responderl, EID space is modeled
with the help of loopback interfaces — twenty of them ranging with addresses from
172.16.0.0/24 to 172.16.19.0/24 reachable via single RLOC 21.0.0.1. In case of xTR1 and
XTR2, EID 192.168.1.0/24 is reachable via two RLOCs 11.0.0.1 and 12.0.0.1;

#2) xTR1 and xTR2 form VRRP group with VID 10 and virtual address 192.168.1.254, which
is used by Hostl and Host2 as default-gateway. XTR1 is Master because of higher priority
(XTR1 has 150, xTR2 only 100) as long as it is operational.

#3) Hostl starts pinging ten random EIDs in the range from 172.16.0.0/24 to 172.16.9.0/24.
Because EIDs are chosen randomly, they may be duplicate. Each first ICMP packet causes
mapping query and is dropped.

#4) Then right before a new LISP registration (at t=119s), XTR1 failure occurs. Hosts traffic
is diverted to a new VRRP Master, which is XTR2.

#5) After phase 4), also Host2 starts to ping ten random EIDs from 172.16.10.0/24 to
172.16.19.0/24. Same duplicity rule as in 3) applies.

#6) XTR1 recovers from the outage at t=235s and once again all hosts traffic goes through it.

Depending on the map-cache synchronization type, additional map-cache misses might occur.
XTR1 and XTR2 synchronized themselves via their RLOCs (11.0.0.1 for XTR1 and 12.0.0.1 for xTR2).

The scenario has been tested with three simulation configurations, which we can divide
according to the used map-cache synchronization technique: o) no synchronization at all (default LISP
behavior); B) naive mode; and y) smart mode. Impact on map-cache is summarized in Tab. 9 for all
previously mentioned different configuration runs. Fewer map-cache misses are considered better.

We do not employ LISP synchronization acknowledgment scheme for B/y-runs, the impact of
acks is analyzed later. The scenario offers testing of all three kinds of addressed for SS member
identification — e.g., nonLISP with 10.0.0.0/30; RLOC with 11.0.0.1 and 12.0.0.1; and EID with
192.168.1.1 and 192.168.1.2) with same results. Nevertheless, we use EIDs as the most feasible options.

Before interpreting results, please note that Hostl randomly (using same random generator

seeds) chose eight different EIDs, Host2 six EIDs, fourteen various ping destinations in the summary.

o cache B cache v cache

Phase misses misses misses

XTR1 | xXTR2 | XTR1 | XTR2 | XTR1 | XTR2
#3 8 0 8 0 8 0
#5 0 14 0 6 0 6
#6 14 0 0 0 0 0
Total | 22 14 8 6 8 6

Tab. 9: Count of map-cache misses under different configurations in scenario with one outage
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Without any synchronization, traffic diversion to a new VRRP Master always causes misses due
to unknown mappings. We can see it in phases #5 and #6 for a-run when the router starts to dispatch
LISP data with the empty map-cache.

If synchronization is employed, then, only new destinations lead to map-cache miss. This is
because a new VRRP Master already has mappings discovered by neighbor XTR. Hence, there is a
difference in phase #5 for a-run (empty cache) and B/y-runs (cache in sync with SS member). The
difference (36 cache misses versus 14) would be even more significant in the case of multiple VRRP
Master outages. Please note that every map-cache miss is also connected with the data packet drop.

In order to compare synchronization modes, we conducted measurement taking into account all
LISP control messages processed by LISPCore module, namely their packet sizes. We assume that
larger size is always a greater burden for router’s control plane processing. Fig. 44 shows results (a-run
= blue crosses, f-run = green triangles, y-run = red circles), where each symbol represents one LISP

control message.

msg-size:vector LispSynclest xTR1.LISP.lispMsgLogger
-A-finetiexamplesiansalisplis pSyncTestresults/CacheSyncMaive-0.vec CacheSyncMaive-0-201502158-10:35:15-496 CacheSynchNaive
-e-finet/examples/ansalispiis pSyncTestiresults/CacheSyncSmart-0.vec CacheSyncSmart-0-20150218-10:35:44-8736 CacheSyncSmart
=¢finet/examples/ans afisplis pSyncTestresults MoSyne-0.vec NoSync-0-20150218-10:34:20-9112 MoSyne

0 50 100 150 200 250 300
4000+ 4000
2 3000+ r3000
=
O
™
s
20004 r2000
1000+ F1000
0-r ; ; - ; ; =0
0 50 100 150 200 250 300

time
Fig. 44: xTR1’s LISP control messages occurrence and total processed byte size in scenario with single outage

We can see that smart outperforms naive because it is less intensive while only single mapping
is transferred during synchronization, not a whole map-cache. Moreover, both synchronization modes
are better than no synchronization on protocol overhead because they decrease the number of mapping
queries (i.e., exchanged messages count). The difference is not so significant on Fig. 44, especially
between naive and no sync mode. However, it is getting more obvious as the number of VRRP outages
increases. Following table and figure prove this claim for the same network but with two XTR1 outages

— basically phases #4 and #6 repeat twice.

91



a cache P cache v cache
misses misses misses
XTR1 | XTR2 | XTR1 | XTR2 | XTR1 | XTR2
#3a 8 0
#5a 0 14
#6a 14 0
#5b 0 0
#6b 14 0
Total | 36 14 8 6 8 6

Tab. 10: Count of map-cache misses under different configurations in scenario with two outages

Phase

o|lo|o|o|
o|lo|o|jov|O
o|lo|o|o|
o|lo|o|jov| O

msg-size:vector LispSynclest xTR1.LISP.lispMsgLogger

-A-finetiexamplesiansalis plis pSyncTestiresults/CacheSynchaive-2outages-0.vec CacheSynchaiv e-2outages-0-20150218-10:36:46-3220 CacheSyncNaive-2outages
-a-finetlexamples/ansalisplis pSyncTestiresults/CacheSyncSmart-2outages-0.vec CacheSyncSmart-2outages-0-20150218-10:37:13-3820 CacheSyncSmart-2outages
¢finet/examples/ans aflisplis pSyncTestresults MoSyne-2 outages-0.vec MoSync-2outages-0-20150218-10:36:12-3696 MoSync-2outages
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5000+ F5000
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1000+ F1000
0-r ; ; - ; ; =0
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time
Fig. 45: xTR1’s LISP control messages occurrence and total processed byte size in scenario with two outages

Repetition of phases 4), 5) and 6) is denoted in Tab. 10 with letters: “a” for the first outage; and
“b” for the second outage. In Tab. 10, we can observe that a total number of cache misses for a-run has
increased by 14. XTR1 had gone down (losing its map-cache content), then went back (repopulating
map-cache once again with 14 EIDs) and then this cycle repeats once again. For B-run and y-run,
additional outages pose no change, because XTR1 completely synchronizes itself with XTR2 (XTR2 sends
the whole map-cache as soon as it detects the status of the one of XTR1’s RLOCs up), when it is once
again operational. Fig. 45 shows an increase in a number of processed LISP control message for no
synchronization, where impacts of other synchronization techniques remain same.

LISP synchronization acknowledgment mechanism poses an additional control plane burden. In
order to evaluate acknowledgment impact, we conducted measurement on the same network with two
outages. The results in a number of processed LISP control messages bytes are depicted in Fig. 46 and

can be compared with Fig. 44.
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msg-size:vector LispSynclest xTR1.LISP.lispMsgLogger
-A-finetfexamplesfansallis plis pSyncTestiresults/CacheSynciaive-2outages-w Ack-0.vec CacheSynchaive-2outages-w Ack-0-20150213-10:38:43-9280 CacheSynchaive-2outag
-a-finetfexamplesfansallis pis pSyncTestiresults/CacheSyncSmart-2outages-w Ack-0.vec CacheSyncSmart-2outages-w Ack-0-20150218-10:39:11-9540 CacheSyncSmart-2outag
—&finetfexamples/ansallis pis pSyncTestresults/MoSyne-2 outages-0.vec NoSyne-2outages-0-20150218-10:36:12-3696 MoSync-2outages
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Fig. 46: xTR1’s LISP control messages occurrence and total processed byte size in scenario with two outages + ack

It is apparent that protocol overhead on the number of messages has increased. In the case of no
synchronization, it slightly outperforms naive mode by a total size of processed bytes. However, the
smart mode still has the best characteristic even with enabled acknowledgments. Once again, we can
expect that additional outages or more EID ping destinations would influence results in favor of B/y-
runs over o-run.

To summarize the evaluation of map-cache synchronization technique, we provide Tab. 11,
which shows a/p/y-run (i.e., none, naive and smart sync) statistics for different scenarios (i.e.,
one/two/three outage(s) with or without acknowledgment). xXTR1’s statistic numbers are depicted with
following column meanings: “miss” as the number of map-cache miss occurrence; “cnt” as the total
count of LISP control plane messages sent and received; “size” as processed messages count by LISP
control plane measured in total byte size. We added to Tab. 11 also same statistics section for the
scenario with three outages in order to analyze trends even thou that it is not described via dedicated
table and graph above (nevertheless, we appended them to Addendum 8.3.2 for completeness). Results

show a linear growth in complexity.
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single XTR1 outage scenario single XTR1 outage with sync ack scenario
o p Y a p Y

miss | cnt | size | miss | cnt | size |miss| cnt | size | miss| cnt | size | miss| cnt | size | miss| cnt | size

22 | 81|4458| 8 |62(4328| 8 |62|3796 22 |81 |4458| 8 |71|5458| 8 |71 |4394
two xTR1 outages scenario | two XTR1 outages with sync ack scenario |

a B Y a B Y

miss| cnt | size | miss | cnt | size |miss| cnt | size |miss| cnt | size |miss| cnt | size |[miss| cnt | size

36 /1109|5718 8 |63|4614) 8 |63 |4082 36 |109/5718| 8 |73 |6030| 8 | 73 |4 966
three xTR1 outages scenario | three xTR1 outages with sync ack scenario |

a B Y a B Y

miss| cnt | size | miss | cnt | size |miss| cnt | size | miss| cnt | size |miss| cnt | size |[miss| cnt | size

50 |137|6978| 8 | 644900/ 8 |64 4368 50 137/6978| 8 | 756602, 8 | 755538

Tab. 11: xXTR1’s statistics for different map-cache synchronization scenarios

Impact of Merged RLOC Probing

We took the previous network and adjusted it. Currently, it contains a LISP site with just one XTR router
and one end-device called Host1. More important are LISP sites that are reachable via XTR_Responderl
and XTR_Responder2. We simulate multiple EID networks reachable via the same xTRs with the help
of loopback interfaces. Each XTR_Responder has forty loopbacks with EID addresses in the range of
172.16.[0-39].0/24. Each EID is being registered towards MRMS as reachable via XTR_Responderl’s
RLOC 21.0.0.1 and XTR_Responder2’s RLOC 22.0.0.1. VRRP functionality on xTR is disabled because
it is not needed for this scenario. Host1 might randomly generate ICMP traffic towards destination EIDs,
but this is not necessary for merged RLOC probing analysis. All communicating parties are
interconnected via Core employing static routing configuration. The whole network graph is depicted
in Fig. 47. Also this scenario (named  “LispProbeTest”) is  located in

/examples/ansa/lispProbeTest folder of available source codes.
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Fig. 47: LISP testing network for merged RLOC probing
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RLOC probing starts immediately after LISP routing control plane is initialized. Following
phases occur no matter on used RLOC probing algorithm:

e Probing XTR sends LISP Map-Request Probe to RLOC address for a given set of EIDs;

e Probed XTR responds with LISP Map-Reply Probe announcing that RLOC is up;

e In case that LISP Map-Request Probe was not replied, probing xTR repeats the probe at time
tnext = tiase + 2MMOTRetTEs \where t,,., is the time last probe was sent and numOf Retries
is a number of retry attempts to send this probe. By default, after three unsuccessful LISP Map-
Request Probe, RLOC is marked as down and the next probe is scheduled after 60 seconds.

Optional phase 3) behavior is solely based on Cisco implementation observations. Also Cisco’s
LISP implementation has some other specifics: a) postponed start of first EID registration (t + 60
seconds since control plane initialization); b) postponed start of RLOC probing for 1IPv6 RLOCs
(t + 30 since the first IPv4 probe). We have integrated this behavior into the LISP simulator. However,
we are not employing it in order to provide better readability of this scenario’s results.

These phases repeat by default every minute to keep RLOC reachability up-to-date. This interval
could be decremented to a lower value, but protocol overhead increases in an inverse relationship.

Measurement is focused on a number of LISP Map-Request/Reply Probes exchanged between
XTR_Responderl and xTR_Responder2 and the amount of corresponding bytes processed by
XTR_Responderl’s LISP control plane. We assume that five minutes simulation time is a period long
enough to show the trend of each RLOC probing algorithm. During this time, five RLOC probe batches
occur. Except mandatory EID registrations, no other LISP control traffic is spoiling the results.

We have conducted two simulation scenarios in order to observe complexity trends. The first
one is for the network with forty different EIDs (twenty IPv4 172.16.[0-19].0/24 and twenty IPv6
2001:db8:ac10:[0-19]::/64) on XTR_Responders reachable via RLOCs 21.0.0.1 and 22.0.0.1, the second
with eighty different EIDs (forty IPv4 172.16.[0-39].0/24 and forty IPv6 2001:db8:ac10:[0-39]::/64).
All three algorithms are evaluated separately as different configuration simulation runs - Cisco’s default

algorithm as &-run, simple as e-run and sophisticated as A-run algorithm variants of merged RLOC

probing.
40 EIDs scenario 80 EIDs scenario
0 € Iy 0 € A
cnt size cnt size cnt size cnt size cnt size cnt size

805 | 55500 | 25 | 8520 | 25 | 28530 | 1605 | 110900 | 25 | 15920 | 25 | 56 330
Tab. 12: xTR_Responder1’s statistics for different RLOC probing algorithm scenarios

Total count of sent and received LISP control messages are shown in Tab. 12. Columns have
following meaning: “cnt” as the total count of LISP control plane messages sent and received; “size” as

the amount processed messages by LISP control plane measured in total byte size.
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Apart from five LISP Map-Register, XTR_Responder1 five times: a) sends LISP Map-Request
Probe and receives LISP Map-Reply Probe; b) receives XTR_Responder2’s probes and responds to them
with replies. It is apparent that a count of exchanged messages is drastically lower when using any
merged RLOC probing algorithm. Cisco’s algorithm generates RLOC probe for each EID-t0-RLOC
mapping, which means forty/eighty LISP Map-Request Probe and forty/eighty LISP Map-Reply Probe
messages per single phases #1 and #2 occurrences. Opposite to that any merged RLOC algorithm
exchanges only single LISP Map-Request/Reply Probe pair between xXTR_Responders.

msg-size vector LispProbeTest xTR_Respondert LISP.lispMsglLogger

—enetfexamplesfansalizplis pProbeTestresuls/Cisco-0.vec Cisco-0-20150213-14:11:20-10644 Cisco
-A-(inetfexamplesfansalis plis pProbeTestresults/Simple-0.vec Simple-0-20150213-14:11:39-9860 Simple
-8-/inet/examples/ans aflis pflis pProbeTest/results/Sophisticated-0.vec Sophisticated-0-20150218-14:11:57-3804 Sophisticated
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time
Fig. 48: XTR_Responderl’s LISP messages occurrence and total processed byte size in scenario with forty EIDs

In Fig. 48, we can see that e-run has better protocol overhead measured in the total amount of
bytes processed by XTR_Responderl. This is because each probe carries only single EID chosen in a
round-robin fashion, where successful reception of LISP Map-Reply Probe refreshes RLOC state for all
EIDs that are using it. In the case of the sophisticated algorithm, all relevant EIDs are packed in single
probe thus (significantly) increasing its size (but still half of Cisco’s total processed byte size). On the
other hand simple merged RLOC probing algorithm might seem to be too simple and lacking of accuracy
if we want the use-case where the same RLOC is up for some EIDs, and down for another EIDs. In that
case, sophisticated variant offers the same functionality but with better granularity.

For completeness, the same graph as Fig. 48 but for a scenario with eighty EIDs is in
Addendum 8.3.3. Because scenarios are linearly dependent, the only difference is in Y-axis values and

a higher amount of RLOC prabe (symbol) occurrences.
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4.5  Chapter Summary

This chapter described in great detail all routing aspects of LISP. In the first subchapter, we started with
a basic overview of LISP functionality and its main components. We focused on the distributed mapping
system of LISP including how map-cache content impacts LISP routing performance. We outlined LISP
signalization messages together with their syntax and semantics. We discussed ways how LISP coexists
with traditional TCP/IP networks and what are transition possibilities and deployment options.

