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Abstract
Classical linear regression model and the respective tests are based on an assumption of
normally distributed response variables and on an assumption of variance equality. If the
normality assumption is not fulfilled, then the response variables are usually transformed.
In the first part of this work variance stabilising transformations are discussed. Great deal
of attention is given to random variables of Poisson and negative binomial distribution, for
which generalised variance stabilising transformations with addition constants in their ar-
guments are studied. Optimal values of the constants for the generalised transformations
are determined. The second part aims to provide a comparison of the transformations
introduced in the first part and some other commonly used transformations. The com-
parison is done within the ANOVA framework by testing the hypothesis of equality of
expectations among p random samples via F test. The properties of the distribution of
the F test under the assumptions of equal and unequal variances are studied. Finally a
comparison of the power functions of the F test applied to p random samples from Poisson
distribution transformed via square root, logarithmic and Yeo-Johnson transformation,
and to p random sample of negative binomial distribution transformed via argument of hy-
perbolic sine, logarithmic and the Yeo-Johnson transformation is carried out theoretically
and by simulations.

Abstrakt
Klasická lineární regrese a z ní odvozené testy hypotéz jsou založeny na předpokladu nor-
málního rozdělení a shodnosti rozptylu závislých proměnných. V případě že jsou předpok-
lady normality porušeny, obvykle se užívá transformací závisle proměnných. První část
této práce se zabývá transformacemi stabilizujícími rozptyl. Značná pozornost je udělena
náhodným veličinám s Poissonovým a negativně binomickým rozdělením, pro které jsou
studovány zobecněné transformace stabilizující rozptyl obsahující parametry v argumentu
navíc. Pro tyto parametry jsou stanoveny jejich optimální hodnoty. Cílem druhé části
práce je provést srovnání transformací uvedených v první části a dalších často užívaných
transformací. Srovnání je provedeno v rámci analýzy rozptylu testováním hypotézy shod-
nosti středních hodnot p nezávislých náhodných výběrů s pomocí F testu. V této části
jsou nejprve studovány vlastnosti F testu za předpokladu shodných a neshodných rozptylů
napříč výběry. Následně je provedeno srovnání silofunkcí F testu aplikovaného pro p
výběrů z Poissonova rozdělení transformovanými odmocninovou, logaritmickou a Yeo
Johnsnovou transformací a z negativně binomického rozdělení transformovaného argu-
mentem hyperbolického sinu, logaritmickou a Yeo-Johnsnovou transformací.

Keywords
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Preface

Classical linear regression model and the respective tests are based on an assumption of
normally distributed response variables and on an assumption of variance equality. If the
normality assumption is not fulfilled, then the response variables are usually transformed.
In literature, there are several transformations suggested for the frequently occurring
distributions of the response variables. Often, the logarithmic transformation is applied.
The problem of calculating a logarithm of nonnegative values is usually solved by adding
a constant 1. This work aims to study the logarithmic transformation ln(X + 1) and
alternative transformations that can be used instead of ln(X+1) and provide comparisons
of the studied transformations. Great deal of attention is paid to random variables X of
Poisson and Negative binomial distribution.

In the first chapter the necessary theoretical background concerning matrix theory
and properties of selected probability distributions is introduced. In the last section of
the first chapter some basic results of estimation theory are summarised.

In the second chapter the important results concerning transformations of random
variables are introduced. Namely the variance stabilising transformation and a possible
way of determining it given a random variable of arbitrary probability distribution. In the
second and the third section of the second chapter the commonly used variance stabilising
transformations used for normality approximation are discussed.

In the third chapter selected generalised variance stabilising transformations with ad-
ditional general constants added for random variables with Poisson and Negative binomial
probability distributions are studied. Great deal of attention is given to finding approxi-
mations of numerical characteristics of the transformed variables when the studied trans-
formations are applied, namely the variance. Using the approximations of the numerical
characteristic optimal values for the general constants are found.

The fourth and fifth chapter both tackle with the problematic of comparison of the
transformations introduced in Chapter 3 of the work. The comparison itself is done within
the One-Way Analysis of Variance Framework by testing the hypothesis of equality of ex-
pectations of random samples originating from Poisson or Negative binomial distribution,
that were transformed either via transformation ln(X + 1) or via the variance stabilising
transformations introduced in Chapter 3, evaluating the power functions of the tests and
comparing them.

The fourth chapter provides a theoretical background for the framework of the trans-
formations comparison. It is assumed that some of the transformations might not have
the variance stabilising effect, for such cases an approximation of the distribution of the
test statistic in case of violated assumption of equality of variances is derived.

The first two sections of the fifth chapter provide some additional information about
the transformation ln(X + 1) applied to either Poisson distributed random variable or
Negative binomially distributed random variable. Namely, for both cases the approxima-
tions of the moments of Y = ln(X + 1) are derived. The rest of the chapter describes

13



the used methods and provides the computational and graphical results of the numerical
analysis. First the goodness of all the derived numerical characteristics approximations
and other approximations is checked. Finally the power functions of the executed tests
are computed by two different approaches, one theoretical and one based on simulations
and compared.

14



Chapter 1

Theoretical Basis

Before we start with the topic of interest of this work, we first define some basic tools
that will be used in our study. The whole chapter is based on [2], [3], [10] and [13].

1.1 Basic Concepts

In this section, various theoretical results concerning special functions and Touchard poly-
nomials are collected. The content of this section are based on [2] and [3].

1.1.1 Special Functions

Definition 1.1. (Gamma Function) Let a > 0. We define gamma function Γ(a) as

Γ(a) =

∫ ∞
0

xa−1e−xdx (1.1)

Definition 1.2. Let Γ(t) be a Gamma function given by Definition 1.1, and assume that
p is a nonnegative integer. We define a polygamma function of order p by

ψp(t) =

(
d

dt

)p+1

ln Γ(t). (1.2)

Namely for p = 0 we obtain

ψ(t) =

(
d

dt

)
ln Γ(t) =

Γ′(t)

Γ(t)
. (1.3)

Function ψ(t) will be called digamma function.

Definition 1.3. Let a > 0, and b > 0. We define beta function B(a, b) as

B(a, b) =

∫ 1

0

xa−1(1− x)b−1dx (1.4)

1.1.2 Touchard polynomials

In this subsection we provide some results for Touchard polynomials which will be used
in Section 3.1. This subsection is based on [3].
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Definition 1.4. (Touchard polynomials) The collection {Tn : n ≥ 0} of the Touchard
(also called exponential) polynomials in one dimension is defined as T0 = 1 and

Tn(x) =
n∑
k=1

S(n, k)xk, n ≥ 1 (1.5)

Where S(n, k) are Stirling numbers of the second kind, as defined in [3].

1.2 Results of Matrix Theory

In this section we will provide some useful properties of particular types of matrices that
appear in Classical Linear Regression and Analysis of Variance. This chapter is mainly
based on [2], some important results are taken from [13]. Where there can not be any
misunderstanding, we will by abuse of notation drop the indexes denoting the type of a
matrix.

Proposition 1.5. Let An×n,Bn×n be matrices, then if B is nonsignular, rank(AB) =
rank(BA) = rank(A)

Proof. See [10].

Proposition 1.6. Let Am×n be a m × n matrix, such that rank(Am×n) = r ≥ 1, then
there exist matrices Bm×r and Cr×n, such that Am×n = Bm×rCr×n, and rank(Bm×r) =
rank(Cr×n) = r.

Proof. As columns of B we take those r linearly independent columns of matrix A, whose
existence follows from the assumption rank(A) = r. Then the j-th column of the matrix
A is a linear combination of the columns of matrix B with some coefficients c1j, ..., crj.
Assume that a vector of these coefficients is the j-th column of matrix C.

Since the rank of product of two matrices is at most equal to the rank of any of the
matrices entering the product we have that rank(B) ≥ r, and rank(C ≥ r. But since B
has r columns, and C r rows, we also get rank(B) ≤ r, and rank(C) ≤ r which concludes
the proof.

1.2.1 Symmetric Matrices, Positive Semidefinite, and Definite
Matrices

Definition 1.7. A square matrix Am×m is called positively semidefinite, and we denote
Am×m ≥ 0, if it is symmetric and for every m-dimensional vector xm 6= 0 we have

xTmAm×mxm ≥ 0. (1.6)

Definition 1.8. A square matrix Am×m is called positively definite, and we denote
Am×m > 0, if it is symmetric, and for every nonzero m-dimensional vector xm we have

xTmAm×mxm > 0. (1.7)

Definition 1.9. Let H be a Hilbert space, a subset M of H that is closed under the
addition of vectors, and scalar multiplication is called a linear manifold.

Proposition 1.10. Let Ap×p be a symmetric real matrix, then the eigenvectors pi, pj
corresponding to eigenvalues λi, λj, where λi 6= λj are orthogonal.
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Proof. From the definition we have

Api = λipi, Apj = λjpj. (1.8)

Multiplication of the first by pTj and the second by pTi and a subtraction gives (λi −
λj)pTi pj = 0, and since the eigenvalues are distinct we have that pi, and pj are orthogonal.

Proposition 1.11. Let Ap×p be a real matrix. If x is an arbitrary non-null vector, there
exists an eigenvector y belonging to the linear manifold M(x,Ax,A2x, ...).

Proof. The vectors x,Ax, ... can not all be independent. Let k be the smallest value,
such that

Akx + bk−1Ak−1x + ...+ b0x = 0. (1.9)

Factorising (1.9), we see that

(A− µ1I) · ... · (A− µkI)x = 0, (1.10)

and therefore
(A− µ1I)y = 0, (1.11)

where
y = (A− µ2I) · ... · (A− µkI) 6= 0. (1.12)

Furthermore, (A − µ1I)y = 0, i. e. y is the eigenvector associated with the eigenvalue
µ1. Since A is real, µ1 is real (see [13], or [2]). Similarly each µi is real, and the equation
(1.12) shows that y ∈M(x,Ax,A2x, ...).

Following important result will be provided with complete proof which can also be
found in [13]. The proof is of importance, as it is constructive, and some steps of it will
come in handy again in Chapter 4 Section 4.2.

Proposition 1.12. Let Am×m be a real symmetric matrix. Let us denote λ1 ≥ ... ≥ λm
the eigenvalues ofA including the multiplicities. Put Λm×m = diag(λ1, ..., λm). Then there
exists an orthogonal matrix Pm×m such that each column vector pi of P is an eigenvector
corresponding to λi, and

Am×m = Pm×mΛm×mPTm×m, and Im×m = Pm×mPTm×m. (1.13)

Proof. Suppose there exist s orthonormal vectors p1, ...,ps such that

Api = λipi, i = 1, ..., s. (1.14)

The result (1.14) implies, that A2pi = λiApi = λ2
ipi, ...,A

rpi = λrpi, .... Choose a vector
x orthogonal to M(p1, ...,ps), then

xTArpi = xTλripi = 0 (1.15)

for all r and i = 1, ..., s. Hence, due to symmetry of A we have M(x,Ax,A2x, ...)
is orthogonal to M(p1, ...,ps). From Proposition 1.11 we know, that there exists an
eigenvector ps+1 ∈M(x,Ax,A2x, ...), which in view of (1.15) is orthogonal to p1, ...,ps.

Since p1 can be chosen corresponding to any latent vector to start with, we have
established the existence of m mutually orthogonal latent vectors p1, ...,pm such that

Api = λipi, i = 1, ...,m, (1.16)

17



which may be written

AP = PΛ, PPT = I, (1.17)

where P is the orthogonal matrix with Pi as its columns and Λ is the diagonal matrix
with λi as its i-th diagonal element.

Due to the nonnegativity of all eigenvalues of a positive semidefinite matrix we can
define following useful term.

Definition 1.13. Let Am×m be a positive semidefinite matrix, let us denote Λ
1
2
m×m =

diag(
√
λ1, ...,

√
λm) an eigenvalue square root matrix.

Remark 1.14. It is easy to see that Λ
1
2
m×mΛ

1
2
m×m = Λm×m.

Proposition 1.15. Let Am×m be a positive semidefinite matrix of rank(Am×m) = r ≥ 1.
Then there exists a matrix Bm×r such that rank(Bm×r) = r and we have

Am×m = Bm×rBTm×r. (1.18)

Proof. By Proposition 1.12 we have that Am×m = Um×mΛm×mUT
m×m. From the assump-

tion rank(Am×m) = r ≥ 1 follows that rank(Λm×m) = r. Hence, Λm×m has to have
form Λm×m = diag(λ1, ..., λr, 0, ..., 0). When using the block notation, we can write

Λ
1
2
m×m = (L,0)m×(m−r), where

Lm×r =



√
λ1 0 ... 0
... ... ... ...
0 0 ...

√
λr

0 0 ... 0
... ... ... ...
0 0 ... 0


. We have that

A = UΛ
1
2 Λ

1
2 UT = U(L,0)

(
LT

0

)
UT = (UL,0)

(
LTUT

0

)
= ULLTUT = BBT ,

where B = UL. Since U is regular, we have that rank(B) = r.

1.2.2 Eigenvalues

Proposition 1.16. Let An×n be a real matrix with eigenvalues λ1, ..., λn. Then

Tr(A) =
n∑
i=1

λi. (1.19)

Proof. The proof is based on the theory of Jordan Canonical Forms that is not developed
in this work, for details see [10].
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Proposition 1.17. Let An×n be a real matrix with eigenvalues λi, i = 1, ...n, and let
Bm×m be a real matrix with eigenvalues µi, i = 1, ...m. Then the eigenvalues of A ⊗ B
are

λ1µ1, ..., λ1µm, λ2µ1, ..., λ2µm, ..., λnµm. (1.20)

Moreover, if x1, ...,xp are linearly independent right eigenvectors of A corresponding to
λ1, ..., λp (p ≤ n), and z1, ..., zq are linearly independent right eigenvectors of B cor-
responding to µ1, ..., µq (q ≤ m), then xi ⊗ zj ∈ Rnm are linearly independent right
eigenvectors of A⊗B corresponding to λiµj, where i = 1, ..., p, and j = 1, ..., q.

Proof. See [10].

1.2.3 Idempotent matrices

Definition 1.18. We say that an m-dimensional matrix is idempotent if A2
m×m = Am×m.

Proposition 1.19. Eigenvalues of idempotent matrix are only zeroes and ones.

Proof. We know, that λ is an eigenvalue and xm 6= 0 a corresponding eigenvector of a
matrix Am×m, if Am×mxm = λxm. If we multiply this equation from the left by the
matrix Am×m we obtain A2

m×mxm = λAm×mxm. On the left hand side of the equality
we have A2

m×mxm = Am×mxm = λxm, and on the right hand side we have λAm×mxm =
λ2xm. Hence, we get the equality λxm = λ2xm. Since xm 6= 0 by assumption, obviously
λ(1− λ) = 0 must be satisfied, hence, λ has to be either zero, or one.

Proposition 1.20. Let Am×m be an idempotent matrix. The rank(Am×m) of Am×m is
equal to its trace.

Proof. Let rank(Am×m) = r. If r = 0, then the statement is obviously satisfied,
therefore assume that r ≥ 1. By Proposition 1.6 we have that An×n = Bn×rCr×n,
where rank(Bn×r) = rank(Cr×n) = r. Let us denote Lr×n the left inverse matrix
(see [10]) with respect to matrix Bn×r, and Pn×r the right inverse matrix (see [10])
with respect to Cr×n. The assumption An×n = A2

n×n can be written in the form
Bn×rCr×nBn×rCr×n = Bn×rCr×n. Now by multiplying by Lr×n from the left and Pn×r
from the right, we obtain

L(BCBC)P = L(BC)P

= (LB)(CP)

= I (1.21)

Since also (LB)CB(CP) = ICBI = CB, we have CB = I. From here follows that

Tr(A) = Tr(BC) = Tr(CB) = Tr(I) = r = rank(A) (1.22)

Proposition 1.21. Symmetric idempotent matrix is positively semidefinite.

Proof. Let An×n be a symmetric idempotent matrix. Let xn be an n-dimensional vector.
Since A = A2, and AT = A we have

xTAx = xTA2x = xTATAx = (Ax)T (Ax) ≥ 0. (1.23)
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1.2.4 Pseudoinverse Matrices

Definition 1.22. Let Am×n be a matrix. A pseudoinverse matrix A−n×m of Am×n is such
matrix, that satisfies

AA−A = A. (1.24)

Remark 1.23. Pseudoinverse matrix A−n×m of Am×n always exists, but is not given
uniquely. For more detailed statement and proof the reader is kindly advised to see [2].

Proposition 1.24. Let rank(Am×r) = r ≥ 1. Then for any pseudoinverses A−, AT−,
(AAT )− we have that

(i) A−A = I,

(ii) ATAT− = I,

(iii) AT (AAT )−A = I.

Proof. (i) From the assumptions of the theorem follows, that the columns of the matrix
A are linearly independent. I. e. for every vector y ∈ Rr the following holds

[Ay] = 0 =⇒ [y = 0]. (1.25)

By the definition of pseudoinverse matrix we have that AA−Ax = Ax for every x ∈ Rr.
Therefore we have A(A−Ax − x) = 0 and by using (1.25) we obtain, that A−Ax = x,
and since this holds for arbitrary x, we have A−A = I.

(ii) The proof is done analogously as (i).
(iii) Let us denote AT (AAT )−A = C. By the definition of pseudoinverse matrix we

have that ACAT = AAT . If we multiply by A− from the left, and by AT− from the
right, due to (i), (ii) we obtain C = I.

1.3 Properties of Selected Probability Distributions

In this section we will provide characteristics of the probability distributions used in the
work. This section is based mainly on [2] and [4]. The details of some computations are
featured in the appendix A of this work.

1.3.1 Poisson Probability Distribution

Definition 1.25. Let λ ∈ [0,∞) and let X be a random variable, such that

p(x) =

{
e−λ λ

x

x!
for ∀ x ∈ N0,

0 otherwise
(1.26)

then we say that X has a Poisson probability distribution with parameter λ, and we write
X ∼ Po(λ).

Proposition 1.26. Let X be a random variable with Poisson probability distribution,
then the expectation of X is

EX = λ. (1.27)

Proof. Comes directly from Lemma A.1.
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Proposition 1.27. Let X be a random variable with Poisson probability distribution,
then the variance of X is

varX = λ. (1.28)

Proof. By Lemma A.2 we have that

EX2 = λ2 + λ. (1.29)

Variance of X is then given by (see[2]),

varX = E
[
X − EX

]2
= EX2 − (EX)2 = λ2 + λ− λ2 = λ. (1.30)

1.3.2 Negative Binomial Probability Distribution

Definition 1.28. Let κ ∈ N and p ∈ (0, 1), let X be a random variable such that

p(x) =

{ (
κ+x−1

κ

)
qκ(1− q)κ for ∀ x ∈ N0,

0 otherwise
(1.31)

then we say that X has a negative binomial probability distribution and we write X ∼
NBi(κ, q).

Proposition 1.29. Let X be a random variable with negative binomial probability distri-
bution, then the expectation of X is

EX =
κ(1− q)

q
. (1.32)

Proof. This comes directly from Lemma A.3.

Proposition 1.30. Let X be a random variable with negative binomial probability distri-
bution, then the variance of X is

varX =
κ(1− q)

q2
. (1.33)

Proof. By using the results of Lemmata A.4, and A.3 we may write

varX = EX2 − (EX)2

=
κ(κ+ 1)(1− q)2

q2
+
κ(1− q)q

q2
− κ2(1− q)2

q2

=
κ[1− 2q + q2 + q − q2]

q2

=
κ(1− q)

q2
. (1.34)

Now we will provide a generalisation of the negative binomial distribution for positive
real valued parameter κ.
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Definition 1.31. Let κ > 0 and p ∈ (0, 1), let X be a random variable such that

p(x) =

{
Γ(x+κ)
x!Γ(κ)

qκ(1− q)κ for ∀ x ∈ N0,

0 otherwise,
(1.35)

then we say that X has a negative binomial probability distribution with positive real
parameter κ, and we write X ∼ NBi(κ, q).

Further on we will use a reparametrisation of the probability mass function of negative
binomial distribution that will be introduced in the following Proposition.

Proposition 1.32. Let κ > 0 and p ∈ (0, 1), let X be a random variable such that
X ∼ NBi(κ, q). Set µ = EX, then the probability mass function p(x) of X can be
written as

p(x;µ, κ) =

{
Γ(x+κ)
x!Γ(κ)

(
µ

κ+µ

)x( κ
κ+µ

)κ
, for ∀ x ∈ N0,

0 otherwise.
(1.36)

Proof. By Lemma 1.29 we have

EX = µ =
κ(1− q)

q
. (1.37)

From here we obtain
q =

κ

κ+ µ
. (1.38)

By plugging (1.38) into (1.41) we obtain (1.41) which concludes the proof.

Proposition 1.33. The variance of the negative binomially distributed random variable
X under the reparametrisation introduced in Proposition 1.32 is

var(X) = µ+
µ2

κ
. (1.39)

Proof. By plugging (1.38) into (1.33) we obtain

var(X) =
(κ+ µ)2

κ2

(
µ

κ+ µ

)
κ =

µ(κ+ µ

κ
= µ+

µ2

κ
. (1.40)

1.3.3 Pearson Chi Square Distribution

Definition 1.34. Let n ≥ 1. Let X be a random variable such that

f(x) =

{
1

2
n
2 Γ(n

2
)
x
n
2
−1e

−x
2 , x > 0,

0 otherwise,
(1.41)

then we say that X has a χ2 probability distribution with n degrees of freedom denoted
by χ2

n.

Proposition 1.35. Let X1, ..., Xn be independent identically distributed random vari-
ables, with Standard Gaussian probability distribution N(0, 1). Then the random variable
Y = (X2

1 + ...+X2
n) ∼ χ2

n.
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Proof. We need to show that the probability density function of Y is

fn(y) =
1

2
n
2 Γ(n

2
)
y
n
2
−1e

−y
2 , y > 0. (1.42)

Let n = 1. Then for y > 0 is the distribution function G of a random variable Y given by

G(y) = P (Y < y) = P (X2
1 < y) = P (−√y < X <

√
y) = Φ(

√
y)− Φ(−√y). (1.43)

Since Φ′(x) = φ(x), we have that

g(y) = G′(y) =
1

2
√
y
φ(
√
y) +

1

2
√
y
φ(−√y) =

1√
2
√
π
y−

1
2 e

y
2 . (1.44)

So we have that the formula (1.42) holds for n = 1. We will continue via induction. Let
(1.42) holds for some n ≥ 1. Then fn+1(y) =

∫
fn(y − z)f1(z)dz and after plugging in

z = uy and some further computation we obtain density (1.42) corresponding to index
n+ 1.

Let us denote by X0 = (X0
1 , ..., X

0
r )T , where X0

i are independent identically distributed
Gaussian random variables with E(X0

i ) = 0, var(X0
i ) = 1, i. e. X0 ∼ Np(0, Ip×p).

Proposition 1.36. Let X = (X1, ..., Xn)T ∼ Nn(µ,V), and let rank(V) = r ≥ 1.
Furthermore let Bn×r be a matrix of rank r, such that V = BBT . Then µ + BX0 ∼
N(µ,V).

Proof. For every vector cn we have that

cT (µ+ BX0) = cTµ+ cTBX0 ∼ N(cTµ, cTBBTc), (1.45)

where (1.45) comes from a property of multidimensional normal distribution (see [2]).

Proposition 1.37. LetX ∼ Nn(µ,V), where rank(V) = r ≥ 1, then the random variable
Y = (X − µ)TV−(X − µ) has distribution χ2

r for arbitrary choice of the pseudoinverse
matrix V−.

Proof. Due to Proposition 1.36 X has the same distribution as µ+BX0, where BBT = V,
and X0 ∼ Nr(0, I). Therefore Y has the same distribution as

(BX0)T (BBT )−(BX0) = X0TBT (BBT )−BX0 = X0TX0,

since due to Proposition 1.24 (iii) BT (BB)−B = Ir×r. Since we have also X0TX0 =
(X0

1 )2 + ...+ (X0
r )2 the statement follows from Proposition 1.35.

Proposition 1.38. Let X ∼ Nn(0,V), let An×n be as symmetric positive semidefinite
matrix. If matrix AV is nonzero and idempotent, then the random variable XTAX has
a distribution χ2 with degrees of freedom m = Tr(AV).

