
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

CHATBOT CAPABLE OF INFORMATION SEARCH
CHATBOT PRO VYHLEDÁVÁNÍ INFORMACÍ

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR MICHAL ĎURISTA
AUTOR PRÁCE

SUPERVISOR doc. Dr. Ing.JAN ČERNOCKÝ,
VEDOUCÍ PRÁCE

BRNO 2019

Brno University of Technology
Faculty of Information Technology

Department of Computer Graphics and Multimedia (DCGM) Academic year 2018/2019

Bachelor's Thesis Specification
21921

Student:
Programme:
Title:

Durista Michal
Information Technology
Chatbot Capable of Information Search

Category: Speech and Natural Language Processing
Assignment:

1. Get acquainted with the current state of chatbots and respective frameworks.
2. Get acquainted with the creation of chatbots in Microsoft botframework and with a suitable cloud service

for their creation, for example MS Azure.
3. Suggest an algorithm capable of information search on a given, domain-restricted web page.
4. Implement a chatbot in the MS botframework, based on the developed algorithm and available services.
5. Assess its functionality by user testing, evaluate the tests, suggest and eventually implement

improvements.
6. Create a 30s video presenting your work.

Recommended literature:
• Joe Mayo: Programming the Microsoft Bot Framework: A Multiplatform Approach to Building Chatbots,

Microsoft Press, 2017.
Detailed formal requirements can be found at http://www.fit.vutbr.cz/info/szz/
Supervisor: Černocký Jan, doc. Dr. Ing.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2018
Submission deadline: May 15, 2019
Approval date: November 1, 2018

Bachelor's Thesis Specification/21921/2018/xduris04 Strana 1 z 1

http://www.fit.vutbr.cz/info/szz/

Abstract
"Chatbot" is a very popular term in today's artificial intelligence era. Chatbots can be
seen in business solutions more a more nowadays. The main goal of this thesis is to create
an a lgor i thm that is capable of information retrieval and implement it into a chatbot. The
information resides on a real customer's web pages. The thesis also provides an overview of
current chatbot si tuation along w i t h the Microsoft technologies used for the development.
The technological background of these technologies, mostly natural language processing
techniques, is covered too. The thesis also describes the implementat ion of the a lgori thm
and the chatbot itself as well as the real industr ia l environment testing process.

Abstrakt
Pojem "chatbot" je v dnešne j dobe umelej inteligencie veľmi p o p u l á r n y vý raz . Chatbotov
vidno s tá le viac a viac v biznis r iešeniach dnešných firiem. H l a v n ý m cieľom p r á c e je
vytvor iť algoritmus, k t o r ý je schopný vyťahovať informácie a implementovat ho do chat-
bota. Tieto informácie m o ž n o nájsť na webových s t r á n k a c h r eá lneho zákazn íka . P r á c a
rovnako poskytuje prehľad súčasnej s i tuác ie chatbotov ako aj Microsoft technológi í pre ich
vývo j . Technické detaily na k t o r ý c h tieto technológie p racu jú , p r e d o v š e t k ý m spracovanie
p r i r o d z e n é h o jazyka, sú t ak t i e ž z a h r n u t é . P r á c a popisuje i m p l e m e n t á c i u algori tmu ako aj
chatbota s a m o t n é h o spolu s procesom testovania v s k u t o č n o m priemyselnom pros t r ed í .

Keywords
chatbot, natural language processing, Microsoft Bot Framework, Bo tBui lde r , Azure Search,
Text Analy t ics , Lucene search

Kľúčové slova
chatbot, sp racovávan ie p r i r o d z e n é h o jazyka, Microsoft Bot Framework, BotBui lde r , Azure
Search, Text Analy t ics , Lucene search

Reference
D U R I S T A , M i c h a l . Chatbot Capable of Information Search. Brno , 2019. Bachelor's thesis.
Brno Univers i ty of Technology, Facul ty of Information Technology. Supervisor doc. D r .
Ing. Jan Cernocky,

Rozšírený abstrakt
Chatbo t i sú s tá le častejš ie sk loňovaným pojmom v dnešne j dobe umelej inteligencie a stro
jového učen ia . P r v ý chatboti sa ale začal i objavovať už v minu lom s toroč í . A l a n Tur ing
sa zača l zaoberať myšl ienkou, či dokáže stroj n a p o d o b n i ť rozmýšľanie človeka. Vzn iko l
vtedy t a k z v a n ý Turingov test, k t o r é h o podstata je, že ak v komunikác i i medzi strojom a
človekom bude tento človek p resvedčený o tom, že nekomunikuje so strojom, ale s ďalším
človekom, m o ž n o stroj prehlásiť za in te l igentný. P r v é pokusy pokoriť tento test sa objavi l i
už v šesťdesia tych rokoch m i n u l é h o s to roč ia , ked vznikol s y s t é m n a z v a n ý E L I Z A , k t o r ý
m o ž n o považovať za p rvého chatbota. Tento chatbot predstieral, že je terapeut. P ý t a l
sa užívateľa rôzne o t á z k y na k t o r é potom odpovedal. Veľa užívateľov došlo k záveru , že
chatbot E L I Z A s k u t o č n e pochopi l ich problémy, aj ked išlo o pomerne j e d n o d u c h ý s y s t é m
k t o r ý spracovával p r i r odzený jazyk na zák lade predef inovaných pravidiel .

V dnešne j dobe sa chatboti čoraz viac s táva jú súčasťou biznis r iešení firiem, p r e d o v š e t k ý m
vďaka ich využi teľnos t i . Chatbotov m o ž n o vidieť p r e d o v š e t k ý m ako č i a s točnú n á h r a d u pra
covníka zákazníckej podpory. Fakt , že chatbot je poč í t a čový program, nie človek, p r i n á š a
isté výhody . P o č í t a č o v ý program dokáže pracovať n e p r e t r ž i t e bez p re s t ávok . Rovnako
tak chatbot dokáže obslúžiť v podstate akýkoľvek p o č e t zákazn íkov naraz. N e v ý h o d y sú
ale oč iv idné . Nakolko je to s tá le len program, nie človek, č a s t o k r á t n ed o k áže vyhovieť
v š e t k ý m p o ž i a d a v k á m zákazn íka . A k o n á h l e zákazn ík vyboč í zo scenára , na k t o r ý je chat
bot pr ipravený, zákazn ík nedostane odpovede na o tázky, k t o r é položil . Pre to sa chatboti
využíva jú p r e d o v š e t k ý m na čas to opakované p o ž i a d a v k y zákazníkov , aby sa reá lny zamest
nanec zákazníckej podpory mohol sús t red iť na r iešenie ne t r iv iá lnych p rob lémov .

T á t o p r á c a sa z a o b e r á i m p l e m e n t á c i o u t a k é h o t o typu chatbota pre firmu C o m A p .
K o n k r é t n e , p r á c a popisuje jednu časť tohto chatbota, k t o r ý sa volá Intel iBot, z o d p o v e d n ú
za vyhľadávan ie informáci í . Tieto informácie sa t ý k a j ú p r e d o v š e t k ý m v l a s tnos t í produktov,
k to ré firma C o m A p p r e d á v a a k u k t o r ý m poskytuje nás l edný servis. Súčasťou informáci í ,
k to r é vie Intel iBot hľadať sú aj r iešenia rôznych p rob lémov , k t o r é firma p o n ú k a pre svojich
zákazníkov . P r á c a popisuje algoritmus, k t o r ý je schopný tieto informácie nájsť na zák lade
o t á z k y užívateľa ako aj k o n k r é t n u i m p l e m e n t á c i u tohto algori tmu do chatbota. P r á c a nero
zobe rá len i m p l e m e n t á c i u ale t ak t i e ž popisuje do h ĺ b k y technológie , p r e d o v š e t k ý m od firmy
Microsoft, k t o r é bol i využ i t é pre vytvorenie t a k é h o t o chatbota. P r e d o v š e t k ý m sa jedna o
Microsoft Bot Framework. Ide o veľmi p r e p r a c o v a n ý n á s t r o j na v ý r o b u sofist ikovaných chat
botov, k t o r ý poskytuje v ý v o j á r o m m o ž n o s t i na vytvorenie v podstate akéhokoľvek chatb
ota. Tento n á s t r o j uľahčuje vývoj p o s k y t n u t í m predef inovaných tr ied a m e t ó d , k t o r é m o ž n o
využiť pr i v y t v á r a n í konverzačnej logiky ako aj p r i v y t v á r a n í chatbota s a m o t n é h o . P r á c a
takisto poskytuje pohľad na s lužby Microsoft Azure . Ide o c loudovú platformu od firmy M i
crosoft, ktorej s lužby bol i p r i v y t v á r a n í Intel iBota, p r e d o v š e t k ý m s p o m í n a n é h o algori tmu,
využ i t é .

Popr i t echnológ iách sú vysve t lené aj techniky spracovania p r i r o d z e n é h o jazyka , na zák
lade k t o r ý c h tieto technológie p racu jú . Ide p r e d o v š e t k ý m o pochopenie p r i r o d z e n é h o jazyka
pomocou vektorov slov. Záver p r á c e sa venuje testovaniu Inte l iBota a zhodnoteniu výsled
kov. S priebehom vývoju chatbota bola firma C o m A p vždy o b o z n á m e n á a teda vzn ika l
pomerne veľký priestor pre i m p l e m e n t á c i u pož iadav iek , k t o r é vyp lynu l i z ich s p ä t n e j väzby.
T ý m t o sa zabezpeč i l a spokojnosť z á k a z n í k a ako aj pomerne vysoká úspešnosť Intel iBota
pr i o d p o v e d a n í na užívateľské otázky.

Chatbot Capable of Information Search

Declaration
Hereby I declare that this bachelor's thesis was prepared as an original author's work under
the supervision of D r . Jan Cernocky. A l l the relevant information sources, which were used
during preparation of this thesis, are properly cited and included in the list of references.

M i c h a l Dur i s ta
M a y 12, 2019

Acknowledgements
I would like to express my thanks to my supervisor, D r . J an Cernocky for his professional
guidance and willingness. I would also like to thank to a l l members of X o l u t i o n development
team, part icular ly L i b o r Besenyi, the technical director of the company, for his continuous
help and opinions during the work. I must not forget to thank my family and friends for
the support dur ing the study.

Contents

1 Introduction 3
1.1 A i m s of thesis 3
1.2 Structure of thesis 4

2 Overview of chatbots 5
2.1 Chatbot evolution 5
2.2 K n o w n chatbots 6

3 Technological background 8
3.1 Na tu ra l language processing 8

3.1.1 Syntactic analysis 8
3.1.2 Semantic analysis 9

3.2 Na tu ra l language understanding 10
3.3 Vector semantics 10

3.3.1 Vectors and documents 10
3.3.2 W o r d vectors 11

3.4 Lucene search 12
3.5 Chatbot frameworks 13

4 Microsoft technologies for chatbot development 15
4.1 Microsoft Bot Framework 15

4.1.1 Bo t Bui lder 17
4.2 Language Understanding Intelligence Service 18
4.3 Azure Text Analy t ics 20
4.4 Azure Search 20

5 Implementation of chatbot
for information search 23
5.1 A l g o r i t h m 24
5.2 Implementation 27

5.2.1 Services 27
5.2.2 Chatbot 30

6 Testing 35
6.1 Development phase 35
6.2 User testing 37

6.2.1 Outcomes of testing 40

1

7 Conclusion 41

Bibliography 42

A Contents of Attached CD 45

2

Chapter 1

Introduction

There are many definitions of a chatbot. The simplest one may be that a chatbot is
a computer program that is t ry ing to imitate a conversation wi th a human. It may just
scan the input from a user and look for specific keywords or words patterns and provide
an answer. It can also work i n more sophisticated way by using various services, natural
language processing systems, machine learning or artificial intelligence [3]. The input text
can come from a wri t ten text or even as a spoken word, which is then translated into a text
using various speech-to-text techniques. These voice-chatbots are also called interactive
voice response (I V R) systems 1 .

Another way to look at a chatbot might be that it is a conversational interface for
software services just like a mobile or web applicat ion. A good example of this way of
looking at a chatbot is a process of booking a flight. The user can do so by vis i t ing
a website, using mobile app, cal l ing a human agent or by chatt ing w i t h a chatbot that is
able to book a flight for h i m or her, just like the human agent would do. A l l these ways
are offering the same service - booking a flight [27].

