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Abstract
”Chatbot” is a very popular term in today’s artificial intelligence era. Chatbots can be
seen in business solutions more a more nowadays. The main goal of this thesis is to create
an algorithm that is capable of information retrieval and implement it into a chatbot. The
information resides on a real customer’s web pages. The thesis also provides an overview of
current chatbot situation along with the Microsoft technologies used for the development.
The technological background of these technologies, mostly natural language processing
techniques, is covered too. The thesis also describes the implementation of the algorithm
and the chatbot itself as well as the real industrial environment testing process.

Abstrakt
Pojem ”chatbot” je v dnešnej dobe umelej inteligencie veľmi populárny výraz. Chatbotov
vidno stále viac a viac v biznis riešeniach dnešných firiem. Hlavným cieľom práce je
vytvoriť algoritmus, ktorý je schopný vyťahovať informácie a implementovať ho do chat-
bota. Tieto informácie možno nájsť na webových stránkach reálneho zákazníka. Práca
rovnako poskytuje prehľad súčasnej situácie chatbotov ako aj Microsoft technológií pre ich
vývoj. Technické detaily na ktorých tieto technológie pracujú, predovšetkým spracovanie
prirodzeného jazyka, sú taktiež zahrnuté. Práca popisuje implementáciu algoritmu ako aj
chatbota samotného spolu s procesom testovania v skutočnom priemyselnom prostredí.
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Rozšírený abstrakt
Chatboti sú stále častejšie skloňovaným pojmom v dnešnej dobe umelej inteligencie a stro-
jového učenia. Prvý chatboti sa ale začali objavovať už v minulom storočí. Alan Turing
sa začal zaoberať myšlienkou, či dokáže stroj napodobniť rozmýšľanie človeka. Vznikol
vtedy takzvaný Turingov test, ktorého podstata je, že ak v komunikácii medzi strojom a
človekom bude tento človek presvedčený o tom, že nekomunikuje so strojom, ale s ďalším
človekom, možno stroj prehlásiť za inteligentný. Prvé pokusy pokoriť tento test sa objavili
už v šesťdesiatych rokoch minulého storočia, keď vznikol systém nazvaný ELIZA, ktorý
možno považovať za prvého chatbota. Tento chatbot predstieral, že je terapeut. Pýtal
sa užívateľa rôzne otázky na ktoré potom odpovedal. Veľa užívateľov došlo k záveru, že
chatbot ELIZA skutočne pochopil ich problémy, aj keď išlo o pomerne jednoduchý systém
ktorý spracovával prirodzený jazyk na základe predefinovaných pravidiel.

V dnešnej dobe sa chatboti čoraz viac stávajú súčasťou biznis riešení firiem, predovšetkým
vďaka ich využiteľnosti. Chatbotov možno vidieť predovšetkým ako čiastočnú náhradu pra-
covníka zákazníckej podpory. Fakt, že chatbot je počítačový program, nie človek, prináša
isté výhody. Počítačový program dokáže pracovať nepretržite bez prestávok. Rovnako
tak chatbot dokáže obslúžiť v podstate akýkoľvek počet zákazníkov naraz. Nevýhody sú
ale očividné. Nakoľko je to stále len program, nie človek, častokrát nedokáže vyhovieť
všetkým požiadavkám zákazníka. Akonáhle zákazník vybočí zo scenára, na ktorý je chat-
bot pripravený, zákazník nedostane odpovede na otázky, ktoré položil. Preto sa chatboti
využívajú predovšetkým na často opakované požiadavky zákazníkov, aby sa reálny zamest-
nanec zákazníckej podpory mohol sústrediť na riešenie netriviálnych problémov.

Táto práca sa zaoberá implementáciou takéhoto typu chatbota pre firmu ComAp.
Konkrétne, práca popisuje jednu časť tohto chatbota, ktorý sa volá InteliBot, zodpovednú
za vyhľadávanie informácií. Tieto informácie sa týkajú predovšetkým vlastností produktov,
ktoré firma ComAp predáva a ku ktorým poskytuje následný servis. Súčasťou informácií,
ktoré vie InteliBot hľadať sú aj riešenia rôznych problémov, ktoré firma ponúka pre svojich
zákazníkov. Práca popisuje algoritmus, ktorý je schopný tieto informácie nájsť na základe
otázky užívateľa ako aj konkrétnu implementáciu tohto algoritmu do chatbota. Práca nero-
zoberá len implementáciu ale taktiež popisuje do hĺbky technológie, predovšetkým od firmy
Microsoft, ktoré boli využité pre vytvorenie takéhoto chatbota. Predovšetkým sa jedna o
Microsoft Bot Framework. Ide o veľmi prepracovaný nástroj na výrobu sofistikovaných chat-
botov, ktorý poskytuje vývojárom možnosti na vytvorenie v podstate akéhokoľvek chatb-
ota. Tento nástroj uľahčuje vývoj poskytnutím predefinovaných tried a metód, ktoré možno
využiť pri vytváraní konverzačnej logiky ako aj pri vytváraní chatbota samotného. Práca
takisto poskytuje pohľad na služby Microsoft Azure. Ide o cloudovú platformu od firmy Mi-
crosoft, ktorej služby boli pri vytváraní InteliBota, predovšetkým spomínaného algoritmu,
využité.

Popri technológiách sú vysvetlené aj techniky spracovania prirodzeného jazyka, na zák-
lade ktorých tieto technológie pracujú. Ide predovšetkým o pochopenie prirodzeného jazyka
pomocou vektorov slov. Záver práce sa venuje testovaniu InteliBota a zhodnoteniu výsled-
kov. S priebehom vývoju chatbota bola firma ComAp vždy oboznámená a teda vznikal
pomerne veľký priestor pre implementáciu požiadaviek, ktoré vyplynuli z ich spätnej väzby.
Týmto sa zabezpečila spokojnosť zákazníka ako aj pomerne vysoká úspešnosť InteliBota
pri odpovedaní na užívateľské otázky.
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Chapter 1

Introduction

There are many definitions of a chatbot. The simplest one may be that a chatbot is
a computer program that is trying to imitate a conversation with a human. It may just
scan the input from a user and look for specific keywords or words patterns and provide
an answer. It can also work in more sophisticated way by using various services, natural
language processing systems, machine learning or artificial intelligence [3]. The input text
can come from a written text or even as a spoken word, which is then translated into a text
using various speech-to-text techniques. These voice-chatbots are also called interactive
voice response (IVR) systems1.

Another way to look at a chatbot might be that it is a conversational interface for
software services just like a mobile or web application. A good example of this way of
looking at a chatbot is a process of booking a flight. The user can do so by visiting
a website, using mobile app, calling a human agent or by chatting with a chatbot that is
able to book a flight for him or her, just like the human agent would do. All these ways
are offering the same service - booking a flight [27].

In the context of this thesis, we can look at a chatbot as a replacement of a human
employee that provides various information or a service requested by the user. There are
many advantages for a company when it decides to use a chatbot. First of all, as already
mentioned, a chatbot is a computer program, which means, it can run all the time without
any exhaustion unlike a human employee. Another difference between a human and a bot
is that a single chatbot is able to assist many users at a time. These aspects are one of
the main reasons, why companies decide to involve chatbots in their business solutions
more and more nowadays. However, there is no perfect chatbot that is able to answer all
users questions or problems yet. That is why we cannot think of a chatbot as a complete
replacement of a customer support employee. Better way of thinking is that it is a computer
assistant that is able to resolve common user requirements, which tend to repeat most of
the time, so that the human assistant can focus on more complicated quests.

1.1 Aims of thesis
The main goal of the thesis is to create a fully functional chatbot, also called InteliBot,
for a company called ComAp2. More specifically, the thesis is dedicated to a specific
InteliBot section called I’m interested in.... This section is responsible for searching various

1https://en.wikipedia.org/wiki/Interactive_voice_response
2https://www.comap-control.com/
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information from the company website so that users do not have to find it manually. The
thesis describes an algorithm used for the information retrieval along with the integration of
the algorithm within the bot and the implementation of the chatbot section itself. InteliBot
is designed and developed by a company called Xolution3.

The thesis also aims to explain basic techniques lying behind text processing which is
crucial in chatbots. Moreover, it provides an overview of the available tools for chatbot
development as well as more in depth explanation of Microsoft technologies used to create
chatbots, particularly InteliBot.

1.2 Structure of thesis
In chapter 2, a quick history of chatbots is provided together with some examples of already
implemented and used chatbots. Chapter 3 explains basic natural language processing tech-
niques that lie behind the technologies used for chatbot development, particularly Microsoft
ones, that are described in chapter 4. Chapter 5 explains, how these technologies are used
in the implementation of InteliBot, specifically the I’m interested in... section of it. In
chapter 6, the testing process of the chatbot is described and chapter 7 summarizes the
work.