Proof. By assumption AV 6= 0 we get that rank(A) ≥ 1. Then A has by Proposition
1.15 decomposition, A = BBT , where B is of type n × rank(A). Recall that due to
Proposition 1.24 (i) we have that B−B = I. Set Y = BTX. Then Y ∼ N(0,BTVB) and
XTAX = YY. It is enough to see that BTVB is idempotent. In that case I is its pseudoin-
verse and due to Proposition 1.36 we have that YTY ∼ χ2

r, where r = rank(BTVB) =
Tr(BTVB) = Tr(BBTV) = Tr(AV). By the assumption (AV)(AV) = AV. That
means BBTVBBTV = BBTV. It follows, that B−BBTVBBTV = B−BBTV, i. e.
(BTVB)(BTVB) = (BTVB).
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Proposition 1.39. Let X1, ..., Xn are independent random variables with Xi ∼ N(µi, 1),
i = 1, ..., n. Let λ =

∑n
i=1 µ

2
i 6= 0. Then the distribution of random variable Y =

∑n
i=1X

2
i

depends only on n and λ and is called a noncentral χ2 distribution with n degrees of
freedom, and a parameter of noncentrality λ, and is denoted χ2

n,λ.

Proof. Set X0
i = Xi − µi, X0 = (X0

1 , ..., X
0
n)T , µ = (µ1, ..., µn)T . Then Y = (X0 +

µ)T (X0 +µ). Since λ 6= 0, there is such an orthonormal matrix B, such that its first row
is equal to λ−

1
2µT . Since X0 ∼ N(0, I) we have that Z = BX0 ∼ N(0, I) (This can be seen

as a result of a more general statement, that linear combination of independent identically
distributed Gaussian random variables is again Gaussian with corresponding parameters,
for details see [2]). Out of properties of B we have that a = Bµ = (

√
λ, 0, ..., 0)T .

Therefore we have

Y = (X0 + µ)T (X0 + µ) = (X0 + µ)TBTB(X0 + µ)

= (BX0 + Bµ)T (BX0 + Bµ) = (Z + a)T (Z + a) (1.46)

has distribution dependant only on n and λ.

1.4 Estimation theory

In this section we will provide theory concerning estimators of parameters of random
variables. This section is mainly based on [2].

1.4.1 Statistics and Unbiased Estimators

Assume that random vector X = (X1, ..., Xn)T has a probability density f(x,θ) with
respect to some σ-finite measure µ, where θ = (θ1, ..., θm)T is an unknown parameter.
Our goal is to get the best estimate of θ based on the vector X, while about θ we know
only that it belongs to some parametric space Ω ⊂ Rm. When we are doing a point
estimate our task is to find a measurable mapping g : (Rn,Bn) −→ (Rm,Bm), such that
the random vector T = g(X) would be in some sense the best approximation of the value
θ.

Definition 1.40. Assume that T is an estimator of an unknown parameter θ. We say
that T is unbiased, if ET = θ for ∀θ ∈ Ω. If ET = θ + b(θ), where function b is not
identically zero on Ω we call estimator T biased.
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Chapter 2

Transformations of Random
Variables

In the following text we will provide some theoretical background regarding the most com-
mon transformations of random variables. This chapter is based mainly on [1], partially
also on [16].

Let X be a random variable with probability density f and set Y = t(X), where t is
measurable function with respect to Lebesgue measure.

2.1 Variance Stabilising Transformation

In classical linear regression model, as well as in corresponding tests it is assumed that
the response variable are n independent Gaussian random variables Xi, i = 1, ..., n. In
such case we have

Xi ∼ N(θi, σ
2), where EXi = θi, and varXi = σ2, i = 1, ..., n,

where variance of Xi is independent of the expectation of Xi, i. e. σ2 is constant with
respect to the parameter θi. In practice this might, and quite often is not the case. In
the following we will consider a situation when the independence hypothesis is violated
and derive a transformation tackling this problem.

Let X be a random variable with a probability distribution that is depending on a
parameter θ. Let the parameter be such that EX = θ. Furthermore assume that the
variance varX = σ2 is a function of the parameter θ as well, i. e. varX = σ2(θ). Our
task is to find a nonconstant function g, such that Y = g(X) would have a variance,
that does not depend on θ. In general this problem does not have a solution, we will try
to obtain at least a suitable approximation. In the following theorem we will considered
random variable Y to be obtained via transformation Y = g(θ)+(X−θ)g′(θ), rather than
using Y = g(X). We are hence, approximating g(X) by it’s Taylor expansion around the
point θ up to a linear term.

Theorem 2.1. Let X be a random variable with probability distribution dependent on
a parameter θ, such that EX = θ, and varX = σ2(θ). Let g be a function that is
smooth along with it’s first and second derivative. Let Y be a random variable given by
Y = g(θ) + (X − θ)g′(θ), then varY is constant with respect to θ if

g(θ) = c

∫
dθ

σ(θ)
, c ∈ R. (2.1)
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Proof. By definition of Y we have

EY =
[
g(θ) + g′(θ)X− g′(θ)θ

]
= g(θ) + g′(θ)θ − g′(θ)θ
= g(θ), (2.2)

and

varY = EY 2 − (EY )2

= E
[
g(θ) + (X − θ)g′(θ)

]2 − (EY )2

= E
[
g2(θ) + 2Xg′(θ)g(θ)− 2θg′(θ)g(θ) +X2

(
g′(θ)

)2 − 2Xθ
(
g′(θ)

)2

+ θ2
(
g′(θ)

)2]− (g(θ)
)2
. (2.3)

Since we have that EX2 = σ2 +
(
EX

)2
= σ2 + θ2 we can plug it in (2.3) and obtain

varY = σ2(θ)
(
g′(θ)

)2
. (2.4)

In order for varY to be independent with respect to θ we need

σ(θ)g′(θ) = c, (2.5)

where c is an arbitrary constant. Out of this condition we obtain

g(θ) = c

∫
dθ

σ(θ)
,

which concludes the proof.

Definition 2.2. The function g from Theorem 2.1 that satisfies (2.1) is called variance
stabilising transformation.

2.2 Box - Cox Transformation

In this section we will describe the Box-Cox transformation. A transformation from the
family of power transformations that is often applied on nonnormal response data in order
to achieve stability of variances among the data. This section is based on [16]. Suppose
we have data sample (X1, ..., Xn) of a distribution of a variable X that is strictly positive.
We will consider a power transformation

Z = Xλ (2.6)

and try to find the best value of λ to use. It is obvious that a problem occurs for the
choice λ = 0 that would make all the entries of the sample equal to one.

Definition 2.3. Given a random variable Y we define the family of power transformations
for varying parameter λ as follows

W =


(Y λ − 1)/λ for λ 6= 0,

ln(Y ), for λ = 0
. (2.7)

We will call this family of transformations Box-Cox transformations.
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Figure 2.1: Comparison Box-Cox transformations for different values of λ, by colours:
λ = −1 - red, λ = 0 - black, λ = 1 - blue, λ = 2 - green, λ = −3 - yellow).

The problem in λ = 0 is overcome, because ln(Y ) is the appropriate limit of (Y λ−1)/λ
as λ −→ 0. Therefore the family of transformations is now continuous in λ.

The values of W of (2.7) can change greatly as λ varies, which complicates finding
the optimal value of λ. For that reason we shall introduce an alternative form of family
of transformations W .

Definition 2.4. Given a random variable Y we define the family of power transformations
for varying parameter λ as follows

V =


(Y λ − 1)/(λ · Ŷ λ−1) for λ 6= 0,

Ŷ ln(Y ), for λ = 0

, (2.8)

where the term Ŷ λ−1 is the n-th power of the appropriate Jacobian of the transformation
which converts the set Yi into the set of Wi.

Remark 2.5. The multiplication with the the n-th power of the Jacobian of the trans-
formation which converts the set Yi into the set of Wi ensures that the unit volume is
preserved in moving from the set of Yi to Wi.

The best value of the parameter λ can be determined by using maximum likelihood
estimation (see [16]). In [17] the estimation via maximum likelihood and also its Bayesian
equivalent is discussed.

It is also possible to relax the assumption of the positiveness of X, if it is negative,
but bounded from below, by introducing a shift parameter. In such scenario however the
standard asymptotic results of maximum likelihood theory may not apply since the range
of the distribution is determined by unknown shift parameter (see [18]).
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2.3 Yeo-Johnson Transformation

In the previous section we have discussed the Box-Cox transformations family. Our main
limitation was the assumption of positiveness of the random variable X to which the
transformation was applied. In this section we will discuss another family of transfor-
mations appropriate to approximate normality, the Yeo-Johnson transformations, which
unlike the Box-Cox transformations are well defined on the whole real line, so we may
drop the assumption on positiveness of X. This section is based on [18].

Definition 2.6. Let X be a real random variable, we define a family of Yeo-Johnson
transformations as follows.

J =


(1+X)λ−1

λ
for X ≥ 0, λ 6= 0

ln(1 +X) for X ≥ 0, λ = 0,
−((1−X)2−λ−1)

2−λ for X < 0, λ 6= 2,

− ln(1−X) for X < 0λ = 2.

(2.9)

The transformation given by (2.9) is also designed so that it would reduce the skewness
parameter of the variable X. The value of the parameter λ can be estimated by maximum
likelihood estimation (see [18]).
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Chapter 3

A Study of Selected Transformations

3.1 Variance Stabilising Transformation for Random
Variable with Poisson Probability Distribution

In this section we will study a behaviour of a variance stabilising transformation of a
random variable X with Poisson probability distribution, when a nonnegative constant c
is added. We will derive moments of the transformed variable and find an optimal value
of c such that the transformation would stabilise the variance of X. The content of this
section is based on [1].

First we will provide derivation of the variance stabilising transformation using the
formula (2.1) of Theorem 2.1.

Proposition 3.1. Let X ∼ Po(λ) be a random variable with Poisson probability distri-
bution. Then the variance stabilising transformation in the sense of the Theorem 2.1 is
given by

Y = g(X) =
√
x (3.1)

Proof. By Proposition 1.27 we have that

var(X) = λ, (3.2)

hence, the standard deviation of X is σ =
√
λ. The random variable X clearly satisfies

the assumptions of Theorem 2.1, hence, the variance stabilising transformation g is given
by

g(λ) = c0

∫
dλ√
λ

= 2c0

√
λ+ c1. (3.3)

By choosing c0 = 1
2
, and c1 = 0 we get g(x) =

√
x.

In the rest of this section if not explicitly stated otherwise we will assume that X is
a random variable with Poisson probability distribution and parameter λ (see Definition
1.25), and Y a random variable obtained by transformation

Y =
√
X + c (3.4)

where c is a positive constant. In order to simplify the following computations, we will
first consider the following, let

Z = X − λ (3.5)
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be a random variable, and
λ′ = λ+ c. (3.6)

The transformation 3.4 is then
Y =

√
Z + λ′. (3.7)

By Taylor theorem for any z ≥ −λ′ we obtain an infinite series representation

y =
√
λ′
[
1 + a1

z

λ′
− a2

(
z

λ′

)2

+ ...+ (−1)sas−1

(
z

λ′

)s−1]
+Rs, (3.8)

where Rs is a reminder term and coefficients as are given by

as = (−1)s+1−2s+ 3

2ss!
. (3.9)

Lemma 3.2. For z > 0 the term Rs satisfies

|Rs| <
asz

s

(λ′)s−
1
2

. (3.10)

Proof. This is a direct result of Lagrange’s form of the reminder term (see [6]).

Now we would like to find a bound C(s) for Rs such that |Rs| < C(s) on a larger
interval, namely z > −λ′ .

Lemma 3.3. For z > −λ′ the term Rs satisfies

|Rs| ≤ G(s)
|z|s

(λ′)s−
1
2

.

Proof. If we assume that |z| ≤ λ
′
, we obtain directly from (3.8) the following

Rs(λ
′
)−

1
2 =

(
1 +

z

λ′

) 1
2

−
{

1 + a1
z

λ′
− a2

(
z

λ′

)2

+ ...+ (−1)sas−1

(
z

λ′

)s−1}
(3.11)

=
∞∑
n=1

(−1)i+1ai

(
z

λ′

)i
. (3.12)

We notice that the series on the right hand side of the equation (3.11) is convergent and
hence, we can write

Rs(λ
′
)s−

1
2

zs
=
∞∑
n=1

(−1)i+1ai

(
z

λ′

)i−s
, (3.13)

where the right hand side is convergent and bounded. Let us assume G(s) as the bound
of the right hand side to its absolute magnitude, then we have

|Rs| ≤ G(s)
|z|s

(λ′)s−
1
2

. (3.14)

Due to Lemma 3.2 the inequality (3.10) holds, if we compare (3.10) with (3.14) we see,
that (3.14) holds for all z > −λ′ .

Following propositions will provide us with some tools necessary for deriving the ap-
proximations of expectation and variance of Y .
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Lemma 3.4. Let us denote µ′Z,k = EZk the k-th moment of Z and µX,k = E
[
X −EX

]k
.

the k-th central moment of X. Then we have

µ′Z,k = µX,k (3.15)

Proof. By the properties of a random variable with Poisson probability distribution we
have EX = λ (see [2]),

µ′Z,k = EZk

= E
[
X − λ

]k
= E

[
X − EX

]k
= µX,k.

Lemma 3.5. For every n ≥ 0, one has that

Eλ

[
X
]k

= Tk(λ), λ > 0, (3.16)

where Tn is the n-th Touchard polynomial, as defined in Definition 1.4.

Proof. The proof uses results of the theory of Bell polynomials and cumulants, which is
not developed in this work, and therefore the proof is not given here, and can be found
in [3].

Corollary 3.6. For every n ≥ 0, there exists a polynomial of degree at most n, denoted
by T̃n, such that

T̃n(λ) = Eλ

[
(X − λ)n

]
, λ > 0. (3.17)

Proof. This is a direct result of a Lemma 3.5 (see [3]).

Lemma 3.7. For every n ≥ 1 we have

T̃n+1(λ) = λ

n−1∑
k=0

(
n

k

)
T̃k(λ). (3.18)

Proof. The proof of this Lemma is based on a theory that is not developed in this work
and can be found in [3].

Remark 3.8. Using the results obtained by Lemmata 3.4, 3.7, and Corollary 3.6 we
obtain by direct computation the first few moments of Z:

µ′Z,1 = 0,

µ′Z,2 = λ,

µ′Z,3 = λ,

µ′Z,4 = 3λ2 + λ,

µ′Z,5 = 10λ2 + λ,

µ′Z,6 = 15λ3 + 25λ2 + λ. (3.19)

Let us first derive the approximation of the expected value EY for λ large.
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Lemma 3.9. Let Y be the random variable obtained by transformation (3.4). Then its
expectation may be approximated by

EY =
√
λ+ c− 1

8

1

λ
1
2

+
24c− 7

128λ
3
2

+O

(
1

λ
5
2

)
. (3.20)

Proof. By the Corollary 3.6 we may take expected values of the right hand side of (3.8),
and its powers, and derive asymptotic expansions for the moments of Y as λ −→∞.

For the expected values we have

EY = E

{√
λ+ c+

1

2

Z

(λ+ c)
1
2

− 1

8

Z2

(λ+ c)
3
2

+
1

16

Z3

(λ+ c)
5
2

− 5

128

Z4

(λ+ c)
7
2

+
7

256

Z5

(λ+ c)
9
2

− 21

1024

Z6

(λ+ c)
11
2

+O

(
1

(λ+ c)
13
2

)}
. (3.21)

By using (3.19), and the linearity property of expectation (see [4]) we obtain

EY =
√
λ+ c+

1

2

0

(λ+ c)
1
2

− 1

8

λ

(λ+ c)
3
2

+
1

16

λ

(λ+ c)
5
2

− 5

128

3λ2 + λ

(λ+ c)
7
2

+
7

256

10λ2 + λ

(λ+ c)
9
2

− 21

1024

15λ3 + 25λ2 + λ

(λ+ c)
11
2

+O

(
1

(λ+ c)
13
2

)
. (3.22)

We derive the asymptotic expansions of all listed fractions

EY =
√
λ+ c+

[
− 1

8

1

λ
1
2

+
3

16

c

λ
3
2

− 15

64

c2

λ
5
2

+O

(
1

λ
7
2

)]
+

[
1

16

1

λ
3
2

− 5

32

c

λ
5
2

+O

(
1

λ
7
2

)]
+

[
− 15

128

1

λ
3
2

+
1

256

105c− 10

λ
5
2

+O

(
1

λ
7
2

)]
+

[
35

128

1

λ
5
2

+O

(
1

λ
7
2

)]
+

[
− 315

1024

1

λ
5
2

+O

(
1

λ
7
2

)]
. (3.23)

Hence,

EY =
√
λ+ c− 1

8

1

λ
1
2

+
3

16

c

λ
3
2

+
1

16

1

λ
3
2

− 15

128

1

λ
3
2

− 15

64

c2

λ
5
2

− 5

32

c

λ
5
2

+
1

256

105c− 10

λ
5
2

+
35

128

1

λ
5
2

− 315

1024

1

λ
5
2

+O

(
1

λ
7
2

)
=
√
λ+ c− 1

8

1

λ
1
2

+
24c− 7

128λ
3
2

+
−240c2 + 260c− 75

λ
5
2

+O

(
1

λ
7
2

)
(3.24)

And we get the approximation of the expectation of Y

EY =
√
λ+ c− 1

8

1

λ
1
2

+
24c− 7

128λ
3
2

+O

(
1

λ
5
2

)
(3.25)

Let us now derive the approximation of variance of Y .

Lemma 3.10. Let Y be the random variable obtained by transformation (3.4). Then its
variance may be approximated by

varY =
1

4
+

3− 8c

32λ
+

32c2 − 52c+ 17

128λ2
+O

(
1

λ3

)
. (3.26)
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Proof. In order to obtain the approximation of variance of Y we will use (3.20) to compute
(EY )2 i. e.

(EY )2 = λ+ c+
1

64λ
− 2 ·

√
λ+ c · 1

8
· 1

λ
1
2

+ 2 ·
√
λ+ c · 24c− 7

128λ
3
2

+ 2 ·
√
λ+ c · −240c2 + 260c− 75

1024λ
5
2

− 2 · 1

8λ
1
2

· 24c− 7

128λ
3
2

+O

(
1

λ3

)
. (3.27)

The following holds for λ −→∞
√
λ+ c =

√
λ+

1

2
· c
λ

1
2

− 1

8
· c

2

λ
3
2

+
1

16
· c

3

λ
5
2

+O

(
1

λ
7
2

)
, (3.28)

and by pluging it into (3.27) we obtain

(EY )2 = λ+ c+
1

64λ
− 1

4
− c

8λ
+

c2

32λ2
+

24c− 7

64λ
+

24c2 − 7c

128λ2

+
−240c2 + 260c− 75

512λ2
+

7− 24c

512λ2
+O

(
1

λ3

)
, (3.29)

and after some further computation we finally obtain

(EY )2 = −1

4
+ λ+ c+

8c− 3

32λ
+
−32c2 + 52c− 17

128λ2
+O

(
1

λ3

)
. (3.30)

EY 2 is obtained as follows

EY 2 = E(
√
Z + λ′)2 = E(Z + λ

′
) = λ

′
= λ+ c. (3.31)

And finally we can derive the variance of Y

varY = E(Y − EY )2 = EY 2 − (EY )2

= λ+ c+
1

4
− λ− c+

3− 8c

32λ
+

32c2 − 52c+ 17

128λ2
+O

(
1

λ3

)
=

1

4
+

3− 8c

32λ
+

32c2 − 52c+ 17

128λ2
+O

(
1

λ3

)
. (3.32)

We will now show that for the choice of c = 3
8
Y has most nearly constant variance

for large values of parameter λ.

Theorem 3.11. Let Y be a random variable obtained using transformation (3.4), where
c is a positive parameter. Let us denote

h(λ, c) = varY − 1

4
=

3− 8c

32λ
+

32c2 − 52c+ 17

128λ2
+O

(
1

λ3

)
. (3.33)

Then minc>0{|h(λ, c)|}, given that c is constant with respect to λ is attained for c = 3
8

for
λ −→∞.

Proof. From the form of h(λ, c) given by (3.33) we observe, that the terms will vanish
one after another as λ −→ ∞ with the term 3−8c

32λ
vanishing the last for its denominator

is of linear order, hence, the minimum will be attained for λ −→∞ if 3−8c
32λ

= 0 from here
we obtain that c = 3

8
.
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Lemma 3.12. Let Y1, ..., Yn be a random sample of the distribution identical to the one
of Y given by (3.4). Let us denote λY the estimate of λ derived by applying the transfor-
mation (3.4) in reverse to Y = 1

n

∑n
k=1 Yk of Y1, ..., Yn for n −→∞. Then

λY = λ− 1

4
+

8c− 3

32λ
+O

(
1

λ
3
2

)
. (3.34)

Proof. Set
E(Y ) =

√
λY + c. (3.35)

From 3.20 we have √
λY + c =

√
λ+ c− 1

8λ
1
2

+
24c− 7

128λ
3
2

+O

(
1

λ
5
2

)
. (3.36)

By taking a square of (3.36) we obtain the following

λY + c = λ+ c+
1

64λ
+−2

√
λ+ c · 1

8λ
1
2

+ 2
√
λ+ c · 24c− 7

128λ
3
2

+O

(
1

λ
3
2

)
. (3.37)

Now we substitute the term
√
λ+ c on the right hand side of (3.37) by (3.28) and obtain

λY =
1

64λ
− 2

[
λ

1
2 +

1

2
· c
λ

1
2

− 1

8
· c

2

λ
3
2

+O

(
1

λ
5
2

)]
· 1

8λ
1
2

= 2 ·
[
λ

1
2 +

1

2
· c
λ

1
2

− 1

8
· c

2

λ
3
2

+O

(
1

λ
5
2

)]
· 24c− 7

128λ
3
2

+O

(
1

λ
3
2

)
= λ+

1

64λ
− 1

4
− c

8λ
+

24c− 7

64λ
+O

(
1

λ
3
2

)
= λ− 1

4
+

8c− 3

32λ
+O

(
1

λ
3
2

)
(3.38)

as intended.

Definition 3.13. Regarding the results obtained in Lemma 3.12 we define the bias as

bY = λY − λ. (3.39)

Corollary 3.14. The following equation holds

bY = −1

4
+

8c− 3

32λ
+O

(
1

λ
3
2

)
. (3.40)

Proof. This is a direct result of Lemma 3.12.

With the Corollary 3.14 we can state the following Theorem.

Theorem 3.15. Let X be a random variable with Poisson distribution with parameter
λ. Let Y be a random variable given by transformation (3.4). Then minc≥0{|bY (λ, c)|},
given that c is constant with respect to λ is attained c = 3

8
as λ −→∞.

Proof. The term whose denominator is a linear function of λ will vanish the last as
λ −→ ∞. Therefore we achieve a minimal value of |bY (λ, c)| by eliminating this term by
choosing c = 3

8
as λ −→∞.
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3.2 Study of Chosen Transformations for Random
Variable with Negative Binomial Probability Dis-
tribution

In this section we will study the variance stabilising transformations for the random
variable X with a negative binomial probability distribution with expected value µ (see
Proposition 1.32) and a known shape parameter κ. Its probability mass function is given
by (1.41) of Proposition 1.32, its variance is given by Proposition 1.33. Many of the
theoretical results of this section are based on [1].

First we will provide derivation of the variance stabilising transformation using the
formula (2.1) of Theorem 2.1.