In the next subchapter, we demonstrated LISP theory of operation on concrete examples. We
started with simple unicast data transfer focusing on map-and-encap parts of packet handling.
Proceeding next, we illustrated mapping system behavior including LISP site registration, EID-to-
RLOC mapping query, and subsequent response. As the last demonstration, we depicted communication
between LISP and the non-LISP world.

The Subchapter 4.3 provided Rather a brief information regarding LISP global deployment
(i.e., LISP BetaNetwork) and available vendor’s implementations. We also mentioned existing
simulators and simulation modules that have been used for LISP research in the past.

The last subchapter described one of the main contributions of this thesis. Two major issues are
introduced that limit LISP operation — Site-based Synchronization Problem and Locator Path Liveness
Problem. Furthermore, we proposed specific map-cache synchronization techniques and merger RLOC
probing algorithms, which should reduce protocol overhead and increase LISP routing performance.
Hence, these improvements should at least partially deal with problems above. Moreover, we developed
and implemented brand new simulation modules of LISP (and as a byproduct also VRRP) intended for
OMNeT++. Employing these modules, we tested and successfully proved the effectiveness of proposed
improvements.

If we want to qualify and quantify impact of our propositions the following items hold:

e Both naive and smart map-cache synchronization modes significantly reduce (theoretically to
zero) map-cache misses for sites with multiple ITRs;
e Smart mode outperforms naive mode in protocol overhead (in number of processed bytes):
o having approx. 11% lower overhead for scenarios without acknowledgment and both
are better than no synchronization;
o having approx. 17% lower overhead for scenarios with acknowledgment, where smart
is always better than no synchronization, and naive gets better with more outages;
e Merged RLOC probing decreases radically protocol overhead (in processed bytes count) of
locator liveness checking:
o the simple algorithm reduces overhead by approx. 85%;

o the sophisticated algorithm reduces overhead by approx. 50%;
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5 Recursive Internet Architecture

& —“In order to understand recursion, one must first understand recursion.” Anonymous
& What is RINA and what are its most distinctive features?

& What is technology readiness level of RINA?

&% Can we prove RINA'’s feasibility as the clean-Slate architecture?

RINA is the clean-slate architecture aimed to change the whole Internet unlike just temporary fixes for
current status quo. RINA concept is based on John Day’s thoughts, lectures and book [3] regarding
ISO/OSI initiative failure, TCP/IP development, commercial adoption of the Internet and other
technical/political events in Internet history (see Addendum 8.4 for more).

While proposals and approaches discussed in the previous chapters deal with extending or
correcting the current Internet architecture, RINA attempts to define a novel Internet architecture, RINA
is a continuation of the original internetworking ideas from the mid-1970s. The architecture as proposed
by RINA is fundamentally different from the current TCP/IP networking. The RINA approach is based
on a few principles instead of a broad and complex eco-system of modern Internet. The idea of the
recursive composition of layers arises naturally from the structure of repeating computer networking
patterns. Instead of strictly separating network functions into a predefined set of layers, RINA enables
to compose a stack from layers that may offer a nearly the same set of functions. In RINA, each layer
only has to provide data transfer between nodes of the layer. Depending on the other functionality
represented as mechanisms and policies, the RINA nodes can communicate reliably or securely. Another
difference to the current TCP/IP’s Internet is that every communication in RINA is considered as
communication between a pair of networking processes regardless the layer at which this
communication occurs. Assuming the single communication paradigm simplifies the overall design. It
was shown that only a couple primitive operations need to be implemented in the communication
protocol. Also, all layers employ the same protocols which contrast to TCP/IP model in which each
layer defines its set of protocols. RINA was designed to provide a simpler and efficient alternative to
the current Internet architecture.

This chapter familiarizes the reader with RINA basics. Based on our experience, we must admit
that “mental-shift” from nowadays networking towards RINA is not easy at all. Hence, the reader is
advised to seek further in related references when confused.

Among main goals of this chapter are the following items: a) to introduce RINA as a new
networking paradigm; b) to provide in-depth explanation of RINA’s operation; ¢) to revisit and improve
some of RINA specifications; d) to develop the first RINA simulator as a new educational and research
tool; and e) to demonstrate RINA theory on practical example employing our enhancements of

enrollment and flow (de)allocation procedures.

98



5.1 Overview

This subchapter introduces theoretical background. However, explanation of the whole Recursive
Internet Architecture is far beyond the scope of this thesis. Hence, only parts relevant to the current
RINASiIm functionality are captured. Synthesis of RINA information provided below comes from the
following sources: [135], [136], [137], [138] and [139].

5.1.1  Nature of Applications and Application Protocols

Is application a part of IPC environment or not? The set of Internet applications was rather simplistic
before WWW — one application with a single instance using only one protocol. Hence, there is nearly
no distinction between an application and its networking part. However, the web completely changed
this situation — one application protocol may be used by more than one application and also one
application may have many application protocols.

Following terms are recognized in the frame of RINA, and their relationship is depicted in Fig. 49:

e Application Process (AP) — Program instantiation to accomplish some purpose;
e Application Entity (AE) — AE is the part of AP, which represents application protocol and

application aspects concerned with communication.

Application Process

(AP) Outside network

Inside network

Application entities
Fig. 49: Application Protocol and Application Entities relationship

There may be multiple instances of the Application Process in the same system. AP may have
multiple AEs, each one may process different application protocol. There also may be more than one
instance of each AE type within a single AP.

All application protocols are stateless; the state is and should be maintained in the application.
Thus, all application protocols modify shared state external to the protocol itself on various objects
(e.g. data, file, HW peripherals). Because of that, there is only one application protocol that contains
atomic operations (e.g., read/write, start/stop). Data transfer protocols modify state internal to the

protocol, the only external effect is the delivery of SDUs.
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5.1.2 Core Terms

The data transport and internetworking tasks together (generally known as networking) are functions of
inter-process communication (IPC). IPC between two APs on the same operating system needs to
locate processes, evaluate permission, pass data, schedule tasks and manage memory. IPC between two
APs on different systems works similarly plus adding functionality to overcome the lack of shared
memory.

In traditional networking stack, the layer provides a service to the layer immediately above it.
As RINA name suggests, recursion and repeating of patterns are the main feature of the robust
architecture. Layer recursion became more popular even in TCP/IP with technologies like Virtual
Private Networks (VPNs) or overlay networks (e.g., OTV®). Recursion is a natural thing whenever we
need to affect the scope of communicating parties. However, so far it was just recursion of repeating

functions in existing layers. RINA is based on following core ideas:

— “Networking is interprocess communication...and IPC only!” [140]

— “Application Processes communicate via a service provided by a distributed application that
provides IPC. The application processes that make up this Distributed IPC Facility provide a protocol
that implements an IPC mechanism, and a protocol for managing distributed IPC (routing, security and

other management tasks). ” [141]

In ISO/OSI or TCP/IP, there is a set of layers each with entirely different functions. RINA, on
the other hand, yields idea of the single generic layer with fixed mechanisms but configurable policies.
This layer is in RINA called Distributed IPC Facility (DIF) — a set of cooperating APs providing IPC.
There is not a fixed number of DIFs in RINA; we can stack them according to application or network
needs. From the DIF point of view actual stack depth is irrelevant, DIF may provide a service to (N+1)-
layer above and use the service of the (N-1)-layer below. DIF stacking partitions network into smaller,
thus, more manageable parts.

The concept of RINA layer could be further generalized to Distributed Application Facility
(DAF) — a set of cooperating APs in one or more computing systems, which exchange information using
IPC and maintain shared state. A DIF is a DAF that does only IPC. Distributed Application Process
(DAP) is a member of a DAF. IPC Process (IPCP) is an AP within DIF delivering inter-process
communication. IPCP is an instantiation of DIF membership; computing system is container for IPCPs
that perform IPC with other DIF members. An IPCP is specialized DAP. The relationship between all
newly defined terms is depicted in Fig. 50.

8 Overlay Transport Virtualization (OTV). For more, see http://www.cisco.com/c/en/us/solutions/data-center-
virtualization/overlay-transport-virtualization-otv/index.html
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Fig. 50: DIF, DAF, DAP and IPCP illustration

DIF limits and encloses cooperating processes in the one scope. However, its functionality is
more general and versatile apart from rigid TCP/IP layers with dedicated functionality (i.e., data-link
layer for adjacent node communication, a transport layer for reliable data transfer between applications).
DIF provides IPC to either another DIF or to DAF. Therefore, DIF uses a single application protocol

with generic primitive operations to support intra-DIF communication.
5.1.3  Connection-oriented vs. Connectionless

The clash between connection-oriented and connectionless approaches (that also corrupted ISO/OSI
tendencies) is from RINA perspective quite easy to settle. Connection-oriented and connectionless
communication are both just functions of the layer that should not be visible to applications. Both
approaches are equal, and it depends on how application requirements are going to be imposed by layer
(i.e., which approach is going to be used). On the other hand, connection-oriented limits the
dissemination and tends toward static resource allocation. The first one is good for low volume
stochastic traffic. The second one is useful for scenarios with deterministic traffic flows.

If the applications request the allocation of communication resources, then layer determines
what mechanisms and policies to use. Allocation is accompanied by access rights and description of

QoS demands (e.g., what minimum bandwidth or delay is needed for correct operation of application).
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5.14  Delta-t Synchronization

All properly designed data transfer protocols are soft-state. There is no need for explicit state
synchronization (hard-state) and tools like SYNs and FINs are unnecessary.

Initial synchronization of communicating parties is done with the help of Delta-t protocol (see
[5] and [142]). Delta-t was developed by Richard Watson as the proof-of-concept that time-based
synchronization technique is necessary and sufficient for reliable data transfer. He proved that conditions
for distributed synchronization were met if the next three timers are realized: a) Maximum Packet
Lifetime (MPL), which denotes the upper bound time (value MPL) that a packet can exists in a network;
b) Retransmission-timer specifies maximum period (value R) that a sender is willing to retransmit its
unacknowledged messages; c¢) Acknowledgment-timer defines maximum delay (value A) that the

receiver of data can wait before sending acknowledgment. Delta-t’s main variable At is enumerated as:
At = MPL+ R+ A

Delta-t assumes that all connections exist all the time. Synchronization state (e.g., sequence
numbers) is maintained only during the active data transfer, but after maximum 24t (on receiver’s side)
or 34t (on sender’s side) periods without any traffic state may be discarded which effectively resets the
connection. Because of that, there are no hard-state (with explicit synchronization) protocols only soft-

state ones. Delta-t postulates that port allocation and synchronization are distinct.

5.1.5 Separation of Mechanism and Policy

We understand terms mechanism and policy as they have been defined in Subchapter 2.1. Just to remind
the reader that mechanism is invariant, the policy is variant part of any IPC. In the same subchapter, the
most common mechanisms has been cataloged using ontology. Nevertheless, this mechanism list is not
final and even to several mechanisms exist dozens/hundreds of different policies, how exactly are these
mechanisms implemented and enforced.

If we focus only on mechanisms connected with data transfer, then we can clearly separate them

into two groups:

e tightly-bound that must be associated with every PDU, which handle fundamental aspects of
data transfers (e.g., the sequence number of every PDU, integrity check using hashes associated
with the PDU content);

e |oosely-bound that could be associated with data transfer PDUs (but there is no requirement
that these mechanisms must be associated with them), which provide additional features

(namely reliability and flow control).

Both groups are coupled through state vector maintained separately per flow; every active flow

has its state vector holding state information. Tightly-bound mechanisms (e.g., ordering of sequence
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number) write to state vector, whereabouts loosely-bound mechanisms (e.g., loss detection) read it. For
instance, the behavior of retransmission and flow control can be heavily influenced by chosen policies
and they can be used independently on each other.

This and the use of abstract/concrete syntax implies that only single generic data transfer
protocol based on Delta-t is needed, which may be governed by different transfer control policies. This
data transfer protocol modifies state internal to its PM, where application protocol (carried inside)
modifies state external to PM.

5.1.6  Naming and Addressing

Application Process communicates in order to share state. In 5.1.1, we mentioned that AP consists of
AEs. We need to differentiate between different APs and also different AEs within the same AP. Thus,
RINA is using Application Process Name (APN) as globally unambiguous, location-independent,
system-dependent name. Application Process Instance ldentifier (API-id) differentiates between
multiple instances of the same AP in the system. Application Entity Instance Identifier (AEI-id),
which is unambiguous for a single AP, helps us to identify different AE instances of same Application
Entity Name (AEN) within AP. Application Naming Information (ANI) references a complete set of
identifiers to name particular application; it consists of four-tuple APN, API-id, AEN, and AEI-id. The
only required part of ANI is APN; others are optional. Distributed Application Name (DAN) is
globally unambiguous name for a set of system-independent APs.

IPC Process has APN to identify it among other DIF members. A RINA address is a synonym
for IPCP’s APN with a scope limited to the layer and structured to facilitate forwarding. APN is useful
for management purposes but not for forwarding. Address structure may be topologically dependent

(indicating the nearness of IPCPs). APN and address are simply two different means to locate an object

in different contexts. There are two local identifiers necessary for IPCP functionality — port-id and
connection-endpoint-id. Port-id binds this (N)-IPCP and (N+1)-IPCP/AP; both of them use the same

port-id when passing messages. Port-id is returned as a handle to the communication allocator and is

unambiguous within a computing system. Connection-endpoint-id (CEP-id) identifies a shared state
of one communication endpoint. Since there may be more than one flow between the same IPCP pair,
it is necessary to distinguish them. For this purpose, Connection-id is formed by combining source and
destination CEP-ids with QoS requirements descriptor. CEP-id is unambiguous within IPCP and
Connection-id is unambiguous between a given pair of IPCPs. Fig. 51 depicts all relevant identifiers
between two IPCPs.

Watson’s delta-t implies port-id and CEP-id in order to help separate port allocation and
synchronization. RINA’s connection is a shared state between N-PMs — ends identified by CEP-ids.

RINA’s flow is when connection ends are bound to ports identified by port-ids. The lifetimes of flow

and its connection(s) are independent of each other.
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The relationship between node and PoA is relative — node address is (N)-address, and its POA

is (N-1)-address. Routes are sequences of (N)-addresses, where (N)-layer routes based on this addresses
(not according to (N-1)-addresses). Hence, the layer itself should assign addresses because it

understands address structure.

IPCP A1
Port allocation
Structured
IPCP address
n IPCP B.2
|
Ports with
port-ids | Connection-id
EFCPIs with nection Clglr’C-id Clglit-id user-data
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State synchronization

Fig. 51: IPCP local identifiers overview
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5.2 RINA Components

To understand RINA architecture means to understand each of its elements. This subchapter starts with
a description of high-level RINA network nodes and then goes deeper and outlines various IPC
Management and IPCP components.

5.2.1  Nodes

There are only three basic kinds of nodes in RINA network (illustrated in Fig. 52). Each kind represents
computing system running RINA:

e Hosts — end-devices for IPC containing AEs in the top layer; they employ two or more DIF
levels;

e Interior routers — interim devices, which are interconnecting (N)-DIF neighbors via multiple
(N-1)-DIFs; they employ two or more DIF levels;

e Border routers — interim devices, which are interconnecting (N)-DIF neighbors via (N-1)-

DIFs, where some of (N-1)-DIFs are reachable only through (N-2)-DIFs; they employ three or
more DIF levels.
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Fig. 52: Example of RINA network with three levels of DIFs and different nodes
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As seen in Fig. 52, the main difference between node kinds is in an overall number of DIF levels
present in a computing system. Due to the limited number of network interface cards (NIC), Hosts
usually have a single 0-DIF (connected to the physical medium) and a few 1-DIFs leveraging on this
lowest level DIF. Interior routers have potentially a lot of 0-DIFs (for each interface) but only a few
relaying 1-DIFs. Border routers also perform relaying but serve as gateways between those (N-1)-1PCs,
which are not connected directly. Thus, (N-2)-DIF is needed to reach physical medium.