In the context of this thesis, we can look at a chatbot as a replacement of a human
employee that provides various information or a service requested by the user. There are
many advantages for a company when it decides to use a chatbot. F i r s t of a l l , as already
mentioned, a chatbot is a computer program, which means, it can run a l l the t ime without
any exhaustion unlike a human employee. Another difference between a human and a bot
is that a single chatbot is able to assist many users at a t ime. These aspects are one of
the main reasons, why companies decide to involve chatbots i n their business solutions
more and more nowadays. However, there is no perfect chatbot that is able to answer a l l
users questions or problems yet. That is why we cannot th ink of a chatbot as a complete
replacement of a customer support employee. Better way of th ink ing is that it is a computer
assistant that is able to resolve common user requirements, which tend to repeat most of
the t ime, so that the human assistant can focus on more complicated quests.

1 . 1 Aims of thesis

The main goal of the thesis is to create a fully functional chatbot, also called Intel iBot,
for a company called C o m A p 2 . More specifically, the thesis is dedicated to a specific
InteliBot section called I'm interested in.... Th is section is responsible for searching various

x h t t p s : //en. wikipedia.org/wiki/Interactive_voice_response
2 h t t p s : //www.comap-control.com/

3

http://wikipedia.org/wiki/Interactive_voice_response
http://www.comap-control.com/

information from the company website so that users do not have to find it manually. The
thesis describes an algori thm used for the information retrieval along wi th the integration of
the a lgor i thm wi th in the bot and the implementat ion of the chatbot section itself. Intel iBot
is designed and developed by a company called X o l u t i o n 3 .

The thesis also aims to explain basic techniques ly ing behind text processing which is
crucial i n chatbots. Moreover, it provides an overview of the available tools for chatbot
development as well as more i n depth explanation of Microsoft technologies used to create
chatbots, par t icular ly Intel iBot.

1 .2 Structure of thesis

In chapter 2, a quick history of chatbots is provided together w i t h some examples of already
implemented and used chatbots. Chapter 3 explains basic natural language processing tech
niques that lie behind the technologies used for chatbot development, par t icular ly Microsoft
ones, that are described in chapter 4. Chapter 5 explains, how these technologies are used
in the implementat ion of Intel iBot, specifically the I'm interested in... section of i t . In
chapter 6, the testing process of the chatbot is described and chapter 7 summarizes the
work.

3 h t t p s : //www.xolution.sk/

4

http://www.xolution.sk/

Chapter 2

Overview of chatbots

Al though the word chatbot is very popular and well-known nowadays, it was not always
the case. Here is a brief history.

2.1 Chatbot evolution

Al though it may look like a chatbot is pretty recent invention, the very first program that
can be considered as a chatbot was a system called E L I Z A by Joseph Weizenbaum in
1966. However, the history of chatbots can be traced back to 1950's when A l a n Tur ing,
the B r i t i s h computer scientist, started to wonder, whether machines can think. In 1950, he
published an article called Compu t ing Machinery and Intelligence followed by Tur ing test
[31]. The whole idea behind is, that i f a machine can imitate a human i n such a way that
it convinces the other person to believe that they are communicat ing wi th another human,
not a machine, then the machine can be considered as intelligent [25].

E L I Z A was created to pretend to be a therapist who asks questions and even provides
answers. In its basis, it is a simple natural language processing system that can carry
on a conversation. It uses pattern matching to recognize phrases like " Y o u are X " and
translates them into suitable outputs like " W h a t makes you think I am X ? " . The success
of E L I Z A was pretty remarkable. M a n y people believed that it really understood their
problems and even continued to do so after the operation of the program was explained to
them [15, 33].

User: You are like my father in some ways.
EUZA: WHAT RESEMBLANCE DO YOU SEE
User: You are not very aggressive but I think you don't want me to notice that.
EUZA: WHAT MAKES YOU THINK 1 AM NOT VERY AGGRESSIVE
User: You don't argue with me.
EUZA: WHY DO YOU THINK I DON'T ARGUE WITH YOU
User: You are afraid of me.
EUZA: DOES IT PLEASE YOU TO BEU EVE I AM AFRAID OF YOU

Figure 2.1: E L I Z A example [32].

Though it is considered to be the first chatbot ever, it was not un t i l 1994 when the term
'Cha t te rBot ' was coined by Michae l M a u l d i n [16] to describe these conversational systems

5

[25]. Fast-forward to the year 2017, when Mobi le W o r l d Congress 1 took place i n Barcelona
and chatbots were the main headliners. They were supposed to be the next big thing.
However, even today they have not reached the level that web and mobile applications have
in terms of popularity, usabil i ty or adaptat ion wi th in the society. Anyway, they are getting
popular and better every day [17].

2.2 Known chatbots

A s mentioned i n a previous section, the amount of chatbots is increasing almost on a dai ly
basis, especially nowadays when artificial intelligence and machine learning are one of the
major fields in today's technical world. Here are some honourable mentions.

A.L.I.C.E

It is one of the most famous and one of the first chatbots to go online. The name itself
stands for Ar t i f i c i a l Linguis t ic Internet Computer En t i t y but is commonly referred to as
Al icebot or Al i ce . It is a natural language processing chatbot developed i n 1995 by Richard
Wallace [13], later rewritten to Java i n 1998. In 2001, Wallace published an A I M L (artificial
intelligence markup language) specification. It was designed to react to human input as
natural ly as possible. A l i c e was originally inspired by previously mentioned E L I Z A and
won many awards including three Leobner P r i ze s 2 (2000, 2001, 2004). It is the oldest
Tur ing Test contest which started i n 1991, however, the bot is s t i l l unable to pass the test
completely. The chatbot even served as an inspirat ion for a movie called Her by Spike Jonze
in which a human falls i n love wi th a b o t 3 [9].

Checkbot

Checkbot is a very unique chatbot from Slovakia that came to light in 2019. Sharing
disinformation from conspiracy websites or sources without any author is very actual and
sad phenomenon that often leads to rise of extremism a l l around the world. Th is bot is able
to determine whether a part icular article is potential ly dangerous or misleading or not. It
runs on Facebook Messenger and the whole process of recognizing such potential dangers
is based on asking a user certain questions and giving relevant and useful answers.

The very first question a user gets is to provide a l ink to the article he wants to check.
This l ink is then ran through a list of known conspiracy websites 5 and the Checkbot tells
if there was a match or not. However, it is impossible to check a l l unwanted webs. If the
article was not found i n the list, the chatbot at least provides a list of suspicious keywords
that occurred in i t . It also continues wi th asking further questions like whether there
is an author, whether it spreads hatred against certain group of people and so on. The
Checkbot then comes to a conclusion i f the article is a potential threat and gives you a list
of problematic facts that resulted from the questioning [24].

x h t t p s : //www.mobileworldlive.com/mobile-world-congress-2017/
http: / / aisb.org.uk/events/loebner-prize

3https://www.imdb.com/title/ttl798709/
4 h t t p s : //www.checkbot.sk/
5 h t t p s : //www.konspiratori.sk/zoznam-stranok.php

G

http://www.mobileworldlive.com/mobile-world-congress-2017/
http://aisb.org.uk/
https://www.imdb.com/title/ttl798709/
http://www.checkbot.sk/
http://www.konspiratori.sk/zoznam-stranok.php

f \ Checkbol 9 x

Položím ti pár otázok. •*•

Je známy autor tohto
^ 4 článku?

_j To je d obré
znamenie. Môžeš si
dohľadat jeho ďalšiu
tvorbu a pozrieť sa, 0
čom a ako píše.

fjapíšte správu..

'uí B? 3S O é> & •t

Figure 2.2: Sample communicat ion wi th Checkbot.

U-Report

Unlike previously mentioned chatbots, this chatbot is not very talkative. W h e n the user
starts to chat w i th this bot, it only gathers basic information about the user like age,
country and gender. A t the end it offers to access more information about the bot i f
the user has other questions. Th is bot is used by international chi ld advocacy nonprofit
U N I C E F . After gathering a l l the information about the user, U-Repor t sends out polls
about urgent social issues on a regular basis. Users can then respond wi th their inputs and
U N I C E F subsequently uses this information for potential pol icy recommendations [28].

There is an example when this quite simple chatbot made a significant impact . Users
in L ibe r i a were asked whether teachers were coercing students into sex in exchange for
better grades. The results were that about 86% of the asked children reported that this
was an issue. This resulted in a collaboration between Liber ia ' s Minis te r of Educa t ion and
U N I C E F to end this practices [29, 28].

U-Report Global ;

m

• 0 you want to knew how 10 keep
your Mfiv&rsaiiofls secret on
Facebooft'? Reply
a. Yea
t>. NO
c I already know

O

0
Will you use ins lu ncliori 10 o'fMsct
your internet privacy? Reply Y95 <n
No

Type 8 message]£}
>-

Figure 2.3: Sample communicat ion w i t h U-Repor t bot.

'https: //ureport.in/

7

Chapter 3

Technological background

There are certain technologies and algorithms ly ing beneath the services that the chatbot in
this thesis is using. A l t h o u g h complete understanding of these technologies is not necessary
for the developer to bu i ld such chatbot, as these services mostly act as a black box, it is
very beneficial to have at least some idea about them. This chapter is dedicated to the
basics of such techniques.

3.1 Natural language processing

No computer program is able to fully understand a piece of text and convert it to a program
mer friendly data structure that explains the real meaning of the text [8]. A n d computers
are very good when it comes to working w i t h such data structures. Database tables or some
important medical records are a good example. W h e n it comes to processing such data,
computers are much faster than humans. However, processing unstructured data is much
more difficult task for a computer. There are no standardised rules that can be applied on
such data, unlike an ordinary computer program, which is essentially just a set of rules that
it should operate by. Humans have developed the abi l i ty to understand natural language
over the t ime that a human race exists. We can understand the real-world meaning of a text
wri t ten i n a book. We can feel the emotions. We can read between lines. A computer is
unable to do such things [26].

Na tu ra l language processing, or N L P , is a subfield of art if icial intelligence. Its main
goal is to process and analyze natural language data. In other words, it is focused on the
interaction between humans that use natural language and computers. His tory of N L P can
be traced back to 1950s when already mentioned Tour ing Test was introduced.

Most of the N L P systems, or techniques, are based on machine learning due to recent
significant advances i n the machine learning field. Th is approach can be also called as
statist ical N L P . O n the other hand, there is so called rule-based N L P . A s the name suggests,
such systems are designed as a set of rules which can be i n a form of grammar or heuristic
rules for stemming for example. There are many applications of N L P in real life. These
include language translat ion applications, word processors and of course, chatbots.

There are two major areas where N L P is used:

3.1.1 Syntactic analysis

According to Oxford dictionary, the definition of a syntax is that it is the arrangement of
words and phrases to create well-formed sentences i n a language or that it is a set of rules

8

for or an analysis of the syntax of a language . In the context of N L P , the main goal of
syntactic analysis is to evaluate the nature of how the language aligns wi th the grammatical
rules. Algor i thms basically derive meaning from words by using these rules [10]. Here are
the most commonly used syntax techniques:

• lemmatizat ion to return the base dict ionary form of a word - lemma (word better is
turned into good),

• morphological segmentation to divide words into units - morphemes (unbreakable into
un-break-able),

• s temming for retrieving the root form of the word (studying is transferred to study by
ommit ing the -ing suffix),

• part-of-speech tagging to get the part of speech for words (word play can be a noun
as wel l as a verb),

• word segmentation to divide a large text into distinct units (texts are divided into
words, sentences, topics etc.),

• sentence breaking to recognize sentence boundaries,

• parsing to determine the parse tree of the sentence based on a context-free grammar 2 .

These are just examples of the techniques used i n syntactic analysis. A l t h o u g h they are
very important part of natural language processing, their deep understanding is not neces
sary for a developer to bu i ld a chatbot when using one of the popular chatbot frameworks.
The second part, which is semantic analysis is much more interesting and important for
a chatbot developer.

3.1.2 Semantic analysis

The word semantics is defined as the branch of linguistics and logic concerned wi th meaning.
Par t icu lar ly i n the lexical context it is concerned wi th the analysis of word meanings and
relations between t h e m 3 . This part is the difficult one i n natural language processing.
Algor i thms are t ry ing to understand the meaning and interpretation of words and sentences
[10]. Here is a list of some techniques used i n semantic analysis:

• machine translation to translate a text from one language to another,

• named entity recognition (N E R) for classifying named entities from a text (from
sentence "London is a nice c i ty" the word London may be classified as a Location
entity),

• Na tu ra l language understanding (N L U) , see 3.2,

• W o r d sense disambiguation to determine, which part icular words sense was meant for
a sentence it occurred in .

