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Abstract 
In this thesis, we first present the theory of neural network training for the speech recogni­
tion, along with our implementation, that is available as the 'nnetl ' training recipe in the 
Kaldi toolkit. The recipe contains R B M pre-training, mini-batch frame Cross-Entropy train­
ing and sequence-discriminative s M B R training. Then we continue with the main topic of 
this thesis: semi-supervised training of DNN-based A S R systems. Inspired by the literature 
survey and our initial experiments, we investigated several problems: First, whether the con­
fidences are better to be calculated per-sentence, per-word or per-frame. Second, whether 
the confidences should be used for data-selection or data-weighting. Both approaches are 
compatible with the framework of weighted mini-batch SGD training. Then we tried to get 
better insight into confidence calibration, more precisely whether it can improve the effi­
ciency of semi-supervised training. We also investigated how the model should be re-tuned 
with the correctly transcribed data. Finally, we proposed a simple recipe that avoids a grid 
search of hyper-parameters, and therefore is very practical for general use with any dataset. 
The experiments were conducted on several data-sets: for Babel Vietnamese with 10 hours 
of transcribed speech, the Word Error Rate (WER) was reduced by 2.5%. For Switchboard 
English with 14 hours of transcribed speech, the W E R was reduced by 3.2%. Although we 
found it difficult to further improve the performance of semi-supervised training by means 
of enhancing the confidences, we still believe that our findings are of significant practical 
value: the untranscribed data are abundant and easy to obtain, and our proposed solution 
brings solid W E R improvements and it is not difficult to replicate. 

Abstrakt 
V této dizertační práci nejprve prezentujeme teorii trénování neuronových sítí pro rozpoz­
návání řeči společně s implementací trénovacího receptu 'nnetl ' , který je součástí toolk-
itu s otevřeným kódem Kaldi. Recept se skládá z předtrénování bez učitele pomocí algo­
ritmu R B M , trénování klasifikátoru z řečových rámců s kriteriální funkcí Cross-entropy a 
ze sekvenčního trénování po větách s kriteriální funkcí sMBR. Následuje hlavní téma práce, 
kterým je semi-supervised trénování se smíšenými daty s přepisem i bez přepisu. Inspirováni 
konferenčními články a úvodními experimenty jsme se zaměřili na několik otázek: Nejprve 
na to, zdaje lepší konfidence (t.j. důvěryhodnosti automaticky získaných anotací) počítat 
po větách, po slovech nebo po řečových rámcích. Dále na to, zda by konfidence měly být 
použity pro výběr dat nebo váhování dat - oba přístupy jsou kompatibilní s trénováním 
pomocí metody stochastického nejstrmějšího sestupu, kde jsou gradienty řečových rámců 
násobeny vahou. Dále jsme se zabývali vylepšováním semi-supervised trénování pomocí 
kalibrace kofidencí a přístupy, jak model dále vylepšit pomocí dat se správným přepisem. 
Nakonec jsme navrhli jednoduchý recept, pro který není nutné časově náročné ladění hyper-
parametrů trénování, a který je prakticky využitelný pro různé datové sady. Experimenty 
probíhaly na několika sadách řečových dat: pro rozpoznávač vietnamštiny s 10 přepsanými 
hodinami (Babel) se chybovost snížila o 2.5%, pro angličtinu se 14 přepsanými hodinami 
(Switchboard) se chybovost snížila o 3.2%. Zjistili jsme, že je poměrně těžké dále vylepšit 
přesnost systému pomocí úprav konfidencí, zároveň jsme ale přesvědčení, že naše závěry mají 
značnou praktickou hodnotu: data bez přepisu je jednoduché nasbírat a naše navrhované 
řešení přináší dobrá zlepšení úspěšnosti a není těžké je replikovat. 
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Acronyms 

A S R Automatic speech recognition 
W E R Word error rate (evaluation metric) 
P E R Phone error rate (evaluation metric) 
A M Acoustic model 
L M Language model 
W F S T Weighted finite state transducer 

(automaton representing a graph with costs on arcs) 

G M M Gaussian mixture model 

E M Expectation maximization (training algorithm for G M M ) 

N N Neural network 
D N N Deep neural network (NN with 'several' hidden layers) 
R B M Restricted Boltzmann Machine 

(an auxiliary model for D N N pre-training) 
D B N Deep Belief Network (a stack of RBMs, initializiation of hidden layers) 
SGD Stochastic gradient descent (training algorithm for NNs) 
C E per-frame cross-entropy (objective function for N N training) 
M M I Maximum mutual information (objective function) 
M P E Minimum phone error (objective function) 
B M M I Boosted maximum mutual information (objective function) 
s M B R State minimum Bayes risk (objective function) 

M F C C Mel-frequency cepstral coefficients (input features) 
F B A N K Log Mel-filterbank output (input features) 
P L P Perceptual linear predictive analysis (input features) 
L D A Linear discriminant analysis 
M L L T Maximum likelihood linear transform (feature projection, also called 

Semi-tied covariance method) 
f M L L R Feature-based maximum-likelihood linear regression (speaker adaptation 

technique) 
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Notation 

t, T time indexing 

k, K NN-output class indexing 

Wj,W single word, word sequence 

s, Si, S tied-state, tied-state from a sequence, a sequence of tide states 

£, 7r lattice, a path from lattice 

K acoustic scale applied to the per-frame likelihoods from the acoustic 
model 

Q graph scale applied to graph-costs in W F S T graphs, representing lattices 
or recognition network 

x single data-point (vector) of input features 

X matrix with input features (composed from single vectors) 

h hidden vector from neural network 

y output vector from neural network 

W matrix with synapses from single layer of neurons 

Wij single element from the matrix of synapses 

b bias vector from single layer of neurons 

a logistic sigmoid 

w all neural network parameters reshaped in one big vector 

M size of mini-batch 

iV number of inputs from neuron or neural network 

L identifier of specific neural network layer 

asrc(aJ)) Agt(aJ) accumulation statistics in Forward-backward algorithm, which produces 
lattice-posteriors 7(07) 

j(cij) posterior probability of traversing through lattice-link a,j 

7(t, s) posterior probability of being in tied-state s at time t 

7(t, St) posterior of a particular tied-state s~t from the best path of lattice 

7(5, w) posterior probability of word w being at position q in decoder output 

liQ^Wq) posterior of a particular word wq from the best path of lattice 

A the lattice-scale, applied to re-scale the lattice posteriors by multiplying 
the link scores before the forward-backward algorithm is started 

a the exponential scale, applied to the confidences which are already ex­
tracted from the lattices 
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Chapter 1 

Introduction 

The lack of space becomes a limiting factor in the case of small devices, like smart-phones 
or tablets. These are usually equipped with touch-screens, however writing on them is not 
comfortable. Then, a good example of a cognitively loaded person would be the driver, who 
would like to make a call or to control the GPS-navigation. In both cases the interaction 
using natural speech is a good alternative to the traditional input methods. 

Other successful uses of speech recognition are in the fields that traditionally involve 
dictating for documentary purposes. This is the case of medicine, courts, state administra­
tive and parliamentary talks. Speech recognition might also be interesting for companies, 
where it can be used to keep track of internal meetings or it can be integrated into customer 
care systems. 

Nowadays, speech recognition is commonly used to search the Internet from mobile 
devices. The speech is also an input interface to the personal assistants like Siri, Cortana or 
Google Now. Slowly, speech recognition is finding its way to our home gadgets like TV-sets, 
light switches, etc. A recent product is the question-answering machine Amazon Echo 1 . 
It is equipped with a speaker and a microphone array for improved robustness on distant 
speech. It can be asked about news or weather, it can read a Wikipedia page or play a 
music on demand. Technically, it is a hardware client, while the speech recognition and the 
dialogue management is running in a cloud server. 

Although there was a tremendous research progress in the last few years, especially after 
the Deep Neural Networks were introduced, the current Automatic Speech Recognition 
(ASR) systems are not perfect. Although the recognition of formal talks, conversational 
telephone speech and meetings does have an acceptable performance ranging between 10-
25% of word error rate, a big challenge remains the far-field speech recognition of informal 
speaking style, here the error rate ranges 35-50%. Then, an unresolved problem remains the 
A S R of recordings with overlapped speakers, recorded by 1 microphone. Another challenge 
might be the limited amount of noisy training data, the W E R can increase up to 50-70%, 
which we observed while working on Babel program. 

Another limitation of current A S R systems comes from the nature of its supervised 
machine-learning. To develop an A S R system for a new language, we need to carefully 
transcribe at least few hours of the training recordings. Then, for the language model 
training, we need a text corpus, ideally with vocabulary and speaking style similar to the 
target domain, in which the recognizer will be deployed. We also need a linguist to design 
a phone-set and create a pronunciation lexicon. Finally, the acoustic conditions in target 

x h t t p s : //www.youtube.com/watch?v=KkOCeAtKHIc 
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domain need to be similar to those in the training data, otherwise a mismatched acoustic 
model will cause performance degradation. 

Fortunately, many of the problems are partially solved: The robustness is improved by 
various acoustic feature normalizations or by capturing the signal by microphone array and 
processing the multi-channel input (beam-forming, de-noising, source separation, . . . ) . The 
pronunciation lexicon can be replaced by a graphemic one at the cost of small degradation in 
performance (typically few percents of W E R ) . The text corpus can be prepared by cleaning 
downloaded web resources. 

And finally, in the case of having only a little amount of the transcribed training data, 
we can improve the acoustic model by using the untranscribed data in the semi-supervised 
training, which is the main topic of this thesis. 

1.1 Motivation 

The state-of-the-art Automatic Speech Recognition (ASR) systems need carefully transcri­
bed and thus expensive data to be trained on. It is therefore in the interest of the research 
community to search for such techniques that will help to reduce this 'cost barrier', and 
make the A S R technology more accessible both for commercial and non-commercial use. 

The idea of semi-supervised training is to improve the system by using non-transcribed 
data. This is done by generating automatic transcripts along with their confidences, i.e. the 
probability of being correct. Then the performance is improved because of better acoustic 
models trained on more data. We are using a 'self-training' scenario, where a small part of 
data is transcribed manually. This allows us to train a 'seeding' system, which we use to 
generate the automatic transcripts, that we later use for the self-training. 

The self-training of A S R systems has been studied extensively. However, at that time, 
the dominant acoustic models were G M M s (Gaussian Mixture Models) [Wessel and Ney, 
2005, Wessel et al., 2001]. These are typically trained generatively by E M algorithm. In 
this model, each acoustic unit is described by a G M M , i.e. a probability density function 
estimated on its associated data-points. In the E M training, the models do not partition 
the feature space exclusively, so two acoustic units can have similar distributions. A minor 
part of wrong labels in the training data, may not have too bad influence on the final model. 

However, the current state-of-the-art acoustic modeling is based on neural networks, 
which are usually trained discriminatively to classify feature frames into a closed set of 
acoustic units. Here the classification is exclusive, the posterior probability is sub-divided 
among the acoustic units, which makes the training potentially less robust to wrong labels. 

For this reason, it is interesting to re-visit some of the older techniques and to use them as 
an inspiration for developing a self-training recipe for current state-of-the-art A S R systems. 

1.2 Scope of the thesis 

In this thesis is presented a systematic study of acoustic model self-training. The acoustic 
model is a feed-forward Deep Neural Network and I searched for answers to these crucial 
questions: 

• What is the most suitable confidence granularity for the semi-supervised D N N train­
ing. Should we extract confidences: per-sentence, per-word, per-frame? 

• How should we use the confidence, for data selection or for weighted training? 
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• What is the 'ideal confidence' ? What should be its role in self-training? 

• Is confidence calibration important? 

• Do we need to further post-process the self-trained model by using the correctly tran­
scribed data? 

• Can we build a simple generic recipe that is applicable to different data-sets? 

In the thesis I worked with feed-forward neural networks with sigmoid units. It is 
likely that the observations will generalize to other types of networks, although we did not 
particularly investigate this in detail. 

The Kaldi 'nnetl' recipe 

Before the experiments with semi-supervised training were started, I have developed and 
made publicly available the D N N training recipe 'nnetl' as part of the toolkit Kaldi2. The 
design of this implementation was partially inspired by my previous project TNetf. Both 
tool-kits are used by other researchers in various laboratories or companies from all over the 
world. 

The 'nnetl ' recipe consists of Restricted Boltzmann Machine pre-training, the mini-
batch frame classification training and the sequence-discriminnative s M B R training. The 
important aspects of the recipe are covered in chapter 3, which sources mainly from my 
own publications. This recipe represents a solid basis upon which the semi-supervised 
experiments are performed. 

1.3 Original claims 

1. In this thesis is performed an extensive study of semi-supervised training of D N N in 
which we use confidences extracted from a single A S R system. 

2. I have carefully compared the scenarios in which the confidences are extracted per-
sentence, per-word or per-frame. Along the way are also compared other state-of-the-
art confidence measures, and it is shown that our preferred confidence is better. 

3. From the results is apparent that standard 'sentence selection' approach provides only 
limited performance improvements. Better results are achieved either with selecting 
smaller units (words, frames) or from the use of weighted training with some appro­
priate scaling mechanism. 

