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1.1. Nutritional value of fish and the main factors affecting it 

High nutritional value of fish and fish products is due to the high amounts of protein, 
lipids particularly high content of omega-3 long chain polyunsaturated fatty acids (n-3 LC 
PUFA) as well as essential micronutrients compared to the land living animals (Tacon and 
Metian, 2013). Beneficial effects associated with these essential fatty acids (FAs) have 
been reported to decrease the overall risk of cardiovascular diseases (Chin and Dart, 1995), 
effects on hypertension (Bonaa et al., 1990), inflammation (Simpoulos, 2002), lowering 
serum triacylglycerol levels and reducing thrombosis (Von Schacky et al., 1985). The role of 
docosahexaenoic acid (DHA, C22:6n-3) for the growth and development of infant’s brain as 
well as their importance for the functionality and maintenance of normal brain in adults have 
been well discussed (Horrocks and Yeo, 1999) which is more detailed and addressed in the 
review of the nutritional value of fish provided by Khalili Tilami and Sampels (2018). Due to 
the beneficial effects of consumption of n-3 LC-PUFA, especially eicosapentaenoic acid (EPA, 
C20:5n-3) and DHA for human health (Mozaffarian and Rimm, 2006; Pourashouri et al., 2014), 
interest in the intake and enrichment of EPA and DHA of commonly consumed food have been 
increased (Kaushik et al., 2014). Since farmed fish are raised under controlled conditions from 
fertilization until slaughter, it is somehow possible to regulate the factors like environment 
and nutrition throughout their life and thereby also the muscle FA composition. A number of 
factors can influence the composition of fish flesh. Every step in the history of the fish, from 
the way of production, fish rearing system and processing can have a great influence on the 
quality of the final product. In general, factors which can have an effect on lipid content and 
composition in fish as a great component providing the valuable omega-3 FAs can be divided 
into the feeding, species, reproductive status, size or (age), water temperature, salinity and 
season (Henderson and Tocher, 1987; Ackman 1989; Saito et al., 1999; Alasalvar et al., 2002; 
Khalili Tilami and Sampels, 2018).

1.1.1. Feeding and nutritional value 

Under intensive culture, feeding regimen and feed composition have a major influence 
(Lie, 2001) especially on the lipid content and the FA composition (Henderson and Tocher, 
1987; Morris, 2001; Shearer, 2001) which is well-addressed by Khalili Tilami and Sampels 
(2018). In contrary, as long as fish are fed adequate diets containing all their requirements 
in the sufficient amounts, the protein content and composition seem to be predetermined 
regardless of the diet content or the feeding regimen (Morris, 2001; Shearer, 2001). Besides 
the feeding, handling after the harvest, transport, possible storage or purging of the fish and 
the slaughter methods (Erikson, 2001; Robb, 2001) are important for the final product quality 
and can have an effect on lipid content and composition. Fish fed with a diet containing 
mainly plant protein sources, reduces the protein retention (Daniel, 2018). The reason could 
be due to the lack of essential amino acids in the plant proteins (Richard et al., 2011; Berge 
et al., 1998) or deficiency in liver metabolic adaptation to higher levels of plant proteins 
(Panserat et al., 2009). One other reason could be because plant proteins contain anti-
nutritional factors such as protease inhibitors and saponins that reduces the digestion and 
absorption of nutrients. Utilization of plant proteins without amino acid supplementation 
(e.g. methionine or lysine) can increase the feed conversion ratio in fish (Berge et al., 1998). 
Currently, fish meal is still the primary source of protein for farmed fish (Tacon et al., 2011). 
As a result of fish meal replacement with plant proteins, decline in the protein biosynthesis 
in fish (e.g. rainbow trout) was observed (Panserat et al., 2008). By developing new feeding 
strategies, more than 50% of the fat of the feed can be substituted by vegetable oils during 
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the main period of growth. For instance, replacement of rapeseed oil instead of fish oil (Bell et 
al., 2003) does not reduce the n-3 HUFA content in farmed fish as compared to the wild fish 
(Pike and Jackson, 2010). Variation in energy value of different fish species is related to the 
differences in fat content (Bogard et al., 2015). Carp diet supplemented with cereals which 
are rich in carbohydrate, has higher lipid content, lower amount of PUFA compared to wild one 
(Csengeri, 1996). It has been reported that moderate dietary carbohydrate level has positive 
effect on the growth of carnivorous fish (Hemre et al., 2002) whereas the excess amount of 
it has adverse effect, resulting in increased level of glycogen, lipid deposition in the liver and 
higher HIS (Tan et al., 2009, Ren et al., 2011).

1.1.2. Species and nutritional value

Differences in muscle lipid content within fish species is noticeable which can cause 
differences in FA composition (Fontagné-Dicharry et al., 2010) which is well-addressed by 
Khalili Tilami and Sampels (2018). The amount or percentage of FAs for instance EPA and DHA 
are variable among and within a species which can indicate the great role of environment 
including the rearing condition of fish in the wild or farm (Kris-Etherton et al., 2002) or even 
between cage-reared and tank-reared fish fed with the same diet (Martelli et al., 2013), in this 
case differences in FAs might be due to the stocking density (Piccolo et al., 2008) or water 
and seasonal differences. In bottom dwelling species (as a typical lean fish), fat is stored in 
the liver. However, migratory species have a higher content of dark muscle rich in fat (Alam 
et al., 2012). 

1.1.3. Reproductive status and nutritional value

During the maturation, along with the accumulation of lipids in the gonads, changes in 
some FAs can happen (Pérez et al., 2007). In addition to the other functions of PUFA, their 
important role for the reproductive performance have been investigated. Based on Mazorra et 
al. (2003) and Jerez et al. (2016) findings, during the reproductive cycle, FAs are metabolized 
in different way either catabolized for energy or being stored in gonads in the purpose of 
formation of the membrane or eicosanoid synthesis. In many fish species, arachidonic acid 
(ARA, 20:4n-6) plays an important role for the successful reproduction (Tocher, 2010). This FA 
is the main precursor for the 2-series prostaglandins (PG-2), eicosanoids which influence the 
sexual behavior of female fish in many species in line with stimulating steroid synthesis in the 
ovary and trigger oocyte maturation (Mercure and Van der Kraak, 1995; Tocher, 2003). Ng and 
Wang (2011) suggest that high percentage of saturated fatty acid (SFA) in tilapia gonads is 
essential for the success in their reproduction. 

High levels of PUFA in the ovary of both marine and freshwater fish have been reported 
(Izquierdo et al., 2001). Fish ovaries have the ability to generate eicosanoids from arachidonic 
acid (ARA, C20:4n-6) (including prostaglandins PGE

2
 and PGF

2α) or from EPA (prostaglandins 
PGE

1
 and PGE

3
), which are essential for the metabolism of that tissue in the final maturation 

phase (Sargent et al., 2002). Based on findings by Sorbera et al. (2001) and Bell and Sargent 
(2003) on the oocyte of European sea bass (Dicentrarchus labrax), eicosanoids generated 
from ARA (PGE

2
 and PGF2α) are responsible for regulating oocyte maturation, vitellogenesis 

and ovulation. 
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Developmental stage in salmonids, smoltification (parr-smolt transformation):

What makes the salmonids different from the other anadromous species is the smolt age 
(Stefansson et al., 2008). In salmonids, the juvenile salmon undergo adaptations and changes 
in morphology, physiology and behavior in fresh water before experiencing the saltwater which 
is called smoltification. During smoltification, alterations in lipid metabolism, a decrease in 
the proportion of triacylglyceride (TAG) and also in lipid content in muscle, liver, gut and gills 
even in the situation of presence of excess food occur (Wendt and Saunders 1973; Sheridan, 
1989; Li and Yamada 1992). Desmolt contain more monounsaturated fatty acids (MUFA) and 
SFA and less n-3 PUFA such as DHA in their tissue lipids compared to the smolts in freshwater 
(Li and Yamada 1992). Salmonid smolts initiate the alteration in their tissue FA composition 
and metabolism which includes an increase in the activity of FA elongase and desaturase of 
isolated hepatocytes beside the increase in the ratio of C20, C22, C18 n-3, C18 n-6 FAs (Tocher 
et al., 2000). Furthermore, differences in FA composition in freshwater fish from marine fish 
were observed; while freshwater organisms are rich in 18:2n-6, 18:3n-3, and generally contain 
less n-3 highly unsaturated fatty acids (HUFA) due to the food chain composition in the 
environments, marine fish have higher proportions of n-3 HUFA including 20:5n-3, 22:6n-3 
which naturally exist in the algae as primary producers of food web (Li and Yamada 1992, 
Sargent et al., 1999).

1.1.4. Water salinity, temperature and season

Influence of water salinity, temperature and seasonal changes on biochemical contents and 
FA profile of fish is known (Ackman, 1995; Leger et al., 1977; Bandarra et al., 1997; Farkas, 
1984; Fonseca-Madrigal et al., 2012). According to Farkas (1984) and Haliloğlu et al. (2004), 
at low water temperatures, fish need PUFAs particularly DHA in order to tolerate the condition. 
Thus the main changes in the FA composition is an increase in DHA percentage at lower 
temperatures, therefore, higher amount of PUFA are to be expected in the fish living in the 
cold water. In many poikilotherms, with increase in the temperature, a decrease in the content 
of unsaturated FA was observed (Farkas, 1984). Also, Jobling and Bendiksen (2003), showed 
that lower water temperatures in general result in increased proportions of unsaturated FA 
and lower amount of SFA. More recently, Norambuena et al. (2016) indicated that water 
temperature obviously affected FA composition in salmon reared at 10 °C versus 20 °C, where 
fish kept at lower temperature showed higher contents of n-6 FA in fillets. The same author also 
reported a decreased bioconversion from ALA to EPA and DHA at the increased temperature. 
Seasonal changes on fish muscle FA composition from temperate water is accompanied by 
seasonal depletion in MUFA specifically in oleic acid (18:1n-9) somehow associated with 
mobilization through gonadal development stage (Sargent, 1995; Özyurt and Polat, 2006). 
During the critical period of winter season in temperate waters, fish may undergo depletion 
of lipid reserves, increase in the risk of disease due to the low temperature, less availability in 
food (Wedemeyer et al., 1976; Tort et al., 1998).
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1.2. Fish consumption in the Czech republic, the importance of knowing  
the composition of minor species captured by anglers

Based on the FAO (2016) data, annual fish supply around the world was 20 kg per capita 
in 2014. Compared to this statistics, in landlocked countries such as in Central Europe 
much lower average consumption have been shown. For instance in the Czech Republic fish 
intake was around 5.5 kg per capita in 2008 (MZe, 2009). Simultaneously, in Central Europe, 
particularly in the Czech Republic, a significant percentage of consumed fish is provided by 
anglers (catching of fish by traditional angling; angle with one hook attached to the fishing 
line) and includes fish species, which gain less attention in terms of their nutritional value for 
human consumption in spite of their importance for a certain part of the population in these 
countries. Thus, there is an urgent need to evaluate and map the composition of the less 
noticed species that are caught and consumed by anglers.

1.3. Importance of aquaculture to provide fish and fish products  
requirements of the growing population

The role of aquaculture as one of the most rapidly growing sector in the world food economy 
is not neglectable. The importance of fish as major source of animal-based protein for the diet 
of almost 950 million people all around the world (UNEP 2001) is evident. According to the 
FAO reports, aquaculture production increased to 8.5% within last 25 years and can cover 
approximately half of produced fish for human consumption (FAO, 2014). In the 1980s, the 
origin of most of the feed resources for cultivation of especially carnivorous fish was from the 
captured pelagic bait fish (Olsen, 2011). Over the last decade, there has been great changes 
in the usage of pelagic sources with an increasing tendency towards greater use of plant 
sources from agriculture for aquafeeds, due to the limited availability of marine feed sources 
and lower production costs in connection with the plant sources (Gatlin et al., 2007; Naylor 
et al., 2009). In addition, as a result of increasing captures in fisheries, the risk of overfishing 
and depletion of the stock in world-wide scale increased.

1.3.1. Fish meal and fish oil

The importance of marine fish meal (FM) and fish oil (FO) as major ingredients of the 
commercial aquafeeds for providing the nutritional requirements for the cultured fish species 
both regarding protein and lipids is remarkable (FAO, 2007; Turchini et al., 2010; Blomqvist et 
al., 2018). Annual production of FM and FO has remained stable in the last 20 years around 
6 million tons and 1 million tons respectively (Lehane, 2013). Global aquaculture industry 
cannot continue to rely on FM and FO due to the rapid growth in aquaculture, high demand, 
decrease in availability and limited supplies (FAO, 2007) and there is an urgent need to find 
novel, sustainable sources for protein and lipids in fish feeds. For highest sustainability these 
sources should preferably not compete with the already existing foods and food products e.g. 
plant oils or plant proteins, that could be used directly for human consumption. Hence, there 
is a need for novel sources from the non-food sector. Related to this there is also a growing 
demand for providing the nutritional requirements of farmed fish for human consumption.
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1.4. Utilization of the alternative sources for FM and FO in fish diets

Another part of the sustainability question is a sustainable economy. The major costs in 
aquaculture accounts for the feed (Brett, 1979), as for example in case of carnivorous species 
high amount of expensive FM is required in their diet. Due to the high price of FM protein 
beside the obvious decline in the sources of FM (Manzano-Agugliaro et al., 2012) using 
alternative sources such as plant protein sources like soybean and rapeseed meal (Quartararo 
et al., 1998; Bureau Harris and Cho, 1999; Gatlin et al., 2007; Hardy, 2010; Médale et al., 2013; 
Fawole et al., 2016) and animal protein sources including poultry by-products meal, blood and 
bone meal have been evaluated (Bureau et al., 1999; Rawles et al., 2006). In addition, a great 
amount of FO is needed for the aquaculture feed to provide required PUFAs including EPA and 
DHA and the energy for growth, reproduction and metabolism (Blomqvist et al., 2018).   

For the above-mentioned reasons, more recently, the use of more sustainable alternatives 
like insects in the form of live, frozen or meal has received more attention (Henry et al., 2015; 
Ngoc et al., 2016) since they have potential to feed on bio-waste in addition to their quick 
growth and high feed conversion (Collavo et al., 2005). Furthermore, they seem advantageous 
as they are originally consumed as part of natural diet of marine and freshwater fish (Howe et 
al., 2014) and because they are rich source of amino acids, lipids, vitamins and minerals (Van 
Huis, 2013). Microbial products, particularly yeast are sustainable ingredient in aquafeeds 
since these products have the potential to convert low-value biomass from agriculture and 
forestry into high-value feeds with limited dependence on the changes of climate and water 
(Øverland et al., 2013). Several studies focused on the use of yeast proteins as an alternative 
for fish meal due to the high amount of crude protein and good production rate (Sanderson 
and Jolly, 1994; Tacon, 1994; Ferreira et al., 2010).

1.5. The aim of the thesis

The overall aim of this thesis was to evaluate factors influencing the nutritional value of fish 
and to map nutritional composition of less known fresh water species including European 
grayling (Thymallus thymallus), common nase (Chondrostoma nasus), brown trout (Salmo 
trutta morpha fario), common bream (Abramis brama), Prussian carp (Carassius gibelio), 
European perch (Perca fluviatilis) and European chub (Squalius cephalus).

A secondary aim was to develop and examines the effect of partial replacement of novel 
feed ingredients for replacement of FM and VO in the feed of carnivorous fish as an important 
strategy to reach a sustainable aquaculture, reduce the expenses of production and optimize 
feeding strategies. In one study, we examined the inclusion of oil derived from an oleaginous 
yeast which was grown on lignocellulose hydrolysate (from wheat straw) to replace VO in fish 
feed (Blomqvist et al., 2018). In two another works inclusion of insect meal as an alternative 
protein source instead of FM in the diet of European perch and rainbow trout has been 
investigated.
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ABSTRACT
The present review aims to give a concise review about important nutrients from fish and their
impact on human health. In addition, possible effects of rearing system and feeding on the most
vulnerable group of nutrients, the lipids, are summarized.

Fish are considered as nutritionally valuable part of the human diet and consumption two times a
week is recommended, mostly due to the content of long chain polyunsaturated n-3 fatty acids.
These fatty acids are essential in human nutrition and have proven to be involved in many
metabolic functions. Among others, they have anti-inflammatory effects, decrease platelet
aggregation and are essential parts in the cell membranes, cardiovascular system, brain, and
nervous tissue.

In addition the proteins, peptides and amino acids from fish became more recently known for
having positive health effects. Furthermore fish is also a rich source of certain vitamins and minerals
as Vitamin D, selenium, phosphorus, and calcium.

It should be highlighted that, when considering nutrition and related health aspects, it is
impossible to focus one group of nutrients separately. Most probably the discussed effects of fish
on human health are due to the consumption of the fish as a whole and hence the combination of
all present nutrients.

KEYWORDS
Calcium; cholecalciferol; n-3
fatty acids; novel feed
sources; rearing system

Introduction

Fish and seafood products, have a high nutritional value
regarding beneficial amounts of protein, lipids as well as
essential micronutrients. Aquatic animal foods are a rich
source of protein and have a lower caloric density, and
have a high content of omega 3 long chain polyunsatu-
rated fatty acids (n-3 LC PUFA) compared to land living
animals (Tacon and Metian, 2013). Strong links between
fish and seafood consumption and positive health effects,
especially with the decreased risk of coronary heart and
cardiovascular diseases, decreased inflammatory disease
as arthritis and prevention of cancer have been shown
by many researchers (Dyerberg, 1985; Calder, 2004;
Rudkowska et al.; 2010; Lund, 2013). Historically the
main effects of fish consumption have been attributed to
the high content of n-3 LC PUFA. But research is prov-
ing more and more, that also other nutrients from fish
have positive effects on human health. In addition of
being the major source of n-3 LC PUFA, fish and other
seafood have also a well-balanced amino acid composi-
tion, contain high proportions of taurine and choline,
the vitamins D3 and B12 and the minerals calcium,

phosphorus, iodine, and selenium. Furthermore, fish and
seafood also might provide significant proportions of
vitamin A, iron, and zinc to a population if other sources
of these nutrients are scarce (Lund, 2013).

Omega-3 fatty acids in fish and lipids in human
nutrition

In pre-agricultural times, the foods available to humans
were game meat, fish, shellfish, green leafy vegetables,
fruits, berries, honey, and nuts (Simopoulos, 2003). This
diet, containing higher amounts of n-3 PUFA and lower
amounts of n-6 PUFA than modern diets, shaped the
genetics of human nutrition. After the agricultural revo-
lution though, intake of cereals increased enormously.
Cereals are rich in n-6 PUFA and low in n-3 PUFA and,
as a consequence, the n-6/n-3 PUFA balance to which
humans are adapted has changed dramatically over the
last 10,000 years (Simopoulos, 2002a). Human genetics
however could not keep pace with such a fast change in
dietary habits, since the spontaneous mutation rate for
nuclear DNA is estimated to be 0.5% per million years
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(Simopoulos, 2003). We are therefore (still) adapted to
much higher intake of n-3 PUFA in our diet than we
actually consume today. In today’s Western diets, this
ratio is 15 to 20, while it is estimated to have been close
to 1 during human evolution (Simopoulos, 2001, 2002b).

A diet rich in PUFA, especially the LC n-3 fatty acids
(FA) (�C20), has been shown to have beneficial effects
on human health (Williams, 2000). The n-3 LC PUFA
are important for example in the prevention of arterio-
sclerosis and autoimmune diseases (Kinsella, 1988;
Simopoulos, 1999). Eicosanoids synthesized from n-3
PUFA have immunosuppressive properties (Calder,
2001), while the eicosanoids from n-6 PUFA have pro-
inflammatory properties and enhance immune reactions
like fever and pain (Calder, 2001). A too high intake of
n-6 PUFA, is therefore associated with adverse effects on
human health, as for example cardiovascular diseases,
and diabetes as well as hypertension, depression, neuro-
logical dysfunction, and immune disorders (Connor,
2000; Williams, 2000). Also during pregnancy and the
neonatal period an optimal diet containing an appropri-
ate amount of the essential LC n-3 PUFA is necessary for
neural development of children. The retina and brain of
mammals is in general very rich in docosahexaenoic
acid, 22:6n-3 (DHA), and the nervous system of new-
borns has a large demand for it (Lauritzen et al., 2001). It
is well established that the maintenance of optimal pre-
and postnatal growth and development requires n-3
PUFA (Innis, 1991; Innis et al., 1999).

Mammals are not able to synthesize n-3 or n-6 PUFA
in the body (Innis, 1991) but can to a minor amount
metabolize the longer chain PUFA from the parental FA
a-linolenic acid, 18:3 n-3 (ALA), and linoleic acid, 18:2
n-6 (LA), (Gerster, 1998; Arts et al., 2001). The desatur-
ase and elongase systems for the metabolism of the
parental n-3 and n-6 PUFA ALA and LA are the same
for both n-3 and n-6 PUFA (De Henauw et al., 2007;
Palmquist, 2009). Even if delta 6 desaturase has a higher
affinity for ALA than to LA, due to the much higher die-
tary intake LA has been suggested to limit the conversion
of ALA to EPA and DHA (Palmquist, 2009). Consider-
ing the metabolic competition between n-6 and n-3
PUFA (Palmquist, 2009) and their opposing properties
(Schmitz and Ecker, 2008), it is generally assumed that
the intake of n-6 FA is too high in the present diet. An
intake ratio of 1 to 4 is generally recommended (Simo-
poulos, 2001, 2002b). For this reason, a more balanced
intake of n-6 and n-3 PUFA is important. Due to this, a
daily intake of eicosapentaenoic acid (EPA, 20:5 n-3)
and DHA of at least 0.22g each has been suggested as
adequate for adults (Simopoulos, 2002b) and many
countries have set up their own recommendations for
the daily intake of EPA and DHA (Givens and Gibbs,

2008). This makes it important to include sources rich in
n-3 PUFA in the daily diet. Oily fish for example, contain
high amounts of n-3 LC PUFA, and are therefore a good
source for these. Besides, the European Food Safety
Authority (EFSA) approved several health claims related
to the consumption of fish or EPA and DHA, as for
example the maintenance of normal level of blood tria-
cylglycerols, normal brain function and vision, cardiac
function and blood pressure (EFSA Panel on Dietetic
Products, 2010). European Food Safety Authority has
also proposed FA reference labeling intake values for the
general population: 250 mg EPACDHA; 2 g ALA and
10 g of LA per day (EFSA, 2009). Furthermore it was
concluded, that a fish consumption of 1 to 2 servings per
week could be protective against coronary hearth dis-
eases and ischemic stroke (FAO & WHO, 2011), to
reverse the increase in the western world.

Proteins in fish

Fish protein has since long been considered having a
high nutritional value (Sargent, 1997). Aquatic animal
foods have a higher protein content than most terrestrial
meats. In addition aquatic protein is highly digestible
and rich in several peptides and essential amino acids
that are limited in terrestrial meat proteins, as for exam-
ple methionine and lysine as suggested by Tacon and
Metian (2013).

Nonetheless, only in the last decade, research has also
focused on the beneficial health effects of fish protein in
human nutrition (Rudkowska et al., 2010; Pilon et al.,
2011). Even if this research is still in its beginning, stud-
ies related to inflammation, metabolic syndrome, osteo-
porosis, insulin resistance, obesity-related comorbidity
and development of cancer have been executed and fish
protein, peptides or hydrolysates have shown of impor-
tance in nearly as many areas as fish lipids. For example,
a sardine protein diet showed to lower insulin resistance,
leptin and TNFa, improved hyperglycemia and
decreased adipose tissue oxidative stress in rats with
induced metabolic syndrome (Madani et al., 2012). The
authors suggested dietary sardine protein as a possible
prophylaxis against insulin resistance.

Furthermore, fish protein hydrolysates are considered
as superior from a nutritional point of view due to the
excellent amino acid composition and easily digestible
proteins. But, due to the undesirable fishy odor and fla-
vor they have been earlier mostly used in animal nutri-
tion (Kristinsson and Rasco, 2000; Chalamaiah et al.,
2012). It has been shown in human macrophages that
fish protein hydrolysates decreased tumor necrosis factor
a (TNFa) compared to casein hydrolysates. In the same
study the combination of n-3 PUFA with fish protein
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hydrolysates synergistically decreased expression levels
of (TNFa) compared to fish protein hydrolysates or n-3
treatment only (Rudkowska et al., 2010). The same
authors suggested that part of the beneficial effect of fish
protein hydrolysates compared to casein hydrolysates
could be due to the higher content of arginine in fish
protein. Arginine has shown to limit the production of
superoxide anions by nitric oxide synthase (iNOS). In
addition, the higher content of glycine in the fish protein
hydrolysates could be beneficial, as glycine has shown to
repress the expression of TNFa and the pro-inflamma-
tory interleukin-6 (IL6) in various cell cultures
(Rudkowska et al., 2010). The exact mechanisms are yet
unclear, however the authors suggested, it might be by
activation of the peroxisome proliferator-activated factor
g (PPAR g), which is also important in lipid metabolism.
The third factor could be taurine, which is an amino acid
by-product also highly found in fish, which has shown to
also suppress production of TNFa, IL6, interleukin-1b
(IL-1b) and iNOS (Rudkowska et al., 2010; Lund, 2013).