Some of these techniques are essential i n chatbot development and w i l l be explained
more in depth in further sections.

x h t t p s : //en.oxforddictionaries.com/definition/syntax
2 h t t p s : //en. wikipedia.org/wiki/Parse_tree
3 h t t p s : //en.oxf orddictionaries.com/def inition/semantics

9

http://ionaries.com/definition/synt
http://wikipedia.org/wiki/Parse_tree
http://orddictionaries.com/def

3.2 Natural language understanding

Al though many people think that the term natural language processing is more or less the
same as natural language understanding, there is a difference between these two. Na tu ra l
language understanding, or N L U , is a subset of a wider field of N L P . A s already mentioned,
natural language processing is a common word for a l l the systems that let humans talk to
computers i n their natural language. It is able to break down the input text, analyze i t ,
create a response i n natural language and so on [18].

Meanwhile, N L U is a narrow, but very complex part that is responsible for processing
unstructured input into structured data that computers can understand and act accordingly.
Humans are very good when it comes to mispronunciations, colloquialisms, swapped words
and other issues typica l for human nature. However, it is a real challenge for a machine to
handle these unpredictable inputs. In other words, N L U can be understood as the machine's
abi l i ty to get the meaning of what people say i n their natural languages [18].

In order to understand the natural input, computers have to transfer it to a structured
ontology by using various techniques. They have to extract, identify and resolve entities.
Also it is necessary to get the semantic meaning wi th in the context in order to identify
intents [18]. A sentence such as: „1 want a flight to London on M a r c h 8" would have
a structure like:

wantrflight {intent} / London {location} / M a r c h 8 {date}

A n d exactly entities and intents are essential in chatbot development i n terms of N L U .
To understand where these come from, vector semantics, par t icular ly word vectors have to
be explained.

3.3 Vector semantics

Vector models are a part of natural language processing for a long t ime. Whether it is named
entity extraction, relation extraction, parsing or semantic role labeling, these models are
widely used when it comes to such applications. Furthermore, they are the number one
choice when computing semantic similarity, i n other words the s imilar i ty between two words,
documents and so on [15].

These models are usually represented as a co-occurrence matr ix quantifying how often
words co-occur. We can think of vectors i n two contexts.

3.3.1 Vectors and documents

The first one is a document context represented by a term-document mat r ix where rows
represent a word i n the vocabulary and columns a document. In figure 3.1 there is an
example of a selection of such matr ix . It shows the occurrence of sample words i n various
plays by Shakespeare.

So, for example, the vector for Twelfth Night is [1,2,58,117] and for Henry V it is
[15,36,5,0]. A collection of vectors, vector space, is defined by their dimension. For instance,
the second dimension of these vectors represents how many times the word soldier occurred
in the text. The documents from figure 3.2 can be represented as points i n 4-dimensional
space identified by their vectors. Since 4 dimensions are not ideal to understand and draw
in 2-dimensional text, here is a visualizat ion i n two dimensions, for the word battle and the
word fool:

10

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 1 8 15
soldier 2 2 12 36

fool 37 58 1 5
clm\ II 5 117 0 0

Figure 3.1: Example of term-document mat r ix for various Shakespeare plays [15].

4 0 -
H e n r y V [5,15]

15

t
m^ 1 0 " I J u l i u s C a e s a r [1,8]

5 -

f , _
A s Y o u L i k e It [3 7,1]

>

T w e l f t h N i g h t [5S,1]
>

[— i f - i r

5 1 0 1 5 2 0

1 1

2 5 3 0 3 5 4 0

fool

1 1 1 1

4 5 5 0 5 5 6 0

Figure 3.2: Document vectors visual izat ion for the word battle and the word fool [15].

A s seen i n figure 3.2, the vectors where there are more fools and clowns look much more
alike than the other two vectors. It is no coincidence, since the first two plays are comedies
whereas the other two are not.

A l though it is not important for a chatbot developer to understand how vectors work
in documents, it gives a good foundation to comprehend the word vectors.

3.3.2 Word vectors

W h e n dealing wi th simple tasks such as spam classification, t radi t ional N L P approaches
can do the job. These techniques however do not capture the syntactic and semantic
relationships between words. For example, words dog and cat bo th refer to almost the
same thing. They both represent an animal that is often mentioned in texts about pets but
techniques such as one-hot encoding 1 are unable to recognise their similarity.

Vectors can represent words just like they represent documents as shown i n the previ
ous section. W o r d vectors are mult idimensional vectors of real numbers where each point
represents a dimension of the meaning of the word. In other words, semantically similar
words w i l l have similar vectors. The principle is s imilar to document vectors. For instance,
words like spoon and fork w i l l have more similar word vectors to the word knife compared
to the word faculty.

Representing words as vectors has another advantage. Since a vector is i n its basis a row
of numbers, mathematical operations can be made upon it . Two vectors can be subtracted
or added:

king — man + woman = queen (3-1)

4https://hackernoon. com/what-is-one-hot-encoding-why-and-when-do-you-have-to-use-it-
e3c6186d008f

11

https://hackernoon

This example demonstrates how subtracting maleness and adding femaleness to the word
king results i n the new vector representing word queen. A s already said, each dimension
captures a meaning and the real number, or in other words, the weight, represents how
close is the association to i t . Figure 3.3 should provide a better imagination.

Fe
m

in
in

ity

S
? Ro

ya
lty

Man
Woman

Boy ®
Girl O

Prince D Princess B
Queen B
King B Monarch B

Figure 3.3: Example of weights for selected vocabulary of 9 words [2].

„You shall know a word by the company it keeps!" is a famous quote by J . R . F i r t h
in N L P from 1957. S imply put, words that occur i n similar contexts usually represent
similar meanings. The context can be understood as its surrounding, so called window. For
example, two-window context means two preceding and two following words of the input.
Ant ic ipa t ion or predict ing the probabil i ty of a context of a word creates its word vector.
In other words, by making such predictions on the chance that words are contextually
proximate to a part icular word, the weights that create the vector are learned. Word2vec
m o d e l 5 is the right choice for this task. It is a single hidden layer neural network 6 for
reconstructing the context. The output of such word2vec models is however not the vector
itself since the output represent the probabilities that a random word from the corpus is
contextually close to the input word. The vector can be explained as it is just a side effect,
since it is the numerical representation of the word. The numbers are the weights from the
hidden layer learned by the neurons. Therefore 200 neuron hidden layer w i l l result i n 200
dimensional word vector [5].

There is a lot more to explain regarding word vectors. Whether it comes to mathemat
ical details, neural networks, neurons, weights to loss functions and so on. Nevertheless,
explanation above should give a chatbot developer just the right idea of how machines
extract the meanings of words and on what basis the N L U used in chatbot development is
built .

3.4 Lucene search

Lucene search is also one of the technologies ly ing behind services used to create the chatbot
described i n this thesis. It is a Java l ibrary capable of full-text search. Its designed to easily
add text search into applications or websites. The heart of Lucene search is its full-text
index where the content can be added. Developer can then perform queries on it and get

5 h t t p s : //en.wikipedia.org/wiki/Word2vec
6 h t t p s : //en. wikipedia.org/wiki/Artificial_neural_network

12

http://wikipedia.org/wiki/Word2vec
http://wikipedia.org/wiki/Artificial_neural_network

the result i n the way he or she specifies. It can be ranked by relevance to the query or other
specifications such as date. The content may come from basically any source, whether it
is a database, website or a file [1]. M a n y searches on the Internet are based on Lucene,
including major companies like Twi t te r ' or L i n k e d l n 8 .

Lucene searches already mentioned index instead of the text directly. It is the reason
why it is able to achieve relatively fast responses. For a better imagination, it can be
explained as getting the pages w i t h the specific keyword by looking at the index i n a book
instead of just going through every page of i t . This approach is called an inverted index

[!]•
Indexes consist of documents. If an index is buil t from a database table of users, then

a single user is one document of the index. Documents consist of fields. It is a simple name-
value pair. Indexing means adding documents to so called IndexWriter , whereas searching
means retrieving them v i a so called IndexSearcher. Searching can be carried out only on
already buil t indexes. It is done by making a query and passing it to an IndexSearcher.
So called hits are then returned. In this case, query has its own syntax 9 which allows to
specify fields, their weights, boolean logic and other functionality [1].

3.5 Chatbot frameworks

Chatbot framework is a place where a developer can bu i ld a chatbot from a scratch. It
typical ly provides a set of A P I s , services, predefined classes and so on. This means that
a chatbot developer must have advanced programming skills to use such tools. There are
also so called chatbot platforms, which, unlike frameworks, provide easy-to-use tools for
user without any programming knowledge. They usually offer drag-and-drop functionality
that allows anyone to create a chatbot. These platforms include A i v o , Botsify, Chatfuel and
many others. However, to create more sophisticated chatbots, one w i l l need a framework
to do so. Here are some of the most popular chatbot frameworks.

Amazon Lex

This chatbot framework from A m a z o n provides a service for creating conversational inter
faces for any program using either text, or voice. It offers automatic speech recognition to
convert speech to text and natural language understanding for identifying intents of the
input. The famous voice assistant A m a z o n A l e x a is powered by the same technologies, so
developers have the tools they need to bu i ld sophisticated bots, just like A l e x a [6].

For bui ld ing a conversational chatbot using A m a z o n Lex, a developer does not need
to have deep learning expertise. He or she just specifies the basic conversation flow in its
console. It dynamical ly adjusts the responses. Chatbot can be bui l t , tested and published
v ia the console as well . It can be then added to web applications, mobile devices or chat
platforms like Facebook Messenger. It offers integration wi th A W S Lambda , which offers
to run the code without any managing servers or provisioning. Moreover, the integration
wi th other A W S services like A m a z o n Cogni to , A m a z o n C l o u d Watch and many other is
also possible [7].

A m a z o n Lex is probably one of the best choices i n terms of voice capabilities since it may
be integrated w i t h A l e x a , par t icular ly wi th A l e x a Skills K i t (A S K) . It is because developers

7 h t t p s : //twitter.com/
8 h t t p s : //www.linkedin.com/
9 h t t p : //www. lucenetutorial.com/lucene-query-syntax, html

13

http://www.linkedin.com/
http://lucenetutorial.com/lucene-query-

are provided wi th a choice to export their chatbot schema into A S K , which enables them
to create a bot that can communicate using voice without any extra scaffolding. Another
advantage this framework provides is that there is a big predefined list of subjects and
entities prepared for the bots. A l l these facts contribute to an opinion, that A m a z o n L e x is
a good pick when it comes to s implic i ty of the commands or for less experienced developers
[4]-

DialogFlow

Formerly known as A p i . a i or Speaktoit, D ia logFlow is a next framework that enables de
velopers to create voice and text-based conversational interfaces such as chatbots. It is now
owned by Google, however, there is some history behind. Speaktoit was founded i n Russia
back i n 2010. In 2012 it got funding from Intel Cap i t a l [14], in 2014 it released A p i . a i to
developers a l l around the wor ld to create Siri- l ike voice solutions [34]. It also stands behind
Assistant, a famous personal assistant applicat ion, which was even in top 10 A n d r o i d A p p s
of 2011 [30].

Dia logFlow is able to analyze various input types, whether it is text or voice input.
Responding to a user is similar, it can respond either w i th synthetic speech or through text.
Just like A m a z o n Lex, it also provides natural language understanding system to understand
the input from the user. It comes w i t h prebuilt entities, but developers can create their
custom entity types. Another feature is that it provides an integrated code editor, which
enables developers to bu i ld serverless applications l inked wi th their conversational interface.
They can also provide custom WebHook which is hosted on premises or in the cloud.
Furthermore, more than 20 languages and 14 different platforms are supported [11]. It also
comes wi th an analytics tools so that the developer has an opt ion to see how well is their
agent doing and improve it eventually [12].

Microsoft Bot Framework

This framework is the place to go when searching for robust capabilities and serious cus
tomizat ion. Compl ica ted things tend to be more powerful. Tha t is why this framework
was chosen for creating the chatbot i n this thesis and w i l l be described more in depth in
the next chapter.