3https://www.xolution.sk/
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Chapter 2

Overview of chatbots

Although the word chatbot is very popular and well-known nowadays, it was not always
the case. Here is a brief history.

2.1 Chatbot evolution
Although it may look like a chatbot is pretty recent invention, the very first program that
can be considered as a chatbot was a system called ELIZA by Joseph Weizenbaum in
1966. However, the history of chatbots can be traced back to 1950’s when Alan Turing,
the British computer scientist, started to wonder, whether machines can think. In 1950, he
published an article called Computing Machinery and Intelligence followed by Turing test
[31]. The whole idea behind is, that if a machine can imitate a human in such a way that
it convinces the other person to believe that they are communicating with another human,
not a machine, then the machine can be considered as intelligent [25].

ELIZA was created to pretend to be a therapist who asks questions and even provides
answers. In its basis, it is a simple natural language processing system that can carry
on a conversation. It uses pattern matching to recognize phrases like “You are X” and
translates them into suitable outputs like “What makes you think I am X?”. The success
of ELIZA was pretty remarkable. Many people believed that it really understood their
problems and even continued to do so after the operation of the program was explained to
them [15, 33].

Figure 2.1: ELIZA example [32].

Though it is considered to be the first chatbot ever, it was not until 1994 when the term
’ChatterBot’ was coined by Michael Mauldin [16] to describe these conversational systems
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[25]. Fast-forward to the year 2017, when Mobile World Congress1 took place in Barcelona
and chatbots were the main headliners. They were supposed to be the next big thing.
However, even today they have not reached the level that web and mobile applications have
in terms of popularity, usability or adaptation within the society. Anyway, they are getting
popular and better every day [17].

2.2 Known chatbots
As mentioned in a previous section, the amount of chatbots is increasing almost on a daily
basis, especially nowadays when artificial intelligence and machine learning are one of the
major fields in today’s technical world. Here are some honourable mentions.

A.L.I.C.E

It is one of the most famous and one of the first chatbots to go online. The name itself
stands for Artificial Linguistic Internet Computer Entity but is commonly referred to as
Alicebot or Alice. It is a natural language processing chatbot developed in 1995 by Richard
Wallace [13], later rewritten to Java in 1998. In 2001, Wallace published an AIML (artificial
intelligence markup language) specification. It was designed to react to human input as
naturally as possible. Alice was originally inspired by previously mentioned ELIZA and
won many awards including three Leobner Prizes2 (2000, 2001, 2004). It is the oldest
Turing Test contest which started in 1991, however, the bot is still unable to pass the test
completely. The chatbot even served as an inspiration for a movie called Her by Spike Jonze
in which a human falls in love with a bot3 [9].

Checkbot

Checkbot4 is a very unique chatbot from Slovakia that came to light in 2019. Sharing
disinformation from conspiracy websites or sources without any author is very actual and
sad phenomenon that often leads to rise of extremism all around the world. This bot is able
to determine whether a particular article is potentially dangerous or misleading or not. It
runs on Facebook Messenger and the whole process of recognizing such potential dangers
is based on asking a user certain questions and giving relevant and useful answers.

The very first question a user gets is to provide a link to the article he wants to check.
This link is then ran through a list of known conspiracy websites5 and the Checkbot tells
if there was a match or not. However, it is impossible to check all unwanted webs. If the
article was not found in the list, the chatbot at least provides a list of suspicious keywords
that occurred in it. It also continues with asking further questions like whether there
is an author, whether it spreads hatred against certain group of people and so on. The
Checkbot then comes to a conclusion if the article is a potential threat and gives you a list
of problematic facts that resulted from the questioning [24].

1https://www.mobileworldlive.com/mobile-world-congress-2017/
2http://aisb.org.uk/events/loebner-prize
3https://www.imdb.com/title/tt1798709/
4https://www.checkbot.sk/
5https://www.konspiratori.sk/zoznam-stranok.php
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Figure 2.2: Sample communication with Checkbot.

U-Report

Unlike previously mentioned chatbots, this chatbot6 is not very talkative. When the user
starts to chat with this bot, it only gathers basic information about the user like age,
country and gender. At the end it offers to access more information about the bot if
the user has other questions. This bot is used by international child advocacy nonprofit
UNICEF. After gathering all the information about the user, U-Report sends out polls
about urgent social issues on a regular basis. Users can then respond with their inputs and
UNICEF subsequently uses this information for potential policy recommendations [28].

There is an example when this quite simple chatbot made a significant impact. Users
in Liberia were asked whether teachers were coercing students into sex in exchange for
better grades. The results were that about 86% of the asked children reported that this
was an issue. This resulted in a collaboration between Liberia’s Minister of Education and
UNICEF to end this practices [29, 28].

Figure 2.3: Sample communication with U-Report bot.

6https://ureport.in/
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Chapter 3

Technological background

There are certain technologies and algorithms lying beneath the services that the chatbot in
this thesis is using. Although complete understanding of these technologies is not necessary
for the developer to build such chatbot, as these services mostly act as a black box, it is
very beneficial to have at least some idea about them. This chapter is dedicated to the
basics of such techniques.

3.1 Natural language processing
No computer program is able to fully understand a piece of text and convert it to a program-
mer friendly data structure that explains the real meaning of the text [8]. And computers
are very good when it comes to working with such data structures. Database tables or some
important medical records are a good example. When it comes to processing such data,
computers are much faster than humans. However, processing unstructured data is much
more difficult task for a computer. There are no standardised rules that can be applied on
such data, unlike an ordinary computer program, which is essentially just a set of rules that
it should operate by. Humans have developed the ability to understand natural language
over the time that a human race exists. We can understand the real-world meaning of a text
written in a book. We can feel the emotions. We can read between lines. A computer is
unable to do such things [26].

Natural language processing, or NLP, is a subfield of artificial intelligence. Its main
goal is to process and analyze natural language data. In other words, it is focused on the
interaction between humans that use natural language and computers. History of NLP can
be traced back to 1950s when already mentioned Touring Test was introduced.

Most of the NLP systems, or techniques, are based on machine learning due to recent
significant advances in the machine learning field. This approach can be also called as
statistical NLP. On the other hand, there is so called rule-based NLP. As the name suggests,
such systems are designed as a set of rules which can be in a form of grammar or heuristic
rules for stemming for example. There are many applications of NLP in real life. These
include language translation applications, word processors and of course, chatbots.

There are two major areas where NLP is used:

3.1.1 Syntactic analysis

According to Oxford dictionary, the definition of a syntax is that it is the arrangement of
words and phrases to create well-formed sentences in a language or that it is a set of rules
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for or an analysis of the syntax of a language1. In the context of NLP, the main goal of
syntactic analysis is to evaluate the nature of how the language aligns with the grammatical
rules. Algorithms basically derive meaning from words by using these rules [10]. Here are
the most commonly used syntax techniques:

∙ lemmatization to return the base dictionary form of a word - lemma (word better is
turned into good),

∙ morphological segmentation to divide words into units - morphemes (unbreakable into
un-break-able),

∙ stemming for retrieving the root form of the word (studying is transferred to study by
ommiting the -ing suffix),

∙ part-of-speech tagging to get the part of speech for words (word play can be a noun
as well as a verb),

∙ word segmentation to divide a large text into distinct units (texts are divided into
words, sentences, topics etc.),

∙ sentence breaking to recognize sentence boundaries,

∙ parsing to determine the parse tree of the sentence based on a context-free grammar2.

These are just examples of the techniques used in syntactic analysis. Although they are
very important part of natural language processing, their deep understanding is not neces-
sary for a developer to build a chatbot when using one of the popular chatbot frameworks.
The second part, which is semantic analysis is much more interesting and important for
a chatbot developer.

3.1.2 Semantic analysis

The word semantics is defined as the branch of linguistics and logic concerned with meaning.
Particularly in the lexical context it is concerned with the analysis of word meanings and
relations between them3. This part is the difficult one in natural language processing.
Algorithms are trying to understand the meaning and interpretation of words and sentences
[10]. Here is a list of some techniques used in semantic analysis:

∙ machine translation to translate a text from one language to another,

∙ named entity recognition (NER) for classifying named entities from a text (from
sentence ”London is a nice city” the word London may be classified as a Location
entity),

∙ Natural language understanding (NLU), see 3.2,

∙ Word sense disambiguation to determine, which particular words sense was meant for
a sentence it occurred in.

Some of these techniques are essential in chatbot development and will be explained
more in depth in further sections.