In general it seems that these above mentioned amino
acids and taurine in fish have similar anti-inflammatory
effects as the long chain n-3 PUFA. Moreover, some
other amino acids and particularly taurine, may play an
important role in the beneficial effects of fish protein
especially of oily fish including sardines, by for example,
limiting the complications of type 2 diabetes and
decreasing glucose, insulin and insulin resistance
(Madani et al., 2012). On the other hand, Balfego et al.
(2016) showed inclusion of 100 g of sardines 5 days a
week into the standard diet for type 2 diabetes in a period
of 6 months, did not have effect on glycemic control but
had lowering effects on cardiovascular risk.

Furthermore proteins from various fish as bonito,
salmon, mackerel, herring and cod have shown anti-
inflammatory properties while salmon and cod protein
in addition improved insulin sensitivity in rats (Lavigne
et al., 2001; Ouellet et al., 2007; Pilon et al., 2011). Dort
et al. (2012) found cod protein to better promote growth
and regeneration of skeletal muscle after trauma com-
pared to peanut protein and casein and suggested this
also to be partly because of the improved resolution of
inflammation by cod protein. Salmon calcitonin, a 32-
amino acid peptide with blood calcium lowering func-
tions has been used for medical purposes for more than
30 years (Chesnut et al., 2008). Calcitonin preserves
bone quality and has been used in the treatment of meta-
bolic bone diseases as osteoporosis and Paget’s disease
and has also shown potentials for the treatment of osteo-
arthritis and to reduce postmenopausal osteoporosis
(Chesnut et al., 2008). Salmon calcitonin has shown to
be 40 to 50 times more potent than human calcitonin
(Azria et al., 1995).

In the more recent research, a decreased risk of meta-
bolic syndrome in adults has been attributed to the con-
sumption of lean fish (Torris et al., 2016). Drotningsvik
et al. (2015) indicated that already a low dietary intake of
cod protein (25%) compared to a casein only diet,
improved lipid metabolism and glucose regulation in
obese rats. For humans, Aadland et al. (2015) showed
that already 4 weeks of a diet with 60% of proteins from
lean-seafood reduced serum triacylglycerol concentra-
tions and prevented elevation in VLDL particle number
in comparison to a diet without seafood-proteins. In a
follow up study, the lean-seafood intake showed to
reduce postprandial C-peptide and lactate concentra-
tions as well as the TG/HDL-cholesterol ratio (Aadland
et al., 2016). The authors concluded that the diet with
60% lean seafood protein had an effect on long-term
development of insulin resistance, type 2 diabetes, and
cardiovascular disease. Furthermore Schmedes et al.
(2016) observed higher lipid catabolism after the lean-
seafood intake. The results regarding type 2 diabetes are
in line with earlier research that has shown that fish pro-
tein improved insulin sensitivity and subsequently
increased capacity to store glucose as glycogen (FAO &
WHO, 2011, Pilon et al., 2011).

These results indicate that fish consumption has a
positive effect on human health due to both the lipid and
the protein/peptide composition. Many of the mecha-
nisms are not fully explored and more research is still
needed to completely understand the effects of fish pro-
teins as well as the synergistic effects from the combined
uptake of fish lipids and proteins.

In addition, some amines, such as spermine and sper-
midine are highly relevant in the newest health discus-
sions and anti-cancer research (Prester 2011; Wang et al.
2017). As these findings are only very premature, we
only make this remark.

Vitamin D, selenium, calcium and phosphorus
in fish

In addition to its valuable lipid and protein composition,
fish is also a significant source of vitamin D (Holick,
2008b). Deficiency of vitamin D leads among others to
rickets, osteomalacia, a low bone mineral density (BMD)
and thereby to osteoporosis. Also an increased occur-
rence of cases of falling has been found in people with
low vitamin D levels (Cranney et al., 2007). Furthermore,
a significant correlation between higher fish intake and a
lower risk of hip fractures was found in Chinese elderly
(Fan et al., 2013). Beside bone connected issues defi-
ciency of vitamin D has been connected with diabetes
(Holick, 2008a), increased aggressiveness of certain can-
cers and increased occurrence of autoimmune diseases
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as well as cardiovascular diseases (Holick, 2008b;
Norman, 2008). Norman (2008) found in addition the
vitamin D receptor either present or involved in many
other body systems, as the adaptive and innate immune
system, pancreas and brain. Usually vitamin D can be
photochemical produced in the skin by mediation of
sunlight. Due to concerns about skin cancer (Norman,
2008) or other reasons for low exposure to the sun, as liv-
ing on northern altitudes, high rates of vitamin D defi-
ciency have been reported from children and adults all
around the world (Holick, 2008b; Norman, 2008). The
general recommendation is to ingest at least 1000 IU
vitamin D per day, which corresponds to 25 mg (Lu
et al., 2007; Holick, 2008b). The form of vitamin D found
in fish is vitamin D3 (cholecalciferol), which is also the
form being produced in the skin from 7-dehydrocholes-
terol when exposed to ultraviolet light and which has
recently shown to have more than 3 times higher
potency compared to the vitamin D2 (ergocalciferol)
which is found for example in mushrooms (Holick,
2008b; Norman, 2008). The two forms differ by ergocal-
ciferol having one double bond and a methyl group
more than cholecalciferol.

Mattila et al. (1995) found a variation of vitamin D
content between 0.5 and 30 mg/100 g fish muscle in vari-
ous species. In addition it was also shown that farmed
salmon had a much lower vitamin D content compared
with wild salmon and also that the way of preparation
might have an influence on the final content (Lu et al.,
2007). In the mentioned study, only 50% of the original
vitamin D was recovered after frying of salmon (Lu et al.,
2007). So clearly these factors have to be considered
when predicting the nutritional value of fish.

Selenium is toxic in large doses; but it is essential as a
micronutrient in animals and humans. In humans, sele-
nium functions in the form of selenoproteins as cofactor
for reduction of diverse antioxidant enzymes, such as
glutathione peroxidases and is also responsible for the
function of the thyroid gland as a cofactor for the three
of the four known types of thyroid hormone deiodinases
(Holben and Smith, 1999). Low levels of selenium have
been associated with myocardial infarcts and increased
death rate from cardiovascular disease. Beside this, low
levels of selenium have been correlated with increased
risk of cancer and renal disease (Holben and Smith,
1999). Selenium has also shown to decrease the toxicity
of methyl mercury (Ralston and Raymond, 2010). Sea-
food is a good source of selenium and was ranked on
place 17 of 25 by the USDA National Nutrient Database
according to (Ralston, 2008). In addition, it was found
that selenium and selenite from fish was highly bioavail-
able and had a higher bioavailability than selenium from
yeast (Fox et al., 2004). Kehrig et al. (2013) analyzed

various fish and seafood from the South Atlantic Ocean
and found beside beneficial selenium values also sele-
nium to mercury ratios above the critical value 1:1 which
is sufficient to give protection against methyl mercury
toxicity. Furthermore, there have been studies on suc-
cessful supplementations of tilapia with selenium in
order to increase selenium content in fish (Molnar et al.,
2012). Already earlier Kaneko and Ralston (2007) sug-
gested a so called selenium health benefit value
(Se-HBV) based on the absolute amounts and relative
proportions of selenium and mercury in seafood as a cri-
teria for seafood safety. More recently, the group updated
the Se-HBV value to not only take in account the avail-
ability of selenium from fish but also if the selenium sta-
tus is improved or diminished. This new value is
abbreviated HBVSe to distinguish it from the earlier Se-
HBV (Ralston et al., 2016).

Calcium is another important mineral in human
nutrition being important for bone density. Calcium salts
provide rigidity to the skeleton and calcium ions play a
role in many if not most metabolic processes (FAO Agri-
culture and Consumer Protection department, 2002).
Nearly 99% of the calcium in the human body is found
in the bones (Ghosh and Joshi, 2008). The recommended
daily intake of calcium by WHO/FAO is 400 to 500 mg/d
for adults. Compared with other minerals, calcium
absorbance to the body is relatively inefficient. In gen-
eral, only about 25% to 30% of dietary calcium is effec-
tively absorbed (FAO Agriculture and Consumer
Protection department, 2002). Beside milk and milk
products, fish and fish bones are good sources of calcium
and it was also shown earlier that calcium absorption
from fish is comparable to for example skimmed milk
(Hansen et al., 1998). Fish and other aquatic animal food
products are rich source of calcium (Mart�ınez-Valverde
et al., 2000). An average of 68 to 26 mg/100 g of calcium
in crustaceans, molluscs and fish, was documented com-
pared to around 14 mg/100 g in terrestrial meats (Tacon
and Metian, 2013). In addition also salmon and cod
bones were evaluated as a good source for well absorb-
able calcium (Malde et al., 2010). The authors suggested
these fish bones as a valuable by-product to be used as a
natural calcium source in functional foods or food
supplements.

Also phosphorus plays an important role in the bones
as well as in the cellular membranes as a component of
the phospholipids building the membrane lipid bilayer.
In addition it is also a component of many intracellular
compounds as nucleic acids, nucleoproteins and organic
phosphates as for example creatine phosphate and aden-
osine triphosphate. The total content of phosphorus in
the human body is about 700 g of which 80% are bound
in the bones, 10.9% in viscera and 9% in the skeletal
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muscle tissue (Mart�ınez-Valverde et al., 2000; Ghosh and
Joshi, 2008). Deficiency of phosphorus in the body leads
to muscle disorder, metabolic acidosis, encephalopathy
and alteration in bone mineralization as well as in car-
diac, respiratory, neurological and metabolic disorders
(Ghosh and Joshi, 2008). In several publications fish and
seafood are suggested to be a better source of phosphorus
with an average between 204 and 230 mg/100 g phos-
phorus in fish, mollusks and crustaceans, compared to
176 mg/100 g in terrestrial meats (Mart�ınez-Valverde
et al., 2000; Tacon and Metian, 2013).

Factors influencing nutritional value in fish

A number of factors influence the composition of fish
flesh. Every step in the history of the fish, for example
the way of production and processing influences the
quality of the final product. Under intensive culture con-
ditions feed composition and feeding regimen have a
major influence (Lie, 2001). Especially the lipid content
and the FA composition are easily influenced by feed
composition also in addition to feeding regimen and
rearing system (Morris, 2001; Shearer, 2001). In con-
trary, as long as fish are fed adequate diets containing all
needed nutrients in sufficient amounts, the protein con-
tent and composition seem to be predetermined for each
species of fish regardless of the content in the diet or the
feeding regimen (Morris, 2001; Shearer, 2001). Ash con-
tent and mineral composition are similarly predeter-
mined in fish as the proteins; but some other
micronutrients can be influenced and can have some
effect on flesh quality (Baker, 2001). Regarding wild fish,
the composition cannot be manipulated by the diet, how-
ever quality of the fish and later products will be affected
by handling and processing (Erikson, 2001). In aquacul-
ture, besides the feeding, handling after the harvest, as
transport, possible storage or purging of the fish and the
slaughter methods (Erikson, 2001; Robb, 2001) are
important for the final product quality. All these steps
can have an effect on lipid content and composition.

During processing, FA will be affected due to possible
oxidation but especially due to the addition of oils or fat
to the products. Last but not least the way of culinary
preparation has a significant influence on the FA compo-
sition of the finally consumed product. The later aspects
have recently been reviewed in separate articles (Sampels,
2015a, 2015b) and will hence be not repeated here.

Effects of feed and rearing system

The FA composition of the feed will be mirrored in the
flesh (Robin et al., 2003). Especially in aquaculture, the
rearing system and type of feed will have a significant

influence as the fish have to feed what they get. This is
true for both marine and freshwater intensive aquacul-
ture. In marine aquaculture traditionally fish oil is used
in feeds to provide the fish with a sufficient proportion
of n-3 PUFA (Watanabe, 1982) and to produce fish with
a nutritional valuable FA composition (Steffens, 1997;
Torstensen et al., 2005; Steffens and Wirth, 2007). Due
to an increasing demand of fish and subsequently an
increased aquaculture production, fish oil is getting
scarce and since many years, research on good and sus-
tainable substitutes which at the same time preserve the
natural, nutritional valuable FA composition of fish
(Gatlin et al., 2007; Pickova and Morkore, 2007;
Torstensen et al., 2008; Naylor et al., 2009; Thanuthong
et al., 2011) is ongoing. Various sources as vegetable oils,
algae, krill, insects, single cell oils, plankton, mesopelagic
fish, and fungal biomass have been investigated as possi-
ble replacers for fish oil (Harel et al., 2002; Pickova and
Morkore, 2007; Miller et al., 2010; Olsen et al., 2010;
Tocher et al., 2010; Turchini and Mailer, 2010; Berge
et al., 2013, Henry et al., 2015; Kousoulaki et al., 2015).

A restricting factor is, that for example vegetable oils
do not contain the essential n-3 LC-PUFA EPA and
DHA but only the shorter chain precursor ALA. Hence
the fish must be able to convert the precursor to the lon-
ger metabolites if the diet is only prepared with vegetable
oils. Most fish, as mammals including human, are not
able to synthesize the n-3 LC PUFA in a sufficient pro-
portion and the change from fish-oil to vegetable oil, in
general leads to a decrease in LC PUFA (Steffens, 1997;
Trattner et al., 2008b; Turchini et al., 2009). Neverthe-
less, there are differences between species. Already earlier
it has been shown that, fresh water species like carp in
contrast to marine fish seem to be able to convert ALA
towards the longer chain metabolites in a greater amount
(Farkas, 1984; Henderson, 1996; Turchini et al., 2006). It
was also discussed that the ability of fish to synthetize n-
3 LC-PUFA depends on their particular metabolic and
life-history adaptations to varied environments (Leaver
et al., 2008). We suggest that predatory species have a
lower capacity for the synthetization of n-3 LC-PUFA as
these species have these FA available in the diet com-
pared to herbivorous or omnivorous fish, which natu-
rally have less n-3 LC-PUFA in the diet.

There has also been some research to increase the
metabolism in fish towards the LC derivatives by adding
bioactive compounds to the feed. A promising com-
pound is for example sesamin, that showed to increase
n-3 LC PUFA synthesis in rainbow trout (Oncorhynchus
mykiss) (Trattner et al., 2008a), Atlantic salmon (Salmo
salar) hepatocytes (Trattner et al., 2008b) and in juvenile
barramundi (Lates calcarifer) (Alhazzaa et al., 2012).
Also Lipoic acid has shown to increase metabolism from
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ALA to EPA in South American pacu (Piaractus mesopo-
tamicus) (Trattner et al., 2007).

More recently even n-3 LC PUFA rich vegetable oil
plants (genetically modified) have been suggested as a
sustainable source for n-3 (Kitessa et al., 2014; Napier
et al., 2015; Robert, 2006). For example a transgenic
Camelina sativa has successfully been tested in feeds for
Gilthead Sea Bream (Sparus aurata L.) (Betancor et al.,
2016). In addition, a transgenic canola (Brassica napus
L.) line has been suggested (Napier et al., 2015) but due
to the best of our knowledge until now no results of prac-
tical applications have been published. Another example
is transgenic Arabidopsis producing oil rich in EPA and
DHA (Robert et al., 2005; Ruiz-Lopez et al., 2013). Also,
a genetically modified yeast (Yarrowia lipolytica) has
been shown to be applicable for fish oil replacement in
fish feeds (Berge et al., 2013).

In addition to novel oil and FA sources also new feed-
ing techniques have been investigated as for example a
finishing feeding technique or circadian alteration feed-
ing (Brown et al., 2010; Thanuthong et al., 2011). Other
strategies aim to increase the bioavailability of the n-3
FA in the used feed source by different treatments. Berge
et al. (2013) for example showed, that the application of
a disruption process to yeast cells, increased the digest-
ibility coefficients of EPA and DPA from the yeast bio-
mass for Atlantic salmon significantly.

Another part of the rearing system for some species is
the so-called purging. For certain species it is necessary
to be starved for some time prior consumption in order
to empty the entrails and eliminate rearing odor in the
flesh. A very good example for freshwater fish that have
to be starved before slaughter, are carp, which are mainly
starved to eliminate bad odors and taste (Zajic et al.,
2013). From the marine species, salmon are often starved
for some time to reduce fat content or to decrease meta-
bolic rate before transport (Erikson, 2001). Another rea-
son to starve fish is to reduce the amount and activity of
digestive enzymes in fish that are sold whole without
prior evisceration (Røra

�
et al., 2001). Purging however, if

pursued for a longer period also leads to weight loss and
storage fat mobilization and hence influences the FA
composition (Zajic et al., 2013).

Effects of water temperature and salinity

Besides the feed and rearing system also other factors as
water salinity and temperature have shown to influence
the FA composition in fish (Farkas, 1984; Fonseca-
Madrigal et al., 2012). In many poikilotherms, the con-
tent of unsaturated FA decreases with increasing temper-
ature (Farkas, 1984) and vice versa. Also Jobling and
Bendiksen, 2003 summarized that lower water

temperatures in general result in lower accumulation of
SFA and increased proportions of unsaturated FA. More
recently, Norambuena et al. (2016) showed that water
temperature clearly affected FA composition in salmon
reared at 10 �C versus 20�C, where fish kept at 10�C
showed higher contents of n-6 FA in fillets. In line with
this, also Mellery et al. (2016) found a higher accumula-
tion of C18 n-6 PUFA content in rainbow trout raised at
15�C versus 19�C. The same authors also reported a
decreased bioconversion from ALA to EPA and DHA at
increased temperatures.

Regarding salinity, Roche et al. (1983) found a lower
lipid content in sea dace (Icentrarchus labrax pisces) at
a salinity of 4 ppt compared to higher values (18, 36,
and 40 ppt, respectively). Fish also showed a lower con-
tent of MUFA and higher proportion of PUFA at the
lowest salinity in this study. In the brackish Baltic Sea,
herring (Clupeus harrengus) is less fatty compared to
the saltier North Sea (National Food Agency Sweden,
2017). In line with this Liu et al. (2017) found a lower
fat content at lower salinity in juvenile American shad
(Alosa sapidissima), but in opposite to sea dace and her-
ring, American shad showed a higher MUFA at the
lowest salinity and increasing proportions of PUFA
with increasing salinity (Liu et al. 2017). Similar results
have been shown earlier for silverside (Chirostoma
estor), where an increased biosynthetis of long chain n-
3 PUFA was found in fish raised at higher salinities
(Fonseca-Madrigal et al., 2012). On the other hand
resulted a lower salinity in higher biosynthesis of EPA
and DHA in red sea bream (Pagrus major) (Sarker
et al. 2011). Changes in lipid metabolism have also
been observed in species that undergo a transfer from
freshwater to seawater (anadromous), for example dur-
ing smoltification in salmonids (Bell et al., 1997; Sargent
et al., 1989). During smoltification of juvenile salmonids
an increased activity of the long chain PUFA synthesis
was found until seawater transfer and a decreased activ-
ity during the sea water phase (Bell et al., 1997). In gen-
eral it is assumed that freshwater fish have a higher
ability to elongate and desaturate ALA to DHA com-
pared to marine fish, and it seems that increasing salin-
ity or lower temperatures sometimes can have a
stimulating effect in some species (Kheriji et al 2003,
Fonseca-Madrigal et al., 2012; Liu et al. 2017). In gen-
eral, when considering salinity effects, species with a
large span of environmental adaptations, have a higher
fat content (most likely because of better growth) in
their environment of origin. For example herring, being
a marine fish species, has a higher fat content in higher
salinities, compared to brackish environment (National
Food Agency, Sweden, 2017). Salmonids (most species)
have a higher fat content when they are on feeding
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migration in saltwater compared to the environment
where they hatch and smoltify.

Conclusions

When considering fish as food and the nutritional value
connected with these products, first of all the n-3 PUFA
are in focus. Furthermore, it gets obvious that also the
proteins and peptides in fish have not only a high nutri-
tional value but also impact on human health issues. In
addition fish can be considered as a good source of sev-
eral minerals, vitamins and micronutrients.

The most vulnerable nutrients from fish are the FA, as
they are significantly influenced by the feed and the
processing of the fish, while protein and the minor
nutrients seem to be less affected as long as the fish was
not starved or wrongly fed or exposed to abusive storage
or processing conditions.

In general, it should be highlighted that, when consid-
ering human nutrition and related health aspects, it is
impossible to focus one group of nutrients separated
from all others. Most probably the discussed effects of
fish on human health are due to the consumption of the
fish as a whole and hence the combination of all present
nutrients.

Future work regarding effects of fish consumption on
human health should therefore focus on both, a holistic
and metabolomic approach, investigating the effects of
fish consumption via techniques as NMR, MALDI-TOF,
MALDI imaging MS, and HPLC-MS in order to get a
more complete picture. When it comes to nutrition stud-
ies, metabolomics are developing fast as a powerful tool,
enabling a direct insight into metabolism of the diverse
nutrients, possible regulation pathways as well as finding
markers for disorders (Cornett et al., 2007; Wagner et al.,
2014; Cheng et al., 2016; Schmedes et al., 2016).
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ABSTRACT
Proximate and fatty acid (FA) composition of seven freshwater fish species from
the Czech Republic were examined. Moreover, the index of atherogenicity (IA)
and the index of thrombogenicity (IT) were calculated from the obtained data.
These two indices along with the total content of the essential n-3 FAs,
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) as well as the ratio
of n-6/n3 FAs, provide good indicators for the nutritional value of the fish.
The species had been selected owing to the limited amount of information about their
nutritional composition available. Furthermore, they are not typically subject to
aquaculture, being almost exclusively obtained by angling. The protein content was
relatively stable in all species (17.1 ± 1.55 to 19.2 ± 2.20 g/100 g). The content of
carbohydrates ranged from 0.02 ± 0.1 to 0.99 ± 0.0 g/100 g and ash from 1.08 ± 0.20
to 2.54 ± 1.57 g/100 g. As expected, a high variability was observed in the fat
content (0.74 ± 0.04 to 4.04 ± 0.81 g/100 g) and the FA composition, as well as the
contents of EPA and DHA. IA and IT were close to the values stated for the Eskimo
diet, indicating a high nutritional value with a positive effect for human health.

Subjects Aquaculture, Fisheries and Fish Science, Food Science and Technology
Keywords Eicosapentenoic acid, Docosahexaenoic acid, Nutritional value, Index of atherogenicity,
Index of thrombogenicity

INTRODUCTION
The consumption of fish as well as fish products has significantly increased during
the last two decades (Food and Agriculture Organization (FAO), 2016). The popularity of
fish is mainly due to the overall high quality and the positive effects on human health.
The main health benefits of fish are attributed to their high content of n-3 long-chain
polyunsaturated fatty acids (FAs) (n-3 LC-PUFA) (Kris-Etherton et al., 2002; Lund, 2013;
Khalili Tilami & Sampels, 2018). The most important n-3 LC-PUFA are
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are known to
have positive effects on the cardiovascular system as well as the nervous system of
children in prenatal development, and to prevent the metabolic syndrome or obesity
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(Williams, 2000; Calder & Yaqoob, 2009; Adamkova et al., 2011; Torris, Molin &
Cvancarova Smastuen, 2016; Kanakri et al., 2017; Saini & Keum, 2018). More recently
fish proteins, peptides and amino acids have also gained increased attention with similar
properties to the n-3 FAs from fish (Khalili Tilami & Sampels, 2018).

Moreover, fish proteins are easily digestible and rich in all essential amino acids, particularly
methionine, lysine, taurine, which are limited in other kinds of muscle food (Tacon &Metian,
2013; Khalili Tilami & Sampels, 2018). Khalili Tilami & Sampels (2018) provided a depth
review of the nutritional value of fish, focusing on lipids and proteins in particular.

While the protein composition is generally very stable in fish, the FA composition
is greatly influenced by the diet. The lipid composition of the diet is mirrored in the
fillet lipid composition of reared fish following the trend “You are what you eat”
(Chanmugam, Boudreau & Hwang, 1986; Sahena et al., 2009). In addition to the effect
of feed composition, other factors including fish feeding habits, fish trophic level and
ecosystem trophic status might influence the nutritional composition of fish in natural water
bodies via changing the quality of feed sources (Ahlgren et al., 1996; Czesny et al., 2011;
Gladyshev et al., 2018). Nutritional composition of various fish species might be influenced
by variation in their morphology and physiology (Rust, 2002; Khitouni et al., 2014).