14

Chapter 4

Microsoft technologies for chatbot
development

Microsoft offers a set of cloud-based services, also known as Microsoft Azure or s imply
Azure . M a n y of these services are applicable to chatbot development, especially Language
Understanding Intelligence Service (L U I S) , Azu re Bot Service or Azu re Search. However,
the first th ing that needs to be covered is Microsoft Bot Framework.

4.1 Microsoft Bot Framework

There are three main components of Bot Framework: channels, the Bot Connector and the
chatbot itself.

Chatbot

Figure 4.1: Communica t ion flow between the components [19].

Channels are applications that communicate w i th the chatbot. These include standard
apps like Skype, Facebook Messenger, Slack but even emails, S M S and many others. It is
important to note that developers can bui ld their custom channels like a web chat on their
website for instance. T h e n there is Bot Connector. It is a cloud component that these
means of communicat ion send messages to as well as receive them from. The chatbot is the

15

th ing that developer cares about the most, since he or she needs to bu i ld the conversation
logic i n it [19].

Communica t ion between the Bot Connector and other components is called routing.
Despite that, there are other functionalities that connector offers as seen in figure 4.2. In
addi t ion to routing, it is able to store the state of the bot. State means custom information
about the conversation, users or even the combinat ion of these two, a user w i th conversation.

Message
Routing

Multiple
Channels

Conversation
and Users

Chatbot and/
or User-

Specific Data

Figure 4.2: Services the connector offers [19].

The connector communicates w i th chatbot component v i a activities. A n act ivi ty is
a message that is able to carry the text, attachments like images, but it is also used for
managing the conversation. Sometimes there is a need to send some event to or from the
chatbot. A good example of this might be disabling the input text field so that the user
cannot type any text. W h e n certain conditions are met, the chatbot sends an act ivi ty to
the connector w i th such event, which is then sent to the channel and it prevents the user
from wri t ing any text in this scenario. The Bot Connector is platform-agnostic because its
interface is a R E S T A P I . Tha t means that while the Bot Framework S D K (v3) is developed
i n C # programming language and supports only C # and node.js programming languages,
the Bot Connector supports a l l programming languages since it offers a Connector R E S T
A P I [19].

The chatbot component is the place where a l l the conversation logic happens. The
chatbot can have any purpose the developer decides it to have. F r o m the very start of
the conversation, to the end of it , the chatbot is responsible for the flow. O f course, the
conversation can go in the direction the bot is not designed for. Sometimes users s imply
t ry what the chatbot is capable of. That means that even when a user asks a question that
the bot has no answer to, because it is from completely different topic, it is a good practice,
that chatbots respond that they do not understand at least.

Chatbots , just like any other applications, can ca l l several external services i n order to
manage the conversation flow. A s w i l l be shown in the further sections, there are Microsoft
services used i n the chatbot described in this thesis. Whether it is these services, the Bot
Connector, channels or the chatbot component, it is obvious that the whole system is buil t
on a distr ibuted architecture unlike many different applications which reside on the same
device [19].

16

Bot Connector Chatbot Service 1 Service 2

<- -Route- -

Marine
-Reule-

! < Reply 1

I
•J
I

kj- Response 1

Query-

Figure 4.3: Components communicat ing wi th each another [19].

Figure 4.3 indicates not only the journey of the input text from the user on a partic
ular channel to its response, but also that a l l separate components of the whole chatbot
communicate across the Internet. Developers should be very careful when implementing
external services into their chatbots. The Internet connection plays the major part here
performance-wise. Poor Internet connection therefore results in the poor user experience,
no matter how well-designed is the chatbot [19].

Now, that the components of the Bot Framework have been explained, let's have a closer
look at the chatbot component itself. Bo t Bui lder S D K (v3) offers developers a way to create
their custom chatbots from the scratch.

4.1.1 Bot Builder

Chatbot is i n our case a model view controller (M V C) web appl ica t ion 1 . Every chatbot
has the MessagesController class that contains the Post method. This is the place, or
the endpoint, that the Bot Connector communicates wi th . It receives activities that are
processed and then passed to the Dialogs that manage the conversation flow. It is also
pr imar i ly responsible for creating a typing act ivi ty so that a user sees that the chatbot is
typing while it is really creating a response for the user.

A l l the methods to manage the conversation flow as well as its state are contained by
a class called Dialog. It has the Serializable at tr ibute decoration, since every dialog needs
to be serialized. It is because the framework transfers the dialog along wi th its state across
the Internet. Every dialog must at some point implement the IDialog interface. A t some
point because dialogs, just like any other classes can inherit from each other. IDialog has
a StartAsync member wi th one IDialog Context parameter. It is the first method that is
called when entering the dialog [19].

1 pub l i c async Task StartAsync(IDialogContext context)
2 {
3 context.Wait(MessageReceivedAsync);
4 }

x h t t p s : //en. wikipedia.org/wiki/Model-view-controller

17

http://wikipedia.org/wiki/Model-

The IDialog Context implements interfaces wi th members responsible for the conversa
t ion flow. Par t icu la r ly it implements IDialogStack and IBotContext. Figure 4.4 shows the
relationships between the interfaces.

IBotData IBotToUser

^interface"
IBotCortest IDialogStack

IDialogContext

Figure 4.4: Hierarchy of the IDialog Context interface [19].

The IDialogStack is responsible for managing the stack of the dialogs since one dialog
can ca l l another one and thus creates a F I F O stack 2 . Th is cal l ing is done by Call member.
The opposite action, ending the dialog is executed by Done, popping it from the stack.
Another very important member of this interface is Wait which is also used in the code
snippet above. It specifies, which method w i l l be next to cal l i n the dialog. In this example,
it w i l l wait for the act ivi ty coming to the chatbot. Mos t l ikely it w i l l be a text from the
user, but as explained before, it can be also an event or any other type of activity.

A s for the IBotContext, its most important part is the reference to the current activity.
The last of the most important members of the IDialog Context interface is the PostAsync
member, which is part of the IBotToUser and is responsible for posting an act iv i ty back to
the user. Keep i n mind , that this act ivi ty can be again not just a message, but an event as
well [19].

4.2 Language Understanding Intelligence Service

A s discussed in the previous chapters, communicat ing wi th machines so they understand
what humans say is no easy task. There are techniques how to get intents and entities
from user input that were also covered previously. Microsoft offers its users a service, that
does a l l the work for them. It is called Language Understanding Intelligence Service, or
L U I S . It is a part of Microsoft 's Cogni t ive Services which also include functionality like
speech-to-text service and so on.

Alongside wi th intents and entities there is the th i rd major term, utterance. It can be
understood as the text that the user types. Intents and entities are then extracted from
these utterance texts received from Bot Connector. These extracted entities and intents are
in a form of J S O N text that L U I S returns. Here is an example of such J S O N from L U I S
documentation [22]:

1 {
2 "query": "I want to c a l l my HR rep.",
3 "topScoringlntent": {

2 h t t p s : //en.wikipedia.org/wiki/FIFO_(computing_and_electronics)

18

4 "intent": "HRContact",
5 "score": 0.921233
6 },

7 " e n t i t i e s " : [
8 {
9 " e n t i t y " : " c a l l " ,

10 "type": "Contact Type"
11 "startlndex": 10,
12 "endlndex": 13,
13 "score": 0.7615982
14 }

15]

16 }

L U I S A P I can be used in any applicat ion like mobile or web apps, not only i n chatbot.
However, Bot Framework integrates L U I S as part of its features, which means it is able to
convert these J S O N texts into predefined objects. The framework can then provide the data
in form of parameters for a chatbot. Th is process is completely covered by the framework,
so the developer does not need to worry about that. He or she just needs to specify the
logic, typical ly the conversation logic, based on this information input [19].

Microsoft offers very intuit ive web user interface to work wi th L U I S 3 . After signing in ,
users can create a new app where they can t ra in their model . A model is a set of entities,
intents as well as the utterances which are used to t ra in the model . In this context, a model
refers to the same thing as L U I S app, since it is just a single machine learning model . After
creating the model, users can create intents. A s described before, intent, as the name
suggests, is the users intention or goal which they desire to accomplish. This intent is
comprised of its name and the probable utterances that user may typical ly say. The more
utterances the developer has, the better. However, there are sometimes no previous sample
data. Th is is the case of the chatbot described i n the thesis. Nevertheless, it is a good
practice to create at least five utterances for an intent [19].

After creating intents, user may define their custom entities or use prebuilt ones such
as numbers or dates. The next step following the creation of the entities is to label them in
the utterances of the intents. Label ing is very user friendly, an user just needs to select one
or more words and then pick from the list of entities as shown i n figure 4.5. The same rule
applies here as well, the more labeled entities, the better is the accuracy when recognizing
users real input texts. In the J S O N example provided before, the entity called Contact
Type was recognized from the input text. Instead of the word call, there could be words
like message or email which would result in a very similar J S O N .

W h e n the model is completed, which means it has sufficient number of utterances for
al l the intents the developer designed, it can be trained. Tra in ing is easy one-click action
on the but ton Train. After the model is trained, it is ready to be deployed. However, there
is also an option to test it first. A developer just needs to open the t ra in tab and type
any question or text, that a user might ask. Th is test inputs should be different from the
utterances that the model is trained upon. If the results are relevant, there is no other
obstacle to publ ish the app. After publishing, the L U I S app is ready to be used i n an
application providing the endpoint, model ID and subscription key. These can be found in
the settings menu.

Models should be designed very carefully since it is very easy to t ra in them in a wrong
way so that they w i l l provide unexpected results. Another important note to keep i n mind

3 h t t p s : //www.luis.ai/

19

http://www.luis.ai/

Search for or create an entity ... Search for or create an entity ...

T o p i c . E r ProductSW (List) •

ProductSuffnt (Simple) •

ProductOrderCode (List) •

1
Type about 5 e

ProductSW (List) •

ProductSuffnt (Simple) •

ProductOrderCode (List) •

ProductSW (List) •

ProductSuffnt (Simple) •

ProductOrderCode (List) •

Prqd jctFsmjIies (List) • 1
1 1 Utterance

ErrorCode (Simple) •

what does
DcwinloadFtleType (List) • r what does

Figure 4.5: Labe l ing two words mp 12 as a custom entity called ErrorCode. Th is entity is
mainly used i n Troubleshooting section of the Intel iBot.

is that L U I S service is free only up to five transactions per second. If the appl icat ion is
expected to be used more frequently, better instance needs to be bought 1 .

4.3 Azure Text Analytics

This is another service which is used for working w i t h a text. It has four main features
which include: entity recognition, sentiment analysis, language detection and key phrase
extraction. The last of the mentioned features w i l l be used i n the a lgori thm described in
section 5.1. The techniques used for key phrase extraction i n this service are very similar
to those i n L U I S . The difference here is that the user cannot add their own t ra ining data
or machine learning models. The models are pretrained by Microsoft so that they can be
used straightaway [23].

4.4 Azure Search

It is also a cloud-based service offered by Azure . Azure Search is based on Lucene search
explained in the previous chapter. It exposes and extends some functionality of the Lucene
search for scenarios that are usable for Azu re Search. There are four steps when executing
a query:

• Query parsing

• Lex ica l analysis

• Document retrieval

• Scoring

Figure 4.6 shows the process of how the results are retrieved from the search request. A
search request is a query wi th parameters, query terms, filter expression or ordering rules
[20].

4 h t t p s : //azure.microsoft.com/en-us/pricing/details/cognitive-services/language-
understanding- i n t e l l i g e n t - s e r v i c e s /

20

http://microsoft.com/en-us/pricing/det

Top
Search Engine 50 t

Index

Standard
AsciifbJding
Keyboard
Pattern
Simple
Stop

Whitespace

Language

< Custom >

Figure 4.6: Azure search architecture from original documentation [20].

Parsing the query text is the first step when processing a full text search query i n order
to extract terms. These terms are then used when retrieving documents from the index.
To capture as many matches from the index as possible, query terms are sometimes divided
and reorganized to new ones. The best matches are then sent to the appl icat ion [20].