4. I also identified a simple rule for setting an optimal threshold in word-selection, which 
generalizes both for Babel Vietnamese and Switchboard English. The amount of 
words added in self-training is determined by word accuracy from development set. 
Such simple system is not far from our best recipe, which involves a time-consuming 
grid search over a hyper-parameter. 

2 h t t p : / / k a l d i - asr.org/doc/dun 1.html 
3 h t t p : / / speech.fit.vutbr.cz/software/neural-network-trainer-tnet 
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Chapter 2 

Introduction to Neural Network 
based speech recognition 

In this chapter, we introduce the theory of speech recognition, the models that are used in the 
recognizer and the derivation of the back-propagation algorithm for neural network training. 
If the reader is already familiar with these topics, he/she may consider skipping this chapter. 

2.1 The problem of speech recognition 

According to the theory of Automatic Speech Recognition (ASR), the problem is to correctly 
recognize the sequence of words that corresponds to the 'observed' acoustic signal. 

As illustrated in figure 2.1, the input is a speech signal, while the output is the recognized 
text. The processing is subdivided into 3 stages. 

Feature 
extraction 

Matching of 
acoustic units 

Decoding Recognized 
text 

Figure 2.1: Architecture of speech recognizer 

The purpose of feature extraction is to compress the waveform in a sequence of fixed-
length vectors of low dimension. Usually, we extract one vector per a 10 ms step from 
25 ms long chunks of speech signal, i.e. the speech frames. The encoding must preserve the 
information relevant for recognition and suppress the irrelevant information. For example, in 
the case of speech recognition, we try to suppress the differences across speakers, genders, 
dialects, microphones etc. The typical feature extraction is based on signal processing 
techniques such as filtering and Discrete Fourier Transform. Usually, Fourier spectrum 
is post-processed to obtain a representation convenient for the machine-learning models. 
Typically, the short-term spectrum is projected into a set of triangular filters, 'sitting' at 
different frequency ranges, and some further processing steps are performed. The most 
popular feature extraction methods for A S R are F B A N K s (log-Mel filterbanks), M F C C s 
(Mel-frequency cepstral coefficients) and PLPs (Perceptual Linear Prediction). 

In Matching of acoustic units, we 'convert' the features into scores of some closed 
set of acoustic units. For illustration, one can think of phonemes as units. The acoustic 
scores are computed by an acoustic model, usually a Gaussian Mixture Model (GMM) or a 
Deep Neural Network (DNN). Formally, each score is a likelihood P(x\s), i.e. the density 
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function value for the feature vector x given the identity of acoustic unit s. The acoustic 
models in general are trained on a set of speech recordings, the training is usually supervised 
by manual transcriptions. Naturally, better models are obtained when more training data 
is used. For a poor system, we need to have at least few transcribed hours, while up to 
hundreds of thousands of hours are used in some companies. For the training, the feature 
vectors need to be assigned to acoustic units. This is not done manually, but by using a 
forced-alignment to reference transcripts with some existing model. If there is no model yet, 
equal lengths are assigned to all acoustic units in an utterance. 

In Decoding, we search for the most likely word sequence W that corresponds to the 
'observed' sequence of feature vectors X . This is done by a search in a huge graph of all 
the possible hypothesis, where we combine the scores from the acoustic model, language 
model and lexicon. A typical decoding algorithm is based on two ideas: token passing 
and beam search. The idea of token passing is a frame-by-frame cycle advancing in time 
over the input features, and for the current frame we have a stack of tokens with partial 
recognition paths. In the next frame, each token is expanded into many new tokens with 
the possible continuations of the hypothesis. To avoid having too many tokens, some of 
them are discarded. Only the tokens with scores within some margin from the best token 
survive; this is the idea of beam search. This local and greedy heuristic makes the speech 
recognition fast enough for practical use, however it can lead to a search error, if a more 
accurate path is discarded because its token 'fell-out' of the beam. Practically, the beam-
width is the distance of the scaled log likelihoods of partial recognition hypotheses, and we 
should make sure the beam is large enough, so that its further extension does not improve 
the recognition results. 

2.2 Models in speech recognition and decoding 

Mathematically, the decoding is formulated as finding the word string W with the maximal 
a posteriori probability given the sequence of input feature vectors X = (x i , X 2 , . . . , X J V ) : 

where the prior term P(W) corresponds to the probability of the word sequence without 
using any acoustic information. Practically, this score is obtained from a language model 
(e.g. an n-gram) trained on a large text corpus. Then we have the likelihood term P ( X | W ) 
from the acoustic model, which is the score of the feature vector X given the word sequence 
W. The likelihood term P ( X | W ) involves the sum over all state sequences corresponding 
to our word-string W, while P{x\s) are the likelihoods of the acoustic units in those state-
sequences. The normalization term P(X) can be ignored as it is constant for any word/state 
sequence. 

For practical reasons, the formulation in Kaldi is simplified to the search of the most 
likely state sequence S. This is mapped to the corresponding word sequence by the mapping 
function 'wrds': 

By using Bayes rule we can rewrite this expression as: 

W = arg max 
w 

P(X\W)P(W) 
(2.2) 
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W = wrds ^argmax P ^ ^ ^ ^ . (2.3) 

In other words, instead of getting the score of a word-string by marginalizing over all its 
possible state-sequences, only the best state sequence is considered in the decoding process. 
The decoder becomes simpler and faster. 

2.2.1 Hidden Markov Mode l 

Each acoustic unit from the pronunciation lexicon is expanded into H M M model as in 
figure 2.2. Because the durations of acoustic units differ and their pattern changes over 
time, we represent each of them by 3 state Hidden Markov Model (HMM), where the 3 
states model the beginning, the middle part and the end of the acoustic unit. During the 

x:p<DDDis°>p<ODDDi=i> p (D0m 
Figure 2.2: 3-state Hidden Markov Model, which models acoustic unit in ASR systems 

decoding, the token is passed through all the states, while it is allowed to stay in the state 
for several frames by traversing the self-loop transitions. Also note that the transitions 
have associated transition probabilities a^j, and the outgoing transition probabilities from 
each state sum up to 1. A score of a path through the simple H M M in figure 2.2 is the 
product of all the acoustic likelihoods P(x(|sj) and the transition probabilities aij. In 
a more complicated H M M called recognition network, the scores on HMM-links will be a 
product of transition probabilities, lexicon scores and language model scores. 

2.2.2 H y b r i d acoustic model, context dependency, prior trick 

As can be seen in a spectrogram (figure 2.3), speech is a continuum where one phoneme 
changes into another one without a clear boundary between the phonemes. Moreover, the 
realizations of phonemes are influenced by preceding and following phonemes, this influence 
is called coarticulation. 

Inspired by this, a more precise modeling in A S R system is achieved by having context 
dependent phonemes, usually triphones. Each such unit is labeled as a triplet composed 
of the preceding, current and the following phoneme. Wi th phone set size n, we get n 3 

triphones. This can be a lot. For example, with 40 phonemes there are 64k units. Moreover, 
each triphone is described by a 3-state H M M , which further increases the overall number of 
context-dependent states. In practice, not all triphone combinations exist, and some may 
be very rare. Therefore, it is better to cluster the HMM-states corresponding to similar 
sounds into so called tied-states, which leads to a model that is easier to train. The tied-
state clustering [Young and Woodland, 1994] is obtained by training a decision tree. It is 
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Figure 2.3: Spectrogram of a sample Vietnamese expression. Note the phone-alignment on 
the top (from DNN). 

trained by a top-down greedy splitting, where, in each step, we add a split that maximally 
increases the likelihood of data. 

Coming back to the decoding formula (2.2), the term P(X |S I ) is given as follows: 

P ( X | 5 ) = n f = 1 P ( x t | S t ) , (2.4) 

where st is the H M M state generating the feature frame x^. 
In case of 'hybrid setup' (i.e. H M M decoding of N N outputs), the deep neural network 

produces posterior probabilities of tied states P(s |x) , while the formulation of maximum 
a posteriori decoding expects the acoustic scores as likelihoods P(x |s ) . To convert the 
posteriors into pseudo-likelihoods, we use: 

P ( x | S ) = , ( 2 .5) 

where P{s) is the prior probability of acoustic unit s. The P(s) can be estimated as relative 
frequency of s in the set of training labels [Bourlard and Morgan, 1993]. Or alternatively by 
marginalizing x from the posteriors by P(s) = P x[P(,s|x)] on a representative set of training 
data [Zhang et al., 2014b]. 

2.2.3 Lattices in W F S T format 

As we will be generating confidences based on lattice-posteriors, we will describe them 
together with some characteristics arising from the 'exact lattice' generation [Povey et al., 
!012]. The lattice is a graph for representing alternative hypothesis of speech recognition 

that is in Kaldi represented by two types of WFSTs, which can be mutually converted. 
The type L a t t i c e is a trellis with per-frame arcs, here one H M M transition corresponds 

to one arc in the lattice. The input symbol is transition-id, output symbol is word-id or e, 
and the W F S T weight is a tuple of acoustic score and graph score. This type is used mostly 
as an internal representation in the C++ code. 

11 



For storing lattices there is the type C o m p a c t L a t t i c e , it is a 'deterministic acyclic 
weighted acceptor' in which one arc corresponds to one word. Here, the input and out­
put symbols are identical words, and the W F S T 'weight' consists of: acoustic score, graph 
score and a sequence of transition-id's that is obtained over the word's duration. 

Due to the determinization algorithm described in 'Generating exact lattices' [Povey 
et al., 2012], each distinct word sequence is present in lattice only once (i.e. lattice is deter­
ministic), and with its best score. As a side effect of weight pushing, the positioning of scores 
and word-boundaries on a lattice path is not always properly synchronized in time with the 
original signal. The timing can be fixed by Kaldi tool l a t t i c e - a l i g n - w o r d s - l e x i c o n . 

2.2.4 Forward-backward algorithm for lattice 

The forward-backward algorithm is used later for obtaining per-frame confidences of tied-
states from L a t t i c e . To get this, we first need to compute the 'responsibility' 7(07) rep­
resenting a conditional probability of being in lattice-arc aj, given some lattice C. The 
identity of lattice-ark aj encodes implicitly timing by length of any path leading to the arc, 
as in L a t t i c e , each arc corresponds to one H M M transition. The tied-state of the arc is 
identified from transition-id in its input symbol. 

The lattice link a,j is defined in Kaldi type L a t t i c e by following elements: 

src(aj) source state in lattice from which the arc points out, 
tgt(oj) target state in lattice into which the arc is pointing, 
Sinput(a,j) input symbol (transition id), 
S0utput(cij) output symbol (word id), 
(Pg(oj), PAM(O,J)) W F S T weight, tuple consisting of graph score and acoustic score 

(already scaled with graph scale g and acoustic scale K). 

The posterior probability 7(0?) is then the total probability of crossing the arc aj, computed 
as a ratio of score-sum of all paths that cross the arc (illustrated in figure 2.4) over the 
score-sum an of all paths in the lattice: 

7(0,-) = ^ ( « i > a ' - f t * ( « i > , (2.6) 

where asrc^a.^ are forward statistics computed as the sum of scores on all paths TT in sub-
lattice £>xiSrc(a,j) that spans between initial state X and the source state of our arc af 

«src(a,)= E PW > (2'7) 

where aj corresponds to the W F S T weights on our link aj: 

a j = PG(aj)PAM(aj) , (2.8) 

and where (3tgt(aj) a r e backward statistics computed as the sum of scores on all paths 7r 
in sub-lattice £-tgt(aj),n that spans between the target state of our arc aj and the final 
super-state fi1: 

&*(«,•)= E p W ' ( 2- 9) 
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Figure 2.4: Calculation of an arc-posterior 7(aj) in a lattice. Dynamic programming is used 
to obtain the statistics a s r c ( a i ) , /3 t g t (a i ) calculated for all nodes in the lattice. The statistics 
represent the scores from all partial-paths leading into/from arc dj. 

The efficient calculation of statistics a s r c ( a i ) , / ? t gt (a i )
 1S done for each state in the lattice by 

means of dynamic programming according to recursions, which sum over all incoming arcs 
a,i or outgoing arcs a&: 

asrc(aj) = 51 aSRC{AI)PG(ai)PAM(ai) , (2.10) 
a i6{a i | t g t ( a i )=s rc (a J )} 

Ptgt(aj) = 51 Ptgt(ak)pG(ak)PAM(ak) • (2.11) 
a f c S{afc|src(a f e )=tgt(a J )} 

Recall that, with Kaldi type L a t t i c e , the duration of each arc is exactly one data-point of 
input features, hence the time info can be computed from number of traversed arcs. The 
initial conditions for recursions are ax = 1 for initial state X, and /3n = 1 for terminal 
super-state Q. The corresponding final alpha is: 

« f l = E a / P c ( / ) (2.12) 

where J- is set of all final states in the lattice, these have state weights PQ(/). The an is 
our normalizer term from (2.6). 

A similar algorithm is used in Baum-Welch training in HTK-book [Young et al., 2002]. 
However, Baum-Welch algorithm considers a trellis of many H M M paths through a word, 
while in our algorithm, we consider only the best H M M path of each word, as we use 'exact 
lattice' generation [Povey et al., 2012]. Other difference is that we defined the algorithm 
for calculating posteriors of arcs, while the original H T K definition of Forward-Backward 
algorithm produced posteriors of HMM-states. 