1https://en.oxforddictionaries.com/definition/syntax
2https://en.wikipedia.org/wiki/Parse_tree
3https://en.oxforddictionaries.com/definition/semantics
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3.2 Natural language understanding
Although many people think that the term natural language processing is more or less the
same as natural language understanding, there is a difference between these two. Natural
language understanding, or NLU, is a subset of a wider field of NLP. As already mentioned,
natural language processing is a common word for all the systems that let humans talk to
computers in their natural language. It is able to break down the input text, analyze it,
create a response in natural language and so on [18].

Meanwhile, NLU is a narrow, but very complex part that is responsible for processing
unstructured input into structured data that computers can understand and act accordingly.
Humans are very good when it comes to mispronunciations, colloquialisms, swapped words
and other issues typical for human nature. However, it is a real challenge for a machine to
handle these unpredictable inputs. In other words, NLU can be understood as the machine’s
ability to get the meaning of what people say in their natural languages [18].

In order to understand the natural input, computers have to transfer it to a structured
ontology by using various techniques. They have to extract, identify and resolve entities.
Also it is necessary to get the semantic meaning within the context in order to identify
intents [18]. A sentence such as: ”I want a flight to London on March 8“ would have
a structure like:

want:flight {intent} / London {location} / March 8 {date}

And exactly entities and intents are essential in chatbot development in terms of NLU.
To understand where these come from, vector semantics, particularly word vectors have to
be explained.

3.3 Vector semantics
Vector models are a part of natural language processing for a long time. Whether it is named
entity extraction, relation extraction, parsing or semantic role labeling, these models are
widely used when it comes to such applications. Furthermore, they are the number one
choice when computing semantic similarity, in other words the similarity between two words,
documents and so on [15].

These models are usually represented as a co-occurrence matrix quantifying how often
words co-occur. We can think of vectors in two contexts.

3.3.1 Vectors and documents

The first one is a document context represented by a term-document matrix where rows
represent a word in the vocabulary and columns a document. In figure 3.1 there is an
example of a selection of such matrix. It shows the occurrence of sample words in various
plays by Shakespeare.

So, for example, the vector for Twelfth Night is [1,2,58,117] and for Henry V it is
[15,36,5,0]. A collection of vectors, vector space, is defined by their dimension. For instance,
the second dimension of these vectors represents how many times the word soldier occurred
in the text. The documents from figure 3.2 can be represented as points in 4-dimensional
space identified by their vectors. Since 4 dimensions are not ideal to understand and draw
in 2-dimensional text, here is a visualization in two dimensions, for the word battle and the
word fool:
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Figure 3.1: Example of term-document matrix for various Shakespeare plays [15].

Figure 3.2: Document vectors visualization for the word battle and the word fool [15].

As seen in figure 3.2, the vectors where there are more fools and clowns look much more
alike than the other two vectors. It is no coincidence, since the first two plays are comedies
whereas the other two are not.

Although it is not important for a chatbot developer to understand how vectors work
in documents, it gives a good foundation to comprehend the word vectors.

3.3.2 Word vectors

When dealing with simple tasks such as spam classification, traditional NLP approaches
can do the job. These techniques however do not capture the syntactic and semantic
relationships between words. For example, words dog and cat both refer to almost the
same thing. They both represent an animal that is often mentioned in texts about pets but
techniques such as one-hot encoding4 are unable to recognise their similarity.

Vectors can represent words just like they represent documents as shown in the previ-
ous section. Word vectors are multidimensional vectors of real numbers where each point
represents a dimension of the meaning of the word. In other words, semantically similar
words will have similar vectors. The principle is similar to document vectors. For instance,
words like spoon and fork will have more similar word vectors to the word knife compared
to the word faculty.

Representing words as vectors has another advantage. Since a vector is in its basis a row
of numbers, mathematical operations can be made upon it. Two vectors can be subtracted
or added:

𝑘𝑖𝑛𝑔 −𝑚𝑎𝑛+ 𝑤𝑜𝑚𝑎𝑛 = 𝑞𝑢𝑒𝑒𝑛 (3.1)
4https://hackernoon.com/what-is-one-hot-encoding-why-and-when-do-you-have-to-use-it-

e3c6186d008f
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This example demonstrates how subtracting maleness and adding femaleness to the word
king results in the new vector representing word queen. As already said, each dimension
captures a meaning and the real number, or in other words, the weight, represents how
close is the association to it. Figure 3.3 should provide a better imagination.

Figure 3.3: Example of weights for selected vocabulary of 9 words [2].

”You shall know a word by the company it keeps!“ is a famous quote by J. R. Firth
in NLP from 1957. Simply put, words that occur in similar contexts usually represent
similar meanings. The context can be understood as its surrounding, so called window. For
example, two-window context means two preceding and two following words of the input.
Anticipation or predicting the probability of a context of a word creates its word vector.
In other words, by making such predictions on the chance that words are contextually
proximate to a particular word, the weights that create the vector are learned. Word2vec
model5 is the right choice for this task. It is a single hidden layer neural network6 for
reconstructing the context. The output of such word2vec models is however not the vector
itself since the output represent the probabilities that a random word from the corpus is
contextually close to the input word. The vector can be explained as it is just a side effect,
since it is the numerical representation of the word. The numbers are the weights from the
hidden layer learned by the neurons. Therefore 200 neuron hidden layer will result in 200
dimensional word vector [5].

There is a lot more to explain regarding word vectors. Whether it comes to mathemat-
ical details, neural networks, neurons, weights to loss functions and so on. Nevertheless,
explanation above should give a chatbot developer just the right idea of how machines
extract the meanings of words and on what basis the NLU used in chatbot development is
built.

3.4 Lucene search
Lucene search is also one of the technologies lying behind services used to create the chatbot
described in this thesis. It is a Java library capable of full-text search. Its designed to easily
add text search into applications or websites. The heart of Lucene search is its full-text
index where the content can be added. Developer can then perform queries on it and get

5https://en.wikipedia.org/wiki/Word2vec
6https://en.wikipedia.org/wiki/Artificial_neural_network
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the result in the way he or she specifies. It can be ranked by relevance to the query or other
specifications such as date. The content may come from basically any source, whether it
is a database, website or a file [1]. Many searches on the Internet are based on Lucene,
including major companies like Twitter7 or LinkedIn8.

Lucene searches already mentioned index instead of the text directly. It is the reason
why it is able to achieve relatively fast responses. For a better imagination, it can be
explained as getting the pages with the specific keyword by looking at the index in a book
instead of just going through every page of it. This approach is called an inverted index
[1].

Indexes consist of documents. If an index is built from a database table of users, then
a single user is one document of the index. Documents consist of fields. It is a simple name-
value pair. Indexing means adding documents to so called IndexWriter, whereas searching
means retrieving them via so called IndexSearcher. Searching can be carried out only on
already built indexes. It is done by making a query and passing it to an IndexSearcher.
So called hits are then returned. In this case, query has its own syntax9 which allows to
specify fields, their weights, boolean logic and other functionality [1].

3.5 Chatbot frameworks
Chatbot framework is a place where a developer can build a chatbot from a scratch. It
typically provides a set of APIs, services, predefined classes and so on. This means that
a chatbot developer must have advanced programming skills to use such tools. There are
also so called chatbot platforms, which, unlike frameworks, provide easy-to-use tools for
user without any programming knowledge. They usually offer drag-and-drop functionality
that allows anyone to create a chatbot. These platforms include Aivo, Botsify, Chatfuel and
many others. However, to create more sophisticated chatbots, one will need a framework
to do so. Here are some of the most popular chatbot frameworks.

Amazon Lex

This chatbot framework from Amazon provides a service for creating conversational inter-
faces for any program using either text, or voice. It offers automatic speech recognition to
convert speech to text and natural language understanding for identifying intents of the
input. The famous voice assistant Amazon Alexa is powered by the same technologies, so
developers have the tools they need to build sophisticated bots, just like Alexa [6].

For building a conversational chatbot using Amazon Lex, a developer does not need
to have deep learning expertise. He or she just specifies the basic conversation flow in its
console. It dynamically adjusts the responses. Chatbot can be built, tested and published
via the console as well. It can be then added to web applications, mobile devices or chat
platforms like Facebook Messenger. It offers integration with AWS Lambda, which offers
to run the code without any managing servers or provisioning. Moreover, the integration
with other AWS services like Amazon Cognito, Amazon CloudWatch and many other is
also possible [7].

Amazon Lex is probably one of the best choices in terms of voice capabilities since it may
be integrated with Alexa, particularly with Alexa Skills Kit (ASK). It is because developers

7https://twitter.com/
8https://www.linkedin.com/
9http://www.lucenetutorial.com/lucene-query-syntax.html
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are provided with a choice to export their chatbot schema into ASK, which enables them
to create a bot that can communicate using voice without any extra scaffolding. Another
advantage this framework provides is that there is a big predefined list of subjects and
entities prepared for the bots. All these facts contribute to an opinion, that Amazon Lex is
a good pick when it comes to simplicity of the commands or for less experienced developers
[4].