W h e n parsing the query, two languages are supported. The parameter query Type in
the search request can be set to simple which is the default value, or full. The simple one
supports similar functionality as users know from web search engines. It is intuit ive and
often there is no further need of any client-side processing. F u l l mode adds support for
other operators such as fuzzy, wi ldcard or regex. There is another parameter searchMode
responsible for Boolean queries. W h e n set to any, it reflects or operator wi th in the words.
W h e n set to all, explicit specification of Boolean operators is needed. In this case, a space
means and. Query tree is the outcome of this process and can be understood as sub-queries.
A sub-query can have different types such as phrase query in case of quoted terms, term
query i n case of standalone terms and so o n 5 [20].

The structured query tree is processed by lexical analyzers. They take the input from
the parser, process it and the tokenized terms are sent back to be integrated to the tree.
Based on specific rules, the query terms are transformed to a given language. This process
is called l inguistic analysis and includes:

• Ge t t ing the root form of a word

• Ge t t ing r id of unnecessary words such as the or and

• Retr ieving components from composite words

• Changing upper case words to lower case

This analysis is only applied to complete terms meaning term or phrase queries, thus
prefix, wi ldcard, regex or fuzzy queries are not supported. They bypass this stage except
lowercasing the words [20].

The next stage is document retrieval. A s mentioned in section 3.4 about Lucene, retriev
ing means finding documents wi th in the index. Retr ieving is best explained by indexing

5 h t t p s : //docs.microsoft.com/sk-sk/azure/search/query-lucene-syntax

21

itself. Every searchable field has its inverted index. Index contains a list of terms from
al l documents. Terms map to the list of documents where they appear. In order to create
terms of the index, the engine executes very similar lexical analysis as in the previous step.
It is a good practice, al though not necessary, to use the same analyzers for indexing as well
as for the search. Terms wi th in the index and query terms look then more alike [20].

The last step is to score the matches based on their statist ical properties. Term fre
quency-inverse document frequency 6 or T F / I D F is responsible for this task. However the
scoring formula has more to it than T F / I D F . F i e l d length as well as other factors play a
role here 7 . The scores can be then tuned by two ways: adding scoring profiles to the index h

is the first opt ion and term boosting is the second one. It provides an operator which
boosts the terms that need to have higher scores. However, this operator can be used only
in full Lucene syntax by setting the query Type parameter to full [20].

It is also important that this service is free only for l imi ted functionality. Chatbots
however usually need to have better tier which is p a i d 9 . This is also the case regarding this
chatbot.

https: //en.wikipedia.org/wiki/Tf-idf
7https://lucene.apache, org/core/4_0_0/core/org/apache/lucene/search/similarities/

TFIDFSimilarity.html
8 h t t p s : //docs.microsoft, com/sk-sk/azure/sear ch/index-add-scoring-prof i l e s
9 h t t p s : //azure.microsoft.com/en-us/pricing/details/search/

22

http://wikipedia.org/wiki/Tf-idf
https://lucene.apache
http://microsoft.com/en-us/pricing/det

Chapter 5

Implementation of chatbot
for information search

The main goal of the chatbot described i n the thesis, also called Intel iBot, is to provide
support for customers and technicians of a company called C o m A p 1 . The main business of
the company is to sell controllers, mainly used i n the electricity area. For better imagination,
a good example of such controller is that when the main source of electric power i n a hospital
is out, the controller immediately resolves the problem by activating the backup generator
to generate electricity. Hospitals can under no circumstances be without electricity at any
t ime for obvious reasons. The company also provides further support for such controllers
al l over the world.

InteliLite A M F 2 5
The most advanced Auto Mains Failure (AMF) gen-set controller

Order COde: 1UAMF25BAA, IL3AMF25BLA

Ask for more info NOW

New generation of one of the world's most successful controllers in its class.

Advanced single gen-set controller for stand-by and prime power applications,

> Single gen-set controller for stand-by and prime power applications
> Easy Co n sta I. :: r i igure anc j j í

> 5 languages in the controller
> 3 level of password
> 3 sets of alternative configuration
> Direct communication with EFi engines
> Tie r 4 final ready
> Total remote monitoring and control
> Cloud-based monitoring and control via WebSupervlsor
> wide range of communication capabilities Including:

• connection via RS232. RS4S5, CAN and on board USB
• internet access using Ethernet, GPRS. 3G or AG
• support for Modbus (TCP/RTU) and SNMP(vl/v2c- including traps)

Figure 5.1: Intel iLite A M F 25 specification.

x h t t p s : //www. comap-control.com/

23

http://comap-control.com/

InteliBot has four m a i n sections. However, only one of them is subject of the thesis.
The section is called " I 'm interested in...". Th is is mainly used by so called buyers of
the organizations. In the case of previously mentioned hospital example, these people are
responsible for purchasing the equipment that the hospital requires. Th is equipment may
include things such as X - r a y generators, operating tables and many other devices used by
the hospital staff.

C o m A p s controllers 2 are one of such things, although it is not the first thing that
comes to m i n d when ta lk ing about devices used in hospitals. The buyers typical ly have
no technological knowledge of such controllers. Th is section is p r imar i ly used to provide
the information about them as well as other products of the company 3 . Th is information
can be found at the part icular product website i n a form of bullet points of the products '
features as seen i n figure 5.1. The user does not need to visit the website to find the feature
of the product, he or she can s imply ask the chatbot about i t . A n example of this might
be to ask, whether the controller works i n low temperatures. Users have many ways to ask
about this part icular feature. Another way to ask about the same feature would be to ask
whether the controller is capable of working in the cold weather. However, sometimes there
is a need to find the right products based on some feature. Another part of the section is
to give the user a reference to solutions the company provides on different areas'1 if the user
asks. Th is is done by offering the links to part icular solutions in form of buttons the users
can click on i n the bot. Intel iBot is designed to understand these questions and provide
a suitable answer.

There are two major steps to achieve the task of finding the required information. The
first one is to create an algori thm which delivers the most relevant results based on the
user input . The next step is then implementing this a lgori thm into the chatbot's dialogs.
The implementing phase goes wi th continuous testing and fixing found bugs as well as
implementing suggested improvements. Th is w i l l be described in a moment.

To get the idea about the whole Intel iBot, other three sections w i l l be briefly described.
The first section is the password issue section, which handles password related problems
such as resetting password. The next one is download files section. Users can download
product-related files there without the need to visit the product website. Then there is
a troubleshooting section where error codes or other problems are resolved. It is much
faster to use the bot for these issues than looking into the datasheets or manuals of the
controllers and find what part icular error code means. These sections are mostly used by
the technicians that are aware of the products and their behaviour or technical details.

5.1 Algor i thm

The basic concept of the a lgor i thm is simple. The heart is the Azure Search described in
section 4.4. The goal is to get the best possible result from it based on the input that the
user provides. In order to do so, certain steps need to be done. The most important step
is to create a good search query from the input . The utterances that come to the bot are
typical ly not suitable texts for such query. Passing the whole sentence that the user types
w i l l not lead to relevant results from Azure Search. More often than not, there w i l l be no
result at a l l . Tha t is where Azure services L U I S and Text Ana ly t ics need to be used. This
w i l l be described in a moment. The basic concept of the a lgor i thm is shown i n figure 5.2.

2 h t t p s : //www.comap-control.com/products/controllers
3 h t t p s : //www.comap-control.com/products
4 h t t p s : //www.comap-control.com/solutions

24

http://www.comap-control.com/products/controllers
http://www.comap-control.com/products
http://www.comap-control.com/solutions

Firs t of a l l , the Azure Search indexes for product features and solutions need to be filled
w i th the data. A s for the features of the products, the structure or the fields for a single
document representing a single product are: Id, Name, OrderCode, Features as seen in
figure 5.3. The first three are of type string and refer to the product itself. The Name
field is the full name of a product. The OrderCode field is the unique identification of the
product. For every product it can be found on its web page. The last string field is the Id
which is a key field for the index and is generated from the OrderCode field. The last field
Features is a list of the features for the product. The features reside at every products web
page i n form of bullet points as stated before.

+ Add field + Add sLibfield O Delete

FIELD N A M E TYPE

P d Edm.String

Nam? Edm.String

OrderCode Edm.String

Features Collection^...

Figure 5.3: Product features document structure from Azure Por ta l .

In order to get the structured data for the index, it was decided to manually create an
Microsoft E x c e l file which contains very similar fields as needed for the index documents.
Th is way it is easy to import the data from the E x c e l file to the index. Microsoft Exce l
offers export ing X L S X files, which is a default E x c e l file format, to comma-separated values
(C S V) . The import is done by a web tool called BotManager . There is a field to select
a C S V file for uploading the product features as seen in figure 5.5. Th is tool was created
by other members of the X o l u t i o n development team.

25

A B C D
1 Product Code [iL Product Name - Product Description Features

2 IN-NT MRS InteliNano NT MR' InteliNano NT MRS gen
"Centre er z cr 5 n| e
gen-set operating in

=1 in M T m i ic M T n - < - - I : M - . - • - • M T ILIAC -.^.-I
"itana-oy ana prime

Figure 5.4: Products features E x c e l file structure.

Uploading the solutions'' is very similar to the previous process. The difference is that
the documents have different structure. The fields are: id, name, webPage, phrases. The
name field is the name of the solution, id is as in the previous case the key identifier for
the index and is generated from the name. The webPage is a l ink to the part icular solution
web page and the phrases field contains phrases by which the solution can be found.

Bot Manager Synonymes

DASHBOARD

TRENDS

CONVERSATIONS

Import Product Features
select source csv file to update data

Choose Fils No fie chosen

Figure 5.5: Product features file field i n BotManager .

Another important step to get the Azure Search ready for information search is to upload
synonyms into i t . Azure Search offers an option to do so by adding synonym maps. It is
done by A P I cal l , however, BotManager provides a user interface for this task. Words in
one row, separated by commas or a special operator "=>" are one set of synonyms. W h e n
comma is used, the query w i l l expand the term wi th OR operator between the synonym
phrases. The operator "=>" is responsible for replacing a term sequence of a query that
equals to left hand side, to whatever is on the right hand side of the operator [21].

Synonymes Editor
Write a new line to add alterations separated by comma

Product features and solutions T

weather.djst
event.record
measure.meter.statistic
so I a r,j5.y, re n ewab I e ; f u tu re, fiy b rid
ship ;vessel, marine
wifi,wireless

Figure 5.6: Synonyms input field in BotManager .

The last visible row of the input from figure 5.6 means, that whenever there is term wifi
in the query, it w i l l expand to wifi OR wireless. The very same expansion would be the
result i f there was wireless i n the query. A n example of the "=>" operator below shows

https: //www.comap-control.com/solutions

26

http://www.comap-control.com/solutions

that query Los Angeles w i l l be always rewrit ten to LA. It is however not applicable i n the
opposite way, so LA w i l l not be replaced wi th Los Angeles.

Los Angeles = > L A

After the Azure Search indexes are prepared, search queries can be sent into them.
These queries need to be constructed from the input text. However, not every user input
is meant for searching the information, thus retrieving documents from the indexes as w i l l
be shown in the implementat ion section. The basic concept of creating a query is again
simple. For product features it is as follows: pass the utterance through the L U I S , get
so called keywords from it and t ry different logic combinations as a query. If there is not
a single feature found, repeat the steps and instead of L U I S use the Azure Text Analy t ics .
Its key phrases extraction function is used in this case to extract keywords. A g a i n , i f no
features were found, either there are really no such features that the user asked for i n the
part icular product, or the a lgori thm was s imply unable to find them. Typ ica l ly it is the
first case scenario, but the a lgori thm is not perfect either, and may sometimes fail.

A s for the solutions part, the a lgori thm is very similar to product features. The input
is sent to L U I S , keywords are extracted, various combinations of these keywords are sent to
the Azure Search. However, i f there is no success, the Text Ana ly t ics is not used. Instead,
the a lgor i thm tries to send the original input w i th OR operators between the words into the
Azure Search. N o success again means that there is really no answer for the user question
or the a lgori thm failed again. Moreover, no success on solutions usually means no answer
to the user question whatsoever, since the solution search typical ly follows the product
features search as w i l l be shown i n the next section.

5.2 Implementation

The whole chatbot is implemented i n C # programming language as it is supported by Bot
Bui lder S D K (v3). F i n d i n g the right information from the Azure Search, whether it is
product features or solutions is done by mult iple methods. There is no need to describe a l l
of them, however there are two methods, that handle the a lgori thm itself. One for product
features and one for solutions.

