
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF RADIO ELECTRONICS
ÚSTAV RADIOELEKTRONIKY

OPTIMIZING NEURAL NETWORK ARCHITECTURE FOR
EEG PROCESSING USING EVOLUTIONARY ALGORITHMS
OPTIMALIZACE ARCHITEKTURY NEURONOVÝCH SÍTÍ PRO ZPRACOVÁNÍ EEG POMOCÍ EVOLUČNÍCH
ALGORITMŮ

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Bc. Kristýna Pijáčková

SUPERVISOR
VEDOUCÍ PRÁCE

doc. Ing. Tomáš Götthans, Ph.D.

BRNO 2023

Termín zadání: 6.2.2023 Termín odevzdání: 22.5.2023

Vedoucí práce: doc. Ing. Tomáš Götthans, Ph.D.

doc. Ing. Lucie Hudcová, Ph.D.

předseda rady studijního programu

Diplomová práce
magisterský navazující studijní program Elektronika a komunikační technologie

Ústav radioelektroniky
Studentka: Bc. Kristýna Pijáčková ID: 211534
Ročník: 2 Akademický rok: 2022/23

NÁZEV TÉMATU:

Optimalizace architektury neuronových sítí pro zpracování EEG pomocí
evolučních algoritmů

POKYNY PRO VYPRACOVÁNÍ:

Proveďte literární rešerši týkající se evolučních algoritmů pro optimalizaci hyperparametrů neuronových sítí.
Popište některé dosud používané nebo vyvíjené metody. Popište princip vzniku, základní charakteristiky,
a metody měření EEG signálu. Popište jak neuronové sítě mohou zlepšit aktuálně používané metody zpracování
EEG. Navrhněte algoritmus pro optimalizaci hyper parametrů neuronových sítí se zaměřením na zpracování
EEG signálů.

Implementujte algoritmus v programovacím jazyce Python s využitím standardně používaných knihoven pro
neuronové sítě (např. Pytorch). Aplikujte algoritmus na zadané EEG data epileptických pacientů. Porovnejte
výsledky z reálných dat s teoretickými předpoklady. Proveďte diskusi získaných výsledků a zhodnoťte
využitelnost metody.

DOPORUČENÁ LITERATURA:

[1] NEJEDLY, P., CIMBALNIK, ET. AL. Intracerebral EEG artifact identification using convolutional neural
networks. Neuroinformatics, 17(2), 225–234. https://doi.org/10.1007/s12021-018-9397-6

[2] STANLEY, K. O., CLUNE, ET. AL. Designing neural networks through neuroevolution. Nature Machine
Intelligence, 1(1), 24–35.

https://doi.org/10.1038/s42256-018-0006-z

[3] STANLEY, K. O., MIIKKULAINEN, R. Evolving neural networks through augmenting topologies. Evolutionary
Computation, 10(2), 99–127. https://doi.org/10.1162/106365602320169811

UPOZORNĚNÍ:

Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným
způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského
zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku
č.40/2009 Sb.

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

ABSTRACT
This thesis deals with an optimization of neural network hyperparameters for EEG signal
processing using evolutionary algorithms. The incorporation of evolutionary optimization
can reduce reliance on human intuition and empirical knowledge when designing neural
network and can thus make the process design more effective. In this work, a genetic
algorithm was proposed that is suitable for hyperparameters optimization as well as neural
architecture search. These methods were compared to a benchmark model designed by
an engineer with expertise in iEEG processing. Data used in this work are classified into
four categories and come from St. Anne’s University Hospital (SAUH) and Mayo Clinic
(MAYO) and were recorded on drug-resistant epileptic patients undergoing pre-surgical
examination. The results of the neural architecture search method were comparable
with the benchmark model. The hyperparameter optimization improved the F1 score
over the original, empirically designed, model from 0.9076 to 0.9673 for the SAUH data
and 0.9222 to 0.9400 for the Mayo Clinic data. The increased scores were mainly due
to the increased accuracy of the classification of pathological events and noise, which
may have further positive implications in applications of this model in seizure and noise
detectors.

KEYWORDS
Neural network, deep learning, optimization, evolutionary algorithms, genetic algorithm,
neural architecture search, hyperparameter optimization, iEEG, epilepsy

ABSTRAKT
Tato práce se zabývá optimalizací hyperparametrů neuronových sítí pro zpracování EEG
signálu pomocí evolučních algoritmů. Využití evolučních optimalizace může snížit zá-
vislost na lidské intuici a empirických znalostech při návrhu neuronové sítě a může tak
zefektivnit návrh neuronové sítě. V této práci byl navržen genetický algoritmus, který
je vhodný pro optimalizaci hyperparametrů i pro hledání neuronové architektury. Tyto
metody byly porovnány s referenčním modelem navrženým inženýrem s expertýzou v
této oblasti. Data použitá v této práci jsou rozdělena do čtyř kategorií a pocházejí z
Fakultní nemocnice svaté Anny v Brně (SAUH) a Mayo kliniky (MAYO) a obsahují
iEEG záznamy u pacienta s epilepsií rezistentní na léky, který podstupuje předoperační
vyšetření. Metoda hledání neuronové architektury dosáhla výsledků srovnatelných s refe-
renčním modelem. Optimalizovaný model zlepšil F1 skóre oproti originálnímu, empiricky
navrženému modelu z 0.9076 na 0.9673 pro data z SAUH a 0.9222 na 0.9400 pro data
z Mayo kliniky. Ke zvýšenému skóre přispěla hlavně zvýšená přesnost klasifikace patolo-
gických událostí a šumu, která může mít dále pozitivní vliv v aplikacích tohoto modelu
v detektoru záchvatů a šumu.

KLÍČOVÁ SLOVA
Neuronová síť, deep learning, optimizace, evoluční algoritmy, genetický algoritmus, hle-
dání neuronové architektury, optimalizace hyperparametrů, iEEG, epilepsie

Rozšířený abstrakt
Digitalizace ve zdravotnictví hraje v dnešním světe zásadní roli při rozvoji efek-
tivnější a přístupnější zdravotní péče. Metody strojového a hloubkového učení se
stávají čím dál tím víc důležitějším nástrojem pro bioinženýry při zpracovávání
biomedicínských dat, jež můžou mít různou podobu od obrazových dat, přes signálové
až po textové data. S ohledem na diverzitu dat a možnosti jejich zpracování může
být výběr správného modelu hloubkového učení, případně jeho parametrů, které
by dosáhly optimálních výsledků poměrně komplikovaný a často probíhá metodou
pokus-omyl.

Tato diplomová práce se proto zabývá optimalizací modelů neuronových sítí po-
mocí evolučních algorithmů a to konkrétně pro zpracování EEG signálů. K optimal-
izaci byl v rámci této práce navržen genetický algoritmus, jež funguje na principu
darwinovské evoluční teorie. Algoritmus tak prozkoumává daný prostor s hyper-
parametry modelu a snaží se najít optimální řešení problému tím, že vytváří jed-
notlivé generace jedinců, kteří následně na základě hodnoceného skóre mají šanci
přenést své geny na další potomky v nové generaci a tím doiterovat do optimálního
řešení. V rámci této metody tedy funguje výběr jedinců vhodných k dalšímu křížení,
kdy vybraní jedinci předávají své geny (hledané parametry) dále a následně mutace,
kdy část těchto parametrů může změnit svou hodnotu a tím zajistit dostatečnou
diverzitu v generacích.

V rámci této práce byly prozkoumány dvě metody optimalizace modelu hloubkového
učení. Ta první je optimalizace hyperparametrů daného modelu, jako jsou learning
rate, batch size, velikost kernelů a počet filtrů v konvoluční vrstvě, počet vrstev
GRU, atd... a zároveň optimalizace parametrů předzpracování vstupních dat, které
byly z časové oblasti transformované pomocí Fourierovy nebo vlnkové transformace.
Druhá metoda je neural architecture search, tedy hledání architektury neuronové
sítě jako takové. V rámci této metody byly stanovené základní pravidla pro design
modelu, který je tvořen N hlavními bloky, které v sobě obsahují až n možných oper-
ací, které můžou být buď konvoluční operace, maximal nebo average pooling, nebo
identity vrstva.

Vzhledem k náročnosti celkového problému byl genetický algoritmus navržený
tak, aby pracoval jak synchronně, tak asynchronně, tedy aby bylo možné počítat více
jedinců ve stejný čas na více GPU procesorech. K implementaci byl použit jazyk
Python a knihovna Pytorch pro modely hloubkového učení, výpočet pak probíhal
až na 8 GPU procesorech a byl omezen buď časově, nebo množstvím jedinců.

Data použitá v této práci byla nasbírána ve Fakultní nemocnici u Sv. Anny v
Brně a na Mayo klinice. Data pochází od pacientů, kteří trpí rezistentní epilepsií,
tedy nereagují na léčbu antiepileptiky, a v rámci předoperačního vyšetření podstupo-

vali intrakraniálnímu zavedení EEG elektrod. Data se v datasetu vyskytují jako 3
sekundové úseky a jsou členěné do 4 skupin - šum ze sítě, šum, fyziologická aktivita
a epileptická aktivita.