The differences in nutrient composition between wild and farmed fish of identical
species have been reported many times (Nettleton & Exler, 1992; Ahlgren, Carlstein &
Gustafsson, 1999; Orban et al., 2003; Kaushik et al., 2006; Hossain, 2011). The diets for
fish in intensive aquaculture consist of complete feeding mixtures based on fish meal and
fish oil to meet the fish requirements as well as reaching a nutritionally valuable high
content of n-3 FA in the fillet. Nonetheless, due to the increased use in various sectors
(aquaculture, pharmaceuticals, cosmetics...), n-3 LC-PUFA rich sources for aquaculture
feeds are very limited and must be replaced by sustainable components. For the time being,
these replacers are usually plant components, generally causing a decrease in the
proportion of n-3 LC-PUFA in the fish. On the contrary, the diet of wild fish consists of
natural feed, such as plankton, benthos as well as nekton in case of carnivorous species,
which naturally contain the essential n-3 LC-PUFA. The primary producers of n-3
LC-PUFA in freshwater ecosystems are, the same as in the ocean, algae. These compounds
are transferred into the fish throughout the feed chain. In addition, fish are able to
biosynthesize n-3 LC-PUFA from their 18 carbon precursor (a-linolenic acid; ALA) to a
certain degree. This ability is strongly expressed in freshwater non-carnivorous species,
compared to marine carnivorous fish, which decreased this ability during evolution
(Tocher, 2003; Zajic, Mraz & Pickova, 2016). Therefore, the consumption of freshwater
species from natural habitats should be beneficial not only for human health, but also from
sustainability and ecological viewpoints.

While annual fish supply around the world was 20 kg per capita in 2014 (Food and
Agriculture Organization (FAO), 2016), landlocked countries, like those in Central Europe,
have a much lower average consumption; for instance fish intake in the Czech Republic was
around 5.5 kg per capita in 2008 (MZe, 2009). At the same time, a significant percentage of
consumed fish is provided by anglers in these countries, thus consisting of wild fish. The
consumed fish also include species that have unjustly gained less attention by experts for
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human nutrition. However, they have a relatively high importance for a certain part of the
population in Central Europe.

This study aimed to complement the existing information about the nutritional
composition and lipid indices of seven less promoted but very interesting freshwater
fish species in order to extend an existing knowledge. For some of them no relevant data
about proximate composition exist and only fragmentary results have been published
regarding the fat content and composition. The list of investigated species includes European
grayling (Thymallus thymallus), common nase (Chondrostoma nasus), brown trout
(Salmo trutta morpha fario), common bream (Abramis brama), Prussian carp (Carassius
gibelio), European perch (Perca fluviatilis) and European chub (Squalius cephalus).

MATERIALS AND METHODS
The fish (individuals of a consumerist size) for this study were obtained by anglers
from their natural habitat (major river basin of the Dyje, Labe and Vltava rivers in the
Czech Republic) during the vegetation season. Samples from each species were caught at
different localities. After catching of each fish by traditional angling (angle with one hook
attached to the fishing line), fish were separated based on their weight. Then, the
individuals with the marketable-size were selected. Immediately after capture, the selected
fish were killed by a blow to the head, weighted (Table 1) and transported on ice (0 �C)
to the processing facilities of the Institute of Aquaculture and Protection of Waters,
Faculty of Fisheries and Protection of Waters, University of South Bohemia, Ceske
Budejovice, Czech Republic. The temperature was monitored during the transport.
Fish were filleted and processed as skin-on and scale-less. Fillet with skin were used in
order to include all the flesh and FA deposits which contain n-3 LC-PUFA. Then the whole
remaining fillet was homogenized in a table blender so that the taken sample was
sufficiently representative, while containing all the edible parts.

Proximate composition
The chemical composition of fish samples was analyzed following standardized AOAC
(Association of Official Analytical Chemists (AOAC), 2000) methods. For dry matter
analysis, 12 individuals of common bream, seven European perch, eight Prussian carp,
seven common nase, 12 brown trout, nine European grayling, and five European chub
were used. To determine dry matter, five g of homogenized sample was mixed with some
sea sand in a pre-dried porcelain dish and then dried in the oven at a temperature of 105 �C
to the constant weight. A total of 12 individuals of common bream, 10 European perch,
nine Prussian carp, nine common nase, 12 brown trout, 13 European grayling, and 11
European chub were taken for ash analysis. Ash was analyzed by incinerating five g
homogenized muscle at 550 �C in a muffle furnace for 12 h. Carbohydrates were calculated
using the following formula:

Carbohydrates %ð Þ ¼ 100� moistureþ lipidsþ proteinsþ ashð Þ
For protein analysis, 12 individuals of common bream, ten European perch,

nine Prussian carp, nine common nase, nine brown trout, 12 European grayling,
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and 10 European chub were used. Total nitrogen was analyzed in a certified laboratory
(ALS Czech Republic, Prague) by Dumas combustion, the protein content being
subsequently calculated using 6.25 as a conversion factor. The energy value was calculated
assuming conversion factors of 23.6, 39.5, and 17.2 kJ/100 g for proteins, lipids, and
carbohydrates, respectively (NRC, 1993).

Fat content and fatty acid composition
A total of 15 individuals of common bream, 10 European perch, 13 Prussian carp,
nine common nase, 12 brown trout, 10 European grayling, and 10 European chub were
used for analysis. One g of the homogenized fillet was taken for analysis. Lipids were
extracted in HIP (hexane-isopropanol 3:2 v:v) following the method of Hara & Radin
(1978) with modifications described by Mraz & Pickova (2009) and the fat content
was determined gravimetrically. Subsequently fatty acid methyl esters (FAME) were
prepared according to Appelqvist (1968) with NaOH in dry methanol and boron
trifluoride–methanol complex (BF3). Obtained FAMEs were analyzed using the gas
chromatograph Trace Ultra (ThermoScientific, Waltham, MA, USA) equipped with a
flame ionization detector and capillary column BPX 70 (AGE, Austin, TX, USA) with 50 m
length � 0.22 mm i.d. � 0.25 mm film thickness. FA were identified by comparing to
the standard mixture GLC-68D (Nu-Check Prep, Elysian, MN, USA) and other individual
standards. For calculations of the absolute amount of individual FA, an internal
standard (21:0) (Nu-check Prep, Elysian, MN, USA) was used.

Lipid health indices
The obtained data were used to calculate both the index of atherogenicity (IA) and the
index of thrombogenicity (IT) according to Ulbricht & Southgate (1991). The IA refers to
the ratio between the main saturated FA (SFA) and the sum of monounsaturated FA
(MUFA), and polyunsaturated FA (PUFA). The result of this index is a number
indicating the risk of formation i.e., atherosclerosis. The higher the IA is, the higher
risk it constitutes. The IT is defined as the ratio between pro-thrombogenic (myristic,
palmitic, and stearic) and anti-thrombogenic (MUFA, n-6 PUFA and n-3 PUFA) FA.

Table 1 List of seven analyzed freshwater fish species from major river basin of Dyje, Labe and
Vltava river, the Czech Republic, with weight (average ± standard deviation) and captured fish
number (N).

Common name Latin name Average weight (g) N

Freshwater bream Abramis brama 761 ± 158 16

European perch Perca fluviatilis 142 ± 29 10

Prussian carp Carassius gibelio 483 ± 96 13

Common nase Chondrostoma nasus 510 ± 115 10

Brown trout Salmo trutta morpha fario 140 ± 48 12

Grayling Thymallus thymallus 315 ± 44 13

Chub Squalius cephalus 243 ± 35 11

Note:
N-captured fish number.
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An increasing IT indicates a risk of developing a blood clot (Garaffo et al., 2011; Ulbricht &
Southgate, 1991). The following equations were applied:

IA ¼ ð12:0þ 4� 14:0þ 16:0Þ=½� MUFAþ � PUFA�
IT ¼ ½14:0þ 16:0þ 18:0�=½ð0:5�MUFAÞ þ ð0:5� n-6Þ þ ð3� n-3Þ

þ ðn-3=n-6Þ�

Statistical analysis
Statistical evaluation was performed using one-way analysis of variance (ANOVA) with
subsequent post hoc comparisons using Tukey’s honest significant difference test to
determine the effects of different localities on the changes of FAs, lipids, proteins,
dry matter, and carbohydrates within species. Probability values of p � 0.05 were
considered as significant. These statistical analyses were performed using the STATISTICA
software (Version 13; StatSoft, Inc., Tulsa, OK, USA) for MS Windows. The relation
between FAs and lipid content of each species were evaluated using linear regression.
Kruskal Wallis one-way ANOVA was performed in order to determine differences in FAs,
dry matter, proteins, lipids, and ash content among fish species. In case of significant
differences Dunn post hoc test were performed. These analyses were done with
rcompanion (Magniafico, 2018) and FSA (Ogle, 2018) packages in R version 3.4.4
(R Development Core Team, 2018).

RESULTS
The present study analyzed the fillet composition of seven wild freshwater fish species.
The fish species presented in this study are normally solely captured from open waters with
exception of European perch (Mairesse et al., 2006) and to a limited extent brown trout
(Arzel et al., 1994). The obtained samples originated exclusively from the natural
conditions of the species studied, from the Dyje, Labe, and Vltava river basins. The purpose
was to only take the fish that had reached the consumable size (Table 1), as the
nutrient composition with lipids in particular can vary with the growth of the fish (Mraz &
Pickova, 2011). It has to be considered that beside growth and the already earlier
mentioned feed composition many other factors can influence nutrient composition in
fish. For example, ecological factors including the trophic status of the water body
(eutrophic ecosystem enriched with phytoplankton as the main producers of feed chain
versus oligotrophic ecosystem) (biotic factor) (Ahlgren et al., 1996; Czesny et al., 2011;
Vasconi et al., 2015, Gladyshev et al., 2018), temperature (Arts et al., 2012) as well as
lightning conditions (abiotic factors) (Boujard & Leatherland, 1992) were reported to
have influence on FA and lipid composition of the fish by changing the quality of their
feed. Other factors like fish feeding habits, their preference for eating, presence and
threat of predation (Daan, 1981) which can change the fish preferred time of feeding
in spite of their fixed feeding rhythms as diurnal or nocturnal feeders, are also
important. The role of phylogenetic factor is more discussed for carnivorous species
(Gladyshev et al., 2018). However, in the present study the aim was to investigate
the natural composition and possible diversity in order to be able to give better
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information about nutritional composition to the consumers. Therefore, these factors were
not in the focus of the work.

Proximate composition
The proximate composition of the analyzed fish is listed in Table 2. Fat content varied
from 0.74% in European perch to 4.04% in common nase. All studied species showed a
similar protein content (17.1 ± 1.55 to 19.2 ± 2.20 g/100 g fillet). The carbohydrate content
was varying from 0.02 g/100 g (European perch) to 0.9 g/100 g (common bream).
Like proteins and carbohydrates, the ash content in the fillet with skin was comparable
among all the analyzed species (1.08 ± 0.20 to 2.54 ± 1.57 g/100 g).

Fatty acid composition
Fatty acid composition of the chosen species is presented in Table 3. FA composition
varied between species. The nutritional valuable n-3 FA, EPA, and DHA showed values
between 2.03% in brown trout and 8.15% in common bream for EPA and 7.33 in common
nase to 27.60% in European perch for DHA. Total content of EPA plus DHA was
calculated to range from 190 mg/100 g in European perch to 471 mg/100 g in common
nase (Fig. 1).

Lipid health indices
One of the sub-objectives of this study was to determine the lipid health indices (IA and
IT) of the analyzed species. In this study, the IA reached a maximum of 0.39 (common
nase) and the highest IT (0.26) was calculated for brown trout (Table 3).

DISCUSSION
Protein content results varied at the predictable levels and corresponded to the
indicated values for fish flesh (Lazos, Aggelousis & Alexakis, 1989; Puwastien et al.,
1999; Tuomisto & Froyland, 2008; Gjedrem, Robinson & Rye, 2012; Zotos & Vouzanidou,
2012). Carbohydrate content in fish is usually lower than 0.5 g/100 g flesh (Gjedrem,
Robinson & Rye, 2012). Ash content varied from 1.08 to 2.54, this might be due to the
variation in feed intake, species, physiology, and sex (Khitouni et al., 2014). Similar

Table 2 Proximate composition of seven freshwater fish species from major river basin of Dyje, Labe and Vltava river, the Czech Republic.

Dry matter Protein Lipids Ash Carbohydrate Energy value Energy value
g/100 g g/100 g g/100 g g/100 g g/100 g kJ/100 g kcal/100 g

Common bream 22.5 ± 1.85a 18.0 ± 1.24ab 2.17 ± 0.19a 1.35 ± 0.18bc 0.99 ± 0.0a 528 ± 18ab 126 ± 4ab

European perch 20.9 ± 2.67c 17.6 ± 1.85bc 0.74 ± 0.04c 2.54 ± 1.57ab 0.02 ± 0.1e 500 ± 31b 114 ± 2b

Prussian carp 20.8 ± 1.41ac 17.1 ± 1.55c 1.94 ± 1.13a 1.08 ± 0.20c 0.68 ± 0.0ab 518 ± 4ab 124 ± 1ab

Common nase 23.4 ± 1.47bd 17.6 ± 0.98bc 4.04 ± 0.81b 1.25 ± 0.08bc 0.51 ± 0.1bc 604 ± 58ac 144 ± 14ac

Brown trout 24.3 ± 1.50b 19.2 ± 1.50a 3.32 ± 0.1ab 1.56 ± 0.20abc 0.30 ± 0.1df 619 ± 56c 148 ± 13c

European grayling 21.6 ± 1.94ad 17.4 ± 0.52bc 2.77 ± 0.92ab 2.35 ± 1.05a 0.18 ± 0.1ef 536 ± 33ac 128 ± 8ac

European chub 24.9 ± 0.2b 19.2 ± 2.20ab 3.49 ± 0.53b 1.86 ± 0.51ab 0.37 ± 0.0cd 611 ± 76ac 146 ± 18ac

Notes:
Different letters indicated significant differences (p � 0.05) for the respective parameter among different species.
Data are mean ± standard deviation.
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variations have been observed in the results of previous studies (Puwastien et al., 1999;
Zotos & Vouzanidou, 2012; Zivkovic et al., 2013). As protein and carbohydrate contents are
known to be very stable in fish, these results had been expected (Morris, 2001; Shearer,
2001). Significant differences occurred only earlier when the whole-body composition
(with bones, fins, and scales) of fish was analyzed (Van Pelt et al., 1997).

Common bream is a lean fish with approximately one g of lipids per 100 g fillet
(Lazos, Aggelousis & Alexakis, 1989; Aggelousis & Lazos, 1991). In our study we found
fat contents up to 2.17 ± 0.19, which is rather comparable with the North European

Table 3 Fatty acid composition (% of total identified), atherogenicity and thrombogenicity indices of seven freshwater fish species caught from
the major river basin of Dyje, Labe and Vltava river, the Czech Republic.

Common bream European perch Prussian carp Common nase Brown trout European grayling European chub

14:0 2.02 ± 0.8a 0.99 ± 0.22b 2.15 ± 0.46a 2.69 ± 0.88a 1.95 ± 0.58a 1.94 ± 0.57a 1.93 ± 0.29a

14:1 0.62 ± 0.45a 0.32 ± 0.35c 1.26 ± 2.19ab 0.22 ± 0.09c 0.32 ± 0.15abc 0.06 ± 0.08bc 0.58 ± 0.15a

16:0 14.3 ± 6.82ab 22.38 ± 3.35c 17.31 ± 2.83ab 16.19 ± 2.82bd 18.57 ± 4.20ac 12.89 ± 2.79d 17.09 ± 1.11ab

16:1 9.78 ± 5.33bc 3.85 ± 1.33a 7.81 ± 2.10ac 15.00 ± 4.73b 7.92 ± 2.72ac 3.57 ± 1.31a 9.99 ± 2.05bc

18:0 5.98 ± 2.13a 4.47 ± 2.35ac 2.83 ± 2.54bc 3.09 ± 0.36bc 4.67 ± 1.07b 2.87 ± 0.58ab 3.26 ± 0.42bc

18:1n-9 17.9 ± 9.19a 7.93 ± 2.93b 7.33 ± 5.67b 17.12 ± 1.95a 22.94 ± 15.9a 27.30 ± 9.39c 21.23 ± 2.47ac

18:1n-7 6.53 ± 1.65a 3.85 ± 0.33bc 4.99 ± 0.49ab 4.81 ± 0.07ab 3.97 ± 1.27abc 2.83 ± 0.30c 6.01 ± 0.13a

18:2n-6 7.63 ± 2.51a 3.22 ± 0.39b 7.12 ± 3.00a 5.14 ± 1.45a 5.91 ± 2.47a 16.29 ± 2.87c 8.23 ± 4.16a

18:3n-3 3.61 ± 1.61ab 1.94 ± 1.12c 5.35 ± 2.63a 2.29 ± 1.14bc 6.75 ± 4.37ab 2.54 ± 0.70bc 4.99 ± 0.50a

20:0 0.46 ± 0.22a 0.15 ± 0.06c 0.28 ± 0.1abc 0.20 ± 0.0abc 0.38 ± 0.1abc 0.14 ± 0.1bc 0.35 ± 0.1ab

20:1n-9 0.70 ± 0.28ab 0.81 ± 0.91b 1.41 ± 0.32ac 2.09 ± 2.85cd 0.80 ± 0.56ac 2.63 ± 0.61d 0.92 ± 0.11c

20:2n-6 1.16 ± 0.37ab 0.43 ± 0.37c 3.79 ± 2.43a 0.40 ± 0.10cd 0.68 ± 0.76cd 1.12 ± 1.69bd 1.04 ± 0.93bcd

20:4n-6 6.12 ± 3.65a 7.89 ± 2.97a 2.41 ± 3.83bd 2.41 ± 3.83bd 2.73 ± 1.38bc 1.10 ± 0.57d 3.87 ± 0.63ac

20:3n-3 0.62 ± 0.22ab 0.35 ± 0.19d 3.31 ± 2.10c 0.40 ± 0.20ad 0.61 ± 0.22ab 0.19 ± 0.04d 0.82 ± 0.17bc

22:0 0.09 ± 0.09a 0.03 ± 0.04c 0.08 ± 0.04abc 0.07 ± 0.04abc 0.20 ± 0.06abc 0.00 ± 0.00bc 0.01 ± 0.02ab

22:1 0.56 ± 0.98ab 1.04 ± 1.29b 0.75 ± 0.54a 0.60 ± 0.45ab 0.88 ± 0.59a 0.35 ± 0.09ab 0.81 ± 1.20ab

20:5n-3 8.15 ± 11.6a 4.45 ± 1.75a 3.85 ± 1.79ac 6.82 ± 5.02a 2.03 ± 0.92b 2.32 ± 1.54bc 3.39 ± 1.48abc

24:1 0.52 ± 0.66a 1.04 ± 1.29a 0.87 ± 0.78a 2.15 ± 1.68a 1.25 ± 0.91a 0.40 ± 0.32a 0.49 ± 0.57a

22:5n-3 2.85 ± 1.26a 2.48 ± 0.26a 2.72 ± 0.68a 3.02 ± 0.68a 1.60 ± 0.43b 1.08 ± 0.36b 1.89 ± 0.31b

22:6n-3 7.68 ± 4.43a 27.60 ± 3.61d 13.19 ± 5.00b 7.33 ± 2.37ac 12.83 ± 8.76abc 12.95 ± 7.33bc 10.48 ± 4.23a

24:0 6.31 ± 2.23a 1.01 ± 0.33abc 0.70 ± 0.25bc 0.24 ± 0.04b 0.53 ± 0.40b 2.06 ± 0.41ac 1.53 ± 1.70bc

SFA 25.7 ± 5.51ab 28.30 ± 5.05b 22.88 ± 4.41ac 22.24 ± 3.65ac 25.72 ± 5.18ab 17.75 ± 4.34c 23.23 ± 1.26ab

MUFA 37.9 ± 10.6a 21.77 ± 7.01c 35.59 ± 11.11ab 42.17 ± 5.53b 38.71 ± 13.35ab 45.75 ± 8.63b 40.62 ± 3.03ab

PUFA 37.8 ± 11.4a 48.34 ± 4.31c 41.33 ± 6.10ac 27.80 ± 5.91b 33.15 ± 8.72ab 37.80 ± 7.07a 34.71 ± 2.80ab

n-3 PUFA 22.9 ± 11.3a 36.80 ± 3.80c 28.42 ± 4.55bc 19.86 ± 5.13a 23.83 ± 8.79ab 19.07 ± 8.40a 21.57 ± 3.09ab

n-6 PUFA 14.9 ± 3.93ab 11.54 ± 2.68c 12.91 ± 2.89ac 7.94 ± 4.93d 9.32 ± 3.74cd 18.73 ± 3.09b 13.14 ± 3.98ac

n-3 HUFA 19.3 ± 11.8a 34.86 ± 3.64c 23.07 ± 6.27bc 17.57 ± 4.49a 17.08 ± 8.72ab 16.53 ± 8.95a 7.21 ± 6. 88ab

n-3/n-6 1.74 ± 1.61ab 3.40 ± 1.10ce 2.29 ± 0.54ade 3.19 ± 1.84cde 2.95 ± 1.39c 1.10 ± 0.76b 1.88 ± 0.81ad

IA 0.30 ± 0.11a 0.38 ± 0.06a 0.35 ± 0.07a 0.39 ± 0.09a 0.37 ± 0.10a 0.07 ± 0.30b 0.35 ± 0.02ab

IT 0.25 ± 0.10ab 0.22 ± 0.04ab 0.20 ± 0.05ab 0.25 ± 0.02a 0.26 ± 0.07a 0.06 ± 0.22b 0.25 ± 0.03ab

Notes:
Data are presented as mean ± standard deviation.
Different letters indicate significant differences (p � 0.05) for the respective FA among different species.
IA, index of atherogenicity; IT, index of thrombogenicity; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; SFA, saturated fatty acids.
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populations of this species with 1.8 g/100 g (Puustinen, Punnonen & Uotila, 1985).
Even higher fat levels (3.63–5.51 g/100 g) are published by Zmijewski et al. (2006) and
Zivkovic et al. (2013). This variability in fat content is consequently accompanied by
differences in FA composition, as the relative content of n-3 LC-PUFA generally decreases
with an increasing fat content, as storage fat is built by triacylglycerols (TAG),
which are usually higher in SFA and MUFA (Henderson & Tocher, 1987). Common bream
showed to have a nutritionally very favorable FA composition, with high proportions
of n-3 LC-PUFA (Table 3). This most probably reflected the composition of the natural
diet, as diet FA composition was shown earlier to be the most important factor influencing
the fish muscle composition (Robin et al., 2003; Pickova, Sampels & Berntsen, 2010).
Common bream as a benthos- and plankton feeders species with the nocturnal feeding
habits has a vast feeding spectrum which can feed on detritus, mollusks and macrophytes
(Adamek & Marsalek, 2012; Zapletal et al., 2012; Golovanova et al., 2014). They belong to
the higher trophic levels therefore, digestion for them is not as easy as for herbivorous
species. This might influence the metabolic apparatuses and fish FA composition
(Rodrigues et al., 2017). Considering the differences between the intestine length and
morphology of various fish species and their consequent effects on the intestine absorptive
surface and digestibility of the feed (Rust, 2002), nutritional composition of fish species
might be influenced.

According to the fillet fat content, the proportion of n-3 LC-PUFA in similar
studies varies widely from 4.7 up to 31.8%. The n-3/n-6 ratio could be close to one
(Zivkovic et al., 2013), around 1.7 (present study) or up to 2.9 (Aggelousis & Lazos, 1991)
also indicating the effect of feed composition as the natural feed composition most
probably varies in different water bodies. However, all values are within the recommended
values of a n-6/n-3 ratio of 1–4 (Simopoulos, 2008). When discussing the nutritional
value of fish for human, it must be observed that normally the ratio between n-6 and n-3
FAs in food items and in nutrition is expressed as n-6/n-3, while in fish the ratio
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Figure 1 The content (mg/100 g flesh) of eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic
(DHA; 22:6n-3) acids in the fillet of seven freshwater fish species from the major river basin of
Dyje, Labe and Vltava river, the Czech Republic. Data are the mean ± standard deviation. Different
letters indicate significant differences among species (p � 0.05).

Full-size DOI: 10.7717/peerj.5729/fig-1
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between is often expressed as n-3/n-6, since the opposite ratio would lead to very low
values below 0. For example, the n-3/n-6 ratio of 1.7 for common bream in the present
study corresponds to n-6/n-3 ratio of 0.65. The regression between the FAs and lipid
content of common bream was investigated. In terms of individual FA, in case of MUFA
with an increase in the percentage of the fat content, the percentage of some MUFAs
including 14:1 (p = 0.02, R2 = 0.49); 16:1 (p = 0.02, R2 = 0.49); 18:1n-7 (p = 0.009, R2 = 0.59)
significantly increased (positive correlation) (Fig. 2A as an example for one of the MUFAs)
whereas in 22:6n-3 (p = 0.03, R2 = 0.43), with an increase in the percentage of the fat
content, a significant decrease in this PUFAs percentage was observed (inverse correlation)
(Fig. 2B). This confirms the earlier mentioned fact that a higher fat content also
corresponds to a lower LC-PUFA percentage. In general, the fat is stored in TAG,
resulting in an increase proportion of this lipid fraction in fatty fish, while in general
LC-PUFA are stored in the phospholipids, which are mainly the constituents of biological
membranes (Sargent et al., 1999). As a higher proportion of TAG automatically results in a
(relative) lower proportion of phospholipids, this will also lead to a relatively lower
proportion of LC-PUFA (Henderson & Tocher, 1987).