DialogFlow

Formerly known as Api.ai or Speaktoit, DialogFlow is a next framework that enables de-
velopers to create voice and text-based conversational interfaces such as chatbots. It is now
owned by Google, however, there is some history behind. Speaktoit was founded in Russia
back in 2010. In 2012 it got funding from Intel Capital [14], in 2014 it released Api.ai to
developers all around the world to create Siri-like voice solutions [34]. It also stands behind
Assistant, a famous personal assistant application, which was even in top 10 Android Apps
of 2011 [30].

DialogFlow is able to analyze various input types, whether it is text or voice input.
Responding to a user is similar, it can respond either with synthetic speech or through text.
Just like Amazon Lex, it also provides natural language understanding system to understand
the input from the user. It comes with prebuilt entities, but developers can create their
custom entity types. Another feature is that it provides an integrated code editor, which
enables developers to build serverless applications linked with their conversational interface.
They can also provide custom WebHook which is hosted on premises or in the cloud.
Furthermore, more than 20 languages and 14 different platforms are supported [11]. It also
comes with an analytics tools so that the developer has an option to see how well is their
agent doing and improve it eventually [12].

Microsoft Bot Framework

This framework is the place to go when searching for robust capabilities and serious cus-
tomization. Complicated things tend to be more powerful. That is why this framework
was chosen for creating the chatbot in this thesis and will be described more in depth in
the next chapter.
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Chapter 4

Microsoft technologies for chatbot
development

Microsoft offers a set of cloud-based services, also known as Microsoft Azure or simply
Azure. Many of these services are applicable to chatbot development, especially Language
Understanding Intelligence Service (LUIS), Azure Bot Service or Azure Search. However,
the first thing that needs to be covered is Microsoft Bot Framework.

4.1 Microsoft Bot Framework
There are three main components of Bot Framework: channels, the Bot Connector and the
chatbot itself.

Figure 4.1: Communication flow between the components [19].

Channels are applications that communicate with the chatbot. These include standard
apps like Skype, Facebook Messenger, Slack but even emails, SMS and many others. It is
important to note that developers can build their custom channels like a web chat on their
website for instance. Then there is Bot Connector. It is a cloud component that these
means of communication send messages to as well as receive them from. The chatbot is the
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thing that developer cares about the most, since he or she needs to build the conversation
logic in it [19].

Communication between the Bot Connector and other components is called routing.
Despite that, there are other functionalities that connector offers as seen in figure 4.2. In
addition to routing, it is able to store the state of the bot. State means custom information
about the conversation, users or even the combination of these two, a user with conversation.

Figure 4.2: Services the connector offers [19].

The connector communicates with chatbot component via activities. An activity is
a message that is able to carry the text, attachments like images, but it is also used for
managing the conversation. Sometimes there is a need to send some event to or from the
chatbot. A good example of this might be disabling the input text field so that the user
cannot type any text. When certain conditions are met, the chatbot sends an activity to
the connector with such event, which is then sent to the channel and it prevents the user
from writing any text in this scenario. The Bot Connector is platform-agnostic because its
interface is a REST API. That means that while the Bot Framework SDK (v3) is developed
in C# programming language and supports only C# and node.js programming languages,
the Bot Connector supports all programming languages since it offers a Connector REST
API [19].

The chatbot component is the place where all the conversation logic happens. The
chatbot can have any purpose the developer decides it to have. From the very start of
the conversation, to the end of it, the chatbot is responsible for the flow. Of course, the
conversation can go in the direction the bot is not designed for. Sometimes users simply
try what the chatbot is capable of. That means that even when a user asks a question that
the bot has no answer to, because it is from completely different topic, it is a good practice,
that chatbots respond that they do not understand at least.

Chatbots, just like any other applications, can call several external services in order to
manage the conversation flow. As will be shown in the further sections, there are Microsoft
services used in the chatbot described in this thesis. Whether it is these services, the Bot
Connector, channels or the chatbot component, it is obvious that the whole system is built
on a distributed architecture unlike many different applications which reside on the same
device [19].
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Figure 4.3: Components communicating with each another [19].

Figure 4.3 indicates not only the journey of the input text from the user on a partic-
ular channel to its response, but also that all separate components of the whole chatbot
communicate across the Internet. Developers should be very careful when implementing
external services into their chatbots. The Internet connection plays the major part here
performance-wise. Poor Internet connection therefore results in the poor user experience,
no matter how well-designed is the chatbot [19].

Now, that the components of the Bot Framework have been explained, let’s have a closer
look at the chatbot component itself. Bot Builder SDK (v3) offers developers a way to create
their custom chatbots from the scratch.

4.1.1 Bot Builder

Chatbot is in our case a model view controller (MVC) web application1. Every chatbot
has the MessagesController class that contains the Post method. This is the place, or
the endpoint, that the Bot Connector communicates with. It receives activities that are
processed and then passed to the Dialogs that manage the conversation flow. It is also
primarily responsible for creating a typing activity so that a user sees that the chatbot is
typing while it is really creating a response for the user.

All the methods to manage the conversation flow as well as its state are contained by
a class called Dialog. It has the Serializable attribute decoration, since every dialog needs
to be serialized. It is because the framework transfers the dialog along with its state across
the Internet. Every dialog must at some point implement the IDialog interface. At some
point because dialogs, just like any other classes can inherit from each other. IDialog has
a StartAsync member with one IDialogContext parameter. It is the first method that is
called when entering the dialog [19].

1 public async Task StartAsync(IDialogContext context)
2 {
3 context.Wait(MessageReceivedAsync);
4 }

1https://en.wikipedia.org/wiki/Model-view-controller
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The IDialogContext implements interfaces with members responsible for the conversa-
tion flow. Particularly it implements IDialogStack and IBotContext. Figure 4.4 shows the
relationships between the interfaces.

Figure 4.4: Hierarchy of the IDialogContext interface [19].

The IDialogStack is responsible for managing the stack of the dialogs since one dialog
can call another one and thus creates a FIFO stack2. This calling is done by Call member.
The opposite action, ending the dialog is executed by Done, popping it from the stack.
Another very important member of this interface is Wait which is also used in the code
snippet above. It specifies, which method will be next to call in the dialog. In this example,
it will wait for the activity coming to the chatbot. Most likely it will be a text from the
user, but as explained before, it can be also an event or any other type of activity.

As for the IBotContext, its most important part is the reference to the current activity.
The last of the most important members of the IDialogContext interface is the PostAsync
member, which is part of the IBotToUser and is responsible for posting an activity back to
the user. Keep in mind, that this activity can be again not just a message, but an event as
well [19].

4.2 Language Understanding Intelligence Service
As discussed in the previous chapters, communicating with machines so they understand
what humans say is no easy task. There are techniques how to get intents and entities
from user input that were also covered previously. Microsoft offers its users a service, that
does all the work for them. It is called Language Understanding Intelligence Service, or
LUIS. It is a part of Microsoft’s Cognitive Services which also include functionality like
speech-to-text service and so on.

Alongside with intents and entities there is the third major term, utterance. It can be
understood as the text that the user types. Intents and entities are then extracted from
these utterance texts received from Bot Connector. These extracted entities and intents are
in a form of JSON text that LUIS returns. Here is an example of such JSON from LUIS
documentation [22]:

1 {
2 "query": "I want to call my HR rep.",
3 "topScoringIntent": {

2https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
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4 "intent": "HRContact",
5 "score": 0.921233
6 },
7 "entities": [
8 {
9 "entity": "call",

10 "type": "Contact Type",
11 "startIndex": 10,
12 "endIndex": 13,
13 "score": 0.7615982
14 }
15 ]
16 }

LUIS API can be used in any application like mobile or web apps, not only in chatbot.
However, Bot Framework integrates LUIS as part of its features, which means it is able to
convert these JSON texts into predefined objects. The framework can then provide the data
in form of parameters for a chatbot. This process is completely covered by the framework,
so the developer does not need to worry about that. He or she just needs to specify the
logic, typically the conversation logic, based on this information input [19].

Microsoft offers very intuitive web user interface to work with LUIS3. After signing in,
users can create a new app where they can train their model. A model is a set of entities,
intents as well as the utterances which are used to train the model. In this context, a model
refers to the same thing as LUIS app, since it is just a single machine learning model. After
creating the model, users can create intents. As described before, intent, as the name
suggests, is the users intention or goal which they desire to accomplish. This intent is
comprised of its name and the probable utterances that user may typically say. The more
utterances the developer has, the better. However, there are sometimes no previous sample
data. This is the case of the chatbot described in the thesis. Nevertheless, it is a good
practice to create at least five utterances for an intent [19].