For the semi-supervised experiments we are primarily interested in posterior probability 
of acoustic units (tied-states) denoted as 7(t, s), meaning a posterior of tied-state s at time t. 
We use transition model to convert the posteriors of arcs 7(0?) to the posteriors of tied-
states 7(t, s). If several arcs are mapped to same tied-state at time t, we sum the posterior 
probabilities of all such arcs. 

1 Because a W F S T lattice can have more final states, we added final super-state Q. 
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In later chapters , we will use lattice-scale A. Its purpose is to have a control over the 
'uncertainty/sharpness' of the resulting lattice-posteriors. In our practical implementation, 
we use A to simultaneously multiply the acoustic scale K and graphs scale g. This effectively 
exponentiates the scores of whole lattice-paths, making them closer or farther from the score 
of the best path, which translates to a change of 'sharpness' of posteriors probabilities. 

2.3 The Backpropagation training algorithm 

The backpropagation algorithm is the standard algorithm for neural network training. It can 
be found in the literature [Bishop, 2007], but we would like to explain it in our own illustrative 
way. 

The principle of backpropagation algorithm is shown on the computation of the update 
(gradient) for a neural network with 1 hidden layer, while the extension to deeper networks 
is simple. We consider a network with sigmoid non-linearity and the classification output 
layer with softmax. The gradient is computed for single datapoint represented by an input 
feature vector x and its target vector with 1-of-K encoding t = [o l o ... o]T, where the 
element '1' identifies the N N output of the 'correct' class. 

Neural network as a feed-forward function 

At first, we will define the neural network as a structured function with trainable parameters. 
Being a function, it maps the multidimensional inputs to the outputs. It is organized into 
'layers', and the typical feed-forward network consists of several alternating linear and non­
linear transformations. The smallest processing unit of a neural network is one neuron: 

>• y 

Figure 2.5: Functional scheme of one neuron 

As illustrated in figure 2.5, the neuron has vector of inputs x, and trainable parameters w 
and b. Functionally, it computes the activation a as a weighted combination of the inputs 
x T w plus bias term b. The output of the neuron y is obtained by transforming activation a 
with a differentiable non-linear activation function / ( . ) , which can be defined in many ways. 
The single neuron with logistic sigmoid activation function is capable of binary classification. 
The neural network is then composed of neurons going both into the width (parallel neurons 
in single layer) and the depth (serially connected layers of neurons). 

Now let's return to our example network. As mentioned above, the activation of j-th 
neuron in the first layer is given as: 

aj = wjx + bj, (2.13) 

each input feature Xi has its weight Wij, and a bias bj is added. For convenience, we can 
group all the neurons in the first layer and form a weight matrix W^1*1, in which j - t h row 
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is our weight vector Wj. The biases are grouped into a vector b^1). Then, the activation 
vector for all neurons in first layer is: 

a ( i ) = w ( i ) x + b ( i ) _ (2.14) 

Here we should emphasize that the input vector x is the same for all neurons in the first 
layer. 

The key element which gives the neural network higher representative power than simple 
logistic regression is the nonlinearity in the hidden layers. Without the non-linearities, we 
could simply multiply all the weight matrices together to obtain the multi-class logistic 
regression with no hidden layers. A very popular nonlinearity is logistic sigmoid, which 
converts the numbers from interval (—00, 00) to probability-like numbers [0,1]. The sigmoid 
is denoted with sigma a : 

hf = a{af) = (2.15) 
l + exp(-aj 1 } ) 

The output of the sigmoid is the hidden vector it can be seen as an intermediate 
encoding of the input features, on the way towards the output of the neural network. Usually 
we are not interested in the actual values there, which is why we call the layers 'hidden'. It 
is important that we can calculate the output of the neural network from these values. 

Analogically to (2.14), the hidden vector hW is transformed with another affme trans­
form to the second layer activations â 2*1: 

a ( 2 ) = w ( 2 ) h ( 1 ) + b ( 2 ) . (2.16) 

From these, the posterior probabilities of classes yi are computed using the softmax function: 

y _ = expia, ffieK+,^1 = l (2.17) 

As illustrated in (2.17), the softmax function ensures that we always obtain positive quan­
tities which sum-up to one. 

To illustrate that our example neural network is one big structured function, we show the 
forward-propagation formula in which we compute the output y from the input vector x: 

y = softmax f w ( 2 ) a f w ( 1 ) x + b ( 1 ) ) + b ( 2 ) ) (2.18) 

A n alternative look at formula (2.18) is shown in figure 2.6, where the nodes represent 
individual neurons and arcs the interconnections. The first layer of neurons produces the 
hidden vector h, while the second layer produces the output y. The trainable parameters are 
weight matrices W^1**, W^2*1 and bias vectors h^2\ In this example, all the functions we 
used are differentiable, so we can calculate the partial derivatives for the backpropagation 
algorithm. In fact, the functions are also smooth, which is however not strictly required for 
the training algorithm. 

A related interesting question is: What is the set of functions that can be represented by a 
neural network? The studies from Cybenko [Cybenko, 1989] and Barron [Barron, 1993] show 
that theoretically, they can approximate any continuous function with arbitrary precision, if 
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Figure 2.6: Structure of neural network, the nodes represent neuron outputs. 

the neural network with one hidden layer has sufficient number of sigmoid neurons. Although 
this work does not say how to train them, the statement is very promising. 

From the practical experience, it is commonly agreed that it is advantageous to use many 
hidden layers, which is the origin of the very frequently used term 'Deep Neural Networks'. 
In our recipes, we usually use 6 hidden layers. A popular explanation is that with more 
layers we better smooth out the feature variability that is irrelevant to the classification 
task, and that the layers near the network output encode more complex features. However, 
this intuitive view is not easy to be validated practically. 

Loss function, multi-class cross-entropy 

Before we can derive the backpropagation training, we need to define a loss function to 
optimize. For the classification of n-th data-point into 1-oi-K mutually exclusive classes, 
the natural loss function is the multi-class cross-entropy (CE): 

K 
KM = - ^ t f c l n y f c . (2.19) 

k=l 

Recall that vector t has 1-of-K encoding t = [o l o ... o]T, so that the sum picks-up the A;-th 
element, which corresponds to the sole non-zero target. The loss value is always positive 
and reaches zero minimum, if the posterior vector y exactly matches the target vector t. 
(note that in this section we denote time-id with subscript n to avoid confusion with training 
labels t, in other chapters time is denoted with t subscript) 

In the more general case, when the 'soft' probabilistic targets are used (the l-of-.fr 
encoding of t is replaced by a vector with positive values, which sum-up to one), it is 
convenient to replace the cross-entropy with KL-divergence: 

K 
En(w) = DKL(t\\y) = - ^ i f e l n ^ (2.20) 

k=i k 

the difference is that the KL-divergence subtracts the entropy of the target labels and 
reaches its zero minimum when y = t, while the cross-entropy would have a non-zero value 
if tk $L {0,1}. Wi th targets t in 1-of-K encoding, both functions become the same. The 
derivatives with respect to neural network outputs are the same for both functions, and in 
Kaldi 'nnetl ' we implemented (2.20). 
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When training on a data-set composed of T data-points, the overall loss is the sum of 
the per-frame values: 

T 

E = Y,En- (2-21) 
n=l 

A n interesting value for the log-prints is the per-frame average E = E/T, which can be 
converted to the geometrical-average posterior value of the correct class by pCOrr = exp(—E), 
if we assume to have the l-of-.fr targets. 

Stochastic gradient descent, update rule 

The most popular training algorithm for neural networks is Stochastic Gradient Descent 
(SGD). The other frequent term 'backpropagation' refers to the way how the SGD gradient 
is computed from the neural network. 

The idea behind gradient descent training is to greedily minimize the loss by doing small 
parameter steps in the direction of the opposite gradient, i.e. the direction of steepest 
descent of the loss. 

Stochastic Gradient Descent training is a gradient descent, in which the model is updated 
on-line after processing a single or a small group of randomly selected training data-points. 
It is possible that, while the loss decreases on some samples, we can see a loss increase for 
other samples. The overall trend 'steers' the model towards the regions, where the loss is 
low. Hence, the training progress is noisier and more 'exploratory', and this lowers the risk 
of converging to a poor local minimum. 

Due to practical reasons, we usually do mini-batch SGD training, in which we calculate 
the gradients for M data-points together (default M = 256). The data-points are grouped 
into matrices where, for example, the matrix-vector multiplication in (2.18) becomes matrix-
matrix multiplication. This can better employ hardware by reusing data elements in cache 
and better caching accelerates the passes through training data (i.e. epochs) considerably. 

The update formula for the mini-batch SGD is: 

M 

w ( T + 1 ) = w M - i ) 5 ] V £ n ( w ( T ) ) , (2.22) 
n=l 

where w(r) is a vector with all the trainable parameters, and V£>j(w(T)) is the gradient 
of En w.r.t. w *̂1 calculated on a single data-point x n . Note that we sum the gradients 
from M data-points, and that r\ is learning-rate, i.e. a scalar controlling step-size during 
training. The suitable learning-rate value needs to be tuned carefully and depends on 
many factors (network-type, non-linearity type, loss type, size of mini-batch, per-utterance 
training, etc). By the nature of SGD training, the updates of the parameters are 'noisy' 
with a 'correct' global trend. Therefore, we can see the learning-rate as the temperature 
of simulated annealing. By controlled 'cooling' (i.e. decreasing) of the learning-rate, we 
can reduce the exploration while approaching the end of the training and let the network 
converge to a better solution. 

Due to limited space, we skip the deriving of gradient VEn. For those who are interested, 
it is presented in the full manuscript of the thesis ... 
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Chapter 3 

Kaldi 'nnetl' D N N training recipe 

After the introduction, we proceed with the description of the DNN training recipe that we 
implemented into the open-source toolkit Kaldi. In this chapter, we first cover the general ex­
perimental setup and continue with sections describing RBM pre-training, mini-batch frame 
cross-entropy training and sequence-discriminative sMBR training. The chapter ends with 
notes on the scalability of the mini-batch training. 

Acoustic units 

As mentioned earlier, the D N N acoustic model provides the posterior probabilities P(c|x) 
for a closed set of acoustic units. The typical acoustic units are the clustered states from 
3-state H M M s , which model the context-dependent (CD) phonemes. Such units are often 
referred to as tied-states, CD-states or senones. The clustering is determined by a decision 
tree, which is built by a greedy rule that adopts the splits with the best increase of the data 
likelihood. Depending on the size of training set there are usually thousands of CD-states. 

The neural network is trained to classify them exclusively, the Softmax function from 
equation (2.17) in the output layer ensures that the posteriors of all the acoustic units 
are non-negative and sum to one. For decoding, the posteriors are converted to pseudo-
likelihoods P(x|c) by dividing them with priors P{c) as illustrated earlier in equation (2.5). 

Input features 

There are many ways how to prepare the input features for a neural network, and new feature 
extraction methods are published at every conference. Usually, the feature vectors on N N 
input cover time period 150-300ms, and they are assembled from short-term feature vectors. 
The short-term features are typically computed from 25ms frames of speech extracted with 
10ms steps. 

The features we use are the P L P - f M L L R speaker-adapted features. To produce them, 
we need an initial G M M - H M M system, which is used to estimate the speaker specific linear 
transform f M L L R . 

The feature extraction pipeline in figure 3.1 shows that we begin from the PLP+pitch 
short-term features. Then, there are two stages, the first with a G M M model and the second 
with D N N model. 

The G M M - H M M features are obtained by splicing 9 frames of the 'short-term' feature 
vectors (4 on each side from the 'current' frame). The short-term features are 13-dimensional 
PLPs (including CO) extended by 3 Kaldi-pitch features [Ghahremani et al., 2014] (proba­
bility of voicing, pitch, delta pitch), which are both mean-variance normalized by C M V N . 
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Figure 3.1: Input features of the DNN. 

Our telephone speech has 8kHz sampling frequency, so the PLPs are computed from the 
frequency range 125-3800Hz and we use dithering. The spliced features were projected down 
to 40 dimensions using a global L D A - M L L T linear transform and per-speaker f M L L R linear 
transform. The f M L L R transform is obtained with a G M M trained in the adapted feature-
space. For test data, the transformation is obtained by the multi-pass decoding with the 
G M M model. 

Then, for the D N N input, we splice 11 frames of the 40-dimensional f M L L R features 
(5 on each side of the current frame), and we rescale them globally to have zero mean and 
unit variance. The total dimension of D N N input is 11 x 40 = 440. 

This setup is used in most of the experiments, the exceptions are described locally 
in the text. Eventually, we can obtain a small improvement in recognition accuracy by 
replacing the L D A + M L L T + f M L L R linear transform with a non-linear bottleneck network 
and f M L L R . However this would make the analysis of semi-supervised D N N training more 
difficult, so we keep using this simpler setup. 

N N topology, initialization 

The typical neural network we use in this thesis has 6 hidden layers of 2048 Sigmoid neurons. 
The neural network has 440 inputs (the spliced f M L L R features) and thousands of Softmax 
outputs (for example for Vietnamese 4599 outputs). 