Proposition 3.16. Let X ∼ NBi(µ, κ) be a random variable with negative binomial
probability distribution. Then the variance stabilising transformation in the sense of the
Theorem 2.1 is given by

Y = g(X) = 2 sinh−1

(√
X

κ

)
. (3.41)

Proof. By Proposition 1.33 we have that

var(X) = µ+
µ2

κ
, (3.42)

hence, the standard deviation σ of X is given by

σ =

√
µ+

µ2

κ
. (3.43)

The random variable X clearly satisfies the assumptions of Theorem 2.1, hence, the
variance stabilising transformation g is given by

g(µ) = c0

∫
dµ√
µ+ µ2

κ

= c0

√
κ

∫
dµ√
κµ+ µ2

= c0

√
κ

∫
dµ√

κµ+ µ2 + κ2

4
− κ2

4

= c0

√
κ

∫
dµ√(

µ+ κ
2

)2 − κ2

4

, (3.44)

where c0 is a constant. In order to compute this integral we will first substitute u for
µ+ κ

2
to obtain

g(u) = c0

√
κ

∫
du√
u2 − κ2

4

(3.45)

There are several possibilities to solve this integral, one might be for example to use a
transformation of u into hyperbolometric function and then use the corresponding hy-
perbolometric identity formula. We will for instance use another possible approach and
substitute u with the term 1

2
κ sec(s) to get

g(s) = c0

√
κ

∫ 1
2
κ tan(s) sec(s)ds√

1
4
κ2 sec2(s)− κ2

4

= c0

√
κ

∫ 1
2
κ tan(s) sec(s)ds
κ
2

√
sec2(s)− 1

(3.46)
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Using now the following trigonometric identity (see [5])

sec2(s)− 1 = tan2(s) (3.47)

we obtain

g(s) = c0

√
κ

∫
sec(s)ds = c0

√
κ

∫
1

cos(s)
ds = c0

√
κ

∫ 1+sin(s)
cos(s)

1+sin(s)
cos(s)

· ds

cos(s)

=

∫ 1+sin(s)
cos2(s)

1+sin(s)
cos(s)

ds (3.48)

we notice that 1+sin(s)
cos(s)

= sec(s) + tan(s) and 1+sin(s)
cos2(s)

= d
ds

(sec(s) + tan(s)), and therefore
we have

g(s) = c0

√
κ ln

[
tan(s) + sec(s)

]
+ c1. (3.49)

Now we return to the original variable µ. First, we have that s = sec−1
(

2u
κ

)
, so we obtain

g(u) = c0

√
κ ln

[
tan

(
sec−1

(
2u

κ

))
+ sec

(
sec−1

(
2u

κ

))]
+ c1. (3.50)

Now using that sec sec−1(z) = z and tan sec−1(z) =
√

1− 1
z2
· z we obtain that

g(u) = c0

√
κ ln

[
2u

κ

√
1− κ2

4u2
+

2u

κ

]
+ c1, (3.51)

which can be written as

g(u) = c0

√
κ ln

[
u

κ

(
2

√
1− κ2

4u2
+ 2

)]
+ c1 (3.52)

And finally we have u = κ
2

+ µ hence, we obtain

g(µ) = c0

√
κ ln

[
κ+ 2µ

2κ

(
2

√
1− κ2

(κ+ 2µ)2
+ 2

)]
+ c1

= c0

√
κ ln

[
κ+ 2µ

κ

(√
4µκ+ 4µ2

(κ+ 2µ)2
+ 1

)]
+ c1

= c0

√
κ ln

[
1

κ

(
2
√
µκ+ µ2 + (κ+ 2µ)

)]
+ c1 (3.53)

Now we observe that

2
√
µκ+ µ2 + (κ+ 2µ) = µ+ 2

√
µκ+ µ2 + (µ+ κ) = (

√
µ+
√
µ+ κ)2, (3.54)

and therefore we get

g(µ) = 2c0

√
κ ln

[√
κ+ µ+

√
µ

√
κ

]
+ c1 = 2c0

√
κ ln

[√
1 +

µ

κ
+

√
µ

κ

]
+ c1

= 2c0

√
κ sinh−1

(√
µ

κ

)
+ c1 (3.55)

Where the last equality is due to definition of argument of hyperbolic sine via natural
logarithm (see [5]). By choosing c0 = 1√

κ
, and c1 = 0 we get the desired form of the

transformation g, which concludes the proof.
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The case when the ratio κ
µ

is constant and µ large allows direct application of asymp-
totic expansions in order to obtain the approximations of characteristics of the transformed
random variable, similarly to the Poisson case seen in the previous section, or a binomial
case (see [1]). More details can be found in [1]. It is of more interest, however to consider
µ large and κ fixed. The preceding method ceases to work in this case (see [1]), and hence,
different strategy is needed.

We will consider the following two transformations, that we will study further

Y = 2 · sinh−1

[√
X + c

κ+ d

]
(3.56)

and
Y = ln(X + A). (3.57)

where c and d are positive constants, and term A will be determined later.
The reason for introducing the transformation (3.56) is obvious, it comes as a general-

isation of transformation (3.41) obtained via applying the Theorem 2.1. In what follows
we will see that the linear term of the asymptotic series expansion of the transformation
(3.56) for x large is in fact the transformation (3.57) for a specific choice of A. Hence, the
transformation (3.57) might be viewed as an approximation of (3.56).

Lemma 3.17. A transformation of random variable X given by (3.56) differs from a
term

2 · ln
(√

x+ c+
√
x+ c+ κ+ d

)
(3.58)

by a constant with respect to x.

Proof. By the relation of inverse hyperbolic sine and natural logarithm ( see [5]) we have

sinh−1(z) = ln(z +
√

1 + z2), (3.59)

where in our case z =
√

x+c
κ+d

. By plugging in we obtain

sinh−1(z) = 2 · ln
(√

x+ c

κ+ d
+

√
1 +

x+ c

κ+ d

)
= 2 · ln

(√
x+ c√
κ+ d

+

√
x+ c+ κ+ d√

κ+ d

)
= 2 · ln

(√
x+ c+

√
x+ c+ κ+ d

)
− 2 · ln

(√
κ+ d

)
,

where r1 = −2 · ln
(√

κ+ d
)

is the constant with respect to x.

For x large enough we can obtain the following result.

Lemma 3.18. Let Y be the random variable given by transformations (3.56) or (3.57).
Assume that X −→∞. Then we have the following approximation

Y = r1 + r2 + ln(X) +
A

X
− B2

2X2
+O

(
1

X3

)
. (3.60)

where for (3.56) we have r1 = −2 ln(
√
κ+ d) (see Lemma 3.17), r2 = 2 ln(2) and

A =
1

2

(
2c+ κ+ d

)
, (3.61)

B2 =
1

8

(
8c2 + 8c(κ+ d) + 3(κ+ d)2

)
. (3.62)

and for (3.57) r1 = r2 = 0 and
B = A. (3.63)
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Proof. Let us consider the transformation given by (3.56), due to Lemma 3.17 we have

y = 2 · ln
(√

x+ c+
√
x+ c+ κ+ d

)
+ r1 = ln

((√
x+ c+

√
x+ c+ κ+ d

)2
)

+ r1

= ln
(
2x+ 2c+ κ+ d+ 2 ·

√
x+ c ·

√
x+ c+ κ+ d

)
+ r1. (3.64)

Now given the x −→∞ we can derive the asymptotic series

√
x+ c+ κ+ d =

√
x+ c+

1

2
· κ+ d

(x+ c)
1
2

− 1

8
· (κ+ d)2

(x+ c)
3
2

+O

(
1

(x+ c)
5
2

)
and by plugging it in (3.64) we obtain

y = ln

(
2x+ 2c+ κ+ d+ 2 ·

√
x+ c ·

[√
x+ c+

1

2
· κ+ d

(x+ c)
1
2

− 1

8
· (κ+ d)2

(x+ c)
3
2

+O

(
1

(x+ c)
5
2

)])
+ r1

= ln

(
4x+ 4c+ 2κ+ 2d− 1

4
· (κ+ d)2

(x+ c)
+O

(
1

(x+ c)2

))
+ r1

= ln

(
4x+ 4c+ 2κ+ 2d− 1

4
· (κ+ d)2

x+ c
+O

(
1

(x+ c)2

))
+ r1.

Now we substitute the whole logarithm by its asymptotic expansion for x −→∞ to obtain

y = 2 · ln(2) + ln(x) +
1

2

2c+ κ+ d

x
+
− 1

16
(κ+ d)2 + 1

2
(−c− 1

2
κ− 1

2
d)(c+ 1

2
κ+ 1

2
d)

x2

+O

(
1

x3

)
+ r1

= 2 · ln(2) + ln(x) +
1

2

2c+ κ+ d

x
+
− 1

16
(κ+ d)2 − 1

16
(8c2 + 8(κ+ d) + 2(κ+ d)2)

x2

+O

(
1

x3

)
+ r1

= 2 · ln(2) + ln(x) +
1

2x
· (2c+ κ+ d)− 1

16x2
· (8c2 + 8(κ+ d) + 3(κ+ d)2) +O

(
1

x3

)
+ r1.

Let us denote r2 = 2 · ln(2). We obtained the approximation (3.60) for (3.56). The second
part of the statement concerning the transformation (3.57) is obtained immediately by
taking the asymptotic expansion of y = ln(x+ A) for x −→∞.

Definition 3.19. Let us introduce the following notation. By Y ∗ we denote the random
variable, obtained from (3.60) as follows

Y ∗ = Y − r1 − r2 = ln(X) +
A

X
− B2

2X2
+O

(
1

X3

)
. (3.65)

where for (3.56) the constants A and B are given by (3.61) and (3.62), and for (3.57) by
(3.63).
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We are interested in finding variance approximations of the transformations (3.56)
and (3.57). Since the random variable Y ∗ differs from Y given by (3.60) only by added
constant, we have var[Y ] = var[Y ∗], and therefore we may in order to simplify our
computations continue with Y ∗ instead. Now we proceed to find an asymptotic expansion
of the moment generating function of the approximation Y ∗ given by Definition 3.19 as
µ −→∞ with κ fixed. The moment generating function of Y ∗ is given by

M∗(t) =
∞∑
x=0

ey
∗(x)tp(x). (3.66)

(see [1]), i.e. if we plug in (1.32) for p(x) we have

M∗(t) =
∞∑
x=0

ey
∗tΓ(x+ κ)

x!Γ(κ)

(
µ

κ+ µ

)x(
κ

κ+ µ

)κ
(3.67)

Let us introduce a new parameter α.

Proposition 3.20. Let

α = ln

(
µ+ κ

µ

)
, (3.68)

then α −→ 0 as µ −→∞.

Proof. This is seen immediately by taking

lim
µ−→∞

ln

(
µ+ κ

µ

)
= 0. (3.69)

Definition 3.21. Let us denote u(α, x, t, κ) as

u(α, x, t, κ) = ey
∗tΓ(x+ κ)

x!Γ(κ)
e−αx. (3.70)

Informally put, the following Lemma will allow us to approximate an infinite sum in
the moment generating function M(t) by an integral.

Lemma 3.22. As α −→ 0

∞∑
x=0

u(α, x, t, κ)−
∫ ∞

0

u(α, x, t, κ)dx (3.71)

tends to a finite limit (depending on κ and t, and on which function y∗ of x is chosen,
namely (3.56) or (3.57)).

Proof. The proof relies on the use of Euler-Maclaurin expansion, a theory not developed
in this work, for the complete proof the reader is kindly advised to see [1].

Corollary 3.23. Let moment generating function be given by (3.66), let α −→ 0, then
following holds

M∗(t) = (1− e−α)κ
∫ ∞

0

u(α, x, t, κ)dx+O(ακ) (3.72)
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Proof. Direct result of applying Lemma 3.22 to (3.66), see [1].

In general the integral in (3.72) can not be evaluated exactly. An approach is proposed
in [1], based on expansion of uX(α, x, t, κ) for x large asymptotically. The error of such
expansion is always less than a multiple of the next term ( independent of α) for x ≥ 1
(see [1]). Integrating term by term between the limits 0 and ∞ gives then the following
result.

Theorem 3.24. Let t be confined to a neighbourhood of zero. M(t) can be expanded
asymptotically for α −→ 0 in the form

M∗(t) =
Γ(κ+ t)

αtΓ(κ)

{
1 +

(
A− 1

2
κ

)
t

α

κ+ t− 1
+

[(
1

2

(
A− 1

2
κ

)2

+
1

24
κ

)
t2

+

(
1

2
κA− 1

24
κ(κ+ 3)− 1

2
B2

)
t

]
α2

(κ+ t− 1)(κ+ t− 2)
+ ...

}
+O(ακ) (3.73)

The series in braces is continued as far as the term in αn, where n is the greatest integer
less than κ.

Proof. The proof is a result of the results (1.41), (3.66), and Lemmata 3.18, 3.21. For
more detail the reader is kindly advised to see [1].

We will now derive the approximations of numerical characteristics of Y ∗, as mentioned
already, we are namely interested in the variance approximations. For this we will first
need to derive the cumulant generating function.

Lemma 3.25. Consider the moment generating function (3.73), then the corresponding
cumulant generating function of Y ∗ is given by

K∗(t) = −t · ln(α) + ln Γ(κ+ t)− ln Γ(κ) +

{(
A− 1

2
κ

)
t · α

κ+ t− 1

+

[(1
2

(
A− 1

2
κ
)2

+ 1
24
κ
)
· t2 +

(
1
2
κA− 1

24
κ(κ+ 3)− 1

2
B2
)

(κ+ t− 1)(κ+ t− 2)

− 1

4

(
2A− κ

)(
A− 1

2
κ
)
t2

(κ+ t− 1)2

]
· α2

}
+O(ακ) (3.74)

The series in braces is continued as far as the term in αn, where n is the greatest integer
less than κ.

Proof. By [1] the cumulant generating function is found by taking the logarithm of the
moment generating function (3.73). By doing so we obtain

K∗(t) = ln

{
Γ(κ+ t)

αtΓ(κ)

{
1 +

(
A− 1

2
κ

)
t

α

κ+ t− 1
+

[(
1

2

(
A− 1

2
κ

)2

+
1

24
κ

)
t2

+

(
1

2
κA− 1

24
κ(κ+ 3)− 1

2
B2

)
t

]
α2

(κ+ t− 1)(κ+ t− 2)
+ ...

}
+O(ακ)

}
= ln

{
Γ(κ+ t)

αtΓ(κ)

}
+ ln

{
1 +

(
A− 1

2
κ

)
t

α

κ+ t− 1
+

[(
1

2

(
A− 1

2
κ

)2

+
1

24
κ

)
t2

+

(
1

2
κA− 1

24
κ(κ+ 3)− 1

2
B2

)
t

]
α2

(κ+ t− 1)(κ+ t− 2)
+ ...

}
+O(ακ)

}
. (3.75)
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Now we will approximate the second logarithm by it’s Taylor series in α around the point
α = 0. The complete form of the Taylor series used to approximate the second logarithm
is featured in a maple worksheet on a CD attached as an appendix to this work (file
CumulantGeneratingFunction.mw). We obtain

K∗(t) = ln
(
Γ(κ+ t)

)
− t · ln(α)− ln

(
Γ(κ)

)
+

(A− 1
2
κ) · t

κ+ t− 1
· α

+

{(1
2
(A− 1

2
κ)2 + 1

24
κ
)
· t2 +

(
1
2
κA− 1

24
κ(κ+ 3)− 1

2
B2
)
· t

(κ+ t− 1)(κ+ t− 2)

− 1

4

(2A− κ) · (A− 1
2
κ) · t2

(κ+ t− 1)2

}
· α2 +O(ακ), (3.76)

which concludes the proof.

Now we will focus on finding the approximations of the variance of Y ∗ using the
cumulant generating function in the form given by (3.74). We will separate different
situations based on a value of parameter κ. Further on we will use the notation given by
Definitions 1.1 and 1.2. Let us start by formalising following observation.

Lemma 3.26. Let Y be given by Lemma 3.18, and Y ∗ be given by Definition 3.19, then
for the expectation of Y ∗ we have

E[Y ∗] = E[Y ] + r1 + r2, (3.77)

where r1 = −2 ln(
√
κ+ d) and r2 = 2 ln(2) (see Lemmata 3.17, 3.18), and for any k-th

central moment of Y ∗ and Y
µY ∗,k = µY,k (3.78)

Proof. By Definition 3.19 we have that

Y ∗ = Y − r1 − r2, (3.79)

where r1, r2 are deterministic constants. Then the first statement of the Lemma comes
directly as a result of the property of expectation

E[a+X] = a+ E[X] (3.80)

where X is an arbitrary random variable and a an arbitrary (deterministic) constant (see
again [2], or [4]). The second statement is obtained as follows. Let

µY ∗,k = E
[
Y + r − E[Y + r]

]k
(3.81)

be the k-th central moment of Y ∗, where r = r1 + r2, then by property (3.80) we have

µY ∗,k = E
[
Y + r − E[Y + r]

]k
= E

[
Y + r − E[Y ]− r

]k
= E

[
Y − E[Y ]

]k
= µY,k (3.82)

Remark 3.27. The second result of Lemma 3.26 namely implies that the variances of Y
and Y ∗ are the same.
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Lemma 3.28. Let κ > 1. Let the cumulant function K∗(t) be given by Lemma 3.25, then
the variance of the random variable Y can be approximated by

varY = ψ′(κ) +
κ− 2A

(κ− 1)2
α +O(ακ). (3.83)

Proof. From Lemma 3.25 we have for κ > 1 the following

K∗(t) = −t · ln(α) + ln Γ(κ+ t)− ln Γ(κ) +

(
A− 1

2
κ

)
t · α

κ+ t− 1
+O(ακ). (3.84)

The second cumulant is obtained by computing second derivative of cumulant generating
function in t = 0 (see [3]). The second derivative of (3.84) with respect to t is given by

(K∗)′′(t) = ψ′(κ+ t) + (A− 1

2
κ)
−2(κ− 1)

(κ+ t− 1)3
+O(ακ). (3.85)

By evaluating in t = 0 we obtain

k2 = (K∗)′′(0) = ψ′(κ) +
κ− 2A

(κ− 1)2
α +O(ακ), (3.86)

where by k2 we denote the second cumulant of Y ∗. The second cumulant of a random
variable is equal to its second central moment (see [3]) which altogether with the result
of the Lemma 3.26 concludes the proof.

With the results of Lemma 3.28 we are now able to find an optimal choice for the
constant A as will be seen in the following theorem. The idea is, by the right choice of A,
eliminate the term dependant on α that for α −→ 0 converges to zero the slowest.

Theorem 3.29. Let κ > 1. Let us denote h(α,A) = varY−ψ′(κ). Then minA≥0

[
|h(α,A)|

]
,

given that A is constant with respect to α, is attained for A = 1
2
κ.

Proof. Since by assumption κ > 1, by Theorem 3.28 we have that

varY = ψ′(κ) +
κ− 2A

(κ− 1)2
α +O(ακ). (3.87)

From here follows that

h(α,A) =
κ− 2A

(κ− 1)2
α +O(ακ). (3.88)

The term |h(α,A)| will be minimal for such a choice of A that will ensure that

κ− 2A

(κ− 1)2
= 0, (3.89)

hence, A = 1
2
κ.

Corollary 3.30. Let κ > 1. Let A = 1
2
κ, then d = −2c.

Proof. By Lemma 3.18 we have that

A =
1

2

(
2c+ κ+ d

)
. (3.90)

By Theorem 3.29 we have that

A =
1

2
κ. (3.91)

By subtracting (3.91) from (3.90) and some computation we obtain d = −2c.
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Let us for the completeness also derive the approximation of the expectation of Y for
κ > 1.

Lemma 3.31. Let κ > 1 and the cumulant function be given by Lemma 3.25, then the
expectation of the random variable Y can be approximated by

E[Y ] = r1 + r2 − ln(α) + ψ(κ) +O(ακ), (3.92)

where r1 and r2 are the constants introduced in Lemma 3.17 and Definition 3.19 respec-
tively.

Proof. From Lemma 3.25 we have for κ > 1 the following

K∗(t) = −t · ln(α) + ln Γ(κ+ t)− ln Γ(κ) +

(
A− 1

2
κ

)
t · α

κ+ t− 1
+O(ακ). (3.93)

The first cumulant is obtained by computing the first derivative of cumulant generating
function in t = 0 (see [3]). The first derivative of (3.93) with respect to t is

K ′(t) = − ln(α) + ψ(κ+ t) + (A− 1

2
κ)

κ− 1

(κ+ t− 1)2
+O(ακ). (3.94)

By evaluating (3.94) in t = 0 we obtain

k1 = K ′(0) = − ln(α) + ψ(κ) +
A− 1

2
κ

κ− 1
α +O(ακ). (3.95)

Since κ > 1 we have by Theorem 3.29 A = 1
2
κ and hence, the summand containing α in

the first power is equal to zero. The fact that the first cumulant of a random variable is
equal to the first moment (see [3]) altogether with the result introduced in Lemma 3.26
concludes the proof.

We will now use a more restrictive assumption on the shape parameter κ, which will
in turn allow us to find a better approximation of the numerical characteristics of the
transformed random variable Y .

Lemma 3.32. Let κ > 2. Assume that A = 1
2
κ. Let the cumulant function K(t) be given

by Theorem 3.25, then the variance of the random variable Y can be approximated by

varY = ψ′(κ) +
κ(κ− 1)(κ− 2)− (2κ− 3)(5κ2 − 3κ− 12B2)

12(κ− 1)2(κ− 2)2
α2 +O(ακ). (3.96)

Proof. From Lemma 3.25 we have for κ > 2 the following

K∗(t) = ln
(
Γ(κ+ t)

)
− t · ln(α)− ln

(
Γ(κ)

)
+

(A− 1
2
κ) · t

κ+ t− 1
· α

+

{(1
2
(A− 1

2
κ)2 + 1

24
κ
)
· t2 +

(
1
2
κA− 1

24
κ(κ+ 3)− 1

2
B2
)
· t

(κ+ t− 1)(κ+ t− 2)

− 1

4

(2A− κ) · (A− 1
2
κ) · t2

(κ+ t− 1)2

}
· α2 +O(ακ), (3.97)
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The second cumulant is obtained by computing second derivative of cumulant generating
function in t = 0 (see [3]). Using that A = 1

2
κ the second derivative of (3.97) with respect

to t is given by

(K∗)′′(t) = ψ′(κ+ t)
1

12

[
(−12B2 + 3κ2)t3 + (−3κ3 + 9κ2 − 6κ)t2

(κ+ t− 1)3(κ+ t− 2)3

+
(36B2κ2 − 15κ4 − 108B2κ+ 54κ3 + 72B2 − 57κ2 + 18κ)t

(κ+ t− 1)3(κ+ t− 2)3

+
24B2κ3 − 9κ5 − 108B2κ2 + 45κ4 + 156B2κ− 79κ3 − 72B2 + 57κ2 − 14κ

(κ+ t− 1)3(κ+ t− 2)3

]
α2

+O(ακ) (3.98)

By evaluating (3.98) for t = 0 and some further computation we obtain

k2 = (K∗)′′(0) = ψ′(κ)+
κ(κ− 1)(κ− 2)− (2κ− 3)(5κ2 − 3κ− 12B2)

12(κ− 1)2(κ− 2)2
α2+O(ακ), (3.99)

where by k2 we denote the second cumulant of Y ∗. By [3] the second cumulant of a
random variable is equal to its second central moment, which altogether with the result
of Lemma 3.26 concludes the proof.

With the results of Lemma 3.32 and Theorem 3.29 we are now able to find the optimal
value of the constant c.

Theorem 3.33. Let κ > 2. Let us denote h(α, c) = varY−ψ′(κ). Then minc≥0

[
|h(α, c)|

]
,

given that c is constant with respect to α, is attained in

c = −1

6
·

√
6κ
(
6κ3 − 27κ2 + 41κ− 21

)
− 6κ2 + 9κ

2κ− 3
. (3.100)

Proof. Since by assumption κ > 2, by Lemma 3.32 we have that

varY = ψ′(κ) +
κ(κ− 1)(κ− 2)− (2κ− 3)(5κ2 − 3κ− 12B2)

12(κ− 1)2(κ− 2)2
α2 +O(ακ). (3.101)

From here by using (3.62) and Corollary 3.30 follows that

h(α, c) =
κ(κ− 1)(κ− 2)− (2κ− 3)(5κ2 − 3κ− 3

2
[8c2 + 8c(κ− 2c) + 3(κ− 2c)2])

12(κ− 1)2(κ− 2)2
α2

+O(ακ). (3.102)

The term |h(α, c)| will be minimal for such a choice of c that will ensure that

κ(κ− 1)(κ− 2)− (2κ− 3)(5κ2 − 3κ− 3
2
[8c2 + 8c(κ− 2c) + 3(κ− 2c)2])

12(κ− 1)2(κ− 2)2
= 0 (3.103)

This in general is a quadratic equation with respect to c, but since we assumed c to be a
positive constant, we have to drop one of the solutions of (3.103), which leaves us with

c = −1

6
·

√
6κ
(
6κ3 − 27κ2 + 41κ− 21

)
− 6κ2 + 9κ

2κ− 3
, (3.104)

which concludes the proof.
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Corollary 3.34. Let c be optimal in the sense of Theorem 3.33, and κ −→ ∞, then we
have

c =
3

8
+

23

192κ
+O

(
1

κ2

)
. (3.105)

Proof. By Theorem 3.33 we have

c = −1

6
·

√
6
√
κ
(
6κ3 − 27κ2 + 41κ− 21

)
− 6κ2 + 9κ

2κ− 3
. (3.106)

Since κ −→∞ we may approximate (3.106) by its asymptotic expansion up to term κ−2

and obtain

c =
3

8
+

23

192κ
+O

(
1

κ2

)
, (3.107)

which concludes the proof.

To complete the theory of approximations for κ > 2 let us find the approximation of
the expectation of Y .