K porovnání výsledků byl použitý CNN-GRU model, který byl navržený in-
ženýrem s expertýzou v oblasti zpracování EEG dat. Výsledky této práce ukazují, že
genetický algoritmus v kombinaci s optimalizací hyperparametrů CNN-GRU mod-
elu byl schopný zásadně vylepšit výsledky tohoto modelu na obou datasetech a
to z 0.9076 na 0.9673 pro data z Fakultní nemocnice u Sv. Anny a 0.9222 na
0.9400 pro data z Mayo kliniky. Ke zvýšenému skóre přispěla hlavně zvýšená
přesnost klasifikace patologických událostí a šumu, která může mít dále pozitivní
vliv při aplikaci tohoto modelu v detektoru záchvatů a šumu. Metoda hledání ar-
chitektury neuronové sítě pomocí genetického algoritmu sice žádné výrazné zlepšení
skóre oproti tomu původnímu nepřinesla, přesto však svými výsledky byla schopná
konkurovat výsledkům porovnávaného CNN-GRU modelu. Tento výsledek byla
schopna dosáhnout bez předchozích znalostí tohoto problému a za použití základních
operací a pravidel k jejímu návrhu. Zároveň není vylučitelné, že by tato metoda po
důslednějším prozkoumávání hyperparametrického prostoru mohla dosáhnout lep-
ších výsledků.

Author’s Declaration

Author: Bc. Kristyna Pijackova

Author’s ID: 211534

Paper type: Master’s Thesis

Academic year: 2022/23

Topic: Optimizing neural network architecture
for EEG processing using evolutionary al-
gorithms

I declare that I have written this paper independently, under the guidance of the advisor
and using exclusively the technical references and other sources of information cited in
the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, I furthermore declare that, with respect to the creation of this paper,
I have not infringed any copyright or violated anyone’s personal and/or ownership rights.
In this context, I am fully aware of the consequences of breaking Regulation S 11 of the
Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach
of rights related to intellectual property or introduced within amendments to relevant
Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll.
of the Czech Republic, Section 2, Head VI, Part 4.

Brno .
author’s signature∗

∗The author signs only in the printed version.

ACKNOWLEDGEMENT

This thesis was done in collaboration with the Computational Neuroscience group
at the Institute of Scientific Instruments in Brno. I would thus like to thank
Ing. Petr Klimes PhD. and MSc. Petr Nejedly for including me in the team and providing
me with their knowledge and expertise. I am also thankful to my advisor Ing. Tomas
Gotthans PhD. for his support throughout this year and my studies.

Contents

1 Introduction 11

2 EEG Signals 12
2.1 Introduction . 12
2.2 Signal Acquisition and Processing . 14
2.3 EEG Applications . 16
2.4 iEEG in Epilepsy Diagnosis . 17

3 Optimization 19
3.1 Neural Network Architecture . 19
3.2 Optimization Algorithms . 20
3.3 Neural Network Architecture Optimization 23

4 Dataset and Data Preprocessing 26
4.1 Dataset . 26
4.2 Data Preprocessing . 27

5 Methodology 29
5.1 Genetic Algorithm . 29
5.2 Hyperparameters Optimization . 31
5.3 Neural Architecture Search . 33
5.4 Evaluation Metrics . 38

6 Results 39
6.1 Hyperparameter Tuning . 39
6.2 Neural Architecture Search . 41

7 Discussion 45
7.1 Neural Architecture Search . 46

8 Conclusion 47

Bibliography 48

Symbols and abbreviations 52

Appendix 54

List of Figures
2.1 Structure of a neuron . 12
2.2 Action potential in excitatory and inhibitory presynaptic activity

(EPSP and IPSP) and postsynaptic activity 13
2.3 Schematic demonstration of EEG measurement 14
2.4 A CT image of an invasive EEG monitoring with a stereotactic depth

electrode . 15
2.5 Examples of EEG signals of different events 16
2.6 Epilepsy - Schematic of procedures leading from the first epileptic

episode to an epilepsy surgery . 17
3.1 Example of a simple neural network with 3 input features, two hidden

layers, and 2 output nodes. 20
3.2 Population of hyperparameter space (with two hyperparameters) for

Grid Search, Random Search and Bayesian Search. 22
3.3 Schematic illustration of a genetic algorithm 23
4.1 Principle of optimization of the neural network with genetic algorithm 27
4.2 Demonstration of the preprocessing 28
5.1 Principle of implemented genetic algorithm 29
5.2 Principle of GA distribution on multiple GPUs 30
5.3 CNN-GRU model with highlighted optimizable parameters in blue . . 32
5.4 Convergence of the genetic algorithm with test function with different

mutation rates . 33
5.5 Example of the inception-inspired block that is used in the architec-

ture as main building stone . 34
5.6 Example of architecture build the random generator from the NAS

implemented method . 35
5.7 Example of crossover between two neural networks 36
5.8 Example of offspring mutation . 36
6.1 Convergence of the genetic algorithm for the STFT- and WST-model

during the exploitation part . 39
6.2 Convergence of the genetic algorithm with Neural Architecture Search 42

List of Tables
4.1 Overview of data distribution for the 3-second segment 26
5.1 Overview of optimizable parameters and their nominal value in the

benchmark model . 33
5.2 Interpretation of Cohen’s Kappa Score 38
6.1 Overview of top 5 solutions for the STFT-Model 40
6.2 Overview of top 5 solutions for the WST-Model. 40
6.3 Comparison of the overall performance between the benchmark model

and the best STFT and WST Models. 41
6.4 Detailed results of F1 Score, AUROC, and AUPRC for each of the

classification categories compared between the benchmark model and
the best STFT and WST models. 41

6.5 Contingency tables for McNemar’s Test on SAUH and MAYO datasets
with p-values « 0.01 . 42

6.6 Overview of 3 best found architectures with NAS 43
6.7 Detailed results of F1 Score, AUROC, and AUPRC for each of the

classification categories compared between the benchmark model and
the best NAS model . 44

1 Introduction
Digitization in healthcare in today’s world plays a vital role in the development of
more effective and affordable healthcare services. Access to abundant biomedical
data allows for further development of diagnostic methods, improved monitoring of
patient’s health conditions, and better treatment of abnormalities or diseases. Tra-
ditional data processing is based on data mining and feature extraction based on the
engineers’ domain knowledge. However, biomedical data come from heterogeneous
sources which can include biomedical signals, images, textual data, laboratory re-
ports, and many more. This access to various and complex data sources can pose a
challenge both in time spent processing big data and the lack of sufficient domain
knowledge [1].

Both machine learning (ML) and deep learning (DL) are nowadays essential tools
for engineers working with biomedical data. While both techniques are powerful and
are used to identify patterns and trends in the data that would otherwise remain
undetected, they come with their own challenges. ML methods rely on extracted
features from the data and thus do not solve the above-described problem. DL is,
on the other hand, able to make sense even of the raw state of the data with an
optimal neural network architecture.

The current state-of-the-art in neural network architecture design for electroen-
cephalogram (EEG) signal processing is based on a process of trial-and-error, whereby
different architectures are tried out and the one that gives the best results is selected.
This process is time-consuming and can be expensive, especially when considering
the number of different hyperparameters that need to be optimized. A more effi-
cient approach would be to use optimization algorithms that would search for the
hyperparameters or could even design the neural network architectures.

The topic of this thesis is, therefore, focused on optimizing neural network ar-
chitectures, used for processing EEG signals with genetic algorithms. The proposed
GA-based approach is tested on a classification problem with a real-world dataset
from drug-resistant epileptic patients consisting of different EEG events. So far this
thesis covers brief introductions to EEG signals, neural architecture design, and op-
timization algorithms. The second part of the thesis is followed by an introduction
of the dataset and methodology for hyperparameter optimization with GA of a pre-
existing neural architecture. The results show that the GA-based approach is able
to find the optimal solution with a much higher accuracy, which is crucial in further
application of the classifier in detectors of epileptic seizures or noise in the EEG
data.

11

2 EEG Signals

2.1 Introduction
An electroencephalogram signal allows us to observe neural activities in the brain.
Electrical activities in the brain are caused by an exchange of ions across neuron
membranes. The transmission of information by a nerve, called an action potential,
may be initiated by many types of stimuli such as chemical activity, light, electricity,
touch, and pressure,...[2].

Fig. 2.1: Structure of a neuron*

Differences in electrical potentials are caused by summed postsynaptic graded
potentials from pyramidal cells that create electrical dipoles between the soma (body
of a neuron) and apical dendrites, which branch from neurons 2.1. The current in the
brain is generated mostly by pumping the positive ions of sodium, Na+, potassium,
K+, calcium, Ca++, and the negative ion of chlorine, Cl-, through the neuron
membranes in the direction governed by the membrane potential and concentration
gradient [3].

* Created with BioRenderer.com

12

The sodium pump in a nerve cell produces a gradient of potassium and sodium
ions, which produce the action potential illustrated in Fig 2.2. On the inside, the
excitable nerve cell is high in potassium and low in sodium. After the dendrites
of the nerve cell receive the stimulus, Na+ channels open and enter the nerve cell.
This depolarizes the membrane and produces a spike, that occurs once the interior
potential rises from -70 mV up to -55 mV. When the threshold is reached, additional
Na+ channels open and depolarize the interior of the cell membrane up to +30 mV.
After that, potassium channels open and the membrane repolarizes back, usually
overshooting the process to a potential level of -90 mV. This action prevents the
neuron to react to a new stimulus triggered by another action potential and takes
about 2 ms for the Na+/K+ pumps to reach the resting state of -70 mV [2].