There are three ways to initialize a neural network, either with a) small random num­
bers or by b) unsupervised pre-training with R B M s or by c) supervised discriminative pre-
training. In our recipe, we use the R B M pre-trainig, which allows us to use an 'universal' 
topology and obtain good results for many training sets (except the really small ones for 
which we need to use smaller network). 

Data randomization, mini-batch training 

The idea of Stochastic Gradient Descent training (SGD) is to randomly draw samples from 
the distribution of the training data and perform small updates of model parameters in the 
opposite direction of the gradient of a loss function, which decreases the loss. 

Having a training data-set of finite size, the 'sampling' \s usually understood as random­
izing the order in which the data is used for training. Hence, we typically shuffle the list of 
training sentences. Then, for the mini-batch training as introduced in equation (2.22) and 
also for the R B M pre-training, there is an additional frame-level shuffling mechanism inside 
the training tools. We can use the fixed 'random' order for all the epochs, usually it has 
little effect on the final results and the experiments become replicable. 

For the recurrent networks, we need a different approach. We need to keep the continuity 
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of the sentence, so we cannot shuffle the speech frames. Instead, we can process several 
sentences in parallel, which accelerates the training as more frames are processed in one 
step. 

3.1 Training the D N N acoustic model 

The training recipe consists of RBM pre-training, frame classification training with cross-
entropy loss function and sequence discriminative training with sMBR loss function. All the 
three steps are described in the following sections. 

3.1.1 Pre-training with Deep Belief Network (Restricted Boltzmann M a ­
chines) 

The Deep Belief Networks (DBN) were a hot topic in the D N N based speech recognition in 
2010. The model and its theory were developed in the laboratories of Geoffrey Hinton [ 
ton et al., 2006] and Yoshua Bengio [Bengio et al., 2007]. We can see the D B N pre-training 
as one of the regularization methods as it both reduces over-fitting and improves the re­
sults, when compared to the randomly initialized network. A great source of D B N related 
information is the 'Practical guide' from Geoff Hinton [Hinton, !012], which we used as a 
basis for our implementation. 

3.1.2 Frame classification mini-batch training 

After the pre-training of the D B N , we append to it a randomly initialized output layer 
and continue with the frame classification training with multi-class cross-entropy (CE) loss 
function from eq. (2.20) (actually, the cross-entropy is replaced with KL-divergence, which 
has the same derivative and even loss value in case of 1-of-K targets). 

Although we have already described the mathematical core of the mini-batch frame 
classification training in section 2.3, some practical parts were not yet covered and will 
be presented in this section. As mentioned earlier, the idea behind mini-batch stochastic 
gradient descent is to reduce the value of a loss function by updating the model parameters 
with small noisy steps, which are taken in the direction in which the loss decreases the most 
according its first order derivative (i.e. the opposite gradient). The gradient is each time 
computed from a small group of randomly selected data-points (i.e. the mini-batch). The 
individual updates are noisy, while we assume that the overall trend of the updates will 
'steer' the model in a good direction. 

This supervised learning trains the model to classify the speech-frames (data-points) into 
the correct classes (usually triphone states). For input vector x, it provides its posterior 
probability p{s\x). Each data-point is considered as an independent classification trial with 
an equal weight, regardless of the prior frequency of the classes. 

3.1.3 Sequence-discriminative training, s M B R 

This section is based on [Veselý et al., 2013a], where we studied the sequence-discriminative 
DNN training with various objective functions. 

Neural networks (NNs) for speech recognition are typically trained to classify individual 
frames based on a cross-entropy criterion, equation (2.19). Speech recognition, however, is 
inherently a sequence classification problem. As such, speech recognizers using the Gaussian 
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mixture model (GMM) as the emission density of an H M M achieve the state-of-the-art 
performance when trained using the sequence-discriminative criteria like maximum mutual 
information (MMI) [Bahl et al., 1986], boosted M M I (BMMI) [Povey et al., 2008], minimum 
phone error (MPE) [Povey, 2003] or minimum Bayes risk (MBR) [Kaiser et al., 2000, Gibson 
and Hain, 2006, Povey and Kingsbury, 2007]. It is possible to efficiently estimate the 
parameters based on any of these criteria using the statistics collected from lattices [Povey, 

The theory for sequence-discriminative training of neural networks was also developed in 
the early literature [Bridle and Dodd, 1991, Krogh and Riis, 1999]. In fact, the 'clamped' and 
'free' posteriors described in [Bridle and Dodd, 1991] are the same as the numerator and 
denominator occupancies used in discriminative training of G M M - H M M systems [Povey, 

]. The idea to use this lattice-based framework for sequence-discriminative training 
of NNs was explored in [Kingsbury, 2009]. It was shown that the sequence-discriminative 
training can improve upon networks trained using the cross-entropy. Subsequent results 
reported in [Wang and Sim, 2011, Kingsbury et al., 2012, Jaitly et al., 2012] have also 
shown consistent gains from sequence-discriminative training of NNs. However, there is 
some disagreement about which of the criteria is suitable: [Kingsbury, 2009, Kingsbury 
et al., 2012] suggest using a state-level minimum Bayes risk (sMBR) criterion, while [Wang 
and Sim, 2011] finds M M I to work better than M P E , and [Jaitly et al., 2012] only provide 
results using M M I . 

Needless to say, such empirical observations depend on the choice of the dataset and 
specific details of the implementation. In our work, we presented a comparison of the 
different training criteria for DNNs on the standard 300-hour Switchboard conversational 
telephone speech task, which has also been used in [Seide et al., 2011, Kingsbury et al., 
2012]. 

The networks are trained to optimize a given training objective function using the stan­
dard error backpropagation procedure [Rumelhart et al., 1986], and the optimization is done 
through stochastic gradient descent (SGD). For any given objective, the important quantity 
to calculate is its gradient with respect to the activations at the output layer. The gradients 
for all the parameters of the network can be derived from this one quantity based on the 
back-propagation procedure described in section 2.3. 

Maximum mutual information, M M I 

The M M I criterion used in A S R [Bahl et al., 1986] is the mutual information between the 
distributions of the observation and word sequences. Wi th Ou = {o„i,.. . , OUTU} as the 
sequence of all observations, and Wu as the reference word-sequence for utterance u, the 
M M I criterion is: 

where Su = {sui,... ,SUTU} is the sequence of states corresponding to Wu; and n is the 
acoustic scaling factor. The sum in the denominator should be evaluated over all possible 
word-sequences W, but practically, it is computed from all paths through a denominator 
lattice generated for utterance u. Differentiating (3.1) w.r.t. the log-likelihood logp(out\r) 

(3.1) 
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for state r, we get: 

K°r;sut d\ogp{out\r) EwP(°u\S)KP(W) ' 

= <Sr.Sut-7gEN(r)), (3.2) 

where Sr-Sut is the Kronecker delta function, which equals 1 for state r at reference state 
sequence sut, and ry^N{r) is the posterior probability of being in state r at time t, computed 
over the denominator lattices for utterance u. The required gradient w.r.t. the activations 
is obtained as: 

dJ^MMi _ \ - QTMMI <91ogp(oMf|r) 
daut(s) <91ogp(oui|r) daut(s) 

= <Ss;Sut-^t
EN(s)). (3.3) 

Note that, in this work, we have assumed that the reference state labels are obtained through 
a forced alignment of the acoustics with the word transcript. More generally, one may use 
forward-backward over the word reference to obtain the numerator occupancies JutUM(s) 
instead of using 5S]Sut in equation (3.3). 

Minimum phone error, M P E / State minimum Bayes risk, s M B R 

While minimizing TCE (2-19) minimizes expected frame-error, maximizing J-MM I minimizes 
expected sentence error. The M B R family of objectives are explicitly designed to minimize 
the expected error corresponding to different granularity of labels 
[Gibson and Hain, 2006]: 

•FMBR - ^ j:wlp(ou\srp(w') ' ( 3 ' 4 ) 

where ^4(VF, Wu) is the raw accuracy, representing the number of correct phone labels (for 
M P E ) or state labels (for sMBR) . The raw accuracy is counted for a path from some 
word sequence W that is compared with a path from the reference transcripts Wu. By 
differentiating (3.4) w.r.t. logp(o u i | r), we get: 

g i ^ - ^ r H J . h - r ) - * } , 

= « 7 * , ' M ( r ) , 

where Au{st = r) is the average accuracy of all paths in the lattice for utterance u that 
pass through state r at time t; A u is the average accuracy of all paths in the lattice; and 
7«f- B - R ( r ) is the M B R 'posterior' as defined for approximate M P E in [Povey, 2003]. Like 
before for FMMI, we get: 

P^=^tBR(s). (3-5) 
oaut{s) 

Finally, table 3.1 summarizes the results of the different systems trained on the entire 
300 hour training set. The results are presented on both the development set (Hub5 '00) 
and the test set (Hub5 '01) and their respective subsets. We see that the C E trained D N N 
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Table 3.1: Results (% WER) of the DNNs trained on the full 300 hour training set us­
ing different criteria. The input features are always the same: MFCCs transformed by 
LDA +MLL T+fMLLR. 

Hub5 eval'00 Hub5 eval'01 
System SWB C H E Total SWB SWB2P3 SWB-Cel l Total 
G M M 21.2 36.4 28.8 - - - -
G M M B M M I 18.6 33.0 25.8 18.9 24.5 30.1 24.6 
D N N C E 14.2 25.7 20.0 14.5 19.0 25.3 19.8 
D N N M M I 12.9 24.6 18.8 13.3 17.8 23.7 18.4 
D N N s M B R 12.6 24.1 18.4 13.0 17.7 22.9 18.0 
D N N M P E 12.9 24.1 18.5 13.2 17.7 23.4 18.2 
D N N B M M I 12.9 24.5 18.7 13.2 17.8 23.5 18.3 

models are better than the discriminatively trained G M M B M M I models. Then, the use 
of the sequence-discriminative training criteria (incl. lattice re-generation after first epoch) 
led to performance improvements within the range of 1.2 — 1.8%, and a little better results 
were achieved with the s M B R objective. The s M B R training was subsequently adopted as 
the default sequence-discriminative objective in the 'nnetl ' training recipes in Kaldi. 

3.2 Accelerating the D N N training 

The acceleration of N N training was the main topic of my Master thesis [Veselý, 2010], 
which was later summarized in [Veselý et al., 2010]. Although already six years passed and 
the project TNet was abandoned, the gained experience was important for designing the 
'nnetl ' training tools in Kaldi. 

In 2016, we compared again the training speeds of 1 CPU-core and 1 G P U with the 
current hardware. This time, we used Kaldi 'nnetl ' training of a D N N with 8 million 
parameters on 10k sentences from A M I corpus. The G P U model was GTX980 and the 
C P U was Intel Xeon E5-2670. We used the OpenBLAS library for C P U training. 

From table 3.2, we see that the speedup from using a G P U instead of 1 CPU-core is 
much higher than what we measured in 2012 (60x vs. 14x). This practically shows that the 
'computation capabilities' of GPUs grew faster than those of CPUs. It is true, that we did 
the comparison with slightly different conditions (different N N topology, front-end, training 
toolkit), on the other hand the typical neural networks we train now are larger than those 
in the past. 

Table 3.2: Comparing the speeds of NN training with 1 CPU-core and 1 GPU. The reported 
time is the average duration of 13 epochs with 10k sentences. 

CPU-core G P U Ratio 
264 min 4.4 min 60x 
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Chapter 4 

Data-sets 

In this chapter we provide a brief description of the databases we will later use for the 
experiments with the semi-supervised DNN training: Babel Vietnamese, some other Babel 
languages (Assamese, Bengali, Haiti, Lao, Zulu) and Switchboard English. We also mention 
some details about the experimental setups: language models, lexicons, phone-sets, 00V 
rates. 

4.1 Babel Vietnamese 

Most of the experiments with semi-supervised training were done with the Vietnamese 
dataset1 as provided within the I A R P A Babel program, release babell07b-v0.7. The train­
ing data consist of a large portion of conversational telephone speech and a small part of 
prompted speech. For training, we used both types of data. The development set consists 
of conversational speech only. The data come from various telephone channels: landlines, 
different kinds of cellphones, or phones embedded in vehicles. The sampling rate is 8000 
Hz. 

Two scenarios are defined - Full Language Pack (FullLP), in which all the collected data 
is transcribed; and Limited Language Pack (LimitedLP), in which only a subset of the data 
is transcribed, while the remaining part of the FullLP data can be used as 'untranscribed' 
data for the semi-supervised training. 

The overview of the data (i.e. numbers of speakers and amounts of speech data after re-
segmenting) is in table 4.1. We generated our segmentation, using our own MLP-based Voice 
activity detection (VAD) with Viterbi smoothing [Ng et al., 2012]. The speech segments 
were extended by 300 milliseconds on both ends. 

The provided Vietnamese lexicon uses 54 phonemes. There are 25 consonants and 29 
vowels, while for Vietnamese, we distinguish 6 tones. 

The corpus is composed of 4 dialects, the pronunciation of some graphemes is different 
1Collected by Appen Butler Hill: http://www.appenbutlerhill.com 

Table 4.1: Data analysis, numbers of speakers, amounts of annotated speech data after 
resegmentation by VAD 

Dataset Ful lLP LimitedLP dev 
speakers 991 121 120 
size in hours (reseg.) 84.8 10.8 9.8 
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between dialects, a single grapheme can have 2-3 different vocalizations. Also, some of the 
phonemes can be translated into graphemes in several different ways. 