Lemma 3.35. Let κ > 2 and let the cumulant function K∗(t) be given by Lemma 3.25,
then the expectation of the random variable Y can be approximated by

E(Y ) = r1 + r2 − ln(α) + ψ(κ) +
1

24

κ

2κ− 3
α2 +O(ακ). (3.108)

Proof. From Lemma 3.25 we have for κ > 2 that the approximation of the cumulant
generating function may be given by formula (3.97). The first cumulant is obtained by
computing the first derivative of the cumulant generating function in t = 0 (see [3]). The
first derivative of the approximation of the cumulant generating function (K∗)′(t) is given
by

(K∗)′(t) = − ln(α) + ψ(κ+ t) + (A− 1

2
κ)

κ− 1

(κ+ t− 1)2
+G(t, κ, c, d) +O(ακ), (3.109)

where G(t, κ, c, d) represents the first derivative of the coefficient of α2 with respect to
t. Taking this derivative is tedious, yet not particularly technically interesting part of
the proof and hence, the detailed form and derivation of the term G(t, κ, c, d) is provided
in the Maple Document ExpectationQuadraticTermApprox.mw included in the digital
appendix of this work. Due to κ > 2 we may apply the results given by Theorems 3.29,
3.33 and Corollary 3.30, and plug the optimal values of the constants into (3.109), and
by evaluating t = 0 we obtain

k1 = − ln(α) + ψ(κ) +
1

24

κ

2κ− 3
α2 +O(ακ). (3.110)

The fact that the first cumulant of a random variable is equal to its first moment (see [3])
altogether with the result of the Lemma 3.26 concludes the proof.

We have found optimal values of all the constants of the generalised transformations
proposed in this section. We will end this section by discussing the behaviour of the shape
characteristics of the transformed random variable when µ is large.
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Theorem 3.36. The limiting value of the skewness parameter γ1 of the random variable
Y obtained via transformation (3.56) or (3.57) for µ −→∞ is

γ1 =
ψ′′(κ)

[ψ′(κ)]
3
2

. (3.111)

Proof. The skewness parameter is given by

γ1 =
µY,3

[µY,2]
3
2

, (3.112)

where µY,3 and µY,2 are the third and second central moments of Y . If we use the re-
lationship between central moments and cumulants (see [3]) altogether with the second
result of Lemma 3.26, we can rewrite (3.112) in the following way

γ1 =
k3

[k2]
3
2

, (3.113)

where k3 and k2 are the third and second cumulants of Y ∗. We can obtain their asymptotic
expansions by evaluating the third and the second derivative of the cumulant generating
function asymptotic expansion given by (3.74) in t = 0. Let us for the sake of simplicity
denote

G(t, κ) =
(A− 1

2
κ)

κ− 1 + t
(3.114)

and

H(t, κ) =
(1

2
(A− 1

2
κ)2 + 1

24
κ) · t2 + (1

2
κA− 1

24
κ(κ+ 3)− 1

2
B2)

(κ+ t− 1)(κ+ t− 2)
− 1

4

(2A− κ)(A− 1
2
κ)t2

(κ+ t− 1)2
.

(3.115)
The second derivative is given by

(K∗)′′(t) = ψ′(t+ κ) +G′′(t, κ)α +H ′′(t, κ)α2 (3.116)

and by evaluating it in t = 0 we obtain

k2 = (K∗)′′(0) = ψ′(κ) +G′′(0, κ)α +H ′′(0, κ)α2. (3.117)

Similarly the third derivative

k3 = (K∗)′′′(0) = ψ′′(κ) +G′′′(0, κ)α +H ′′′(0, κ)α2. (3.118)

By plugging (3.116) and (3.118) into (3.113) we obtain

γ1 =
ψ′′(κ) +G′′′(0, κ)α +H ′′′(0, κ)α2

[ψ′(κ) +G′′(0, κ)α +H ′′(0, κ)α2]
3
2

. (3.119)

Due to the reparametrisation introduced in Proposition 3.20 taking limit for m −→ ∞
is equivalent to the limit for α −→ 0 and if we proceed to take this limit of (3.119) we
obtain

γ1 =
ψ′′(κ)

[ψ′(κ)]
3
2

. (3.120)
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Theorem 3.37. The limiting value of the kurtosis parameter γ2 of the random variable
Y obtained via transformation (3.56) or (3.57) for µ −→∞ is

γ1 =
ψ′′′(κ)

[ψ′(κ)]2
. (3.121)

Proof. The kurtosis parameter is given by

γ2 =
µY,4

[µY,2]2
− 3, (3.122)

where µY,4 and µY,2 are the forth and second central moments of Y . If we use the relation-
ship between central moments and cumulants (see [3]) altogether with the second result
of the Lemma 3.26, we can rewrite (3.122) in the following way

γ2 =
k4 + 3k2

2

k2

− 3, (3.123)

where k4 and k2 are the fourth and second cumulants of Y ∗ respectively and we can
obtain their asymptotic expansions by evaluating the fourth and the second derivative of
the cumulant generating function asymptotic expansion given by (3.74) in t = 0. As in
Theorem 3.36 let us for the sake of simplicity denote

G(t, κ) =
(A− 1

2
κ)

κ− 1 + t
(3.124)

and

H(t, κ) =
(1

2
(A− 1

2
κ)2 + 1

24
κ) · t2 + (1

2
κA− 1

24
κ(κ+ 3)− 1

2
B2)

(κ+ t− 1)(κ+ t− 2)
− 1

4

(2A− κ)(A− 1
2
κ)t2

(κ+ t− 1)2
.

(3.125)
The second derivative evaluated in t = 0 is given by

k2 = (K∗)′′(0) = ψ′(κ) +G′′(0, κ)α +H ′′(0, κ)α2. (3.126)

Similarly for the fourth derivative we have

k4 = (K∗)iv(0) = ψ′′′(κ) +Giv(0, κ)α +H iv(0, κ)α2. (3.127)

by plugging (3.126), (3.127) back into (3.123) we obtain

γ2 =
ψ′′′(κ) +Giv(0, κ)α +H iv(0, κ)α2 + 3[ψ′(κ) +G′′(0, κ)α +H ′′(0, κ)α2]2

[ψ′(κ) +G′′(0, κ)α +H ′′(0, κ)α2]2
−3 (3.128)

Due to the reparametrisation introduced in Proposition 3.20 taking limit for m −→∞ is
equivalent to the limit for α −→ 0 and if we proceed to take this limit of (3.2) we obtain

γ2 =
ψ′′′(κ)

[ψ′(κ)]2
. (3.129)

Remark 3.38. It is easy to see, that the limiting value of skewness for µ −→ ∞ given
by Theorem 3.36 goes to zero, as κ goes to infinity, therefore, for large values of κ the
distribution of Y acts as the normal distribution.
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Chapter 4

Theoretical Background of
Performance Comparison of Selected
Transformations Within ANOVA
Framework

In this chapter our goal will be to provide a theoretical tool that will be used to compare
performance of the transformations studied in Chapter 3 and some other commonly used
transformations, namely ln(X + 1). The comparison will be done within the One-Way
Analysis of Variance Framework (see [2] or [8] for more detail about One-Way ANOVA).

We will now provide a brief description of the assumed model. Let us have p samples
Y1 = (Y11, ..., Y1n), ...,Yp = (Yp1, ..., Ypn) of equal size n from independent distributions
L1(θ1), ...,Lp(θp) in sequence, such that EYij = θi for all i = 1, ..., p and all j = 1, ..., n.
The task is to test the hypothesis

H0 : θ1 = ... = θp (4.1)

of equality of expectations among the p samples against the alternative

H1 : ∃i, k ∈ {1, ..., p} i 6= k such that θi 6= θk (4.2)

of inequality of expectations among the samples. The test will be based on the F statistics.
The comparison of the transformations will be done by comparing the powers of the F
test while testing the hypothesis of equality of expectations (4.1) of p random samples
from either Poisson or negative Binomial probability distribution, on which the above
mentioned transformations will be applied in order to meet the assumptions of One-
Way ANOVA. Furthermore we will assume, that some of the transformations considered
will not have the variance stabilising effect, and therefore in order to proceed with the
comparison in Section 4.2 we will study the properties of the F statistic for the case of
violated equality of variances assumption.

In Theorems and statements as well as in their respective proofs through the whole
chapter matrices and vectors of different dimensions will be used. Where needed, we
will differentiate between the same kinds of matrices of different type by stating their
type as the lower index. E. g. In×n will denote the identity matrix of a type n × n,
whereas Ip×p will denote the identity matrix of a type p × p. In such case the notation
will be kept through the whole statement and the respective proof. In cases where no
misunderstanding will be possible however, we will write the matrix along with its type
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only when introducing it (e. g. in the statement of a theorem) and afterwards (e. g. in
the respective proof) we will, by abuse of notation, drop the index in order to make the
text more compact and legible.

4.1 Theoretical Results for Power of F-Test

We will first provide a derivation of the power of the F -test, when the assumption on
the equality of variances is satisfied. This section is based on results from [2], [8], results
concerning matrix algebra can be found for example in [10]. Assume the classical One-
way Analysis of Variance setting (for more details see [2], [8]). For each i = 1, ..., p set
Yi = (Yi1, ..., Yin)T the random sample of a size n of N(θi, σ) and assume that the p
random samples are mutually independent. By stacking the p samples above each other
we obtain a random vector Y = (Y11, ..., Y1n, ..., Yp1, ..., Ypn)T , with distribution

Y ∼ Nnp(θ ⊗ 1n, σ
2Inp×np), (4.3)

where θ = θp = (θ1, ..., θp)
T , and σ2 is the variance. Let us furthermore denote

Yi =
1

n

n∑
j=1

Yij for i = 1, ..., p (4.4)

the arithmetic mean of each sample, and by

Y =
1

np

p∑
i=1

n∑
j=1

Yij for i = 1, ..., p (4.5)

the arithmetic mean of all the samples.
The test statistic derived from the likelihood ratio test statistic is of following form

(see [2], [8])

F =
p(n− 1)

p− 1

1
σ2

∑p
i=1 n(Y i − Y )2

1
σ2

∑p
i=1

∑n
j=1(Yij − Y i)2

=
p(n− 1)

p− 1

K1

K2

(4.6)

For computing the power of the test based on the statistic (4.6) it is necessary to know
the distribution of F under the null hypothesis and the alternative. Using the matrix
notation, statistics K1, K2 can be expressed as follows

K1 =
n

σ2
YT
np

(
1

n
Ip×p⊗1n

)(
Ip×p−

1

p
1p1Tp

)(
1

n
Ip×p⊗1Tn

)
Ynp = YnpMnp×np,1Ynp (4.7)

K2 =
1

σ2
YT
np

(
Inp×np −

1

n
Ip×p ⊗ (1n1Tn )

)
Ynp = YT

npMnp×np,2Ynp (4.8)

The first important result is given by the following lemma.

Lemma 4.1. Quadratic forms K1, K2 given by (4.7), (4.8) are independent both under
null hypothesis and alternative.

Proof. It is enough to see that Mnp×np,1σ
2Inp×npMnp×np,2 = 0np×np (see [2]), where by 0 we

denote the matrix, whose entries are only zeros. Let us denote P0 = Mnp×np,1σ
2Inp×npMnp×np,2,
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then we have

P0 =
n

σ2

(
1

n
Ip×p ⊗ 1n

)(
Ip×p −

1

p
1p1Tp

)(
1

n
Ip×p ⊗ 1Tn

)
σ2Inp×np

1

σ2

(
Inp×np −

1

n
Ip×p ⊗ (1n1Tn )

)
=

n

σ2

(
1

n
Ip×p ⊗ 1n

)(
Ip×p −

1

p
1n1Tn

)(
1

n
Ip×p ⊗ 1Tn

)(
Inp×np −

1

n
Ip×p ⊗ (1n1Tn )

)
=

n

σ2

(
1

n
Ip×p ⊗ 1n

)(
Ip×p −

1

p
1n1Tn

)(
1

n
Ip×p ⊗ 1Tn

)(
(Ip×p ⊗ In×n)− 1

n
Ip×p ⊗ (1n1Tn )

)
(4.9)

Let us denote

P1 =

(
1

n
Ip×p ⊗ 1Tn

)(
(Ip×p ⊗ In×n)− 1

n
Ip×p ⊗ (1n1Tn )

)
=

(
1

n
Ip×p ⊗ 1Tn

)
(Ip×p ⊗ In×n)−

(
1

n
Ip×p ⊗ 1Tn

)(
1

n
Ip×p ⊗ (1n1Tn )

)
=

(
1

n
Ip×pIp×p

)
⊗ (1TnIn×n)−

(
1

n
Ip×pIp×p

)
⊗ (

1

n
1Tn1n1Tn )

=

(
1

n
Ip×p

)
⊗ (1Tn )−

(
1

n
Ip×p

)
⊗ (1Tn ) = 0np×np, (4.10)

and hence, also P0 = 0np×np.

4.1.1 The Distribution of Denominator

The following Lemma will be given for a quadratic form

K ′2 = YT
npM’np×np,2Ynp (4.11)

with more general matrix M’np×np,2 = σ2Mnp×np,2. It is obvious, that the same results
hold for K2 with Mnp×np,2.

Lemma 4.2. Let K ′2 be a quadratic form given by (4.11), assume that under null hy-
pothesis Ynp ∼ Nnp(θ1np, σ

2Inp×np), and under alternative Ynp ∼ Nnp(θ ⊗ 1n, σ
2Inp×np),

where θ = (θ1, ..., θp)
T , then we have

K ′2 = (Ynp− θp⊗1n)TM’np×np,2(Ynp− θp⊗1n) = (Ynp− θ1np)TM’np×np,2(Ynp− θ1np).
(4.12)

Proof. Let us first show that (Ynp − θ1np)TM’np×np,2(Ynp − θ1np) = K ′2. We have that

K ′20 =
(
Ynp − θ1np

)T
M’np×np,2

(
Ynp − θ1np

)
=
(
YT
npM’np×np,2 − θ1TnpM’np×np,2

)(
Ynp − θ1np

)
=
(
YT
npM’np×np,2Ynp − θ1TnpM’np×np,2Ynp −YT

npM’np×np,2θ1np
+ θ1TnpM’np×np,2θ1np

)
(4.13)

Observe that
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1TnpM’np×np,2 = 1Tnp

[
Inp×np −

1

n
Ip×p ⊗ (1n1Tn )

]
= 1Tnp − (1Tp ⊗ 1Tn )

(
1

n
Ip×p ⊗ (1n1Tn )

)
= 1Tnp − (1Tp Ip×p)⊗

(
1

n
1Tn1n1Tn

)
= 1Tnp − (1Tp )⊗ (1Tn ) = 0np×np (4.14)

Consequently also M’np×np,21np = (1TnpM’np×np,2)T = 0, where the first equation is due
to symmetry of M’np×np,2, and hence, we have K ′20 = YT

npM’np×np,2Ynp = K ′2.
Let us now see that (Ynp − θp ⊗ 1n)TM’np×np,2(Ynp − θp ⊗ 1n) = K ′2 Similarly as

before we have

K ′21 =
(
Ynp − θp ⊗ 1n)TM’np×np,2

(
Ynp − θp ⊗ 1n)

=
(
YT
npM’np×np,2 − (θp ⊗ 1n)TM’np×np,2

)(
Ynp − (θp ⊗ 1n)

)
=
(
YT
npM’np×np,2Ynp − (θp ⊗ 1n)TM’np×np,2Ynp −YT

npM’np×np,2(θp ⊗ 1n)

+ (θp ⊗ 1n)TM’np×np,2θ1np
)
, (4.15)

and we have that

(θp ⊗ 1n)TnpM’np×np,2 = (θp ⊗ 1n)T
[
Inp×np −

1

n
Ip×p ⊗ (1n1Tn )

]
= (θTp ⊗ 1Tn )− (θTp ⊗ 1Tn )

(
1

n
Ip×p ⊗ (1n1Tn )

)
= (θTp ⊗ 1Tn )− (θTp Ip×p)⊗

(
1

n
1Tn1n1Tn

)
= (θTp ⊗ 1Tn )− (θTp )⊗ (1Tn ) = 0 (4.16)

Again we have also that M’np×np,2(θTp ⊗1Tn ) = (θp⊗1n)TM’np×np,2)T = 0, where the first
equation is due to symmetry of M’np×np,2, and hence, we have K ′21 = YT

npM’np×np,2Ynp =
K ′2, which concludes the proof.

Definition 4.3. Let us define a matrix H of a type p× p as

Hp×p = Ip×p −
1

p
1p1Tp =


1− 1

p
−1
p

... −1
p

−1
p

1− 1
p

... −1
p

... ... ... ...
−1
p

−1
p

... 1− 1
p

 (4.17)

this matrix is called the Centering matrix of a type p× p (see [11]).

Lemma 4.4. The matrix Hp×p given by Definition (4.3) is positively semidefinite and
idempotent, and rank(Hp×p) = p− 1.

Proof. We will first show, that matrix Hp×p is idempotent. We have that

H2
p×p = Hp×pHp×p =

(
Ip×p −

1

p
1p1Tp

)(
Ip×p −

1

p
1p1Tp

)
= Ip×p −

2

p
1p1Tp +

1

p2
1p1Tp 1p1Tp = Ip×p −

2

p
1p1Tp +

1

p2
p1p1Tp

= Ip×p −
1

p
1p1Tp = Hp×p (4.18)
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Obviously by its definition the matrix Hp×p is symmetric. Due to Proposition 1.21 we
have that a symmetric, idempotent matrix is positively semidefinite. It is also easy to
see, that the trace of Hp×p is p− 1. Due to Proposition 1.20 we have that rank(Hp×p) =
Tr(Hp×p) = p− 1.

Lemma 4.5. The matrix M’np×np,2 is nonzero, and idempotent, with trace p(n− 1).

Proof. The fact that M’np×np,2 is nonzero is obvious. Idempotency of M’np×np,2 follows
from the fact that

M’np×np,2 = Inp×np −
1

n
Ip×p ⊗ 1n1Tn = Ip×p ⊗ In×n −

1

n
Ip×p ⊗ 1n1Tn

= Ip×p ⊗
[
In×n −

1

n
1n1Tn

]
= Ip×p ⊗Hn×n, (4.19)

where Hn×n is a Centering matrix from Definition 4.3. Due to Lemma 4.4 we have,
that Hn×n is idempotent, Ip×p is clearly idempotent as well, and it is easy to see that a
Kronecker product of two idempotent matrices is again an idempotent matrix. Due to
Proposition 1.20 we have that rank(M’np×np,2) = Tr(M’np×np,2) = p(n− 1).

With the previous Lemmata we can conclude about the distribution of the quadratic
form K ′2. That result is collected in the following theorem.

Theorem 4.6. The distribution of K ′2 is χ2
p(n−1) both under zero hypothesis and under

the alternative.

Proof. This comes as a direct result of Lemmata 4.2, and 4.5, and Proposition 1.38.

4.1.2 Distribution of the Numerator Under Alternative

Let us now examine the quadratic form K1 of the numerator under the alternative. Let
us denote

Zp =

(
1

n
Ip×p ⊗ 1Tn

)
Yn = (Y 1, ..., Y p) (4.20)

the random vector Zp

Proposition 4.7. The random vector Zp has a distribution Zp ∼ Np

(
θp,

σ2

n
Ip×p

)
Proof. This comes as a direct result of the distribution of the arithmetic mean (see [2]).

With the Zp and Hp×p notation we can express the quadratic form K1 in the following
way

K1 =
n

σ2
ZT
p Hp×pZp. (4.21)

Now let us introduce a new random vector Up given by

Up =

√
n

σ
Hp×pZp. (4.22)

Proposition 4.8. The random vector Up given by equation (4.22) has a probability dis-
tribution Up ∼ Np(

√
n
σ
Hp×pθp,Hp×p).
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Proof. The proof relies on the linearity property of the expectation and the properties of
the normal distribution (see [2], [4]). We have that

E(U) = E(

√
n

σ
HZ) =

√
n

σ
HE(Z) =

√
n

σ
Hθ, (4.23)

and for the variance we have

var(U) = var(

√
n

σ
HZ) =

√
n

σ
Hvar(Z)

√
n

σ
HT =

n

σ2
H
σ2

n
IHT , (4.24)

And due to Lemma 4.4 H is idempotent, and we have that

var(U) = H. (4.25)

Proposition 4.9. Using the transformation given by equation (4.22) we can rewrite K1

as follows
K1 = UT

pUp. (4.26)

Proof. We have

UTU =

√
n

σ
(HZ)T

√
n

σ
(HZ) =

n

σ2
ZTHTHZ =

n

σ2
ZTHZ, (4.27)

where the last equality is due to the idempotency of H.

Lemma 4.10. Let Hp×p be the centering matrix given by (4.17). Then there exists its
decomposition

Hp×p = Bp×(p−1)BTp×(p−1), such that BTp×(p−1)Bp×(p−1) = I(p−1)×(p−1) (4.28)

Proof. Since H is positive semidefinite, with rank rank(H) = Tr(H) = p− 1 (see Propo-
sition 1.20), we have due to Proposition 1.15 that H = BBT , where B is a p × (p − 1)
matrix and rank(B) = p − 1. Due to Lemma 4.4 H is also idempotent. Let L(p−1)×p be
the left inverse of B, and Pp×(p−1) be the right inverse of BT . We have that

L(BBTBBT )P = L(BBT )P = (LB)(BTP) = I, (4.29)

where the first equality is due to idempotency of H = BBT . We also have that

L(BBTBBT )P = (LB)BTB(BTP) = IBTBI = BTB, (4.30)

and therefore BTB = I.

Lemma 4.11. LetWp−1 be a random vector given by transformationWp−1 = BTp×(p−1)Up,
where BTp×(p−1) is obtained via the decomposition of Centering matrix Hp×p as given in

Lemma 4.10. ThenWp−1 ∼ Np−1

(√
n
σ
BTp×(p−1)θp, I(p−1)×(p−1)

)
, and the quadratic form K1

can be written as
K1 =WTBTBW =WTW. (4.31)
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Proof. Let us first show, that the distribution of Wp−1 is Np−1

(√
n
σ

BT
p×(p−1)θp, I(p−1)×(p−1)

)
we will again make use of the results of linearity of expectation as an operator and
properties of the normal distribution (see [2], [4]). We have that

E(W) = E(BTU) = BTE(U) =

√
n

σ
BTHθp, (4.32)

where the last equality is due to Proposition 4.8. For variance of W we have

var(W) = var(BTU) = BTvar(U)B = BTHB = BTBBTB = I (4.33)

where var(U) = H is given by Proposition 4.8, and the last inequality is due to column
orthogonality of B, which is given by Lemma 4.10. Lastly we have W = BTU and
therefore also U = BW, and hence, using Proposition 4.9,

K1 = UTU = (BW)T (BW) = WTBTBW = WTW. (4.34)

Theorem 4.12. The distribution of K1 under the alternative is K1 ∼ χ2
p−1,δ where param-

eter of noncentrality δ = n
σ2θ

TBBTθ = n
σ2θ

THθ = n
σ2

∑p
i=1(θi−θ)2, where θ = 1

p

∑p
j=1 θj.

Proof. This comes as a result of Lemma 4.11, and Proposition 1.39.

Corollary 4.13. The distribution of K1 under the null hypothesis θ1 = ... = θp is central
χ2 with p− 1 degrees of freedom

Proof. Given the hypothesis θ1 = ... = θp, we have that the parameter of noncentrality
δ = n

σ2θ
TBBTθ = n

σ2θ
THθ = n

σ2

∑p
i=1(θi − θ)2 = 0

4.1.3 Power of F-Test

With the results regarding the distribution and independence of numerator and denom-
inator of the F statistic under null hypothesis and alternative, we are able to provide a
result on the distribution of the F statistics.

Theorem 4.14. The distribution of the F statistic (4.6) under the null hypothesis is
F ∼ Fp−1,p(n−1).

Proof. Due to Corollary 4.13 we have that distribution of K1 under the null hypothesis is
χ2
p−1, and due to Theorem 4.6 the distribution of K2 is both under the null hypothesis and

the alternative χ2
p(n−1). We have seen in Lemma 4.1 that K1, and K2 are independent,

and therefore we have F ∼ Fp−1,p(n−1) (see [8]).

Theorem 4.15. The distribution of the F statistic (4.6) under the alternative is F ∼
Fp−1,p(n−1),δ, with the parameter of noncentrality δ = n

σ2

∑p
i=1(θi−θ)2, where θ = 1

p

∑p
j=1 θj.

Proof. Due to Theorem 4.12 the distribution of K1 under the alternative is noncentral
χ2
p−1,δ. Due to Theorem 4.6 the distribution of K2 is both under the null hypothesis and

the alternative χ2
p(n−1). We have seen in Lemma 4.1 that K1, and K2 are independent,

and hence, F statistic has the noncentral distribution Fp−1,p(n−1),δ (see [8]).