Fig. 2.2: Action potential in excitatory and inhibitory presynaptic activity (EPSP
and IPSP) and postsynaptic activity*

The current generated through this process generates a magnetic field measurable
by electromyogram (MEG) machines and a secondary electrical field over the scalp
measurable by EEG systems [2]. The principle is illustrated in Fig 2.3.

* Created with BioRenderer.com

13

Fig. 2.3: Schematic demonstration of EEG measurement*

2.2 Signal Acquisition and Processing
The EEG signals are captured by multiple-electrode EEG acquisition systems. The
EEG signal can be measured either from specific locations over the scalp, in this case,
we talk about scalp EEG, or the measurement can be intracranial (iEEG), where
electrodes are implanted into the skull. Scalp electrodes are the most common type
and can be either disposable or reusable and applied on the scalp with or without
gel.

The scalp EEG is easy to use and relatively easy to set up and is often used in
clinical applications as well as in brain-computer interface applications. The non-
invasive EEG can be also measured with headbands or pre-made electrode caps for
easier usage. The other option for measuring the EEG signals is by implanting
the needle electrodes into the skull (intracranial or iEEG) which is mainly used in
epilepsy surgeries. These needle electrodes have various numbers of contacts, an
example of invasive EEG monitoring can be seen in Fig. 2.4.

The signals are measured in the time domain and may be often difficult to un-
derstand and analyze. Furthermore, the EEG signals often contain artifacts, signals

* Created with BioRenderer.com

14

Fig. 2.4: A CT image of an invasive EEG monitoring with a stereotactic depth elec-
trode. The post-operational CT image is co-registered with weighted pre-operative
MRI with pixel intensities averaged to optimize concurrent visibility of CT electrodes
and MRI tissue contrast (adapted from [5]).

that were not generated by the brain and are unwanted. The artifacts can be gener-
ated from different sources and come from external sources, acquisition instruments,
or biological phenomena such as eye movement, eye blinks, head movement, muscle
activity, or cardiac signals. Examples of some of the artifacts can be seen in 2.5 [6].

Therefore, signal processing tools are applied to the EEG signals for better sep-
aration and analysis and may differ based on the desired application. Signal pro-
cessing in EEG originated in applications areas such as communication engineering,
speech and music signal processing, and processing of other physiological signals
such as ECG. Some of the commonly used processing includes filtering, denoising,
transformation into a time-frequency domain by Fourier transform or wavelet trans-
form, or independent component analysis. [2]

15

Fig. 2.5: Examples of EEG signals of different events - (a) powerline noise, (b)
muscle artifact, (c) baseline jump artifact, (d) physiological signal, (e) epileptiform
pathological signal with an HFO riding on spike (adapted from [5])

2.3 EEG Applications
Changes in the patterns of the EEG signals can be caused by various events. The
patterns can change due to abnormalities of the central nervous system, various men-
tal abnormalities, and drugs used for their intake. Patterns also vary with the shift
of our attention and focus and much more. These patterns are often described in
some EEG atlases (eg. [7, 8]) which may help with their identifications. The varying
patterns allow investigation of the EEG signals for clinical problems such as moni-
toring cognitive engagement, production of biofeedback situation, anesthesia depth
control, location of damages after head injuries, stroke, or tumor, or investigation
and location of seizure origins in epilepsy.

Feature engineering and machine learning are commonly used when working with
EEG, however, after successful application in other fields, deep learning finds its ap-
plication to many EEG tasks as well. While machine learning needs proper feature
extraction, deep learning can work with little preprocessing on the raw signals which
may include filtering, denoising, and eventually some sort of transformation into a
time-frequency domain. It is used to tackle various problems from detecting emo-
tions and mental illnesses, classifying different stages of sleep, detecting anomalies in
the EEG signal, and identifying seizures, or Alzheimer’s disease to classifying motor
imagery,... [9, 10, 11]. As the practical part of this thesis works with a dataset
of epileptic events, the next section includes a brief background for better topic
orientation.

16

2.4 iEEG in Epilepsy Diagnosis
Epilepsy is a neurological disorder characterized by unprovoked seizures, that af-
fects around 50 to 60 million people around the world [12]. For roughly two-thirds
of epileptic patients the number of seizures can be reduced with anti-seizure medi-
cations. However, around one-third of patients remain drug-resistant despite a wide
array of available medications [13].

Fig. 2.6: Epilepsy - Schematic of procedures leading from the first epileptic episode
to an epilepsy surgery*

Epileptic seizures in drug-resistant patients may be reduced after resection, a
surgery, where a part of the brain with the epileptogenic zone responsible for the
seizures is removed [14]. Before this surgery, the patients undergo numerous clinical
procedures including intracranial EEG (iEEG) monitoring. This monitoring of the
patient’s brain activity helps to localize the pathological epileptic tissue in the brain
and can last up to 4 weeks. The next step in the patient’s treatment then depends

* Created with BioRenderer.com

17

on further investigation of the recorded signals. The iEEG recordings are manually
investigated by electrophysiologist physicians for the localization of epileptic foci.
This task, however, is very time-consuming and strongly dependent on the subjective
experience of the physicians, and automation of the iEEG review process is thus
highly aimed for. Machine learning and deep learning methods applied to this
domain, see [11, 15, 16], can thus bring a lot of additional information for the
doctors that can be used for better decisions about further medical procedures. The
process of the first epileptic diagnosis up to an epileptic surgery is illustrated in Fig.
2.6.

18

3 Optimization
Optimization is an important aspect of problem-solving. It is a part of our everyday
life and can be applied to almost everything from the optimization of our schedules or
traveling routes to the optimization of economic systems, engineering applications,
biological systems or healthcare, and many more [17].

In deep learning, optimization algorithms play an important role in the training
of deep learning models, their efficiency, and their performance. Optimization algo-
rithms such as stochastic gradient descent, Adagram, RMSProp, Adam, and others
were developed to train deep learning models by continually updating model param-
eters and minimizing a loss function [18]. An optimization algorithm may be also
applied for hyperparameter tuning of model hyperparameters and even for a neural
architecture search. For this task algorithms such as grid or random search, Bayesian
optimization, genetic and swarm algorithms, or neuroevolutionary strategies may be
applied [19].

As the design and tuning of the neural network architectures is a topic of this
thesis, this chapter includes a brief overview of possible tunable hyperparameters in
a neural network as well as an overview of commonly used optimization algorithms.

3.1 Neural Network Architecture
A neural network is an algorithm that is used to model complex patterns in data.
It composes of a large number of interconnected nodes, often called neurons, which
are able to learn to recognize patterns of the input data. Figure 3.1 illustrates a
basic structure of a neural network with an input layer, one hidden layer, and one
output layer.

The layers within the neural network contain the network’s knowledge and can
be of many types, each suited for a different task. To name a few commonly used
layers, dense layers usually process simple vector data and are often placed at the
end of classification models. Recurrent layers, such as LSTM or GRU layers are good
at processing sequence data as they also work with information from prior elements
of the sequence. Convolutional layers are often used to extract specific features
from images by applying learned filters to the input data. A pooling layer, applied
after the convolutional layer reduces the spatial size of the data representations,
whereas a Dropout layer can usually temporally "drop" nodes of the neural network
to zero or a random value to support the generalization of the model and helps
to avoid overfitting. Non-linearity is added to the network by including non-linear
activation functions such as ReLU and its variations, Sigmoid, Tanh, Softmax, and
many more...[18]

19

Fig. 3.1: Example of a simple neural network with 3 input features, two hidden
layers, and 2 output nodes.

Final architectures are usually built empirically from these, and many more,
layers. Moreover, the layers have their own set of parameters that also influence
the behavior of the final model along with training hyperparameters such as cost
function, learning rate, batch size, etc... The process of designing the final model
can be thus a tedious task full of trial and error.

3.2 Optimization Algorithms
An application of an optimization algorithm can help with the designing process.
We can see different approaches to the optimization process in the literature. The
first option is tuning of hyperparameters of a given model as was done in [20, 21].
The second option would be to build an architecture of the model based on pre-
defined building blocks consisting of defined layers. This take on the architecture
optimization can be either restricted to some design limits as in [22, 23, 24], or the
search space can be huge as was done in neural architecture search (NAS) in [25, 26].
Since the neural architecture search is usually extremely computationally expensive,
researchers try to find ways to make the search more efficient by developing differ-

20

ent strategies, such as few or no shot NAS, mentioned in [27, 28]. These strategies
can use some sort of predictors of the score, or they train all the networks as one
supernetwork and use the shared weights as subparts. Finally, there is also a dif-
ferent take on designing and training neural networks with evolutionary algorithms,
without gradient descent, called neuroevolution [29, 30, 31].

Grid Search

Grid search is a basic optimization algorithm that selects the best set of pre-chosen
parameters based on the given task. The algorithm automates the process of creating
all possible combinations of the given parameters from the limited search space.
This algorithm leads to the most accurate predictions and is often used in machine
learning for hyperparameter tuning. Since it does not depend on previous runs of
the algorithm, the computation can be parallelized. However, as the algorithm does
compute all possible combinations, the complexity of the computation increases
exponentially and along with that the time needed for the search.

Random Search

Random search algorithm is an improvement on the grid search algorithm. The
principle is based on a randomized hyperparameter search, where the parameters
have a given value range. The algorithm then randomly selects the parameter values
and continues the search process until a pre-determined computational budget is
exhausted or a pre-defined accuracy was reached. While more effective than the
grid search algorithm, the random search is still computationally expensive than
other algorithms with guided search.