5.2.2  Distributed Application Process Components

IPC Management is an integral part of any DAP responsible for managing supporting DIFs and
providing their services to participating APs. IPC Management consists of following components
depicted in Fig. 53:

i IPC Management
: RIB \
Application Process
with |
Application Entities ; —— @— DIF Allocator i
Interface |
/" SDU Protection —— .\
i \ IPC Resource |
: / Manager
Relaying & Multiplexing RIB Common Distributed

Task Daemon Application Protocol

Fig. 53: Distributed Application Process components

Only IPC Resource Manager and DIF Allocator interface are exclusive to IPC Management,

other components are also present in IPC Process and described later.

DIF Allocator
The primary task of DIF Allocator (DA) is to return a list of DIFs where destination application may
be found given ANI and access control information. Additional and more complex DA description is

available in [143]. DA contains and works with multiple mapping tables to provide its services:

e Naming information table — provides association between APN and its synonyms;
e Search table — provides mapping between requested APN and the list of DAs where to search
for it next;

e Neighbor table — maintains a list of adjacent peers when trying to reach other DAS;
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e Directory — contains records mapping APNs with access rights to the list of supporting DIFs

including DIF’s name, access control information and provided QoS.

IPC Resource Manager

IPC Resource Manager (IRM) (see specification [144]) as its name suggests manages DAF resources.
This involves multiple different tasks:

IRM processes allocate calls by delegating them to appropriate local IPCPs in relevant DIFs;

e IRM manages DA queries and acts upon their responses. When the DA response contains more
than one DIF, IRM chooses which DIF to use;

e IRM administers the use of flows between AEs and DIFs. IRM may choose to multiplex a single
or multiple AE flows into a single/multiple flows to a set of DIFs;

e |IRM initiates joining or creating DAF and/or DIF. IRM acts upon the DAF, or DIF lost (e.g.,

sending notifications or perform subsequent actions).

5.2.3 IPC Process Components

IPC Process is instance within DIF, which allows the computing system to do IPC with other DIF
members. Each IPC process performs (secure/reliable) data transport, (authenticated) enrollment,
(de)allocation of resources, routing, management and more. Functions could be categorized under one
of following categories: a) data transfer; b) data transfer control; and ¢) IPC management. Each category
with different processing timescale and complexity —a) is simplest and performed the most often, c) the

least often but the functionality is rather complex.
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Fig. 54: IPC Process components
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IPC provides API to a DIF/DAF above, which requested its service. Basic IPC API offers four
operations: allocate (allocates communication resources); deallocate (releases previously allocated
resources); send (passes SDU to IPC) and receive (retrieves SDU from IPC). Calls may be further
subdifferentiated as allocate request, allocate response, deallocate submit and deallocate deliver.

Graphical representation of IPC Process and its most important components is depicted in Fig.
54. A brief description of each component and their functionality is provided below figure. Some
components outlined below also contain policy descriptions. Those policies are mentioned because they
are relevant to our contribution. The complete list of current policies with a brief info is in Addendum
8.5.

Enrollment

Enrollment takes place whenever IPCP joins existing DIF. IPCP newcomer creates a connection with
another IPCP (which is already a member) allocating (N-1)-flow. It is then authenticated to whatever
degree required by the policy. Enroliment occurs after successful connection establishment. Enroliment
procedure of a new member should be dependent on a connection use-case. For instance, there may be
a different exchange of messages for: a) the new member joining DIF for the first time; b) the IPCP that
had been already a member of DIF and right now is rejoining. The new member either tells or gets its

address to/from a DIF. Enrollment procedure is codified in [145].
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Delimiting
SDU in RINA is a unit of data that is delivered as a whole at the destination. IPC might fragment SDU
(when passing it down) or re-assemble user-data (when passing it up). Hence, the operation performed
by Delimiting module (for specification see [146] and [147]) is to delimit SDU into/from PDU’s user-
data preserving its identity. Employed mechanism indicates the beginning and/or the end of SDUs.
Either internal (special pattern) or external (SDU length in PCI) delimiting could be used.
Encapsulation/Decapsulation of data messages happens in RINA components lying in the data
path. Fig. 55 depicts this process DIF/DAF together with messages nomenclature.

Data Transfer with Error/Flow Control

Error and Flow Control Protocol (EFCP) is split into two independent PMs coupled and coordinated
through a state vector. As EFCP name suggests, EFCP guarantees data transfer and data control. Full
EFCP functionality is described in [148]. However, these specifications are currently being revisited.

Data Transfer Protocol (DTP) implements mechanisms tightly coupled with transported
SDUs, e.g., fragmentation, reassembly, sequencing. DTP PM operates on a data PDU’s PCI with fields
requiring minimal processing — source/destination addresses, QoS requirements, Connection-id,
optionally sequence number or checksum. DTP carries user-data.

Data Transfer Control Protocol (DTCP) implements mechanisms that are loosely coupled
with transported SDUs, e.g., (re)transmission control using various acknowledgment schemes and flow
control with data-rate limiting. DTCP functionality is based on Watson’s Delta-t and DTCP PM
processes control PDUs. DTCP provides error and flow control over user-data.

There is EFCP instance (EFCPI) module per every active flow. EFCPI consists of DTP and
DTCP submodules. DTCP policies are driven by the quality of service demands. DTCP submodule is
unnecessary for flows that do not need it, i.e., flows without any requirements for reliability. The
relationship between DTP and DTCP is illustrated in Fig. 56. Depicted are also data transfer and data

control transfer paths. Control traffic stays out of the main data transfer.

EFCP instance
Al
data traffic — | i | R RS control traffic
L
il : : N
| v

Tightly-bound State Vector Loosely-bound
DTP DTCP

Fig. 56: EFCP instance divided into DTP and DTCP part
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Relaying and Multiplexing Task

Relaying and Multiplexing Task (RMT) modules have two primary responsibilities — relaying and
multiplexing as characterized in [149]. The goal of multiplexing is to pass PDUs from EFCPIs and RIB
Daemon to appropriate (N-1)-flows and reverse of that. Relaying handles incoming PDUs from (N-1)-
ports that are not directed to its IPCP and forwards them to other (N-1)-ports using the information
provided by its forwarding policy.

RMT instances in hosts and bottom layers of routers usually perform just the multiplexing task,
while RMTs in top layers of interior/border routers do both multiplexing and relaying. In addition to
that, RMTs in top layers of border routers perform flow aggregation. Primary RMT functions are
demonstrated in Fig. 52.

Each (N-1)-port handled by RMT has its set of input and output buffers. The number of buffers,
their monitoring, their scheduling discipline and classification of traffic into separate buffers are all
matter of policies.

RMT is a straightforward high-speed component. As such, most of its management (state
configuration, forwarding policy input, buffer allocation, and data rate regulation) is handled by the
Resource Allocator, which makes the decisions based on observed IPC process performance.

Each IPC process has to solve the forwarding problem: given a set of EFCP PDUs and (N-1)-
flows leading to various destinations, to which flow should be each PDU forwarded? In RINA, the
decision is handled by the RMT and its PDUForwardingPolicy. The PDUForwardingPolicy may
consist of looking up the PDU's destination in its forwarding table (resembling the forwarding
mechanism in traditional TCP/IP routers). When in need of deciding for an output (N-1)-port for a PDU,
the PDUForwardingPolicy is given the PDU's PCI and then it returns a set of (N-1)-ports to which the
PDU has to be sent. This provides enough granularity to implement multiple communication schemes
apart from unicast (such as multicast or load-balancing) because the decision is left to the
PDUForwardingPolicy. E.g., a simple forwarding policy would return a single (N-1)-port based on
PDU's destination address and QoS-id, whereas in case of a load-spreading policy and multiple (N-1)-
ports leading to the same destination, the policy could split traffic by PDUs' flow-ids and always return

a single (N-1)-port from the set.

SDU Protection
SDU Protection is the last part of the IPCP data path, before an SDU is handed over to an underlying
DIF. It is responsible for protecting SDUs from untrusted (N-1)-DIFs by providing mechanisms for
lifetime limiting, error checking, data integrity protection and data encryption. It also provides
mechanisms for data compression and a potential placeholder for other two-way manipulations.

SDU Protection handles each (N-1)-flow separately due to different levels of trust. This gives
SDU Protection the ability to skip some mechanisms in favor of performance for trusted networks while

still being protected from untrusted networks. Therefore, SDU Protection employs various policies, e.g:
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a) NullSDUProtection that performs no transformations; b) BasicSDUPTrotection that applies life time
limiting and error checking; c) CryptographicSDUProtection that extends the BasicSDUProtection by
adding cryptographic encryption of data and an integrity check using a cryptographic hash of the content.

Flow Allocator

Flow Allocator (FA) processes allocate/deallocate IPC API calls and further management of all IPCP’s
flows. FA instantiates a Flow Allocator Instance to manage each flow; FA is controller/container for all
Flow Allocator Instances.

Flow Allocator Instance (FAI) is created upon allocate request call, and it manages a given
flow for its whole lifetime. FAI handles creating/deleting EFCPI(s) while managing a single flow’s
connection. FAI returns port-id to the allocation requestor upon successful allocation as a referencing
handle. FAI participates only on port allocation, not on synchronization, which is the responsibility of
EFCPI. The FAI maintains a mapping between flow’s local port-id and connection’s local CEP-id.

FA contains Namespace Management (NSM) interface for assigning and resolving names
(including synonyms) within DIF. This activity involves maintaining the table with entries that map
requested ANI to IPCP’s address.

Flow object contains all information necessary to manage any given flow between
communicating parties. It is carried inside create/delete flow request/response messages controlling FA
and FAI operation. Flow object contains: source and destination ANI, source and destination port-ids,
connection-id, source and destination address, QoS requirements, a set of policies, access control
information, hop-count, current and maximal retries of create flow requests.

Flow allocation processes for (N)-DIF between two APs on different systems is depicted in Fig.
57. It assumes that relevant (N-1)-flows have been already allocated using the same principle as the one
being described but on different DIF’s rank.

#1) AP1 issues allocate request that is delivered to IPCP A.1. If it is valid and well-formed then it
spawns FAI to manage requested flow. FAI resolves AP3’s APN to one of DIF A addresses
(A.3). It instantiates EFCPI (with CEP-id) and creates bindings between EFCPI and RMT.
Create flow request is sent as the last step;

#2) Create flow request arrives at “System 2”. IPCP A.2’s FA processes the request and discuss
NMS. It discovers that request is not intended for any local AP. FA looks up the destination
discovering that A.3 should be a next-hop. FA forwards the request to “System 3”;

#3) The request arrives at IPCP A.3. Over there, FA determines by querying NMS that create flow
request destination address is its address. Thus, destination AP resides on this system. FAI is
spawned and determine whether the request can be accommaodated. If not then negative create
flow response is sent back to the requestor. Otherwise, FAI notifies destination AP with allocate

request;
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#4) If destination AP accepts or rejects the request then either positive, or negative allocate response
is returned to FAI. Based on the response, FAI binds port-id, instantiates EFCPI, creates
bindings. Flow object is updated (with local port-id and CEP-id) and sent back as
positive/negative create flow response. Response is just relayed (not processed) on interior
routers (IPCP A.2);

#5) Originating A.1’s FAI receives create flow response and updates relevant flow object. If the
response is positive, then, FAI notifies source AP with positive allocate response and APs may
commence data transfer. If the response is negative, then FAI invokes retry policy to correct
flow creation or deal appropriately with failure (i.e., passing negative allocate response).

s
Host Interior Host
Router
— : —
System 1 System 3
/ AP1 AP3
W
= S ?O ?O
\ . System 2 @ .
/ IPCP A1 IPCP A2 PCP A3
L
3 - 0 o 5% O
= ‘ y - 3
=l gull D] Lal? S Ap
\ 5 — N |

Fig. 57: Flow allocation process

Original specification [150] were refined as the subject of this thesis contribution. Detail
description of flow allocation and deallocation is provided in Figures Fig. 58, Fig. 59, Fig. 60 and Fig.
61. Transitions are denoted with “input / ” labels. FA and FAI maintain state for any given flow
and refuse inappropriate transitions (e.g., initiating deallocation before the allocation is successful).
These transitions are omitted for clarity. There are four different FSMs. Fig. 58 depicts FA operation
reacting upon notification from RIBd. Fig. 59 and Fig. 60 show flow allocation procedure for initiating
and responding FAIs. Fig. 61 illustrates flow’s lifecycle after successful allocation, and it is mutual for

both initiating and responding FAlIs.
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NewFlowRequstPolicy is invoked after FAI’s instantiation. Policy subtasks involve both
1) evaluation of access control rights; and 2) translation of QoS requirements specified in allocate
request to appropriate RA’s QoS-cubes. AllocateRetryPolicy occurs whenever initiating FAI receives
negative create flow response. This policy allows FAI to reformulate the request and/or to recover
properly from failure. AllocateNotifyPolicy controls a proper time when source AP is going to be notified
of the result of allocation by initiating FAL. It may be either when EFCPI is created, or when allocation
is confirmed by destination or any other notification strategy may be employed. SeqRollOverPolicy is
invoked simultaneously by both initiating and responding FAIs whenever PDU’s sequence number
threshold is reached. The policy usually spawns new EFCPIs and changes bindings.

Flow Allocator

Allocate Request

FAI successfully created
/

NewFlowRequestPolicy

policy failed

Map QoS to

& RA'’s Qos-cubes O
policy succeeded
/

M_CREATE flow)

FAI successfully created

Deallocate Request

/

O >0

Fig. 58: Flow Allocator operation
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Fig. 59: Flow Allocator Instance operation of initiating IPCP
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Responding Flow Allocator Instance
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Fig. 60: Flow Allocator Instance operation of responding IPCP before the flow was allocated
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Fig. 61: Flow Allocator Instance operation after the flow was allocated
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Resource Allocator

If a DIF has to support different qualities of service, then different flows will have to be allocated to
different policies and traffic for them treated differently. Resource Allocator (RA) delineated in [151]
is a component accomplishing this goal by handling management of various IPCP resources, namely it:

e controls creating/deleting and enlarging/shrinking of RMT queues;

e modifies EFCPI’s DTCP policy parameters;

e controls creating/deleting of (N-1)-flows and their assignment to appropriate RMT queue(s);
e manages QoS classes and their assignment to RMT queue(s);

e manages routing information affecting RMT’s relaying or initiates congestion control.

RA maintains a catalog of meters and dials by monitoring various management resources. Each
catalog item can be manipulated and shared with other IPC processes within DIF.

Generating information necessary for PDUForwardingPolicy is one of the tasks of RA, namely
its subcomponent called PDU Forwarding Table Generator. For this purpose, RA uses pieces of
information provided by other sources, most notably the RoutingPolicy.

The RoutingPolicy exchanges information with other IPCPs in the DIF in order to generate a
next-hop table for each PDU (usually based on the destination address and the id of the QoS class the
PDU belongs to). The next-hop table is then converted into a PDU Forwarding Table with input from
the PDU Forwarding Table Generator, by selecting an N-1 flow for each "next-hop". RoutingPolicy may
resemble distance vector and link-state routing protocols used in today's Internet, but the current research
is also aimed at other paradigms such as topological/hierarchical routing, greedy routing or MANET -

like routing.

RIB Daemon

All information maintained by IPC tasks such as FA, RA, and others is available and updated through
RIB Daemon (RIBd) described in [152] and [153]. Information exchange is necessary to coordinate
the distributed IPC. Different update strategies for different kinds of information may be used to
synchronize state between different DIF member subsets.

Resource Information Base (RIB) is a logical database of information accessible via RIB
Daemon. By logical database, we mean that some of RIB information may be stored in the dedicated
database and the rest of IPCP components. Periodic or solicited events can cause RIB to be
queried/updated by IPCP peers via management CDAP messages (e.g., routing updates). RIBd provides

an API to perform an operation on both local and remote RIB.

Common Distributed Application Protocol

Subsection 5.1.1 postulates that there is only a single application protocol required and this is the

Common Distributed Application Protocol (CDAP). DIFs use CDAP for all non-data communication
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(i.e., IPC management such as maintaining RIB, controlling flow allocation, joining a DIF). DAFs may

not use CDAP for backward compatibility. However, CDAP expressiveness should allow the transition

of legacy protocols. CDAP is based and patterned on two existing protocols — ACSE (see [154] and
[155]) for the establishment phase, CMIP [156] for the data transfer phase.
Establishment subpart is called out separately (for legacy protocols it may be used as a wrapper

providing authentication service). Data transfer subpart is object-oriented (with built-in scope and filter

support) protocol offering six primitive operations: create; delete; read (i.e., get value); write (i.e., put

or set value); start (i.e., execute action) and stop (i.e., suspend action). The collection of objects is

dependent on used AE, which provides access rights to them.