For the purpose of A S R training, the phone set consists of 29 phonemes, which are 
marked with six different tones. The under-represented phones were merged manually. For 
the triphone-tree clustering, we introduced a 'position in a word' feature, which leads to the 
final phone-set with 350 items. We allow state sharing across phonemes. 

The original syllabic lexicon provided by Appen was modified by reducing the number of 
pronunciation variants. The FullLP lexicon contains 6k syllables and the LimitedLP lexicon 
contains 3k syllables. 

The A S R outputs are syllables, which is natural for Vietnamese and which conveniently 
avoids eventual errors from inconsistent word-segmentation. Also, there are no phonological 
processes that cross syllable boundaries, such as consonantal assimilation, tone sandhi or 
wordlevel stress. The consequence is that the O O V rate is very small, 0.21% for the Ful lLP 
condition and 1.19% for the LimitedLP condition (LimitedLP is used in semi-supervised 
training). 

We used a trigram language model with Kneser-Ney smoothing built on the syllabic 
training transcripts, with 100k 3-grams and 200k 2-grams for FullLP, and with 12k 3-grams 
and 47k 2-grams for LimitedLP. 

4.2 Switchboard 

The Switchboard database consists of Conversational Telephone Speech. The training set 
is Switchboard-1 Release 2 (LDC97S62), a collection of about 2,400 two-sided telephone 
conversations among 543 speakers (302 male, 241 female) from all areas of the United 
States. We used the Mississippi State transcripts and lexicon. The language model is built 
by interpolating two 3-gram language models trained on Switchboard and Fisher transcripts 
respectively. 

Semi-supervised experiments For the semi-supervised experiments, the L M was built 
purely on the Fisher transcripts. Note that we generate automatic transcripts for the train­
ing data, so the true transcripts of the Switchboard data have to be removed from the L M 
corpus. 

For the semi-supervised experiments, we split the Kaldi 'train_100k_nodup' lOOhour 
set, from which we randomly selected 186 conversation sides as the transcribed set (14 
hours), while the remaining 1165 conversation sides (96 hours) are the untranscribed data. 

Evaluation set: Hub5-2000 (eval2000) The evaluation set consists of: a) 20 conversa­
tions from the CallHome corpus, b) 20 conversations that were collected for the Switchboard 
Corpus but not included in the original release. Most of the speakers in these conversations, 
appeared in the released Switchboard Corpus for the training. 

In this thesis we report the performance on both subsets together, while the conference 
articles from other laboratories usually report results for the b) subset. For more information 
see: h t tp : / /www.i t l .n is t .gov/ iad/mig/tests/ctr /2000/h5_2000_vl .3 .html 
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Chapter 5 

Semi-supervised training 

This chapter is a gentle introduction to the semi-supervised training. It explains the basic 
pattern of improving the system with unlabeled data. We give an overview of the main 
design questions that we address in the following chapters. We also show the principle of 
frame-weighted mini-batch SGD training. The chapter is closed with a survey of the relevant 
literature. 

The practical value of semi-supervised training is that it allows us to build better systems 
with an inexpensive untranscribed data, while we need to find a way how to use such data 
efficiently. 

5.1 Definition 

The semi-supervised learning is a type of supervised learning, where both the labeled and 
the unlabeled data are used. The goal of semi-supervised learning is to improve the system 
performance by adding the unlabeled data into the training process (compared to the case 
when only the labeled data are used). 

We are using the heuristic approach called self-learning. In this 'seed system' is 
built on the labeled data. The 'seed system' is then used to guess the labels for the unlabeled 
data. Next, a new system is built using the augmented dataset, while we typically add only 
the data where we are confident about the guessed labels. 

Applied to ASR, we focus on semi-supervised training of Deep Neural Network acoustic 
models, which was not yet studied extensively. The process of semi-supervised system 
building is shown in figure 5.1, and is described as follows: We use the transcribed data to 
train the seed system. Then we generate the automatic transcripts and their confidences for 
the untranscribed data by decoding it with the seed system. The data with more reliable 
automatic transcripts are selected for the system re-training, where the confidences can be 
calculated in many ways. Lastly, the process of decoding and re-training can be iterated 
until no further improvements are obtained. This was done for G M M - H M M s in [Wessel and 
Ney, 2005]. 

5.2 The key questions of semi-supervised D N N training 

When thinking about the semi-supervised training for the D N N models, we first aim to 
identify the questions, which help us establish the search space for finding a good semi-
supervised recipe. 
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Figure 5.1: General paradigm of Semi-supervised training for ASR. 

5.2.1 Granularity of confidence units 

The first question is: „What should be the size of the unit for which we calculate the 
confidence?" It can be a sentence, a word or a feature-frame (i.e. the smallest unit). 

Per-word confidence Cwq 

There are many methods how to extract the per-word confidences. For example, Cmax 
[Wessel et al., 2001] is based on summing the posteriors of lattice-links that both correspond 
to the same word and overlap in time. Within the word-link, we take the value from such 
time-slice for which the sum of posteriors is the highest. However, this seems to be less 
necessary because we use 'exact lattice' generation [Povey et al., 2012]. The lattice is 
'deterministic': each distinct word string is present in lattice only once and with its best 
score. 

The method that we are using in our experiments is the calculation of statistics j(q, w) 
taken from the Minimum Bayes Risk (MBR) decoding [Xu et al., 2011, section 7.1]. The 
quantity 7(<7,u>) is the posterior probability of the word symbol w being aligned with the 
position q in a word sequence, given lattice C. In our case, we purposely fix word sequence 
to be from the best path in lattice TT: W = wrds(7f) = (u>i, u>2, • • •, WM), arid the confidence 
score is Cwq = 7(<?, wq). This M B R confidence is the default word confidence implemented 
in Kaldi. 

Yet another method to obtain word-confidence is based on the averaging of the neu­
ral network log-posteriors selected with the one-best state-sequence corresponding to the 
recognized word [Zhang et al., 2014a]. 

Ideally, a well calibrated word-confidence should correspond to the probability that the 
word is correctly recognized. The experiments with per-word confidences are in section 6.3. 

Per-sentence confidence csent 

In works of other authors, the sentence confidences are usually computed as arithmetic mean 
of the per-word confidences [Novotney et al., 2009, Novotney and Schwartz, 2009, Thomas 
et al., 2013, Zhang et al., 2014a]. It is better to think about it as the estimate of the word 
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accuracy in the sentence, rather than the correctness of the whole sentence. The supporting 
arguments for this interpretation are: 

• a long sentence with one incorrect word can still be valuable for SST 

• the word accuracy is closely related to the word error rate, which is the main evaluation 
metric for A S R systems 

The experiments with per-sentence confidences are in section 6.2. 

Per-frame confidence cSt 

In our work [Veselý et al., 2013b], we advocated for using frame-level confidence to do the 
frame-selection in mini-batch SGD training. 

The per-frame confidence c§t is taken from the lattice posterior j(t, s), which is obtained 
by the forward-backward algorithm (see section 2.2.4). The posterior j(t, s) corresponds to 
the probability of being at time t in the tied-state s. Supposing that we have a sequence 
of tied-states for the best-path Š = (š i , Š 2 , . . . , šjy), the confidence value for frame t is 
extracted with its associated state s~t as: 

The forward-backward algorithm over a lattice is the same as for calculating the denom­
inator posteriors in M M I discriminative training, which was discussed in chapter 3.1.3. 

An ideally calibrated frame-confidence should correspond to the probability that the 
frame-label s~t is correct. 

What is best? It is very hard to predict which of the three types of confidence will 
be more useful. In some situations, it might be better to use the less specific sentence-
confidences, while with the per-word and per-frame confidences we can locally decide about 
processing sub-chunks of utterances, which should be good as well. Any guess at this point 
would be a pure speculation, and we will search for the answer experimentally. 

5.2.2 The concept of 'ideal' confidence 

By its nature, an optimally calibrated confidence corresponds to the probability that the 
label is correct. For word-confidence, it is the probability that the recognized word matches 
its reference. In the case of frame-confidence, it is the probability that the hypothesized 
tied-state is the same as the element in the forced-alignment. 

Only the per-sentence confidence is an exception following a different pattern. Usually 
we are not interested in the probability that the whole sentence is correct. Instead, we can 
replace the 'ideal' confidence value by the word accuracy in the sentence. 

This applies to confidences in general, however, when used in semi-supervised training, 
it is not clear if these 'ideally calibrated' confidences also lead to the best results. It can be 
the case that additional processing of confidences is beneficial. 

5.2.3 Use of confidences in S G D 

Selecting data by confidence 

The simplest approach is to select the automatically transcribed training data by setting a 
threshold on the confidence, or alternatively by setting the target fraction of data to accept. 
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The more reliable data are accepted (higher confidence), the less reliable data are discarded. 
For data selection, we don't need calibration of confidences. What matters is the ordering 
of data according to confidences, the actual values of confidence are not important. 

Confidence-weighted training 

A n alternative approach is to weight the data by the confidence, where the weights cn 

are applied to the N N gradients of the individual data-points VEn. The update rule of 
mini-batch SGD (2.22) is slightly modified to: 

M 

w ( r + 1 ) = W M ~vJ2 c « V £ n ( w M ) . (5.2) 
n=l 

The simple way to implement the gradient scaling is to use cn to scale the partial derivative 
of loss function En w.r.t. network output y : 

dE'n _ dEr 
dy n dy 

5.2.4 What we believe to be interesting 

To summarize, there are many interesting ideas in the literature. Here is a list of important 
topics: 

• different methods to obtain per-word confidences 

• per-frame confidences 

• calibration of confidences 

• re-training with transcribed data 

• importance sampling 

• iterative semi-supervised training 

• realigning automatic transcripts 

• two-softmax semi-supervised training 

• entropy minimization semi-supervised training 

• multi-system automatic transcripts and confidences 

Clearly, we cannot re-explore all these ideas. Instead, in the spirit of the Occam's razor, 
we will try to build the simplest possible system that will work well in practice. With 
this literature survey, we broadened our know-how of semi-supervised training and we also 
created the context to situate our experiments into. 

29 

(5.3) 



Chapter 6 

What is the best granularity of 
confidences? 

Previously, in section 5.2, we 'layed-out' the area for our semi-supervised training experi­
ments. The key questions were: A) "Should we work with per-sentence, per-word or per-frame 
confidences?" B) "Should we use data selection or data weighting?" C) "Should we cali­
brate the confidence?" In this chapter we explore these questions systematically. We begin 
with 'oracle' experiments, followed by three sections with confidence-types from question A). 
We also introduce re-training with manually transcribed data, which is necessary to better 
decide which semi-supervised setup is preferable. Here, we returned to our Babel Vietnamese 
setup (LimitedLP) from section 4-1 

Seed system The seed system is built with full recipe as described in chapter 3. It 
includes the training of initial G M M - H M M system to produce PLP-pi tch-fMLLR features. 
Then the recipe continues with R B M pre-training, frame cross-entropy training and s M B R 
training. The seed system is built with 10 hours of transcribed Babel Vietnamese LimitedLP 
data, the performance of the seed system is 59.6%. The performance of intermediate stages 
is in table 6.1. 

Table 6.1: Performance of seed system we use in this chapter for semi-supervised experi­
ments. The initial fMLLR-GMM system was used to produce input features, the CE-DNN 
was trained with frame cross-entropy loss, then it was re-trained with sMBR objective. 

f M L L R - G M M C E - D N N s M B R - D N N 
W E R 66.1 61.7 59.6 

Semi-supervised training As mentioned earlier, we do frame-CE semi-supervised train­
ing with inter-mixed automatically and manually transcribed data. The automatic labels 
for N N training are the tied-states S = (si, s~2, • • •, S~T) from the best-path in lattice C, which 
was generated with s M B R - D N N seed system. The specific confidences and the way they 
are used is described later in the chapter. 
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6.1 Oracle experiments 

To better understand the effect of calculating confidences for smaller or larger units, we 
designed the oracle experiments which use the 'ground truth' transcripts of the untranscribed 
data. The transcripts are used to mark the correct words in the recognized text by using the 
word-alignment from scoring, or to mark the correct frames in the best state-sequence S by 
comparing it with the forced-alignment to transcripts. We create the 'oracle' confidences in 
the following way: 

Per-sentence confidence is related to the estimate of word accuracy in the sentence, 
rather than the correctness of the whole sentence. The oracle value is the word-
accuracy in the automatically transcribed sentence. The D N N self-training is done 
with the sentences scaled by their word-accuracies, which are post-processed by tuning 
the exponential scale a (see table 6.2). 

Per-word confidence is related to the probability that the word is correct. Here, ac­
cording to the word-alignment from scoring, the correct words get oracle confidence 
1 and incorrect 0, this confidence is then assigned to the frames of the word. The 
confidences for silence frames on sentence ends or between words are filled with linear 
interpolation (35% of all frames). 