Similarly as for common bream, lower fat contents compared to the present
work were stated also for European chub by Lazos, Aggelousis & Alexakis (1989)
and Aggelousis & Lazos (1991) (average of 1.5 g/100 g compared to 3.49 ± 0.5 g/100 g
in the present study). On the other hand, Donmez (2009) found similar values to
3.5 ± 0.4 g/100 g. Based on the available data, the n-3/n-6 ratio in European chub
showed to vary from 1.7 (Aggelousis & Lazos, 1991) through 1.9 (present study) up to
2.7 (Donmez, 2009). The differences are most likely caused by feed available in the habitat,
as the fish, being an omnivorous species with their shallow water preferences, can eat
everything from fallen fruit to small fish (Piria et al., 2005), which subsequently influences
the fillet fat content and FA composition.

In addition, the effect of different localities on the changes in the proximate
composition in European chub was tested. No significant changes in the parameters
were observed. The regression between the lipid content and several FAs including
14:0 (p = 0.002, R2 = 0.69); 16:0 (p = 0.002, R2 = 0.70); 18:1n-9 (p = 0.020, R2 = 0.50); 18:2n-6
(p = 0.029, R2 = 0.46); 18:3n-3 (p = 0.01, R2 = 0.57); 20:1n-9 (p = 0.005, R2 = 0.63);
20:5n-3 (p = 0,09, R2 = 0.30) showed positive correlation, whereas in 14:1 (p = 0.0005,
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Figure 2 Examples of regression between lipid content and two FAs in common bream: (A) 18:1n-7;
(B) 22:n-3. Full-size DOI: 10.7717/peerj.5729/fig-2
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R2 = 0.79); 20:3n-3 (p = 0.07, R2 = 0.33); 24:1 (p = 0.003, R2 = 0.67); 22:5n-3 (p = 0.07,
R2 = 0.34); 22:6n-3 (p = 0.00009, R2 = 0.86) negative correlation was observed, again
confirming the correlation between a higher fat content and increased SFA content as
mentioned before.

The feed of common nase, which is herbivorous benthopelagic species (Junger,
Kotrschal & Goldschmid, 1988; Riede, 2004), may consist of indigestible material in
a high portion which requires longer gut (Hofer, 1982). Previously, very low amounts of
lipids (∼1 g/100 g) were found in the fillet of nase (Lazos, Aggelousis & Alexakis, 1989).
A slightly higher content (1.3 ± 0.46 and 2.7 ± 0.4 g/100 g) was shown by Aggelousis &
Lazos (1991) and Lazos (1997), respectively. On the other hand, our result showed
much higher values with an average fat content of 4.04 ± 0.81 g/100 g. The differences
could be attributed to the fact that the fish in the studies reporting a lower fillet fat content
originated from Southern Europe with a higher average year-round water temperature.
Subsequently, the fish do not need to store as much lipid as in the areas with a cold winter.
Other noticeable findings for this species in the present study were high proportions
of EPA and DHA (6.82 ± 5.02 and 7.33 ± 2.32%, respectively), which is, given the relatively
low fat content, comparable with some marine species (Usydus et al., 2011). This is
probably due to an exceptionally good nutritional environment of the investigated fish
in combination with the fact that freshwater fish are able to convert 18 carbon precursors
into their longer LC-PUFA derivatives (Tocher, 2003). Furthermore, Aggelousis & Lazos
(1991) stated quite high values of these important FA (6% EPA and 9% DHA) in nase
together with a very low-fat content as mentioned above. The effect of different
localities on the proximate composition in nase showed significant differences in the ash
content and moisture, whereas no significant changes were observed in the other
parameters; this might be related to the feed and environment. The PUFA percentage
tended to decrease significantly when total lipid content increased, such as in 20:4n-6
(p = 0.003, R2 = 0.68); 22:5n-3 (p = 0.013, R2 = 0.51); 22:6n-3 (p = 0.01, R2 = 0.53) inverse
correlation were observed. Similar conclusions were obtained by Belling et al. (1997)
and Zhang et al. (2014).

The only representative of a species which is captured as well as farmed in our study,
is European perch. Our results confirm that wild European perch contains a minimum
(0.3–1.5%) of fat in the fillet (Puustinen, Punnonen & Uotila, 1985; Mairesse et al., 2006;
Orban et al., 2007), in our case (0.74 ± 0.04 g/100 g). Subsequently, due to the low-fat
content, the relative percentage of n-3 LC-PUFA rises, which is confirmed by the
highest percentage of these FA (36.80 ± 3.80%) of all species analyzed in this study.
Olsson et al. (2007) found that the length of the gastrointestinal tract of European perch has
an adaptive plasticity based on the different feed type they consume. This means that any
changes in their diet leads to an individual specialization in the morphology of their
digestive organs, particularly alteration in the relative length of the gastrointestinal tract
can take place (Olsson et al., 2007). This is relevant as the natural habitat of the European
perch (the littoral and pelagic habitats) has a high variation in the feed sources and in
consequence results in differences in gastrointestinal tract length. The size of the
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digestive organs is connected with a more efficient use of the feed source (Sibly, 1981;
Magnan & Stevens, 1993; Olsson et al., 2007).

European perch as an ichthyofagous/optional benthofagous species (Golovanova et al.,
2014) is very popular among anglers in Central Europe and its high and appreciated flesh
quality resulted in the beginning of farmed perch production. However, fish kept in
recirculation systems usually have a higher fillet fat content, as the feeding intensity
and the fat content of the feed can be higher than under natural conditions (Xu et al.,
2001). Significant changes were observed in all parameters except dry matter, due to
the effect of different localities indicating a high variation of feed composition and
availability at the different localities. It could be also due to the sensitivity of European
perch to the feed effects in general, since lipid is a major concern in European perch,
which is greatly influenced by n-3 and n-6 FAs in the diet (Xu & Kestemont, 2002).
Some FAs, including 14:0 (p = 0.09, R2 = 0.20); 16:1 (p = 0.0006, R2 = 0.63); 18:2n-6
(p = 0.042, R2 = 0.29) showed positive correlation and in case of 20:1n-9 (p = 0.09,
R2 = 0.22) negative correlation to the fat content with significant changes was observed
consequently due to the changes in fat content as a result of the effect of different localities.

European grayling is among the rarely consumed species, with an importance
primarily in sport fishing. Additionally, its population is currently threatened in the
region of Central Europe (Turek et al., 2014). Hence, European grayling is little known
from a nutritional point of view. The fillet of European grayling showed to have
a relatively low-fat content in line with earlier 2.3–2.6 g/100 g (Renaville et al., 2013);
2.77 ± 0.92 g/100 g in this study. According to our findings, there is a high proportion of
n-3 PUFA (19.07 ± 8.40%) including EPA and DHA with relatively high variability,
most probably again due to the respective available diet. Interestingly, the only similar
study focused on the nutritional composition of wild and farmed European grayling
brought substantially different results of FA composition compared to our results.
While we found n-3/n-6 ratio of 1.10 ± 0.76, Ahlgren, Carlstein & Gustafsson (1999)
described a ratio at 4–6 for wild and even 7–13 for farmed fish. The main difference was
the high content of n-6 linoleic acid (16.29 ± 2.87%) in the fillet of European grayling from
Central Europe. Comparable values were only presented in studies on Arctic grayling
(Thymallus arcticus) published by Sushchik et al. (2006) and Gladyshev et al. (2012).
Significant changes were observed for all parameters except protein content in
connection with the changes in localities. Some FAs, including 16:0 (p = 0.059, R2 = 0.26);
18:0 (p = 0.01, R2 = 0.4); 20:4n-6 (p = 0.001, R2 = 0.56); 22:5n-3 (p = 0.0006, R2 = 0.63);
22:6n-3 (p = 0.0008, R2 = 0.62) showed an inverse correlation, to total fat content whereas a
positive correlation was observed in FAs, including 16:1 (p = 0.06, R2 = 0.25); 18:1n-9
(p = 0.004, R2 = 0.5); 18:3n-3 (p = 0.006, R2 = 0.47). ALA is preferably stored in neutral
lipid fraction, which is mainly consisting of TAG, hence it can increase with an increasing
fat content (Enser et al., 2000).

In Central Europe, Prussian carp is an invasive carp-like species. We found a lower
fat content (1.94 ± 1.13 g/100 g flesh) compared to Zivkovic et al. (2013), who presented
values between 3.3 and 3.7 g/100 g flesh. A similar variability (1.2–4.5 g/100 g flesh) can be
found in related—but better nutritionally mapped-crucian carp (Carassius carassius)
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(Lazos, Aggelousis & Alexakis, 1989; Aggelousis & Lazos, 1991; Donmez, 2009). The fat
content and FA composition found in the present study is comparable with Prussian
carp analyzed by Ozparlak (2013) with a low lipid content and a relatively high proportion
of n-3 PUFA. Significant changes in lipid content, ash and moisture were noted,
whereas no changes were seen in protein and dry matter. In some FAs including
14:0 (p = 0.03, R2 = 0.35); 18:3n-3 (p = 0.03, R2 = 0.36); 22:1 (p = 0.02, R2 =0.43) a positive
correlation to the fat content was observed, while in the 18:1n-9 (p = 0.02, R2 = 0.39);
20:4n-6 (p = 0.01, R2 = 0.46); 20:5n-3 (p = 0.01, R2 = 0.48); 22:6n-3 (p = 0.006, R2 = 0.53) a
negative correlation was observed. Kaya & Erdem (2009) observed comparable values to
our findings for a fillet fat content in wild brown trout throughout the year (1.85 ±
0.1 g/100 g of flesh in January to 3.57 ± 0.2 g/100 g in June). Very similar results were also
published by Kaushik et al. (2006), confirming that 2.5–3.5 g/100 g flesh is most likely a
normal average fat content of wild brown trout across Europe. Also the n-3/n-6 ratio,
which is 2.95 ± 1.39 in this study (Table 3), was similar to the values found by Kaya &
Erdem (2009) in the same season (spring) showing a ratio 3–4. Meanwhile Kaushik et al.
(2006) found lower values of 1.5–2. Again, this indicates a different composition of feed
and confirms a generally high variability in the fillet FA composition within the same fish
species. Significant changes in the ash content were observed as a result of changes in the
localities. Brown trout with specific intestinal characteristics, including about 45 pyloric
caeca, can digest the feed enzymatically through proteolytic activity (Burnstock, 1959)
which facilitates in the absorption of the digested feed. However, most of the carnivorous
species have shorter and thicker intestines compared to the herbivorous species (Smith,
1980; Rust, 2002), as well as increased enzymatic activity of for example, proteases and
peptidases, which facilitates the absorption of the peptides and amino acids for the
carnivorous species like common bream and rainbow trout (Rodrigues et al., 2017).

A positive correlation of FAs to fat content including 14:0 (p = 0.07, R2 = 0.28); 16:1
(p = 0.05, R2 = 0.33) was observed, whereas in 22:6n-3 (p = 0.09, R2 = 0.33) a negative
correlation was observed.

Another aspect is the FA content in absolute amounts. Although some leaner fish
(here European perch) may contain a high percentage of EPA and DHA compared to
fatter species, the absolute amounts logically increase with an increasing fat content.
The European Food Safety Authority (EFSA) recommends a minimum daily intake of
EPA + DHA of 250 mg for normal population (EFSA, 2009). This means, considering
150 g fish as an average portion, all fish fulfil more than the minimal recommended
intake of EPA and DHA and hence they can contribute to a much healthier diet. 300 g
of nase would even fulfil the intake for a whole week. However, since fish consumption is
low in Central Europe, it needs to be promoted and increased.

The lipid health indices are described in detail by Ulbricht & Southgate (1991),
who stated that the values of IA and IT in food are good indicators for the risk of
atherogenic and thromobogenic effects of foods, and subsequently the risk for the
development of cardiovascular diseases (CVDs). The higher those values are, the higher
the atherogenicity and thrombogenicity of the food items respectively is. Ulbricht &
Southgate (1991) also provide IA and IT values for pork, beef and chicken (0.6, 0.7, and 0.5,
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respectively for IA and 1.4, 1.3, and 0.95 for IT, respectively). All found values of IA
and IT are very close to the values stated for the so-called Eskimo diet, which is related to
very low incidences of the coronary heart disease (IA 0.39 and IT 0.28) (Ulbricht &
Southgate, 1991). In 1970s, Bang and Dyerberg, have investigated the low risk of CVD
in the Greenland Eskimos population. They found reduced risks of CVD in connection
with the consumption of high amount of fish and marine mammals in the Eskimos diet.
At that time, n-3 PUFA consumption of the Eskimos was five times higher than
Danish people intake. Subsequently, the so-called Eskimo diet has very low incidences of
the coronary heart disease (IA 0.39 and IT 0.28) (Ulbricht & Southgate, 1991).

Moreover, the values of these two indices in our study are in agreement with the
results of Rodrigues et al. (2017) and Monterio et al. (2017). Our results confirm that wild
fish is clearly favorable for human nutrition.

CONCLUSIONS
In this study the proximate and FA composition of seven wild freshwater fish species from
the Czech Republic was analyzed. According to our findings we conclude that the chosen
species have a standard protein content, minimum carbohydrates and relatively low
contents of fat, which can, however, vary to some degree in various localities,
most probably related to the availability and composition of feed. In addition, factors such
as fish physiology and feeding habits as well as ecological factors including water body
trophic status, could have an influence on the variation of nutritional composition of the
different species.

As expected, we showed that there can be some variation of FA composition in the
same species, depending on natural habitat and availability of feed. Simultaneously,
we observed a very favorable FA composition with high proportions of n-3 PUFA,
including EPA and DHA in all analyzed species. Consequently, the values of both IA and
IT were low and close to the values of the so-called Eskimo diet.

The obtained data increased the nutritional information about the chosen species for
experts as well as consumers. It would be beneficial to provide the local fishermen and
anglers association with this information to promote consumption of fish in general,
especially of yet underutilized species. Regarding the effects of the fat content, in some
MUFA, PUFA, and SFAs there were correlations with the lipid content. The dynamic
interaction between them needs more investigation, which then could partly explain the
differences among the localities.
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Oleaginous yeast as a component 
in fish feed
Johanna Blomqvist1,3, Jana Pickova1, Sarvenaz Khalili Tilami2, Sabine Sampels  1, 
Nils Mikkelsen1, Jule Brandenburg1, Mats Sandgren  1 & Volkmar Passoth  1

This study investigates the replacement of vegetable oil (VO) in aquaculture feed for Arctic char 
(Salvelinus alpinus) with oil produced by the oleaginous yeast Lipomyces starkeyi grown in lignocellulose 
(wheat straw) hydrolysate. VO is extensively used to partially replace fish oil in aquaculture feed, which 
can be seen as non-sustainable. VO itself is becoming a limited resource. Plant oils are used in many 
different applications, including food, feed and biodiesel. Its replacement in non-food applications 
is desirable. For this purpose, yeast cells containing 43% lipids per g dry weight were mechanically 
disrupted and incorporated into the fish feed. There were no significant differences in this pilot 
study, regarding weight and length gain, feed conversion ratio, specific growth rate, condition factor 
and hepatosomatic index between the control and the yeast oil fed group. Fatty and amino acid 
composition of diet from both groups was comparable. Our results in fish demonstrate that it is possible 
to replace VO by yeast oil produced from lignocellulose, which may broaden the range of raw materials 
for food production and add value to residual products of agriculture and forestry.

Fish is one of the most traded food commodities and has great potential to contribute to food security for a growing 
population1. Fish is already the major source of protein in many cultures2. Moreover, it is also the major resource 
of n-3 long chain polyunsaturated fatty acids (LCPUFA)3. Hence, aquaculture is a rapidly growing industry and is 
an important source of animal-based foods. This growth generates an increased demand for feed for farmed fish. 
Currently, fish meal and fish oil are still the primary resources to meet the demand for protein and lipids of farmed 
fish2. Aquaculture consumes about 70% of the globally produced fish oil (FO), and 90% of this oil is derived from 
reduction fisheries3. Thus, a sustainable further expansion of the aquaculture industry can only happen when 
alternative resources/replacements for FO can be found. Those alternatives can be both vegetable oil (VO) and 
terrestrial animal oil3–6. Although both VOs and animal fat do not provide a good supply of n-3 long chain polyun-
saturated FA (LCPUFA), they are metabolised by the fish in beta-oxidation, to provide energy. It has been shown 
that FO can be replaced by VO or animal fat without negatively impacting fish health or growth4–8. In Europe, VO 
is the most common partial substitute for fish oil, whereas in other parts of the world, terrestrial animal fats are also 
incorporated into aquafeeds. Nevertheless, VOs have a broad range of applications, including direct food produc-
tion and biodiesel production. Especially with a view towards the latter, discussions about the sustainability of VO 
production have been raised. Finding alternatives to VO may lessen the push towards monocultures, with risk for 
land use changes and rainforest cutting, and in general, reduce the food carbon print of aquaculture9–13.

Microbial oils or single cell oils have been regarded as a potential replacement for VO in biodiesel production, 
and in some cases even for food purposes. Oleaginous yeasts, i.e. yeasts that can accumulate 20% and more of 
their biomass as lipids, can form single cell oils from a variety of low value substrates, including lignocellulose 
hydrolysate14–16.

While there are a number of reports on utilising yeasts as a protein source in fish feed (e.g.17,18), only little is 
known about utilising yeast-derived oil in fish feed. Several oleaginous yeast species can utilise lignocellulosic 
hydrolysates and convert them to lipids. We have recently demonstrated that the oleaginous yeast Lipomyces 
starkeyi can efficiently synthesise lipids from the hemicellulose fraction of birch wood and the cellulose fraction 
of wheat straw19,20, and other studies have also used lignocellulose hydrolysate as a substrate for oil production 
with this yeast21–24. The lipid composition of L. starkeyi was shown to be similar to that of saturated fatty acids 
(SFA) rich VO, for example olive oil or palm oil19,20,25. In this pilot study, the aim was to test whether it is possible 
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to replace VO in the feed for Arctic char (Salvelinus alpinus) with single cell oils derived from L. starkeyi grown 
on lignocellulose hydrolysate from wheat straw, i.e. a non-edible, residual material.

Results
Hydrolysate analysis. The cellulosic hydrolysate from wheat straw (i.e. the enzymatically hydrolysed solid 
phase after steam explosion (see method part)) contained glucose 87.3 g/l, xylose 22.2 g/l and acetic acid 3.8 g/l. 
Due to the high acetic acid concentration we started the fermentation with 50% hydrolysate and then pumped in 
100% hydrolysate in the feeding phase of the cultivation.

Yeast cultivation. At harvest, L. starkeyi cells had consumed all carbon sources, and the total yeast dry 
weight of 575 g (cells from four fermentors) was produced from a total amount of 23.2 l hydrolysate, i.e. 2628.6 g 
carbon sources (glucose, xylose, and acetic acid). The final intracellular lipid content of the yeast was determined 
to be 43 ± 0.8%, thus the total amount of yeast lipids produced was 247.25 g, corresponding to a lipid yield of 0.09. 
Yeast growth and carbon source consumption are illustrated in Supplementary Fig. S1. Cells were disrupted by 
French press, as described in Methods; successful disruption was confirmed by microscopic inspection of the cell 
lysate. No further oil extraction was performed, to avoid contamination with toxic solvents and to retain the yeast 
proteins and polysaccharides in the hydrolysate.

Fish performance. Fish were fed with a standard experimental diet26 (see Methods) containing standard 
ingredients and either VO and casein (control diet) or disrupted L. starkeyi cells instead of VO and casein. The 
fatty acid composition of the feeds is shown in Table 1. In both feeds, the main source of amino acids was fish meal. 
Accordingly, the amino acid profiles of the control- and yeast-based feeds did not differ significantly (Table 2). 
Initial and final weight and length, liver weight and the calculated performance factors are presented in Table 3. 
Initial weight of fishes was 148.2 g (control) and 149.8 g (yeast oil feeding), and the final weight was 265 g in both 
cases. There were no significant differences between the control and yeast fed fish regarding feed conversion rate 
(FCR), specific growth rate (SGR), condition factor (CF) and hepatosomatic index (HSI), indicating that both feeds 
were metabolised in a similar way and the addition of yeast in the feed did not negatively impact growth.

There was a large standard deviation of the individual fish weight, both in the yeast-fed treatment and the 
control towards the end of the experiment. This effect was most likely due to the small number of fish, which ena-
bled a few dominant individuals to consume a major proportion of the provided feed, at the costs of other, minor 
individuals, which hardly showed any growth. The number of fishes was adjusted to the size of the 3 tanks and 
2 months feeding to ensure appropriate water parameters such as NH4

+ and oxygen tension when fish biomass 
increases. However, the total mass of the fish did not significantly differ, in spite of the dominant individuals. 
Consequently, sampling was carried out on fishes representing all sizes from all units. This growth effect does not 
hinder the evaluation of the fatty acid composition of the tissue samples, as the individual fish reflected the feed 
fatty acid profile, which is a common result in experiments performed on salmonids.

Lipid content and fatty acid composition. The total weight (whole fish), fat content and fatty acid profile 
of the muscle tissue of six yeast fed fishes and six control fed fishes are shown in Table 4 (two from each tank).

Overall, no significant differences between the two different feeds were observed, except for linoleic acid 
(C18:2 n-6) where the fish fed with control feed had slightly higher levels compared to yeast fed fish.

Discussion
In this study, we investigated whether it is possible to replace VO with oil produced by an oleaginous yeast, L. 
starkeyi, grown on lignocellulose (wheat straw) hydrolysate. Inclusion of yeast oil into fish feed has been tested 
previously but in the context of replacing fish oil in the feed, using oil from genetically engineered Yarrowia lipo-
lytica cultivated on first generation substrate (glucose)27.

Fatty acid
Proportion in VO (control) 
feed [% of total fatty acids]

Proportion in yeast oil feed 
[% of total fatty acids]

C14:0 3.5 4.5

C16:0 15.9 21.3

C18:0 4.0 3.6

C18:1, tot 30.2 26.0

C20:1, tot 1.5 2.0

C22:1, tot 4.2 4.2

C18:2n-6 3.8 2.8

C20:4n-6 0.45 0.53

C18:3n-3 1.4 1.7

C20:5n-3 8.5 9.5

C22:5n-3 1.0 1.0

C22:6n-3 6.8 8.1

Table 1. Fatty acid composition (% of total FA) of the two experimental diets (duplicate analyses, the deviation 
of the single measurements was below 1.5%).
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Our study shows that it is possible to convert second generation substrate (lignocellulose) to a feed component, 
enabling the replacement of feed oil (mostly VO) as an energy source in aquaculture. VOs are listed among the 
products causing the largest environmental impacts. They are also regarded as the fastest growing food commodities 
worldwide28. Some vegetable oils have a high greenhouse gas potential associated with their production: for instance 
palm- and soybean oil are estimated to emit more than 2000 kg CO2 equivalents per ton produced, and considerable 
areas of arable land are used for producing vegetable oils29. Since biodiesel is also produced from vegetable oils, their 
consumption in the EU greatly exceeds local production, and thus, a major proportion of the utilised plant oil has 
to be imported30. There are reports of rainforest clearing due to palm- and soya oil production and there are moves 
in the EU to reduce the use of imported vegetable oils, especially palm oil (http://www.europarl.europa.eu/sides/
getDoc.do?pubRef=-//EP//TEXT+REPORT+A8-2017-0066+0+DOC+XML+V0//EN).

The yeast cells contain, apart from oil, also proteins and other components that can be utilised by the fish. 
The first implication of this is that the yeast cells contributed to protein biomass in the feed; this was adjusted 
by removing the casein from the yeast feed, whereas it was the standard protein additive in the control feed, as 
commonly used in other fish feeding trials26. The second implication is that it was not necessary to extract the oil 
from the mechanically disrupted yeast cells. This is advantageous compared to for instance microbial biodiesel 
production, where extraction is regarded as one of the most crucial steps in obtaining a sustainable process31. 
Analyses of growth parameters and composition of the final fish demonstrated that there was no negative impact 
of replacing VO and casein by L. starkeyi-biomass. The amino acid profile of the yeast-based feed did not change 
compared to the control. There was a slight but significant decrease in the total amount of n-6 fatty acids in the 
yeast fed fish. A low n-6/n-3 ratio is advantageous, as in most modern diets this ratio is too high, leading to a 
variety of diseases32. Our experiment demonstrates that it is possible to replace terrestrial plant- and animal based 
lipid and protein sources by yeast biomass. The fatty acid composition of yeast strains varies with both strain and 

Amino acid
Proportion of total determined 
amino acids [%] in VO feeda

Proportion of total determined 
amino acids [%] in yeast oil feeda

Alanine 6.4 6.8

Arginine 6.6 6.7

Aspartic acid 9.4 9.6

Cysteine + Cystine 1.0 1.0

Glutamic acid 16.7 16.2

Glycine 6.6 7.1

Histidine 2.1 2.1

Isoleucine 4.2 4.2

Leucine 8.0 8.0

Lysine 7.7 7.5

Methionine 2.8 3.0

Phenylalanine 4.3 4.3

Proline 5.6 5.5

Serine 4.8 4.8

Threonine 4.4 4.5

Tyrosine 3.7 3.7

Valine 5.1 5.1

Table 2. Amino acid composition of the two experimental diets. aAmino acid analyses were performed by 
Eurofins Food & Feed Testing Sweden AB. The confidence interval of all values is 15%.