CDAP has modular structure composed of three submodules to provide flexibility:

e The common application connection establishment (CACE) submodule;

e The authentication (Auth) submodule provides authentication of the communication endpoints.

A range of submodules will be available to support different kinds (e.g., none authentication,

shared password, certificates) of authentication policies employing different cryptographic tools

(e.g., a-/symmetric ciphers for confidentiality, MAC codes for integrity);
e The CDAP submodule.

CDAP offers following eighteen message types summarized in Tab. 13 [157]:

Opcode Description

M_CONNECT Initiate a connection from a source application to a destination application
M CONNECT R Res_por?se to M_CONNECT carries connection information or an error
- - indication
M_RELEASE Orderly close of a connection
M_RELEASE R Response to M_RELEASE carries final resolution of close operation
M_CREATE Create an application object
Response to M_CREATE carries result of creating request, including
M_CREATE R identification of the created object
M_DELETE Delete a specified application object
M _DELETE R Response to M_DELETE carries result of deletion attempt
M_READ Read the value of a specified application object
M _READ R Response to M_READ carries part or all of object value or error indication

M_CANCELREAD

Cancel a prior read issued using M_READ for which a value has not been
completely returned

M_CANCELREAD R

Response to M_CANCELREAD indicates outcome of cancelation

M_WRITE Write a specified value to a specified application object
M_WRITE_R Response to M_WRITE carries result of write operation
Start the operation of a specified application object, used when the object
M_START ! .
- has operational and non-operational states
M_START R Response to M_START indicates the result of the operation
M STOP Stop the operation of a specifigd application object, used when the object
- has operational and non-operational states
M_STOP_R Response to M_STOP indicates the result of the operation

Tab. 13: CDAP message types
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Connection management between two applications is divided into two traditional phases —
establishment and data transfer. An AP issues allocate request to underlying DIF’s IPCP specifying the
destination APN and QoS requirements. If the allocation is successful, IPCP returns port-id to be used
as a handle for all communication leveraging this flow. When the previous phase is completed, CACE
sends a M_CONNECT message to start authentication using Auth submodule. Additional message
exchange might follow in order to support different authentication mechanisms. If it is successful then
the connection is established and CDAP transits to data transfer phase.

Another contribution is further refinement of CACE specifications [158]. Detail description of
CDAP operation is provided in Figures Fig. 62, Fig. 63 and Fig. 64. Once again transitions are denoted
with “ / ” labels. There are three different FSMs. Fig. 62 depicts establishment phase on
initiating the process. Fig. 63 shows the same but from the perspective of the responding process. Fig.
64 outlines data transfer phase for both initiator and responder once they successfully reach
“Established”. For the sake of readability, only correct transitions are shown. Incorrect transitions upon
receiving unexpected CDAP message terminate from any state in “Error” marked as “ ?
Both initiator and responder might « ”, thus entering “Deallocating” state at any

given moment.
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entry: reset timer

>
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Fig. 62: Establishment phase on initiating process
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Fig. 64: Data transfer phase on initiating/responding process

Depending on whether (N-1)-flow should be preserved or not, the transition from

“Deallocating” (based on keepFlow boolean) may delete any state associated with connection and
transit to the “Null” state.
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5.3  State-of-the-Art

This subchapter mentions coordinated research activities concerning RINA. Moreover, notable
implementations are introduced and facts about RINA readiness and deployment status.

5.3.1 Projects

RINA is successfully targeted in the frame of multiple EU projects as an alternative to traditional TCP/IP

stack. Here is a list of projects and their main interests concerning RINA:

e [RATI [159] — IRATI advances the state-of-the-art of RINA towards an architecture reference
model and specifications that are closer to enable implementations deployable in production
scenarios. The design and implementation of IRATI prototype on top of Ethernet permits further
evaluation and deployment of RINA in real computer networks;

e [RINA[160] — IRINA aims to compare RINA against TCP/IP in a lab environment using IRATI
prototype. Moreover, it proposes use-cases, where RINA is better option for NREN™ scenarios;

e PRISTINE [161] — PRISTINE investigates programmability of RINA architecture, namely its
separation of mechanisms and policies to achieve more flexible behavior of network

components;

5.3.2 Implementations

IRATI Stack

IRATI [162] is an open source network stack implementation of the RINA targeted to the OS/Linux
system written in C. It consists of a kernel (packet handling) and user-space (IPCP configuration) parts.
Currently RINA stack may operate either over TCP (using port numbers) or directly over Ethernet (using
VLAN tags) employing Shim DIFs (see [163] and [164]). The main component is IPC Manager that

handles creation/destroying of IPCPs and governs flow allocation.

ProtoRINA
ProtoRINA [165] is a Boston University's RINA user-space prototype written in Java. ProtoRINA

provides a limited framework for experimenting with RINA concepts within GENI™ testbed (see [166]).

5.3.3  Simulators

We are not aware of any existing discrete-event simulator that could be used for research or educational

tool. None, apart from our own RINASim exhaustively described in the following section.

0 National research and education network (NREN): E.g., Czech CESNET or European GEANT. For more,
see https://en.wikipedia.org/wiki/National research and education network
"1 Global Environment for Network Innovations (GENI). For more, see http://www.geni.net
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5.4  Contribution

Simulation often serves for validating and verifying new technologies, which do not have a yet
implementation. The simulation also finds weak points and drawbacks during test runs and subsequently
allows one to enhance development process based on feedbacks. Hence, the implementation of the
RINA Simulator (RINASim) is a natural step to support ongoing research and development of the
Recursive Internet Architecture.

We are developing the RINASIm in the frame of European project PRISTINE. RINASIim is a
stand-alone framework for OMNeT++ discrete event simulator environment. RINASiIm is coded from
scratch and independent on another library. The main purpose is to offer the community with reliable
and the most up-to-date tool (in the sense of RINA specification compliance) for simulating RINA-
based computer networks. Thanks to the OMNeT++’s built-in result analysis and graphical simulation
output, RINASim may be used not only for research but also as an educational tool.

This subchapter introduces RINASIm installation guideline, development design and
description of components interactions. Moreover, it illustrates RINA principles and RINASIim
functionality on one of the basic examples. Subchapter contains only the most relevant information due

to the limited space, for more, please see PRISTINE deliverable 2.4 [167].
54.1 Installation

RINASim is developed in OMNeT++ 4.6, but its source codes are fully backward compatible with older
OMNeT++ versions that support C+11 language standard and GCC 4.9.2 compiler. All source codes
(including master and other thematic branches) are publicly available on the project’s GitHub repository
[168]. Apart from this official channel, RINASim stable release snapshots are periodically published on
Open Source Project repository [169].

RINASim installation is a straightforward process with two phases: 1) importing the project into
OMNeT++ IDE; 2) compiling the project, which creates one static library (1ibrinasimcore
containing simulation core) and one dynamic library (1ibrinasim also containing various policies

linked together with core).

54.2 Design

This subsection provides a general overview of RINASIim components design, which includes high-
level abstract models of computing systems (like hosts and routers) and also their low-level submodules
(like IPCP). In general, a structure of RINASim models follows the structure proposed in the RINA
specification. This intentional correspondence enables anyone understanding the RINA specifications
to easily orient in RINASIim too. Though this structure does not always stand for the most natural

representation of RINA concepts in simulation models, it provides a framework for evaluating properties
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of the architecture and to identify missing or inaccurate information in the original specification. During
the design of simulation models, we were able to identify several places where specifications should be
refined to provide complete and unambiguous information. Following lines reflect RINASim design
relevant to a date of this thesis.

Computing System Modules

RINASIm offers a variety of high-level models simulating the behavior of independent computing
system. These models can be employed to set quickly up simulation experiments. Through
parameterization and extension, it is possible to test different deployments and settings. Based on the

RINA specifications, we can distinguish between the following node types:

e Host nodes, which represent devices or systems that run distributed applications. These nodes
implement the full RINA stack and, also, contains an application process(es). AP instances are
configured to communicate with each other to simulate the behavior of an arbitrary RINA
application. Currently, there are several predefined host nodes depending on a number of APs
and AEs. Fig. 65 illustrates some of host nodes internal structure. The most of depicted hosts
contain two IPCPs, which models usual end-system with a single NIC. The host may contain
only single IPCPs, which would allow IPC with only one directly connected neighbor.
Alternatively, host may contain more than two IPCPs; (0)-rank IPCPs represent multiple NICs,

and (1+)-rank IPCPs represent different DIFs host memberships;
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Fig. 65: Host nodes structure examples

Routers (intermediate nodes), which can be either interior or border. A router is a device that
interconnects different underlying DIFs and often does not run user applications. Just as in
RINA specification, there are either interior or border routers depending on DIF stack depth
(influenced partially also by a number of interfaces). Fig. 66 illustrates two interior routers and

one border router simulation models.
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Fig. 66: Router nodes structure examples

Of course, there are many more possible combinations of host and router configurations than
the ones currently defined in RINASim. However, the aim of providing predefined node models is not
to cover all of the possible combinations but rather to offer the most used ones enabling to set quickly
up simulation scenarios. Defining new node or router with suitable structure is not a complicated task.

Nevertheless, the present collection of available models seems to be enough.

Policies

RINA specifications present the proposed network architecture as a generic framework, where
mechanisms are intended to perform basic common functionality and policies are defined to select the
most appropriate implementation of variable functionality. Rather than providing an exhaustive
implementation of policies for each parameterized function, RINASiIm provides interfaces that are used
by the core implementation to call functions defined by the selected policies.

The RINASiIm policy framework is based on OMNeT++ NED module interfaces [170], which
helps to minimize the need for modifying existing C++/NED source codes. Instead of placing a simple
module with a policy implementation inside the simulation network graph, a placeholder interface
module is used. This design allows the potentially unlimited amount of user policy implementations to
be defined and easily switchable via the configuration files (by setting a proper parameter of the
encompassing module). Each policy consists of an NED module interface and a base C++ class. Fig. 68
shows an example of policy module interfaces (modules with “Policy” suffix in names) with loaded

policies (blue labels above them).

DAF Modules

DAF components can be divided into three submodules: a) Application Processes (containing one or
more Application Entities), which represents IPC endpoints; b) IPC Resource Manager, which
interconnects APs and available IPCPs; c¢) DIF Allocator, which helps during APN discovery and
management process. Components relationship and internal structure (described below) are depicted in
Fig. 67.
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The applicationProcess module contains applicationEntity submodules for each
flow representing the connection between two applications. applicationEntity handles enforcing
access control (by evaluating flow allocation requests), flow management and governing application
protocol. Each applicationEntity contains iae (submodule interface, which allows pluggable
change of application protocols) and the commonDistributedApplicationProtocol
submodule that sends and receives messages on behalf of applicationEntity.

The commonDistributedApplicationProtocol submodule provides a simple object-
based protocol for distributed applications. Currently, it is the part of RIBd and AE. CDAP is modeled

as a compound module consisting of five main submodules:

e cace — Common Application Connection Establishment protocol instance processing
M_CONNECT and M_RELEASE requests and responses;

e auth — providing authentication services during connection initialization); cdap (providing
usual CDAP message exchange;

e cdapSplitter — delivering messages to appropriate upper submodules;

e cdapMsgLog — logger for an accounting of processed messages.

The difAllocator module handles locating a destination application based on its name. DA
is a component of the DAP’s IPC Management that takes ANI and access control information and returns
a list of DIF-names through which the requested application is available. Moreover, the
difAllocator module provides statically configured knowledge about simulation network graph.
The difAllocator modules consists of five auxiliary submodules that maintain state information

and help to deliver DA services:

e da — core functionality;

e namingInformation — mapping between APN synonyms;

e directory - mapping between APN and DIF-names;

e searchTable —mapping between APN and peer DA instance where to continue search;

e neighborTable — mapping between peer DA and neighboring DA instances.

The ipcResourceManager module currently queries DA module to find suitable IPCP and
relays communication between AE and IPCP. The ipcResourceManager consists of two

submodules:

e irm-acting as a broker between APs and IPCPs when handling the flow (de)allocation calls;

e connectionTable —maintaining state information for a given flows.
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DIF Modules

All currently implemented DIF components are enclosed to the IPCProcess container module
(instantiation of IPCP). The IPCProcess contains following submodules, and overall structure is

shown in Fig. 68:

e Enrollment, which governs enrollment of IPCP into DIF;

e Flow Allocator, which processes flow (de)allocation;

e EFCP, which provides data transfer services optionally with transfer control,

e Relaying and Multiplexing module, which handles incoming and outgoing PDUs;

e Resource Allocator, which monitors resources namely (N-1)-flows and available QoS;
e RIBDaemon, which is in charge of processing management messages;

e Routing policy, which maintains PDU forwarding rules.

The enrollment module is in charge of enrollment procedure, which occurs upon successful
connection establishment between IPCPs. It consists of core functionality submodule and table
(enrollmentTable) maintaining connection state of each enroliment FSM.

The f1lowAllocator module handles (de)allocation request and response calls from the IRM,
RIBDaemon or AE. The f1owAllocator module consists of three submodules (and currently three

supported policy interfaces):

e fa — core functionality involving instantiation of FAISs;
e nFlowTable — mapping between (N)-flow and bound FAI;

e fai <portId> <CEPid> - managing a whole flow lifecycle.

The Error and Flow Control Protocol is modeled as one compound module. This module
dynamically spawns efcpi <CEPid> (EFCP instance) and delimiting submodules per one flow.
There is also the efcpTable module maintaining bindings between Delimiting and EFCPI. Apart
from that, the MockEFCPI processes management PDUs sent/received by local RIBDaemon. Each
EFCPI contains the dtp submodule (providing data transfer services), the dtpState submodule
(maintaining state-vector) and a few policies related to DTP functionality. Optionally, EFCPI may also
contain the dtcp submodule and several DTCP policies, whenever transfer control is requested for a
communication (i.e., due to the reliable transmission demand).

The relayAndMux module represents a stateless function that takes incoming PDUs and relay
them within current IPC or pass them to an outgoing port. In particular the RMT takes PDUs from (N-
1)-ports, consults their address fields and perform one of the following actions: a) relay PDU between
(N-1)-ports; b) pass PDU to EFCPI; and ¢) multiplex PDU from EFCPI to (N-1)-port.

The relayAndMux consists of multiple simple modules of various types, some of them are

static, and some of them are instantiated dynamically at runtime. Among dynamically created modules
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are RMT ports (representing (N-1)-flow communication endpoints) and associated input/output queues.

Among static submodules are:

rmt — core functionality;

allocator —managing addition, removal and reconfiguration of RMT queues and ports;
pduForwardingPolicy — mapping table of destination addresses and QoS-ids to output
ports that is used by the relaying functionality of the RMT;

other policy module interfaces monitoring queue lengths and scheduling PDU departures.

The resourceAllocator monitors the operation of the IPCP and makes adjustments to its

operation to keep it within the specified operational range. Its forwarding and queuing functionality are

customizable by policies. The resourceaAllocator consists of multiple simple modules of various

types, namely:

ra — core functionality that manages connections to other local IPCPs with the help of
nmlFlowTable submodule;
pduFwdGenerator — uses custom policies to manage pduForwardingPolicy entries;

other policies executed upon RMT queue allocation.

The ribDeamon is the IPCP’s management heart. It receives/sends CDAP management

messages and notifies other submodules about management changes. RINASim’s RIBDaemon consists

of three submodules:

ribd - core functionality mainly listening to calls from other DIF components and notifying
them upon CDAP message reception;

commonDistributedApplicationProtocol — same submodule as in case of DAF

components description;

ribdSplitter - splitter is delegating CDAP management messages to/from the

mockEFCPI or appropriate EFCPIs.

The routingPolicy module is used by pduFwdGenerator to populate/update correctly

the pduForwardingPolicy.
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5.4.3 RINASIim Demonstration

This subchapter presents one of the many demonstration RINA simulations available in RINASim. The
goals are: a) to give a reader overview of RINASim capabilities; and b) to familiarize the reader with
RINA concepts on simple computer network example.

Network Graph and Setup
The motivation behind this particular simulation is to show ping-like application communication within
the simple network consisting of all different node types. Topology contains two host nodes (called
HostA and HostB), two border routers (called BorderRouterA and BorderRouterB) and one interior
router (called InteriorRouter) interconnected together as depicted in Fig. 69. Links between nodes are
configured with one millisecond fixed transmission delay, which means that sending a packet from
HostA to HostB takes four milliseconds.