5.2.1 Services

Each of these two methods resides i n separate services. There is a service for features called
ProductFeaturesService and a service for solutions called SolutionService. The services
are components of the repository pattern which is part of Domain-Dr iven Des ign 6 . The
architecture is shown i n figure 5.7.

Product features

M e t h o d SearchProductFeatures is the heart of finding the features. It takes one manda
tory parameter textToSearch and several arbi trary parameters, so that certain steps of the
method can be skipped as the information is already passed to the method. One of these ar
bi t rary parameters is productCodes, which is usually set to some product. The textToSearch
is of a type string and represents the input, where the features should be found. The input

6 h t t p s : //en.wikipedia.org/wiki/Domain-driven_design

27

http://wikipedia.org/wiki/Domain-driven_design

Figure 5.7: Archi tecture of the services.

goes first to the L U I S app called Web Sense. The app is very simple, it has only two intents.
Question intent for possible user questions and None intent for anything other than that.
It also has only three entities. Key Word entity is the important one. It represents the
keywords that are then passed to the Azure Search.

Figure 5.8 shows the basic idea behind the service.

Figure 5.8: Product features service i l lustrat ion.

If the L U I S app finds a single keyword entity containing only one word, there is nothing
left than just to t ry finding the result based on this term. If any features are found, they are
returned as a result of the method. This applies for the whole method, as soon as a feature,
or more of them are found, they are returned and the method ends. If there are more words
in a single entity found, they are combined to search queries. The principle here is to go from
the most strict one, which is AND operator between the words. If there is no result, then
OR is t r ied and i f this fails, then fuzzy logic is applied. However there must be more than
five characters in the entity for the a lgori thm to apply the fuzzy logic. Developers do not
need to worry about implementing fuzzy logic. Accord ing to Azure Search query syntax ,
placing tilde character at the end of the term does the job. The official documentation for
the query syntax contains an example that query blue- w i l l result i n blue, blues and glue.

7 h t t p s : //docs.microsoft.com/en-us/azure/search/query-lucene-syntax

28

http://microsoft.com/en-us/azure/

A real life example:

• A user types " I L 3 A M F 2 5 B L A " which is an exact order code for product I L A M F 25
L T 8 . This way, a product context is set to the product.

• Intel iBot asks the user, what would they like to know about the product.

• The user types "Does it work i n low temperatures?".

• L U I S detects low temperatures key word entity.

• The service tries to send the "low temperatures" query to Azure Search as a single
space represents AND operator. The query also contains a filter where the product
code is specified.

• Azure Search returns no result.

• The service now tries query "low|temperatures" as " | " represents OR operator. The
product code is again set to the same value.

• Azure Search returns one result and the conversation continues by pr int ing the feature
and asking further questions.

If more than one entity is found, very similar principle is applied. This t ime however,
AND and OR operators are placed between the words from a l l the entities together. Fuzzy
logic is not applied here. N o result leads to the next step, which is to use Azure Text
Analy t ics instead of L U I S app. The very same process is done here wi th the found key
phrases. The last step of the method is to check the input as is, but only if it has one or
two words. It is based on the assumption that the input contains the feature, not the whole
sentence.

There is one other method that is important to mention. The method GetProducts-
ByFeatureAsync w i th a single input parameter does the opposite job. It takes the features
and finds a l l the products containing it . The input is also checked on keywords which are
then sent to Azure Search w i t h AND logic. If there are no keywords found, the whole input
is checked on products.

Solutions

The principle of the method SearchSolutions is basically the same as it is in SearchProduct-
Features. There are two main differences. The first one is that after no success from L U I S
keywords, Azure Text Ana ly t ics is not used. Instead, it tries the original input w i t h OR
logic. The next difference is that a threshold is added to every search case. It is set to 10%.
This value was set based on the experiments, where it was common that the Azure Search
returned too many documents, where most of them were w i t h a score less then 0,1. The
basic concept of the service is shown i n figure 5.9

A s the information retrieval is ready, the next section w i l l explain how it is used in the
chatbot along wi th the conversation logic.

8 h t t p s : //www.comap-control.com/products/detail/intelilite-amf 25

29

http://www.comap-control.com/products/detail/intelilite-amf

OR operator
between input

words

No solutions

"LIE

Figure 5.9: Solutions service i l lustrat ion.

5 .2 .2 C h a t b o t

In section 4.1 we discussed that MessagesController is the place that BotConnector com
municates wi th . W h e n the chatbot starts, the very first activity that comes to the bot is
of type conversationUpdate. Th is is a signal that a conversation started. The controller
handles the control of the conversation flow to the RootDialog. T h i s dialog implements
IDialog interface, so it has some members available as explained before.

Figure 5.10: Intel iBot intro messages.

Figure 5.10 shows, that the very first question that Intel iBot asks is to choose a category.
The choice is between four categories, or sections described at the beginning of the chapter.
The selection is in form of buttons as also seen in the figure. The Bot Framework offers
class HeroCard to work wi th buttons. A new object of this type wi th a l l the necessary

30

properties needs to be created and passed as a parameter to PostAsync. Th is method,
which is a part of IDialogContext, specifically IBotTolIser, takes not only a pla in string but
also HeroCards and other types which it then sends as a message to a user. Intel iBot has
a wrapper called MessageSender for the function of sending messages, HeroCards and even
events.

After the section pick, an act ivi ty is sent to the RootDialog where the text of the act ivi ty
is checked on the section. A t this point, typing anything is disabled for a user, so that he
or she has to click on one of the options.

1 else i f (a c t i v i t y . T e x t == ConversationSection.Interestedln.DescriptionO)
2 {

3 ConversationSection = ConversationSection.Interestedln;
4 await InviteTheUser(context);
5 await LogConversationStart(context, activity.Conversation.Id,
6 ConversationSection);
7 context. C a l K d i a l o g F a c t o r y .Create<InterestedInDialog,
8 QueryRecognitionResult>(null), A f t e r I n t e r e s t e d l n) ;
9 }

A s shown i n the code snippet above, i f the section is " I 'm interested in. . ." , a dialog
InterestedlnDialog is created and called. The creation is designed through factory method
design pa t te rn 9 . Afterlnterestedln is a method that w i l l be executed after the dialog ends.
The dialog i n this case can end wi th a true or false values passing them to context.Done
member. The Boolean value specifies, whether any logical error occurred during the dialog
flow. The example of an error might be that the user asks a question the Intel iBot has no
answer to mult iple times. Dia log FeedbackOkDialog or FeedbackErrDialog are called based
on this value, collecting the feedback from the user and specifying what w i l l be next to
happen.

The dialog flow of the InterestedlnDialog dialog is shown i n figure 5.11 although it does
not cover some scenarios such as yes/no responses that are described later. The heart of the
dialog is Message method. After the intro message from Intel iBot which is simple „ W h a t
information are you looking for?", a user reply goes here. It is then checked, whether the
message contains any product. If yes, ProductldentificationDialog is called. Identifying
the product from the text as well as ProductldentificationDialog are very sophisticated
systems and were mostly implemented by other members of X o l u t i o n development team. If
a product was successfully identified from the input, the next step is to check the keywords
for the features. If any, the ProductFeaturesService is called and features are being searched
for, and the result is sent to the user. It is important to mention, that product context is
saved here by setting a private field of the dialog. Th is is because a user may ask about
another feature without specifying the product again as shown i n figure 5.12. The keywords
are saved too. This is for the opposite case, i f the user asks about a feature and his or her
next question is about the same feature but different product, without actually mentioning
the feature.

Figure 5.12 shows the question „Do you want to know anything else about Intel iLite
A M F 25:". It is very common for a user to answer such questions wi th yes or no instead of
wr i t ing another question directly. Th is is also checked i n the Message method by checking
the L U I S intents explicit ly. Intel iBot uses different L U I S app here than it uses for keywords.
This L U I S app is general for the whole chatbot and contains intents such as Answer. Yes,
Answer.No, intents important for other sections as well as entities important for product
recognition. However, this is not the only place where there are these yes/no controls. O n

9 h t t p s : //en.wikipedia.org/wiki/Factory_method_pattern

31

http://wikipedia.org/wiki/Factory_method_pattern

^roductHV
e -_ti :y

Print (Solutions) +
Reward question

Saved
product
ontext

Product
identification

Dialog end

Print
features

Product
identified

Save product
content

Features
found

"Product" or
J l Product Feature"

intent

Keywords
found

Features
found

Fea:.-i"£?
found

Print
features

"Whal do you
want to know

about..?"
^ Features + Keywords ^ Saved

\found y ^ \ f o und ./^keywords

Figure 5.11: InterestedlnDialog diagram.

various places in the dialog, instead of Message method, it is specified to ca l l MessageRe-
ceived. Th is is where the integration of L U I S into Bot Framework comes in . Methods
wi th a L U I S at tr ibute specifying an intent are called when there is an intent match wi th
the users input . Th is is possible because the dialog implements LuisDialog interface. It
is shown i n the code l is t ing below. In this example, the method executes when the input
intent is Answer.No. Th is is typica l after questions such as "Do you want to know anything
else about { P R O D U C T } : " when yes or no answers are expected.

1 [LuisIntent(LuisConstants.Intents.Answer.No)]
2 p u b l i c async Task NoneOfAbove(IDialogContext context,
3 IAwaitable<IMessageActivity> a c t i v i t y , LuisResult l u i s R e s u l t)
4 -[

5 i f (askedAgain)
6 {

7 askedAgain = f a l s e ;

32

8 currentProductContext = n u l l ;
9 await AsklntroQuestion(context, tr u e) ;

10 return;
11 }

12 context.Done(false) ;
13 }

If no product was identified from the input , no product context is saved, the input is
checked whether it contains any product features. This is the case when the user asks for
products containing certain features. If there are no features i n the input text, solutions
are checked through Solutions'ervice. Sometimes, there is not any information found what
soever. Intel iBot then asks the user to t ry to reword the question. After two proceeding
unsuccessful answers, the dialog ends wi th an error and FeedbackErrDialog is called. O n
the other hand, i n certain situations, the bot waits only for a minute for a user to answer.
After one minute of inactivity, the dialog ends successfully, meaning there is true value in
context.Done. T h i s triggers FeedbackOkDialog from the RootDialog.

Figure 5.13 shows the overall architecture of Intel iBot . The contr ibut ion of the author
is also shown by green colour of the fi l l ing of the components. Orange components mean
no contr ibution at a l l . Components without any colour marks are not part of the thesis,
although there was, sometimes major, contr ibution to them.

33

Botlvlanager tool for data impart

LUIS data Synonyms
data

Features and
solutions data

Figure 5.13: I l lustrat ion of Intel iBot architecture wi th the contr ibution of the author (green:
author's work, orange: others' work, white: author's work not covered by the thesis).

34

Chapter 6

Testing

The testing phase can be divided to two parts. The first part is the testing during the
development by developers themselves. The second one is user testing, where users do not
have any knowledge of the implementation.

6.1 Development phase

It is obvious that when developing an application, the developer wants to constantly test
whether the implementat ion works i n a way he or she desires. N o matter how good the
developer is, testing every change made is a good idea. This way bugs can be found
at the very beginning. Chatbots are no exception here. However, deploying a chatbot to
a communicat ion channel after every change and then test it is not very efficient. Moreover,
debugging is in this case even greater concern than the efficiency of the process.