Per-phone confidence would be the probability of labeling a frame with the correct 
phone. For the oracle confidence, we compare the phones on the best-path from 
lattice with the phones in forced-alignment. The frames where the phones match get 
confidence 1, otherwise 0. The self-training is done with these per-frame weights. For 
the sake of comparison, we simplified the Vietnamese phone-set not to consider the 
tones or the position in the word. 

Tied-state confidence is similar to the per-phone confidence, with the difference that we 
are comparing the sequence of acoustic model classes (i.e. pdfs, tied-states). Again, we 
compare the lattice best-path with the forced-alignment. The frames with the same 
tied-states have confidence 1, otherwise 0. We train with weighting the frames by 
these confidences, which in fact selects the 'correct' frames from the forced alignment 
of the untranscribed data-set. This oracle confidence is thus very optimistic. 

Table 6.2: Per-sentence oracle confidences, the sentences are weighted by word accuracy 
(scaled exponentially by a: c' = ca). Although the WER of seed systems with sMBR training 
was 59.6%, we should also compare to CE-DNN baseline with WER 61.7%. The results in 
table are from frame-CE training. 

Scale a 0.5 1.0 1.5 2.0 2.5 3.0 
W E R 59.4 59.0 58.9 58.8 58.7 59.2 

The results 

As can be seen in table 6.3, the oracle confidences bring nice improvements. The first two 
lines in the table show the performance of the baseline C E - D N N system and the s M B R - D N N , 
which is our seed system. The next two lines compare the systems with no untranscribed 
data added, or the case when we simply add all the untranscribed data without using any 
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confidences. The system 'No untranscribed' is better than 'Baseline system', because we 
replaced the training labels from GMM-alignment with a 'Seed system' alignment. The 
group of four lines with the proposed oracle confidences of different granularity is in the 
middle. The last line in the table is the best possible oracle, where we trained with the 
correct transcripts of the 'untranscribed' data. 

Table 6.3: DNN self-training with oracle confidences (optimizing frame Cross-Entropy) 

W E R 
W E R 

recovery 
Basline system (CE-DNN) 61.7 -
Seed system (with sMBR) 59.6 -
No untranscribed 60.8 0 
A l l untranscribed, no confidence 60.1 8 
Oracle confidences: 
Per-sentence confidence 58.7 25 
Per-word confidence 57.7 36 
Per-phone confidence 56.1 55 
Tied-state confidence 55.3 64 
With correct transcripts 52.3 100 

From the results in table 6.3 we see that: 

1. all the oracle confidences are better than using no confidence 

2. the results improve as the confidence unit becomes smaller 
(sentence —> word —> frame) 

This oracle experiment suggests that the tied-state confidences are the most promising. 
However, the method did not consider the actual confidence values that will be available. 
In the real world scenario we do not know which frames are correct. Inevitably, the training 
set will contain some wrongly labeled frames, while we will miss some of the correct frames. 
The actual results will be certainly worse than in this oracle experiment. 

Also, we have to perform the real experiments with the sentence-level and word-level 
confidences. Only a careful comparison across techniques can verify if the frame confidences 
are the best. 

6.2 Per-sentence confidences 

In this section we will experiment with the per-sentence confidences based on the MBR statis­
tics or based on the NN-posteriors. We will address data selection, weighted training and 
confidence calibration. Finally we show that it is beneficial to further re-train the acoustic 
model with the correctly transcribed data. 

6.2.1 Minimum-Bayes risk confidence 

As mentioned earlier in section 5.2.1, the sentence-level confidence csent is calculated as the 
average word confidence within a sentence: csent = YliLi cwq- The per-word probabilities 
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Figure 6.1: Sentence-confidence from MBR statistics for weighted training. 

Cwq are the posteriors 7(5, tug) from the Minimum Bayes Risk decoding [Xu et al., 2011, 
section 7.1], where we fixed the word sequence W = (wi,W2, • • • ,WT) to the best path in 
lattice W = wrds(5). The confidences Cwq were extracted with the scales that were used to 
generate the lattices (i.e. the acoustic scale n = 0.1, graph scale g = 1.0). 

Data-selection, no weighting 

The simplest experiment, which can be done with the per-sentence confidences, is the data-
selection, in which we gradually add sentences ranked by the confidence. 

Table 6.4: Data selection by per-sentence confidence. 

Added sentences 0% 30% 50% 70% 90% 100% Oracle 
W E R 60.9 60.1 59.8 59.8 60.0 60.1 58.7 

From table 6.4, we see that it is good to leave out 30-50% of sentences, which brings a 0.3% 
W E R improvement compared to adding 100% sentences. The oracle W E R 58.7 achieved 
by weighting the sentences with their re-scaled true word accuracy indicates that there is a 
space for further improvement. 

Weighting the sentences by confidence 

To make our setup more similar to the oracle experiment, we should weight the sentences 
in the SGD training. Before doing it, it is good to show how well the confidence matches 
the word accuracy. 

The scatter plot of confidence and accuracy in figure 6.1a revealed that the confidence is 
more optimistic than the actual word-accuracy, as the blue cloud is far beneath the dashed 
line representing the ideal match. The steep section of red curve indicates that majority of 
words comes from sentences with confidence ranging from 0.6 to 0.8. 

If the confidence gets closer to the word accuracy, we should also get closer to the oracle 
performance. For a better match, we can warp the confidence by an exponential scale a as 
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follows: c'sent = Cgent. By a grid search over a in table 6.5, we found the best a = 3.5. From 
the results, we see that the distance to Oracle shrank from 1.1% to 0.6% W E R . 

Table 6.5: Weighted training with sentence-confidence from MBR statistics (scaled expo­
nentially by a, keeping all the sentences) 

Scale a 1.0 2.0 2.5 3.0 3.5 4.0 Oracle 
W E R 59.8 59.6 59.6 59.5 59.3 59.5 58.7 

Using the tuned a = 3.5, we regenerated the confidence-accuracy scatter plot. In figure 
6.1b, we clearly see that large part of mismatch is removed, as the blue cloud nearly overlaps 
with the dashed line. 

We also combined the weighted-training with data-selection, the grid search of scale a 
was repeated while we added the top 90% 70% and 50% of the automatically transcribed 
sentences. In table 6.6, we found a further drop by 0.1% W E R , in case of adding 90% with 
confidence scale a = 4.0. 

Table 6.6: Weighted training with sentence-confidence from MBR statistics (scaled expo­
nentially by a, adding portion of top N% of untranscribed sentences) 

Scale a 1.0 2.0 2.5 3.0 3.5 4.0 4.5 Added sentences 
59.8 59.6 59.6 59.4 59.3 59.2 59.3 90% 

W E R 59.6 59.5 59.5 59.4 59.5 59.2 59.3 70% 
59.6 59.6 59.5 59.6 59.5 59.5 59.5 50% 

6.2.2 Calibration of confidences 

A common approach to calibrate confidences is to train a logistic regression on the annotated 
development data, which are disjoint both from the training set of A S R seed-model and the 
untranscribed data [Yu et al., 2011]. In this section we verify if such calibration of the per-
word M B R statistics can improve the efficiency of semi-supervised training with weighted 
sentences. 

Table 6.7: Weighted training with per-sentence confidence from the calibrated word-
confidences (derived from 'raw' MBR statistics, scaled exponentially by a, keeping all the 
sentences) 

Scale a 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Oracle 
W E R 59.5 59.5 59.4 59.3 59.3 59.3 59.4 59.6 58.7 

As we achieved the same best performance in tables 6.5 and 6.7, we can conclude that 
the calibration did not lead to a performance improvement in the semi-supervised training 
with the weighted sentences. 

6.2.3 Summary 

In this section, we compared three types of per-sentence confidence based on 1) M B R -
decoding statistics, 2) calibrated M B R decoding-statistics, 3) neural network posteriors. 

34 



First, we found that weighted training leads to better results than simple data selection 
(WER% 59.8 —> 59.3). However, for weighted training, we need a 'probabilistic' confidence, 
which we further tune by an exponential scale a, and this tuning is time consuming. 

Table 6.8: Weighted SGD training with various sentence confidences. 

Confidence method W E R 
M B R statistics 59.3 
Calibrated M B R statistics 59.3 
NN-posteriors 59.4 
Oracle 58.7 

The best results for the three different confidence methods are summarized in table 6.8, 
where we see that the calibration of M B R statistics by logistic regression did not improve 
the system and the confidence from NN-posteriors [Zhang et al., 2014a] was a little worse 
than the M B R based confidences. 

6.2.4 Re-training with transcribed data 

In literature, we can find that it is beneficial to post-process the model trained with the 
inter-mixed transcribed and untranscribed data. In [Thomas et al., 2013], the D N N output 
layer was discarded and trained again from random initialization, by using only the correctly 
transcribed data. 

We also tried an alternative scenario in which we keep the output layer 'as-is' and 
continue training with the 10 hours of correctly transcribed data, while using a smaller 
learning rate (initial learning rate 0.001 instead of the original value 0.008). The model 
post-processing in this spirit was described in [Grézl and Karafiát, 2014] as 'fine-tuning'. 

To verify that the per-sentence confidences are helpful, we post-process these two 'initial 
models': 

1. no confidence: the initial model was built by adding all the automatically labeled 
sentences, no confidences are used 

2. best per-sentence confidence: the initial model is built by training with weighted 
sentences (a = 4.0), while 90% sentences are added (the best result from table 6.6). 

The difference of these two scenarios is the improvement from using the per-sentence confi­
dences. The results in table 6.9 show the post-processing by both the 'frame C E ' training 
and the subsequent ' sMBR' training. Both is done with the 10 hours of correctly transcribed 
data. 

If we focus on 'frame C E ' numbers, we see that re-training with the correctly transcribed 
data improves the results in all the cases, while we were picking the best initial learning 
rate from 0.008, 0.001 and 0.0001. 

Then, if we (A) discard the output layer, there is no difference whether the initial model 
was built with confidences or not, see the 'frame C E ' line. 

If we (B) re-train the initial model, it is better to start from the model trained with the 
best per-sentence confidences, see the 'frame C E ' line. 

This improvement in (B) persists also after the s M B R training (last row in table 6.9, 
3rd column). Based on this s M B R result, we can conclude that it is good to introduce the 
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Table 6.9: Re-training the 'initial model' with 10 hours of correctly transcribed data. 

W E R 
no confidence 
(added 100% 

sentences) 

best per-sentence 
confidence (added 90% 

sentences, a = 4.0) 
initial model 
(semi-supervised) 

60.1 59.2 frame C E initial model 
(semi-supervised) 58.3 57.6 s M B R 

(A) discard 
last layer 

58.7 (Irate 0.008) 58.7 (hate 0.008) frame C E (A) discard 
last layer 57.5 57.6 s M B R 
(B) re-train the 
initial model 

58.7 (Irate 0.008) 58.3 (Irate 0.001) frame C E (B) re-train the 
initial model 57.6 57.2 s M B R 

'frame C E ' re-training before the s M B R training. By skipping it, the performance would 
degrade by 0.4%, from 57.2 to 57.6. 

Also, we can conclude that the use of per-sentence confidences is beneficial. The best 
result without confidences is 57.5, while with the confidences we obtained 57.2. 

6.3 Per-word confidences 

In this section, we will use the Minimum Bayes Risk statistics Cwq = l(q-,wq) directly as 
the word-confidences. Primarily, we are interested to decide if the confidences are more effi­
cient when used per-sentence or per-word. The literature presents both approaches (per-word 
[Wessel and Ney, 2005], per-sentence [Novotney et al, 2009]), but we have not seen a direct 
comparison. Per-sentence confidences are used more frequently, probably because of their 
simpler use. The oracle experiment in chapter 6.1 was favoring the per-word confidences 
over the per-sentence confidences. 

The experiments will be conducted following a similar pattern as in the previous section 
6.2. The behavior can be different if the processing decisions are done on the word-level 
basis. 

6.3.1 M i n i m u m Bayes Risk confidence 

We start from the non-calibrated M B R statistics that were introduced on page 27; we'll use 
them for word-selection or word-weighting. Previously, with the per-sentence confidences, 
'weighting' was better than 'selecting'. 

Word-selection, no weighting 

In this experiment, we are adding words into the frame CE training, starting from the 
highest confidence. The frames at the selected words have training weight 1, while the 
frames of rejected words have weight 0. The weights in eventual silence gaps between words 
are filled by linear interpolation. 

In table 6.10, we tune the fraction of added words. We directly got to W E R 59.1, which 
is a little better than the best performance achieved with per-sentence confidences (see table 
6.6). This indicates that the per-word confidences are at least as good as the per-sentence 
ones. 
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Table 6.10: Data selection by per-word confidence, Babel Vietnamese. 

Added words [9 c] Word Seed 
0 20 30 40 50 60 70 100 oracle system 

W E R 60.9 59.5 59.2 59.1 59.2 59.3 59.6 60.1 57.7 59.6 

Previously, in table 6.6, we used training with weighted sentences, while table 6.10 
was prepared with simple hard-selection of words. It is also remarkable that the optimal 
amount of added words seem to coincide with the word-accuracy of the seed system, which 
is (100 — 59.6 = 40.4). We will re-visit this later in chapter 7 with a different experimental 
setup. 