Bayesian Search

Bayesian search is based on a probabilistic approach for black-box function opti-
mization. It aims at finding the global optimum with a minimal number of trials.
It approximates the objective function with a surrogate function which is made of
the predictions already evaluated hyperparameters that capture the unknown rela-
tionship between input and output. Evaluations of the black-box function train the
surrogate function and an acquisition function guides the algorithm to an optimal
solution. The acquisition function chooses the next set of parameters based on the
surrogate function and once its evaluated adds it to the surrogate function for better
approximation. These steps are repeated in several iterations, making the surrogate
function more precise, unless the algorithm reaches the stopping condition.

21

Fig. 3.2: Population of hyperparameter space (with two hyperparameters) for Grid
Search, Random Search and Bayesian Search.

Genetic Algorithms

Genetic algorithm (GA), illustrated in Fig. 3.3 inspired by Darwin’s evolution the-
ory, is an optimization technique utilizing a population-based metaheuristic search
algorithm, based on the survival of individuals with the fittest genes in the popula-
tion. The general principle of the genetic algorithm is based on a selection of the
fittest candidates, that either pass their genes onto their offspring or appear again
in the new generation, and thus converge to an optimal solution.

The candidates of the GA that will become parents are chosen with a tournament
selection, by being the most fit within a group of three randomly selected individuals
from the generation. This way, the fitter candidates have a higher chance to become
parents, but the less fit individuals are not excluded completely, which is important
for diversity during the exploration phase. The individuals that won the tournament
selection then become parents by forming pairs with others. This way they pass
a combination of their genes onto an offspring, which will compete in the next
generation. This above principle is illustrated in Fig. 3.3.

SWARM Algorithms

Swarm intelligence is based on the collective behavior of an organized group of
entities. These entities may be inspired by nature such as the behavior of bees, ants,
fireflies, etc... or artificial (particle swarm optimization). Such entities are able to
form decentralized, self-organized organisms with swarm intelligence, even though
the individuals on their own are less capable. The simulation of such behaviors leads
to population-based optimization algorithms that can be used for both discrete and

22

Fig. 3.3: Schematic illustration of a genetic algorithm

continuous search spaces. The search agents search through mathematical space
with a set of rules defining their behavior and often depend on their personal best
scores, the scores of the neighboring agents, and their past behaviors [32].

3.3 Neural Network Architecture Optimization

Manual Design

The design of neural networks and their parameters are often designed manually
by engineers and experts working in the deep learning field. The design of the
networks is often based on their empirical knowledge and trial-and-error process
when designing the networks. For common applications of deep learning, such as
computer vision or NLP (Natural Language Processing), one can use architectures
designed by experts, which are often pre-trained and with the use of transfer learning
easily fit the network to one’s needs.

However, the problem begins when we are working with data, that does not
completely fit to the common applications. The design of a proper neural network
architecture fitted to the problem can become challenging as we need to analyze

23

what types of layers would be suitable for the given problem, how many layers to
use, what hyperparameters to choose, etc... Thus, the manual fine-tuning, in this
case, might take us a long time.

Hyperparameter Optimization

As mentioned in the previous subsection, fine-tuning hyperparameters by hand can
be a tedious task to do. We can save a lot of time for ourselves by automizing the
process with the use of some of the algorithms mentioned in 3.2.

We can then use either grid search or random search and look through either
the whole search space or just random samples of it. Or we could use some of the
more sophisticated algorithms such as Bayesian optimization, genetic algorithms, or
swarm algorithms that are searching for the optimal hyperparameters in the search
space and are trying to find the optimal solution by evolving and adjusting the
hyperparameters in order to get to better solution next.

In this case, we want to pre-define what hyperparameters we would like to tune,
eg. learning rate, number of layers, number of units/kernels/filters in the layers,
types of activation functions, dropout rate, regularization techniques (dropout rate,
L1, L2...), etc... And also to set some evaluation metric, such as validation accuracy,
or validation loss (for the latter named algorithms).

Neural Architecture Search

Neural architecture search focuses on automating the design of neural architectures
instead of engineers. This process is done iteratively evaluating and comparing var-
ious architectures based on a given criterion such as validation loss or validation
accuracy. The NAS approach uses very often reinforcement learning or evolutionary
algorithms [?, ?] as optimization and search algorithms. During the search, new ar-
chitectures are created and modified based on pre-defined operations, such as adding
or removing new layers, changing sizes or types of layers, changing connections be-
tween layers, changing activation functions, etc...

The approach to NAS can vary, it can be more macro-level based and focus on
the overall topology of the network and try out different variations based on some
pre-defined building blocks, or search for those building blocks. Or the search can be
more micro-level based and deal with the type and size of individual layers, activation
functions, etc... Researchers also try to come up with techniques to save compu-
tational expenses by introducing few-shot or zero-shot NAS, where they pre-define
evaluation functions, that either tries to find the optimal architecture by sampling
and computing just a few of the architectures, or a global super-architecture and

24

sampling smaller architectures out of it or one, that can decide about the suitability
of the architecture completely without training.

Neuroevolution

Neuroevolution [?] uses genetic algorithms to evolve whole neural network archi-
tecture. It uses evolutionary principles such as mutation, selection, and crossover.
The topology of the networks is encoded in the genotype, which usually takes into
account connections between different nodes and their weights. The topologies of
different individuals are competing with each other and create offspring based on
their fitness in the same way as in classical genetic algorithms.

25

4 Dataset and Data Preprocessing

4.1 Dataset
For the purposes of this thesis, two publicly available datasets with iEEG signals
[5] were used. The data included in those datasets were collected at the St. Anne’s
University Hospital (SAUH) and the Mayo Clinic. The intracranial recordings come
from patients with drug-resistant epilepsy that were undergoing pre-surgical inva-
sive EEG monitoring. The patients were implanted with a custom acquisition sys-
tem M&I; Brainscope, Czech Republic (SAUH) and a Neuralynx Cheetah system
(Neuralynx Inc., Bozeman MT, USA) acquisition system (Mayo) with either depth
electrodes, grids and strips, or a combination of both. The data from the SAUH
were sampled with a frequency of 5 kHz and were collected from 14 patients during
awake interictal resting state. The Mayo Clinic data were collected from 25 patients
during the first night after electrode implantation and have a sampling frequency of
5 kHz as well.

iEEG Event Samples SAUH Samples MAYO
Powerline Artefacts 13,489 41,922
Noise Artefacts 32,599 41,303
Pathological Epileptic Activity 52,470 15,227
Physiological Activity 94,560 56,730
Total 193,118 155,182

Tab. 4.1: Overview of data distribution for the 3-second segment

The annotation of the iEEG recordings was done manually by three independent
operators and sorted into distinctive events and following to that segmented into
3-second segments. It is based on a visual inspection in the time domain alongside
power distribution matrices from manual detection for manual artifact detection
[35]. The dataset contains 4 iEEG events - powerline artefacts, noise artefacts,
pathological epileptic activity, and physiological activity. The overview of the num-
ber of the occurring events in the dataset can be seen in Table 4.1. The software
used for the annotation was SignalPlant [33, 34], which is a free software tool for
signal processing, inspection, and annotation. More information on the dataset can
be found in [5].

The data segments from SAUH were randomly split into training (60% of each
class) and validation (20% of each class) and testing (20% of each class) data. The
validation data were used for model architecture ranking during the optimization

26

Fig. 4.1: Principle of optimization of the neural network with genetic algorithm

process. The test set was only used to obtain final scores (preventing data overfit-
ting), as shown in Fig. 4.1. The data from SAUH were used for model optimization,
development, and evaluation, while data from Mayo Clinic were solely used for final
method evaluation. The proposed data split allows us to show that the developed
model architecture generalizes to different institutions, which was not used for model
development.

4.2 Data Preprocessing
The signal segments were converted into a time-frequency domain, either by com-
puting the spectrogram by the Short-Time Fourier Transform (STFT) of the signal
or by extracting first-order scattering coefficients from a wavelet scattering trans-
form [36]. Before the signal representation is passed to the classification model, we
normalize it by calculating the z-scored for each frequency band.

For the spectrogram computation, the SciPy library [37] was used, where the
window type, length of each segment, number of overlapping segments, and length
of zero-padded FFT are parameters that we want to optimize. The computation of
the wavelet scattering transform, from which we extract the first-order coefficients
as our model input, is done through the Kymatio library [38]. The coefficients can
be changed by varying parameters J and Q, which specify an average scale as a
power of two and the number of wavelets per octave respectively.

27

(a) Powerline Class (b) Noise Class

(c) Pathological Class (d) Physiology Class

Fig. 4.2: Demonstration of the preprocessing (STFT and WST) applied on the raw
signal for four different events in the dataset.

28

5 Methodology

5.1 Genetic Algorithm
The genetic algorithm designed and used in this work was designed to work both as
a synchronous and asynchronous algorithm and thus allows to distribute comput-
ing across multiple machines. In this work, mainly the asynchronous GA was used
to optimize the neural network architecture for intracranial EEG processing. This
approach allows for faster optimization, as more models can be trained at the same
time on multiple GPUs. The fitness of each neural network architecture was mea-
sured with a kappa score, reflecting the model’s classification performance compared
with the expert gold standard while accounting for random chance.