Now we will provide the formula for the power of the F -test. The power of a test
at the significance level α is the conditional probability of rejecting the null hypothesis,
given the condition that the alternative holds.
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Definition 4.16. Let the test statistic be given by (4.6). We define the power of the
F -test at the significance level α as

βα(θ) = P{F > QF (1− α; p− 1, p(n− 1))|θ}, (4.35)

where by QF (1− α; p− 1, p(n− 1)) we denote the 1− α quantile of F distribution with
degrees of freedom p− 1, p(n− 1).

Proposition 4.17. We may write the power of the F -test β(θ) as follows

βα(θ) = 1−FFδ(QF (1− α; p− 1, p(n− 1)), p− 1, n(p− 1), δ) (4.36)

where FFδ is the distribution function of noncentral F distribution Fp−1,p(n−1),δ from the
Theorem 4.15.

Proof. If P(A) > 0, then clearly P(·|A) is also a probability measure on (Ω,A) (see [4]),
hence, it has all the properties of probability measure, namely P(B|A) = 1 − P(B|A),
where B is the opposite event to B. Hence, we have

βα(θ) = P{F > QF (1− α; p− 1, p(n− 1))|θ} (4.37)

= 1−P{F < QF (1− α; p− 1, p(n− 1))|θ}
= 1−FFδ(QF (1− α; p− 1, p(n− 1)), p− 1, p(n− 1), δ). (4.38)

4.2 Theoretical Results for Power of F-Test with Un-
equal Variances

In this section we will provide an approximation of the distribution of the F -test statistic
in case that the assumption of the equality of variances is violated (see the beginning
of the Chapter 4 for details about the One-Way Anova and the F test and [2] and [8],
compare with Section 4.1). Some results of the matrix algebra not featured in Chapter
1 may be found in [10]. Assume that we have p independent random samples Y1, ...,Yp

of a size n of probability distribution N(µi, σ
2
i ), where i = 1, ..., p. Set Yi = (Yi1, ..., Yip)

T

for i = 1, ..., p By stacking the samples one above another we obtain a random vector
Ynp = (Y11, ..., Y1n, ..., Yp1, ..., Ypn)T with probability distribution

Y ∼ Nnp(θ ⊗ 1n, diag(σ2)⊗ In×n), (4.39)

where θ = θp = (θ1, ..., θp)
T , σ2 = σ2

p = (σ2
1, ..., σ

2
p) the vector of variances.

The test statistic derived from the likelihood ratio test statistic is (see [2], [8])

F =
p(n− 1)

p− 1

∑p
i=1 n(Y i − Y )2∑p

i=1

∑n
j=1(Yij − Y i)2

=
p(n− 1)

p− 1

K ′1
K ′2

, (4.40)

where the terms Y , Y i are given by formulas (4.4) and (4.5) applied to the current setting.
For computing the power of the test based on the statistic (4.40) it is necessary to know
the distribution of F under the null hypothesis and the alternative. Using the matrix
notation, statistics K1, K2 can be expressed as follows

K ′1 = nYT
np

(
1

n
Ip×p⊗1n

)(
Ip×p−

1

p
1p1Tp

)(
1

n
Ip×p⊗1Tn

)
Ynp = YnpM’np×np,1Ynp (4.41)

K ′2 = YT
np

(
Inp×np −

1

n
Ip×p ⊗ (1n1Tn )

)
Ynp = YT

npM’np×np,2Ynp (4.42)
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Lemma 4.18. Quadratic forms K ′1, K ′2 given by (4.41), (4.42) are independent both
under null hypothesis and alternative.

Proof. As previously in Lemma 4.18 we need to show M’np×np,1var(Ynp)M’np×np,2 =
0np×np (see [2]). Let us denote

P ′0 = M’np×np,1var(Ynp)M’np×np,2 = M’np×np,1(diag(σ2)⊗ In×n)M’np×np,2, (4.43)

then we have

P ′0 = n

(
1

n
Ip×p ⊗ 1n

)(
Ip×p −

1

p
1p1Tp

)(
1

n
Ip×p ⊗ 1Tn

)
(diag(σ2)⊗ In×n)

(
Inp×np −

1

n
Ip×p ⊗ (1n1Tn )

)
(4.44)

Notice that the matrices (diag(σ2) ⊗ In×n), and

(
Inp×np − 1

n
Ip×p ⊗ (1n1Tn )

)
commute,

indeed we have

P ′1 = (diag(σ2)⊗ In×n)

(
Inp×np −

1

n
Ip×p ⊗ (1n1Tn )

)
= (diag(σ2)⊗ In×n)Inp×np − (diag(σ2)⊗ In×n)

(
1

n
Ip×p ⊗ (1n1Tn )

)
= (diag(σ2)⊗ In×n)−

(
diag(σ2)

1

n
Ip×p

)
⊗ (In×n1n1Tn )

= (diag(σ2)⊗ In×n)−
(
diag(σ2)

1

n

)
⊗ (1n1Tn )

= Inp×np(diag(σ2)⊗ In×n)−
(

1

n
Ip×pdiag(σ2)

)
⊗ (1n1TnIn×n)

= Inp×np(diag(σ2)⊗ In×n)−
(

1

n
Ip×p ⊗ (1n1Tn )

)
(diag(σ2)⊗ In×n)

=

(
Inp×np −

1

n
Ip×p ⊗ (1n1Tn )

)
(diag(σ2)⊗ In×n), (4.45)

and hence, we can write

P ′0 = n

(
1

n
Ip×p ⊗ 1n

)(
Ip×p −

1

p
1p1Tp

)(
1

n
Ip×p ⊗ 1Tn

)
(

Inp×np −
1

n
Ip×p ⊗ (1n1Tn )

)
(diag(σ2)⊗ In×n).

(4.46)

We have seen in the proof of Lemma 4.1 that the term(
1

n
Ip×p ⊗ 1n

)(
Ip×p −

1

p
1p1Tp

)(
1

n
Ip×p ⊗ 1Tn

)(
Inp×np −

1

n
Ip×p ⊗ (1n1Tn )

)
= 0, (4.47)

and hence, P ′0 = 0.

56



4.2.1 Study of Denominator

In the Section 4.1 we saw, that regardless of the assumption on variance of Y we have

K ′2 = YT
npM’np×np,2Ynp

= (Ynp − θp ⊗ 1n)TM’np×np,2(Ynp − θp ⊗ 1n)

= (Ynp − θ1np)TM’np×np,2(Ynp − θ1np). (4.48)

Therefore we may without the loss of generality in the following consider the expression

K ′2 = (Ynp − θp ⊗ 1n)TM’np×np,2(Ynp − θp ⊗ 1n) (4.49)

Proposition 4.19. Let us denote Y0 = (Y−θp⊗1n), then Y0 ∼ Nnp(0, diag(σ2
p)⊗In×n),

and the quadratic form may be written as

K ′2 = YT
0M’np×np,2Y0. (4.50)

Proof. Due to linearity of expectation and properties of the normal distribution (see [4])
we have that

E(Y0) = E(Y− θp ⊗ 1n) = E(Y)− θp ⊗ 1n = θp ⊗ 1n − θp ⊗ 1n = 0. (4.51)

And for the variance

var(Y0) = var(Y− θp ⊗ 1n) = var(Y) = diag(σ2
p)⊗ In×n. (4.52)

The result (4.50) is obvious.

Proposition 4.20. Let X0 ∼ Nnp(0np, Inp×np) , then there exists a matrix Tnp×np such
that

Y0 = TX0. (4.53)

Proof. We will provide a constructive proof by finding the matrix T. In order for T to
satisfy (4.53), the following must hold.

0 = E(Y0) = E(TX0) = TE(X0) = T0, (4.54)

and
diag(σ2)⊗ I = var(Y0) = var(TX0) = Tvar(X0)TT = TITT . (4.55)

Since the equation (4.54) is satisfied for any matrix T, by choosing T = diag(σp)⊗ In×n,
where σp = (σ1, ..., σp)

T is the vector of standard deviations of Y, also the equation (4.55)
is satisfied, which concludes the proof.

Lemma 4.21. The quadratic form K ′2 may be written in a form

K ′2 = XT
0Nnp×npX0, (4.56)

where

Nnp×np = diag(σ2)⊗
[
In×n −

1

n
1n1Tn

]
. (4.57)
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Proof. Let us first see, that (4.57) holds. We have

N = TTM’np×np,2T

= (diag(σp)⊗ In×n)T
[
Inp×np −

1

n
Ip×p ⊗ (1n1Tn )

]
(diag(σp)⊗ In×n)

= (diag(σp)⊗ In×n)

[
(Ip×p ⊗ In×n)− 1

n
Ip×p ⊗ (1n1Tn )

]
(diag(σp)⊗ In×n)

= (diag(σp)⊗ In×n))

(
Ip×p ⊗

[
(In×n)− 1

n
(1n1Tn )

])
(diag(σp)⊗ In×n)

= (diag(σp)Ip×p)⊗
(

In×n

[
(In×n)− 1

n
(1n1Tn )

])
(diag(σp)⊗ In×n)

= (diag(σp)Ip×pdiag(σp))⊗
(

In×n

[
(In×n)− 1

n
(1n1Tn )

]
In×n

)
= diag(σ2)⊗

[
In×n −

1

n
1n1Tn

]
. (4.58)

Seeing that (4.56) is satisfied is simple. Indeed, we have due to Proposition 4.19

K ′2 = YT
0 M’np×np,2Y0. (4.59)

Since due to Proposition 4.20 Y0 = TX0, by plugging this into (4.59) we obtain

K ′2 = (TX0)TM’np×np,2(TX0) = XT
0 TTM’np×np,2TX0 = XT

0 NX0. (4.60)

Our task now is to find eigenvalues and eigenvectors of the matrix N so we can
determine, what is the distribution of the quadratic form K ′2. Let us introduce the

following notation. Let N1 = diag(σ2), and N2 =

[
In×n − 1

n
1n1Tn

]
.

Proposition 4.22. The matrix N2 is symmetric, idempotent, and positive semidefinite.

Proof. Observe that N2 = Hn×n is in fact a Centering matrix of a type n×n as defined in
Section 4.1, Definition 4.3. The proof of symmetry, idempotency, and positive definitness
of a Centering matrix is given by Lemma 4.4.

Lemma 4.23. N2 has n− 1 eigenvalues equal to one, and one eigenvalue equal to zero.

Proof. In Proposition 4.22 we have seen that N2 is idempotent. Furthermore we have by
Proposition 1.16 that

n∑
i=1

λi = Tr(N2) = n− 1, (4.61)

and since due to Proposition 1.19 we have that eigenvalues of Idempotent matrix are
either ones or zeroes, we see that n − 1 eigenvalues have to be ones and exactly one
eigenvalue is zero.

Lemma 4.24. Eigenvalues of matrix N1 are σ2
1, ..., σ

2
p.

Proof. This follows trivially from the form of characteristic polynomial of a diagonal
matrix.
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Lemma 4.25. Eigenvalues of the matrix N with their multiplicities are σ2
1, ..., σ

2
p with

multiplicities n− 1, and 0 with multiplicity p.

Proof. Due to Proposition 1.17, and Lemma 4.24 we have that the eigenvalues of a Kro-
necker product of matrices N1,N2 are

σ2
1µ1, ..., σ

2
1µm, σ

2
2µ1, ..., σ

2
2µm, ..., σ

2
nµm, (4.62)

where σ2
i are the eigenvalues of N1 and µi are the eigenvalues of N2. Since by Lemma

4.23 exactly one eigenvalue of N2 is µj = 0, and the rest are ones, exactly p terms of
(4.62) are zeroes and n− 1 are σ2

i for i = 1, ..., p.

Theorem 4.26. There exists a decomposition of N such that

N = PΛPT , and PPT = I, (4.63)

where P is the column orthonormal matrix of eigenvectors of N. Consequently the
quadratic form K ′2 can be written in the form

K ′2 = XT
0PΛPTX0 = VTΛV, (4.64)

where V is a Gaussian random vector given by V = PTX0, satisfying E(V) = 0, and
var(V) = I.

Proof. Since N is clearly a symmetric real matrix the decomposition (4.63) is given by
Proposition 1.12. The equation (4.64) is obtained merely by plugging (4.63) into (4.56).
V is clearly Gaussian, since it is obtained as a linear transformation of Gaussian random
vector X0 (see [2]), as for the characteristics we have

E(V) = E(PTX0) = PTE(X0) = 0, (4.65)

since E(X0) = 0, and

var(V) = var(PTX0) = PTvar(X0)P = PT I(X0)P = I, (4.66)

where the last equality is due to matrix P being column orthonormal matrix.

Corollary 4.27. Quadratic form K ′2 can be expressed as

p∑
i=1

σ2
iXi, (4.67)

a linear combination of p independent identically distributed random variables Xi ∼ χ2
n−1

i = 1, ..., p.

Proof. Due to Theorem 4.26 we have that K ′2 = VTΛV, evaluating the product we obtain
that

K ′2 =

np∑
i=1

λiV
2
i , (4.68)

where λi are the eigenvalues of N and Vi are the entries of the vector V ∼ N(0, I). Due
to Lemma 4.25 we have that p eigenvalues of N are zeroes, hence, p terms in the sum
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of (4.68) are zeroes. Furthermore also due to 4.25 we have that the rest of p(n − 1)
eigenvalues are σ2

1, ..., σ
2
p, each with multiplicity n− 1, hence, we have that

K ′2 =

p(n−1)∑
i=1

λiV
2
i = σ2

1V
2

1 + ...+ σ2
1V

2
n−1 + σ2

2V
2
n + ...+ σ2

2V
2

2n−2 + ...+ σ2
pV

2
p(n−1)

= σ2
1(V 2

1 + ...+ V 2
n−1) + ...+ σ2

p(V
2
p(n−1)−n+2 + ...+ V 2

p(n−1)). (4.69)

Clearly Vi ∼ N(0, 1), and are mutually independent (var(V) = I), and hence, due to
Proposition 1.35 we have that X1 = (V 2

1 + ...+V 2
n−1) ∼ χ2

n−1, ..., Xp = (V 2
p(n−1)−n+2 + ...+

V 2
p(n−1)) ∼ χ2

n−1, are p independent identically distributed random variables, and we may
write

K ′2 =

p∑
i=1

σ2
iXi. (4.70)

4.2.2 Study of Numerator

Let us recall the random vector

Zp = (
1

n
Ip×p ⊗ 1Tn )Y = (Y 1, ..., Y n), (4.71)

that we introduced already in Section 4.1 (see (4.20)).

Proposition 4.28. The distribution of Zp is Np(θ,
1
n
diag(σ2)),

Proof. This comes directly as a result of distribution of arithmetic mean (see [2]).

Let us recall that in Section 4.1 we have defined the Centering matrix Hp×p (see
Definition 4.3). With the notion of Z, and the Centering matrix H we can rewrite K ′1 in
the following form

K ′1 = nZT
p Hp×pZp. (4.72)

Now let us introduce a new random vector Up by

Up =
√
nHp×pZp (4.73)

Proposition 4.29. The random vector Up given by equation 4.73 has a probability dis-
tribution Up ∼ Np(

√
nHp×pθ,Hp×pdiag(σ2

p)Hp×p, and the quadratic form K ′1 may be
expressed as follows

K ′1 = UT
pUp. (4.74)

Proof.

E(U) = E(
√
nHZ) =

√
nHE(Z) =

√
nHθ, (4.75)

and for the variance we have

var(U) = var(
√
nHZ) =

√
nHvar(Z)

√
nHT = nH

1

n
diag(σ2)HT = Hdiag(σ2)HT .,

(4.76)

As for the second part, we have

UTU =
√
n(HZ)T

√
n(HZ) = nZTHTHZ = nZTHZ, (4.77)

where the last equality is due to the idempotency of Hp×p.

60



Proposition 4.30. There exists a random vector X0 ∼ Np(µp, Ip×p), and a matrix Sp×p
such that

Up = Sp×pX0, (4.78)

and consequently the quadratic form K ′1 can be written as

K ′1 = XT
0 S

T
p×pSp×pX0. (4.79)

Proof. We will provide a constructive proof of (4.78) by finding the matrix S, and the
vector X0. In order for S, and X0 to satisfy (4.78), the following must hold.

√
nHθ = E(U) = E(SX0) = SE(X0) = Sµ, (4.80)

and
Hdiag(σ2)HT = var(U) = var(SX0) = Svar(X0)ST = SIST . (4.81)

By choosing S = Hp×pdiag(σp), where σp = (σ1, ..., σp)
T , is the vector of standard devi-

ations of Y, and Hp×p is a Centering matrix, the equation (4.81) is satisfied. If we now
plug S = Hp×pdiag(σp) into (4.80) we get that in order for the equality to be satisfied

µ =
√
n
(
θ1
σ1
, ..., θp

σp

)T
.

As for the second part, we have

K ′1 = UTU = (SX0)TSX0 = XTSTSX0. (4.82)

Proposition 4.31. The matrix STp×pSp×p is positively semidefinite of a rank p− 1.

Proof. Let us first do a following observation

STS = (Hdiag(σ))THdiag(σ) = diag(σ)HHdiag(σ) = diag(σ)Hdiag(σ), (4.83)

where the second equality is due to symmetry, and the third equality is due to idempotency
of the centering matrix H. Now let vp ∈ Rp be an arbitrary vector. First we check the
symmetry (

diag(σ)Hdiag(σ)
)T

= (diag(σ)T (diag(σ)H)T

= (diag(σ))THTdiag(σ)T

= diag(σ)Hdiag(σ), (4.84)

where the last equality is due to the symmetry of H and diag(σ). Now we check the
condition of positive semidefiniteness

vTdiag(σ)Hdiag(σ)v =
[
(diag(σ))T (vT )T

]T
Hdiag(σ)v =

(
diag(σ)v

)T
Hdiag(σ)v,

(4.85)

and if we denote u = diag(σ)v, then up ∈ Rp is again an arbitrary vector, and we have

uHu ≥ 0, (4.86)

due to positive semidefinitness of the centering matrix H. Regarding the rank, clearly
diag(σ) is of a full rank p, since it is a diagonal matrix. We also know that the rank of the
Centering matrix H is p − 1 (see Lemma 4.4). Due to the Proposition 1.5 we have that
rank(diag(σ)H) = rank(H) = p− 1, and therefore by applying the proposition again we
have rank(diag(σ)Hdiag(σ)) = p− 1.
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Theorem 4.32. There exists a decomposition of matrix STp×pSp×p such that

STp×pSp×p = Pp×pΛp×pPp×p, and Pp×pPTp×p = Ip×p, (4.87)

where Pp×p is an orthonormal matrix of eigenvectors of STp×pSp×p. Consequently the
quadratic form K ′1 can be written in the form

K ′1 = XT
0Pp×pΛp×pPTp×pX0 = VT

p Λp×pVp, (4.88)

where Vp is a Gaussian random vector given by Vp = PTp×pX0, satisfying E(Vp) =

PTp×pµp, and var(Vp) = Ip×p.

Proof. Due to Proposition 4.31 STS is a real symmetric positive semidefinite matrix, and
hence, we can apply Proposition 1.12 to obtain (4.87). The equation (4.88) is obtained
merely by plugging (4.87) into (4.79). V is clearly Gaussian, since it is obtained as a
linear transformation of Gaussian random vector X0 (see [2]), as for the characteristics
we have

E(Z) = E(PTX0) = PTE(X0) = PTµ, (4.89)

since E(X0) = µ, and

var(Z) = var(PTX0) = PTvar(X0)P = PT IP = I, (4.90)

where the last equality is due to matrix P being an orthonormal matrix.

Corollary 4.33. Quadratic form K ′1 can be expressed as

K ′1 =

p−1∑
i=1

λiXi, (4.91)

a linear combination of p − 1 independent random variables Xi ∼ χ2
1,δi

i = 1, ..., p − 1,
where strictly positive numbers λi are the nonzero eigenvalues of STp×pSp×p.

Proof. Due to Theorem 4.32 we have that K ′1 = VTΛV, evaluating the product we obtain
that

K ′1 =

p∑
i=1

λiV
2
i , (4.92)

where λi are the eigenvalues of STS and Vi are the mutually independent entries of the
vector V ∼ N(PTµ, I). If we denote P = [p1, ...,pp], where p1, ...,pp are the correspond-
ing eigenvectors of STS, we have that PTµ = (pT1µ, ...,p

T
pµ)T , and hence, we can write

the distribution of each entry of V as Vi ∼ N(pTi µ, 1). By applying the Proposition 1.39
for special case j = 1, we obtain that each V 2

i ∼ χ2
1,δi

, where δi = (pTi µ)2 for each Xi. Due
to Proposition 4.31 we have that rank(STS) = p − 1, and hence, exactly one eigenvalue
of STS is equal to zero, and we can write

K ′1 =

p−1∑
i=1

λiXi, (4.93)

where the λi, i = 1, ..., p− 1 are the remaining nonzero eigenvalues of STS. Finally, since
STS is positive semidefinite as seen in Proposition 4.31, all its nonzero eigenvalues are
strictly positive.
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4.2.3 Approximation of F Statistic

We have seen in the previous subsections, that the denominator of the F statistic in case
of violated variance equality assumption is a linear combination of central χ2 distributed
independent random variables, and the numerator is a linear combination of noncentral
χ2 distributed independent random variables. In order to determine the power of the
F -test based on the test statistic (4.40) we will provide a method of approximating linear
combinations of independent χ2 random variable by a single χ2 random variable. The
following two statements are based on [12].

Lemma 4.34. Let Q =
∑m

k=1 λkXk, with λk > 0 and Xk mutually independent random
variables with probability distribution χ2

νk,δk
, then there exist strictly positive numbers

λ∗, ν∗, and nonnegative number δ∗, such that Q∗ = λ∗X∗, with X∗ ∼ χ2
ν∗,δ∗

, satisfying
E(Q) = E(Q∗), and var(Q) = var(Q∗), and therefore

P{Q ≤ q} ≈ P{Q∗ ≤ q}, (4.94)

and the formulas for the parameters are

λ∗ =
R3 + 2R4

R1 + 2R2

, (4.95)

ν∗ =
R1(R1 + 2R2)

R3 + 2R4

, (4.96)

δ∗ =
R2(R1 + 2R2)

R3 + 2R4

, (4.97)

with
m∑
k=1

λkνk = R1 = λ∗ν∗, (4.98)

m∑
k=1

λkνk +
m∑
k=1

λkδk = R1 +R2 = λ∗(ν∗ + δ∗), (4.99)

2
m∑
k=1

λ2
kνk + 4

m∑
k=1

λ2
kδk = 2R3 + 4S4 = 2(λ∗)2(ν∗ + 2δ∗). (4.100)

Proof. See [12] for details.

Theorem 4.35. Let Q1 =
∑m1

k=1 λkXk, and Q2 =
∑m1+m2

k=m1+1 λkXk, where λk > 0, and
random variables Xk are all mutually independent with probability distributions χ2

νk,δk
,

with δk = 0 for k > m1, then there exist strictly positive numbers λ∗1, λ∗2, ν∗1 , ν
∗
2 and

nonnegative number δ∗1 such that Q∗1 = λ∗1X
∗
1 ∼ χ2

ν∗1 ,δ
∗
1
, Q∗2 = λ∗2X

∗
2 ∼ χ2

ν∗2
, and we have

E(Q1) = E(Q∗1), var(Q1) = var(Q∗1), and E(Q2) = E(Q∗2), var(Q2) = var(Q∗2). In turn
with r∗ = r · λ

∗
2ν
∗
2

λ∗1ν
∗
1
,

P
{
Q1

Q2

≤ r

}
≈ P

{
λ∗1X

∗
1

λ∗2X
∗
2

≤ r

}
= P

{
X∗1ν

∗
2

X∗2ν
∗
1

≤ r · λ
∗
2ν
∗
2

λ∗1ν
∗
1

}
= FFδ(r∗; ν∗1 , ν∗2 , δ∗1). (4.101)

Proof. This is a result of Lemma 4.34.
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Using Lemma 4.34, and Theorem 4.35 we are able to approximate distribution of the
ratio (4.40) of quadratic forms K ′1, K ′2 expressed as linear combinations of χ2 distributed
random variables with strictly positive coefficients (see Corollaries 4.27, 4.33) by a single
random variable with F distribution with nonnegative noncentrality parameter. In fact, it
can be seen, that the noncentrality parameter is zero under the hypothesis H0 of equality
of expectations of the samples, and positive under the alternative H1. This is summarised
in the following theorem.