Weighting words by confidence 

Next, we replace the data selection with weighted SGD training. The confidence of a word 
is used to scale the gradients over its time-span. Again, the silences are bridged by linear 
interpolation of the confidences from the adjacent words. We extend the frame CE training 
set with all the untranscribed data, while we tune the exponential scale a applied to word-
confidences: = {cwq)a- The 'raw' word confidences were generated with the lattice-scale 
A = 1.0 (i.e. with default scaling from lattice generation by n = 0.1, Q = 1.0). 

Table 6.11: Weighted training with MBR statistics (uncalibrated per-word confidence, scaled 
exponentially by a, all words were added) 

Scale a 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Oracle 
W E R 59.5 59.2 59.2 59.1 59.0 59.0 59.1 57.7 

Scale a 8.0 9.0 10.0 11.0 12.0 13.0 14.0 Oracle 
W E R 58.9 59.0 59.0 58.9 58.8 58.9 59.0 57.7 

In table 6.11, we see that the best alpha 12.0 leads to W E R 58.8%, which is by 0.3% 
better than we had with the word-selection in table 6.10. The W E R s seem to fluctuate 
between 59.1 and 58.8. The best exponent value 12.0 is relatively high, we can see it as a 
soft version of data selection. For example, the words with confidence 0.68 get a training 
weig ht Cyjq = 0.68 1 2- 0 = 0.01, which in our case almost removed 43% words from the training. 

6.3.2 Weighting words by calibrated confidence 

In section 6.2.2, we calibrated the M B R statistics by logistic regression. We re-used the 
same calibrated per-word confidences for experiment in table 6.12. The best alphas 2.0, 3.0 
lead to W E R 58.8. Here also, the calibration of confidence did not bring a performance 
improvement (same best result in tables 6.11 and 6.12). 

Table 6.12: Weighted training with calibrated word-confidence, (calibration by logistic re­
gression, exponential scaling by a, keeping all the words) 

Scale a 0.5 1.0 1.6 2.0 2.5 3.0 4.0 5.0 6.0 Oracle 
W E R 59.6 59.4 59.1 58.8 59.0 58.8 58.9 59.1 59.3 57.7 
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6.3.3 What happens in data selection? 
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Figure 6.2: WER in subset of data selected by the confidence, starting from the highest. The 
per-word confidences (blue curve) allow us to select data with lower WER, than the per-
sentence confidences (red curve). The calibration by logistic regression further improves the 
data selection (green curve). However, the better calibration did not translate into improve­
ment of the semi-supervised training. All the confidences are based on Minimum Bayes Risk 
decoding statistics. The WER on this plot is without deletions and we normalized by the 
length of the hypothesis, as we cannot select a 'deleted' word from the automatic transcripts. 

To demonstrate that the data selection done per-word is better than per-sentence, we 
created figure 6.2, where we compare the W E R as function of number of selected words. We 
see that by selecting the individual words, we can create a subset with lower W E R (blue 
curve) than if we select whole sentences (red curve). With the 'un-weighted' data selection, 
the W E R was the following: 59.8 for per-sentence confidences (table 6.4), 59.1 for per-word 
confidence (table 6.10). Wi th the weighted training, the difference shrank from 0.7 to 0.4, 
as we had 59.2 with per-sentence confidences and 58.8 with per-word confidences. 

6.3.4 Re-training with transcribed data 

Similarly to the previous section, we take the best 'initial model' and post-process it by 
re-training with the 10 hour set of the correctly transcribed data. As we found earlier, we 
first re-train by 'frame C E ' training and continue with ' sMBR' training. As a sanity check 
we also compare with the s M B R done directly from the initial model. 

The results in table 6.13 show that the final s M B R W E R 56.9 is by 0.3% better than we 
previously obtained with the per-sentence confidences. This makes the per-word confidences 
better than the per-sentence confidences. We believe that this explicit comparison has not 
been shown in any study yet. 

6.4 Tied-state confidences 

In this section, we return to the frame confidences c§t = j(t,st), The lattice posteriors for 
states from best path can be used as frame confidence in weighted mini-batch SGD training. 
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Table 6.13: Re-training the best 'initial models' with 10 hours of correctly transcribed data. 
The 'initial models' are obtained by three variants of semi-supervised training: a) no con­
fidences at all, b) best per-sentence confidences and c) best setup with per-word confidences 
(weighted training with uncalibrated per-word confidences, exponential scale a = 12.0, added 
all the words. 

W E R a) no confidence 
b) best sentence 

confidence 
c) best word 
confidence 

initial model 60.1 59.2 58.8 frame C E 
(semi-supervised) 58.3 57.6 57.4 s M B R 
re-train the 58.7 58.3 58.2 

frame C E 
initial C E (Irate 0.008) (Irate 0.001) (Irate 0.001) 

frame C E 

model 57.6 57.2 56.9 s M B R 

We observed that it is beneficial to tune the 'lattice-scale' A by rescaling both the acoustic 
and graph scores in the lattice, which shifts the confidences closer to the ideal confidence 
(probability that the label is correct). In this section, we will extend this approach in two 
directions: 

• we further introduce the exponential scale a that is applied to the extracted frame 
confidences (i.e. the frame posterior from lattice at states on the best path). The 
ideal confidence may not be the best weight for the SGD training, so we 'bend' the 
distribution of the confidences by exponential scaling c'St = (c§ t ) a . 

• we introduce the per-pdf calibration, assuming that the confidences behave differently 
across tied-states. The calibration helps to select data-points with less annotation 
errors than if we used the global calibration. 

In this section we want to see if the tied-state confidences lead to better results than we 
obtained with the per-word confidences. 

6.4.1 Tuning confidence scale a in frame-weighted S G D training 

Table 6.14: Weighted training with per-frame confidences (the tied-state posteriors from 
lattice for the state on the best path). The confidences were extracted with the lattice scales 
A = {1.0,0.3,0.02} (applied both to acoustic and graph scores in the lattice). After the 
extraction, the frame confidences were re-scaled by exponential scale a. 

Scale a 1.0 2.0 3.0 4.0 5.0 6.0 Lattice scale A 
59.4 59.1 59.0 59.1 58.9 59.0 1.0 

W E R 59.2 59.0 59.0 59.2 59.3 59.3 0.3 
59.1 59.1 59.2 59.4 59.4 59.5 0.02 

In table 6.14, we see that for any lattice scale, we can always tune such alpha for which 
the W E R becomes similar regardless of the initial lattice scale. We decided to fix the lattice-
scale to A = 0.3 for further experiments, as it reasonably pre-calibrates the confidences and 
the scale is not too far from A = 1.0. 

39 



6.4.2 Per-phoneme analysis of the frame confidences 

So far, we have been analyzing the confidences for the whole untranscribed data-set. To 
get an idea how the confidences differ for individual phonemes, we show them separately in 
figure 6.3 (frame-accuracy as function of confidence). 

uncalibrated, per-phoneme curves, lattice-scale 0.3 

— E 279k frm. 

— b< 237k frm. 
NH 219k frm. 

— i@ 212k frm. 

#7 
— E 279k frm. 

— b< 237k frm. 
NH 219k frm. 

— i@ 212k frm. 

#7 #7 

/ 

1.0 0.0 0.2 0.4 0.6 0.8 1.0 
frame confidence 

0.0 0.2 0.4 0.6 0. 
frame confidence frame confidence 

1.0 0.0 0.2 0.4 0.6 0.8 
frame confidence 

1.0 0.0 0.2 0.4 0.6 0.8 
frame confidence 

Figure 6.3: Per-phoneme frame-accuracy as function of confidence (uncalibrated), from 
lattice-posteriors with scaling A = 0.3. Here, a frame is considered correct when the phoneme 
label matches both in the alignment and the best-path from lattice. The curves are sorted by 
frame-count of phonemes, which are marked in the legend. 

In the graphs, we see that the curves of phonemes with similar frame counts look similar. 
The curves of highly represented phonemes are smooth, while the curves for low-represented 
phonemes are noisy. Then we see that the curves of the 5 most represented phonemes (vowels 
a, e, i, o and n) begin with higher frame-accuracies than the other phonemes. We also see 
that silence, which is the most represented label, has both high confidence and high accuracy. 
This is understandable, it is harder to confuse the silence with a phone than to confuse two 
phones. 

It would be good to use the plots for suggestions to the experiments, however it is not 
clear how exactly. We can confirm that there definitely are differences among the phoneme 
curves, these will be reduced by our calibration. 

6.4.3 Calibration by logistic regression 

Because we saw in figure 6.3 that there are differences among the accuracy curves of the 
individual phonemes, we can apply a pool of calibration models to reduce the differences. 
Each model is a simple logistic regression with 2-parameters (scale, bias) for each class of 
acoustic model (pdf, tied-state), the set of models is trained on the transcribed development 
set. Yes, we do not build a per-phoneme model, but a per-tied-state one (i.e. we have a 
model per neural network class). Note that the oracle results in table 6.3 were the best for 
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the per-pdf confidences. 
The pdf's are represented by various amounts of data. For some pdf's, there is too little 

data for reliable estimation of calibration model parameters. To solve this, we adopted a 
three-level hierarchy of models: a) per-pdf models, b) per-phoneme models and c) a global 
model. In case, there is not enough data for a given unit, we switch to higher-level model 
a) —> b) —> c). By observing their loss function values, we found that for a minimum of 100 
data-points, the logistic regressions are already trained reasonably. The per-pdf models 'a)' 
were used for 91.5% frames, the per-phoneme models 'b)' for 8% frames, the the global 
model 'c)' for 0.5% frames. We started from the lattice posterior frame confidences with 
the lattice-scale A = 0.3. 

Figure 6.4: Frame selection according to frame-confidence with or without the calibration 
(hierarchical three-level calibration). The minimum number of data-points for training a 
calibration model (logistic regression) was 100. We see that the calibrated confidences allow 
us to select frames with less errors (red curve) than without the calibration (blue curve). 
The benefit comes from training the calibration models per-pdf (tied-state), which changes 
the overall ranking of the frames. 

In figure 6.4, we see how our three-level calibration changes the gradual selection of 
frames, starting from the highest confidence. The gap between the curves is promising as it 
means that with the calibration, we can select data-points containing less wrong labels. 

Frame selection experiments 

In the first set of experiments, we perform the 'data-selection', starting from the highest 
confidence: the weights are either 0 (dropped frame) or 1 (selected frame). 

Table 6.15: Data selection by per-frame confidence, WER. 

Added frames: 0% 20% 40% 50% 60% 70% 80% 100% 
Uncalibrated conf. 
three-level calibration 

60.9 
60.9 

61.0 
60.3 

60.1 
59.4 

59.4 
59.1 

59.1 
58.9 

59.3 
58.8 

59.2 
59.0 

60.1 
60.1 

In table 6.15, we see that the calibration helped a lot when selecting 40% of data, where 
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the gap between curves in figure 6.4 was large. The best results are obtained when selecting 
60% or 70% frames, where the confidence calibration brought a W E R improvement of 0.3%. 

Frame weighted experiments 

In the next experiment, we use the calibrated confidences for frame-weighting: 

Table 6.16: Weighted training with calibrated per-frame confidences. The calibration is a 
three-level hierarchy of calibration models. The calibrated confidences are scaled exponentially 
by a. 

Scale a 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 Oracle 
W E R 59.6 59.1 59.0 58.6 58.6 59.0 59.0 59.2 59.4 55.3 

In table 6.16 we obtained the best result so far for semi-supervised training with mixed 
data (transcribed and untranscribed). 

The hierarchical three-level calibration improved the results by 0.3% W E R . Previously, 
the calibration of the per-word confidences, was not bringing improvements (see sections 
6.2.2 and 6.3.2). 

The performance obtained with the frame-weighted training is by 0.2% W E R better than 
the frame-selection, both for the calibrated and uncalibrated confidences (see the tables 6.14 
and 6.16). 

6.4.4 Re-training with transcribed data 

As we did in the previous sections, we further re-train the 'initial model' that was trained 
with a mix of transcribed and untranscribed data. The re-training is done with the 10-hour 
set of correctly transcribed data. We first re-train by 'frame C E ' training to continue with 
' sMBR' training. As a sanity check we also compare with s M B R done directly from the 
initial model. 

Table 6.17: Re-training the best 'initial model' with 10 hours of correctly transcribed data, 
after 'frame CE' training with the mixed data (transcribed and untranscribed). We compare 
four scenarios of semi-supervised training: a) no confidences at all, b) best per-sentence 
confidences, c) best setup with per-word confidences and d) best setup with per-frame confi­
dences (frame confidences extracted with lattice-scale A = 0.3, re-calibrated by three-levels of 
logistic regressions and post-processed by exponential scale a = 2.0, weighted SGD training). 
The 'frame-CE' re-training is followed by 'sMBR' 

b) best c) best d) best 
W E R a) no sentence word frame 

confidence confidence confidence confidence 
initial model 60.1 59.2 58.8 58.6 frame C E 
(semi-supervised) 58.3 57.6 57.4 57.1 s M B R 

re-train the initial 58.7 58.3 58.2 58.0 
frame C E C E model with (Irate 0.008) (Irate 0.001) (Irate 0.001) (Irate 0.001) 
frame C E 

true transcripts 57.6 57.2 56.9 57.0 s M B R 

The re-training result in table 6.17 for 'frame C E ' objective shows that the calibrated 
per-frame confidences are the best, with W E R of 58.0. From the s M B R results, we see that 
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the best model remained the word-confidence D N N with W E R 56.9. The s M B R results from 
the 'best frame confidence' column reveal that, now, there is almost no difference between 
the s M B R training from the 'initial model' 57.1 and the re-trained model 57.0, which we 
did not see in other columns. 