After creating intents, user may define their custom entities or use prebuilt ones such
as numbers or dates. The next step following the creation of the entities is to label them in
the utterances of the intents. Labeling is very user friendly, an user just needs to select one
or more words and then pick from the list of entities as shown in figure 4.5. The same rule
applies here as well, the more labeled entities, the better is the accuracy when recognizing
users real input texts. In the JSON example provided before, the entity called Contact
Type was recognized from the input text. Instead of the word call, there could be words
like message or email which would result in a very similar JSON.

When the model is completed, which means it has sufficient number of utterances for
all the intents the developer designed, it can be trained. Training is easy one-click action
on the button Train. After the model is trained, it is ready to be deployed. However, there
is also an option to test it first. A developer just needs to open the train tab and type
any question or text, that a user might ask. This test inputs should be different from the
utterances that the model is trained upon. If the results are relevant, there is no other
obstacle to publish the app. After publishing, the LUIS app is ready to be used in an
application providing the endpoint, model ID and subscription key. These can be found in
the settings menu.

Models should be designed very carefully since it is very easy to train them in a wrong
way so that they will provide unexpected results. Another important note to keep in mind

3https://www.luis.ai/
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Figure 4.5: Labeling two words mp l2 as a custom entity called ErrorCode. This entity is
mainly used in Troubleshooting section of the InteliBot.

is that LUIS service is free only up to five transactions per second. If the application is
expected to be used more frequently, better instance needs to be bought4.

4.3 Azure Text Analytics
This is another service which is used for working with a text. It has four main features
which include: entity recognition, sentiment analysis, language detection and key phrase
extraction. The last of the mentioned features will be used in the algorithm described in
section 5.1. The techniques used for key phrase extraction in this service are very similar
to those in LUIS. The difference here is that the user cannot add their own training data
or machine learning models. The models are pretrained by Microsoft so that they can be
used straightaway [23].

4.4 Azure Search
It is also a cloud-based service offered by Azure. Azure Search is based on Lucene search
explained in the previous chapter. It exposes and extends some functionality of the Lucene
search for scenarios that are usable for Azure Search. There are four steps when executing
a query:

∙ Query parsing

∙ Lexical analysis

∙ Document retrieval

∙ Scoring

Figure 4.6 shows the process of how the results are retrieved from the search request. A
search request is a query with parameters, query terms, filter expression or ordering rules
[20].

4https://azure.microsoft.com/en-us/pricing/details/cognitive-services/language-
understanding-intelligent-services/
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Figure 4.6: Azure search architecture from original documentation [20].

Parsing the query text is the first step when processing a full text search query in order
to extract terms. These terms are then used when retrieving documents from the index.
To capture as many matches from the index as possible, query terms are sometimes divided
and reorganized to new ones. The best matches are then sent to the application [20].

When parsing the query, two languages are supported. The parameter queryType in
the search request can be set to simple which is the default value, or full. The simple one
supports similar functionality as users know from web search engines. It is intuitive and
often there is no further need of any client-side processing. Full mode adds support for
other operators such as fuzzy, wildcard or regex. There is another parameter searchMode
responsible for Boolean queries. When set to any, it reflects or operator within the words.
When set to all, explicit specification of Boolean operators is needed. In this case, a space
means and. Query tree is the outcome of this process and can be understood as sub-queries.
A sub-query can have different types such as phrase query in case of quoted terms, term
query in case of standalone terms and so on5 [20].

The structured query tree is processed by lexical analyzers. They take the input from
the parser, process it and the tokenized terms are sent back to be integrated to the tree.
Based on specific rules, the query terms are transformed to a given language. This process
is called linguistic analysis and includes:

∙ Getting the root form of a word

∙ Getting rid of unnecessary words such as the or and

∙ Retrieving components from composite words

∙ Changing upper case words to lower case

This analysis is only applied to complete terms meaning term or phrase queries, thus
prefix, wildcard, regex or fuzzy queries are not supported. They bypass this stage except
lowercasing the words [20].

The next stage is document retrieval. As mentioned in section 3.4 about Lucene, retriev-
ing means finding documents within the index. Retrieving is best explained by indexing

5https://docs.microsoft.com/sk-sk/azure/search/query-lucene-syntax
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itself. Every searchable field has its inverted index. Index contains a list of terms from
all documents. Terms map to the list of documents where they appear. In order to create
terms of the index, the engine executes very similar lexical analysis as in the previous step.
It is a good practice, although not necessary, to use the same analyzers for indexing as well
as for the search. Terms within the index and query terms look then more alike [20].

The last step is to score the matches based on their statistical properties. Term fre-
quency–inverse document frequency6 or TF/IDF is responsible for this task. However the
scoring formula has more to it than TF/IDF. Field length as well as other factors play a
role here7. The scores can be then tuned by two ways: adding scoring profiles to the index8

is the first option and term boosting is the second one. It provides an operator ”^” which
boosts the terms that need to have higher scores. However, this operator can be used only
in full Lucene syntax by setting the queryType parameter to full [20].

It is also important that this service is free only for limited functionality. Chatbots
however usually need to have better tier which is paid9. This is also the case regarding this
chatbot.

6https://en.wikipedia.org/wiki/Tf-idf
7https://lucene.apache.org/core/4_0_0/core/org/apache/lucene/search/similarities/

TFIDFSimilarity.html
8https://docs.microsoft.com/sk-sk/azure/search/index-add-scoring-profiles
9https://azure.microsoft.com/en-us/pricing/details/search/
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Chapter 5

Implementation of chatbot
for information search

The main goal of the chatbot described in the thesis, also called InteliBot, is to provide
support for customers and technicians of a company called ComAp1. The main business of
the company is to sell controllers, mainly used in the electricity area. For better imagination,
a good example of such controller is that when the main source of electric power in a hospital
is out, the controller immediately resolves the problem by activating the backup generator
to generate electricity. Hospitals can under no circumstances be without electricity at any
time for obvious reasons. The company also provides further support for such controllers
all over the world.

Figure 5.1: InteliLite AMF 25 specification.
1https://www.comap-control.com/
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InteliBot has four main sections. However, only one of them is subject of the thesis.
The section is called ”I’m interested in...”. This is mainly used by so called buyers of
the organizations. In the case of previously mentioned hospital example, these people are
responsible for purchasing the equipment that the hospital requires. This equipment may
include things such as X-ray generators, operating tables and many other devices used by
the hospital staff.

ComAps controllers2 are one of such things, although it is not the first thing that
comes to mind when talking about devices used in hospitals. The buyers typically have
no technological knowledge of such controllers. This section is primarily used to provide
the information about them as well as other products of the company3. This information
can be found at the particular product website in a form of bullet points of the products’
features as seen in figure 5.1. The user does not need to visit the website to find the feature
of the product, he or she can simply ask the chatbot about it. An example of this might
be to ask, whether the controller works in low temperatures. Users have many ways to ask
about this particular feature. Another way to ask about the same feature would be to ask
whether the controller is capable of working in the cold weather. However, sometimes there
is a need to find the right products based on some feature. Another part of the section is
to give the user a reference to solutions the company provides on different areas4 if the user
asks. This is done by offering the links to particular solutions in form of buttons the users
can click on in the bot. InteliBot is designed to understand these questions and provide
a suitable answer.

There are two major steps to achieve the task of finding the required information. The
first one is to create an algorithm which delivers the most relevant results based on the
user input. The next step is then implementing this algorithm into the chatbot’s dialogs.
The implementing phase goes with continuous testing and fixing found bugs as well as
implementing suggested improvements. This will be described in a moment.

To get the idea about the whole InteliBot, other three sections will be briefly described.
The first section is the password issue section, which handles password related problems
such as resetting password. The next one is download files section. Users can download
product-related files there without the need to visit the product website. Then there is
a troubleshooting section where error codes or other problems are resolved. It is much
faster to use the bot for these issues than looking into the datasheets or manuals of the
controllers and find what particular error code means. These sections are mostly used by
the technicians that are aware of the products and their behaviour or technical details.

5.1 Algorithm
The basic concept of the algorithm is simple. The heart is the Azure Search described in
section 4.4. The goal is to get the best possible result from it based on the input that the
user provides. In order to do so, certain steps need to be done. The most important step
is to create a good search query from the input. The utterances that come to the bot are
typically not suitable texts for such query. Passing the whole sentence that the user types
will not lead to relevant results from Azure Search. More often than not, there will be no
result at all. That is where Azure services LUIS and Text Analytics need to be used. This
will be described in a moment. The basic concept of the algorithm is shown in figure 5.2.