Theorem 4.36. The random variable F given by (4.40) assuming unequal variances of the
p samples may be approximated by a random variable F ∗ where λ∗1ν

∗
1

λ∗2ν
∗
2
F ∗ ∼ Fν∗1 ,ν∗2 ,δ∗1 , where

the parameters λ∗1, λ
∗
2, ν
∗
1 , ν

∗
2 , δ
∗
1 are given by Lemma 4.34, and Theorem 4.35. Moreover,

under the hypothesis H0 of equality of expectations of the samples is the parameter δ∗1 = 0,
and under the alternative H1 (see (4.2)) δ∗1 is positive.

Proof. Step 1. It is easily seen, that the approximation provided by Lemma 4.34, and
consequently by Theorem 4.35 may be applied. Indeed, due to Corollaries 4.27, and
4.33 we have seen, that K ′1 and K ′2 respectively may be written in the form of linear
combination of independent χ2 distributed random variables, moreover, we have seen,
that coefficients of the linear combination for K ′1 are strictly positive. It is obvious that
the coefficients of the linear combination for K ′2 are also strictly positive, since they are
precisely the variances σ2

1, ..., σ
2
p of the p samples. Neither multiplying K ′1 by p(n− 1) nor

K ′2 by p− 1 has any effect on the parity of the coefficients of the sum i. e. the coefficients
n(p− 1)λi, i = 1, ...p− 1 and (p− 1)σ2

j , j = 1, ..., p are still positive coefficients of linear
combinations of χ2 distributed random variables say K ′′1 = p(n−1)K ′1 and K ′′2 = (p−1)K ′2
such that F =

K′′1
K′′2

and hence, we may apply Lemma 4.34 and consequently Theorem 4.35.

Step 2. We will now show, that the distribution of λ∗1ν
∗
1

λ∗2ν
∗
2
F ∗ under the null hypothesis

is central F . In other words we want to show, that the parameter δ∗1 given by (4.97), is
equal to zero. This is only possible, if the parameters δi of all the random variables Vi,
i = 1, ..., p− 1 appearing in the second power in the linear combination are equal to zero
(see proof of 4.33). This is equivalent to asking for expectation of each Vi of the linear
combination to be equal to zero. The expectation of Vi is given by the product pTi µ (see
Corollary 4.33), where pi is an eigenvector - a column of the matrix P of eigenvectors of
STS, and µ is a vector defined in Proposition 4.30. In order to see, that the product is
indeed zero for each i = 1, ..., p − 1 it is necessary to know what are the entries of the
matrix STS. We have that

STS = diag(σ)Hp×pdiag(σ) =


σ2

1(1− 1
p
) −σ1σ2

1
p

−σ1σ3
1
p

... −σ1σp
1
p

−σ2σ1
1
p

σ2
2(1− 1

p
) −σ2σ3

1
p

... −σ2σp
1
p

−σ3σ1
1
p

−σ3σ1
1
p

σ2
3(1− 1

p
) ... −σ3σp

1
p

... ... ... ... ...
−σpσ1

1
p

−σpσ2
1
p

−σpσ3
1
p

... σ2
p(1− 1

p
)

 .

(4.102)
Let us now find an eigenvector pp of the matrix STS corresponding with the single zero
eigenvalue of STS. We need to find a nontrivial solution of (STS − λpI)pp = 0 where
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λp = 0. I. e.
σ2

1(1− 1
p
) −σ1σ2

1
p

−σ1σ3
1
p

... −σ1σp
1
p

−σ2σ1
1
p

σ2
2(1− 1

p
) −σ2σ3

1
p

... −σ2σp
1
p

−σ3σ1
1
p

−σ3σ1
1
p

σ2
3(1− 1

p
) ... −σ3σp

1
p

... ... ... ... ...
−σpσ1

1
p

−σpσ2
1
p

−σpσ3
1
p

... σ2
p(1− 1

p
)




pp,1
pp,2
pp,3
...
pp,p

 =


0
0
0
...
0

 . (4.103)

Since the standard deviations are by definition positive, we can for i = 1, ..., p multiply
i-th row by 1

σi
to obtain

σ1(1− 1
p
) −σ2

1
p

−σ3
1
p

... −σp 1
p

−σ1
1
p

σ2(1− 1
p
) −σ3

1
p

... −σp 1
p

−σ1
1
p

−σ1
1
p

σ3(1− 1
p
) ... −σp 1

p

... ... ... ... ...
−σ1

1
p

−σ2
1
p

−σ3
1
p

... σp(1− 1
p
)




pp,1
pp,2
pp,3
...
pp,p

 =


0
0
0
...
0

 . (4.104)

From the system of the equations (4.104) it is obvious that the nontrivial solution is
pp = c ·

(
1
σ1
, ..., 1

σp

)
, where c is a real constant. Due to Theorem 4.32, there exists a

decomposition of STS into a product of a diagonal matrix of eigenvalues of STS, and
an orthogonal matrix P, whose columns are eigenvectors of STS. This implies that the
arithmetic and geometric multiplicity of each eigenvalue of STS are equal (see for example
[13]), namely both the geometric and algebraic multiplicity of λp = 0 is equal to one. We
want to see that the vector pp is always present among the columns of P. We recall
now, how the matrix P was found in the proof of Proposition 1.12. We have assumed the
existence of an orthonormal set p1, ...,ps, choose a vector x orthogonal to M(p1, ...,ps),
and it was show that there exists an eigenvector ps+1 ∈ M(x,Ax,A2x, ...), which is
orthogonal to p1, ...,ps. Two possibilities may arise, either pp belongs to the orthonormal
set p1, ...,ps, and hence, is one of the columns of P, or it does not belong into p1, ...,ps,
but then, by choosing x we must eventually pick x = pp, since the multiplicity of λp is
one and therefore using Proposition 1.10 we have that pp is orthogonal to all eigenvectors
corresponding to any other eigenvalue of STS. Clearly then pp is the eigenvector ps+1 ∈
M(pp,S

TSpp, ...), where (STS)kpp = 0 for k > 0 and hence, is again one of the columns
of P.

Finally we observe, that under the hypothesis H0 : θ1 = ... = θp (see (4.1)) of equality
of expectations among the random sample the vector µ =

(
θ
σ1
, ..., θ

σp

)
= θ

(
1
σ1
, ..., 1

σp

)
,

and therefore is obviously orthogonal to all eigenvectors of STS but pp. Therefore the
expectations of all entries of the vector V (see Corollary 4.33) apart from one is equal to
zero. But the coefficient of the one eigenvalue with a nonzero expectation is λp = 0 and
so it is not present in the linear combination K ′1.

Step 3. Lastly, let us see that under the alternative the coefficient δ∗1 is strictly
positive, that is equivalent to the claim, that there exists at least one random variable
Xi in the linear combination K ′1 that has nonzero expectation. The vector µ under the
alternative has the form µ =

(
θ1
σ1
, ..., θp

σp

)
. Clearly µ is not orthogonal with pp, and

µ 6= c · pp, where c ∈ R. Therefore it can not be orthogonal to p1, ...pp−1 either since
vectors p1, ...pp form an orthonormal base and hence, the product pTi µ will be nonzero
for all i = 1, ..., p which concludes the proof.

Remark 4.37. For the end of this subsection let us remark, that the results for the power
functions of the F statistic introduced in the Subsection 4.1.3 hold for the F statistic
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developed under the assumption of unequal variances. The degrees of freedom of p−1
p(n−1)

F
must be of course taken in accordance with Theorem 4.35 under the hypothesis H0.
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Chapter 5

Application and Results of
Comparison of Selected
Transformations within ANOVA
Framework

In this chapter we will apply the theoretical results obtained in the Chapters 3 and 4 on
samples from Poission and negative binomial distribution.

For a random variable with Poisson or negative binomial probability distribution a
logarithmic transformation is often used (see [15]). The problem of occurrence of zero
observations is solved usually by adding one. The goal of this chapter is to provide com-
putations of both theoretical and simulated powers of the F test (see the first paragraph of
Chapter 4 for the description of the model and Sections 4.1 and 4.2, where the F statistic
under the assumption of equal and unequal variances is studied, for further reading about
One-Way Anova see [2], or [8]) applied to test the hypothesis of equality of expectations
of p samples from a size n of either Poisson or negative binomial probability distribution
transformed via the logarithmic transformation

Y = ln(X + 1) (5.1)

and via the variance stabilising transformations introduced in Chapter 3 and compare
them. We will also provide all the necessary theory concerning the transformation (5.1)
applied to Poisson and negative binomially distributed random variable.

5.1 Transformation ln(X + 1) Applied on Sample
from Poisson Distribution

Through the whole section we will assume, that X ∼ Po(λ) if not explicitly stated
otherwise. The goal of this section is to develop approximation formulae for the numerical
characteristics of random variable Y obtained via the transformation (5.1) when applied
to X. From these approximations we will see that in the model we are assuming the
approximation of variance of Y is a function of the parameter λ of the Poisson distribution
(see Proposition 1.25) and therefore it can not be equal among p samples from Poisson
distributions Po(λi), i = 1, ..., p transformed via (5.1).

For the Poisson case, the transformation (5.1) can not be obtained neither as a result of
the variance stabilising condition (2.1) nor by any other natural way. In order to develop
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the approximations of numerical characteristics of random variable Y obtained via the
transformation (5.1) when applied to X we will use the same method that was applied
in Section 3.1 when dealing with transformation (3.4) which is based on [1]. Since the
procedure is almost identical we will omit some details.

Let us as in Section 3.1 consider the following, let

Z = X − λ (5.2)

be a random variable, and
λ′ = λ+ 1. (5.3)

The transformation (5.1) may be rewritten as

Y = ln(Z + λ′). (5.4)

By Taylor theorem for any z ≥ −λ′ we obtain an infinite series representation

y = ln(λ′) +
1

λ′
z − 1

2(λ′)2
z2 +

1

3(λ′)3
z3 − 1

4(λ′)4
z4 + ...+

1

(s− 1)(λ′)s−1
zs−1 +Rs, (5.5)

where Rs is a reminder term.

Lemma 5.1. For z > 0 the term Rs satisfies

|Rs| <
1

s(λ′)s
zs (5.6)

Proof. This is a direct result of Lagrange’s form of the reminder term (see [6]).

The following Lemma corresponds with the Lemma 3.3.

Lemma 5.2. For z > −λ′ the term Rs satisfies

|Rs| < G(s)
1

(λ′)s
|zs| (5.7)

Proof. The idea of the proof is identical with the one of the proof of Lemma 3.3 and
hence, will be omitted.

Remark 5.3. In this section we set the random variables X and Z to be the same as those
introduced in the Section 3.1. Therefore the Lemmata 3.4, 3.5, 3.7, and the Corollary 3.6
hold and the result (3.19) given by Remark 3.8 is valid as well.

Lemma 5.4. Let Y be the random variable obtained by transformation (5.1) applied on
X. Then its expectation may be approximated by

EY = ln(λ+ 1)− 1

2λ
+

7

12λ2
+O

(
1

λ3

)
. (5.8)

Proof. By Corollary 3.6 we may take the expectation of the right hand side of (5.5) and
its powers and derive asymptotic expansions for the moments of Y as λ −→ ∞. For the
expected values we have

EY = E
{

ln(λ+ 1) +
1

λ+ 1
Z − 1

2(λ+ 1)2
Z2 +

1

3(λ+ 1)3
Z3 − 1

4(λ+ 1)4
Z4

+
1

5(λ+ 1)5
Z5 − 1

6(λ+ 1)6
Z6 +O

(
z5

)}
. (5.9)
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By using (3.19) and the linearity property of the expectation (see [4]) we obtain

EY = ln(λ+ 1)− λ

2(λ+ 1)2
+

λ

3(λ+ 1)3
− 3λ2 + λ

4(λ+ 1)4
+

10λ2 + λ

5(λ+ 1)5

− 15λ3 + 25λ2 + λ

6(λ+ 1)6
+O

(
1

λ4

)
. (5.10)

Now by approximating all listed terms with their asymptotic expansions for λ −→∞ and
some further computation we obtain

EY = ln(λ+ 1)− 1

2λ
+

7

12λ2
− 1

4λ3
− 22

15λ4
+O

(
1

λ5

)
, (5.11)

which concludes the proof (for more details on the exact form of the asymptotic ex-
pansions used and the additional computations the reader is kindly advised to see file
LnPlusOnePoExpectation.mw that can be found on the included CD of the electronic
appendix of this work.

Theorem 5.5. Let Y be the random variable obtained by transformation (5.1) applied on
X. Then its variance may be approximated by

varY =
1− ln(λ) + ln(λ+ 1)

λ
− 1

6

9− 7 ln(λ) + 7 ln(λ+ 1)

λ2
(5.12)

Proof. The variance of Y may be obtained as varY = EY 2 − (EY )2 (see [2]), hence, we
will proceed with finding the approximations for EY 2 and (EY )2. The random variable
Y 2 =

(
ln(X + 1)

)2
=
(

ln(Z + λ′)
)2

where the last equation is due to reparametrisation
given by (5.2) and (5.3) may be expanded into Taylor series as follows

y = ln2(λ′) +
2 ln(λ′)

λ′
z +

(
− ln(λ′)

(λ′)2
+

1

(λ′)2

)
z2 +

(
2

3

ln(λ′)

(λ′)3
− 1

(λ′)3

)
z3

+

(
− 1

2

ln(λ′)

(λ′)4
+

11

12(λ′)4

)
z4 +O(z5). (5.13)

For a Lagrange reminder term Rs of the Taylor series statements similar to Lemmata 5.1,
and 5.2 may be shown. We will omit them. Furthermore as already mentioned in Remark
5.3 the Lemmata 3.4, 3.5, 3.7, and the Corollary 3.6 hold and the result (3.19) given by
Remark 3.8 is valid as well. Therefore we take expectations of the random equivalent of
the right hand side of (5.13) and its powers, and derive asymptotic expansions for the
moments of Y as λ −→∞. We suppose that the idea of this step is rather obvious since
it was used on multiple occasions in proofs in Section 3.1 as well as in previous Lemma of
this section, hence, we will omit writing all the computations explicitly. Reader interested
in the details of this computation is kindly advised to see file LnPlusOnePoVariance.mw
included in on the CD of the electronic appendix of this work.

From the computation we get that the expectation of Y 2 may be approximated by

EY 2 = ln2(λ+ 1) +
1− ln(λ)

λ
−

5
4
− 7

6
ln(λ)

λ2
+O

(
1

λ3

)
. (5.14)

We obtain the term (EY )2 by computing the second power of formula (5.8) and neglecting
the terms of order O

(
1
λ3

)
. Hence,

(EY )2 = ln2(λ+ 1)− ln(λ+ 1)

λ
+

7

6

ln(λ+ 1)

λ2
+

1

4λ2
+O

(
1

λ3

)
. (5.15)
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The approximation of variance of Y is then obtained by taking

varY = EY 2 − (EY )2. (5.16)

As an immediate result of the variance approximation formula we have the result about
inequality of variance approximations among p independent random samples X1, ...,Xp

from distributions Po(λi), i = 1, ..., p transformed via (5.1), when their expectations are
not equal.

Corollary 5.6. Let X1, ...,Xp be p independent samples from distributions Po(λ1), ...,
Po(λp). We assume that there exist i, k ∈ {1, ..., p}, i 6= k such that λi 6= λk, i. e.
the hypothesis H1 of inequality of expectations holds (see (4.2)). Let Y1, ...,Yp be the
p random samples obtained from X1, ...,Xp by applying the transformation (5.1). Let
σ2

11, ..., σ
2
1n, ..., σ

2
p1, ..., σ

2
pn be the approximations of the variance of the random variables

Yij, i = 1, ..., p j = 1, ..., n obtained via Theorem 5.5. Then σ2
ij 6= σ2

kj for all i 6= k,
i, k ∈ {1, ..., p}.

Proof. We clearly have that for i fixed we have σ2
ij = σ2

il for all j, l ∈ {1, ..., p}. From
equation (5.12) we see, that σ2

ij = σ2(λij). Therefore given that there exist i, k such that
if i 6= k then λi 6= λk, the variance approximations σ2

ij = σ2(λi) and σ2
kj = σ2(λk) have to

be different.

Let us also present rather obvious, yet important result covering the case when the
assumed random variables that undergo the transformation (5.1) have equal expectations.

Corollary 5.7. LetX1, ...,Xp be p independent random samples from distributions Po(λi),
i = 1, ..., p. We assume that the expectations λi is equal for all i = 1, ..., p (i. e.
the hypothesis H0 of equality of expectations holds, see (4.1)). Let Y1, ...,Yp be the
p random samples obtained from X1, ...,Xp by applying the transformation (5.1). Let
σ2

11, ..., σ
2
1n, ..., σ

2
p1, ..., σ

2
pn be the approximations of the variance of the random variables

Yij, i = 1, ..., p, j = 1, ..., n obtained via Theorem 5.5. Then σ2
11 = σ2

1n = ... = σ2
p1 =

σ2
pn = σ2.

Proof. We clearly have that for i fixed we have σ2
ij = σ2

il for all j, l ∈ {1, ..., p}. We have
already seen in proof of Corollary 5.6, that the variability in the variance approximations
σ2
ij = σ2(λi) of the variance of random variables Yij is caused by the fact that there exist
i, k ∈ {1, ..., p} such that λi, λk different. If we assume the converse we obviously get
σ2

11 = σ2
1n = ... = σ2

p1 = σ2
pn = σ2.

Based on Lemmata 3.9, 3.10 and the proofs of the Corollaries 5.6, 5.7 we will in a form
of remark introduce the result on equality of variances when the transformation (3.4) is
applied.

Remark 5.8. Let Y1, ...,Yp be p independent random samples of a size obtained by
transforming independent random samples X1, ...,Xp of a size n from distributions Po(λi)
via transformation (3.4).

The idea of the method for finding the optimal values of the constants introduced in
the transformation (3.4) was to choose the constant in such way, that the term of the
variance of Y of the highest order that is dependant on λ would vanish. The higher order
terms dependant on λ still survive, but for λ large their input will be not significant and
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hence, we may neglect them. Therefore we may say that the variance approximations of
random variables Yij obtained via the transformation (3.4) from the random variables Xij

will be equal up to the term of the order we decide to neglect regardless of whether the
hypothesis H0 or H1 holds.

5.2 Transformation ln(X + 1) Applied on Sample
from Negative Binomial Distribution

The goal of this section is to develop approximation formulae for the numerical char-
acteristics of random variable Y obtained via the transformation (5.1) when applied to
X ∼ NBi(µ, κ). From these approximations we will see that in the model we are assum-
ing the approximation of variance of Y is a function of the parameter µ of the negative
binomial distribution (see Proposition 1.32) and therefore it can not be equal among p
samples from distributions NBi(µi, κ), i = 1, ..., p transformed by (5.1).

Hereinafter, whenever we assume p samples X1, ...,Xp from negative binomial distri-
butions NBi(µi, κ), ..., NBi(µi, κ) in sequence, we will always assume that the parameter
κ is identical for each distribution.

For the negative binomial case the transformation (5.1) is not obtained directly as a
result of the variance stabilising condition (2.1) but may be obtained as a special case
of the transformation (3.57), where for the parameter A we choose the value A = 1.
First let us observe how the expectation and variance of Y transformed via (5.1) can be
approximated.

Lemma 5.9. Let Y be a random variable obtained by transformation (5.1). Let κ > 2
and let the cumulant function K∗(t) be given by Lemma 3.25, then the expectation of the
random variable Y can be approximated by

E(Y ) = − ln(α) + ψ(κ) +
1− 1

2
κ

κ− 1
α− 1

24

κ5 − 13κ4 + 53κ3 − 95κ2 + 78κ− 24

(κ− 1)3(κ− 2)2
α2 +O(ακ)

(5.17)

Proof. The transformation (5.1) may be obtained from (3.57) by taking A = 1, therefore
the moment generating function approximation given by Theorem 3.73 and consequently
also the cumulant generating function approximation given by Lemma 3.25 are valid
for this transformation as well just by taking A = B = 1, where the second equation
comes from the result (3.57). The first cumulant is obtained by computing the first
derivative of the cumulant generating function in t = 0 (see [3]). The first derivative of
the approximation of the cumulant generating function (K∗)′(t) is given by

(K∗)′(t) = − ln(α) + ψ(κ+ t) +

(
1− 1

2
κ

)
κ− 1

(κ+ t− 1)2
α +H(t, κ) +O(ακ), (5.18)

where H(t, κ) represents the first derivative of the coefficient of α2 with respect to t,
where A = B = 1. Taking this derivative is tedious, yet not particularly technically
interesting part of the proof and hence, the detailed form and derivation of the term
H(t, κ) is provided in the Maple Document LnPlusOneNBSecondDegreeExp.mw included
in the digital appendix of this work. By evaluating in t = 0 we obtain

k1 = − ln(α) + ψ(κ) +
1− 1

2
κ

κ− 1
α− 1

24

κ5 − 13κ4 + 53κ3 − 95κ2 + 78κ− 24

(κ− 1)3(κ− 2)2
α2 +O(ακ)

(5.19)
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The fact that the first cumulant of a random variable is equal to its first moment (see [3])
altogether with the first result of Lemma 3.26 concludes the proof.

Theorem 5.10. Let Y be a random variable obtained by transformation (5.1). Let κ > 2
and let the cumulant function K∗(t) be given by Lemma 3.25, then the variance of the
random variable Y given by (5.1) can be approximated by

varY = ψ′(κ) +
κ− 2

(κ− 1)2
α+

1

12

6κ6 − 66κ5 + 287κ4 − 638κ3 + 769κ2 − 478κ+ 120

(κ− 1)4(κ− 2)3
α2 +O(ακ).

(5.20)

Proof. As mentioned already in the proof of Lemma 5.9 the moment and consequently the
cumulant generating function approximations derived for random variable transformed via
(3.57) stay valid, and the formulae for the transformation (5.1) are obtained by simply
taking A = B = 1. In order to obtain the second cumulant we need to compute the
second derivative of the cumulant generating function and evaluate it in t = 0 (see [3]).
The second derivative of K∗(t) is given by

(K∗)′′(t) = ψ′(κ+ t)− 2

(
1− 1

2
κ

)
κ− 1

(κ+ t− 1)3
α + L(t, κ) +O(ακ), (5.21)

where L(t, κ) represents the second derivative of the coefficient of α2 with respect to t,
where A = B = 1. As before the computation of the derivative will not be presented in
this proof, but can again be found in the Maple Document LnPlusOneNBSecondDegree-
Var.mw included in the digital appendix of this work. By evaluating (5.21) in t = 0 we
obtain

k1 = ψ′(κ)+
κ− 2

(κ− 1)2
α+

1

12

6κ6 − 66κ5 + 287κ4 − 638κ3 + 769κ2 − 478κ+ 120

(κ− 1)4(κ− 2)3
α2+O(ακ).

(5.22)
The fact that the second cumulant of a random variable is equal to its second central
moment (see [3]) altogether with the second result of Lemma 3.26 concludes the proof.

As an immediate result of the variance approximation formula we have the result about
inequality of variance approximations among p independent random samples X1, ...,Xp

from distributions NBi(µ1, κ), i = 1, ..., p transformed via (5.1), when their expectations
are not equal.

Corollary 5.11. LetX1, ...,Xp be p independent samples from distributions NBi(µ1, κ), ...,
NBi(µp, κ) in sequence. We assume that there exist i, k ∈ {1, ..., p}, i 6= k such that
µi 6= µk, i. e. the hypothesis H1 of inequality of expectations holds (see (4.2)). Let
Y1, ...,Yp be the p random samples obtained from X1, ...,Xp by applying the transfor-
mation (5.1). Let σ2

11, ..., σ
2
1n, ..., σ

2
p1, ..., σ

2
pn be the approximations of the variance of the

random variables Yij, i = 1, ..., p j = 1, ..., n obtained via Theorem 5.5. Then σ2
ij 6= σ2

kj

for all i 6= k, i, k ∈ {1, ..., p}.

Proof. We clearly have that for i fixed we have σ2
ij = σ2

il for all j, l ∈ {1, ..., p}. From
equation (5.12) we see, that σ2

ij = σ2(µij). Therefore given that there exist i, k such that
if i 6= k then µi 6= µk, the variance approximations σ2

ij = σ2(µi) and σ2
kj = σ2(µk) have to

be different.

Let us also present rather obvious, yet important result covering the case when the
assumed random variables that undergo the transformation (5.1) have equal expectations.
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Corollary 5.12. Let X1, ...,Xp be p independent random samples from distributions
NBi(µi, κ), i = 1, ..., p. We assume that the expectations µi is equal for all i = 1, ..., p
(i. e. the hypothesis H0 of equality of expectations holds, see (4.1)). Let Y1, ...,Yp be
the p random samples obtained from X1, ...,Xp by applying the transformation (5.1). Let
σ2

11, ..., σ
2
1n, ..., σ

2
p1, ..., σ

2
pn be the approximations of the variance of the random variables

Yij, i = 1, ..., p, j = 1, ..., n obtained via Theorem 5.5. Then σ2
11 = σ2

1n = ... = σ2
p1 =

σ2
pn = σ2.