Bel Framework Fmulator - CuirupPikilDc - • X

Fik H l VHm Coru-irtJlrtrl Http

P BOT EXPLORES @ * LweChat [http;//toüL. M

- ENDPOINT + O fee-Mfticr wwi i tx i •- fijlm l i m i n g

E P tUtp/AKJtlO«:]97rV_. rrttpy,1 oca Ih^iJ&T^pf'mes sages INSPECTOR-J*ON

• SERVICES fl +

" V t w r m r n u " : [1

W t w ' i [1

" t e x t " : '?ei3.i;-c i*5uc" #

" t i t l e ' s fMBWPd I i i « - ,
" t y p e " : " I r f n c k " ,
%«1m"| "INTRO PASiWHO"

Hello, any name is IntcliSflt [D]

" t e x t " : '?ei3.i;-c i*5uc" #

" t i t l e ' s fMBWPd I i i « - ,
" t y p e " : " I r f n c k " ,
%«1m"| "INTRO PASiWHO"

Krt " t i t l t " : "C^pft löKl F i l « " p

"type": "wÖHck'j

.'. - j - -« : -.1.. ;. ' . I - '
" v i l v t " : "INTRO FTLf5-"

I
Password issut

Down load Files

"tia*.-; " I ' w i n t f r » t * d i n , . , " ,
" t i t l * " ["Vm i n t c r r s t r d lr».
-typ»-; -i^^k-.,

Password issut

Down load Files

I'm interested in...
LOC

utirn rannr - r ' ing tn- r-TMirty hot* rd fc-a* i j

rLl ! l'J!-^(EdEt nnrsk » t t l n f s
TrouMestiootiog

LOC

utirn rannr - r ' ing tn- r-TMirty hot* rd fc-a* i j

rLl ! l'J!-^(EdEt nnrsk » t t l n f s
POST 291 d i r e c t l i n e . s t a r t t o n u e - r M t i o n

[l l : l £ > : 5 4] M i K u i f HEIID , r / n w i s
POST 291 d i r e c t l i n e . s t a r t t o n u e - r M t i o n

[l l : l £ > : 5 4] M i K u i f HEIID , r / n w i s
" I n t f - l i B o t [3] "

0 [11)1VIM] WWT m

±0*1'. 4-1 -.JK'.JI . . • : j'. i~ j- . Li-. iL i [l l : l l ! 5 4 | i - n t ü i f i l

Q Type your message- Q

Figure 6.1: Bot Framework Emulator .

35

Microsoft Bot Framework lucki ly offers a tool for local testing the chatbot without the
need of having a real communicat ion channel. It is called Bot Framework Emula tor and
an example of it can be seen i n figure 6.1. A developer needs to specify the endpoint to
communicate wi th . W h e n testing locally, the endpoint w i l l be the MessagesController of
the bot that is running on the localhost. This is of course a general rule for a l l the chatbots
developed in Bot Bui lder (v3), no matter where they are currently running. In the example
from figure 6.1, the endpoint is http://localhost:3978/api/messages. Th is means that the
chatbot runs on port 3978 and the controller is specified as /api/messages. A s stated
before, the chatbot is an M V C web applicat ion. Controllers do not have to have Controller
suffix when specifying the U R L , al though it would run anyway. The MessagesController
resides i n Apt folder of the chatbot project, thus the /api. Th i s is shown in figure 6.2.

J Controllers
J £i Api

t> a c* MessagesController.es
> SC« BotController.es
t> s c* HomeController.es
t> a C* RedirectController.es

l> Dialogs

Figure 6.2: MessagesController location.

In addi t ion to the endpoint, Application Id and Application Password need to be filled.
These fields are found in the Web.config file of the chatbot project and are generated on
the creation of the chatbot. W h e n the configuration of the emulator is ready, the chatbot
application is running on localhost, the testing can start. A s seen i n figure 6.1, the developer
has other available features than just communicat ing wi th the chatbot. O n the right side,
the activities, that are i n a J S O N format, can be inspected. There is a log too, containing
useful information such as H T T P return codes. The figure also shows two intro activities.
They are almost the same activities as in figure 5.10 from the previous chapter. The only
difference is the Search but ton which is there only for development purposes.

Debugging the applicat ion is very straightforward as well . V i s u a l Studio integrated
development environment (IDE) offers a concept of breakpoints that can be put anywhere
in the code. The applicat ion pauses on the breakpoint hit so the developer can inspect
the code. Figure 6.3 shows that the applicat ion is paused i n the execution of Message
method. F i e l d userlnput is s t i l l set to null since the code line has not run yet. However,
the developer can see other fields values. In this case, field message already contains a value
of type Activity. The next code line also shows the developer the already set value of Text
property of Activity object.

173 E . - public a sync TaskMessage(IDialogContext context j -IAwaitable<:r.M.essageActi\/ity>- result) cont<
174 •5- - {
175 * - + var - message • = • a wait • resul t ; message = {Activity}

o 176 i + userlnput-= message. Text ;| userlmput - nullr mess age.Text = "Does IL AMF 25 LT work in low temperatures?"

Figure 6.3: A breakpoint i n Message method.

The combination of the emulator and V i s u a l Studio I D E gives the chatbot developers
a very powerful tool for chatbot testing as well as development. In case of Intel iBot,
the emulator is sometimes insufficient however. The reason is, that along wi th activities
containing user and bot messages, there are also events and hidden data meant for the
communicat ion channel. In this instance, the channel is a custom made Web chat. It was
developed by X o l u t i o n front-end development team. Sometimes, events such as disabling

36

http://localhost:3978/api/messages
http://MessagesController.es
http://BotController.es
http://HomeController.es
http://RedirectController.es

or enabling the user input need to be tested too. The easiest way of testing the chatbot
through Web chat is to expose the localhost to the world. It is done by a tool called ngrok1.
The new endpoint then needs to be set for the chatbot already deployed through Azure
Por ta l . This way the chatbot no longer runs on the Azure where it was deployed, but
wherever the developer specified, typical ly the localhost. Debugging through V i s u a l Studio
I D E is however the same.

6.2 User testing

Developers can create and test chatbots on their own. Nevertheless, the opinion from people
that have nothing in common wi th the implementat ion is v i t a l in any applicat ion develop
ment process. Th is makes sense, since users of chatbots should not have any instructions on
how to use the chatbot ahead. The goal is to make the chatbot as intuit ive and user-friendly
as possible.

The whole Intel iBot development process was managed by scrum methodology 2 . There
is no need to go into deep details. The important part is, that the customer, C o m A p , defines
what they expect to be working in regular intervals called sprints. A single sprint usually
takes two or three weeks. The requirements are then split to user stories. The example of
such user story might be "We want the bot to show the user the available solutions when
a solution key word occurs in the input text and no product features were found". Such user
story is then divided to tasks like creating the corresponding service, implementing it into
the Intel iBot or testing. After every task is done, it is then tested. The testing of the task
depends on its nature. W h e n testing a service, a tester w i th no programming knowledge
would not be very helpful. However, this issue was resolved by "Exce l tests".

e C 0 E

LUIS Result 1 TODO Question Expected categories Result Returned categories LUIS Result

a what controller can Parallel Gen sets success * Parallel Gen sen* score: 0,303l73sa

Intent:
Question[c,swi754)
Entities: bts standby
generator! 11.9212048),

3 h m c a m control

•Telecom [Application)
* Parallel Gen sets
* MSS success

* Telecom (application)* score;
0.55SM3S6
* Parallel Gen sels* score: 0.34570757
* MRS* score: 0.137E9555

Intent:
Question[o.SM7S2535)
Entities: tel ecom site
power
SyStem(0_76l3S13),

Figure 6.4: Solutions service E x c e l test example.

Figure 6.4 shows a part of "Exce l test" for the solution service. A s can be seen, now
everyone capable of working wi th Microsoft E x c e l can test the service. They just need to
specify the question, what is expected to be returned, and run the test. The test even
compares the result w i th expected answers and provides further information that might
be helpful for a developer. There is more useful information not shown i n the figure, such
as what query went to Azure Search or at which point the algori thm returned the result.
Provided the information, it is much easier to find the bug on test case failure. The tester
then creates a bug and assigns it to a certain developer. The product features services, as
well as other services not concerned by the thesis, were tested i n a similar way.

1 h t t p s : //ngrok.com/
https: //en.wikipedia.org/wiki/Scrum_(software_development)

37

W h e n a l l the conversation tasks are done, the conversation flow is tested manual ly at
first. It is pr imar i ly done by X o l u t i o n testing team and even the project manager. If a bug
was found, it is assigned to a developer along wi th the steps to reproduce i t . This can be
seen in figure 6.5.

2726 Interested In dialog - line 428 - bot has an issue

Q Michal Durista c5 1 comment Add tag

• Closed A-'it ComAp

Reason ft Verified iteration ComAp\Web Search Sprint 3b

Re pro Steps

If below steps are run. the bot breaks down (bot responses not included)

* I'm interested
• InteliViJion 8 Marine
* language
• Inteljvisjojn UJoijch
* language
• bot ĥ s an issue

Figure 6.5: Example of a bug.

The whole user story has so called acceptance criteria, where major examples that must
work are provided. If a l l the tasks and bugs are resolved, the criteria are met, the user story
can be considered as done and it is closed. In certain intervals, the chatbot is deployed to the
staging version, which goes to the customer so they can test it themselves. A presentation
by the management team is followed eventually. The customer testing process involves
pr imar i ly testing by the technical support team. It is then handled to various branch offices
of the company for user acceptance test (U A T) . Sometimes even selected distributors are
included, main ly from A s i a n region, where chatt ing is more popular. The customer then
sends the feedback after the process. Next user stories are then created based on it . This
process repeats unt i l the final version is released and even afterwords.

The manual testing is not the only way of testing the conversation flow. It is also
done by end-to-end tests which are basically unit tests in . N E T . They simulate real life
communicat ion wi th a bot. The messages are sent to the chatbot and the responses are
compared wi th expected results. Th is way, when changing some part of the bot, i n our case
InterestedlnDialog or related services, any unexpected behaviour resulted from the change
can be detected straightaway. Code l ist ing below shows a simple test w i th three user inputs.
These are set as Text property of toBot ac t ivi ty on lines 18, 21 and 26. The bot responses
are checked on various cri teria such as number of returned activities (line 23) or text match
(lines 24 and 28).

1 [TestMethod]
2 p u b l i c async Task InterestedlnDialogProductContextPositiveAnswer()
3 {

4 var instrumentationService = new Mock<IInstrumentationService>().Object;
5 using (new FiberTestBase.ResolveMoqAssembly(instrumentationService))
6 // r e g i s t e r a l l necessary components to Conversation.Container
7 using (var container = BuiId(Options.MockConnectorFactory I Options.ScopedQueue))
8 {

Planning

Resolved Reason

Fixed
Priority

1

Severity
3 - Medium
Activity

38

9 // now create a root d i a l o g , instrumentation service i s j u s t a mock, we do not
want to write to AI

10 MakeRoot = () => new RootDialog(Conversation.Container.Resolve<IDialogFactory>0

11 Conversation.Container.Resolve<IConversationService>(), instrumentationService,
Conversation.Container.Resolve<IQueryRecognitionService>());

12

13 SetAuthenticatedUserWithEmailO;
14

15 toBot.Text = ConversationSection. Interestedln.DescriptionO ;
16 var t o U s e r A c t i v i t i e s = await GetResponses(container, MakeRoot, toBot);
17

18 toBot.Text = " i l mrs NT 16 I t " ;
19 t o U s e r A c t i v i t i e s = await GetResponses(container, MakeRoot, toBot);
20

21 toBot.Text = "usb";
22 t o U s e r A c t i v i t i e s = await GetResponses(container, MakeRoot, toBot);
23 Assert.AreEqual(2, toUserActivities.Length);
24 Assert.IsTrue(toUserActivities[1].Text.StartsWith(Resource.

InterestedInDialog_AnythingElse.Substring(0,10)));
25

26 toBot.Text = "yes";
27 t o U s e r A c t i v i t i e s = await GetResponses(container, MakeRoot, toBot);
28 Assert.IsTrue(toUserActivities[0].Text.StartsWith(Resource.

InterestedInDia!og_WhatDoYouWant.Substring(0, 20)));
29 }

30 }

Furthermore, there are also user interface (UI) tests which also simulate the communi
cation. However, these tests do not send the messages directly to the bot. They are instead
an automation of real manual testing. Se len ium 3 tests are used for this scenario. The
chatbot is opened in a real web browser and the tests work wi th the H T M L components.
Th is way, actions such as cl icking, typing and so on can be simulated. Th is is shown in
code l is t ing below where after a user question, solutions should be offered. The test then
clicks on one of the solutions and checks, whether it refers to the correct U R L .

1 [TestMethod]
2 [TestCategory("Chrome")]
3 p u b l i c void UIInterestedlnMoreQuestions()
4 {

5 ConfigureAndStartDriver();
(i
7 InterestedlnO ;
8

9 AgreeWithGDPRO ;
10

n seleniumRepository.WaitForElementWhichContainText(Resource.
InterestedInDialog_WhatInformationLooking);

12

13 SendTextToBotC'what are the outputs?");
14

15 seleniumRepository.WaitForElementWhichContainText(Resource.
InterestedInDialog_FoundForYouSolutions);

16

17 seleniumRepository.ClickOnDivWithId(convertTextToID("PGI"));
18

3 h t t p s : //www.seleniumhq.org/

39

http://www.seleniumhq.org/

19 CheckUrlOpenedInNewTab("https://www.comap-control.com/solutions/technology/power-
generation- i n d u s t r i a l ") ;

20 }

This robust testing system should provide a guarantee that the Intel iBot works according
to customers expectations.