2https://www.comap-control.com/products/controllers
3https://www.comap-control.com/products
4https://www.comap-control.com/solutions
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Figure 5.2: Simple algorithm illustration.

First of all, the Azure Search indexes for product features and solutions need to be filled
with the data. As for the features of the products, the structure or the fields for a single
document representing a single product are: Id, Name, OrderCode, Features as seen in
figure 5.3. The first three are of type string and refer to the product itself. The Name
field is the full name of a product. The OrderCode field is the unique identification of the
product. For every product it can be found on its web page. The last string field is the Id
which is a key field for the index and is generated from the OrderCode field. The last field
Features is a list of the features for the product. The features reside at every products web
page in form of bullet points as stated before.

Figure 5.3: Product features document structure from Azure Portal.

In order to get the structured data for the index, it was decided to manually create an
Microsoft Excel file which contains very similar fields as needed for the index documents.
This way it is easy to import the data from the Excel file to the index. Microsoft Excel
offers exporting XLSX files, which is a default Excel file format, to comma-separated values
(CSV). The import is done by a web tool called BotManager. There is a field to select
a CSV file for uploading the product features as seen in figure 5.5. This tool was created
by other members of the Xolution development team.
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Figure 5.4: Products features Excel file structure.

Uploading the solutions5 is very similar to the previous process. The difference is that
the documents have different structure. The fields are: id, name, webPage, phrases. The
name field is the name of the solution, id is as in the previous case the key identifier for
the index and is generated from the name. The webPage is a link to the particular solution
web page and the phrases field contains phrases by which the solution can be found.

Figure 5.5: Product features file field in BotManager.

Another important step to get the Azure Search ready for information search is to upload
synonyms into it. Azure Search offers an option to do so by adding synonym maps. It is
done by API call, however, BotManager provides a user interface for this task. Words in
one row, separated by commas or a special operator ”=>” are one set of synonyms. When
comma is used, the query will expand the term with OR operator between the synonym
phrases. The operator ”=>” is responsible for replacing a term sequence of a query that
equals to left hand side, to whatever is on the right hand side of the operator [21].

Figure 5.6: Synonyms input field in BotManager.

The last visible row of the input from figure 5.6 means, that whenever there is term wifi
in the query, it will expand to wifi OR wireless. The very same expansion would be the
result if there was wireless in the query. An example of the ”=>” operator below shows

5https://www.comap-control.com/solutions
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that query Los Angeles will be always rewritten to LA. It is however not applicable in the
opposite way, so LA will not be replaced with Los Angeles.

Los Angeles => LA

After the Azure Search indexes are prepared, search queries can be sent into them.
These queries need to be constructed from the input text. However, not every user input
is meant for searching the information, thus retrieving documents from the indexes as will
be shown in the implementation section. The basic concept of creating a query is again
simple. For product features it is as follows: pass the utterance through the LUIS, get
so called keywords from it and try different logic combinations as a query. If there is not
a single feature found, repeat the steps and instead of LUIS use the Azure Text Analytics.
Its key phrases extraction function is used in this case to extract keywords. Again, if no
features were found, either there are really no such features that the user asked for in the
particular product, or the algorithm was simply unable to find them. Typically it is the
first case scenario, but the algorithm is not perfect either, and may sometimes fail.

As for the solutions part, the algorithm is very similar to product features. The input
is sent to LUIS, keywords are extracted, various combinations of these keywords are sent to
the Azure Search. However, if there is no success, the Text Analytics is not used. Instead,
the algorithm tries to send the original input with OR operators between the words into the
Azure Search. No success again means that there is really no answer for the user question
or the algorithm failed again. Moreover, no success on solutions usually means no answer
to the user question whatsoever, since the solution search typically follows the product
features search as will be shown in the next section.

5.2 Implementation
The whole chatbot is implemented in C# programming language as it is supported by Bot
Builder SDK (v3). Finding the right information from the Azure Search, whether it is
product features or solutions is done by multiple methods. There is no need to describe all
of them, however there are two methods, that handle the algorithm itself. One for product
features and one for solutions.

5.2.1 Services

Each of these two methods resides in separate services. There is a service for features called
ProductFeaturesService and a service for solutions called SolutionService. The services
are components of the repository pattern which is part of Domain-Driven Design6. The
architecture is shown in figure 5.7.

Product features

Method SearchProductFeatures is the heart of finding the features. It takes one manda-
tory parameter textToSearch and several arbitrary parameters, so that certain steps of the
method can be skipped as the information is already passed to the method. One of these ar-
bitrary parameters is productCodes, which is usually set to some product. The textToSearch
is of a type string and represents the input, where the features should be found. The input

6https://en.wikipedia.org/wiki/Domain-driven_design
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Figure 5.7: Architecture of the services.

goes first to the LUIS app called Web Sense. The app is very simple, it has only two intents.
Question intent for possible user questions and None intent for anything other than that.
It also has only three entities. KeyWord entity is the important one. It represents the
keywords that are then passed to the Azure Search.

Figure 5.8 shows the basic idea behind the service.

Figure 5.8: Product features service illustration.

If the LUIS app finds a single keyword entity containing only one word, there is nothing
left than just to try finding the result based on this term. If any features are found, they are
returned as a result of the method. This applies for the whole method, as soon as a feature,
or more of them are found, they are returned and the method ends. If there are more words
in a single entity found, they are combined to search queries. The principle here is to go from
the most strict one, which is AND operator between the words. If there is no result, then
OR is tried and if this fails, then fuzzy logic is applied. However there must be more than
five characters in the entity for the algorithm to apply the fuzzy logic. Developers do not
need to worry about implementing fuzzy logic. According to Azure Search query syntax7,
placing tilde character at the end of the term does the job. The official documentation for
the query syntax contains an example that query blue~ will result in blue, blues and glue.

7https://docs.microsoft.com/en-us/azure/search/query-lucene-syntax
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A real life example:

∙ A user types ”IL3AMF25BLA” which is an exact order code for product IL AMF 25
LT8. This way, a product context is set to the product.

∙ InteliBot asks the user, what would they like to know about the product.

∙ The user types ”Does it work in low temperatures?”.

∙ LUIS detects low temperatures as a key word entity.

∙ The service tries to send the ”low temperatures” query to Azure Search as a single
space represents AND operator. The query also contains a filter where the product
code is specified.

∙ Azure Search returns no result.

∙ The service now tries query ”low|temperatures” as ”|” represents OR operator. The
product code is again set to the same value.

∙ Azure Search returns one result and the conversation continues by printing the feature
and asking further questions.

If more than one entity is found, very similar principle is applied. This time however,
AND and OR operators are placed between the words from all the entities together. Fuzzy
logic is not applied here. No result leads to the next step, which is to use Azure Text
Analytics instead of LUIS app. The very same process is done here with the found key
phrases. The last step of the method is to check the input as is, but only if it has one or
two words. It is based on the assumption that the input contains the feature, not the whole
sentence.

There is one other method that is important to mention. The method GetProducts-
ByFeatureAsync with a single input parameter does the opposite job. It takes the features
and finds all the products containing it. The input is also checked on keywords which are
then sent to Azure Search with AND logic. If there are no keywords found, the whole input
is checked on products.

Solutions

The principle of the method SearchSolutions is basically the same as it is in SearchProduct-
Features. There are two main differences. The first one is that after no success from LUIS
keywords, Azure Text Analytics is not used. Instead, it tries the original input with OR
logic. The next difference is that a threshold is added to every search case. It is set to 10%.
This value was set based on the experiments, where it was common that the Azure Search
returned too many documents, where most of them were with a score less then 0,1. The
basic concept of the service is shown in figure 5.9

As the information retrieval is ready, the next section will explain how it is used in the
chatbot along with the conversation logic.

8https://www.comap-control.com/products/detail/intelilite-amf25
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Figure 5.9: Solutions service illustration.

5.2.2 Chatbot

In section 4.1 we discussed that MessagesController is the place that BotConnector com-
municates with. When the chatbot starts, the very first activity that comes to the bot is
of type conversationUpdate. This is a signal that a conversation started. The controller
handles the control of the conversation flow to the RootDialog. This dialog implements
IDialog interface, so it has some members available as explained before.

Figure 5.10: InteliBot intro messages.

Figure 5.10 shows, that the very first question that InteliBot asks is to choose a category.
The choice is between four categories, or sections described at the beginning of the chapter.
The selection is in form of buttons as also seen in the figure. The Bot Framework offers
class HeroCard to work with buttons. A new object of this type with all the necessary
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properties needs to be created and passed as a parameter to PostAsync. This method,
which is a part of IDialogContext, specifically IBotToUser, takes not only a plain string but
also HeroCards and other types which it then sends as a message to a user. InteliBot has
a wrapper called MessageSender for the function of sending messages, HeroCards and even
events.