Fig. 5.1: Principle of implemented genetic algorithm

The basic principle of the algorithm is pictured in Fig. 5.1. Here, a new individ-
ual is created based on a crossover operation of two individuals that were evaluated
in previous steps and were chosen to be the parent candidates based on tournament
selection. The crossover operation uses uniform crossover [39], which means that the
operation randomly samples the genes of both parents to create two new offspring ∗.
The first offspring would inherit randomly selected genes from parent A and the rest
of the genes would be inherited from parent B, just as is shown in 5.1. Moreover,
there is also a small probability that one or more genes of the new offspring will
be changed for another random valid value during a mutation. Should a genotype
that was already evaluated in earlier generations appear, it is removed from the new

∗Note that only one is pictured in Fig. 5.1 for simplicity. The second one would have comple-
mentary genes to that one, and the rest of the following process would remain the same.

29

generation and the algorithm gets a chance to replace it with a randomly generated
genotype.

As mentioned, the proposed algorithm works with the synchronous and asyn-
chronous setups. The synchronous setup traditionally creates a set of populations,
computes their scores, and uses them to create new offspring to create new gener-
ation and repeat those steps, until a pre-set stopping condition is achieved. In the
asynchronous setup, the candidate pool does consist of all the individuals scored
by far, or of X last ones, as the population is not created in generations anymore,
but as is needed when a computing machine gets free. This work uses to work with
20 last individuals enriched by 3 best ones of the whole set. This way the genetic
algorithm tends to prefer the exploitation a bit more than the synchronous one.
The asynchronous parallel implementation setup includes a main server that guides
the optimization process and automatically assigns optimization tasks to available
workers (docker images each with a single GPU). This principle is pictured in Fig
5.2

Fig. 5.2: Principle of GA distribution on multiple GPUs

30

5.2 Hyperparameters Optimization
The optimized parameters in this study can be classified into two groups. The first
group consists of hyperparameters of the classification model i.e. size of convolu-
tional filters, a number of convolutional filters, a learning rate, etc... The second
group of hyperparameters optimizes iEEG signal preprocessing, i.e., hyperparam-
eters (window type, FFT length, overlap, etc.) of short-time Fourier transform
(STFT) and of the wavelet scattering transform (WST). The overview of the pa-
rameters can be found in Table 5.1. The parameter optimization in this work was
done on a CNN-GRU architecture† presented in [16]. While the results achieved in
the original study were remarkable, the model was designed empirically. Thus in
this following study, the aim is on improving the model performance, by automat-
ically optimizing the parameters of the given model. The model was implemented
with a Pytorch library [40] while trained and optimized on a GPU server with 2x
Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz with 1.41TB RAM memory and up
to 8 available NVIDIA Quadro RTX 5000 GPUs.

The model itself was designed to classify different iEEG events based on a spec-
trogram input. The architecture of the model consists of a convolutional layer with
a ReLU activation function that extracts spatial features from the spectrogram. The
output of the convolutional layer is normalized with a batch normalization layer and
after reshaping is passed into a GRU layer, followed by a fully connected layer with
a Softmax activation function. During the training, the model uses an Adam opti-
mizer and cross-entropy loss. The architecture of the model, with the highlighted
features, that are considered for optimization can be seen in Fig. 5.3.

The optimization process was split into two parts, exploration and exploitation-
focused GA. During the exploration part, the GA with an initial population of 20
searches for solutions from different parts of the search space by introducing a higher
mutation rate of 0.1 and by creating a new generation with 20% of new, random in-
dividuals and 80% of offspring with inherited genotypes. To further limit the search
space the influence of the model hyperparameters with constant preprocessing hyper-
parameters was observed. This process was done also with the signal preprocessing
parameters while keeping the model architecture constant. The process was set up
to run up to 30 generations.

After the exploration phase, there were around 1000 solutions available (input
data optimization and model optimization) and the search continued with both pa-
rameter groups joined together. The initial population of size 20 was randomly
initialized by solutions from the exploration part and combinations of the three best
solutions for the model hyperparameters and the two best signal-processing param-

†https://github.com/xnejed07/NoiseDetectionCNN-GRU

31

https://github.com/xnejed07/NoiseDetectionCNN-GRU

Fig. 5.3: CNN-GRU model with highlighted optimizable parameters in blue

eters. This allowed us to speed up the learning process and use already explored
parameters from the exploration part, while still allowing it to explore the search
space. Once all of the initial genotypes have been evaluated, new ones are created
when a GPU is available for the computation. To support a faster convergence of the
algorithms the mutation rate was decreased to 0.05 and the 3 so far best-performing
individuals to the pool of tournament candidates to improve elitism. The parameter
search stops after the pool is filled with 150 evaluated individuals. The size of the
population, mutation rate, and size of the global pool were chosen based on test
runs of the algorithm on a simple testing function simulating our problem:

𝑓(𝑥) = (𝑥0−𝑥𝑝)2

𝑥𝑝𝑚𝑎𝑥
,

where 𝑥0 is the optimal parameter, 𝑥𝑝 is a current parameter and 𝑥𝑝𝑚𝑎𝑥 is the
highest value from the range of parameters. An example of the influence of the
mutation rate on the results with the test function can be seen in Fig.5.4.

32

Encoded Parameter Benchmark Model Value GA Value Range
Neural Network Architecture Parameters
Number of Filters 256 {64, 128, 256, 512, 1024}
Kernel Size 3 {3; 5; 7}
Number of Hidden Nodes 128 {64, 128, 256, 512}
Number of GRU Layers 1 {1, 2, 3}
Batch Size 64 {64, 128, 256}
Learning Rate 1e-3 {1e-3; 5e-4; 1e-4}
Weight Decay 1e-4 {0; 1e-4; 1e-6}
Spectrogram Parameters (STFT)
Window Function Tukey Tukey, Hann, Barlett, Flattop
Number of Segments 256 {32, 64, 128, 256, 512}
Overlapping Segments 128 Number of Segments // {2, 4, 8, 16, 32, 64}
NFFT 1024 {32, 64, 128, 256, 512, 1024}
Wavelet Scattering Parameters (WST)
J - {3, 4, 5, 6, 7, 8, 9, 10}
Q - {2, 3, 4, 5, 6, 7, 8, 9, 10}

Tab. 5.1: Overview of optimizable parameters and their nominal value in the
benchmark model

(a) Mutation rate 0.1 (b) Mutation rate 0.01 (c) Mutation rate 0.005

Fig. 5.4: Convergence of the genetic algorithm with test function with different
mutation rates

5.3 Neural Architecture Search
Neural network architecture search was chosen as a second approach for architecture
optimization. The aim here was to see if a genetic algorithm with preset rules for
architecture build would be able to create architecture with similar or better scores
than those achieved by a model from an expert engineer.

The NAS approach comes with a lot of challenges that need to be taken care
of for the architecture to be valid. The dimensions of layers need to match and be
compatible, the optimization problem cannot be too large, otherwise, we would have
a small chance of achieving some good scores within a reasonable time, and lastly,

33

the architecture of the network must be encoded. Encoding of the architecture
needs to be done in a way, that allows for a crossover of two completely different
architectures, which still results in a valid architecture and can be also mutated.

Fig. 5.5: Example of the inception-like block that is used in the architecture as main
building stone

The inspiration for the NAS approach described below comes from NAS papers
that used smaller building blocks such as convolutional block with 3x3 or 1x1 kernels
and some average or maximum pooling operations, as well as inception blocks and
the architecture building there [25, 41].

The architecture is built from main building blocks, pictured in Fig. 5.5. This
block is created from n operation blocks, which can be either maximum pooling,
average pooling, convolutional operation with (k x k) kernels, or identity operation,
in which the output is the same as the input. The combination of those blocks is then
concatenated in the following layer and is followed by a 1x1 convolutional operation
with N output channels. This layer ensures for dimension matching between multiple
main blocks stacked onto each other in the architecture. The last main building block
is followed by an adaptive average pooling layer and a linear layer, that takes care
of the classification, which can be seen in Fig. 5.6.

The Fig. 5.6 also highlights optimizable hyperparameters of the neural network.
Before the start of the parameter search with the genetic algorithm, the maximal
number of main building blocks N is defined, as well as the number of operation
blocks in each of them and their parameters, such as available kernel sizes. Another
parameter is m input channels from the first 1x1 convolutional layer, which upsizes
the input signal in the channel dimensions to ensure an error-less run. The parameter
n out channels is the same for all the main building blocks and ensures for correct
dimension matching between them. Once the genetic algorithm is started, a preset

34

number of architectures is created and evaluated. From there, the principle is the
same as with the hyperparameter optimization, as they both use the same genetic
algorithm, which is described above in Subsection 5.1.

Fig. 5.6: Example of architecture build the random generator from the NAS imple-
mented method. Blue color highlights all optimizable parameters - number of m
input channels, number of n output channels in each block, N number of blocks, M
number of building blocks (conv nxn, avg pool, ...) in each of the blocks.