There are totally six DIFs of three different ranks (network is just as in Fig. 52). Please notice
addressing scheme where the same node may use the same address on different DIF as long as they are
unambiguous within the layer’s scope. RINA address length and syntax is policy-dependent. The

demonstration uses flat address space with simple string addresses.

e Top most TopLayer DIF common to HostA (with address hA), BorderRouterA (address rA and
self-enrolled), BorderRouterB (address rB) and HostB (hB);

e Three middle DIFs MediumLayerA, MediumLayerAB and MediumLayerB. MediumLayerA is
common to HostA (ha) and BorderRouterA (address ra and self-enrolled). MediumLayerAB is
common to BorderRouterA (rA), InteriorRouter (address rC and self-enrolled) and
BorderRouterB (rB). MediumLayerB is common to BorderRouterB (address rb and self-
enrolled) and HostB (hb).

e Two bottom most DIFs BottomLayerA and BottomLayerB. BottomLayerA is common to
BorderRouterA (ra) and InteriorRouter (address rc and self-enrolled). BottomLayerB is common

to InteriorRouter (address rc and self-enrolled) and BorderRouterB (rb).
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Multiple noticeable events happen during demonstration:

1) If another IPCP wants to communicate within a given DIF, then, it needs to be enrolled by a
DIF member. Self-enrolled IPCPs are members of certain DIFs from the beginning of the
simulation, and they help other IPCPs to join a DIF. In order to allow IPC between any node,
the simulation is scheduled to commence enrollment of: BorderRouterA into BottomLayerA at
t=1s; BorderRouterA into MediumLayerAB at t=1.5s; BorderRouterB into TopLayer at
t=2s; and HostB into TopLayer at t=5s. The enrollment usually involves recursive calls of
enrollment procedures in lower rank DIFs.

2) The IPC comprises of flow allocation, data transfer, and optional flow deallocation. HostA and
HostB are configured for IPC using ping-like application (measuring one-way and round-trip
delays). In this case, flow allocation is initiated at t=10s, first ping is sent at t=15s and flow

deallocation occurs at t=20s.

Source codes of demonstration are located in /examples/Demos/UseCase5 folder and

include following files, which may be used as templates when creating other RINASim scenarios:

e UseCaseb5.ned—-OMNeT++ simulation network graph description which contains nodes and
interconnections definitions;

e omnetpp.ini (see Addendum 8.6.1 for details) — scheduled simulation setup with models
configuration (e.g., nodes addresses, ANI for AEs, pointers to XML configurations) applied
during network initialization;

e config.xml (see Addendum 8.6.2 for details) — additional more structured and complex
models configuration (e.g., DA’s mappings, RA’s QoS-cubes sets, preallocation and
preenrollment settings) in the form of XML data is loaded to the simulation using this file;

e * _anf — statistic collection setup file(s);

e . /results/* —results of various simulation runs containing gathered scalar and vector data.

By default, every RA contains implicit QoSCube (with Qo0S-id “MGMT-QoSCube”) that
defines QoS parameters (e.g., reliability, minimum bandwidth) for management traffic and guarantees
successful mapping of management SDUs onto appropriate (N)-flow. Apart from this default QoS-cube,
each RA loads QoS-cube set according to the simulation configuration. For demonstration, there are two
more QoS-cubes available for each RA called “QoSCube-RELIABLE” and “QoSCube-
UNRELIABLE” (same QoS parameters differing only in data transfer reliability). Please see Fig. 70 for
visualization of loaded QoS-cube.

DA implementation currently allows only static change of its settings (namely different kinds
of mappings). Hence, necessary configuration step is to initialize DA properly in order to provide

services to FA, RA and other components depending on naming information. Namely two DA’s tables
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are important for overall functionality — Directory (helps to search target IPCP for a given APN)

and NeighborTable (used by FA to find a neighbor IPCP for a given IPCP). Fig. 71 shows shared

directory information by all DA instances within the demonstration.

él— g this-> QoSCubes (std:list<QoS5Cubex)
this-»Qo5Cubes[3] (QoSCube)

-H[0] = Qo5Cube Id> Qo5Cube-UNRELIABLE

average BW = 12000000 bit/s, average SDU BW = 1000 3DU/s
peak BW duration = 24000000 bit/s, peak SDU BW duration = 2000 SDU/s
burst pericd = 10000000 usecs, burst duration = 1000000 usecs
undetect. bit errors = 0.01%, PDU dropping probability = 0%
max 5DU Size = 1500 B

partial delivery = no, incomplete delivery = no

force order = no

max allowed gap = 0 50Us

delay = 1000000 usecs, jitter = 500000 usecs

cost-time = 00 5/ms, cost-bits = 0 5/Mhb

A-Time = Oms

[—]—[J1] = Qo5Cube ld> QoSCube-RELIABLE

average BW = 12000000 bit/s, average SDU BW = 1000 5DU/s
peak BW duration = 24000000 bit/s, peak SDU BW duration = 2000 3DU/s
burst pericd = 10000000 usecs, burst duration = 1000000 usecs
undetect, bit errors = 0.01%, PDU dropping probability = 0%
max 50U Size = 1500 B

partial delivery = no, incomplete delivery = no

force order = yes

max allowed gap = 0 5DUs

delay = 1000000 usecs, jitter = 500000 usecs

cost-time = 0 §/ms, cost-bits = 0 5/Mb

A-Time = Oms

EI—[&] = QoSCube ld> MGMT-CoSCube

average BW = 12000 bit/s, average SDU BW = 10 3DU/s

peak BW duration = 24000 bit/s, peak 5DU BW duration = 20 5DU/s
burst pericd = 10000 usecs, burst duration = 10000 usecs
undetect. bit errors = 0%, PDU dropping probability = 0%
max SDU Size = 1500 B

partial delivery = no, incomplete delivery = no

force order = yes

max allowed gap = 0 50Us

delay = 0 usecs, jitter = 0 usecs

cost-time = 00 5/ms, cost-bits = 0 5/Mhb

A-Time = Oms

Fig. 70: Visualization RA's available QoS-cubes

Director (stda:list< DirectoryEntry =)
Director{9] (DirectoryEntry)

[0] = APM: Sourced is available via:
DIF: Toplayer, IPCaddress: ha

[1]1 = APN: DestinationB is available via:
DIF: Toplayer, IPCaddress: hB

[2] = APN: h&_Toplayer is available via:
DIF: MediumlLayerd, IPCaddress: ha

[3] = APN: hB_Toplayer is available via:
DIF: MediumlLayerE, IPCaddress: hb

[4] = APN: rA_TopLayer is available via:
DIF: MediumLayerd, IPCaddress: ra
DIF: MediumlLayerAB, IPCaddress: r&
[g] = APN: rB_Toplayer is available via:
DIF: MediumlLayerE, IPCaddress: rb
DIF: MediumlLayerAB, IPCaddress: rB
[6] = APN: rA_MediumLayerAB is available via:
DIF: BottomlLayerd, IPCaddress: ra
[7] = APN: rB_MediumLayerAB is available via:
DIF: BottomlLayerB, IPCaddress: rb

[L] = APN: rC_MediumLayerAB is available via:
DIF: BottomlLayerA, IPCaddress: rc
DIF: BottormlLayerB, IPCaddress: rc

Fig. 71: Visualization of Directory mappings

Simulation description is divided into two subsections. All events connected with enrollment

procedures are described in “Enrollment Phase” subsection and events related to data transfer between

HostA and HostB are in “Data Transfer Phase” subsection. The most important parts are descriptions of

the trivial enrollment use-case (steps marked with g*), trivial flow allocation use-case (steps marked

with ¢*). trivial recursion call (steps marked with 5*). They outline steps, which repeat upon similar

use-cases employing recursive calls.

Enrollment Phase

Whole enrollment phase is divided into four events. The first event is enrollment of BorderRouterA into

BottomLayerA at t=1s with the help of InteriorRouter as enroller:

El) ipcProcess2’s Enrollment module of BorderRouterA is scheduled to join the DIF BottomLayerA

just a second after the simulation started. Enrollment asks FA to provide management (N-1)-

flow (with destination address rc of InteriorRouter) to carry CACEP messages. Because

bottomIpc is 0-level DIF (i.e., it is directly connected to the medium), then RA returns
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automatically successful binding of the (N-1)-flow — recursion cannot continue below 0-level
DIFs;

E2) ipcProcess(’s Enrollment sends M CONNECT (with ra as source and rc as the destination
address) via RIBd to InferiorRouter. ipcProcess(’s Enrollment module leverages IPCP with
address rc within BottomLayerA (which is bottomlIpc of InteriorRouter) when joining this DIF.
Because management (N-1)-flow is inherently present, management messages can be sent
immediately. M CONNECT opens application connection for management messages between
BorderRouterA’s bottomlIpc and InteriorRouter’s ipcProcess(0,

E3) bottomipc’s Enrollment replies with positive M CONNECT R. With this message (sent from rc
to ra), bottomipc of InteriorRouter accepts application connection;

e4) ipcProcess(0’s Enrollment begins enrollment procedure by sending M START.

ES) InteriorRouter responds with M START R. Both of these messages contains
EnrollmentObj as abstract data structure holding relevant parameters such as current
address, address expiration time and APN. Enrol lmentObj allows to assign a dynamic
address to newcomer DIF member. Nevertheless, this scenario works only with statically
preconfigured addresses;

e6) Optionally, either InteriorRouter may send some M CREATE messages to populate
BorderRouterA RIB with information about neighboring [PCPs and their addresses.
Alternatively, BorderRouter4A may ask for this information using M READ messages.
Alternatively, alternatively, both can exchange some authentication objects proving the identity
of communicating parties.

£7) However, let us consider the simplest case, where botfomlpc’s Enrollment sends M STOP
immediately after M START R. InteriorRouter ends enrollment procedure because it has all the
necessary information from a joining member;

ER) ipcProcess(’s Enrollment replies with M STOP R. BorderRouterA finalizes enrollment by

sending this message as Acknowledgement.

The previous description outlines the most straightforward enrollment procedure that happens

between joining member and enroller. The contents of EnrollmentStateTable (as abstract data

structures holding information for IPCP’s DIF membership) illustrating above-mentioned event is

available in Addendum 8.6.3. Subsequent descriptions mention only notable changes because

enrollment steps e1-e8 (CACEP message exchange) are present in all of them.

The second event is joining of BorderRouterA into MediumLayerAB at t=1.5s once again

with the help of InteriorRouter as enroller:

cl) BorderRouterA’s ipcProcess2 is scheduled with enrollment procedure to join MediumLayerAB

leveraging InteriorRouter. Both IPCPs needs communication channel through which they may
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exchange management messages. Hence, BorderRouterA’s FA of ipcProcess2 receives request
for management flow (from Enrollment module) and asks RA to allocate appropriate (N-1)-
flow (with source ra and destination rc) for communication with InteriorRouter’s IPCP with
address rC;

¢2) ipcProcess2’s RA bothers bottomlIpc’s FA with allocation request because destination name
resolution returned bottomlIpc IPCP as being in the same DIF as IPCP with address rc.
bottomIpc’s FA creates EFCPI to handle this data transfer (from perspective of bottomIpc this
communication is just another data flow);

c3) bottomIpc’s FA sends M CREATE containing F1 ow object inside via RIBd (because bottomlipc
is already enrolled to the DIF BottomLayerA). F1low object describes all properties including
source’s and destination’s addresses, port-ids, CEP-ids, QoS demands and chosen QoSCube (in
case of management messages it is always predefined QoSCube with id “MGMT-QoSCube™);

c4) M_CREATE is delivered to ipcProcess(’s RIBd and FA, where it initiates the procedure for
processing of create request flow. On InteriorRouter, ipcProcess( IPCP represents (N-1)-DIF
for flow and relaylpc IPCP represents (N)-DIF for connection. Hence, ipcProcess0’s FA
notifies relayipc about possible flow allocation. relaylpc’s RIBd delegates this call to RA and
Resource Allocator decides whether it has enough resources to accept or not the new flow.

c5) ipcProcess(’s FA replies with positive M CREATE R. relaylpc’s RA responded positively to
allocation call. Therefore, ipcProcess(0’s FA instantiates opposite EFCPL, which involves the
assignment of local port-id/CEP-id and bindings of gates. Following this, ipcProcess()’s F A asks
ipcProcess(’’s RIBd to generate and dispatch M CREATE R with updated F1ow object stating
successful flow allocation;

c6) bottomIpc’s FA receives M CREATE R and notifies ipcProcess2’s RA about it. FA updates
local Flow object. Flow is effectively in place as a channel for communication between
BorderRouterA’s ipcProcess2 and InteriorRouter’s relaylpc. Hence, RA is alerted about (N-1)-
flow being ready and handles control back to Enrollment module;

¢7) Subsequently, steps el-e8 repeats, where IPCP with address rA (BorderRouterA) is enrolled
into MediumLaverAB by IPCP with address rC (InteriorRouter).

Create request/response flow calls are always accompanied by aforementioned steps ¢3-c7 and

exchange of M_CREATE and M_CREATE_R messages. State information for each flow are stored in

flowAllocator’s submodule called nFlowTable. Illustration of related BottomLayerA’s state

tables is depicted in Fig. 84.

The third event is an enrollment of BorderRouterB into TopLayer at t=2s. Enrollment is

scheduled on the top ranked IPCP (which is relaylpc) using BorderRouterA as enroller. Nevertheless,

neither BorderRouterB’s ipcProcess2, nor BorderRouterB’s bottomlpc is enrolled to its DIF. Hence,
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MediumLayerAB enrollment must occur before TopLayer enrollment, and BottomLayerB enrollment
must precede MediumLayerAB enrollment:

#1) relaylpc’s Enrollment asks FA for management (N-1)-flow in order to send CACEP messages
from rB to rA within TopLayer. Because it does not exist, RA delegates flow allocation to
ipcProcess2;

#2) ipcProcess2’s FA receives a call. FA checks whether there is management (N-1)-flow for create
request flow messages between rB (BorderRouterB’s ipcProcess2) and rA (BorderRouterA’s
ipcProcess2) within MediumLayerAB. There is none flow and more over BorderRouterB’s
ipcProcess2 is not even enrolled into MediumLayerAB. Hence, ipcProcess2’s FA notifies RA
that it need underlying management (N-1)-flow (from perspective of relaylpc it is (N-2)-flow)
for enrollment procedure;

#3) bottomlpc’s FA receives a call. Because bottomlpc is in O-level DIF, then RA returns
automatically successful binding of the management (N-1)-flow. Enrollment procedure occurs
between BorderRouterB’s bottomlpc and InteriorRouter’s ipcProcessl, which both are in
BottomLayerB DIF. Basically, IPCP with address rb successfully enrolls into BottomLayerB
using IPCP with address rc going through steps e1-g8;

#4) bottomlpc’s FA is notified about successful enrollment into BottomLayerB and continues with
flow allocation initiated during step #3. Hence, BorderRouterB’s bottomlpc and
InteriorRouter’s ipcProcess1 RIBds and FAs exchange messages as in steps ¢3-c7. Eventually,
management flow between rb and rc for MediumLayerAB communication is ready, and
BorderRouterB’s ipcProcess2 is alerted about this;

#5) ipcProcess2’s RA is notified about successful management flow allocation. Hence, enrollment
procedure initiated in step #2 may continue. IPCP with address rB (ipcProcess2 of
BorderRouterB) successfully enrolls into MediumLayerAB using IPCP with address rC
(relaylpc of InteriorRouter) going through steps e1-g8;

#6) ipcProcess2’s FA is notified about successful enroliment into MediumLayerAB and continues
with flow allocation initiated during step #2. Hence, BorderRouterB’s ipcProcess2 and
BorderRouterA’s ipcProcess2 exchange create request/response flow as in steps c3-c7. Notable
difference comparing to flow allocation in step #4 is that messages pass through InteriorRouter
(namely its relaylpc) as an interim device. Management flow between InteriorRouter’s relaylpc
and BorderRouterA’s ipcProcess2 is already present as the result of the second event of
“Enrollment Phase”. Eventually, management flow between rC and rA for TopLayer
communication is in place, and BorderRouterB’s relaylpc is informed,;

#7) relaylpc’s RA is notified about successful management flow allocation. Hence, enrollment
procedure initiated in step #1 may continue. All underlying connections are ready, and data path

for management messages exists between BorderRouterB and BorderRouterA on relevant DIFs.
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IPCP with address rB (relaylpc of BorderRouterB) successfully enrolls into TopLayer using
IPCP with address rA (relaylpc of BorderRouterA) going through steps e1-S8.