After the section pick, an activity is sent to the RootDialog where the text of the activity
is checked on the section. At this point, typing anything is disabled for a user, so that he
or she has to click on one of the options.

1 else if (activity.Text == ConversationSection.InterestedIn.Description())
2 {
3 conversationSection = ConversationSection.InterestedIn;
4 await InviteTheUser(context);
5 await LogConversationStart(context, activity.Conversation.Id,
6 conversationSection);
7 context.Call(dialogFactory.Create<InterestedInDialog,
8 QueryRecognitionResult>(null), AfterInterestedIn);
9 }

As shown in the code snippet above, if the section is ”I’m interested in...”, a dialog
InterestedInDialog is created and called. The creation is designed through factory method
design pattern9. AfterInterestedIn is a method that will be executed after the dialog ends.
The dialog in this case can end with a true or false values passing them to context.Done
member. The Boolean value specifies, whether any logical error occurred during the dialog
flow. The example of an error might be that the user asks a question the InteliBot has no
answer to multiple times. Dialog FeedbackOkDialog or FeedbackErrDialog are called based
on this value, collecting the feedback from the user and specifying what will be next to
happen.

The dialog flow of the InterestedInDialog dialog is shown in figure 5.11 although it does
not cover some scenarios such as yes/no responses that are described later. The heart of the
dialog is Message method. After the intro message from InteliBot which is simple ”What
information are you looking for?“, a user reply goes here. It is then checked, whether the
message contains any product. If yes, ProductIdentificationDialog is called. Identifying
the product from the text as well as ProductIdentificationDialog are very sophisticated
systems and were mostly implemented by other members of Xolution development team. If
a product was successfully identified from the input, the next step is to check the keywords
for the features. If any, the ProductFeaturesService is called and features are being searched
for, and the result is sent to the user. It is important to mention, that product context is
saved here by setting a private field of the dialog. This is because a user may ask about
another feature without specifying the product again as shown in figure 5.12. The keywords
are saved too. This is for the opposite case, if the user asks about a feature and his or her
next question is about the same feature but different product, without actually mentioning
the feature.

Figure 5.12 shows the question ”Do you want to know anything else about InteliLite
AMF 25:“. It is very common for a user to answer such questions with yes or no instead of
writing another question directly. This is also checked in the Message method by checking
the LUIS intents explicitly. InteliBot uses different LUIS app here than it uses for keywords.
This LUIS app is general for the whole chatbot and contains intents such as Answer.Yes,
Answer.No, intents important for other sections as well as entities important for product
recognition. However, this is not the only place where there are these yes/no controls. On

9https://en.wikipedia.org/wiki/Factory_method_pattern
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Figure 5.11: InterestedInDialog diagram.

various places in the dialog, instead of Message method, it is specified to call MessageRe-
ceived. This is where the integration of LUIS into Bot Framework comes in. Methods
with a LUIS attribute specifying an intent are called when there is an intent match with
the users input. This is possible because the dialog implements LuisDialog interface. It
is shown in the code listing below. In this example, the method executes when the input
intent is Answer.No. This is typical after questions such as ”Do you want to know anything
else about {PRODUCT}:” when yes or no answers are expected.

1 [LuisIntent(LuisConstants.Intents.Answer.No)]
2 public async Task NoneOfAbove(IDialogContext context,
3 IAwaitable<IMessageActivity> activity, LuisResult luisResult)
4 {
5 if (askedAgain)
6 {
7 askedAgain = false;
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Figure 5.12: Asking about other information.

8 currentProductContext = null;
9 await AskIntroQuestion(context, true);

10 return;
11 }
12 context.Done(false);
13 }

If no product was identified from the input, no product context is saved, the input is
checked whether it contains any product features. This is the case when the user asks for
products containing certain features. If there are no features in the input text, solutions
are checked through SolutionService. Sometimes, there is not any information found what-
soever. InteliBot then asks the user to try to reword the question. After two proceeding
unsuccessful answers, the dialog ends with an error and FeedbackErrDialog is called. On
the other hand, in certain situations, the bot waits only for a minute for a user to answer.
After one minute of inactivity, the dialog ends successfully, meaning there is true value in
context.Done. This triggers FeedbackOkDialog from the RootDialog.

Figure 5.13 shows the overall architecture of InteliBot. The contribution of the author
is also shown by green colour of the filling of the components. Orange components mean
no contribution at all. Components without any colour marks are not part of the thesis,
although there was, sometimes major, contribution to them.

33



Figure 5.13: Illustration of InteliBot architecture with the contribution of the author (green:
author’s work, orange: others’ work, white: author’s work not covered by the thesis).
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Chapter 6

Testing

The testing phase can be divided to two parts. The first part is the testing during the
development by developers themselves. The second one is user testing, where users do not
have any knowledge of the implementation.

6.1 Development phase
It is obvious that when developing an application, the developer wants to constantly test
whether the implementation works in a way he or she desires. No matter how good the
developer is, testing every change made is a good idea. This way bugs can be found
at the very beginning. Chatbots are no exception here. However, deploying a chatbot to
a communication channel after every change and then test it is not very efficient. Moreover,
debugging is in this case even greater concern than the efficiency of the process.

Figure 6.1: Bot Framework Emulator.
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Microsoft Bot Framework luckily offers a tool for local testing the chatbot without the
need of having a real communication channel. It is called Bot Framework Emulator and
an example of it can be seen in figure 6.1. A developer needs to specify the endpoint to
communicate with. When testing locally, the endpoint will be the MessagesController of
the bot that is running on the localhost. This is of course a general rule for all the chatbots
developed in Bot Builder (v3), no matter where they are currently running. In the example
from figure 6.1, the endpoint is http://localhost:3978/api/messages. This means that the
chatbot runs on port 3978 and the controller is specified as /api/messages. As stated
before, the chatbot is an MVC web application. Controllers do not have to have Controller
suffix when specifying the URL, although it would run anyway. The MessagesController
resides in Api folder of the chatbot project, thus the /api. This is shown in figure 6.2.

Figure 6.2: MessagesController location.

In addition to the endpoint, Application Id and Application Password need to be filled.
These fields are found in the Web.config file of the chatbot project and are generated on
the creation of the chatbot. When the configuration of the emulator is ready, the chatbot
application is running on localhost, the testing can start. As seen in figure 6.1, the developer
has other available features than just communicating with the chatbot. On the right side,
the activities, that are in a JSON format, can be inspected. There is a log too, containing
useful information such as HTTP return codes. The figure also shows two intro activities.
They are almost the same activities as in figure 5.10 from the previous chapter. The only
difference is the Search button which is there only for development purposes.

Debugging the application is very straightforward as well. Visual Studio integrated
development environment (IDE) offers a concept of breakpoints that can be put anywhere
in the code. The application pauses on the breakpoint hit so the developer can inspect
the code. Figure 6.3 shows that the application is paused in the execution of Message
method. Field userInput is still set to null since the code line has not run yet. However,
the developer can see other fields values. In this case, field message already contains a value
of type Activity. The next code line also shows the developer the already set value of Text
property of Activity object.

Figure 6.3: A breakpoint in Message method.

The combination of the emulator and Visual Studio IDE gives the chatbot developers
a very powerful tool for chatbot testing as well as development. In case of InteliBot,
the emulator is sometimes insufficient however. The reason is, that along with activities
containing user and bot messages, there are also events and hidden data meant for the
communication channel. In this instance, the channel is a custom made Web chat. It was
developed by Xolution front-end development team. Sometimes, events such as disabling
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or enabling the user input need to be tested too. The easiest way of testing the chatbot
through Web chat is to expose the localhost to the world. It is done by a tool called ngrok1.
The new endpoint then needs to be set for the chatbot already deployed through Azure
Portal. This way the chatbot no longer runs on the Azure where it was deployed, but
wherever the developer specified, typically the localhost. Debugging through Visual Studio
IDE is however the same.

6.2 User testing
Developers can create and test chatbots on their own. Nevertheless, the opinion from people
that have nothing in common with the implementation is vital in any application develop-
ment process. This makes sense, since users of chatbots should not have any instructions on
how to use the chatbot ahead. The goal is to make the chatbot as intuitive and user-friendly
as possible.