Proof. We clearly have that for i fixed we have σ2
ij = σ2

il for all j, l ∈ {1, ..., p}. We have
already seen in proof of Corollary 5.6, that the variability in the variance approximations
σ2
ij = σ2(µi) of the variance of random variables Yij is caused by the fact that there exist
i, k ∈ {1, ..., p} such that µi, µk different. If we assume the converse we obviously get
σ2

11 = σ2
1n = ... = σ2

p1 = σ2
pn = σ2.

Based on Lemmata 3.9, 3.10 and the proofs of the Corollaries 5.6, 5.7 we will in a form
of remark introduce the result on equality of variances when the transformation (3.4) is
applied.

Remark 5.13. Let Y1, ...,Yp be p independent random samples of a size obtained by
transforming independent random samples X1, ...,Xp of a size n from distributions
NBi(µi, κ) via transformation (3.4).

The idea of the method for finding the optimal values of the constants introduced in the
transformation (3.4) was to choose the constants in such way, that the coefficient of the
term of the variance of Y of the smallest order that is dependant α (see Proposition 3.20)
would be zero. The higher order terms dependant on α still survive, but for α small (i.
e. µ large) their input will be not significant and hence, we may neglect them. Therefore
we may say that the variance approximations of random variables Yij obtained via the
transformation (3.4) from the random variables Xij will be equal up to the term of the
order we decide to neglect regardless of whether the hypothesis H0 or H1 holds.

5.3 Simulation Study of Used Approximations, Ef-
fect of Transformations on Parameter Estimates
of Poisson or Negative Binomial Distribution

In this section we will check the quality of the approximations of the numerical character-
istics of the transformed variables introduced in the Sections 3.1, 3.2, 5.1, and 5.2 as well
as the approximation of the ratio of two linear combinations of independent χ2 distributed
random variables introduced in the Subsection 4.2.3 via simulation. Additionally we will
study via simulation the effect of the transformations on the expectation parameter of
both Poisson and negative binomially distributed variables.

We will restrict ourselves to the comparison of the numerical characteristics of the
random variable Y obtained via applying transformation (3.4) or (5.1) on random variable
X ∼ Po(λ) for the Poisson case, and of the random variable Y obtained via transformation
(3.56) and (5.1) applied on random variable X ∼ NBi(µ, κ) in the negative binomial case.

We are aware that in the negative binomial case for small values of κ the normality
assumption might be violated due to big absolute values of the skewness parameter of
the transformed variable since we determined in Section 3.2, that the limiting value of
skewness tends to zero for large values of κ (see Theorem 3.36). Hence, we will assume
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that κ > 2. Therefore we will also not study the transformation (3.57), since we consider it
to be only an approximation of (3.56) (see Lemma 3.18), and the value of κ is sufficient for
Theorem 3.33 and Corollary 3.30 to hold and so all the optimal values of the constants of
(3.56) may be determined. When referring to the transformation (3.56) we will hereinafter
assume that the constants c and d are chosen to be optimal.

Let us begin by checking goodness of the approximations of the numerical charac-
teristics. Since the process is identical regardless of whether it is done for Poisson or
negative binomial case we will describe it for the Poisson case, while the corresponding
data used for the negative binomial case will be mentioned in brackets. We will do this
by evaluating the formulae (3.20), (3.26), (5.8), (5.12), ((3.96), (3.108), (5.17), (5.20)) for
values of λ (µ) in a given interval I and comparing them with the values of estimators of
the corresponding numerical characteristic. The estimators are computed from generated
sample of a size n of a distribution Po(λ) (NBi(µ, κ)) for λ ∈ IPo (µ ∈ INBi), on which
the transformation (3.4), or (5.1) ((3.56), or (5.1)) was applied. As an estimator of the
expectation we use in both cases the arithmetic mean given by

Y =
1

n

n∑
i=1

Yi (5.23)

and as an estimator of the variance we use in both cases the sample variance given by

s2 =
1

n− 1

n∑
i=1

(Yi − Y )2. (5.24)

We will also check the goodness of approximation given by Theorem 4.35, that will
be done in following way. Assume we have p independent random samples X1, ...,Xp

from Po(λi) (NBi(µi, κ) ) , i = 1, ..., p. We choose the expectation λ1 (µ1) and a step
h. Expectation parameters of all other distributions differ from λ1 (µ1) by multiples
of h. We apply the transformation (5.1) on the independent random samples Xi, from
Po(λi) (NBi(µi, κ) ) i = 1, ..., p in order to obtain transformed random samples Yi,
i = 1, ..., p and determine their numerical characteristics via formulas (5.8), (5.12) ((5.17)
and (5.20)). Using the numerical characteristics we compute the vector µ and the matrix
STS (see Proposition 4.30). We find the eigenvalues λi and eigenvectors pi for i = 1, ..., p
of STS. The nonzero eigenvalues of STS are the coefficients of the linear combination K ′1.
The degrees of freedom of the independent χ2 distributed random variables of the linear
combination K ′1 are all equal to one. (see Corollary 4.33). Using the eigenvectors of STS
and the vector µ the noncentrality parameters of the independent χ2 distributed random
variables of the linear combination K ′1 are determined via formua δi = (pTi µ)2 for i =
1, ..., p (see proof of Corollary 4.33). Due to Corollary 4.27 we know that the coefficients
of the linear combination K ′2 are actually variances σ2

i of the transformed random samples
Yi for i = 1, ..., p. In the computations we will use the approximations given by (5.12)
((5.20)). From the same Corollary we also obtain that the degrees of freedom of each
independent central χ2 distributed random variable in the linear combination K ′2 are
equal to n−1. With all the parameters of all the random variables of the quadratic forms
K ′1 and K ′2 determined, we can generate them numerically and compute the ratio (4.40).
We do so repeatedly in order to obtain a random sample of the ratio (4.40), from which we
determine the empirical quantile function. Moreover, we use the parameters of the random
variables of the quadratic forms K ′1 andK ′2 , to compute the values of the coefficients λ∗1, λ

∗
2

(see (4.95)), the degrees of freedom ν∗1 , ν
∗
2 (see (4.96)), and the noncentrality parameter

δ∗1 (see (4.97)) by applying Lemma 4.34 and Theorem 4.35. Hence, we determine the
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parameters of the approximation and we can generate its quantiles, which we compare
graphically with the empirical quantiles. The empirical quantiles in the computation were
computed in the R, using function ”quantiles”.

Finally we will study the effect of the transformations (3.4) and (5.1) ((3.56) and
(5.1)) on the data via estimates of the parameter λ (µ) of the Poisson (negative bino-
mial) distribution. This will be done as follows. Let X1, ..., Xn be a sample of Poisson
distribution Po(λ) (negative binomial distribution NBi(µ, κ)). We transform this sample
via transformation (3.4) or (5.1) ((3.56) or (5.1)) to obtain random sample Y1, ..., Yn. We
estimate the expectation of the transformed random sample via arithmetic mean Y given
by formula (5.23). We apply the respective transformation in reverse to the value of the
arithmetic mean Y and obtain an estimate λY of λ (µY of µ). We will repeat the pro-
cedure described above k-times for the same setting of parameter λ (µ and κ) and using
formulas (5.23) and (5.24) compute the arithmetical mean λY (µY ) and sample variance
s2 of the sample of λY (µY ) obtained via the repetition. When describing the results of
this study we will frequently use the term bias defined in Definition 3.13.

5.3.1 Data Input and Results for Poisson Case

The interval I for the parameter λ was set to I = [0, 500] the sample size used in the
simulated sample was set on n = 10000. In all the figures the blue line represents the
values of the approximations and red points represent the values obtained via simulations.
We can conclude given the Figures 5.1a, 5.2a, 5.1b, and 5.2b that all the approximation
fit rather well. We can observe that the transformation (3.4) provides a good variance
stabilisation even for small values of λ (see Figure 5.2a). On the other hand, the variance
for the transformation (5.1) continues to decrease for increasing values of λ, which might
pose a significant problem namely for small values of λ (see Figure 5.2b).

We will continue by providing some numerical results on the goodness of approximation
introduced in the Theorem 4.35. The empirical quantile function is computed from a
random sample of the distribution of F statistic of a size k = 1000 according to the
procedure described earlier in this Section. The number of assumed random subsamples
is p = 3 and their size is n = 100. The graphical comparison is done for the following values
of the parameters of the original Poisson distributed random variable λ = 15, 50, 100 and
corresponding values of steps h = 3, 10, 20. The values of λ2 and λ3 are obtained as
follows.

λj = λ1 + (−1)j(kh0) k = 0, ..., 30, (5.25)

so that the difference ∆µj = |µ1− µj| for j = 2, 3 increases with the value of k. The blue
line represents the quantile function of the random variable λ∗1ν

∗
1

λ∗2ν
∗
2
F ∗ (see Theorem 4.35),

the red points are the values of the empirical quantile function. We conclude that for all
used values of parameters the approximation has a good fit.

Finally, we will also provide the results of the study of the effect of the transformations
(3.4) and (5.1) on the parameter λ. The study was done for the values λ = 5, 10, 20, 50,
The sample size was set to n = 100, the number of repetitions was set to k = 1000. His-
tograms for each respective setting can be seen on Figures 5.4a, 5.4b, 5.5a, 5.5b, 5.6a, 5.6b,
5.7a, and 5.7b. The values of the arithmetical mean and sample variance of the samples
from distribution identical to that of λY for each respective setting are collected in the
Table 5.1. From the histograms we can observe that for both transformations the estimate
λY is biased. The sample characteristics of the estimate provided in the table supports
this statement. We can also observe that the bias is smaller for the transformation (3.4).
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Transformation Parameter λ = 5 λ = 10 λ = 20 λ = 50

Y =
√
X + 3/8 λY 4.749 9.745 19.738 49.758

s2 0.053 0.098 0.196 0.520

Y = ln(X + 1) λY 4.553 9.519 19.503 49.514
s2 0.056 0.101 0.198 0.522

Table 5.1: Arithmetic mean and sample variance of samples of distribution identical to
λY .
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(a) Comparison of expectation approxima-
tion formula and arithmetic mean for trans-
formation Y =

√
X + 3/8 (see (3.4)).
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(b) Comparison of expectation approxima-
tion formula and arithmetic mean for trans-
formation Y = ln(X + 1) (see (5.1)).

Figure 5.1: Comparison of expectation approximation formulae and expectation estimates
via arithmetic mean for Po(λ)
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lambda 

va
rY

_F
or

m
ul

a−
bl

ue
, S

am
pl

e 
va

ria
nc

e−
re

d

(a) Comparison of variance approximation
formula and sample variance for transfor-
mation Y =

√
X + 3/8 (see (3.4)).
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(b) Comparison of variance approximation
formula and sample variance for transfor-
mation Y = ln(X + 1) (see (5.1)).

Figure 5.2: Comparison of variance approximation formulae and variance estimates via
sample variance mean for Po(λ)
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(a) Comparison of the quantile function of
random variable F ∗ and empirical quantile
function of the ratio (4.40) for λ = 15, h =
3 .
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(b) Comparison of the quantile function of
random variable F ∗ and empirical quantile
function of the ratio (4.40) for λ = 100,
h = 20 .

Figure 5.3: Comparison of the quantile function of random variable F ∗ and empirical
quantile function of the ratio (4.40) for Po(λ).
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 Y = sqrt(X + 3/8) for lambda =   5
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Figure 5.4: Histograms of λY for transformation Y =
√
X + 3/8 for sample size n = 100

and number of repetitions k = 1000 for Po(λ).
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(b) Histogram of λY for λ = 50

Figure 5.5: Histograms of λY for transformation Y =
√
X + 3/8 for sample size n = 100

and number of repetitions k = 1000 for Po(λ).
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5.3.2 Data Input and Results for Negative Binomial Case

The interval I for the parameter µ was set to I = [0, 250]. The sample size used in the
simulated sample was set on n = 10000. The comparison was done for few different values
of the shape parameter κ. Namely κ = 3, 5, 10. The value of the shape parameter proved
to affect both the quality of the approximation and the stability of the sample variance.
On the other hand, the effect of varying parameter κ on the expectation approximation
did not affect the quality of fit.

In all the figures the blue line represents the values of the approximations and red
point represent the values obtained via simulations.

The Figures 5.8a, 5.8b display the comparison of the expectation approximations and
their estimates for the transformation (3.56) and (5.1). We can see that the approximation
formulae and the estimates have good fit on the whole interval I.

Let us now turn our attention towards the variances. From the Figures 5.9a, 5.9b we
can observe that for small values of µ (up to approximately µ = 19 for transformation
(3.56) and µ = 38 for transformation (5.1)) the variance approximation differs from the
sample variance greatly. These values of µ also describe approximately the point where
the sample variances become stable. An interesting result is that the value of µ at which
the sample variance of the sample to which the transformation (3.56) was applied is
significantly lesser than the value of µ for which the same happens when (5.1) is applied.
This difference increases with the increasing values of κ as can be seen in Figures 5.10a,
5.10b and 5.11a, 5.11b, however the growth of the critical value of µ for the transformation
(3.56) is significantly slower than for the transformation (5.1). For κ = 5 the critical value
for (3.56) is still somewhere around µ = 19, however for the transformation (5.10b) it is
already µ = 75 and for κ = 5 it is µ = 29 for (3.56) versus µ = 90 for (5.1).

Let us continue by providing some numerical results on the goodness of approximation
introduced in the Theorem 4.35, when applied on the ratio F = p(n−1)

p−1

K′1
K′2
, where K ′1 is

given by (4.91) and K ′2 is given by (4.67). Let us denote as before by F ∗ the random
variable obtained by applying Theorem 4.35 onto (4.40). We will check the goodness
of the approximation by comparing quantile function of the random variable F ∗ with a
empirical quantile function of the random variable F . The empirical quantile function is
computed from a random sample of F of a size n = 1000. The random sample of F is
obtained by generating random samples from each χ2 distributed random variable of the
linear combination K ′1 and K ′2 and then computing their ratio F .

The graphical comparison is done for the following values of the parameters of the
original negative binomially distributed random variable µ = 15, 50, 100 and κ = 3, 5.
The values of µj, j = 2, 3 were computed as follows

µj = µ1 + (−1)j(kh) k = 0, ..., 30, (5.26)

so that the difference ∆µj = |µ1− µj| for j = 2, 3 increases with the value of k. The blue
line represents the the quantile function of the random variable F ∗, the red points are the
values of the empirical quantile function.

We see from the Figures 5.12a, 5.12b, 5.12c, 5.13a, 5.13b, and 5.13c that for all tested
values we obtain a good fit.

Finally we will also provide the results of the study of the effect of the transformations
(3.56) and (5.1) on the parameter µ. The study was done for the values of µ = 30, 50, 100
with the respective setting of the shape parameter κ = 3, 5, 10. The sample size was
set to n = 100. The number of repetitions was set to k = 1000. Histograms for each
respective setting can be seen on Figures 5.14a, 5.14b, 5.14c, 5.15a, 5.15b, 5.15c, 5.16a,
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Y = 2 sinh−1
(√

X+c
κ+d

)
µY µ = 30 µ = 50 µ = 100 s2 µ = 30 µ = 50 µ = 100

κ = 3 24.948 41.898 84.436 9.717 22.489 97.027
κ = 5 26.897 44.923 90.290 6.092 15.873 63.794
κ = 10 28.341 47.466 94.917 3.639 9.661 35.467

Y = ln(X + 1) µY µ = 30 µ = 50 µ = 100 s2 µ = 30 µ = 50 µ = 100
κ = 3 24.923 41.747 83.954 9.286 25.764 99.045
κ = 5 26.860 44.840 90.266 6.541 18.696 68.146
κ = 10 28.086 47.252 94.727 3.558 8.641 35.506

Table 5.2: Table of arithmetic mean and sample skewness of a sample from distribution
identical to µY .

5.16b, 5.16c, 5.17a, 5.17b, 5.17c, 5.18a, 5.18b, 5.18c, 5.19a, 5.19b, and 5.19c. The values of
the arithmetical mean and sample variance of the samples from the distribution identical
with the distribution of µY are collected in Table 5.2. From the histograms we can observe
that the estimate µY obtained with the use of any of the two transformations (3.56) and
(5.1) is biased. However we notice that the bias is bigger for the case when transformation
(5.1) is used. Another interesting result is that for increasing values of κ the bias gets
smaller. These observations are supported by the data collected in the table. Additionally
we can observe from the table, that the sample variance of the estimates µY decreases for
both transformations as the parameter κ grows.
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 Y = ln(X + 1), for lambda =  5
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(b) Histogram of λY for λ = 10

Figure 5.6: Histograms of λY for transformation Y = ln(X + 1) for sample size n = 100
and number of repetitions k = 1000 for Po(λ).
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Figure 5.7: Histograms of λY for transformation Y = lnX + 1 for sample size n = 100
and number of repetitions k = 1000 for Po(λ).

81



●

●

●

●
●
●
●
●
●
●
●
●
●●

●●
●
●●

●●
●●

●●
●●

●●
●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●

0 50 100 150 200 250

0
2

4
6

8
Transformation (3.56) Expectation Comparison, kappa =  3

mu 

E
Y

_F
or

m
ul

a−
bl

ue
, M

ea
n−

re
d

0 50 100 150 200 250

0
2

4
6

8

 

 

(a) Comparison of expectation approxima-
tion formula and arithmetic mean for Y =
2 sinh−1(

√
(X + c)/(κ+ d)) (see (3.56)) for

κ = 3.
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(b) Comparison of expectation approxima-
tion formula and arithmetic mean for trans-
formation Y = ln(X + 1) (see (5.1)) for
κ = 3.

Figure 5.8: Comparison of expectation approximation formulae and arithmetic mean for
NBi(µ, 3).
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(a) Comparison of variance approximation
formula and sample variance for Y =
2 sinh−1(

√
(X + c)/(κ+ d)) (see (3.56)) for

κ = 3. The horizontal line is at µ = 19.
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(b) Comparison of variance approxima-
tion formula and sample variance for Y =
ln(X + 1) (see (5.1)) for κ = 3. The hori-
zontal line is at µ = 38.

Figure 5.9: Comparison of variance approximation formulae and sample variance for
NBi(µ, 3).
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(a) Comparison of variance approximation
formula and sample variance for Y =
2 sinh−1(

√
(X + c)/(κ+ d)) (see (3.56)) for

κ = 5. The horizontal line is at µ = 19.
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(b) Comparison of variance approxima-
tion formula and sample variance for Y =
ln(X + 1) (see (5.1)) for κ = 5. The hori-
zontal line is at µ = 75.

Figure 5.10: Comparison of variance approximation formulae and sample variance for
NBi(µ, 5).
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(a) Comparison of variance approximation
formula and sample variance for Y =
2 sinh−1(

√
(X + c)/(κ+ d)) (see (3.56)) for

κ = 10. The horizontal line is at µ = 29.
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(b) Comparison of variance approxima-
tion formula and sample variance for Y =
ln(X + 1) (see (5.1)) for κ = 10. The hori-
zontal line is at µ = 90.

Figure 5.11: Comparison of variance approximation formulae and sample variance for
NBi(µ, 10).
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(a) Comparison of the quantile
function of random variable F ∗

and empirical quantile function
of the ratio(4.40) for µ = 15,
κ = 3, h = 3 .
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(b) Comparison of the quantile
function of random variable F ∗

and empirical quantile function
of the ratio (4.40) for µ = 50,
κ = 3, h = 10.
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(c) Comparison of the quantile
function of random variable F ∗

and empirical quantile function
of the ratio (4.40) for µ = 100,
κ = 3, h = 20.

Figure 5.12: Comparison of the quantile function of random variable F ∗ and empirical
quantile function of the ratio (4.40) for NBi(µ, 3).
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(a) Comparison of the quantile
function of random variable F ∗

and empirical quantile function
of the ratio(4.40) for µ = 15,
κ = 5, h = 3 .
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(b) Comparison of the quantile
function of random variable F ∗

and empirical quantile function
of the ratio (4.40) for µ = 50,
κ = 5, h = 10.
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(c) Comparison of the quantile
function of random variable F ∗

and empirical quantile function
of the ratio (4.40) for µ = 100,
κ = 5, h = 20.

Figure 5.13: Comparison of the quantile function of random variable F ∗ and empirical
quantile function of the ratio (4.40) for NBi(µ, 5).
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Y = 2asinh(...), for mu =  30 , kappa =  3
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(a) Histogram of µY for µ = 30

Y = 2asinh(...), for mu =  50 , kappa =  3
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(b) Histogram of µY for µ = 50

Y = 2asinh(...), for mu =  100 , kappa =  3
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(c) Histogram of µY for µ = 100

Figure 5.14: Histograms of µY for transformation Y = 2 sinh−1(
√

(X + c)/(κ+ d)) for
κ = 3, sample size n = 100, and number of repetitions k = 1000

Y = 2asinh(...), for mu =  30 , kappa =  5
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(a) Histogram of µY for µ = 30

Y = 2asinh(...), for mu =  50 , kappa =  5
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(b) Histogram of µY for µ = 50

Y = 2asinh(...), for mu =  100 , kappa =  5
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(c) Histogram of µY for µ = 100

Figure 5.15: Histograms of µY for transformation Y = 2 sinh−1(
√

(X + c)/(κ+ d)) for
κ = 5, sample size n = 100, and number of repetitions k = 1000

Y = 2asinh(...), for mu =  30 , kappa =  10
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(a) Histogram of µY for µ = 30

Y = 2asinh(...), for mu =  50 , kappa =  10
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(b) Histogram of µY for µ = 50

Y = 2asinh(...), for mu =  100 , kappa =  10
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(c) Histogram of µY for µ = 100

Figure 5.16: Histograms of µY for transformation Y = 2 sinh−1(
√

(X + c)/(κ+ d)) for
κ = 10, sample size n = 100, and number of repetitions k = 1000
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Y = ln(X + 1), for mu =  30 , kappa =  3
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(a) Histogram of µY for µ = 30

Y = ln(X + 1), for mu =  50 , kappa =  3
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(b) Histogram of µY for µ = 50

Y = ln(X + 1), for mu =  100 , kappa =  3
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(c) Histogram of µY for µ = 100

Figure 5.17: Histograms of µY for transformation Y = ln(X + 1) for κ = 3, sample size
n = 100, and number of repetitions k = 1000

Y = ln(X + 1), for mu =  30 , kappa =  5
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(a) Histogram of µY for µ = 30

Y = ln(X + 1), for mu =  50 , kappa =  5

mu

F
re

qu
en

cy

30 35 40 45 50 55 60 65

0
10

0
20

0
30

0
40

0

(b) Histogram of µY for µ = 50

Y = ln(X + 1), for mu =  100 , kappa =  5
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(c) Histogram of µY for µ = 100

Figure 5.18: Histograms of µY for transformation Y = ln(X + 1) for κ = 5, sample size
n = 100, and number of repetitions k = 1000

Y = ln(X + 1), for mu =  30 , kappa =  10
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(a) Histogram of µY for µ = 30

Y = ln(X + 1), for mu =  50 , kappa =  10
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(b) Histogram of µY for µ = 50

Y = ln(X + 1), for mu =  100 , kappa =  10
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(c) Histogram of µY for µ = 100

Figure 5.19: Histograms of µY for transformation Y = ln(X + 1) for κ = 10, sample size
n = 100, and number of repetitions k = 1000
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5.4 Comparison of Power Functions by Simulation

In this section we will describe how the power functions of the F -test applied to test
the hypothesis of equality of expectations (4.1) (see the beginning of the Chapter 4) of p
random samples of the same size n are computed either by using formula (4.36), or via
simulations. In the further text we will denote the power function computations based
on the formula (4.36) as theoretical power functions. When the approach via simulations
is used, we will refer to simulated power functions.

Let us start by describing how the simulated power functions are computed for either
Poisson or negative binomial data. The simulated power functions are computed in the
following way. We choose a step h and an initial value of expectation λ1 for Poisson case
or µ1 for negative binomial case. Additionally for the negative binomial case we choose
the value of the parameter κ. We generate p random samples Xi for i = 1, ..., p of a size n
from Po(λi) for i = 1, ..., p in the Poisson case, and from NBi(µi, κ) for i = 1, ..., p in neg-
ative binomial case where, the values λ2, ..., λp or µ2, ..., µp for the negative binomial case
are obtained from λ1 or µ1 by adding multiples of the step h. We transform the random
samples using transformations (3.4), (5.1), and (2.9) for the Poisson case and transforma-
tions (3.56), (5.1), and (2.9) for the negative binomial case obtaining transformed random
samples Yi for i = 1, ..., p. The best value of the parameter of Yeo-Johnson transforma-
tion is determined via maximum likelihood method. Using formula (4.6) we compute
the F statistic, where for input vector Ynp = (Y11, ..., Y1n, ..., Yp1, ..., Ypn)T we take the
transformed samples Yi = (Yi1, ..., Yin)T for i = 1, ..., p stacked one above each other. We
compare the value of the F statistic with quantile QF (1− α, p− 1, p(n− 1)) and decide
about the result of the test. We repeat this process k times for the same setting of param-
eters and compute the relative frequency of rejecting hypothesis H0. By increasing the
value of step h and repeating the described procedure we obtain values of the simulated
power function all across the interval [0, 1].