Control (n = 24) Yeast (n = 24)

Initial length (cm) 23.63 ± 0.05 23.58 ± 0.30

Initial weight (g) 148.2 ± 3.9 149.8 ± 4.4

Final length (cm) 27.79 ± 0.76 27.91 ± 0.79

Final weight (g) 265.1 ± 34.7 265.0 ± 29.8

Liver weight (g) 4.15 ± 0.88 4.00 ± 0.59

FCR* (%) 1.86 ± 0.55 1.69 ± 0.38

SGR* (%) 0.95 ± 0.18 1.00 ± 0.14

CF* (%) 1.17 ± 0.06 1.16 ± 0.02

HSI* (%) 1.47 ± 0.11 1.42 ± 0.06

Table 3. Performance factors for fish fed with either control feed or feed with yeast as a substitute for VO. Data 
are presented as means ± standard deviation. Feeding trial was conducted in triplicates with n = 8 in each tank 
(n total = 24 fish in each treatment). No significant differences between the feeds were identified. *Abbreviations: 
FCR- feed conversion rate, SGR- specific growth rate, CF- condition factor, HSI- hepatosomatic index.
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cultivation conditions19,20,33. Selecting appropriate yeast strains and culture conditions may thus represent a pos-
sibility to positively influence the fatty acid composition and thereby the n-6/n-3 ratio.

From the lignocellulose substrate, 0.09 g lipids were produced per g consumed carbon source. This is within 
the range of values previously reported in similar cultivations19,20,34. In this study, yeast cultivation was performed 
to generate biomass for the fish trial; optimisation of the yeast fermentation conditions was not within the scope 
of the study. Nevertheless, rapid and efficient lipid production from the substrate can greatly improve the overall 
energy output and greenhouse gas impacts of any single cell oil production process31,35, and therefore, optimisa-
tion of fermentation conditions and strains for lipid production is one of the major topics of our ongoing research.

This pilot study, to the best of our knowledge, investigates for the first time the utilisation of lignocellulose- 
derived yeast oil in fish feed. The results demonstrate that it is possible to completely replace VO and partially 
replace protein (casein in the control feed, in the present study) with the yeast biomass, without any significant 
effects on fish growth and final quality. Previous studies have shown that there is a limit to including yeast-based 
protein into fish diets17,27. On the other hand, there are also studies indicating a positive effect of yeast cell wall 
β-glucan on the immune system of fish36 and a barrier function of yeasts against prions37. Moreover, utilising 
different yeast strains and different lignocellulose substrates may have some impact on the final quality of the fish. 
All these possible effects require further investigation and will be the subject of future studies.

Methods
Strains and media. L. starkeyi CBS 1807 (Centraalbureau vor Schimmelcultures, Utrecht, The Netherlands) 
was maintained on YM-agar plates (glucose 10 g/l, yeast extract 3 g/l, peptone 5 g/l, malt extract 3 g/l, Agar 16 g/l). 
The pre-culture medium was YPD (glucose 20 g/l, yeast extract 10 g/l, peptone 20 g/l).

Preparation of hydrolysate. The steam explosion and enzymatic hydrolysis was performed at the 
Department of Chemical Engineering, Lund University, Sweden. Wheat straw was soaked with 1% acetic acid 
over night, and fluid removed by pressing. The acid soaked biomass was then steam exploded at 190 °C for 10 min 
in a 10 L steam pretreatment reactor. The liquid fraction (mainly hemicellulose) was separated from the solid 
fraction and the latter was enzymatically hydrolysed. The hydrolysis was performed at 45 °C and pH 4.8. Cellic 
CTec3 enzyme cocktail (Novozyme A/S, Bagsværd, Denmark) was added at 10 FPU/g substrate. After hydrolysis, 
the suspension was centrifuged to separate the solid residues (mainly lignin) and repeatedly filtered, using filters 

Control, n = 6 Yeast, n = 6

Weight, g 271 ± 51.0 295 ± 36.1

Fat content % 4.70 ± 0.64 7.07 ± 2.81

Fatty acid composition

C14:0 4.10 ± 0.20 4.08 ± 0.23

C15:0 0.29 ± 0 0.30 ± 0.01

C16:0 16.0 ± 0.41 17.6 ± 0.64

C17:0 0.36 ± 0.03 0.33 ± 0.04

C18:0 2.51 ± 0.24 2.43 ± 0.15

C20:0 1.23 ± 0.04 1.30 ± 0.16

C16:1n-7 6.04 ± 0.35 6.76 ± 0.61

C18:1n-9 31.9 ± 0.33 31.0 ± 0.81

C20:1n-9 3.19 ± 0.03 3.13 ± 0.31

C22:1n-9 2.29 ± 0.07 2.29 ± 0.20

C18:2n-6 5.82 ± 0.08a 4.78 ± 0.50b

C20:2n-6 0.16 ± 0.02 0.16 ± 0.04

C20:4n-6 0.39 ± 0.01 0.40 ± 0.05

C18:3n-3 1.24 ± 0.08 1.09 ± 0.16

C20:5n-3 6.98 ± 0.37 7.15 ± 0.44

C22:5n-3 1.38 ± 0.06 1.46 ± 0.13

C22:6n-3 14.3 ± 1.02 13.8 ± 2.25

SFA* 24.5 ± 0.85 26.0 ± 0.58

MUFA* 41.3 ± 0.41 41.1 ± 1.67

PUFA* 30.4 ± 0.93 29.0 ± 2.04

n-3 23.9 ± 0.87 23.5 ± 2.53

n-6 6.48 ± 0.08a 5.48 ± 0.50b

n-6/n-3 0.27 ± 0.01 0.24 ± 0.05

Table 4. Weight, fat content and fatty acid profile in the fillet (dark and light muscle tissues) from Arctic char 
fed with either control feed or feed with yeast as a substitute for VO. The different letters above the numbers 
represents values with significant differences; without letters represents values with no significant differences. 
(n = 6, Mean ± standard deviation). *SFA = saturated fatty acids, MUFA = mono unsaturated fatty acids, 
PUFA = poly unsaturated fatty acids.
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with decreasing pore size in each step. The last filtration step was performed with a 0.45 μm sterile filter. The sugar 
and acetic acid concentration was determined by HPLC as described previously19.

Pre cultures. Before inoculation in fermentors, L. starkeyi was cultivated in two steps with increasing 
medium volumes. For the first pre-culture, a loopful of L. starkeyi cells was inoculated from a YM-agar plate 
into 100 ml YPD-medium in 500 ml baffled shake flasks and incubated at 25 °C and 150 rpm in a rotatory shaker. 
After 48 h, the 100 ml culture was transferred to 400 ml YPD medium in a 3 l shake flask and incubated at 25 °C 
and 150 rpm for 72 h. The cells were harvested by centrifugation (4000 g, 10 min) and washed twice with saline 
solution (NaCl, 9 g/l). After washing, the pellet was resuspended in 50 ml saline and inoculated into the fermentor.

Fed-batch cultivation in fermentors. L. starkeyi was cultivated in four Dolly fermentors (Belach 
Bioteknik, Stockholm, Sweden, working volume 8 l) at 25 °C. A volume of 1.5 l of sterile filtered cellulose hydro-
lysate was added to each fermentor containing 1.5 l sterile deionised water, representing a starting volume of 3 l 
comprised of 50% cellulose hydrolysate. The pH was set at 5 and automatically controlled by addition of NaOH 
(25% w/w) or 3 M H3PO4. The aeration was initially 1 l/min; during the experiment it was continuously increased 
up to 5 l/min. The dissolved oxygen tension (pO2) was controlled by a DO-electrode, set to 20% and maintained 
by changing the stirring speed. One ml of polypropylene glycol 2000 (Alfa Aesar, Karlsruhe, Germany) was added 
to prevent foaming. L. starkeyi was first cultivated in a batch phase for 48 h, then the fed-batch phase started with 
pumping cellulosic hydrolysate at a speed of approx 24 ml/h in 7.5 days, i.e. 4.3 l of hydrolysate was added to each 
fermenter during the feeding phase; the total amount of hydrolysate was thus 5.8 l per fermenter.

L. starkeyi harvesting. Cells were centrifuged at 5400 g for 10 min, washed with deionised water and then 
disrupted in a French press (Constant systems LTD, Daventry, UK) at 40 psi. Dry weight of the disrupted cells was 
determined by drying a portion of the cell-lysate in a Precisa xm 60 oven (Precisa Instruments LTD, Dietikon, 
Switzerland) and the disrupted cells were stored at −20 °C until incorporation into the fish feed18.

Fish feed preparation. The composition of the fish feed is shown in Table 5 26. The ingredients were mixed 
by hand to a homogeneous consistency and pressed through a kitchen meat grinder. The feed was dried at room 
temperature for 48 h before vacuum packing into air tight plastic bags. Total amino acids were quantified in the 
prepared feeds (Eurofins Food & Feed Testing Sweden AB, Lidköping, Sweden, Method: SS-EN ISO 13903:2005).

Feeding trial. The experiment was carried out in accordance with EU legislation (i.e., Directive 2010/63/EU), 
and received the approval of the Ethical Committee for Animal Experiments in Umeå, Sweden.

Arctic char was kept in flow through system with natural photo period at Kälarne Aquaculture North, Sweden. 
The water temperature was ambient, approx 12 °C and the water system was always fully aerated from the inlet. 
Inlet water quality was always assured. The tanks were 1 × 1 m and water depth 20 cm. Tanks were randomly 
assigned to the two diets with randomly selected fish (n = 8/tank). Prior to the trial all fish were fed a commercial 
diet suitable for Arctic char juveniles. The feed was distributed by band feeders 4 times a day26. Fish was anaeste-
sised before handling38.

The Arctic char were measured for weight and length and then divided into six tanks (n = 8): three were fed 
with the control feed and three with yeast feed. Feeding ratio was 2% of the actual biomass in the tanks.

After 2 months, the fish were weighed and measured again after a 24 h starvation period and liver weight was 
registered. After filleting, the muscle tissue was frozen on dry ice and then stored at −80 °C until lipid extraction.

Fish performance. Based on the measurements and the consumed feed, feed conversion ratio (FCR), spe-
cific growth rate (SGR), condition factor (CF) and hepatosomatic index (HSI) were calculated as follows:

= −FCR F/(Wt W0)

= − ×SGR [(lnWt lnW0)/t] 100

Feed ingredients

Control feed Yeast feed

(g) % (g) %

Fish meal 550 49.4 550 50.3

Fish oil 130 11.7 130 11.9

VO (Olive oil) 55 4.94 0 0

Mineral and vitamin mix 4 0.36 4 0.37

Wheat meal 295 26.5 245 22.4

Casein 55 4.94 0 0

Ca2SO4 25 2.24 25 2.29

Yeast DM 0 0 140 12.8

Total 1114 100 1094 100

Table 5. Ingredients in the two types of fish feed: the control feed and the feed with yeast as a substitute for VO.
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= ×CF Wt/TL 1003

= ×HSI (Wl/Tw) 100

where Wt = final weight of fish in g; W0 = initial weight of fish in g; F = amount of dry feed fed in g; t = time 
(days); TL = total length in cm, Wl = weight of liver in g; Tw = total weight of fish without liver in g.

Lipid extraction from yeast, feed and fish. The lipid content of yeast cells was determined as previously 
described19,20. For the fish and feed, total lipid analysis was performed according to Pettersson, et al.26. Lipids were 
extracted from six muscle samples from each treatment (sourced from two fish from each replicate) and from the 
feeds. A subsample of 1 g of fish feed or muscle (light and dark) of individual Arctic char was used for lipid extrac-
tion (in duplicate). The sample was homogenised in hexane:isopropanol (HIP; 3:2, v-v) with an Ultra-Turrax 
(Janke and Kunkel, IKA Werke, Staufen, Germany). For lipid and non-lipid phase separation, 6.67% of Na2SO4 
was added to the homogenate and it was centrifuged. After gravimetrical identification of the total lipid content 
from dried samples, the lipids were stored in hexane at −80 °C for further analysis. All chemicals and solvents 
(reagent grade) were purchased from Merck (Darmstadt, Germany) except chloroform (Sigma Chemicals Co. St. 
Louis, MO, USA). The solvents were used without further purification.

Determination of fatty acid profiles. Fatty acid methyl esters (FAME) from total lipids in muscle and 
feeds were prepared with BF3 methanol according to the method described by Appelqvist39. FAME were stored in 
hexane at −80 °C for further analysis.

FAME were analysed by GC using a CP 3800 instrument (Varian AB, Stockholm, Sweden) equipped with a 
flame ionization detector and a split injector, and separated on a 50 m fused silica capillary column BPX 70 (SGE, 
Austin, Tex) (0.22 mm i.d × 0.25 µm film thickness)40. The injector temperature was 230 °C and the detector tem-
perature 250 °C. Helium was the carrier gas, at a flow rate of 0.8 mL/min, and nitrogen was used as make-up gas. 
Peaks were identified by comparing their retention times with those of the standard mixture GLC 68A (Nu-check 
Prep, Elysian, USA) and quantified using an internal standard (methyl-15-methylheptadecanoate; Larodan Fine 
Chemicals AB, Malmö, Sweden). Peak areas were integrated using Galaxie chromatography data system software 
version 1.9 (Varian AB, Stockholm, Sweden).

Statistics and calculations. Mean values, standard deviations and FA percentages were calculated in Excel 
and statistical analyses were performed using the Statistica CZ 12 software package. One-way analysis of variance 
(ANOVA) and Tukey’s HSD test were performed to characterise the differences between control and experimen-
tal group. The performance factors data were treated by One-way ANOVA in Excel.

Data Availability
The datasets generated and analysed during the current study are available from the corresponding author upon 
request.
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ABSTRACT 

The replacement of 25% fishmeal by a mixture of house cricket Acheta domesticus and 
superworm Zophobas morio meal as an alternative protein source in feed for Eurasian perch 
Perca fluviatilis was evaluated. Our results show that the replacement of 25% of fish meal 
in the perch diet with an insect mixture and an adjustment of the amino acid composition 
does not negatively affect survival but did decrease growth and increase feed conversion. The 
hepatosomatic index, as well as hepatic EROD and BFCOD activity, did not differ between the 
control and experimental feeding groups. Feeding with insect pellets resulted in significantly 
increased 18:2 n-6 and total n-6 percentage compared to the control group. The change in FA 
composition, is only minor and does not affect the nutritional value for human consumption 
of the fish. Further evaluation should be conducted with different ratios or different insect 
species.

Introduction

Eurasian perch Perca fluviatilis is a valuable fish species, especially in Europe, and is also 
considered as a game fish. However, there is generally little information regarding the feeding 
and dietary requirements of perch. Since there is no specific feed for perch, formulated 
commercial diets that have been used for salmonids are used for perch (Brown et al. 1996). 
The major operating expense in aquaculture accounts for the cost of the feed (Brett 1979), 
which is approximately 40-70% of the cost for production in aquaculture. Feed costs are 
especially high for the culture of carnivorous fish, which require great amounts of fishmeal 
(FM) in their diet (Manzano-Agugliaro et al. 2012). Therefore, it is important to optimize the 
feeding strategy in a way that also reduces the costs of production (Schnaittacher et al. 
2005) and increases growth as well as feed conversion. Among the required nutrients for fish, 
protein is an expensive ingredient. This is due to the combination of the drastic increase in the 
need for aquaculture feed as well as a decline in the sources of FM due to the over-fishing of 
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pelagic species and a subsequent decrease in the reliance on marine sources of protein from 
FM (FAO 2014). Therefore, using alternative sources of protein in the diet instead of FM, such 
as plant proteins, have been evaluated (Quartararo et al. 1998; Gatlin et al. 2007; Medale et 
al. 2013; Fawole et al. 2016). In addition, various animal protein sources have been considered 
as a replacement of FM (Bureau et al. 1999; Rawles et al. 2006). More recently, the use of 
insects as a protein source has been investigated (Henry et al. 2015; Ngoc et al. 2015). Insects 
represent an attractive alternative to traditional sources of proteins due to their high feed 
conversion, quick growth, and their potential to feed on bio-waste (Collavo et al. 2005), which 
makes their production highly sustainable. In addition, they are a rich source of amino acids, 
lipids, vitamins and minerals (van Huis 2013). Because some species are consumed as part of 
the natural diet of fish (Howe et al. 2014), they seem to be an appropriate replacement for 
FM. The amount of protein varies between 50-82% in different insect species, which reflect 
good nutritional value (Rumpold and Schluter 2013). 

Eurasian perch is a carnivorous species with a high protein requirement, and in their juvenile 
stage in the wild, they feed mostly on insects before starting diets based on fish (Riddick 
2013). Therefore, insects seem a very good candidate for FM replacement of this species. 

When choosing alternative feed components, including proteins, it is highly important 
to consider the needs of the fish species for which the feed is intended. In deciding which 
proteins and raw products are the most appropriate as feed ingredients for each species, 
priority must be given to the metabolic demands of the fish species. Factors, such as survival, 
growth and feed conversion need to be determined before a new feed component can be 
considered adequate. 

Cytochrome P450 (CYP) enzymes play important roles in the metabolism of many xenobiotic 
and endogenous compounds. The first three families of CYP are involved in biotransformation 
of xenobiotics. Fish that consumed different components than their usual feeding habit may 
metabolize some bioactive compounds as xenobiotics. The measurement of enzyme activity 
CYP 1A and 3A might provide information about the xenobiotic nature of selected insects. 

Many researchers have investigated the use of black soldier fly Hermetica illucens (Bondari 
and Sheppard 1981), common housefly maggot Musca domestica (Ossey et al. 2012), 
mealworm Tenebrio molitor (Ng et al. 2001) and grasshopper Locusta migratoria (Johri et 
al. 2010) meal as FM replacement, but house cricket and superworm meal have received 
less attention. However, these species have great potential for future use, since they are 
frequently cultivated and used for pet nutrition, and the nutritional needs of these insects are 
already known. Furthermore, their production systems are well established. 

From a human nutritional point of view, a high content of long chain n-3 fatty acids (FA) 
in fish is desired. Strong links between fish and seafood consumption as well as positive 
health effects, especially with a decreased risk of coronary heart and cardiovascular diseases, 
decreased inflammatory diseases, such as arthritis, and prevention of cancer have been 
demonstrated by Lund (2013). In the present study, meal from whole insects was used, which 
corresponded to 5% of the total fat content in the feed, and it was also necessary to evaluate 
the effects on fish muscle FA composition. 

The aim of the present study was to investigate the effects of a replacement of 25% FM 
by a mixture of house cricket Acheta domesticus and superworm Zophobas morio meal in 
the diet of perch on survival, growth, feed conversion and the hepatosomatic index (HSI) 
as indicators for the well-being of fish as well as microsomal ethoxyresorufin O-deethylase 
(EROD, CYP1A) and 7-benzyloxy-4-trifluouromethylcoumarin O-debenzylase (BFCOD, CYP3A) 
activity as markers for exposure to xenobiotic compounds and metabolic detoxification in 
fish. In addition, FA composition as an indicator for the nutritional value of fish for human 
consumption was evaluated. 
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Materials and Methods

Fish, feeding trial and experimental design 

Two isoenergetic and isoproteic diets were formulated to provide both the protein and lipid 
requirements of the perch, and the diets contained 52% protein and 15% total fat (Table 2). 
The control diet (CONT) was based on FM only, and in the experimental diet (INS), 25% of the 
original amount of FM was replaced with superworm and house cricket meals (10% in total 5% 
of each species). Insects were obtained from a local producer (Vladimír Šefl, Bušanovice) then 
sacrificed through liquid nitrogen freeze-drying and delivered to the feed production company 
(EXOT HOBBY s.r.o., Černá v Pošumaví) where the insects were milled and then processed 
into pelleted feed. Analyses of the proximate composition of crickets and superworms (Table 
1) and of the pelleted feed (Table 2) were carried out by an accredited laboratory (Státní 
veterinární ústav Praha, Testing laboratory No. 1176). From the fat content, 9% and 8.5% 
came from salmon oil made from fish by-products in the CONT and INS, respectively, while 
the rest originated from the other ingredients including the FM and insects. Threonine and 
Methionine were added to both feeds in different ratios to adjust for an adequate amino acid 
composition (Table 2).

After adaptation of fish to the system and feeding conditions, the feeding experiment was 
performed in a recirculation system for 12 weeks at the experimental facility of the Faculty of 
Fisheries and Protection of Waters in Vodňany.

A total of 1440 perch were randomly divided into two groups of 720 juveniles each (control 
and insect group) and assigned to a dietary treatment with three replicates. In each replicate, 
240 fish (mean weight of 23.1 ± 0.6 g) were held in 600 L round fibreglass tanks. The fish were 
fed continuously by an automatic feeder with a daily feed rate of 1.5% of the total weight of 
the stock. During the experiment, water parameters were checked twice a day (temp. 19.5 ± 
0.1°C, dissolved oxygen 9.2 ± 0.6 mg L-1). 

Sampling and growth performance

Body weight and total length were recorded 5 times during the experiment at the beginning 
and then at a three-week interval using a total of 300 fish at each time point (150 per 
treatment, CONT and INS group). Finally, the total stock of each tank was weighed at the end 
of the experiment after a 24 h starvation period. 

Survival was determined by observing the number of dead fish during the trial. 

Based on the measurements, the feed conversation ratio (FCR), specific growth rate (SGR), 
condition factor (CF), survival rate (SR) and hepatosomatic index (HSI) were calculated as 
follows: 
FCR = F / (Wt – W0)
SGR = [ (ln Wt – ln W0) / t ] × 100 
CF= Wt/T

L
3 ×100 

SR (%) = [ Nt / N0 ]×100
HSI = (Wl/ Tw) ×100

Where Wt = final weight of fish in g; W0 = initial weight of fish in g; 
F = amount of dry feed fed in g; t = time (days); T

L
= total length in cm; N0= initial number of 

fish; Nt = final number of fish; Wl= weight of liver in g; Tw= total weight in g.
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At the beginning and at the end of experiment, 10 fish from each group were killed and 
filleted for analyses of lipid content and composition. Total weight and liver weight were used 
for calculating the HSI. Liver samples were immediately frozen in liquid nitrogen and stored at 
-80°C for further biochemical assays.

Fatty acid and lipid content analysis

The lipid extraction of feeds and the skinless fillets were performed in duplicate based on 
the methods of Hara and Radin (1978), and the lipid content was quantified gravimetrically. 
For FA analyses, methylation of total lipids was performed according to the methods of 
Appelqvist (1968). FA composition was analysed by gas chromatography (GC) (Trace Ultra FID; 
Thermo Scientific, Milan, Italy) using a BPX-70 50 m fused silica capillary column (id. 0.22 mm, 
0.25 μm film thickness, SGE, USA). The peaks were identified by comparing sample retention 
times to retention times of the standard mixture GLC-68-A (Nu-Chek Prep, Elysian, USA).

Microsomal fraction preparation and protein analysis

Fish hepatic microsomes were prepared by differential centrifugation (Li et al. 2011). All 
steps were carried out on ice. Microsomal fractions were immediately frozen and stored at 
-80°C for further analysis. The protein levels were estimated spectrophotometrically through 
the method described by Smith et al. 1985) using bovine serum albumin as the standard. The 
microsomes were diluted to obtain a protein concentration of 5 mg/mL.

Measurements of catalytic activities of EROD and BFCOD

The catalytic activity of EROD was measured as the rate in the formation of resorufin 
from 7-ethoxyresorufin (Kennedy and Jones 1994). The incubation mixtures contained 0.2 
mg microsomal protein in an incubation medium of 0.5 mM potassium phosphate buffer 
(pH 7.4) with 1.0 mM nicotinamide adenine dinucleotide phosphate (NADPH) and 2 μM of 
7-ethoxyresorufin.

The catalytic activity of BFCOD was measured as the rate in formation of 7-hydroxy-
4-trifluoromethylcoumarin (HFC) from Resorufin, 7-ethoxyresorufin, 7-Benzyloxy-4-
trifluoromethylcoumarin (BFC) (Burkina et al. 2016). Briefly, the reaction incubations contain 
0.2 mg of microsomal protein in an incubation medium of 0.5 mM potassium phosphate 
buffer (pH 7.4) with 0.5 mM NADPH and 12.5 μM of BFC.