6.5 Summary 
The observations from this chapter, which was focused on granularity of confidences, can 
be summarized as follows: 

• We found it important to re-tune the model with a small amount of correctly 
transcribed data. The re-tuning is done with smaller learning rate 0.001 (table 6.9, 
otherwise the initial learning rate is 0.008). 

• Also, it is beneficial to go beyond simple sentence selection, which can often be 
seen in the literature (see table 6.18). The very simple, but still powerful approach is 
to select frames corresponding to the N % words with the best confidence. 

• If we compare the results in 'data-selection' table 6.18 with the results in the first 
column from the 'data-weighting' table 6.19, we see that 'data-weighting' leads 
to better results than 'data-selection'. Along the way, we also noticed that 
data 'weighting' and 'selection' are not complementary. However, the data-
selection is more straightforward to tune-up, as we can use 'raw' confidences in 
it. 

• For getting better results, we had to introduce a hyper-parameter that is expen­
sive to tune: the N % amount of added data for data selection, or the exponential 
scale a for approximate calibration of 'raw' confidences in role of frame weights. 

• For 'proper' confidence calibration with logistic regression, we introduced dependency 
on the correctly transcribed development set. In some cases, there was no improvement 
from the confidence calibration (per-sentence, per-word confidences). With the per-
frame confidences, we obtained 0.3% W E R improvement, this was however absorbed 
by the re-tuning with frame-CE training and then by s M B R training. Based on 
this evidence, we can form a conclusion that the confidence calibration is not 
necessary for semi-supervised training. 

• Despite the initial optimism from the oracle results (table 6.3), where the tied-state 
confidence oracle dropped deeply to 55.3% (but this oracle completely ignored the 
confidence values, as it just selected the frames with correct labels), the final gains 
from semi-supervised training were more modest, leading to 58.0% W E R after re­
training with the correctly transcribed data. The final best WER-recovery was 33%. 

• In the end, there were small differences between using the per-sentence, per-
word or per-frame confidences, especially after re-tuning with the 'frame C E ' and 
' sMBR' objectives using the correctly transcribed data. Still, it is clearly beneficial 
to use the confidences in the semi-supervised training (see the last line in table 
6.19). 

In our case, the results for word-confidences and frame-confidences are very similar. 
Hence, to decide which approach is the best, we will use the Occam's razor. The setup with 
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Table 6.18: Data selection, summary. Each time we added the optimal amount of data, the 
amount of data is the only hyper-parameter we needed to tune manually. The two results 
for the 'frame-selection' refer to 'uncalibrated/calibrated' confidences. 

W E R taken from 
Sentence selection 59.8 table 6.4 
Word selection 59.1 table 6.10 
Frame selection 59.1/58.8 table 6.15 

Table 6.19: Data weighting, summary. Each time we re-scaled the confidences by tuning the 
exponential scale a. The frame confidences were calibrated, the sentence and word confi­
dences were better without calibration. The results are from table 6.17. 

W E R (re-tuned) (re-tuned + sMBR) 
Sentence weighting 59.2 58.3 57.2 
Word weighting 58.8 58.2 56.9 
Frame weighting 58.6 58.0 57.0 
no confidence 60.1 58.7 57.6 

per-word confidences is simpler as it requires less storage for confidence values. The system 
without 'proper' calibration of confidences does not depend on development set. The only 
hyper-parameter we need to tune is the exponential scale a for weighted training or the N % 
of added words for data-selection. 
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Chapter 7 

Finding generic semi-supervised 
training approach 

Ideally, we are interested in finding such semi-supervised training recipe, that will be efficient 
for a broad range of scenarios. Until now, we explored the behavior for Babel languages 
(mainly Vietnamese) and one scenario (10 hours are transcribed, ~70 hours are untran-
scribed). 

In section 6.3.1, we saw that the best percentage of added words seems to correspond 
to the word accuracy of the seed system (in table 6.10 it was good to add 40% words, while 
the W E R of the seed system was 59.6%, i.e. the word accuracy was 40.4%). 

A closer look on word-selection is in figure 7.1. We split the automatically transcribed 
Vietnamese words into 10 bins with same amount of words, while the words with similar 
confidence are in the same bin. We see that in the first 4 bins there are more correct 
words than wrong ones, while by adding the fifth and next bins, we would introduce more 
incorrectly labeled words than correct ones. In the selection of 40% words, there is 27% 
W E R as can be read from blue curve in figure 6.2 on page 38. 

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 
words sorted from best confidence 

70-80% 80-90% 90-100% 

Figure 7.1: Automatic transcripts of Vietnamese sorted from best word-confidence, split into 
10 bins with same word-count. See the correspondence of the bars with results in table 6.10 
on page 37 and blue curve in figure 6.2 on page 38. 

Now, let's check if our word selection rule based on word accuracy Wacc of seed system 
generalizes to other databases. From results of Babel Bengali in table 7.1 and Switchboard 
in table 7.2 we see that the same rule holds. 

For example, for Switchboard in table 7.2, the WaCc of the seed system was 73.1%, while 
the optimal amount of added words was 70%, so the word accuracy of the seed system was 
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Table 7.1: Data selection by per-word confidence, babel Bengali. 

Added words 0% 20% 30% 40% 50% 60% 70% 100% Seed W a c c 

W E R 64.2 62.9 62.5 62.3 62.3 62.4 62.5 63.2 37.1 

Table 7.2: Data selection by per-word confidence. Our Switchboard setup has 14 hours 
transcribed, 95 hours are untranscribed. The LM is trained on Fisher transcripts. The 
results are for HUB5-2000 (Switchboard + CallHome), further description of the setup is in 
section 4-2. 

Added words 0% 50% 60% 70% 80% 90% 100% Seed W a c c 

hub5 W E R 28.0 25.3 25.1 24.4 24.7 24.5 24.8 73.1 

the right amount of words to add. Such simple rule works reasonably well for such different 
setups as the Babel Vietnamese, Babel Bengali or even for Switchboard data. 

Erorrs 
Correct words 

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100% 
words sorted from best confidence 

Figure 7.2: Automatic transcripts of Switchboard sorted from best word-confidence, split into 
10 bins with same word-count. See the correspondence of the bars with results in table 7.2. 

The bar-graph showing word-selection for Switchboard is in figure 7.2. We see that 
there is certain amount of incorrect words with high confidence, while the biggest portion 
of wrong words is located in the last three bins. The selection of top 70% words has a W E R 
of 7.4%. 

The only external information we needed for our word selection rule is the W E R of the 
seed system calculated on some development set, while we assume that the untranscribed 
data and development data are similar. We are aware that it is not rigorously 'guaranteed' 
that it will always lead to best possible results, in the same time, it will often be a good fit 
for its simplicity. 

7.1 Re-tuning with correctly transcribed data, Switchboard 

As, for Switchboard, we found word-selection to be as good as word-weighting, we take these 
two systems and proceed with re-tuning. For the final comparison, we re-tune the 'initial 
models' with the small 14hour set of the correctly transcribed data. We re-tune first by 
training with 'frame C E ' objective and then with ' sMBR' . For comparison, we also run the 
s M B R training directly from the initial model. 
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Table 7.3: Switchboard, re-training the 'initial models' with 14 hours of correctly transcribed 
data. The 'initial models' are obtained by three variants of semi-supervised training: a) no 
confidences at all, b) best training with weighted words (a = 7.0, A = 1.0) and c) best word 
selection (selected top 70% of words) 

W E R , seed 26.9 a) no confidence 
b) best word 

weighting 
c) best word 

selection 

initial model 24.8 24.4 24.4 frame C E 
(semi-supervised) 24.0 23.6 23.9 s M B R 
re-train the 24.3 24.1 24.2 

frame C E 
initial C E (Irate 0.001) (Irate 0.001) (Irate 0.001) 

frame C E 

model 23.7 23.5 23.7 s M B R 

For Switchboard (table 7.3), the final s M B R result for word-selection c) was 23.7, which 
is by 0.2% W E R worse than with the word-weighting b). And the s M B R result of c) is the 
same as if no confidences were used in a). We see that the word-selection did not bring an 
improvement, while it also was not harmful. The W E R recovery of the system c) is 63%, 
which is much higher than we had for Vietnamese (33%), which can be explained by lower 
W E R in automatic transcripts from Switchboard seed system. 

Table 7.4: Babel Vietnamese, re-training the 'initial models' with 10 hours of correctly tran­
scribed data. The 'initial models' are obtained by three variants of semi-supervised training: 
a) no confidences at all, b) best per-word weighted training (a = 12.0, A = 1.0) and c) best 
word selection (selected 40% words) 

W E R , seed 59.6 a) no confidence 
b) best word 

weighting 
c) best word 

selection 

initial model 60.1 58.8 59.1 frame C E 
(semi-supervised) 58.3 57.4 57.6 s M B R 
re-train the 58.7 58.2 58.4 

frame C E 
initial C E (Irate 0.008) (Irate 0.001) (Irate 0.001) 

frame C E 

model 57.6 56.9 57.1 s M B R 

The same set of experiments done for Babel Vietnamese is in table 7.4; here the degra­
dation between word-selection c) and the word-weighting b) is 57.1 — 56.9 = 0.2, while the 
word-selection c) is better than the system without confidences a) by 0.5% W E R . 

If the 'simple word-selection' causes either an improvement or no harm, it is still a 
preferable technique. It it is much faster than the careful tuning of the exponential scale a 
by a grid search of N N trainings, while such careful tuning brought only a small 0.2% W E R 
improvement. 

7.2 Final summary, simple word-selection 

The final summary of the W E R improvements we obtained with our preferred simple word-
selection technique is in table 7.5. We see that the overall absolute W E R improvement 
between the seed system and the final s M B R systems is 2.5% for Babel Vietnamese, 2.3% 
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for Babel Bengali and 3.2% for Switchboard. For Bengali and Vietnamese the W E R in 
the automatic transcripts was higher, so the absolute W E R improvement from the semi-
supervised training is smaller than in the case of Switchboard. At the same time, the use of 
confidences was more important for Vietnamese (with higher W E R ) , than for Switchboard 
(with smaller W E R ) . 

Table 7.5: Final WER performance of the semi-supervised training based on 'simple word-
selection'. The initial model is trained with the mixed data (transcribed and untranscribed), 
the re-training is done with the smaller set of correctly transcribed data. 

W E R Vietnamese Bengali Switchboard 
seed system (sMBR) 59.6 62.9 26.9 
initial-model (mixed data) 59.1 62.3 24.4 
+ re-trained (frame CE) 58.4 61.6 24.2 
+ re-trained (sMBR) 57.1 60.6 23.7 
abs. W E R improvement 2.5 2.3 3.2 
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Chapter 8 

Final remarks 
Initial chapters In this thesis we initially presented a quick introduction to the theory 
of speech recognition and neural network training, along with our NN-training implemen­
tation available as the 'nnetl ' training recipe in Kaldi . The recipe is composed of R B M 
pre-training, mini-batch frame Cross-Entropy training, and sequence-discriminative s M B R 
training. 

Semi-supervised training, what we searched for? Then we switched to the main 
topic, which is the semi-supervised training of DNN-based A S R systems. Inspired by the 
literature survey and our initial experiments, we investigated several questions: Firstly, 
whether the confidences are better to be calculated per-sentence, per-word or per-frame. 
Then, if the confidences should be used for the data-selection or the data-weighting, which 
is both compatible with the weighted mini-batch SGD training. It was also not clear whether 
the confidence calibration can improve the performance of the semi-supervised training. We 
also investigated how the model should be re-tuned with the correctly transcribed data. 
And finally we searched for a simple recipe, avoids a grid search over hyper-parameter and 
that is practical for general use with any dataset. 

What we found out The performance differences of the systems with various confidences 
were relatively small, while it was easier to obtain good results with word-confidences and 
frame-confidences. The data-weighting (with a tuned scale a as exponent) led to a little 
better results than the data-selection. The confidence calibration led to minimal or no 
performance improvements. And the re-training with correctly transcribed data is better to 
be done first with the 'frame Cross Entropy' objective and then with the ' sMBR' objective. 

Finally a practical recipe without a computationally expensive hyper-parameter tun­
ing is following: Use the best-path from lattice as NN training targets. From the best-path, 
select the words whose confidence is in top N%, where the N% is given by word-accuracy of 
seed system in the development set. The word confidences are extracted as the 'posteriors' 
from the MBR decoding, in which the word-sequence is fixed to the words obtained from 
best-path in lattice. 

Final conclusion We found it quite difficult to further improve the performance of the 
semi-supervised training. Still, we believe, that our findings will be perceived to have 
practical value. The untranscribed data are abundant and easy to obtain, while our proposed 
solution brings solid W E R improvements (see table 7.5 on page 48) and is not difficult to 
replicate. 

The main results from this thesis were recently published in [Veselý et al., 2017]. 
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