35

Fig. 5.7: Example of crossover between two neural networks

Fig. 5.8: Example of offspring mutation

The encoding of the architecture is realized with Python dictionaries that have
3 layer hierarchy. The dictionaries in the bottom layer have the same structure

36

with information about the number of input and output channels and kernel size.
The middle layer assigns the type of operation and its values are the operation
parameters from the bottom layer. The top layer has information about the block
number and their names from 0 to Nth block and wraps it all up. An example
of this encoding system is shown in Listing 5.1. The rest of the architecture does
not change and is directly encoded in the encoder and decoder part of the code.
This way of direct encoding via dictionaries allows to do crossover and mutation
operations between the operations of the main blocks at the same level. Crossover
operation has one additional limitation compared to the algorithm implemented for
the hyperparameter optimization and that is the limitation of a maximal number
of operations in each block. Here, indexes of operations from parent A and B are
randomly chosen and cropped after the maximal number of operations n, which was
defined before the algorithm was started, is achieved, and the rest of them are thrown
away. The mutation operation has two options, both shown in Figure 5.8 either to
delete random operations from the main blocks or to change their parameters, such
as the number of output channels or kernel size.

Listing 5.1: Example of encoded architecture with dictionaries
{

’ block_0 ’ : {
’ ident i ty_0 ’ : { ’ in_channels ’ : 8 , ’ out_channels ’ : 8 , ’ k e r n e l _ s i z e ’ : (7 , 7)} ,
’ ident i ty_1 ’ : { ’ in_channels ’ : 8 , ’ out_channels ’ : 8 , ’ k e r n e l _ s i z e ’ : (1 , 1)} ,
’ ident i ty_2 ’ : { ’ in_channels ’ : 8 , ’ out_channels ’ : 8 , ’ k e r n e l _ s i z e ’ : (7 , 7)} ,
’ conv_3 ’ : { ’ in_channels ’ : 8 , ’ out_channels ’ : 16 , ’ k e r n e l _ s i z e ’ : (7 , 7)} ,
’ avgpool_4 ’ : { ’ in_channels ’ : 8 , ’ out_channels ’ : 16 , ’ k e r n e l _ s i z e ’ : (7 , 7)}

} ,
’ block_1 ’ : {

’ ident i ty_0 ’ : { ’ in_channels ’ : 128 , ’ out_channels ’ : 128 , ’ k e r n e l _ s i z e ’ : (3 , 3)} ,
’ conv_1 ’ : { ’ in_channels ’ : 128 , ’ out_channels ’ : 16 , ’ k e r n e l _ s i z e ’ : (3 , 3)} ,
’ conv_2 ’ : { ’ in_channels ’ : 128 , ’ out_channels ’ : 32 , ’ k e r n e l _ s i z e ’ : (7 , 7)} ,
’ maxpool_3 ’ : { ’ in_channels ’ : 128 , ’ out_channels ’ : 32 , ’ k e r n e l _ s i z e ’ : (7 , 7)}

} ,
’ block_2 ’ : {

’ conv_0 ’ : { ’ in_channels ’ : 128 , ’ out_channels ’ : 32 , ’ k e r n e l _ s i z e ’ : (7 , 7)}
}

}

The genetic algorithm for the NAS optimization problem was initialized with
a population size of 20 and mutation rate of 0.05, 4 input channels for the first
covn 1x1 layer, a maximal number of 5 main blocks with a maximal number of 3
operations per block. The convolutional kernel could be of size 1x1, 3x3, and a
possible number of output channels can be either 16, 32, 64, or 128. The algorithm
was tested on inputs with STFT and WST data transformations and each ran for
3 days on 8 GPUs and during that time was able to evaluate 160 neural networks
each.

37

5.4 Evaluation Metrics
For the evaluation of the neural network’s score 4 metrics were monitored, kappa
score, F1 score, an area under the receiver operating characteristic (AUROC), and
an area under the precision-recall curve (AUPRC). All of those metrics can be used
when working with imbalanced data and were also used in previous studies on this
dataset [16].

Value of Kappa Level of Agreement Reliable Data
0 - 0.20 None to Slight 0-4%
0.21 - 0.39 Minimal 4-15%
0.40 - 0.59 Weak 15-35%
0.60 - 0.79 Moderate 35-63%
0.80 - 0.90 Strong 64-81%
> 0.90 Almost Perfect to Perfect 82-100%

Tab. 5.2: Interpretation of Cohen’s Kappa Score

The kappa score was used as a fitness function to evaluate the solutions found by
the genetic algorithm. The interpretability of Cohen’s Kappa is more intuitive than
that of the F1. Compared to a macro F1, Cohen’s Kappa is a more strict metric as
it also considers a probability of random agreement in the final score. This metric is
used to measure how closely the classified instances match the ground truth labels
while controlling the accuracy of a random classifier. [42] The interpretation of
Cohen’s kappa [43] is summarized in Table 5.2 and can be computed as follows:

𝜅 = 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡−𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝐶ℎ𝑎𝑛𝑐𝑒
1−𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝐶ℎ𝑎𝑛𝑐𝑒

.

n expert

38

6 Results
This section reports the results of the hyperparameter tuning and neural architecture
search. It offers the solution overview of the best-found parameters and results.
Discussion of these results is included in the following Chapter 7.

6.1 Hyperparameter Tuning

Solutions Overview
Tables 6.1 and 6.2 offer an overview of the 5 best solutions found by the genetic
algorithm for each of the STFT and the WST models and the convergence of the
algorithm in the exploitation phase is shown in Fig 6.1a and 6.1b. The chosen
parameters of the STFT-Model and the WST-Model used for reporting the final
results are highlighted in Tables 6.1 and 6.2.

(a) (b)

Fig. 6.1: Convergence of the genetic algorithm for the STFT- and WST-model dur-
ing the exploitation part

Performance Overview
An overview of final results is reported in 6.3, where the results are averaged over
5 runs on the test datasets for SAUH and MAYO. We compare the results on the
benchmark model and on the best-found solution for the STFT-Model and the WST-
Model parameters. We can observe an increase in all measured metrics scores after
the optimization process. Tables 6.4 provide better insight into the impact of the im-
proved performance on the classes, monitoring the F1 Score, AUROC, and AUPRC

39

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
Hann 25 24 27 28 3 29 2 26 5−4 0
Hann 25 24 28 28 5 29 3 25 5−4 0
Hann 25 24 28 25 3 29 2 24 5−4 0
Hann 25 24 27 28 3 29 2 25 5−4 0
Hann 25 24 28 28 5 29 2 27 5−4 0

Tab. 6.1: Overview of top 5 solutions for the STFT-Model.
STFT parameters: P1 - type of window function, P2 - length of each segment, P3 -

number of overlapping points between segments, P4 - length of used FFT with
zero padding

Model parameters: P5 - number of convolutional filters, P6 - size of convolutional
kernel, P7 - number of features in the hidden state of a GRU layer, P8 - number of

recurrent layers, P9 - batch size, P10 - learning rate, P11 - weight decay

P1 P2 P3 P4 P5 P6 P7 P8 P9
8 10 28 5 29 2 27 1−3 0
8 10 29 7 27 3 26 1−3 0
7 10 29 5 29 2 27 5−4 1−5

7 10 210 3 28 3 27 1−3 1−5

7 10 210 7 28 3 27 1−3 1−5

Tab. 6.2: Overview of top 5 solutions for the WST-Model.

WST parameters: P1 - maximum log-scale of the scattering transform, P2 -
number of wavelets per octave for the first order

Model parameters: P3 - number of convolutional filters, P4 - size of convolutional
kernel, P5 - number of features in the hidden state of a GRU layer, P6 - number of

recurrent layers, P7 - batch size, P8 - learning rate, P9 - weight decay

for each class. Tables 6.5 are contingency tables with outcomes of the benchmark
and the optimized model for the SAUH and MAYO data. McNemar’s test based
on these results shows that for both datasets, the optimized model significantly
improved the final accuracy with a p-value « 0.01.

40

Kappa Score Macro F1 Mean AUROC Mean AUPRC
SAUH Dataset

Benchmark Model [16] 0.8450 0.9076 0.9823 0.9613
STFT-Model 0.9079 0.9419 0.9922 0.9837
WST-Model 0.9411 0.9673 0.9969 0.9938

MAYO Dataset
Benchmark Model [16] 0.8885 0.9222 0.9897 0.9740
STFT-Model 0.9011 0.9344 0.9919 0.9805
WST-Model 0.9123 0.9400 0.9941 0.9856

Tab. 6.3: Comparison of the overall performance between the benchmark model
and the best STFT and WST Models.

F1 Score AUROC AUPRC
BM STFT WST BM STFT WST BM STFT WST

SAUH Dataset
Powerline 0.9934 1.0 1.0 0.9999 1.0 1.0 0.9994 1.0 1.0
Noise 0.8152 0.8780 0.9475 0.9687 0.9873 0.9886 0.8962 0.9592 0.9886
Pathology 0.8829 0.9217 0.9451 0.9763 0.9880 0.9984 0.9509 0.9763 0.9881
Physiology 0.9054 0.9311 0.9593 0.9675 0.9817 0.9847 0.9624 0.9792 0.9925

MAYO Dataset
Powerline 0.9898 0.9953 0.9970 0.9995 0.9999 0.9999 0.9992 0.9999 0.9999
Noise 0.8779 0.8841 0.9042 0.9822 0.9844 0.9899 0.9529 0.9577 0.9740
Pathology 0.9232 0.9512 0.9499 0.9963 0.9984 0.9984 0.9751 0.9881 0.9893
Physiology 0.9013 0.9051 0.9216 0.9807 0.9847 0.9892 0.9690 0.9754 0.9818

Tab. 6.4: Detailed results of F1 Score, AUROC, and AUPRC for each of the
classification categories compared between the benchmark model and the best

STFT and WST models.