A fluorescence detector (Infinite 200 – Photometer TECAN) was used for detection of 
resorufin (excitation/emission 544/590 nm) and HFC (excitation/emission 410/538 nm). 
Enzymatic activities were expressed as pmol of resorufin or HFC formed per min and per mg 
of microsomal proteins (limits of detection were 2 and 1 pmol/min for resorufin and HFC, 
respectively).

Statistical analysis

Statistical analyses (T-test and one-way analysis of variance (ANOVA)) were performed 
using the Statistica CZ 12 software package.
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Results

Growth parameters and survival

The average weight gain and final weight of the fish fed INS was significantly lower and FCR 
was significantly increased compared to the CONT group (p≤0.05), SGR and CF decreased 
significantly in the fish fed the experimental diet. Survival and HIS did not differ between the 
groups (Table 3).

Fat content and fatty acid composition in the fish

Fillet fat content was similar in both groups and did not change throughout the experiment. 
The feeding with INS affected the FA composition only slightly compared to the CONT group, 
mirroring the FA composition of the feeds. Feeding with insect pellets resulted in significantly 
increased 18:2 n-6 and subsequently increased total n-6 compared to the CONT group (Table 
4). In addition, 20:1 n-9 was decreased in the INS group. Fatty acid composition in the insects 
and the feed are shown in Tables 5a and 5b, respectively.

EROD and BFCOD activity

Hepatic EROD and BFCOD activity did not differ (p>0.05) between group fed with the 
experimental diet compared to the group fed with the control diet (Figure 1).

Discussion

The aim of the experiment was to investigate whether the partial replacement of FM by 25% 
insects in the feed for perch affected survival, growth parameters, HSI, and FA composition, as 
well as whether the substitution caused alterations in enzyme activity of EROD and BFCOD, 
which are responsible for xenobiotic detoxification.  

The lower growth parameters in the experimental group indicate lower nutritional value and 
digestibility of the feed. Another reason might have been the taste of the feed because we 
observed a tendency towards lower feed consumption in the experimental group (p=0.06). 
Lower palatability of feeds containing insects due to unpalatable compounds or anti 
nutritional factors in the insects were discussed earlier (Finke 2002). In perch, replacement 
of protein has been scarcely investigated until recently. However, similar results of a lower 
performance were found in channel catfish Ictalurus punctatus with a partial substitution of 
10% FM by dried larvae of the soldier fly Hermetia illucens L., which showed a slower growth 
rate when reared in cages during a 15-week period. However, catfish reared in culture tanks 
still showed a slower but no significant decrease in growth, indicating that besides feed, the 
rearing system also had some influence on performance (Bondari and Sheppard 1981). 

In contrast to our results, channel catfish fed fully or partially with the larvae of the soldier 
fly showed the same performance in total weight and length compared to the control group 
(Bondari and Sheppard 1981). This shows that species react differently to different insect 
replacement and underlines the importance of testing each insect species on the fish species 
in question before use. Also, the proportion of replacement needs a thorough evaluation. 
For example, juvenile Nile Tilapia Oreochromis niloticus fed with diets that included different 
proportions of superworm meal (0, 25, 50, 75, 100%) showed higher weight gain and SGR for 
fish fed with diets of 25 and 50% superworm meal compared to fish fed with a higher degree 
of replacement (Jabir et al. 2012). In the group supplemented with 100% superworm meal, a 
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decreased growth performance compared to the groups fed lower ratios was observed. These 
results indicate that there is an upper level for inclusion of insects as a protein source. In our 
study, 10% insect inclusion already resulted in slightly decreased growth rate, which indicates 
either that the chosen insect mixture was not the most suitable or that the proportion was 
too high already. The final FA composition of the fish was only affected to a minor extent. 
Therefore, we conclude that the chosen proportion and mixture of insects is not negatively 
affecting FA composition.

The similar HSI and EROD and BFCOD activities in CONT and INS group indicate no toxic or 
negative effects of the insects on metabolism. HSI in our study was also comparable to earlier 
results in wild and cultivated perch by Jankowska et al. (2007). 

As we added the complete insects, to the diet, it was necessary to investigate the effects 
on fish FA composition. In general, the FA composition of the diet is reflected in the fish flesh 
(Menoyo et al. 2004). The significant increase of 18:2 n-6 in the INS group (Table 4) is due to 
the higher content of this FA in both the crickets and superworms and subsequently in the 
experimental diet (Tables 5a and 5b). However, from a nutritional point of view, we consider 
this change negligible. 
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Table 1. Proximate composition of house cricket Acheta domesticus and superworm Zophobas morio 

analysed by Státní veterinární ústav Praha, Testing laboratory No. 1176. 

Parameter (g/100 g) House cricket Superworm 

Protein 21.7 19

Total carbohydrate 4.1 4.7

Ash 1.9 1.8

Dry matter 32.2 43.8

Fat 4.6 18.3

Energy value (kJ/100g) 606 1080

Table 2. Ingredients and proximate composition of control (CONT) and experimental diet containing 

house cricket and superworm (INS) (%). Information from the producer (EXOT HOBBY s.r.o., Černá v 

Pošumaví), analyses by Státní veterinární ústav Praha, Testing laboratory No. 1176 and AGRO-LA, 

spol.s.r.o, Středisko laboratory.

Ingredients (%) CONT INS

Fish meala 39 29

Wheat mealb 27 24

Wheat glutenc 20 22

Insects - 10 (5% cricket, 5% superworm)

Salmon oild 9.0 8.5

Brewer’s yeaste 3 -

Boliforf 0.4 1.0

Premix Vit 0.35 0.35

Limstone 0.30 0.75

Proximate composition (percentage of dry matter basis)

Crude Protein 52.2 47.2

Crude Fat 18.4 17.9

Crude Fiber 2.45 3.21

Ash 7.07 7.09

Mineral mixturesg 2.2 3.53

Amino acid composition (percentage of dietary protein)h

Histidine  0.77 0.75

Isolucine 1.59 1.44

Lucine 3.03 3.02  

Phenylalanine 1.69 1.61  

Valine 1.82 1.73  

Lysine 2.81 3.08  

Methionine 0.66 0.69  

Cystine 0.42 0.42  

Threonine 1.62 1.79  

Tryptophan 0.79 0.76  

Arginine 1.91 1.77  
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Ingredients (%) CONT INS

Non-essential amino acids

Aspartate 3.06 2.86  

Serin 1.97 1.79  

Glutamate 12.5 11.6  

Glycine 2.85 2.60  

Alanine 2.90 2.74  

Tyrosine 1.28 1.24  

Proline 3.17 3.02  

aHanstholm Prime (FF Skagen), Denmark; Protein 70-72%, Fat max 12%, Water max 10%, Salt 
max 4.5%, Ash 10-16%, Antioxidant min 150 ppm ethoxyquin were added.     
bVesco, Veselí nad Lužnicí, Czech Republic
cKrnovská škrobárna, Czech Republic 
dVfcux, Bioceval, Cuxhaven, Germany
eBrewer’s yeast, Mráz Agro CZ, s.r.o., Blatná, Czech Republic 
fBolifor, Bioferm CZ, s. r.o., Brno, Czech Republic 
gEach 1,000 g of mineral premix of CONT diet contained: 162 mg Fe; 7 mg Cu; 52 mg Mn; 
1 mg Se; 88 mg Zn; 10 g K and INS diet contained: 129 mg Fe; 7 mg Cu; 49 mg Mn; 1 mg Se; 
91 mg Zn; 8 g K.
hAmino acid analyses according to the standard method of commission regulation (EC) No 
152 (2009).

Table 3. Growth factors for fish fed with control (CONT) and experimental diet containing house cricket 

and superworm (INS); (mean±standard deviation)

CONT (n=150) INS(n=150)

Survival (%) 94.0±40 94.6±1.9

Initial weight (g)  23.4±0.10 22.8±0.90

Final weight (g) 56.9±0.70a 48.6±2.10b

Weight gain (g) 33.5±0.61a 25.7±2.23b

FCR (%) 1.44±0.08a 1.75±0.15b

SGR (%/day) 1.06±0.01a 0.90± 0.07b

CF (%) 1.49 ± 0.11a 1.43 ± 0.13b 

HSI (%) (n=10) 3.60± 0.90 3.80± 0.60

HSI was calculated for 10 randomly chosen fish in each group. Different superscripts indicate 
significant differences between the groups (p≤0.05)

Table 4. Total identified fatty acids (%) in skinless fillet of perch (higher than 0.5%) at the beginning 

and at the end of the experiment fed with control (CONT) or experimental diet containing house cricket 

and superworm (INS); (mean±standard deviation)

Start CONT final INS final

Fat content 1.53±1.3 1.08±0.32 1.21±0.25

C14:0 0.78±0.10 1.23±0.40 1.14±0.27

C16:0 22.1±1.02 22.6±1.26 23.1±0.79

C16:1trans 1.15±0.23 1.16±0.16 1.28±0.17
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C16:01 2.30±0.49 3.04±1.45 3.00±1.19

C18:00 3.68±0.32 3.82±0.66 4.10±0.47

C18:1n-9 15.1±1.88 18.4±4.64 18.3±3.08

C18:1n-7 2.23±0.14 2.28±0.22 2.18±0.10

C18:1n-5 0.63±0.03 0.47±0.12 0.45±0.08

C18:2n-6 9.34±1.15 9.45±0.85a 10.9±0.70b

C18:3n-3 1.24±0.14 1.82±0.28 1.78±0.21

C20:1n-9 1.25±0.16 1.52±0.18 1.30±0.24b

C20:4n-6 0.99±0.14 0.81±0.18 0.71±0.10

C20:5n-3 3.46±0.74 4.66±0.6 4.13±0.64

C22:5n-3 1.37±0.25 1.73±0.37 1.57±0.21

C22:6n-3 34.3±3.00 25.3±5.17 24.6±4.20

SFA 26.8±1.53 27.9±1.47 28.6±0.96

MUFA 23.2±3.00 27.93±6.34 27.5±4.55

PUFA 50.8±5.46 44.21±5.15 43.9±4.03

n-3 40.5±4.17 33.9±5.76 32.4±4.56

n-6 10.3±1.29 10.3±0.75a 11.6±0.68b

n-6/n-3 0.26±0.31 0.32±0.00 0.37±0.08

Different small letters indicate significant differences between the treatment groups (CONT 
and INS) (p≤0.05)
1SAFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty 
acids

Table 5a. Fatty acid composition (%, higher than 0.5%) of house cricket Acheta domesticus and 

superworm Zophobas morio analysed in duplicate (mean ±standard deviation). 

House ricket Superworm

Fat content 5.57±1.11a 17.6±0.21b

C14:0 0.68±0.06a 1.09±0.06b

C16:0 24.1±0.61a 28.4±0.00b

C16:1trans 0.48±0.03a 1.52±0.20b

C16:01 0.92±0.08 0.91±0.06

C18:00 9.78±0.23a 7.86±0.15b

C18:1n-9 27.9±1.17a 38.7±0.29b

C18:1n-7 0.54±0.03 0.73±0.05

C18:2n-6 33.5±0.12a 18.8±0.17b

C18:3n-3 1.19±0.07 1.15±0.05

SFA 34.8±0.91 37.5±0.12

MUFA 30.1±1.12a 42.2±0.37b

PUFA 35.2±0.21a 20.3±0.25b

n-3 1.67±0.32 1.51±0.09

n-6 33.6±0.15a 18.8±0.16b

n-6/n-3 20.6±4.05 12.4±0.66

Different small letters indicate significant differences between the house cricket and 
superworm (p≤0.05)
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Table 5b. Fatty acid composition (%, higher than 0.5%) of control diet (CONT) and the experimental 

diet containing 10% house cricket and superworm (INS); (mean ±standard deviation). 

CONT INS

Fat content 18.4±0.64 18.0±0.40

C14:0 2.83±0.02a 2.55±0.04b

C16:0 13.2±0.14a 14.8±0.37b

C16:1trans 0.25±0.01a 0.31±0.00b

C16:01 3.15±0.03a 2.80±0.02b

C18:00 2.75±0.04a 3.20±0.07b

C18:1n-9 36.2±0.27 35.3±0.28

C18:1n-7 3.04±0.09a 2.64±0.02b

C18:1n-5 0.01±0.01 0.01±0.01

C18:2n-6 16.6±0.03a 17.0±0.12b

C18:3n-3 4.94±0.10a 4.53±0.04b

C20:1n-9 2.30±1.68 3.00±0.01

C22:1 2.24±1.15 2.45±0.01

C20:5n-3 3.99±0.09a 3.25±0.04b

C24:1 0.56±0.01a 0.49±0.01b

C22:5n-3 1.07±0.02 1.02±0.17

C22:6n-3 5.77±0.17a 4.73±0.00 b

SFA 19.2±0.29a 20.9±0.37b

MUFA 47.7±0.15 47.0±0.32

PUFA 33.1±0.44 32.1±0.05

n-3 16.2±0.32a 13.9±0.08b

n-6 22.7±0.29a 22.9±0.13b

n-6/n-3 1.40±0.01a 1.64±0.02b

Different small letters indicate significant differences between the CONT and INS pellets 
(p≤0.05)
2SAFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty 
acids
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Figure 1. EROD and BECOD activity in hepatic microsomes og perch (n = 10 in each group), fed with 

control diet or with experimental diet containing 10% house cricket and superworm; (mean activity ± 

standard deviation).

3EROD, ethoxyresorufin O-deethylase; BFCOD, 7-benzolyoxy-4-trifluoromethylcoumarin 
O-debenzylase
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ABSTRACT
Five isocaloric diets containing commercial pellets and live insects were evaluated in 

rainbow trout Oncorhynchus mykiss in a 60-day feeding trial. The control group (K) was 
fed commercial pellets only. In other groups, 25% gross energy of pellets was replaced by 
live adult house cricket Acheta domestica (Group C), live superworm Zophobas morio larva 
(Group L), or a combination of 12.5% crude energy of each (Group LC). A final group (I) was fed 
live cricket and superworm only (50/50 crude energy). No significant differences were found 
in growth, survival, feed conversion ratio (dry basis), or energy utilization among groups. 
Protein efficiency ratio was highest in Group K. Insect inclusion was associated with lower 
content of nutritionally valuable n-3 fatty acid in fish muscle. Muscle of fish fed insects only 
showed EPA and DHA content approximately 45% and 63%, respectively, of that in the Group 
K, a significant difference. EPA content was significantly lower in other insect fed groups, 
while DHA was comparable to control group. Subjective sensory evaluation of cooked fillets 
revealed significantly less acceptable taste, aroma, and aftertaste in Group I than for Groups 
K, L, and LC. Groups LC and I showed significantly whiter fillet colour than K Group. Redness 
of Group LC was significantly less intense than in Group C. The control group had significantly 
lower firmness compared to those receiving the insect diets. No gross morphological or 
histological anomalies were observed in any group. No significant differences were observed 
in EROD activity. 

Keywords: Rainbow trout, fillet quality, insect feed, growth performance, fatty acids, 
alternative feeds 
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Introduction

Rainbow trout Oncorhynchus mykiss is widespread in temperate regions, and represents a 
large share of worldwide salmonid production. Aquaculture is a rapidly growing industry with 
production increasing at an average annual rate of 5.8% percent to 73.8 million tonnes in 
2014. Salmon and trout represented about 17% of the total value of internationally traded fish 
products in 2014 (FAO, 2016). Rising production has led to increased demand for quality feed, 
the biggest component of production costs. Despite their declining proportion in aquafeeds, 
fish meal (FM) and fish oil (FO) remain major dietary components, especially for carnivorous 
finfish, including salmonids (Tacon and Metian, 2008). Decreasing availability, rising prices, 
and the negative environmental impact of FM and FO use have intensified the search for 
alternative protein and lipid sources. 

Insects at various life stages constitute the major part of the natural salmonid diet either 
throughout life or in the juvenile stage, and show potential for inclusion in formulated feeds. 
They have been evaluated for potential FM replacement in aquafeeds with varying results 
(Makkar et al., 2014; Henry et al., 2015). In temperate regions, large quantities of crickets, 
mealworms, locusts, and housefly maggots are commercially produced for pet food and fish 
bait (van Huis et al., 2013). Insects can be cultured on food manufacturing by-products, and 
their nutritional composition can be altered through diet (Oonincx et al., 2015; St Hilaire 
et al., 2007a), making them a sustainable, environmentally sound feed source. Determining 
the effects of insects in the diet on fish performance and health, nutritional content, and 
attractiveness to consumers is a prerequisite to wider use of insects as feed for salmonids. 

Inclusion of the black soldier fly Hermetia illucens (BSF) larvae and mealworm Tenebrio 
molitor has been assessed in salmonid diets. Replacement of 25% to 50% of the FM with BSF 
meal in a rainbow trout diet showed no significant effects on weight gain and feed conversion 
ratio, but resulted in lower levels of omega-3 fatty acids in fillets (St-Hilaire et al. 2007b; 
Stamer et al., 2014). Sealey et al. (2011) reported satisfactory growth of rainbow trout fed 
a diet replacing 50% of FM with BSF reared on manure enriched with trout offal, while a 
diet containing BSF reared on manure only was associated with significantly slower growth 
compared to the commercial diet. No sensory differences among fish fed the two BSF and 
control diets were found. Lock et al. (2014) found 100% FM replacement by BSF meal in 
the diet of Atlantic salmon to have no detrimental effects on growth, histology, or sensory 
aspects, with the caveat that the method of insect meal preparation had considerable impact 
on its usability. Replacement of 25% and 50% of FM with mealworm larva meal in a rainbow 
trout diet did not significantly affect growth and reduced the hepatosomatic index compared 
to fish fed a control diet (Gasco et al., 2014a).

The house cricket Acheta domestica (Gryllidae) and superworm Zophobas morio 
(Tenebrionidae) are commonly-produced insects that can be successfully cultured on 
organic by-products (Fuah et al., 2015; Oonincx et al., 2015; van Broekhoven et al., 2015). 
Cytochrome P450 (CYP) enzymes are a group of hem-containing enzymes playing a key 
role in the metabolism of many xenobiotic including food components (Anric et al., 2015 ). 
Replacement of natural food of fish diet might affect the activity of metabolizing enzymes in 
fish. CYP1A is the most studied isoform in fish due to its important role in the metabolism of 
xenobiotic compounds. The measurement catalytic activity of CYP1A may provide information 
of xenobiotic nature of selected insects and introduced to fish diet.

The aim of this study was to evaluate the effect of partial to full replacement of commercial 
FM-based diets with live insects on growth and health parameters of rainbow trout, as well as 
on sensory and texture attributes and fatty acid composition in fish muscle that can influence 
its nutritional value and palatability. 
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Materials and methods

Experimental fish and rearing conditions

One-hundred-forty juvenile rainbow trout Oncorhynchus mykiss weighed 264.3 ± 6.6 g 
(mean weight ± standard deviation) were reared in a recirculation system at the Faculty of 
Fisheries and Protection of Waters in Vodňany, Czech Republic. Fish were fed commercial 
pellets only (EFICO Enviro, 4.5 mm, Biomar) before the start of the experiment. Prior to 
beginning the experiment, 10 randomly chosen fish were measured, weighed, sacrificed, and 
filleted for baseline analysis of lipid content and composition. Remaining fish were separated 
into groups of 10, bulk-weighed, and stocked into thirteen 400 L aerated glass aquaria. The 
mean initial stock weight per aquarium was 2643 ± 66 g. Aquaria were filled with tap water 
filtered through an active carbon filter. Each aquarium was connected to an individual external 
filter (Eheim professional 4+, EHEIM GmbH, Germany). Fish excrement and other sediment was 
drained daily at approximately 12:00 h, and ~200 L water was exchanged. Water temperature 
was 14.3 ± 1.2 °C, oxygen content 10.1 ± 1 mg L-1, and pH 7.2 ± 0.7. The duration of the 
experiment was 60 days.

Diets

Five isocaloric diets were formulated using commercial pellets and live insects. Prior to 
experimentation, nutrient composition of the feeds was analysed (Table 1) by an accredited 
laboratory (Státní veterinární ústav Praha, Testing laboratory No. 1176). Four experimental 
diets were tested with three replicates. A control group (K) was fed commercial pellets 
(EFICO Enviro 4.5 mm, Biomar) only. For other groups, 25% of the crude energy of pellets 
was replaced with live adult house crickets (C), live superworm larvae (L), or a combination 
of 12.5% crude/gross energy each of the insect species (LC). A final group (I) was fed live 
crickets and superworms only (50/50 crude energy). For economic reasons, this group was 
not replicated, therefore, they were not included in the statistical evaluation for survival, 
weight gain and feed efficiency. 

The insects were purchased fresh from a local producer (Vladimír Šefl, Bušanovice, Czech 
Republic) twice per week. The crickets were held at 6 °C to ensure that they remained inactive, 
and superworms were kept in barley bran at 22 °C according to producer recommendations.   

After three days acclimatisation, feeding was initiated in all tanks. Pellets were fed at 1.5% 
of stock weight daily and at 1% after monitoring on day 26. For Groups C, L, and LC, the 
pellets were decreased to 75% and supplemented with the appropriate proportion of insects. 
In Group I, pelleted feed was replaced with insects. The required quantity of insects was 
calculated based on weight necessary to provide energy content similar to pellets:

1 g pellets = 4 g house crickets = 2.4 g superworms 

The feed adaptation phase was carried out for five days, during which Group K was fed 25% 
of its allocated daily ration, and other groups were fed the insect portion only. From day 8, 
each group received the full feed ration. Fish were fed manually four times per day, and all 
feed provided was consumed. Expected weight gain was calculated with respect to a feed 
conversion ratio (FCR) of 1:1 (based on full pellet portion weight). Fish were not fed on the 
monitoring and final sampling days (26, 48, and 60) or on the preceding day.

Growth monitoring, including individual weight and biometric measurements, was carried 
out in all aquaria on days 26 and 48. At the conclusion of the trial, all fish were individually 
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weighed. For each aquarium, feed conversion ratio (FCR), protein efficiency ratio (PER), and 
gross energy (GE) utilization was calculated.

FCR = weight feed (dry; g)/weight gained (g)

PER = wet weight gain (g)/protein intake (g).

GE utilization = wet weight gain (g)/GE intake (MJ)  

Ten fish per group were sacrificed, bled out, and hand-filleted. Individual weight (g) standard 
length (mm), and total length (mm) were measured. Condition factor (CF) was calculated for 
each fish:

CF = 100 · (W · TL3), (TL in cm, W in g)

Viscera and liver were weighed for determination of viscerosomatic (VSI) and hepatosomatic 
(HSI) indices. 

VSI = (weight of viscera/total weight) · 100

HSI = (weight of liver/total weight) · 100

Samples of raw, skinned fillets were used for analysis of fatty acid (FA) composition and 
for sensory evaluation, while  liver tissue were used for further preparation of microsomal 
fractions and measuring of CYP mediated reaction. 

Fatty acid and lipid content analysis

Lipid extraction was performed in duplicate according to Hara and Radin (1978) and lipid 
content was quantified gravimetrically. For FA analyses, methylation of total lipids was conducted 
according to Appelqvist (1968). FA composition was analysed by gas chromatography (Trace 
Ultra FID; Thermo Scientific, Milan, Italy) using a BPX-70 50 m fused silica capillary column (id 
0.22 mm, 0.25 μm film thickness, SGE, USA). The peaks were identified by comparing sample 
retention times to those of the standard mixture GLC-68-A (Nu-Chek Prep, Elysian, MN, USA).  

Sensory analyses

The sensory quality of fillets was evaluated with respect to attributes such as aroma, 
taste, aftertaste, and consistency (Martinsdóttir et al., 2009). One-hundred 30 g samples 
(five groups, 10 fish from each, in duplicate) were prepared for a panel of 10 members of a 
trained jury from the Faculty of Fisheries and Protections of Waters. Tasting samples were 
composed of six small pieces of flesh, each from a different fish of the appropriate group 
(ISO 6658, 2005). Samples were taken from corresponding areas of the fish body, stored on 
ice for 2 h, and cooked separately in code-labelled 0.15 L glass jars for 15 min at 150 °C in 
an electric oven. To conform to ISO 6658 (2005) and ISO 8589 (2007) criteria, no salt, oil, 
or spices were added. Panellists were separated from one another in individual cubicles (ISO 
8589, 2007). Each panellist was provided with still water, distilled spirits, and bread to cleanse 
the palate. Samples were rated on a hedonic consumer scale (Martinsdóttir et al., 2009) 
modified according to Kříž et al. (2007). Panellists were asked to evaluate the intensity of 
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aroma, taste, aftertaste, and consistency and to indicate a rating by assigning a point on a 100 
mm unstructured abscissa (0 mm = very good quality; 100 mm = unacceptable).