The fourth and the last event is an enrollment of HostB into TopLayer at t=5s. Enrollment is
scheduled on the top ranked IPCP (which is ipcProcessl) using BorderRouterB as enroller.
Nevertheless, BorderRouterB’s ipcProcessO is also not enrolled into its DIF (MediumLayerB). Hence,
MediumLayerB enrollment must occur before TopLayer enrollment. Situation is similar due to the

recursions as in previous use-cases. Hence, we will omit unnecessary details when describing this event:

Hl) HostB’s ipcProcess 1 checks existence of management (N-1) flow between HostB’s ipcProcess()
and BorderRouterB’s ipcProcessl. There is none flow. Thus one must be allocated before
enrollment procedure on TopLayer;

u2) Flow allocation call descend to HostB’s ipcProcess(). Over there is also as the first thing checked
whether management (N-1) flow exists. Because ipcProcess0 is in 0-level DIF, binding of
(N-1)-flow is automatically successful;

H3) HostB’s ipcProcess( (with address hb) enrolls into MediumLayerB DIF using BorderRouterB’s
ipcProcess1 (with address rb) as enroller going through steps E1-ES8;

u4) After HostB is successfully enrolled into MediumLayerB, management flow allocation from
step #2 continues. The flow between HostB’s ipcProcess( and BorderRouterB’s ipcProcessl is
created employing steps c¢3-c7. This flow is going to carry as data CACEP signalization
messages between HostB’s ipcProcess] and BorderRouterB’s relaylpc;

H5) HostB’s ipcProcessl 1s notified about management (N-1) flow presence and enrollment
procedure initiated in #1 continues. HostB’s ipcProcess0 (with address hB) is enrolled into

TopLayer DIF leveraging BorderRouterB’s relaylpc (with address rB).

The final state after “Enrollment Phase” is that all nodes IPCPs are enrolled (or self-enrolled)
into their DIFs except HostA’s IPCPs. All flows created during “Enrollment Phase” carries only CACEP
messages (for connection establishment) and they are intended for direct RIBd-to-RIBd communication

employing various management messages, thus, these flows are called management flows.

Data Transfer Phase
The main outcome of this scenario is a simulation of data transfer events between HostA and HostB
employing ping-like application (AEMyPing). This application sends probe request (M_READ) from
HostA to HostB, where HostB replies with the response (M_READ_R). One-way and round-trip time
delays are measured employing this simple application.

“Data Transfer Phase” is divided into three notable events — flow allocation, data transfer, and

flow deallocation. We will describe them in a similar fashion as the previous phase.
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Data flow allocation starts at t=10s. HostA’s applicationProcessl (with APN SourceA, API-
id 0, AEN MyPing, AE-id 0 as ANI parameters) requests flow for communication with HostB’s
applicationProcess1 (with APN DestinationB, API-id 0, AEN MyPing, AE-id 0 as ANI parameters).
Event goes through following set of steps:

#1) Allocate request is delivered to IRM. Over there, DA is asked to resolve destination ANI onto
IPC address within certain DIF available to HostA. The following result is returned yielding that
DestinationB is reachable via IPCP hB in TopLayer DIF;

#2) HostA can access TopLayer leveraging ipcProcessl. Hence, IRM delegates allocate request call
to ipcProcessl’s FA. As usually, FA instantiates EFCPI and verifies whether IPCP is enrolled
into DIF before any attempt for sending create request flow (analogous to steps c1-c2). The
situation is now similar to enrollment procedure of HostB because neither ipcProcessl nor
ipcProcessO are enrolled into their DIFs. Therefore, HostA repeats same steps H1-5, which
involve following actions performed due to the recursive calls in this order of finalization: a)
enrollment of HostA’s ipcProcessO into MediumLayerA by BorderRouterA; b) creation of
management flow between IPCP ha and IPCP ra within MediumLayerA; c) enroliment of
HostA’s ipcProcessl into TopLayer by BorderRouterA,;

#3) After successful enrollment of ipcProcessl, FA may continue with flow allocation. FA
exchanges create request/respond flow with HostB (analogously to c¢3-c7). This includes the
creation of (N-1)-flow between ha and ra in MediumLayerA and creation of (N)-flow between
hA and hB in TopLayer. However, it gets more complex in TopLayer DIF because M_CREATE
and M_CREATE_R messages must be relayed by border routers to reach HostB, which causes
additional recursive flow allocations between interim devices (i.e., BorderRouterA,
InteriorRouter, BorderRouterB). All interim devices are already enrolled into their DIFs, thus
established flows serve as carriers for HostA and HostB data transfer. The next steps briefly
describe this multi-action step;

#4) M_CREATE from HostA to HostB is received by BorderRouterA’s relaylpc. BorderRouterA
inspects create request flow and determines BorderRouterB with the help of DA as the next-
hop. Because border routers are not directly connected, they can communicate via
InteriorRouter as a proxy. Therefore, BorderRouterA establishes flow between ra and rc of
BottomLayerA and sends create request flow in MediumLayerAB.

#5) M_CREATE from BorderRouterA to BorderRouterB is received by InteriorRouter’s relaylpc.
The message needs to be relayed to BorderRouterB. Hence, flow is created between rc and rb
in BottomLayerB. Then, create request flow is forwarded within this DIF;

#6) M_CREATE from BorderRouterA to BorderRouterB within MediumLayerAB is received by

BorderRouterB’s ipcProcess2. BorderRouterB accepts flow and sends create respond flow that
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travels back to BorderRouterA. Because flow connecting both border routers (rA and rB within
MediumLayerAB) is established, flow allocation from #4 may continue;

#7) M_CREATE from HostA to HostB is received by BorderRouterB’s relaylpc after passing
through flows created during #5 and #6. BorderRouterB inspects create request flow and
determines that HostB is reachable via its MediumLayerB. In order to successfully relay
M_CREATE to its final destination, BorderRouterB allocates flow between rb and hb in
MediumLayerB. Subsequently, M_CREATE is forwarded to HostB;

#8) M_CREATE is received by HostB’s ipcProcessl1. FA notifies applicationProcess1 about current
flow allocation. applicationProcess1 accepts flow for data transfer between APs. The decision
is returned to ipcProcessl’s FA. IRM is asked to create bindings between AP and IPCP. FA
instantiates EFCPI, updates F1ow object and replies back to requestor with M_CREATE_R;

#9) M_CREATE_R is relayed via all flows formed during #4-#7 to HostA until ipcProcessl’s FA
receives this message. FA updates Flow object and notifies applicationProcessl about
successful flow allocation. Then IRM adds missing bindings and whole data path between
HostA and HostB is ready. (N)-flow in TopLayer can carry data traffic between AEs with the

help of all underlying flows.

The next event is a transfer of data traffic between AEs. HostA sends five ping-like probes
employing individual object inside M_READ message starting at t=15s. Upon reception of these
messages, HostB replies with probe response, which is dedicated M_READ_R message. Data path and
consistent flows are depicted in with different colors to get oriented in the following the description.

Event consists of five repetitions of two steps:

#1) HostA’s applicationProcessl sends a M_READ message, which is passed through IRM into
ipcProcessl to flow prepared during the previous event and descends to ipcProcessO. The
message travels through the medium and flow connecting HostA with BorderRouterA within
MediumLayerA, where it is received by ipcProcessl. It is relayed by BorderRouterA’s relaylpc
to ipcProcess2 and interconnecting BorderRouterA and BorderRouterB in
MediumLayerAB. Because border routers are not directly connected, the message is passed to a
lower bottomlpc into interconnecting BorderRouterA with the neighboring InteriorRouter
in BottomLayerA. Message traverses through the medium and it reaches InteriorRouter’s
ipcProcess0. Over there, message ascends to relaylpc, where is relayed within
MediumLayerAB. Then it descends to ipcProcessl into interconnecting InteriorRouter and
BorderRouterB in BottomLayerB. The message travels through medium to BorderRouterB’s
bottomlpc. It ascends to ipcProcess2 and is relayed by relaylpc to ipcProcessl. Finally, the
message reaches HostB’s ipcProcess0 through medium inside flow within MediumLayerB. It
ascends to flow in ipcProcessl (member of TopLayerB) and through IRM to HostB’s

applicationProcessl as recipient;
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#2) HostB’s applicationProcessl responds with M_READ_R message that returns to HostA
traveling in opposite direction through the same data (marked with violet line) path as in #1.
Depending on direction message is either encapsulated (from HostA to HostB green circles) or
decapsulated (from HostA to HostB orange circles) into/from PDU or relayed (brown circles).

3 — - &

HostA Border Interior Border HostB
RouterA Router RouterB
A A A A A
HostA HostB

BorderRouterA BorderRouterB

Top Layer
[—————1

MediumLayerA
giofeunipsyy

Physical medium Physical medium

Fig. 72: Data transfer phase illustration

After APs exchanged pings, HostA’s AE closes the connection and sends deallocate submit to
HostB at t=20s. Deallocation affects only flow present in TopLayer. Current RINASIim
implementation leaves underlying (N-1/2)-flows (i.e., those not directly connected with APS) intact

because they may be reused later by other applications. This event is accompanied by following steps:

#1) HostA’s applicationProcessl tells IRM to deliver deallocate submit. IRM disconnects from its
side port binding. Then, IRM delegates flow deallocation to ipcProcess1’s FA;

#2) This FA generates a M_DELETE message with updated F1ow object state inside and sends it
towards HostB through flow in TopLayer. Message follows data path leveraging existing
management flows created during enrollment phase;

#3) HostB’s ipcProcessl receives M_DELETE. FA updates its version of F1ow object. FA delivers
deallocation submit to HostB’s applicationProcess1, which tells IRM to remove bindings.

#4) ipcProcessl’s FA on HostB then replies with M_DELETE_R acknowledging successful flow

deallocation. This message is carried back to HostA,
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#5) HostA’s ipcProcessl receives M_DELETE_R. FA marks flow as deallocated and disconnects

remaining bindings between IPCP and IRM.

The result of flow (de)allocation and flow’s state is maintained in ipcProcessl’s NFlowTable

of HostA and HostB. We can inspect flow parameters in these tables as illustrated in Fig. 73. We can
see that two EFCPIs handled endpoints of data transfer — EFCPI with CEP-id 18 430 in HostA’s
ipcProcessl and EFCPI with CEP-id 60 067 in HostB’s ipcProcessl. Bindings between AP and IPCP
are ports identified with port-id 7 877 for HostA and port-id 57 495 for HostB. The only QoS demand
by AEMyPing is the reliability of data transfer (expressed with QoS attribute “force order” set to true).
Therefore, RA assigned QoSCube named “QoSCube-RELIABLE” to flows requested by this AE. F1ow

object between HostA and HostB in TopLayer was created at t=10s/10.026s and was deleted at

£=20.008s/20.004s.

HostA ipcProcess1 HostB ipcProcess1

Ié» NFlowTab (std:list<NFlowTableEntry>)
NFlowTab[1] (MFlowTableEntry)

[0] = STATUS: deallocated
FAlz (FAIfai.7877.18430

B MNFlowTab (std:list< NFlowTableEntry>)
MNFlowTab[1] (NFlowTableEntry)

[0] = STATUS: deallocated
FAlz (FAlfai.57495_6006T.

SRC= AP: SourceA (0) AE: MyPing (0)
address: hA(Toplayer), neighbor: hi(TaplLayer)
port: 7877
cepi 18430,

SRC> AP: DestinationE (0) AE: MyPing (0)
address: hB(TopLayer), neighbor: hB(TopLayer)
port: 57495
cep: 60067

DST> AP: DestinationB (0] AE: MyPing (0)
address: hB(TopLayer), neighbor: rA(TopLayer)
port: 57435

DST> AP: SourceA (0] AE: MyPing (0)
address: hA(TopLayer), neighbor: rB(TopLayer)
port: 7877

cep: 0067 cep: 18430
Fop Count: 16 Hop Count: 14
Retries: 0/3 Retries: 0/3
DDT:ne DDT:no

Chosen RA's Qo5 cube: QoSCube-RELIABLE

Chosen RA's QoS cube: QoSCube-RELIABLE

Qo Requirements List>
average BW = do-not-care, average SDU BW = do-not-care
peak BW duration = do-not-care, peak SDU BW duration = do-not-care
burst period = do-not-care, burst duration = de-not-care
undetect. bit errors = do-not-care, PDU dropping probability = do-net-care
max 5DU Size = do-not-care
partial delivery = no, incomplete delivery = no
force order = yes
max allowed gap = do-not-care
delay = do-not-care, jitter = do-not-care
cost-time = de-net-care, cost-bits = do-not-care.

QoS Requirements List>
average BW = do-not-care, average SDU BW = do-not-care
peak BW duration = do-not-care, peak SDU BW duration = do-not-care
burst period = do-net-care, burst duration = do-not-care
undetect. bit errors = do-not-care, PDU drapping probability = do-nat-care
max SDU Size = do-not-care
partial delivery = no, incomplete delivery = no
force order = yes
max allowed gap = do-not-care
delay = do-not-care, jitter = do-not-care
cost-time = do-nat-care,_cost-bits = do-not-care

Created at: 10, invld: 20737001
Deleted at: 20.008, invld: 20757002

Created at: 10.026, invld: 20757001
Deleted at: 20.004, invid: 20757002

Fig. 73: Content of TopLayer ipcProcessl NFlowTables for HostA and HostB

Source
ANI, IPCP address
Port-id, CEP-id
Destination

ANI, IPCP address
Port-id, CEP-id

Other parameters

Mapped QoSCube

QoS
attributes

Timestamps
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5.5  Chapter Summary

In this chapter, we described core RINA principles. We tried to summarize RINA theory in the text that
lacks any usage of the term without previous thorough definition / context explanation because we know,
how hard the “mental shift” from TCP/IP concepts towards RINA is.

The second subchapter went into more details about various RINA components. It started with
a description of different kinds of high-level RINA nodes including hosts, interior routers, and border
routers. Subsequently, we dived deep into low-level RINA components that are being used by DIF and
DAF. Besides that as the research contribution, we thoroughly analyzed and enhanced (particularizing
functional descriptions and equipping them with FSMs) RINA specifications namely for FA and
CACEP operation.

Subchapter 5.3 briefly mentioned relevant research grant activities and available
implementations to reveal current RINA state-of-the-art.

The last subchapter described RINASIim including installation guideline, design notes, and
demonstration. RINASim philosophy benefits from clever OMNeT++ module interfacing in order to
allow flexible change of used policies. Moreover, Subchapter 5.4 ending contained a detailed illustration
of RINA principles using RINASim demo scenario. Demonstration description should show the impact
of recursion and help others to understand enrollment and flow (de)allocation procedures in praxis.
Moreover, demonstration setup may be employed as the template when creating new scenarios.

We have designed and implemented RINASim as the first full-scale RINA simulator containing
a wide gamut of functions that are extensible and replaceable. RINASim reliably proves following RINA
properties: isolation of namespaces and address spaces across DIFs; enrollment and flow allocation
recursion and their impact; routing based on available resources reflecting QoS attributes; easy
application protocol prototyping when employing CDAP messages (and action primitives they
substitute); and others. Hence, RINA offers by design complete naming scheme and fulfills most of the
ideal solution properties as described in Chapter 3.

The main contribution of this chapter is RINASIim as a tool that helps: 1) researchers to
prototype and test new policies and mechanisms in native and full-compliant RINA environment;

2) others to visualize and understand RINA principles.
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6 Conclusion

& —“A story has no beginning or end: arbitrarily one chooses that moment of experience from which
to look back or from which to look ahead.” Graham Green

& What has been done and accomplished in frame of this dissertation thesis?

& What are the important results?

We pursue a difficult and complex task to define and to discuss elementary naming, addressing and
routing principles of computer networks.

The thesis begins with an overview of networking fundamentals and points out design issues of
traditional TCP/IP stack that are becoming more apparent as more users and devices are accessing the
Internet each day. We tried to qualify causes and quantify their (future) impact (when following current
trends). Internet developed incrementally throughout previous 40 years. However, the Internet struggles
to redesign its communication schemes after the adoption of TCP/IP and its global expansion.

We collected and studied relevant papers and works written on the topic of naming, addressing

and routing. We formulated low-level foundations using formal math apparatus. We compiled

encompassing high-level theory and checked its compliance among existing addressing and naming

techniques. This work allowed us to reevaluate problems of current Internet in the new light, which

confirmed that aforementioned problems of TCP/IP are consequences of incomplete architecture that

lacks necessary levels of indirection. We investigated properties of existing candidates, which aspire to

deal with this situation. We decided to follow LISP and RINA further with our research efforts.