6.2.1 Outcomes of testing

There were twelve sprints together which means approximately twelve releases. The feed
back was processed after every release, therefore Intel iBot always corresponded wi th cus
tomers requirements. W h e n artif icial intelligence is involved, the results are almost never
perfect. Intel iBot is no exception, some goals were not fulfilled s imply because, despite the
enormous effort, systems like L U I S , Azure Search, and so on, are l imi ted to some point as
well . Even the a lgori thm could be maybe improved. However, Intel iBot, par t icular ly " I 'm
interested in. . ." section provides reliable results in most cases.

"Exce l test" concerning solutions is a good example. After the in i t i a l testing, roughly
half of the test cases were working correctly. Thresholds were adjusted, L U I S model was
trained on more utterances, changes were made i n the algori thm, more synonyms were
added. The results were slightly better, around 70% of the cases were now correct. However,
the team could not come up wi th more ideas for the failed scenarios. It was then decided
that further improvement is not worth the effort and resources, and the results are sufficient.

40

https://www.comap-control.com/solutions/technology/power-

Chapter 7

Conclusion

The goal of this thesis was to get acquainted wi th current chatbot si tuation, techniques and
technologies behind chatbot development and to create and implement a chatbot called In-
te l iBot capable of information search for a part icular company. F i rs t , a brief history of
chatbots along wi th real chatbots examples were presented. Also , theoretical background
ly ing beneath Microsoft chatbot development technologies was covered. This includes tech
niques such as N L P , vector semantics or Lucene search. Next , Microsoft Bot Framework
as wel l as Microsoft Azure services were explained i n order to have everything needed for
InteliBot development. T h e n the a lgori thm used for the information retrieval together w i th
the implementat ion of " I 'm interested in . . . " section of Intel iBot was described. The testing
process of the chatbot that accompanied the development was also covered.

Overal l , the goals of the thesis as well as the requirements of the customer were ac
complished. The " I 'm interested in . . . " section works correctly i n most cases although there
is s t i l l a room for improvements. These improvements include adjusting the a lgori thm by
changing the text processing phase or Azure Search query creation process. P rov id ing more
data for L U I S model and synonyms or implementing different conversation logic may also
contribute to better results.

Despite the sophisticated testing process of the bot, after it is put into service, there
w i l l very probably be further demands for the change of Intel l iBot . Th is expectation is
based on the fact, that the real customers of C o m A p company have not tr ied Intel iBot yet.
However, the nature of the changes w i l l be most probably the same as described above.

41

Bibliography

[1] Basic Concepts. [Online; Accessed 12 A p r i l 2019].
Retrieved from: http: //www.lucenetutorial.com/basic-concepts.html

[2] Try to build a lower dimensional embedding. [Online; Accessed 8 A p r i l 2019].
Retrieved from: https: //shanelynnwebsite-mid9n9glq9y8tt.netdna-ssl.com/wp-
content/uploads/2018/01/3-dimensional-word-embeddings-example.png

[3] Fenomén jménem chatbot 1. část. October 2018. [Online; Accessed 8 M a r c h 2019].
Retrieved from: https: //www.xolution.sk/knowledge-sharing/knowledge-base/
329/fenomn-j mnem-chatbot-1-st

[4] Popular Chatbot Frameworks. 2018. [Online; Accessed 4 A p r i l 2019].
Retrieved from: https: //discover.bot/bot-talk/beginners-guide-bots/
popular-chatbot-frameworks/

[5] Ah i re , J . B . : Introduction to Word Vectors. [Online; Accessed 8 A p r i l 2019].
Retrieved from: https:
//medium. com/@jayeshbahire/introduction- to-word- vectors-eald4e4b84bf

[6] A m a z o n : Conversational interfaces for your applications powered by the same deep
learning technologies as Alexa. [Online; Accessed 4 A p r i l 2019].
Retrieved from: https://aws.amazon.com/lex/

[7] A m a z o n : What Is Amazon Lex? [Online; Accessed 4 A p r i l 2019].
Retrieved from: https: //docs.aws.amazon.com/lex/latest/dg/what-is.html

[8] Col lobert , R . ; Weston, J . ; Bot tou , L . ; et al . : Natural Language Processing (Almost)
from Scratch. 2011.
Retrieved from:
http://www. jmlr.org/papers/volumel2/collobertlla/collobertlla.pdf

[9] Debecker, A . : A Closer Look at Chatbot ALICE. 2017. [Online; Accessed 5 A p r i l
2019].
Retrieved from: https: //blog.ubisend.com/discover-chatbots/chatbot-alice

[10] Garbade, M . J . : A Simple Introduction to Natural Language Processing. [Online;
Accessed 8 A p r i l 2019].
Retrieved from: https: //becominghuman.ai/a-simple-introduction-to-
natural-language-processing-ea66al747b32

[11] Google: A DIALOGFLOW ENTERPRISE EDITION. [Online; Accessed 10 A p r i l
2019].
Retrieved from: https://cloud.google.com/dialogflow-enterprise/

42

http://www.lucenetutorial.com/basic-concepts.html
http://shanelynnwebsite-mid9n9glq9y8tt.netdna-ssl.com/wp-
http://www.xolution.sk/knowledge-sharing/knowledge-base/
https://aws.amazon.com/lex/
http://docs.aws.amazon.com/lex/latest/
http://www
http://jmlr.org/papers/volumel2/
http://ubisend.com/
https://cloud.google.com/dialogflow-enterprise/

[12] Google: DialogFlow Analytics documentation. [Online; Accessed 10 A p r i l 2019].
Retrieved from: https: //dialogflow.com/docs/training-analytics/analytics

[13] Henderson, H . : Artificial Intelligence: Mirrors for the Mind. Milestones in Discovery
and Invention. Facts O n F i le , Incorporated. 2007. I S B N 9781604130591.
Retrieved from: https://books.google.cz/books?id=vKmIiICDIwgC

[14] Henni , A . : Speaktoit secures funding from Intel Capital. 2012. [Online; Accessed 4
A p r i l 2019].
Retrieved from: http:
//www. ewdn.com/2012/05/31/speaktoit-secures-funding-from-intel-capital/

[15] Jurafsky, D . ; M a r t i n , J . H . : Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition.
2017. th i rd E d i t i o n draft.
Retrieved from: https: //web.stanford.edu/~jurafsky/slp3/ed3book.pdf

[16] L . M a u l d i n , M . : C H A T T E R B O T S , T I N Y M U D S , and the Tur ing Test: Enter ing the
Loebner Pr ize Compet i t ion . 01 1994.

[17] Lee, J . : CHATBOTS WERE THE NEXT BIG THING: WHAT HAPPENED? 2018.
[Online; Accessed 5 A p r i l 2019].
Retrieved from: https:
//blog.growthbot.org/chatbots-were-the-next-big- thing- what-happened

[18] lola.com: NLP vs. NLU: What's the Difference? [Online; Accessed 10 A p r i l 2019].
Retrieved from: https:
//medium. com/@lola. com/nip-vs-nlu- what s-the-dif f erence-d91c06780992

[19] Mayo , J . : Programming the Microsoft Bot Framework: A Multiplatform Approach to
Building Chatbots. Microsoft Press. 2017. I S B N 9781509304981.

[20] Microsoft: How full text search works in Azure Search. 2018. [Online; Accessed 7
A p r i l 2019].
Retrieved from: https: //docs.microsoft.com/en-us/azure/search/search-
lucene-query-architecture

[21] Microsoft: Synonyms in Azure Search. 2018. [Online; Accessed 15 A p r i l 2019].
Retrieved from:
https: / / docs.microsoft.com/en-us/azure/search/search-synonyms

[22] Microsoft: What is Language Understanding (LUIS)? 2019. [Online; Accessed 14
A p r i l 2019].
Retrieved from: https:
//docs.microsoft, com/sk-sk/azure/cognitive-services/luis/what-is-luis

[23] Microsoft: What is Text Analytics API? 2019. [Online; Accessed 4 A p r i l 2019].
Retrieved from: https: //docs.microsoft.com/en-us/azure/cognitive-services/
text-analytics/overview

[24] Stefan P o r u b s k ý : Checkbot dokáže odhaľovať blbosti a dezinformácie na slovenskom
internete. 2018. [Online; Accessed 2 A p r i l 2019].

43

http://dialogflow.com/
https://books.google.cz/books?id=vKmIiICDIwgC
http://ewdn.com/20
http://ord.edu/~juraf
http://growthbot.org/
http://lola.com
http://docs.microsoft.com/
http://docs.microsoft.com/
http://microsoft.com/en-us/azure/

Retrieved from: https: //techbox.dennikn.sk/checkbot-dokaze-odhalovat-
blbosti-a-dezinformacie-na-slovenskom-internete/

[25] Salecha, M . : Story of ELIZA, the first chatbot developed in 1966. October 2016.
[Online; Accessed 9 M a r c h 2019].
Retrieved from: https:
//www.analyticsindiamag.com/story-eliza-first-chatbot-developed-1966/

[26] Seif, G . : An easy introduction to Natural Language Processing. [Online; Accessed 8
A p r i l 2019].
Retrieved from: https: //towardsdatascience.com/an-easy-introduction-to-
natural-language-processing-ble2801291cl

[27] Shevat, A . : Designing Bots: Creating Conversational Experiences. O ' R e i l l y Med ia .
2017. I S B N 1491974826.
Retrieved from: https://www.amazon.com/Designing-Bots-Creating-
Conversational-Experiences-ebook/dp/B0723B91XD

[28] Shewan, D . : 10 of the Most Innovative Chatbots on the Web. 2019. [Online; Accessed
2 A p r i l 2019].
Retrieved from: https: //www.wordstream.com/blog/ws/2017/10/04/chatbots

[29] S O T O M A Y O R , L . : Success Story: U-Report Liberia exposes Sex 4 Grades in school.
2016. [Online; Accessed 4 A p r i l 2019].
Retrieved from: https://ureport.in/story/194/

[30] Tedeschi, B . : 2011's Top 10 Apps for Android Phones. 2011. [Online; Accessed 1
A p r i l 2019].
Retrieved from: https://www.nytimes.com/2011/12/29/technology/
personaltech/in-2011-app-developers-turned-attention-to-android.html

[31] Tur ing, A . M . : I . — C O M P U T I N G M A C H I N E R Y A N D I N T E L L I G E N C E . Mind. vol .
L I X , no. 236. 10 1950: pp. 433-460. I S S N 0026-4423. doi:10.1093/mind/LIX.236.433.
http://oup.prod.sis.lan/mind/article-pdf/LIX/236/433/9866119/433.pdf.
Retrieved from: https://doi.org/10.1093/mind/LIX.236.433

[32] Weizenbaum, J.: E L I Z A - A computer P rogram For the Study of Na tu ra l Language
Communica t ion Between M a n and Machine. Communicat ions of the A C M 9(1),
36-45. Commun. ACM. vol . 9. 01 1966: pp. 36-45. doi:10.1145/365153.365168.

[33] Weizenbaum, J . : Computer Power and Human Reason: From Judgement to
Calculation. W . H . Freeman and Company. 1976. I S B N 0716704633.

[34] Wierema, S.: Build your own Siri: Api.ai offers voice integration for all. 2014.
[Online; Accessed 4 A p r i l 2019].
Retrieved from: https: //thenextweb.com/dd/2014/09/ 16/build-your-own-siri-
a p i - a i - o f f e r s - v o i c e - i n t e g r a t i o n - f o r - a l l /

44

http://dennikn.sk/
http://www.analyticsindiamag.com/story-eliza-first-chatbot-developed-1966/
https://www.amazon.com/Designing-Bots-Creating-
http://www.wordstream.com/blog/ws/2017/10/04/chatbots
https://ureport.in/story/194/
https://www.nytimes.com/2011/12/29/technology/
http://oup.prod.sis.lan/mind/article-pdf/LIX/236/433/9866119/433.pdf
https://doi.org/10.1093/mind/LIX.236.433

Appendix A

Contents of Attached C D

• text/ - containing DTf_X sources and files used

• bot_source/ - containing source files of the chatbot

• xduris04_thesis.pdf - thesis document

• xduris04_video.mp4 - video

45