Instrumental analysis of colour and texture 

Flesh colour was assessed at three locations above the lateral line (anterior, middle, and 
caudal) of each fillet (n = 7/group) using a colour spectrophotometer CM-600d (Konica Minolta 
Inc., Japan). Colorimetric data were represented according CIE (1976) as L* = whiteness, a* = 
the red-green axis, and b* = the yellow-blue axis were measured directly on the fillet with each 
spot evaluated in duplicate. Measurements were performed within 1 h post-mortem.

Samples (n = 10/group) for texture analysis were taken from dorsal area of fillets between 
the end of the dorsal fin and the beginning of the anal fin. Firmness, defined as the maximum 
force detected during initial compression, was measured using a TPA-meter (TA.XTPlus, Stable 
Micro Systems, Godalming, Surrey, U.K.). A 10 mm diameter cylindrical probe (sms p/10) was 
set at pretest speed of 5 mm/s and test speed of 2 mm/s until the fillet was compressed to 
50% of its original thickness.

Histology

During dissection, gross examination of intestines, liver, gills, and heart was performed. 
For histological examination, samples of liver, heart, stomach, and intestine (mid-section) 
were fixed in 10% natural buffered formalin, paraffin-embedded, and routinely processed 
as described by Bancroft and Gamble (2002). Sections (4 μm) were stained with Mayer’s 
haematoxylin-eosin. Slides were examined at magnification of 10-40x using an Olympus SZ9 
microscope.

Ethoxyresorufin O-deethylase activity (EROD)

Resorufin, 7-ethoxyresorufin, and nicotinamide adenine dinucleotide phosphate (NADPH) 
were obtained from Sigma-Aldrich (Steinheim, Germany).

Microsomal fraction preparation and protein analysis: Fish hepatic microsomes were obtained 
by differential centrifugation. Briefly, liver (~1 g) was homogenized in three volumes of Tris-
sucrose buffer (10 mM Tris–HCl, 250 mM sucrose, and 0,1 mM EDTA, pH 7.4) with subsequent 
centrifugation (Beckman Coulter Optima™ L-90 K) at 30,000 rpm for 15 min at 4 °C. The 
supernatant was further centrifuged at 100,000 g rpm for 60 min at 4 °C. As a final step, the 
microsomal fraction was diluted in glycerol buffer (0.1 mM EDTA, 20% glycerol, 50 mM Tris 
and 10 mM potassium phosphate, pH 7.4) and homogenized (UltraTurrax; Ika, Germany). All 
steps were carried out on ice. Microsomal fractions were immediately frozen and stored at 
-80 °C for 7-ethoxyresorufin-O-deethylase (EROD) analysis. The protein levels were estimated 
spectrophotometrically as described by Smith et al. (1985) using bovine serum albumin as 
standard. The microsomes were diluted to obtain a protein concentration of 10 mg/mL. 

The catalytic activity of CYP1A was measured as the rate of formation of resorufin from 
7-ethoxyresorufin (Kennedy and Jones, 1994). The incubation mixtures contained 0.5 mg 
microsomal protein in an incubation medium of 50 mM potassium phosphate buffer (pH 
7.4) with 1.0 mM NADPH and 2 μM of 7-ethoxyresorufin. The fluorescence detector (Infinite 
200 – Photometer TECAN) was used for detection of resorufin (excitation/emission 544/590 
nm). Enzyme activity was expressed as pmol resorufin/mg protein/min (detection limit was 
1 pmol/min).
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Statistical analysis

Sensory attributes, colour and texture analyses, biometric data, and FA profile were subjected 
to one-way ANOVA. The differences among means were tested by post-hoc Tukey’s honest 
significant difference test. Differences among means for instrument-based colour and texture 
analyses were assessed by Fisher’s LSD test. Data of percentage of FA was arcsin transformed. 
Homogeneity of variance was tested using the Cochran-Hartley-Bartlett test. Survival of fish 
was compared with the Pearson and maximum likelihood χ2 test. All analysis was done using 
Statistica 12.0 (StatSoft CR, Prague, Czech Republic). Differences were considered significant 
when P < 0.05. 

 
Results

Growth and biometric parameters

After the feed adaptation phase, all fish in experimental groups consumed insects actively 
and preferentially consumed insects over pellets. No differences were found in mean fish 
weight among groups at monitoring days or at the end of the experiment (Fig. 1). Feeding 
regime was not associated with survival, total weight gain, FCR, or utilization of feed gross 
energy. Protein efficiency ratio (PER) in the co-fed groups was significantly lower than in the 
control group, with the exception of Group L (Table 3). No dietary effects were found in mean 
final condition factor (K) or VSI in fish sampled for FA analysis (n = 10/group). Fish from Group 
I displayed significantly higher (P = 0.022) HSI values than did Group C. Mean final K in Group 
I was significantly (P = 0.009) higher than in fish sampled at beginning of trial (Table 4).

Fat content and fatty acid composition 

Values of lipid content and FA composition are given in Table 5. Total fat content did 
not differ significantly among groups, but was slightly higher in group K compared to the 
experimental groups. Significant among-group differences were found in all selected FAs as 
well as in relative content of saturated FA (SFA), mono-unsaturated FA (MUFA), and poly-
unsaturated FA (PUFA) (Table 5). 

Palmitic acid (16:0) was the predominant SFA, and stearic acid (18:0) constituted >1% of 
total lipid in all groups. Their relative content was significantly lower in group K compared to 
the other groups, with the highest values found in Group I. Other SFAs made up less than 1% 
of total FA. The quantity of SFA was significantly higher in group I than in C, L, and LC groups 
and was lowest in group K.

The level of total MUFA observed in Group K was significantly higher than in other groups, 
intermediate levels were seen in C, L, and LC, and lowest in group I. A similar pattern was 
observed in levels of oleic acid (18:1 n-9) (the predominant MUFA in all groups), vaccenic acid 
(18:1 n-7), and erucic acid (22:1 n-11). 

Linoleic acid (LA, 18:2 n-6) was the predominant PUFA in all groups, and showed the highest 
relative level in Group I. Significant differences among groups were found in relative levels of 
docosahexaenoic acid (DHA, 22:6 n-3), alpha-linoleic acid (ALA, 18:3 n-3), eicosapentaenoic 
acid (EPA, 20:5, n-3), eicosadienoic acid (20:2, n-6), and other PUFAs, each of which represented 
<1% of total FA (Table 5). In general  n-3 FA showed lower proportions in the insect fed groups 
(C,L,CL and I), while n-6FA were higher in those groups, reflecting the FA composition of the 
diet. No significant differences in relative PUFA proportion were found among Groups K, C, L, 
and LC or between Groups LC and I. Group I showed significantly lower ∑n-3 FA proportion than 
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observed in all other groups. In contrast, ∑n-6 FA content was highest in Group I, intermediate 
in Groups C and LC, and lowest in K and L. The ∑n-6:∑n-3 ratio was significantly affected by 
diet, with the lowest value in Group K and the highest in Group I (Table 5). 

Sensory analyses 

The results of sensory evaluation showed significantly lower acceptability of Group I fillets 
with respect to aroma and taste in comparison with fillets from Groups K, L, and LC (Fig. 
2). Fillets from Group C did not show differences from the other groups in these attributes. 
Presence of an aftertaste was significantly higher for Group I compared to other groups. No 
effect of diet was observed in consistency scores.

Instrument-based colour and texture analyses

Inclusion of insects in the feed formulation (group LC and I) significantly increased L* 
whiteness of fillets (P < 0.05). Redness a* was only slightly influenced by dietary regime, 
with only group LC exhibiting significantly lower redness value from Group C. There was no 
difference in yellowness b* among groups (Fig. 3).

The control group showed significantly lower firmness compared to the insect diets (p < 
0.05) (Fig. 4).

Histology

There was no gross morphological alteration, but there was a large quantity of fat around the 
intestines in all groups. Hepatocytes were characterized by a moderate to high number of fat 
vacuoles in all fish. There were no signs of pathology in liver or histopathological aberrations 
in heart, stomach, or intestine of any group. 

Ethoxyresorufin O-deethylase activity (EROD)

No effect of diet treatment on EROD activity was detected. Slightly higher values were seen 
in Group L fish compared to other groups (Fig. 5). 

Discussion

Growth and biometric parameters
Results indicated that house cricket and superworm can be used as partial or total isocaloric 

replacement of commercial diet for rainbow trout without negative effects on growth, survival, 
FCR, or gross energy utilization. The observed growth rate in Group I fish demonstrated that 
a combination of raw crickets and superworm larvae is nutritionally adequate for growth 
compared to commercial feed of similar energy value. This is not surprising, as insects are an 
important component of natural prey of salmonids (Groot, 1996), including rainbow trout 
(Raleigh et al., 1984). Nevertheless, most studies have reported total replacement of FM 
with insect meal to be unsuccessful, generally due to nutritional imbalances or deficiencies 
(Henry et al., 2015), for example in calcium (Makkar et al., 2014) and amino acids including 
histidine, lysine, and tryptophan (Sánchez-Muros et al., 2014). Partial fish meal replacement 
with processed insect meal without negative effect on growth of salmonids was reported 
Gasco et al. (2014), who successfully replaced up to 50% of fish meal with mealworm larva 
meal, and Stamer et al. (2014), who used BSF meal in the rainbow trout diet. Fish meal 
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replacement with insect meal ≥50% was associated with significantly reduced growth in most 
studies (Sealey et al., 2011; Stamer et al., 2014; St-Hilaire et al., 2007), although total FM 
replacement with BSF meal without deterioration of growth parameters was reported by Lock 
et al. (2014) in Atlantic salmon. Potential utilization of live/raw insects in salmonid mass 
culture is problematic; however, collaboration of fish and insect farming may be possible with 
local producers. The readiness of fish to eat inactive crickets in our study showed the potential 
of using frozen insects for rainbow trout without influencing palatability and/or digestibility, 
which can be a problem with methods of processing insect meal (Lock et al. 2014). 

A major obstacle to the use of insects in commercial farms is their high cost. In the present 
study, the cost of 1 MJ gross energy from crickets was 25-fold and, from superworms, 8-fold 
that of the commercial pellets. Nevertheless, local insect producers may be able to less 
expensively provide overproduced or dead insects to fish farms. The price of insects may 
be reduced by using organic by-products (Oonincx et al., 2015) including remains from fish 
processing (Vladimir Šefl, personal communication) for insect production. 

Fatty acid composition

From a human nutrition point of view, fish are a good source of long-chain n-3 FA (Tacon 
and Metian, 2013). These n-3 fatty acids, especially 20:5 n-3 (EPA) and 22:6 n-3 (DHA), have 
multiple functions in metabolism and are associated with prevention of cardiovascular and 
inflammatory diseases as well as certain forms of cancer (Simopoulos, 2002a; Rudowska, 
2010; Calder, 2014). Therefore, it is important to maintain a high content of these FA in fish. 
This is usually obtained by the use of fish oil as a fat source in the feed. If the fat is replaced 
by other sources, FA composition of the diet is generally mirrored in the fish muscle (Sargent 
et al., 1999; Morris, 2001; Shearer, 2001). In the present study, an increased proportion of 
insects corresponded with increasing proportions of the FA dominant in the insects. This 
was especially notable in the significantly higher proportion of 16:0 (palmitic acid) and 
significantly lower proportions of EPA and DHA in the group fed insects only. However, in the 
groups with 25% insect replacement, the proportion of DHA was comparable to the control 
fish. In contrast, EPA was significantly decreased with insect replacement of 25%. Addition of 
crickets only, but not superworm, to the feed resulted in increased proportions of 18:2 n-6 
(LA) and a consequent increase in the n-6/n-3 ratio. As n-6 and n-3 FA are metabolised via 
the same enzyme system (Palmquist, 2009), but have opposing effects (Schmitz and Ecker, 
2008), it is important to keep the n-6:n-3 ratio as low as possible. The recommendation is 1:4 
(Simopoulos, 2002b). The fish with the 100% insect diet were in that range, but the ratio as 
well as the content of the long chain n-3 PUFA EPA and DHA should be monitored carefully if 
insects are used in a bigger scale in fish feeds.  

The 100% insect diet resulted in EPA and DHA of approximately 45% and 63%, respectively, 
respectively, of that in fish fed the control diet. This indicates a decrease in nutritional value 
of these fish for human nutrion and needs to be addressed. One solution to restore the level 
of n-3 FA after feeding an insect based diet could be a so called finishing feeding strategy, 
where a relatively short final feeding period with diets containing a rich blend of fishmeal and 
fish oil (Parés-Sierra et al., 2014). In fish fed 25% of the energy as insects, EPA was reduced to 
75-80% that of controls, while DHA was comparable, demonstrating that partial replacement 
does not have a great effect on the fish nutritional value.
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Sensory analyses and instrument-based colour and texture analyses

Higher cricket content resulted in lower sensory scores for aroma, taste, and aftertaste by 
the majority of panellists (Fig. 2). This is contradictory to studies replacing FM with BSF meal 
(Sealy et al., 2011) and soybean meal (D’Souza et al., 2006), in which consumers were unable 
to differentiate between fish fed the control and experimental diets. This may limit wide use 
of crickets, and probably other Orthoptera sp., for salmonid production. Despite this, two 
panellist evaluated taste as good (<10) and did not detect aftertaste (0) in fillets from Group 
I in both testing replicates. This could indicate that the distinct taste of fish fed insects may be 
acceptable to some consumers. Instrumental colour analyses showed trout flesh to be lighter 
in colour in groups fed the insect combination. Since colour is an important trait to consumers 
when buying fresh fish, when replacing commercial feed with insects, it is important to use a 
finishing feeding strategy to obtain a desired flesh colour. All insect-fed groups showed higher 
firmness compared to controls, probably related to the slightly higher lipid content of control 
fish, also observed by Hardy and Lee (2010). Firm texture of fillets is an important trait for 
consumers, indicating fresh fish. 

Ethoxyresorufin O-deethylase activity (EROD), histology and pathology

A potential increase in EROD activity with alternative feeds has been reported in some 
studies (Mráz et al., 2010; Trattner et al., 2011). Similar EROD activity among groups in 
the present study indicated that the raw insects used were unlikely to contain xenobiotic 
compounds. Fish showed no pathological and morphological abnormalities, thus house 
cricket and superworm are considered safe alternatives to commercial pellets from a fish 
health standpoint. However, there is a risk of insect toxicity related to rearing on biological 
(especially plant) waste or by-products (Sword, 2001). 

Conclusions

Uncooked superworm larvae and house crickets are sustainable as feed for rainbow trout. 
Fish fed the diet containing insects at 25% and 100% of gross energy showed similar growth 
and feed efficiency as those fed a commercial diet with the same calories, except in PER.

Neither partial nor total replacement of commercial diet with raw insects showed a 
detrimental effect on fish health. 

 The insect-containing diet resulted in lower n-3 FA content of fillets. Fillet EPA and DHA of 
fish fed insects only was significantly reduced and may indicate the necessity of a final feeding 
period with an FM/FO rich diet.

Changes in sensory attributes, texture, and colour of flesh from insect-fed trout, particularly 
those fed a high proportion of house crickets, may decrease their acceptability to consumers.

The high cost of “pet quality” insects represents a significant limitation to the wider use of 
insects in trout production. It may be possible to use overproduced or lower quality insects 
from local producers.
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Figure 2 Sensory attributes of rainbow trout fillets fed different diets during a 60-day feeding trial: K 

= control; C = 25% live house crickets, L = 25% live superworm larvae; LC = 25% of an equal combination 

of insect species; I = 100% combination of insect species. Sensory evaluation (mm) is presented as 

mean (bars) ± S.D. (whiskers). Different letters indicate significant differences (P < 0.05) among groups 

according to ANOVA, post-hoc Tukey HSD test. 

Figure 1 Weight (mean ± S.D.) of rainbow trout fed four different diets during a 60-day feeding trial: K 

= control; C = 25% live house crickets, L = 25% live superworm larvae; LC = 25% of an equal combination 

of insect species; I = 100% combination of insect species.
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Figure 3 Fillet colour parameters of rainbow trout fed different diets during a 60-day feeding trial: K = 

control; C = 25% live house crickets, L = 25% live superworm larvae; LC = 25% of an equal combination 

of insect species; I = 100% combination of insect species represented as L* - whiteness, a* - redness and 

b* - yellowness (mean ± S.D.; n = 7). Different letters indicate significant (P < 0.05) differences among 

groups according to ANOVA, Fisher’s LSD test.
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Figure 4 Fillet firmness (N) of rainbow trout fed different diets during a 60-day feeding trial: K = 

control; C = 25% live house crickets, L = 25% live superworm larvae; LC = 25% of an equal combination 

of insect species; I = 100% combination of insect species (mean ± S.D.; n = 10). Different letters indicate 

significant (P < 0.05) differences among groups according to ANOVA, Fisher’s LSD test.

Figure 5 Ethoxyresorufin O-deethylase activity, EROD (pmol /mg protein/min; mean ± S.D.; n = 10) 

in liver of rainbow trout fed different diets during a 60-day feeding trial: K = control; C = 25% live house 

crickets, L = 25% live superworm larvae; LC = 25% of an equal combination of insect species; I = 100% 

combination of insect species.
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Table 1. Approximate composition of feed sources analysed by State Veterinary Institute Prague, 

Testing laboratory No. 1176.

Composition (as-is basis)
Feed

Pellets Crickets Superworm larvae

Crude protein (%) 42.9 21.7 19.0

Crude fat (%) 30.1 5.6 18.3

Carbohydrates (%) 15.2 4.1 4.7

Ash (%) 5.8 1.9 1.8

Moisture (%) 4.9 68.8 56.2

Gross energy (MJ/kg) 24.4 6.1 10.1

Table 2. Fatty acid composition of pellets, house crickets (Acheta domestica) and superworm 

(Zophobas morio) larvae used in feed experiment (mean ± S.D.; n = 3). Data are expressed as percent of 

total fatty acids, fat content as percent weight on as-is basis.

Fatty acid
Feed

Pellets House crickets Superworm larvae

Fat content 27.26 ± 0.01 6.68 ± 0.70 18.21 ± 2.27

14:0 1.96 ± 0.00 0.86 ± 0.05 1.06 ± 0.06

16:0 9.92 ± 0.06 24.98 ± 0.63 32.36 ± 1.76

16:1 2.22 ± 0.00 1.17 ± 0.06 0.80 ± 0.15

18:0 3.35 ± 0.01 7.50 ± 0.33 7.53 ± 0.73

18:1 n-9 44.63 ± 0.05 21.51 ± 0.19 33.89 ± 3.63

18:1 n-7 3.12 ± 0.01 0.70 ± 0.01 0.31 ± 0.04

18:2 n-6 15.20 ± 0.07 39.59 ± 0.53 22.53 ± 1.95

18:3 n-3 6.76 ± 0.03 1.31 ± 0.02 0.92 ± 0.13

20:0 0.40 ± 0.01 0.38 ± 0.00 0.17 ± 0.02

20:1 n-9 2.51 ± 0.01 0.44 ± 0.03 0.16 ± 0.04

20:2 n-6 0.49 ± 0.01 0.08 ± 0.00 0.07 ± 0.01

20:4 n-6 0.21 ± 0.00 0.27 ± 0.05 0.02 ± 0.03

20:4 n-3 1.84 ± 0.02 0.04 ± 0.00 0.03 ± 0.01

22:0 0.25 ± 0.01 0.11 ± 0.02 0.05 ± 0.03

20:5 n-3 2.68 ± 0.00 0.76 ± 0.01 0.05 ± 0.07

22:5 n-3 0.60 ± 0.02 0.03 ± 0.01 0.23 ± 0.03

22:6 n-3 2.88 ± 0.01 0.21 ± 0.02 0.05 ± 0.08

∑SFA 15.64 ± 0.06 33.85 ± 0.33 41.18 ± 1.98

∑MUFA 52.48 ± 0.08 23.89 ± 0.28 35.17 ± 3.78

∑PUFA 30.47 ± 0.04 42.26 ± 0.55 23.65 ± 1.92

∑n-3 15.70 ± 0.06 2.29 ± 0.03 1.03 ± 0.13

∑n-6 14.77 ± 0.03 39.94 ± 0.58 22.62 ± 1.93

∑n-6/∑n-3 1.06 ± 0.01 17.44 ± 0.43 22.39 ± 3.71

SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, poly unsaturated fatty 
acids; 
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Table 3. Survival, weight gain, and feed efficiency of rainbow trout groups fed different diets in a 60 day 

feeding trial. Dietary treatment: K = control; C = 25% live house crickets, L = 25% live superworm larvae; 

LC = 25% of an equal combination of insect species (n = 3). Value of I group (100% combination of insect 

species, n = 1) was not included in statistical analysis.

Dietary treatment

K C L LC I

Survival (%) 100 96.7 90.0 100 100

Weight gain (g/tank) 2562 ± 69 2676± 202 2342 ± 83 2602 ± 131 2726

Feed intake (g/tank)

- Pellets1 2015 ± 37 1476 ± 57 1399 ± 55 1491 ± 43 ---

- Crickets1 --- 2179 ± 79 --- 1097 ± 32 4023

- Superworms1 --- --- 1243± 46 658 ± 19 2414

FCR 0.75 ± 0.02 0.79 ± 0.03 0.80 ± 0.01 0.79 ± 0.04 0.86

PER 2.96 ± 0.06a 2.42 ± 0.11c 2.80 ± 0.05ab 2.60 ± 0.14bc 2.05

GE utilization 52.1 ± 1.1 54.2 ± 2.3 50.2 ± 0.9 52.3 ± 2.8 55.7
1Weight of feed expressed on an as-is basis.

FCR (feed conversion ratio) = g feed (dry basis)/g weight gained.

PER (protein efficiency ratio) = wet weight gain (g)/protein intake (g).

GE (gross energy) utilization = wet weight gain (g)/GE intake (MJ)

Different lower case superscripts indicate significant (P < 0.05) differences among groups at 
the end of the experiment according to ANOVA, post-hoc Tukey HSD test.

Table 4. The effect of four diets on standard length (SL), total length (TL), weight (W), condition factor 

(CF), viscerosomatic index (VSI), and hepatosomatic index (HSI) of fish. Data present as mean ± standard 

deviation, n= 10 in each group. Dietary treatment: K = control; C = 25% live house crickets, L = 25% live 

superworm larvae; LC = 25% of an equal combination of insect species; I = 100% combination of insect 

species.

Day 0 Day 60

Dietary treatment

Stocking K C L LC I

SL (mm) 249.5 ± 12.6 304.5 ± 9.6 308.0 ± 12.3 299.5 ± 15.6 307.5 ± 11.9 300.6 ± 9.9

TL (mm) 279.5 ± 12.6 339.0 ± 10.9 344.0 ± 13.2 335.0 ± 16.0 341.5 ± 12.7 333.1 ± 8.0

W (g) 271.6 ± 41.2 509.7 ± 76.1 540.6 ± 66.2 505.0 ± 82.5 534.4 ± 55.3 530.7 ± 50.8

K 1.74 ± 0.18 1.79 ± 0.16 1.84 ± 0.10 1.87 ± 0.11 1.84 ± 0.11 1.95 ± 0.13*

VSI (%) 12.86 ± 0.75 12.76 ± 1.05 12.78 ± 0.70 12.92 ± 1.26 12.75 ± 0.66 13.96 ±2.11

HSI (%) 1.20 ± 0.18 1.32 ± 0.20a 1.14 ± 0.09a 1.21 ± 0.12a 1.22 ± 0.13a 1.35 ± 0.14b

Different superscripts indicate significant (P < 0.05) differences among groups at the end of 
the experiment according to ANOVA, post-hoc Tukey HSD test.

Asterisk indicates significant (P < 0.05) differences in CF, VSI and HSI between day 0 and at 
end of experiment for each group according to ANOVA, post-hoc Tukey HSD test.
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CF = 100 x W/TL3; TL in cm, W in g

VSI = (weight of viscera/total weight) x 100

HSI = (weight of liver/total weight) x 100

Table 5. The effect of four diets on fatty acid composition of fish fillets in a 60-day feeding trial.  Data 

are expressed as percent of total fatty acids, fat content as weight percent on as-is basis (mean ± SD; n = 

10). Dietary treatment: K = control; C = 25% live house crickets, L = 25% live superworm larvae; LC = 25% 

of an equal combination of insect species; I = 100% combination of insect species. 