The whole InteliBot development process was managed by scrum methodology2. There
is no need to go into deep details. The important part is, that the customer, ComAp, defines
what they expect to be working in regular intervals called sprints. A single sprint usually
takes two or three weeks. The requirements are then split to user stories. The example of
such user story might be ”We want the bot to show the user the available solutions when
a solution key word occurs in the input text and no product features were found”. Such user
story is then divided to tasks like creating the corresponding service, implementing it into
the InteliBot or testing. After every task is done, it is then tested. The testing of the task
depends on its nature. When testing a service, a tester with no programming knowledge
would not be very helpful. However, this issue was resolved by ”Excel tests”.

Figure 6.4: Solutions service Excel test example.

Figure 6.4 shows a part of ”Excel test” for the solution service. As can be seen, now
everyone capable of working with Microsoft Excel can test the service. They just need to
specify the question, what is expected to be returned, and run the test. The test even
compares the result with expected answers and provides further information that might
be helpful for a developer. There is more useful information not shown in the figure, such
as what query went to Azure Search or at which point the algorithm returned the result.
Provided the information, it is much easier to find the bug on test case failure. The tester
then creates a bug and assigns it to a certain developer. The product features services, as
well as other services not concerned by the thesis, were tested in a similar way.

1https://ngrok.com/
2https://en.wikipedia.org/wiki/Scrum_(software_development)
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When all the conversation tasks are done, the conversation flow is tested manually at
first. It is primarily done by Xolution testing team and even the project manager. If a bug
was found, it is assigned to a developer along with the steps to reproduce it. This can be
seen in figure 6.5.

Figure 6.5: Example of a bug.

The whole user story has so called acceptance criteria, where major examples that must
work are provided. If all the tasks and bugs are resolved, the criteria are met, the user story
can be considered as done and it is closed. In certain intervals, the chatbot is deployed to the
staging version, which goes to the customer so they can test it themselves. A presentation
by the management team is followed eventually. The customer testing process involves
primarily testing by the technical support team. It is then handled to various branch offices
of the company for user acceptance test (UAT). Sometimes even selected distributors are
included, mainly from Asian region, where chatting is more popular. The customer then
sends the feedback after the process. Next user stories are then created based on it. This
process repeats until the final version is released and even afterwords.

The manual testing is not the only way of testing the conversation flow. It is also
done by end-to-end tests which are basically unit tests in .NET. They simulate real life
communication with a bot. The messages are sent to the chatbot and the responses are
compared with expected results. This way, when changing some part of the bot, in our case
InterestedInDialog or related services, any unexpected behaviour resulted from the change
can be detected straightaway. Code listing below shows a simple test with three user inputs.
These are set as Text property of toBot activity on lines 18, 21 and 26. The bot responses
are checked on various criteria such as number of returned activities (line 23) or text match
(lines 24 and 28).

1 [TestMethod]
2 public async Task InterestedInDialogProductContextPositiveAnswer()
3 {
4 var instrumentationService = new Mock<IInstrumentationService>().Object;
5 using (new FiberTestBase.ResolveMoqAssembly(instrumentationService))
6 // register all necessary components to Conversation.Container
7 using (var container = Build(Options.MockConnectorFactory | Options.ScopedQueue))
8 {
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9 // now create a root dialog, instrumentation service is just a mock, we do not
want to write to AI

10 MakeRoot = () => new RootDialog(Conversation.Container.Resolve<IDialogFactory>()
,

11 Conversation.Container.Resolve<IConversationService>(), instrumentationService,
Conversation.Container.Resolve<IQueryRecognitionService>());

12

13 SetAuthenticatedUserWithEmail();
14

15 toBot.Text = ConversationSection.InterestedIn.Description();
16 var toUserActivities = await GetResponses(container, MakeRoot, toBot);
17

18 toBot.Text = "il mrs NT 16 lt";
19 toUserActivities = await GetResponses(container, MakeRoot, toBot);
20

21 toBot.Text = "usb";
22 toUserActivities = await GetResponses(container, MakeRoot, toBot);
23 Assert.AreEqual(2, toUserActivities.Length);
24 Assert.IsTrue( toUserActivities[1].Text.StartsWith(Resource.

InterestedInDialog_AnythingElse.Substring(0,10)));
25

26 toBot.Text = "yes";
27 toUserActivities = await GetResponses(container, MakeRoot, toBot);
28 Assert.IsTrue(toUserActivities[0].Text.StartsWith(Resource.

InterestedInDialog_WhatDoYouWant.Substring(0, 20)));
29 }
30 }

Furthermore, there are also user interface (UI) tests which also simulate the communi-
cation. However, these tests do not send the messages directly to the bot. They are instead
an automation of real manual testing. Selenium3 tests are used for this scenario. The
chatbot is opened in a real web browser and the tests work with the HTML components.
This way, actions such as clicking, typing and so on can be simulated. This is shown in
code listing below where after a user question, solutions should be offered. The test then
clicks on one of the solutions and checks, whether it refers to the correct URL.

1 [TestMethod]
2 [TestCategory("Chrome")]
3 public void UIInterestedInMoreQuestions()
4 {
5 ConfigureAndStartDriver();
6

7 InterestedIn();
8

9 AgreeWithGDPR();
10

11 seleniumRepository.WaitForElementWhichContainText(Resource.
InterestedInDialog_WhatInformationLooking);

12

13 SendTextToBot("what are the outputs?");
14

15 seleniumRepository.WaitForElementWhichContainText(Resource.
InterestedInDialog_FoundForYouSolutions);

16

17 seleniumRepository.ClickOnDivWithId(convertTextToID("PGI"));
18

3https://www.seleniumhq.org/
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19 CheckUrlOpenedInNewTab("https://www.comap-control.com/solutions/technology/power-
generation-industrial");

20 }

This robust testing system should provide a guarantee that the InteliBot works according
to customers expectations.

6.2.1 Outcomes of testing

There were twelve sprints together which means approximately twelve releases. The feed-
back was processed after every release, therefore InteliBot always corresponded with cus-
tomers requirements. When artificial intelligence is involved, the results are almost never
perfect. InteliBot is no exception, some goals were not fulfilled simply because, despite the
enormous effort, systems like LUIS, Azure Search, and so on, are limited to some point as
well. Even the algorithm could be maybe improved. However, InteliBot, particularly ”I’m
interested in...” section provides reliable results in most cases.

”Excel test” concerning solutions is a good example. After the initial testing, roughly
half of the test cases were working correctly. Thresholds were adjusted, LUIS model was
trained on more utterances, changes were made in the algorithm, more synonyms were
added. The results were slightly better, around 70% of the cases were now correct. However,
the team could not come up with more ideas for the failed scenarios. It was then decided
that further improvement is not worth the effort and resources, and the results are sufficient.
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Chapter 7

Conclusion

The goal of this thesis was to get acquainted with current chatbot situation, techniques and
technologies behind chatbot development and to create and implement a chatbot called In-
teliBot capable of information search for a particular company. First, a brief history of
chatbots along with real chatbots examples were presented. Also, theoretical background
lying beneath Microsoft chatbot development technologies was covered. This includes tech-
niques such as NLP, vector semantics or Lucene search. Next, Microsoft Bot Framework
as well as Microsoft Azure services were explained in order to have everything needed for
InteliBot development. Then the algorithm used for the information retrieval together with
the implementation of ”I’m interested in...” section of InteliBot was described. The testing
process of the chatbot that accompanied the development was also covered.

Overall, the goals of the thesis as well as the requirements of the customer were ac-
complished. The ”I’m interested in...” section works correctly in most cases although there
is still a room for improvements. These improvements include adjusting the algorithm by
changing the text processing phase or Azure Search query creation process. Providing more
data for LUIS model and synonyms or implementing different conversation logic may also
contribute to better results.

Despite the sophisticated testing process of the bot, after it is put into service, there
will very probably be further demands for the change of IntelliBot. This expectation is
based on the fact, that the real customers of ComAp company have not tried InteliBot yet.
However, the nature of the changes will be most probably the same as described above.
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Appendix A

Contents of Attached CD

∙ text/ – containing LATEX sources and files used

∙ bot_source/ – containing source files of the chatbot

∙ xduris04_thesis.pdf – thesis document

∙ xduris04_video.mp4 – video

45


	Introduction
	Aims of thesis
	Structure of thesis

	Overview of chatbots
	Chatbot evolution
	Known chatbots

	Technological background
	Natural language processing
	Syntactic analysis
	Semantic analysis

	Natural language understanding
	Vector semantics
	Vectors and documents
	Word vectors

	Lucene search
	Chatbot frameworks

	Microsoft technologies for chatbot development
	Microsoft Bot Framework
	Bot Builder

	Language Understanding Intelligence Service
	Azure Text Analytics
	Azure Search

	Implementation of chatbot for information search
	Algorithm
	Implementation
	Services
	Chatbot


	Testing
	Development phase
	User testing
	Outcomes of testing


	Conclusion
	Bibliography
	Contents of Attached CD