We thoroughly analyzed LISP use-cases and protocol details (namely the split of locator address
space and identifier namespace). We were able to identify and investigate certain shortcomings of LISP
design. Based on that, we developed improvements to LISP operations and verified them using discrete
event simulator. We implemented the first low-level LISP simulation modules and successfully checked
their compliance with the referential Cisco implementation in the real network. The principle of our
LISP research is included in papers [131], [132].and [133].

We conducted a similar analysis of RINA and its properties that aim to the clean-slate design of

not only naming and addressing but also other aspects of computer networking. We revisited all
available RINA specifications and try to improve their clarity, particularly parts describing enroliment
and flow (de)allocation procedures. Subsequently, we designed and implemented the first RINA discrete
event simulator called RINASiIm, which provides a standalone framework with full-fledged RINA
simulation modules for OMNeT++. The core contribution of our RINA research has been published as
an independent framework in [171] and explained in PRISTINE Deliverable 2.4 [167]_and Deliverable
2.6 [172].

Following two subchapters outline some conclusions and results of our research efforts

involving Locator/lId Separation Protocol and Recursive InterNetwork Architecture.
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6.1 Summary about LISP

Precise LISP (and VRRP) simulation modules for OMNeT++, which are used as the basis for ongoing
research, represent the main code contribution. Based on well-known designed issues (see [108]), we
investigated, proposed, implemented and tested two improvements — map-cache synchronization and

merged RLOC probing. Our map-cache synchronization techniques minimize map-cache misses, thus

significantly decreasing packet loss. Furthermore, employing our merged RLOC probing algorithms has
an outstanding impact on LISP protocol overhead comparing to simple RLOC probing per every EID.

Despite the accomplished achievements in LISP operation tuning, LISP is unfortunately not an
ultimate solution for current Internet troubles. It breaks several RFC 1958 concepts, and some problems
were revealed during its worldwide deployment (RFC 7215 [173]). Moreover, LISP deployment needs
additional configuration effort to secure LISP against possible attacks and threats (see [174]).

Basically, any solution decoupling locator and identifier has to deal with Locator Path Liveness
problem, and any non-host-based loc/id split has to cope with Site-based State Synchronization problem.
Their impact can be diminished (with for instance map-cache synchronization described above) but not
completely treated. Hence, neither LISP nor any CES/CEE proposal reviewed in Chapter 3.5 is the
desired solution.

Another and probably the most serious rebuke of any hybrid or network-based loc/id split is
when a packet is traversing locator namespace then the routing is performed according to the locator,
not an identifier. Previous is strictly in contradiction to the theory reviewed in Chapter 3, and

implications are thoroughly investigated in [126]. LISP suffers from three major problems:

1) Routing should be done based on node names (see Saltzer’s [49]). However, “routes” in

nowadays Internet use PoAs (IP addresses in Fig. 14). Therefore, all IP “routing” is based on

false premises and would always be route dependent (which is unwanted based on knowledge

in Subchapter 3.3). Routing should be performed based on identifier not locator (otherwise, it

leads to Locator Path Liveness problem);

2) Locator and identifier are not bound to the same object — locator address is an address of the

interim device (which performs header alternation relevant to loc/id split) not the end-device of

communication;

3) All identifiers are used in some sense also for locating. An object cannot be located without

identifying it and vice versa (see Saltzer’s [45]). There could neither be identification without

localization, nor localization without identification. Thus, there should be no semantic

distinction between identifier and locator on the Internet but yet there is.

Therefore, LISP does not provide proper naming and addressing concept, nor it is even scalable

routing solution for TCP/IP architecture.
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6.2 Summary about RINA

RINA as the new (and complete) clean-slate architecture tries to touch and codify every part of
communication within computer networks. Therefore, RINA’s knowledge base spans from high-level
reference model description to low-level characterization of each component functionality. Pouzin
Society [175] is a formal body in charge of maintaining specifications with FIT-BUT as one of its
members. In the theoretical part of this dissertation, we revisited and extended parts of RINA
specifications concerning flow allocation and connection establishment procedure. We supplemented
them with FSMs illustrating FA and CACE operations.

RINASim is the main contribution, and RINASim’s development process helped to clarify and
progress some RINA specifications. As the RINASim’s chief designers and implementers, we authored
FA, DA, AE, RIBd and RA simulation modules in the frame of this thesis.

RINA is still young in its technological readiness level. Hence, some of RINA’s concepts were
doubtful whether they will work or not. Following RINA features would not be possible to prove or
verify without RINASIm:

e We simulated and shown basic RINA functionality (enrollment, flow allocation and data

transfer) in this thesis (and in [171]). RINA can achieve IPC employing recursively the same

(DIF _and DAF) components, which simplifies implementation of the network stack.

Furthermore, DIF scope isolation allows reusing IPCP’s APNs without any duplicity address

problems. Hence, there is no need for global address space due to the DIF isolation;

e RINA allows an easy employment of Aggregated Congestion Control (ACC), see PRISTINE
Deliverable 3.2 [176] for more. ACC improves QoS experience for communicating parties

whenever congestion occurs in the network. RINA offers built-in _mechanisms with

programmable policies to handle resource allocation in compliance with QoS demands;

e Custom routing algorithm taking into account division of (location dependent) address space
reduces significantly routing table sizes for distributed cloud installations. Aforementioned
solution — called Scalable Forwarding with RINA (SFR), see paper [177] for details —

provides proofs for real-life use-case that topologically dependent (hierarchical) addresses help

in routing comparing to flat address space.

RINA theory seems to offer complete naming, addressing and routing concepts. Moreover,
RINA’s design separating mechanisms and policies is flexible enough to allow scalable changes
reflecting demands of future Internet. Nevertheless, RINA needs more validation and verification testing

(preferably) on real-life deployment to support previous claims.
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6.3 Future Work

We take this thesis just as the beginning of more advanced research involving OMNeT++ simulator as
a validation tool for new routing paradigms (such as LISP) and alternative architectures (such as RINA).

We would like to discuss our LISP improvements — map-cache synchronization and merged
RLOC probing — within IETF to see whether they can be submitted as draft proposals. Our plans with
LISP simulation modules include to add support for proxy XTR functionality and to recognize more
LISP control flags (like SMR bits). We would like to use further our LISP simulation modules and test
effectiveness of different distributed mapping systems (e.g., LISP-ALT, LISP-DDT). Also, we intend
to upgrade VRRP to support IPv6 addresses and all features of VRRP version 3. We would like our low-
level LISP simulation modules to be considered as the verification tool for other LISP related use-cases
and technologies. Therefore, we want to integrate LISP source codes with official INET framework as
the first step (which is something we already accomplished before [178] or [179]).

We plan to carry on work on RINA research topics and further refine RINASim based on new
knowledge and up-to-date specifications. An additional goal is to conduct a comparative evaluation of
our simulation models with RINA implementation for Linux environment called IRATI. Adoption of
the newest version 6.5 of EFCP, SDU protection module integration, NSM and dynamic DA

functionality are on our development roadmap for the nearest future.

6.4  Final Thoughts

This subchapter contains a few thoughts that helped to shape this thesis and that are worthy to be

considered by any young scientist interested in computer networks.

— “The Internet is at its core an unfinished demo.”

John Day
— “(6) It is easier to move a problem around (for example, by moving the problem to a different part of
the overall network architecture) than it is to solve it.”

— “(11) Every old idea will be proposed again with a different name and a different presentation,

regardless of whether it works.”

RFC 1925 [180]

— “Ninety percent of everything is crap!”

Theodore Sturgeon

— ., Hlavu vzhiiru nos mezi mraky!”

Arnost Vesely
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8 Addendum

8.1  Formats of LISP Control Messages

8.1.1 LISP Map-Request
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Fig. 74: LISP Map-Request message format
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8.1.2 LISP Map-Response
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Fig. 75: LISP Map-Reply message format
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Fig. 76: LISP Map-Register message format
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8.2

ANSARouter Module
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Fig. 78: ANSARouter module structure
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8.3  Additional Graphs

8.3.1  Map-Cache Sync Scenario with Single xXTR1 Outage

msg-size:vector LispSyncTest xTR1.LISP.lispMsgLogger

-A-finet/examples/ans afis plis pSyncTestresults/CacheSyncMaive-w Ack-0.vec CacheSynchaive-w Ack-0-20150215-10:37:45-8658 CacheSynchaive-w Ack
-#-finet/examples/ansalis plis pSyncTestresults/CacheSyncSmart-w Ack-0.vec CacheSyncSmart-w Ack-0-20150218-10:38:15-3696 CacheSyncSmart-w Ack
“finet/examples/ans afis plis pSyncTestresultsMoSync-0.vec NoSync-0-20150213-10:34:20-9112 MaSync
0 50 100 150 200 250 300
L L L L L L
5000+ r5000
4000+ 4000
w
L
=
£ 3000 r3000
o
=
o
=
2000+ F2000
1000+ F1000
0 50 100 150 200 250 300

time

Fig. 79: xTR1’s LISP control messages occurrence and total processed byte size in scenario with single outages + ack

8.3.2 Map-Cache Sync Scenario with Three xXTR1 Outages
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Fig. 80: xTR1’s LISP control messages occurrence and total processed byte size in scenario with three outages
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msg-size:vector LispSynclest xTR1.LISP.lispMsgLogger
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Fig. 81: xTR1’s LISP control messages occurrence and total processed byte size in scenario with two outages + ack

8.3.3 RLOC Probe Scenario with Eighty EIDs

msg-size vector LispProbeTest xTR_Respondert LISP.lispMsglLogger
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Fig. 82: xTR_Responder1’s LISP messages occurrence and total processed byte size in scenario with eighty EIDs
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8.4  John Day about RINA

From: John Day

Sent: 26. prosince 2015 22:47
To: Vladimir Vesely

Cc: John Day

Subject: Comments on Section 5

Vesely,
[...]

I have a major comment on the first page of Chapter 5. It isn’t in the attached document it is here. I believe that this is very
important.

RINA is not a clean-slate architecture, nor was it developed to replace the Internet, nor is it John Day’s ideas. In a very real
sense, RINA is a continuation of the original internetworking ideas from the mid-1970s. The Internet is the aberration caused
by having too much money and making it all free seduced everyone. We have uncovered pieces of the puzzle over the years.
The concept of scope of a layer comes from the work of Elie and Zimmermann on CYCLADES. The idea of an overlay comes
from them and INWG; Watson’s discoveries on synchronization; making protocols invariant wrt syntax; the AP/AE distinction;
the re-discovery of the internet layer, etc.

I merely tried to assemble all of the principles and patterns into a single whole, which turned out to imply a much simpler and
powerful implementation.

Just think how many things in the Internet require adding something that simply fall out as a consequence of the structure?

I truly believe that if we had not been so embroiled in the politics of standardization and the push to move this stuff to product
quickly, others would have seen these patterns much earlier. This is what people should have been doing over the last 40 years.

1 did not start out to do a “future internet architecture.” As you have heard me say, I was trying to figure out what I didn’t
understand. This has been all about finding the really fundamental principles. I didn’t see the answer and the write it down.
It was the product of digging deeply into things to understand what was really going on. I didn’t invent that EFCPS cleave
into DTP and DTCP. | did the exercise in of separating mechanism and policy for each function in a protocol. | had no idea
what it would tell me when I did it. I didn’t do it to prove anything. I did it to learn something. Once I had done it, then it was
a matter of seeing what it told me. Do you see the difference? I wasn't trying to find a way to fix something or do something
new. | was trying to understand.

Now experience did play a role. For example, we kept finding we needed fragmentation in essentially every layer. It was
apparent in the early 70s that if one relayed one had to do error and flow control over the top of it.

Why did some layers have a lot of layer management (network layer) and others didn’t (transport). It became obvious that the
reason was that all layers did the same complement of functions. The IPC Model confirmed that.

The same kind of logic goes with where everything else is and what it does.

(You won't believe how many times I re-visited what order delimiting and SDU protection were and where in the layer.)
Looking carefully at what the problem was telling me about the structure.

Why is this important? We are investigating the fundamental principles. We are doing science. We aren’t trying to build the
future Internet or a replacement for it. It turns out that what we are figuring out to build does solve that problem too, but that
wasn 't our goal and it shouldn’t be our research goal. The Future Internet is trying to figure out what to build.

Their proposals are their opinions on how to do that. We don’t have opinion. We are doing what the problem says. Not what
John Day says. You don’t have to build a network the way RINA says (obviously) but if you take that route it will be inferior in
some way probably in a major way.

To lump us in with either the Future Internet efforts or the Internet patches is to detract from what we are doing. We are trying
to do for Networking what Maxwell did for Electricity and Magnetism, not because we

() have delusions of grandeur, but because IT IS WHAT A SCIENTIST DOES. We are demonstrating the power of theory.
Every insight we have had has come from the clarity the theory (RM) provides,not from implementation. We are doing science,
not craft. My hope is that our example will get others to return to doing science.

Do you understand what | am trying to say?

Hope Santa was good to you!!
Take care,
John
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8.5

RINASIm Policies

Parent/Child Name Owner  Description

What happen when M_CREATE is resent by Flow

AllocateRetry FA Allocator?
LimitedRetries Allocation is discontinued, when retransmit threshold is met.
When new flow is being allocated, how are its
NewFlowRequest FA requirements mapped to RA QoS-cubes?
ScoreComparer QoSCube with best score wins.
MinComparer QoSCube with minimal feasibility wins.
Policy used for determining whether a PDU address matches
AddressComparator RA the IPCP's address.
ExactMatch Exact address matching.
PrefixMatch Matching based on the best address prefix match.
PDUEG RA PDU For_wardm_g Generator providing data used by the PDU
Forwarding policy.
. . Populates forwarding policy with entries on the form
BiDomainGenerator samePrefix.ld -> port and distinctPrefix.
Informs of flow metrics to routing as latency based on (N-1)-
LatGenerator QoS-cube instead of hops.
. Informs of flow metrics to routing as hops, populates
MSimpleGenerator forwarding policy with all existing best next-hops.
. Populates forwarding policy with best next-hop per
QoSDomainGenerator destination + QOS.
SimpleGenerator Informs of flow metrics to routing as hops.
SinaleDomainGenerator Informs of flow metrics to routing as hops intended for
g domain based routing.
StaticGenerator Load forwarding information from XML configuration.
QueueAlloc RA (N-1)-port queue allocation strategy.
QueuePerNCU One queue per (N)-Cherish/Urgency class.
QueuePerNFlow One queue per (N)-flow.
QueuePerNQoS One queue per (N)-QoS cube.
SingleQueue One queue for all traffic.
Companion policy to QueueAlloc; returns queue ID for a
QueuelDGen RA given PDU or Flow object.
IDPerNCU Used with QueueAlloc::QueuePerNCU.
IDPerNFlow Used with QueueAlloc::QueuePerNFlow.
IDPerNQoS Used with QueueAlloc::QueuePerNQosS.
SinglelD Used with QueueAlloc::SingleQueue.
MaxQueue RMT | Policy invoked when a queue size grows over its threshold.
DumbMaxQ Used \A{lth Monitor::SmartMonitor. Request drop probability
to monitor, drop random on that.
IF queue size >= threshold THEN apply ECN marking on
ECNMarker new PDUs. IF size >= max THEN drop.
ReadRateReducer IF queue size >= allowed_maximum THEN stop receiving
data from input ports.
REDDrobper Used with Monitor::REDMonitor; Random Early Detection
bp implementation.
TailDrop IF queue size >= allowed_maximum THEN drop new PDUs.
- IF queue size >= allowed maximum THEN send a
UpstreamNotifier

notification to the PDU sender.
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Monitor

RMT

Used with Monitor::SmartMonitor. Best-effort using

BEMonitor multiple queues.
. Used with Monitor::SmartMonitor. Dela/Loss monitor
DL Monitor . .
implementation.
eDL Monitor Used with Monitor::SmartMonitor. Enhanced-Dela/Loss
monitor implementation.
REDMonitor Used with MaxQueue::REDDropper; Random Early

Detection implementation.

DummyMonitor

No operation.

SmartMonitor

Monitor interface for use with dumbMaxQ/dumbSch, which
can be queried for drop probability and next queue.