Stocking 
(Day 0)

Dietary treatment  (Day 60)

Fatty acid K C L LC I

16:0 11.96 ± 0.51 11.79 ± 0.30a 14.40 ± 1.38b* 15.21 ± 2.48b* 14.43 ± 0.99b* 21.25 ± 0.78c*

16:1 2.35 ± 0.18 2.39 ± 0.09a 2.28 ± 0.17a 2.20 ± 0.20ab 2.14 ± 0.19b* 2.01 ± 0.18b*

18:0 3.07 ± 0.14 2.87 ± 0.15a* 4.03 ± 0.53b* 3.80 ± 0.68b* 3.78 ± 0.35b* 6.42 ± 0.54c*

18:1n-9 44.06 ± 1.52 44.59 ± 0.52a 41.54 ± 1.85b* 42.79 ± 1.49b 41.87 ± 1.10b* 37.09 ± 1.21c*

18:1n-7 3.19 ± 0.05 3.29 ± 0.05a* 2.91 ± 0.16b* 2.73 ± 0.33b* 2.78 ± 0.13b* 1.65 ± 0.15c*

18:2n-6 13.87 ± 0.51 14.50± 0.27a* 15.99 ± 0.59b* 14.72 ± 0.26a* 15.62 ± 0.54b* 17.73 ± 0.72c*

18:3n-3 4.67 ± 0.24 5.09 ± 0.17a* 4.21 ± 0.32b* 3.95 ± 0.56b* 4.16 ± 0.26b* 2.09 ± 0.28c*

20:0 0.28 ± 0.02 0.28 ± 0.02ab 0.30 ± 0.02b 0.23 ± 0.03c* 0.26 ± 0.02ac 0.25 ± 0.04ac*

20:1n-9 2.70 ± 0.33 2.63 ± 0.09a 2.59 ± 0.19a 2.41 ± 0.23a* 2.44 ± 0.11a* 1.81 ± 0.21b*

20:2n-6 0.81 ± 0.10 0.98 ± 0.07a* 1.19 ± 0.13cd* 1.02 ± 0.10ab* 1.14 ± 0.09bc* 1.29 ± 0.12d*

20:3n-3 0.29 ± 0.04 0.40 ± 0.03a* 0.49 ± 0.16a* 0.51 ± 0.10a* 0.50 ± 0.07a* 1.13 ± 0.22b*

20:4n-6 0.41 ± 0.07 0.31 ± 0.03a* 0.39 ± 0.11a 0.41 ± 0.08a 0.40 ± 0.06a 0.97 ± 0.19b*

20:4n-3 0.23 ± 0.02 0.25 ± 0.03a* 0.24 ± 0.04a 0.21 ± 0.03b 0.24 ± 0.03a 0.09 ± 0.02c*

22:0 0.20 ± 0.10 0.25 ± 0.02a 0.22 ± 0.01b 0.20 ± 0.01bc 0.20 ± 0.01c 0.17 ± 0.01d

22:1 1.11 ± 0.52 0.98 ± 0.08a 0.88 ± 0.07b 0.80 ± 0.11b 0.86 ± 0.03b 0.49 ± 0.06c*

20:5n-3 1.84 ± 0.36 1.90 ± 0.11a 1.43 ± 0.25b* 1.53± 0.33b 1.50 ±0.24b* 0.86 ± 0.13c*

24:1 0.46 ± 0.07 0.45 ± 0.06a 0.42 ± 0.05ab 0.37 ± 0.05b* 0.36 ± 0.11b* 0.25 ± 0.03c*

22:5n-3 0.62 ± 0.36 0.58 ± 0.03a 0.48 ± 0.09b* 0.52 ± 0.11ab* 0.52 ± 0.06ab* 0.30 ± 0.06c*

22:6n-3 6.62 ± 0.92 6.30 ± 0.68a 5.89 ± 1.46a 6.26 ± 1.29a 6.71 ± 0.79a 3.95 ± 0.58b*

Fat content 6.52 ± 2.42 8.48 ± 1.70 6.43 ± 2.31 7.22 ± 2.20 6.96 ± 1.33 6.86 ± 1.10

∑ SFA 17.40 ± 1.00 15.31 ± 0.40a* 19.05 ± 1.84b* 19.52 ± 3.12b 18.75 ± 1.32b* 28.14 ± 1.23c*

∑ MUFA 54.23 ± 1.55 54.33 ± 0.52a 50.63 ± 2.17b* 51.30 ± 2.12b* 51.41 ± 1.41b* 43.30 ± 1.51c*

∑ PUFA 28.36 ± 1.25 32.21 ± 0.66a* 31.73 ± 2.03a* 30.67 ± 2.22ab* 32.30 ± 0.96a* 29.28 ± 1.01b

∑ n-3 14.04 ± 1.24 14.53 ± 0.66a 12.74 ± 1.91a 12.98 ± 2.08a 13.63 ± 1.05a 8.43 ± 0.90b*

∑ n-6 14.32 ± 0.51 15.79 ± 0.25a* 17.57 ± 0.62b* 16.15 ± 0.33a* 17.16 ± 0.56b* 19.99 ± 0.88c*

∑n-6/∑n-3 1.03 ± 0.11 1.09 ± 0.05a 1.41 ± 0.25b* 1.27 ± 0.21ab* 1.27 ± 0.12ab* 2.40 ± 0.28c*

SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, poly unsaturated fatty 
acids.

Different superscripts indicate significant (P < 0.05) differences among groups according to 
ANOVA, post-hoc Tukey HSD test. 

Asterisk indicates significant (P < 0.05) differences between values at day 0 and at end of 
experiment for each group according to ANOVA, post-hoc Tukey HSD test. 
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GENERAL DISCUSSION 

Strong links between fish and seafood consumption and positive health effects on human 
have been found (Dyerberg, 1985; Calder, 2004; Rudkowska et al., 2010; Lund, 2013). Given 
that fish is rich source of n-3 LC-FAs including EPA and DHA (Tacon and Metian, 2013) which 
are deficient in European diet especially for the Czech people. FAs as the most vulnerable 
nutritive components of fish is remarkably influenced by the feed regimen and composition, 
handling and processing, whereas, protein and the minor nutrients seem to be less affected 
as long as the fish was not starved or wrongly fed or exposed to abusive storage or processing 
conditions. As a result of the limited sources of FM and FO in the feed of fish in aquaculture, 
substitution of the novel feed ingredients for replacement received more attention (Quartararo 
et al., 1998; Gatlin et al., 2007; Henry et al., 2015). Wild fish feed is composed of natural 
organisms, including plankton, benthos as well as nekton in case of carnivorous species, 
which naturally contain the essential n-3 LC-PUFA. The primary producers of n-3 LC-PUFA in 
freshwater ecosystems are, the same as in the ocean, algae. These compounds are transferred 
into the fish throughout the feed chain. In addition, fish are able to biosynthesize n-3 LC-
PUFA from their 18-carbon precursor (α-linolenic acid; ALA) to a certain degree. This ability is 
strongly expressed in freshwater non-carnivorous species, compared to marine carnivorous 
fish, which decreased this ability during evolution (Tocher, 2003). Therefore, the consumption 
of freshwater species from natural habitats is beneficial not only for human health, but also 
from sustainability and ecological viewpoints. 

The overall aim of this thesis was to highlight the high value of natural feed for fish, also 
to highlight different aspects that affect nutritional quality of fish and how to assure a high 
nutritional quality of fish reared in aquaculture with a high sustainability of production. More 
specifically, in paper I, a number of factors influencing the nutritional value of fish in relation to 
the lipids, proteins, vitamins, and minerals were examined. Paper II focused on the proximate 
and FA composition (nutritional aspects) of seven species frequently caught by anglers in the 
Czech Republic. Paper III investigated the effects of VO replacement by the oil from oleaginous 
yeast grown on a second-generation substrate (lignocellulose hydrolysate from wheat straw) 
in the feed of Arctic char. In the paper IV and V the inclusion of insects as a replacement for 
FM in the feed and their effects on different quality aspects of two carnivorous species was 
investigated. Thus, the five papers on which the thesis is based focused on the different 
aspects of general nutritional value of fish and examined different alternatives to replace FO 
and FM in the feed of carnivorous.

Paper I – Nutritional Value of Fish: Lipids, Proteins, Vitamins, and Minerals

This work summarized and discussed the valuable constituents in fish, the effects of dietary 
FA, protein and peptides on human nutrition and health as well as factors which have great 
contribution and influence on the fish flesh composition and nutritional value. The risk of 
obesity, overweight, the metabolic syndrome, cardiovascular diseases, cancer and inflammatory 
diseases are growing in the Western population. The n-6 and n-3 FA influence the metabolism 
of eicosanoids and gene expression (Simpoulos, 2009) and the ratio of them is important 
for the further transformation of the essential FA, linoleic acid (18:2n-6, LA) and α-linolenic 
acid (18:3n-3, ALA) to PUFA and their derivatives. This ratio in the diet has been increasing 
in the modern times and there is a large body of evidence that this changed balance have 
been connected with increased risk of disease (Simpoulos, 2006). There is a close relation 
between the dietary habits and changing the pattern of lipid intake and composition. The 
importance of n-3 LC PUFA are associated with the prevention of arteriosclerosis, neurological 
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dysfunction, insulin resistance and autoimmune diseases (Kinsella, 1988; Simopoulos, 1999; 
Connor, 2000; Calder and Grimble, 2002). Eicosanoids synthesized from n-3 PUFA have 
immunosuppressive properties (Calder, 2001), while the eicosanoids from n-6 PUFA have pro-
inflammatory properties and enhance immune reactions like fever and pain (Calder, 2001). 
A high intake of n-6 PUFA, is therefore associated with adverse effects on human health, 
as for example cardiovascular diseases, and diabetes as well as hypertension, depression, 
neurological dysfunction, and immune disorders (Connor, 2000; Williams, 2000). An optimal 
diet containing an appropriate amount of the essential LC n-3 PUFA is necessary for neural 
development of children during the pregnancy and the neonatal period. It is well established 
that the maintenance of optimal pre-and postnatal growth and development requires n-3 
PUFA (Innis, 1991; Innis et al., 1999). Moreover, proteins, peptides and amino acids from fish 
have been considered to have a high nutritional value (Sargent, 1997) and positive health 
effects (Rudkowska et al., 2010; Pilon et al., 2011). Studies related to inflammation, metabolic 
syndrome, osteoporosis, insulin resistance, obesity-related comorbidity and development 
of cancer have been executed and fish protein, peptides or hydrolysates have shown of 
importance in nearly as many areas as fish lipids (Madani et al., 2012; Chalamaiah et al., 2012). 

Paper II – Nutritional value of some commercially important river fish species from the Czech 
Republic  

The study was performed in order to complete and extend the existing information regarding 
nutritional value and lipid indices of the less gained attention species (European grayling, 
common nase, brown trout, common bream, Prussian carp, European perch and European 
chub) caught by anglers in the Czech Republic. Fish consumption is rather low in the Czech 
Republic therefore, the aim was to emphasize the importance of the species consumed by 
anglers and less known for the consumers diet. According to our results, there was some 
variation of FA composition in the species, depending on the natural habitat and differences 
in feed and its availability. Simultaneously, we observed a very favourable FA composition with 
good proportions of n-3 PUFA, including EPA and DHA in all analyzed species which reflects 
the composition of the natural diet (Robin et al., 2003). Consequently, the values of both IA 
and IT were low and close to the values of the so-called Eskimo diet, which is related to very 
low incidences of the coronary heart disease (Ulbricht and Southgate, 1991). According to 
our findings we conclude that the chosen species have a standard protein content, minimum 
carbohydrates and relatively low contents of fat, which can, however, vary to some degree in 
various localities, most probably related to the availability and composition of the feed. 

Paper III – Oleaginous yeast as a component in fish feed

Fish oil (FO) represent the major source for the required lipids of the cultured species (Tacon 
et al., 2011). Vegetable oil (VO) is extensively used to partially replace FO in the aquaculture 
feed. Currently, alternative replacements of FO like VO turn to the limited sources and seems to 
be as non-sustainable. In replacing feed constituents, it is important to consider their effects 
on fish growth, health, welfare, and final product quality as well as the subsequent impact on 
human health. Many studies showed no significant effect of partial replacement of FO by VO 
on the fish growth fed by the replaced feed (e.g. Bell et al., 2001; Torstensen et al., 2005). 
However, few studies demonstrated effects on the welfare of fish fed VO. Some estrogenic 
effects in addition to the effects on immune function have been discussed (Mourente et al., 
2005; Pickova and Morkore, 2007). Another important issue in case of replacement is the 
effect of substitution on changing the FA composition of fish for human consumption due 
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to the fact that VOs contain more n-6 PUFA (Orsavova et al., 2015) and do not contain the 
essential n-3 PUFA, EPA and DHA. However, some contain the shorter chain precursor ALA. In 
addition from a sustainability point of view VO can be used directly for human consumption 
and its replacement with underutilized novel sources is therefor favourable.

The aim of this study was to evaluate the possibility of VO replacement in the feed of Arctic 
char (Salvelinus alpinus) by single cell oils (oils derived from the oleaginous yeast) Lipomyces 
starkeyi grown on the second-generation substrate; namely lignocellulose hydrolysate (from 
wheat straw) which seems to be more sustainable compared to the VO with regards that 
cell oils do not rely on the arable land and that a waste product (wheat straw) is used in the 
production. Previous researches were focused on the usage of oil derived from genetically 
engineered Yarrowia lipolytica cultivated on first-generation substrate (glucose) (Hatlen et 
al., 2012; Katre et al., 2012; Zhu and Ethel, 2015). In addition, in this study we used not only 
the oil but the whole cells, replaceing also part of the protein in the feed and making the 
whole process easier and economically more feasible as no oil extraction step was needed.

In our study, the replacement indicated no significant changes between yeast fed fish and 
control feed, in terms of feed conversion rate and condition factor showing similar metabolism 
pathway of the feeds. In the yeast fed fish, slight significant decrease in the total n-6 FAs 
which results in low n-6/n-3 ratio was noticeable result since n-6 FAs is associated with 
adverse health effect for human including heart disease, promotion of inflammation, diabetes 
and cancer (Simopoulos, 2006; Libby, 2007). Proper yeast strains and culture conditions can 
have a positive influence on FA composition and the n-6/n-3 ratio. Our study for the first 
time indicates, the possibility to convert second generation substrate to a feed component 
therefore, it is acceptable to substitute terrestrial plant and animal based lipid and protein 
sources by yeast biomass. In conclusion, based on the potential of single cell oil production 
form the second-generation substrate, lignocellulose hydrolysate can be utilized as the basis 
to industrialize the production of single cell oil which can be considered to replace VO by 
yeast oil in the feed of carnivorous species. 

Paper IV – Insect meal as a partial replacement for fish meal in a formulated diet for perch 
(Perca fluviatilis)

Due to the urgency to find potential substitute for traditional protein source FM in the feed, 
there has been increased interest in the utilization of insect as highly nutritious feed. The aim 
of this study was to investigate the effects of a replacement of 25% FM by a mixture of insect 
meal including house cricket- (Acheta domesticus) and superworm- (Zophobas morio) meal 
(with an amino acid adjustment) in the diet of perch, on survival, growth, feed conversion 
with special emphasis on lipid changes and composition in addition to the determination of 
the hepatosomatic index (HSI) as well as microsomal ethoxyresorufin O-deethylase (EROD, 
CYP1A) and 7-benzyloxy-4-trifluouromethylcoumarin O-debenzylase (BFCOD, CYP3A) activity 
as markers for exposure to xenobiotic compounds and metabolic detoxification in fish. Many 
studies have been focused on the utilization of other types of insect meal including black 
soldier fly (Bondari and Sheppard, 1981), common housefly maggot (Ossey et al., 2012), 
mealworm (Ng et al., 2001) and grasshopper meal (Johri et al., 2010) but house cricket 
and superworm meal have received less attention. Due to their frequently cultivation, well-
established production system, usage for pet nutrition, beside the existed information about 
the nutritional requirements of these insects, these insects seem to have a great potential. 
Therefore, we wanted to see the possibilities of the partial replacement by this mixture. The 
lower growth performance in the fish group fed by insect indicated lower nutritional value 
and digestibility of the feed along with a possible bad taste of the feed. Interestingly FA 
composition of the fish fillet which reflects the composition of the diet was only affected to 
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a minor extent. The significant increase of 18:2 n-6 in the group fed by insect was due to the 
higher content of this FA in both insects and subsequently in the experimental diet. However, 
this change was so small that from a nutritional point of view this was neglectable. Beside 
our pilot study, further evaluations with the graded level of above mentioned insect meal or 
different insect species in the feed of carnivorous fish is needed.

Paper V – Insects in rainbow trout (Oncorhynchus mykiss) feed: effect on growth, fatty acid 
composition and sensory attributes

According to our result, partial (25% of pellet replaced live house cricket, 25% of pellet 
replaced by superworm, combination of 12.5% crude energy of each group) or total replacement 
(50% of each) of house cricket and superworm for FM in the commercial diet of rainbow trout 
indicated no negative effects on growth, survival, FCR and gross energy utilization. Inclusion 
of insect was connected with lower content of nutritionally valuable n-3 FAs (EPA and DHA). 
However, many studies have been reported the unsuccessful substitution of FM by total 
replacement with insect meal as a result of deficiencies or nutritional imbalances (Makkar et 
al., 2014; Sánchez-Muros et al., 2014; Henry et al., 2015), in our study total replacement with 
the mixture of insects, resulted in a better growth performance compared to the commercial 
feed of similar energy value. Most probably as insects are good live food for salmonids (Groot, 
1996). However with increased proportion of insect’s in the feed of fish, negative changes in 
the sensory properties, texture and colour of fish flesh occured resulting in less acceptability 
and preference by consumers.
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ENGLISH SUMMARY

When considering fish as food, first of all the n-3 LC-PUFA, particularly EPA and DHA are in 
focus. Furthermore, it gets obvious that the proteins and peptides in fish have not only a high 
nutritional value but also impact on human health issues. In addition, fish can be considered 
as a good source of several minerals, vitamins and micronutrients. In general, it should be 
highlighted that, when considering human nutrition and the related health aspects, it is 
impossible to focus one group of nutrients separated from all others. The overall aim of the 
thesis was to highlight different factors which influence nutritional quality of fish and to focus 
on the nutritional value of some commercially important river fish species from the Czech 
Republic. Moreover, to examine different sustainable alternatives to replace FO and FM in the 
feed of carnivorous. According to our results, there were some variation of FA composition 
in the selected seven freshwater fish species from the Czech Republic, depending on the 
natural habitat and differences in feed and its availability. Simultaneously, we observed a 
very favourable FA composition with good proportions of n-3 PUFA, including EPA and DHA 
in all analyzed species which reflects the composition of the natural diet. Consequently, the 
values of both index of atherogenicity (IA) and index of thrombogenicity (IT) were low and 
close to the values of the so-called Eskimo diet, which is related to very low incidences of 
the coronary heart disease. According to our findings we concluded that the chosen species 
have a standard protein content, minimum carbohydrates and relatively low contents of fat, 
which can, however, vary to some degree in various localities, most probably related to the 
availability and composition of the feed. 

Due to the combination of the drastic increase in the need for aquaculture feed as well as 
decline in the sources of FM and FO, utilization of alternative sources received more attention. 
Based on our result, it is possible to replace VO by yeast oil produced from lingocellulose in 
the feed of Arctic char (Salvelinus alpinus). There were no significant differences in the study, 
regarding weight and length gain, feed conversation ratio, specific growth rate, condition 
factor and hepatosomatic index between the control and the yeast oil fed group. According 
to the results of another study, partial (25% of pellet replaced live house cricket, 25% of 
pellet replaced by superworm, combination of 12.5% crude energy of each group) or total 
replacement (50% of each) of house cricket and superworm for FM in the commercial diet 
of rainbow trout indicated no negative effects on growth, survival, FCR and gross energy 
utilization. Inclusion of insect was connected with lower content of nutritionally valuable n-3 
FAs (EPA and DHA). In our study total replacement showed the mixture of insects, caused 
the better growth performance compared to the commercial feed of similar energy value as 
insects are good live food for salmonids. With increase in the proportion of insect’s inclusion 
in the feed of fish, changes in the sensory properties, texture and colour of fish flesh was in 
a way that showed less acceptability and preference by consumers. Replacement of 25% FM 
by a mixture of insect meal including house cricket- (Acheta domesticus) and superworm- 
(Zophobas morio) meal (with an amino acid adjustment) in the diet of perch, on survival, 
growth, feed conversion with special emphasis on lipid changes and composition showed FA 
composition of the fish fillet was only affected to a minor extent. However, the lower growth 
performance in the fish group fed by insect indicated lower nutritional value and digestibility 
of the feed along with the taste of the feed. Interestingly, the significant increase of 18:2 
n-6 in the group fed by insect was due to the higher content of this FA in both insects and 
subsequently in the experimental diet which from the nutritional point of view this change 
was neglectable. Beside our pilot study, further evaluations with the graded level of above 
mentioned insect meal or different insect species in the feed of carnivorous fish is needed.
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CZECH SUMMARY 

Pokud posuzujeme rybu jako potravinu, soustředíme se především na  n-3 LC-PUFA, 
zvláště na  EPA a  DHA mastné kyseliny. Kromě toho je zřejmé, že také proteiny a  peptidy 
v rybách mají nejen vysokou nutriční hodnotu, ale také dopad na  lidské zdraví. Navíc může 
být ryba považována za  dobrý zdroj některých minerálů, vitamínů a  mikroživin. Obecně je 
třeba zdůraznit, že z pohledu lidské výživy a  souvisejících zdravotních dopadů je nemožné 
se soustředit na jednu skupinu živin odděleně od ostatních. Celkovým cílem této dizertační 
práce bylo zdůraznit různé faktory, které ovlivňují výživovou jakost ryb a zaměřit se na nutriční 
hodnotu některých komerčně významných říčních druhů ryb z České republiky. Dílčím cílem 
bylo otestovat různé udržitelné alternativy k nahrazení rybího oleje (FO) a rybího masa (FM) 
v krmivu masožravých ryb. Podle našich výsledků se ve vybraných sedmi druzích sladkovodních 
ryb z České republiky lišilo složení mastných kyselin s ohledem na jejich přirozené stanoviště 
a rozdíly v krmivu a jeho dostupnosti. Zároveň jsme ve všech analyzovaných druzích pozorovali 
velice příznivé složení MK s dobrým podílem n-3 PUFA, zahrnující EPA a DHA, což odráží složení 
přirozené stravy. V důsledku toho byly nízké hodnoty IA a IT a tedy blízké hodnotám při takzvané 
Eskimo dietě, která souvisí s velmi nízkým výskytem srdečních onemocnění. Na základě našich 
výsledků můžeme usuzovat, že vybrané druhy mají standardní obsah proteinů, minimum 
cukrů a relativně nízký obsah tuku, který se může do určité míry lišit v různých lokalitách, což 
většinou souvisí s dostupností a složením krmiva.

Kombinací drastického nárůstu potřeb pro akvakulturní krmivo a úbytku zdrojů FM a  FO 
získává více pozornosti využití alternativních zdrojů krmiva. Na základě našich výsledků je možné 
v krmivu sivena severního (Salvelinus alpinus) nahradit FO kvasničným olejem produkovaným 
z lignocelulózy. Mezi kontrolním krmivem a krmivem s kvasničným olejem nebyly pozorovány 
významné rozdíly při testování zvýšení hmotnosti a  délky ryb, poměru konverze krmiva, 
specifické růstové rychlosti, indexu kondice a hepatosomatického indexu. Podle výsledků další 
studie, kdy bylo komerční krmivo pstruha duhového nahrazeno hmyzem částečně (25 % pelet 
nahrazeno živým cvrčkem domácím, 25 % nahrazeno potemníkem brazilským, kombinace 
12,5 % hrubé energie z každé skupiny) nebo úplně (50 % každého druhu), nevykazuje toto 
krmivo žádné negativní účinky na růst, přežití, poměr konverze krmiva a využití hrubé energie. 
Přídavek hmyzu do  krmiva byl spojen s  nižším obsahem nutričně cenných n-3 MK (EPA 
a DHA). V naší studii je ukázáno, že úplné nahrazení krmiva směsí hmyzu je vhodnou živou 
stravou pro lososovité ryby, protože způsobuje lepší růstový výkon ve srovnání s komerčním 
krmivem podobné energetické hodnoty. Při vyšším podílu hmyzu v rybím krmivu vykazovalo 
rybí moučka pro konečné konzumenty nižší atraktivitu a přijatelnost. Ve stravě okouna bylo 
při nahrazení 25 % rybího masa potravou ze směsi cvrčka domácího (Acheta domesticus) 
a potemníka brazilského (Zophobas morio) (s úpravou aminokyselinového složení) jen v malé 
míře ovlivněno přežití, růst, konverze krmiva se zvláštním důrazem na lipidové změny a složení 
MK v rybích filetách. Nicméně nižší nárůst ryb ve skupině krmené hmyzem poukazoval na nižší 
nutriční hodnotu a stravitelnost krmiva spojené s chutí krmiva. Za zmínku také stojí, že díky 
bohatému obsahu kyseliny 18:2 n-6 v obou druzích hmyzu byl ve skupině ryb krmené hmyzem 
naměřen vyšší obsah této mastné kyseliny, ale tato hodnota je z výživového hlediska nedůležitá. 
K rozšíření této pilotní práce je potřeba dalšího hodnocení různých typů zmíněného hmyzího 
krmiva se stupňujícím se přídavkem hmyzí složky nebo využití i jiných druhů hmyzu ke krmení 
masožravých ryb.
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