6.2 Neural Architecture Search

Solution Overview
Table 6.6 offers an overview of the 3 best architectures found with the neural archi-
tecture search that are reported along with their kappa and F1 scores. The detailed
results with class scores can be seen in Table 6.7. Fig. 6.2 shows the convergence of
the algorithm during the optimization.

41

SAUH BM Correct BM False
WST Correct 33917 3214
WST False 626 867

MAYO BM Correct BM False
WST Correct 27797 1545
WST False 893 801

Tab. 6.5: Contingency tables for McNemar’s Test on SAUH and MAYO datasets
with p-values « 0.01

Fig. 6.2: Convergence of the genetic algorithm with Neural Architecture Search

42

Operation 1 Operation 2 Operation 3

Block 1 conv 1x1
128 ch

conv 3x3
16 ch

conv 3x3
16 ch

Block 2 conv 3x3
64 ch

conv 1x1
128 ch

conv 3x3
128 ch

Block 3 maxpool conv 1x1
64 ch

avgpool

Block 4 conv 3x3
128 ch

conv 3x3
128 ch

conv 3x3
64 ch

Block 5 maxpool maxpool maxpool
Kappa Score: 0.8299 F1 Score: 0.8997

Operation 1 Operation 2 Operation 3

Block 1 conv 3x3
16 ch

conv 3x3
16 ch

avgpool

Block 2 avgpool conv 3x3
16 ch

conv 1x1
128 ch

Block 3 maxpool conv 1x1
64 ch

avgpool

Block 4 conv 3x3
64 ch

conv 3x3
128 ch

conv 3x3
64 ch

Block 5 maxpool maxpool maxpool
Kappa Score: 0.8294 F1 Score: 0.8991

Operation 1 Operation 2 Operation 3

Block 1 conv 3x3
128 ch

conv 1x1
128 ch

maxpool

Block 2 identity conv 3x3
16 ch

conv 3x3
64 ch

Block 3 maxpool conv 1x1
128 ch

conv 1x1
128 ch

Block 4 maxpool conv 3x3
64 ch

conv 3x3
128 ch

Block 5 maxpool maxpool maxpool
Kappa Score: 0.8290 F1 Score: 0.9004

Tab. 6.6: Overview of 3 best found architectures with Neural Architecture Search

43

F1 Score AUROC AUPRC
BM NAS BM NAS BM NAS

Powerline 0.9934 0.9987 0.9999 0.9999 1.0 0.9999
Noise 0.8152 0.8140 0.9687 0.9659 0.9592 0.8769
Pathology 0.8829 0.8831 0.9763 0.9766 0.9509 0.9472
Physiology 0.9054 0.9030 0.9675 0.9651 0.9624 0.9626

Tab. 6.7: Detailed results of F1 Score, AUROC, and AUPRC for each of the
classification categories compared between the benchmark model and the best

NAS model on SAUH data

44

7 Discussion
This thesis is focused on the optimization of neural network design for iEEG pro-
cessing and follows up on the work in [16]. Chapters 5 and 6 describe the chosen
approach to the optimization which was done with the help of custom designed ge-
netic algorithm and hyperparameter tuning of a benchmark model as well as neural
architecture search. The benchmark model is a CNN-GRU model designed by an
engineer with expertise knowledge in the field of iEEG processing and neural net-
works. The optimization was distributed over multiple GPUs which was possible
thanks to the GA design and took about 2 to 3 days per method, which is equivalent
to 10 days of computing time on a single GPU. For the idea, it would take 180 years
to do the grid search optimization in the case of the hyperparameter optimization.

Hyperparameter Tuning
In the case of the hyperparameter tuning, the result achieved by this method was
superior to the results achieved by the benchmark model. The optimization was
focused both on the optimization of hyperparameters of the neural network and
optimization of parameters the input data pre-processed.

During the exploration part of the optimization search, higher increments in the
final score were observed when optimizing the preprocessing of the input signal into
the model. At this part, the optimized model hyperparameters increased the kappa
score by 0.02, whilst the spectrogram and WST parameters caused an increment
by 0.04 and 0.06. One of the reasons for this could be the fact that the benchmark
model was designed with enough expertise, whilst the choice for the spectrogram
parameters in the original was based on visual impression without further fine-
tuning.

The results of the overall performance can be seen in Table 6.3 and show im-
provement in all observed metrics. The wavelet scattering transformation shows
along with the model hyperparameter optimization shows better results than the
model with STFT signal preprocessing. When trained on the SAUH dataset, the
WST-Model optimization improved the mean AUROC score of 0.9823 and mean
AUPRC score of 0.9613 to 0.9969 and 0.9938 respectively. The final kappa score
of 0.9411 and macro F1 score of 0.9673 showed improvement as well compared to
the benchmark model by 0.1 and 0.06 respectively. The performance of the model
was also improved on the model that was re-trained on data from the Mayo Clinic.
The improvement of the separate classes can be seen in more detail in Table 6.4.
The increment of the final score is caused mainly by improved classification of noise

45

and physiology classes and, most importantly, also of the pathology class, whose F1
score improved from 0.8829 to 0.9451.

7.1 Neural Architecture Search
The results of the neural architecture search are comparable with the results of the
benchmark model. While this is nothing superior, the NAS approach was able to
find an architecture that is still comparable with the original scores with just a
few design rules and basic operations such as convolution, maximum and average
pooling, and identity. Since the optimization problem is quite large and we only
sampled a few networks with quite limited parameters (1x1 and 3x3 convolutional
kernel size only), a pre-set number of input channels and output channels from each
main block, etc... it is possible, that under further exploration and tweaking of the
algorithm setting and longer computation time, the NAS could find could yet find
better fitting architecture for the task.

46

8 Conclusion
The aim of this thesis was to design an evolutionary algorithm for the optimization
of neural networks that processes EEG signals. A genetic algorithm with uniform
crossover and random mutation of the genes was chosen for this task. The algorithm
was designed to work both synchronously or asynchronously and can thus speed up
the optimization process if more GPU processors are available. Due to its design,
it only needs small adjustments to upgrade it from hyperparameter optimization to
neural architecture search, which was explored in this thesis.

The data used in this thesis are intracranial EEG recordings from epileptic pa-
tients undergoing pre-surgical examinations at St. Anne’s University Hospital and
Mayo Clinic. The results achieved within this thesis were compared to a benchmark
model that was designed and optimized for this task by an engineer.

This work introduces two approaches to neural architecture optimization. The
first is hyperparameter optimization, in which the hyperparameters of the bench-
mark model are optimized with the help of the genetic algorithm in order to find a
better solution. The second approach is a neural architecture search, in which the
genetic algorithm searches for optimal architecture for the given task based on some
set of pre-designed rules. Both of the approaches were trained, validated, and tested
on the St. Anne’s Hospital dataset. The optimization process took about 10 days
of computing time∗.

The results of the hyperparameter optimization were much more promising than
the results of the neural architecture search. The NAS approach resulted in a model
that had results comparable to the benchmark model. The hyperparameter tuning
approach on the other hand was able to significantly improve the final score of the
neural network and most importantly, improved the score on pathology and noise
classes. The result of the hyperparameter tuning was also tested on the dataset
from Mayo Clinic, where the results improved as well with the optimized version of
the model.

While the neural architecture search did not result in any superior results, it
had comparable results with the benchmark model, even though it had no prior
knowledge about the problem and only a few simple building blocks and operations
and a set of rules for architecture design at hand. The hyperparameter optimization
showed great improvement in the final classification scores and can thus further
positively impact the detection of pathological activity or noise detection in iEEG
signal processing.

∗Calculated for computation on a single GPU processor.

47

Bibliography
[1] Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2018). Deep learn-

ing for healthcare: review, opportunities and challenges. Briefings in bioinfor-
matics, 19(6), 1236-1246.

[2] Saeid S. and Chambers J. A. EEG signal processing. Chichester: Wiley, 2007.
xxii, 289 s. ISBN 978-0-470-02581-9

[3] Attwood, H. L., and MacKay, W. A., Essentials of Neurophysiology, B. C.
Decker, Hamilton, Canada, 1989.

[4] Li, R., Yang, D., Fang, F., Hong, K. S., Reiss, A. L., & Zhang, Y. (2022).
Concurrent fNIRS and EEG for brain function investigation: a systematic,
methodology-focused review. Sensors, 22(15), 5865.

[5] Nejedly, P., Kremen, V., Sladky, V., Cimbalnik, J., Klimes, P., Plesinger, F.,
... & Worrell, G. (2020). Multicenter intracranial EEG dataset for classification
of graphoelements and artifactual signals. Scientific data, 7(1), 1-7.

[6] Nejedly, P., Cimbalnik, J., Klimes, P., Plesinger, F., Halamek, J., Kremen, V.,
... & Jurak, P. (2019). Intracerebral EEG artifact identification using convolu-
tional neural networks. Neuroinformatics, 17(2), 225-234.

[7] Gibbs, F. A., & Gibbs, E. L. (1941). Atlas of electroencephalography.

[8] Frauscher, B., Von Ellenrieder, N., Zelmann, R., Doležalová, I., Minotti, L.,
Olivier, A., ... & Gotman, J. (2018). Atlas of the normal intracranial elec-
troencephalogram: neurophysiological awake activity in different cortical areas.
Brain, 141(4), 1130-1144.