PDUForwarding RMT | Policy used to decide where to forward a PDU.
. A table with {domain:{prefix, QoS} -> { Table:{dstAddr ->
DomainTable port}, defauléport } }.{p Qosy A ¢
MiniTable A table with {dstAddr -> port} mappings.
MultiMiniTable A table with {dstAddr -> vectior<port>} mappings.
QoSTable A table with {(dstAddr, QoS) -> port} mappings.
SimpleTable A table with {(dstAddr, QoS) -> port} mappings.
Scheduler RMT Eg)l(it(.:y deciding which (N-1)-port queue should be processed
DumbSch Used with Monitor::SmartMonitor. Queries the monitor for
the next queue to serve.
LongestQFirst Pick the queue which contains the most PDUs.
DomainRouting Routing
DV A distance vector-like domain routing protocol.
LS A link-state-like domain routing protocol.
DummyRouting Routing | No operation.
SimpleRouting Routing
SimpleDV A simple distance vector-like protocol.
SimpleLS A simple link-state-like protocol.

Tab. 14: Implemented RINASIm policies
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8.6

8.6.1 omnetpp.ini

[General]

network = UseCase5

check-signals = true

sim-time-1limit = Smin

debug-on-errors = true

#Application setup

** HostA.applicationProcessl.apName =
** HostB.applicationProcessl.apName =
** jae.aeName = "MyPing"

"SourceA"

"DestinationB"

** applicationEntity.aeType = "AEMyPing"

#DIF Naming

** Host*.ipcProcessl.difName

** BorderRouter*.relayIpc.difName

** HostA.ipcProcess@.difName

** BorderRouterA.ipcProcessl.difName
** HostB.ipcProcess@.difName

** BorderRouterB.ipcProcessl.difName =

** BorderRouterA.ipcProcess2.difName
** InteriorRouter.relayIpc.difName
** BorderRouterB.ipcProcess2.difName
** _BorderRouterA.bottomIpc.difName
** InteriorRouter.ipcProcess@.difName
** BorderRouterB.bottomIpc.difName

** InteriorRouter.ipcProcessl.difName=

#Static IPC Addressing

** HostA.ipcProcessl.ipcAddress

** HostB.ipcProcessl.ipcAddress

** BorderRouterA.relayIpc.ipcAddress
** BorderRouterB.relayIpc.ipcAddress
** HostA.ipcProcess@.ipcAddress

= "TopLayer"

"TopLayer"

"MediumLayerA"
"MediumLayerA"
"MediumLayerB"
"MediumLayerB"
"MediumLayerAB
"MediumLayerAB
"MediumLayerAB
"BottomLayerA"
"BottomLayerA"
"BottomLayerB"
"BottomLayerB"

** BorderRouterA.ipcProcessl.ipcAddress =

** HostB.ipcProcess@.ipcAddress

** BorderRouterB.ipcProcessl.ipcAddress =
** BorderRouterA.ipcProcess2.ipcAddress =

** InteriorRouter.relayIpc.ipcAddress

** BorderRouterB.ipcProcess2.ipcAddress =

** BorderRouterA.bottomIpc.ipcAddress

** InteriorRouter.ipcProcess@.ipcAddress =

** BorderRouterB.bottomIpc.ipcAddress

** InteriorRouter.ipcProcessl.ipcAddress =

#DIF Allocator settings

** HostA.difAllocator.configData = xmldoc("config.xml",

"Configuration/Host[@id="HostA']/DA")

** HostB.difAllocator.configData = xmldoc("config.xml",

"Configuration/Host[@id="HostB"']/DA")

** BorderRouterA.difAllocator.configData =

xmldoc("config.xml",

"Configuration/Router[@id="BorderRouterA']/DA")
** BorderRouterB.difAllocator.configData =

xmldoc("config.xml",

"Configuration/Router[@id="BorderRouterB']/DA")
** InteriorRouter.difAllocator.configData =

xmldoc("config.xml",

"Configuration/Router[@id="InteriorRouter']/DA")
** HostB.difAllocator.directory.configData =

xmldoc("config.xml",
"Configuration/Host[@id="HostA']/DA")

** BorderRouterA.difAllocator.directory.configData

xmldoc("config.xml",
"Configuration/Host[@id="HostA']/DA")

** BorderRouterB.difAllocator.directory.configData

xmldoc("config.xml",
"Configuration/Host[@id="HostA']/DA")

A"

** InteriorRouter.difAllocator.directory.configData

xmldoc("config.xml",
"Configuration/Host[@id="HostA']/DA")

RINASImM Demonstration

#Enrollment settings

** InteriorRouter.**.enrollment.isSelfEnrolled = true

** BorderRouterA.relayIpc.**.enrollment.isSelfEnrolled =
true

** BorderRouterA.ipcProcessl.**.enrollment.isSelfEnrolled
= true

** BorderRouterB.ipcProcessl.**.enrollment.isSelfEnrolled
= true

** BorderRouterA.bottomIpc.enrollment.configData =
xmldoc("config.xml",
"Configuration/Router[@id="'BorderRouterA']/Enrollment[@id
='bottomIpc']")

** BorderRouterA.ipcProcess2.enrollment.configData =
xmldoc("config.xml",
"Configuration/Router[@id="BorderRouterA']/Enrollment[@id
='ipcProcess2']")

** BorderRouterB.relayIpc.enrollment.configbata =
xmldoc("config.xml",
"Configuration/Router[@id="'BorderRouterB']/Enrollment[@id
='relayIpc']")

** HostB.ipcProcessl.enrollment.configData =
xmldoc("config.xml",
"Configuration/Host[@id="HostB"']/Enrollment")

#QoS Cube sets
** pra.qoscubesData = xmldoc("config.xml",
"Configuration/QoSCubesSet")

[Config Ping]

#PingApp setup

** forceOrder = true

** HostA.applicationProcessl.applicationEntity.
ame = "DestinationB"

** HostA.applicationProcessl.applicationEntity.iae.dstAeN
ame = "MyPing"

** HostA.applicationProcessl.applicationEntity.
t = 10s

** HostA.applicationProcessl.applicationEntity.
= 15s

** HostA.applicationProcessl.applicationEntity.
5

** HostA.applicationProcessl.applicationEntity.
= 20s

** HostA.applicationProcessl.applicationEntity.
1024B

iae.dstApN
iae.startA
iae.pingAt
iae.rate =
iae.stopAt

iae.size =
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8.6.2  config.xml

<?xml version="1.0"?2>

<Configuration>

<Host id="HostA">

<DA>
<Directory>

<APN apn="SourceA">
<DIF difName="TopLayer" ipcAddress="hA" />
</APN>
<APN apn="DestinationB">
<DIF difName="TopLayer" ipcAddress="hB" />
</APN>
<APN apn="hA TopLayer">
<DIF difName="MediumLayerA"
</APN>
<APN apn="hB TopLayer">
<DIF difName="MediumLayerB"
</APN>
<APN apn="rA TopLayer">
<DIF difName="MediumLayerA" ipcAddress="ra"
<DIF difName="MediumLayerAB" ipcAddress="rA"
</APN>
<APN apn="rB TopLayer">
<DIF difName="MediumLayerB" ipcAddress="rb"
<DIF difName="MediumLayerAB" ipcAddress="rB"
</APN>
<APN apn="rA MediumLayerAB">
<DIF difName="BottomLayerA"
</APN>
<APN apn="rB MediumLayerAB">
<DIF difName="BottomLayerB"
</APN>
<APN apn="rC MediumLayerAB">

ipcAddress="ha"

ipcAddress="hb"

ipcAddress="ra"

ipcAddress="rb"

<DIF difName="BottomLayerA" ipcAddress="rc"
<DIF difName="BottomLayerB" ipcAddress="rc"
</APN>
</Directory>
<NeighborTable>

<APN apn="hA TopLayer">
<Neighbor apn="rA ToplLayer" />
</APN>
<APN apn="hB TopLayer">
<Neighbor apn="rA TopLayer" />
</APN>
</NeighborTable>
</DA>
</Host>
<Host id="HostB">
<DA>
<NeighborTable>
<APN apn="hA TopLayer">
<Neighbor apn="rB ToplLayer" />
</APN>
<APN apn="hB_ TopLayer">
<Neighbor apn="rB ToplLayer" />
</APN>
</NeighborTable>
</DA>
<Enrollment>
<Preenrollment>
<SimTime t="5">
<Connect src="hB TopLayer" dst="rB TopLayer"
</SimTime>
</Preenrollment>
</Enrollment>
</Host>
<Router id="BorderRouterA">
<DA>
<NeighborTable>
<APN apn="hB_TopLayer">
<Neighbor apn="rB TopLayer" />
</APN>
<APN apn="rB_MediumLayerAB">
<Neighbor apn="rC_ MediumLayerAB" />
</APN>
</NeighborTable>
</DA>
<Enrollment id='bottomIpc'>
<Preenrollment>
<SimTime t="1">
<Connect src="ra BottomLayerA "
dst="rc BottomLayerA" />
</SimTime>

/>

/>

/>
/>

/>
/>

/>

/>

/>
/>

/>

</Preenrollment>
</Enrollment>
<Enrollment id='ipcProcess2'>
<Preenrollment>
<SimTime t="1.5">
<Connect src="rA MediumLayerAB"
dst="rC MediumLayerAB" />
</SimTime>
</Preenrollment>
</Enrollment>
</Router>
<Router id="BorderRouterB">
<DA>
<NeighborTable>
<APN apn="hA TopLayer">
<Neighbor apn="rA TopLayer" />
</APN>
<APN apn="rA MediumLayerAB">
<Neighbor apn="rC MediumLayerAB" />
</APN>
</NeighborTable>
</DA>
<Enrollment id='relayIpc'>
<Preenrollment>
<SimTime t="2">

<Connect src="rB TopLayer" dst="rA TopLayer" />

</SimTime>
</Preenrollment>
</Enrollment>
</Router>
<Router id="InteriorRouter">
<DA>
<NeighborTable>
<APN apn="hA TopLayer">
<Neighbor apn="rB TopLayer" />
</APN>
</NeighborTable>
</DA>
</Router>
<QoSCubesSet>
<QoSCube id="QoSCube-UNRELIABLE">
<AverageBandwidth>12000000</AverageBandwidth>
<AverageSDUBandwidth>1000</AverageSDUBandwidth>
<PeakBandDuration>24000000</PeakBandDuration>
<PeakSDUBandDuration>2000</PeakSDUBandDuration>
<BurstPeriod>10000000</BurstPeriod>
<BurstDuration>1000000</BurstDuration>
<UndetectedBitError>0.01</UndetectedBitError>
<PDUDropProbability>0</PDUDropProbability>
<MaxSDUSize>1500</MaxSDUSize>
<PartialDelivery>0</PartialDelivery>
<IncompleteDelivery>0</IncompleteDelivery>
<ForceOrder>0</ForceOrder>
<MaxAllowableGap>0</MaxAllowableGap>
<Delay>1000000</Delay>
<Jitter>500000</Jitter>
<CostTime>0</CostTime>
<CostBits>0</CostBits>
<ATime>0</ATime>
</QoSCube>
<QoSCube id="QoSCube-RELIABLE">
<AverageBandwidth>12000000</AverageBandwidth>
<AverageSDUBandwidth>1000</AverageSDUBandwidth>
<PeakBandDuration>24000000</PeakBandDuration>
<PeakSDUBandDuration>2000</PeakSDUBandDuration>
<BurstPeriod>10000000</BurstPeriod>
<BurstDuration>1000000</BurstDuration>
<UndetectedBitError>0.01</UndetectedBitError>
<PDUDropProbability>0</PDUDropProbability >
<MaxSDUSize>1500</MaxSDUSize>
<PartialDelivery>0</PartialDelivery>
<IncompleteDelivery>0</IncompleteDelivery>
<ForceOrder>1</ForceOrder>
<MaxAllowableGap>0</MaxAllowableGap>
<Delay>1000000</Delay>
<Jitter>500000</Jitter>
<CostTime>0</CostTime>
<CostBits>0</CostBits>
<ATime>0</ATime>
</QoSCube>
</QoSCubesSet>
</Configuration>
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NFlowTable Contents Progress

BorderRouterA (allocat

(std:list<NFlowTableEntry>) ..rderRouterAbottomlpc.flowAllocator...

€I+

Fields | Contents (0)

&

NFlowTab (std:lists NFlowTableEntry>)
MFlowTab[1] (NFlowTableEntry)
[0] = STATUS: allocation pending

FAl> (FAI)fai 52620_14550
SRC> AP: rA_MediumLayerAB
address: ra(BottomLayerA), neighbor: ra(BottomLayerA)
port: 52620
cep: 14850
DST> AP: rC_MediumLayerAB
address: re(BottomLayerA), neighbor: re(BottomLayerA)
port: -1

cep: -1
Hep Count: 16
Retries: 0/3
DDT: no
Chosen RA's QoS cube: MGMT-CoSCube (aggregated)
QoS Requirements List>
average BW = 12000 bit/s, average SDU BW = 105DU/s
peak BW duration = 24000 bit/s, peak SDU BW duration = 20 SDU/s
burst period = 10000 usecs, burst durtion = 10000 usecs
undetect. bit errors = 0%, PDU dropping probability = 0%
max SDU Size = 1500 B
partial delivery = no, incomplete delivery = no
force order = yes
max allowed gap = 05DUs
delay = 0 usecs, jitter = 0 usecs
cost-time = 0 §/ms, cost-bits = 0 5/Mb
Created at: 1.5, invid: 43567001
Deleted at: 0, invid: 0

(std:list<NFlowTableEntry>) ..rderRouterA.bottomipc.flowAllocator. =

€rriERE

Fields | Contents (0)

c2)

- B MFlowTab (stdsist<NFlowTableEntry)
NFlowTab[1] (NFlowTableEntry)
0] = STATUS: allocation positive, transfer

FAI> (FAIlfai_52620_14650
SRC> AP: rA_MediumLayerAB
address: ra(BottomLayerA], neighbor: ra(BottomLayerA)
port: 52620
cep: 14650
DST> AP: rC_MediumLayerAB
address: rc(BottomLayerA], neighbor: re(BottomLayerA)
port: 17029
cep: 32230
Hop Count: 16
Retries: 03
DDT: no
Chosen RA's Qo5 cube: MGMT-QoSCube (aggregated)
QoS Requirements List>
average BW = 12000 bit/s, average SDU BW = 10 SDU/s
peak BW duration = 24000 bit/s, peak SDU BW duration = 20 SDUfs
burst period = 10000 usecs, burst duration = 10000 usecs
undetect. bit errors = 0%, PDU dropping probability = 0%
max SDU Size = 1500 B
partial delivery = no, incomplete delivery = no
force order = yes
max allowed gap = 0 SDUs
delay = 0 usecs, jitter = 0 usecs
cost-time = 0 §/ms, cost-bits = 05/Mb
Created at: 1.5, invd: 43567001
Deleted at: 0, invid: 0

c6)

(std:list<NFlowTableEntry>) ..iorRouter.ipcProcess.flowAllocator.n. n
FE R [

Fields | Contents (0)

B 9 NFlowTab (stdsist< NFlowTableEntry=)
NFlowTab[1] (NFlowTableEntry)
[0] = STATUS: allocation positive, transfer

FAl> (FAIfai_17089_32230
SRC> AP: 1C_MediumLayerAB
address: re(BottomLayerA), neighber: re(BottomLayerA)
port: 17089
cep: 32230
DST> AP: tA_MediumLayerAB
address: ra(BottomLayerA), neighbor: ra(BottomLayerA)
port: 52620
cep: 14650
Hop Count: 16
Retries: 0/3
DDT: no
Chosen RA's QoS cube: MGMT-QoSCube (aggregated)
QoS Requirements List>
average BW = 12000 bit/s, average SDU BW = 10 SDU/s
peak BW durstion = 24000 bit/s, peak SDU BW durstion = 20 SDU/s
burst period = 10000 usecs, burst duration = 10000 usecs
undetect. bit errors = 0%, PDU dropping probability = 0%
max SDU Size = 1500 B
partial delivery = no, incomplete delivery = no
force order = yes
max allowed gap = 0 SDUs
delay = 0 usecs, jitter = 0 usecs
cost-time = 0 $/ms, cost-bits = 0 5/Mb
Created at: 1,501, invid: 43567001
Deleted at: 0, invid: 0

c4)

InteriorRouter

Fig. 84: Content of BottomLayerA’s NFlowTables of BorderRouterA and InteriorRouter
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