[9] Craik, A., He, Y., & Contreras-Vidal, J. L. (2019). Deep learning for electroen-
cephalogram (EEG) classification tasks: a review. Journal of neural engineering,
16(3), 031001.

[10] Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T. H., & Faubert,
J. (2019). Deep learning-based electroencephalography analysis: a systematic
review. Journal of neural engineering, 16(5), 051001.

[11] Shoeibi, A., Khodatars, M., Ghassemi, N., Jafari, M., Moridian, P., Al-
izadehsani, R., ... & Acharya, U. R. (2021). Epileptic seizures detection us-
ing deep learning techniques: a review. International Journal of Environmental
Research and Public Health, 18(11), 5780.

48

[12] Beghi, E. (2020). The epidemiology of epilepsy. Neuroepidemiology, 54(2), 185-
191.

[13] Asadi-Pooya, A. A., Stewart, G. R., Abrams, D. J., & Sharan, A. (2017).
Prevalence and incidence of drug-resistant mesial temporal lobe epilepsy in the
United States. World neurosurgery, 99, 662-666.

[14] Rosenow, F., & Lüders, H. (2001). Presurgical evaluation of epilepsy. Brain,
124(9), 1683-1700.

[15] Nejedly, P., Cimbalnik, J., Klimes, P., Plesinger, F., Halamek, J., Kremen, V.,
... & Jurak, P. (2019). Intracerebral EEG artifact identification using convolu-
tional neural networks. Neuroinformatics, 17(2), 225-234.

[16] Nejedly, P., Kremen, V., Sladky, V., Cimbalnik, J., Klimes, P., Plesinger, F.,
... & Worrell, G. (2019). Exploiting graphoelements and convolutional neural
networks with long short term memory for classification of the human elec-
troencephalogram. Scientific reports, 9(1), 1-9.

[17] Simon, D. (2013). Evolutionary optimization algorithms. John Wiley & Sons.

[18] Zhang, A., Lipton, Z. C., Li, M., & Smola, A. J. (2021). Dive into deep learning.
arXiv preprint arXiv:2106.11342.

[19] Yu, T., & Zhu, H. (2020). Hyper-parameter optimization: A review of algo-
rithms and applications. arXiv preprint arXiv:2003.05689.

[20] Zhou, M. (2021). Heuristic Hyperparameter Optimization for Convolutional
Neural Networks using Genetic Algorithm. arXiv preprint arXiv:2112.07087.

[21] Aszemi, N. M., & Dominic, P. D. D. (2019). Hyperparameter optimization in
convolutional neural network using genetic algorithms. International Journal of
Advanced Computer Science and Applications, 10(6).

[22] Sun, Y., Xue, B., Zhang, M., Yen, G. G., & Lv, J. (2020). Automatically de-
signing CNN architectures using the genetic algorithm for image classification.
IEEE transactions on cybernetics, 50(9), 3840-3854.

[23] Xie, L., & Yuille, A. (2017). Genetic cnn. In Proceedings of the IEEE interna-
tional conference on computer vision (pp. 1379-1388).

[24] Gao, Z., Li, Y., Yang, Y., Wang, X., Dong, N., & Chiang, H. D. (2020). A
GPSO-optimized convolutional neural networks for EEG-based emotion recog-
nition. Neurocomputing, 380, 225-235.

49

[25] Zoph, B., & Le, Q. V. (2016). Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578.

[26] Real, E., Aggarwal, A., Huang, Y., & Le, Q. V. (2018). Regularized
Evolution for Image Classifier Architecture Search.(2018). arXiv preprint
arXiv:1802.01548.

[27] Lin, M., Wang, P., Sun, Z., Chen, H., Sun, X., Qian, Q., ... & Jin, R. (2021).
Zen-nas: A zero-shot nas for high-performance image recognition. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision (pp. 347-
356).

[28] Zhao, Y., Wang, L., Tian, Y., Fonseca, R., & Guo, T. (2021, July). Few-shot
neural architecture search. In International Conference on Machine Learning
(pp. 12707-12718). PMLR.

[29] Stanley, K. O., Clune, J., Lehman, J., & Miikkulainen, R. (2019). Designing
neural networks through neuroevolution. Nature Machine Intelligence, 1(1), 24-
35.

[30] Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through
augmenting topologies. Evolutionary computation, 10(2), 99-127.

[31] Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., & Clune, J.
(2017). Deep neuroevolution: Genetic algorithms are a competitive alternative
for training deep neural networks for reinforcement learning. arXiv preprint
arXiv:1712.06567.

[32] Darwish, A., Hassanien, A. E., & Das, S. (2020). A survey of swarm and evolu-
tionary computing approaches for deep learning. Artificial intelligence review,
53(3), 1767-1812.

[33] Plesinger, F., Jurco, J., Halamek, J. & Jurak, P. SignalPlant: an open signal
processing software platform. Physiol. Meas. 37, N38–48 (2016)

[34] Nejedly, P., Plesinger, F., Halamek, J. & Jurak, P. CudaFilters: A SignalPlant
library for GPU-accelerated FFT and FIR filtering. Softw. Pract. Exp. 48, 3–9
(2018)

[35] Brázdil, M. et al. Very high-frequency oscillations: Novel biomarkers of the
epileptogenic zone. Ann. Neurol. 82, 299–310 (2017).

[36] Andén, J., & Mallat, S. (2014). Deep scattering spectrum. IEEE Transactions
on Signal Processing, 62(16), 4114-4128.

50

[37] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cour-
napeau, D., ... & Van Mulbregt, P. (2020). SciPy 1.0: fundamental algorithms
for scientific computing in Python. Nature methods, 17(3), 261-272.

[38] Andreux, M., Angles, T., Exarchakis, G., Leonarduzzi, R., Rochette, G., Thiry,
L., ... & Eickenberg, M. (2020). Kymatio: Scattering Transforms in Python. J.
Mach. Learn. Res., 21(60), 1-6.

[39] Umbarkar, Walchand College of Engineering, Sheth, and Government College
of Engineering, Karad. 2015. “Crossover Operators in Genetic Algorithms: A
Review.” ICTACT Journal on Soft Computing 06 (01): 1083–92.

[40] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., ... &
Lerer, A. (2017). Automatic differentiation in pytorch.

[41] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Van-
houcke V, Rabinovich A. Going deeper with convolutions (2014). arXiv preprint
arXiv:1409.4842. 2014;10.

[42] Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational
and psychological measurement, 20(1), 37-46.

[43] McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia
medica, 22(3), 276-282.

51

Symbols and abbreviations
AUPRC Area Under the Precision-Recall Curve

AUROC Area Under the Receiver Operating Curve

BM Benchmark Model

DL Deep Learning

EEG Electroencephalogram

FFT Fast Fourier Transform

GA Genetic Algorithm

GPU Graphics Processing Unit

iEEG Intracranial Electroencephalogram

MAYO Mayo Clinic

ML Machine Learning

NAS Neural Architecture Search

NLP Natural Language Processing

SAUH St. Anne’s University Hospital

STFT Short-Time Fourier Transform

WST Wavelet Scattering Transform

52

53

Appendix

The electronic appendix contains a list of source codes used for the realization of
this thesis. The data usod for the thesis are publicly available† and the source codes
are available on GitHub‡.

†https://springernature.figshare.com/collections/Multicenter_intracranial_EEG_dataset_for-
_classification_of_graphoelements_and_artifactual_signals/4681208

‡https://github.com/KristynaPijackova/Diploma-Thesis-GA-for-iEEG

54

https://springernature.figshare.com/collections/Multicenter_intracranial_EEG_dataset_for_classification_of_graphoelements_and_artifactual_signals/4681208
https://springernature.figshare.com/collections/Multicenter_intracranial_EEG_dataset_for_classification_of_graphoelements_and_artifactual_signals/4681208
https://github.com/KristynaPijackova/Diploma-Thesis-GA-for-iEEG

./

GA_Architecture

server_RUN.py

main.py

model.py

statistics.py

dataset.py

run_model.py

build_blocks.py

inception_ask_blocks.py

GA.py

manage_results.py

solution.py

requirements.txt

GA_Hyperparameters

server.py

main.py

model.py

statistics.py

dataset.py

dataset_wst.py

run_model.py

run_model_wst.py

test_function.py

GA.py

solution.py

requirements.txt

55

Ethical Statement
This study was carried out in accordance with the approval of the Mayo Clinic Insti-
tutional Review Board with written informed consent from all subjects. The protocol
was approved by the Mayo Clinic Institutional Review Board and St. Anne’s Uni-
versity Hospital Research Ethics Committee and the Ethics Committee of Masaryk
University. All subjects gave written informed consent in accordance with the Dec-
laration of Helsinki. All methods were performed in accordance with the relevant
guidelines and regulations.

56

	Introduction
	EEG Signals
	Introduction
	Signal Acquisition and Processing
	EEG Applications
	iEEG in Epilepsy Diagnosis

	Optimization
	Neural Network Architecture
	Optimization Algorithms
	Neural Network Architecture Optimization

	Dataset and Data Preprocessing
	Dataset
	Data Preprocessing

	Methodology
	Genetic Algorithm
	Hyperparameters Optimization
	Neural Architecture Search
	Evaluation Metrics

	Results
	Hyperparameter Tuning
	Neural Architecture Search

	Discussion
	Neural Architecture Search

	Conclusion
	Bibliography
	Symbols and abbreviations
	Appendix