5.4.1 Computation of Theoretical Power Function under Asump-
tion of Equal Variances

In this subsection we will describe how the theoretical power function of the F test
applied to test the hypothesis of equality of expectations (4.1), (see the beginning of
the Chapter 4) of p random samples X1, ...,Xp of a size n of either Poisson or negative
binomial distribution transformed via (3.4) or (3.56) is computed. The computation is
based on the formulae and results provided in Chapter 3 and Section 4.1, and is done as
follows. As in Section 5.3 the general procedure is identical for both Poisson and negative
binomial cases, save the applied transformations. The description will be provided for
Poisson distribution, while the corresponding data for negative binomial distribution will
be provided in brackets following the data for Poisson distribution. Let X1, ...,Xp be p
samples of a size n from a distribution Po(λi) (NBi(µi, κ)), i = 1, ..., p. We choose the
value λ1 (µ1) and the step h. The values λi (µi) for i = 2, ..., p differ from the value λ1

(µ1) by a multiples of the step.

We compute the numerical characteristics of random variables Yij i = 1, ..., p, j =
1, ..., n of the random samples Y1, ...,Yp obtained by applying the transformation (3.4)
((3.56)) on Xi for i = 1, ..., p by formulae (3.20) and (3.26) ((3.108) and (3.96)). We have
seen in the Subsection 4.1.3, Proposition 4.17 that, given that the assumption of equal
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variances holds, the power function βα(θ) on the significance level α is given by formula

βα(θ) = 1−FFδ(QF (1− α; s, t), s, t, δ)), (5.27)

where, θ is the p-dimensional vector of expectations, s = p − 1 and t = p(n − 1) are
the degrees of freedom of the F distributed random variable under the hypothesis H0 of
equality of expectations and δ is the noncentrality parameter given by

δ =
n

σ2
θTHp×pθ. (5.28)

For the values of the entries of θ we take the expectation approximations EYij of the
transformed random variables Yij, for i = 1, ..., p, and j fixed, obtained via (3.20) ((3.108)).
Note that EYij = EYil for each j, l ∈ {1, ..., n}, so it does not matter which j we pick.
For the value of σ2 we take the variance approximation varYij of the transformed random
variables Yij, for i and j fixed, given by (3.26) ((3.96)). This is because varYij = varYil
for each j, l ∈ {1, ..., n}, and by Remark 5.8 (Remark 5.13) also varYij = varYkj for each
i, k ∈ {1, ..., p} up to a term that we decide to neglect.

We start the computation by setting h = 0 and hence, θ1 = ... = θp. We proceed to
increase the difference between the expectations in order to obtain a range of values of
βα(θ) from the whole interval of values [α, 1]. The precise description of how this is done
is provided in Subsection 5.4.3 (Subsection 5.4.4).

5.4.2 Computation of Theoretical Power Function Under As-
sumption of Unequal Variances

In this subsection we will describe how the theoretical power function of the F test applied
to test the hypothesis of equality of expectations (4.1) (see the beginning of the Chap-
ter 4) of p random samples X1, ...,Xp of a size n of either Poisson or negative binomial
distribution transformed via for the transformation (5.1) is computed. the general pro-
cedure is identical for both Poisson and negative binomially distributed random variable
samples, save the applied transformations. The description will be provided for Poisson
distribution, while the corresponding data for negative binomial distribution will be pro-
vided in brackets following the data for Poisson distribution. The situation is a bit more
complicated in this case because of the assumption of the equality of variances among
the samples is violated, and is based mainly on the results developed in Section 4.2. Let
X1, ...,Xp be p samples of a size n from distribution Po(λi) (NBi(µi, κ)), i = 1, ..., p. We
again choose the value λ1 (µ1) and the step h. The values λi (µi) for i = 2, ..., p differ
from the value λ1 (µ1) by a multiples of the step. The precise description of how this is
done in the computations is provided in Subsection 5.4.3 (Subsection 5.4.4).

Let Yi i = 1, ..., p be the random samples obtained by applying the transformation
(5.1) on independent samples Xi for i = 1, ..., p from distribution Po(λi) (NBi(µi, κ)).
The numerical characteristics of the transformed random variables Yij are computed by
approximation formulae (5.17), and (5.20). To compute the power function we need to
determine the degrees of freedom of the F statistic under the hypothesis H0. It can be
easily seen, that the degrees of freedom of the F statistic under the hypothesis H0, given
the assumption that the variances are not equal, in the model we are assuming, where the
variance approximation is a function of the expectation, is again s = p− 1, t = p(n− 1).
This is summed up in the following Lemma.
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Lemma 5.14. Assume that we have p independent samples X1, ...,Xp of a size n from
distributions L(θ1), ...,L(θp) (either Poisson or negative binomial) in sequence, where the
parameters θi are chosen in such a way that for each i = 1, ..., p and j = 1, ..., n, EXij = θi,
Furthermore assume that the null hypothesis (4.1) of the equality of expectations holds, i.
e. θ1 = ... = θp = θ. Let us denote Y1 = (Y11, ..., Y1n), ...,Yp = (Yp1, ..., Ypn) the p random
samples obtained from random samples X1, ...,Xp by applying transformation (5.1). Let
σ2
ij variances of random variables Yij for i = 1, ..., p, j = 1, ..., n. Then the distribution of

the test statistics F given by (4.40) may be modelled by

F ∼ Fp−1,p(n−1). (5.29)

Proof. Obviously σ2
ij = σ2

il for each j, l ∈ {1, ..., n}. Let us denote σ2 = (σ2
1, ..., σ

2
p), where

for any fixed i ∈ {1, ..., n} we have σ2
i = σ2

ij for any j = 1, ..., n. Let us recall that through
this chapter we consider the following model σ2 = (σ2

1, ..., σ
2
p) = (σ2(θ1), ..., σ2(θp)), where

by abuse of notation we will for the sake of the proof identify the variances σ2
i with their

respective approximations (5.12) or (5.20) depending on whether are we assuming the
Poisson or the negative binomial case. I. e. all the variability in the variances among
the p random samples is caused by the difference of expectations θi among the samples.
Given that the hypothesis H0 holds, this implies, that

σ2
1 = ... = σ2

p = σ2. (5.30)

Let us first focus on K ′1. Applying this result to the matrix STS (see Proposition 4.30)
we obtain

STS = diag(σ)Hdiag(σ) = σ2H, (5.31)

and since we have that for any matrix A with a nonzero eigenvector x, a corresponding
eigenvalue λ and a nonzero real α

(αA)x = α(Ax) = α(λx) = (αλ)x (5.32)

and so x is an eigenvector of αA for the eigenvalue αλ, and the matrix H is symmetric
and idempotent of a rank p− 1 (see Lemma 4.4) and therefore p− 1 of its eigenvalues are
equal to one and one to zero (see Proposition 1.19), the matrix STS has p− 1 eigenvalues
equal to σ2 and one eigenvalue equal to 0. Using this result with the one presented in
Corollary 4.33 we obtain

K ′1 = σ2(V 2
1 + ...+ V 2

p−1), (5.33)

where the Vi are independent, identically distributed with variance equal to one. Moreover
we have seen in the second step of the proof of the Theorem 4.36 that the expectation of
each Vi is equal to zero, hence,

K ′1 = σ2X1, (5.34)

where X1 ∼ χ2
p−1 (see Proposition 1.35).

A simpler situation is with K ′2. By Corollary 4.27, namely equation (4.68) and the
result (5.30) we have that

K ′2 = σ2(V 2
1 + ...+ V 2

p(n−1)), (5.35)

where V 2
i ∼ N(0, 1) are independent identically distributed random variables, and hence,

due to Proposition 1.35 we can rewrite (5.35) in the form

K ′2 = σ2X2 (5.36)
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where X2 ∼ χ2
p(n−1). Hence, combining the results (5.36) and (5.36) we get

F =
p(n− 1)

p− 1

X1

X2

(5.37)

It can be already seen from definition of the F distribution, that F ∼ Fp−1,p(n−1) (see [8]),
moreover if we apply the approximation given by Theorem 4.35, we again obtain for this
special case of ratio of two χ2 distributed random variables that λ∗1ν

∗
1

λ∗2ν
∗
2
F ∗ ∼ Fp−1,p(n−1) (see

[8]).

In the following statement we will introduce the power function of the F test applied
to test the hypothesis of equality of expectations (4.1) among the p samples of a size n
from Poisson or negative binomial distribution transformed via (5.1).

Theorem 5.15. Let us denote Y1 = (Y11, ..., Y1n), ...,Yp = (Yp1, ..., Ypn) the p random
samples obtained by applying transformation (5.1) to independent random samples X1 =
(X11, ..., X1n), ...,Xp = (Xp1, ..., Xpn) of a size n from given distributions L(θi), i = 1, ..., p
(either Poisson or negative binomial) where the parameters θi are chosen in such a way
that EXi = θi for i = 1, ..., p. Let σ2

11, ..., σ
2
1n, ..., σ

2
p1, ..., σ

2
pn be variances of random

variables Yij, for i = 1, ..., p and j = 1, ..., n. Let the F test statistic be given by (4.40)
Then the power function of the F test on the level of significance α may be approximated
by

βα(θ) = 1−FFδ(r∗; ν∗1 , ν∗2 , δ∗1), (5.38)

where FFδ is the distribution function of F ∗, given by Theorem 4.35 and the constants
ν∗1 , ν

∗
2 , δ
∗
1 and the parameter r∗ =

λ∗2ν
∗
2

λ∗1ν
∗
1
r are determined by Lemma 4.34 and Theorem 4.35.

The value of r is given by

r = QF (1− α; p− 1, n(p− 1)). (5.39)

Proof. Obviously σ2
ij = σ2

il for each j, l ∈ {1, ..., n}. Let us denote σ2 = (σ2
1, ..., σ

2
p), where

for any fixed i ∈ {1, ..., n} we have σ2
i = σ2

ij for any j = 1, ..., n. Let us recall that through
this chapter we consider the following model σ2 = (σ2

1, ..., σ
2
p) = (σ2(θ1), ..., σ2(θp)), where

by abuse of notation we will for the sake of the proof identify the variances σ2
i with their

respective approximations (5.12) or (5.20) depending on whether are we assuming the
Poisson or the negative binomial case. I. e. all the variability in the variances among the
p random samples is caused by the difference of expectations θi among the samples. Due
to Proposition 4.17 the power function βα(θ) is in general case given by formula

βα(θ) = 1−FFδ(QF (1− α; s, t), ν1, ν2, δ), (5.40)

where FFδ is the distribution function of the test statistic under the alternative (4.2),
and the parameters s and t are the degrees of freedom of the test statistic under the null
hypothesis (4.1). In Lemma 5.14 we have determined that s = p− 1 and t = p(n− 1).

Due to Corollary 5.6 for Poisson case and Corollary 5.11 for negative binomial case if
H1 given by (4.2) holds there exist i, k ∈ {1, ..., p}, i 6= k such that σ2

i 6= σ2
k, therefore the

assumption of equal variances is violated. Due to Theorem 4.36 we may approximate the
F statistic by F ∗ according to Theorem 4.35, but in order to do so we need to compute
the new value of quantile r∗ corresponding to the quantile r = QF (1− α; p− 1, n(p− 1))
of the original test statistic F which concludes the proof.
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The practical computation of the the power function given by (5.38) is done in the
following way. The numerical characteristics of the transformed random variables Yij i =
1, ..., p, j = 1, ...n introduced at the beginning of this subsection are used to compute the
vector µ and the matrix STS (see Proposition 4.30). The eigenvalues λi and eigenvectors
pi for i = 1, ..., p of STS are found. The nonzero eigenvalues of STS are the coefficients
of the linear combination K ′1. The degrees of freedom of the independent χ2 distributed
random variables of the linear combination K ′1 are all equal to one. (see Corollary 4.33).
Using the eigenvectors of STS and the vector µ the noncentrality parameters of the
independent χ2 distributed random variables of the linear combination K ′1 are determined
via formula δi = (pTi µ)2 for i = 1, ..., p (see proof of Corollary 4.33). Due to Corollary
4.27 we know that the coefficients of the linear combination K ′2 are actually variances σ2

i

of the transformed random variables Yij for i = 1, ..., p j = 1, ..., n. In the computations
we will use the approximations given by (5.12) for Poisson case and (5.20) for negative
binomial case. From the same Corollary we also obtain that the degrees of freedom of
each central χ2 distributed random variable in the linear combination K ′2 are equal to
n − 1. From these data we, by applying Lemma 4.34 and Theorem 4.35 compute the
values of the coefficients λ∗1, λ

∗
2 (see (4.95)), the degrees of freedom ν∗1 , ν

∗
2 (see (4.96)), and

the noncentrality parameter δ∗1 (see (4.97)) of the approximation F ∗. Finally also the
value of quantile r∗ of the approximation, corresponding to the quantile r is determined
by the formula introduced in the Theorem 4.35 where for r we take (5.39). As in the case
of equal variances (see Subsection 5.4.1) obtaining values of the power function βα(µ) all
across the interval [α, 1] is done by increasing the step h.

5.4.3 Power Functions for Case of Poisson Distribution

The computations in the work were done for p = 3, n = 100, the values of λ1 were set to
5, 10, 20, 50. The values of λj, j = 2, 3 were computed as follows

λj = λ1 + (−1)j(kh0) k = 0, ..., 30, (5.41)

so that the difference ∆µj = |µ1−µj| for j = 2, 3 increases with the value of k. The value
of the step h and the values of k were picked in such a way that we would obtain values of
the power function from the whole interval of values [0, 1] and also keep the computations
time-feasible.

Additionally to the power functions of the F test when either of the two transforma-
tions (3.4) and (5.1) was applied, a power function of the F test when the Yeo-Johnson
transformation (see Section 2.3) was applied was obtained via simulations. The parameter
of the Yeo-Johnson transformation is traditionally denoted by λ, to avoid confusion with
the parameter of the Poisson distribution but keep the tradition we will denote it λY J .
The best value of the parameter λY J was estimated via by maximum likelihood method
for each setting of λ1 by applying the method on a sample from Po(λ1) of a size n = 100.

For all assumed values of λ both the theoretical and the simulated power function of
the F test applied to a sample transformed via transformation (3.4) scored better than the
theoretical and simulated power function of the F test applied to a sample transformed via
transformation (5.1). The simulated power functions attain values close to their respective
theoretical counterparts.

The simulated power function of the F test applied to a sample transformed via Yeo-
Johnson transformation scores similarly to simulated and theoretical power function of the
F test applied to a sample transformed via transformation (3.4) and slightly better than
the theoretical and simulated power function of the F test applied to a sample transformed
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via transformation (5.1). The closest resemblance of power functions of Yeo-Johnson case
and transformation (3.4) case is for λ = 5 (see Figure 5.20). We may explain this by the
fact that the value of the Yeo-Johnson transformation parameter is λY J = 0.45, which is
close to 0.5-the power of the square root.

For increasing values of λ all the power functions tend to attain increasingly similar
values.
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Figure 5.20: Comparison of the power functions. Transformation Y =
√
X + 3

8
theoretical

p. f.: blue line, simulated p.f.: green + symb., transformation Y = ln(X + 1) theoretical
p. f.: red line, simulated p.f.: orange × symb., Yeo-Johnson transformation simulated
p.f.: black dot. Computed for λ1 = 5, and coefficient of Yeo Johnson transformation
λY J = 0.45.
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Figure 5.21: Comparison of the power functions. Transformation Y =
√
X + 3

8
theoretical

p. f.: blue line, simulated p.f.: green + symb., transformation Y = ln(X + 1) theoretical
p. f.: red line, simulated p.f.: orange × symb., Yeo-Johnson transformation simulated
p.f.: black dot. Computed for λ1 = 5, and coefficient of Yeo Johnson transformation
λY J = 0.2.
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Figure 5.22: Comparison of the power functions. Transformation Y =
√
X + 3

8
theoretical

p. f.: blue line, simulated p.f.: green + symb., transformation Y = ln(X + 1) theoretical
p. f.: red line, simulated p.f.: orange × symb., Yeo-Johnson transformation simulated
p.f.: black dot. Computed for λ1 = 20, and coefficient of Yeo Johnson transformation
λY J = 0.95.
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Figure 5.23: Comparison of the power functions. Transformation Y =
√
X + 3

8
theoretical

p. f.: blue line, simulated p.f.: green + symb., transformation Y = ln(X + 1) theoretical
p. f.: red line, simulated p.f.: orange × symb., Yeo-Johnson transformation simulated
p.f.: black dot. Computed for λ1 = 50, and coefficient of Yeo Johnson transformation
λY J = 0.9.
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5.4.4 Power Functions for Case of Negative Binomial Distribu-
tion

The computations in the work were done for p = 3, n = 100 the values of µ1 were set
to 30, 50, and 100. The shape parameter κ was set to κ = 3, 5, and 10. The values of
µj, j = 2, 3 were computed as follows

µj = µ1 + (−1)j(kh) k = 0, ..., 30, (5.42)

so that the difference ∆µj = |µ1−µj| for j = 2, 3 increases with the value of k. The value
of the step h and the values of k were picked in such a way that we would obtain values of
the power function from the whole interval of values [0, 1] and also keep the computations
time-feasible

Additionally to power functions for the F test when either of the two transformations
(3.56) (5.1) was applied, a power function of the F test when the Yeo-Johnson transfor-
mation (see Section 2.3) was applied, was computed via simulations. The value of the
parameter λY J of the Yeo-Johnson transformation was estimated via maximum likelihood
method for each setting of µ1 and κ, by applying the method on a sample from NBi(µ1, κ)
of a size n = 100. The values of λY J for each setting may be found in the descriptions of
each Figure.

Let us also additionally to the power functions comparison Figures add Figures of
a sample skewness as a function of increasing parameter µ for values of κ = 3, 5, 10 to
obtain a better insight on when a possible problem with normality may arise.

For the value of κ = 3 (see Figure 5.25) an interesting phenomena occurs for the value
of µ1 = 30 where the theoretical power function of the F test applied to a random sample
transformed via transformation (5.1) scores higher than the theoretical power function
of the F test applied to a random sample transformed via transformation (3.56), and in
most points even higher than both of the simulated power functions of F test applied
to a random sample transformed via transformation (5.1) and (3.56), topped only by
the power function of F test applied to a random sample transformed via Yeo-Johnson
Transformation with λY J = 0.25. Since this has not occurred for any other values of
either κ or µ1 we assume that the possible cause of this phenomena is rather the result of
possible nonnormality of the transformed variables due to high absolute value of skewness
(see Figure 5.24a) which is the highest of all for the values of κ considered and also because
the variance approximation formula (5.20) neither does have a good fit nor ”behaves well”
for small values of µ1 for κ = 3 (see Figure 5.9b).

Another pathological case occurs for smaller values of µ1 = 30, 50 for the largest
assumed value of κ = 10 (see Figure 5.31 and 5.32) where the theoretical power function
of the F test applied to a random sample transformed via transformation (5.1) scored
significantly worse than both the corresponding simulated power function and all the
other power functions. We explain this by the phenomena observed in the Subsection
5.3.2. We have seen that for increasing values of κ it takes larger values of µ for both
sample variance and the variance obtained via the approximation to stabilise (see Figure
5.11b). The variance approximation (5.20) increases above all bounds rapidly as µ tends
to 0 from the right hand side and does not become even close to stable for values of µ
around µ = 50.

In general, save the pathological cases described above, the power function of the F
test applied to a sample transformed via transformation (3.56) scores always a little better
both for theoretical and simulated power functions. However the simulated power function
of the F test applied to a sample transformed via Yeo-Johnson transformation scores the
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best in all cases but one. Indeed for µ1 = 30 and κ = 5 the simulated and theoretical
power functions of the F test applied to a sample transformed via transformation (3.56)
scores slightly better. That is caused by the fact that the parameter λY J of the Yeo-
Johnson transformation estimated via maximum likelihood estimation happened to be
very close to 0 so the Yeo-Johnson transformation almost coincided with transformation
(5.1).
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(a) Comparison of sample of transformed
samples for κ = 3.
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(b) Comparison of skewness of transformed
samples for κ = 5.
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(c) Comparison of skewness of transformed
samples for κ = 10.

Figure 5.24: Comparison of sample skewness of samples transformed via transformation
Y = 2 sinh−1(

√
(X + c)/(κ+ d)) (blue) and transformation Y = ln(X + 1) (red). The

vertical lines are at µ = 30, 50, 100.
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Figure 5.25: Comparison of the power functions. Transformation Y =
2 sinh−1(

√
(X + c)/(κ+ d)) theoretical p. f.: blue line, simulated p.f.: green + symb.,

transformation Y = ln(X + 1) theoretical p. f.: red line, simulated p.f.: orange × symb.,
Yeo-Johnson transformation simulated p.f.: black dot. Computed for µ1 = 30, κ = 3, and
coefficient of Yeo Johnson transformation λY J = 0.25.
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Figure 5.26: Comparison of the power functions. Transformation Y =
2 sinh−1(

√
(X + c)/(κ+ d)) theoretical p. f.: blue line, simulated p.f.: green + symb.,

transformation Y = ln(X + 1) theoretical p. f.: red line, simulated p.f.: orange × symb.,
Yeo-Johnson transformation simulated p.f.: black dot. Computed for µ1 = 50, κ = 3, and
coefficient of Yeo Johnson transformation λY J = 0.25.
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Figure 5.27: Comparison of the power functions. Transformation Y =
2 sinh−1(

√
(X + c)/(κ+ d)) theoretical p. f.: blue line, simulated p.f.: green + symb.,

transformation Y = ln(X + 1) theoretical p. f.: red line, simulated p.f.: orange × symb.,
Yeo-Johnson transformation simulated p.f.: black dot. Computed for µ1 = 100, κ = 3,
and coefficient of Yeo Johnson transformation λY J = 0.25.
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Figure 5.28: Comparison of the power functions. Transformation Y =
2 sinh−1(

√
(X + c)/(κ+ d)) theoretical p. f.: blue line, simulated p.f.: green + symb.,

transformation Y = ln(X + 1) theoretical p. f.: red line, simulated p.f.: orange × symb.,
Yeo-Johnson transformation simulated p.f.: black dot. Computed for µ1 = 30, κ = 5, and
coefficient of Yeo Johnson transformation λY J = 0.05.
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Figure 5.29: Comparison of the power functions. Transformation Y =
2 sinh−1(

√
(X + c)/(κ+ d)) theoretical p. f.: blue line, simulated p.f.: green + symb.,

transformation Y = ln(X + 1) theoretical p. f.: red line, simulated p.f.: orange × symb.,
Yeo-Johnson transformation simulated p.f.: black dot. Computed for µ1 = 50, κ = 5, and
coefficient of Yeo Johnson transformation λY J = 0.5.
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Figure 5.30: Comparison of the power functions. Transformation Y =
2 sinh−1(

√
(X + c)/(κ+ d)) theoretical p. f.: blue line, simulated p.f.: green + symb.,

transformation Y = ln(X + 1) theoretical p. f.: red line, simulated p.f.: orange × symb.,
Yeo-Johnson transformation simulated p.f.: black dot. Computed for µ1 = 100, κ = 5,
and coefficient of Yeo Johnson transformation λY J = 0.1.
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Figure 5.31: Comparison of the power functions. Transformation Y =
2 sinh−1(

√
(X + c)/(κ+ d)) theoretical p. f.: blue line, simulated p.f.: green + symb.,

transformation Y = ln(X + 1) theoretical p. f.: red line, simulated p.f.: orange × symb.,
Yeo-Johnson transformation simulated p.f.: black dot. Computed for µ1 = 30, κ = 10,
and coefficient of Yeo Johnson transformation λY J = 0.4.
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Figure 5.32: Comparison of the power functions. Transformation Y =
2 sinh−1(

√
(X + c)/(κ+ d)) theoretical p. f.: blue line, simulated p.f.: green + symb.,

transformation Y = ln(X + 1) theoretical p. f.: red line, simulated p.f.: orange × symb.,
Yeo-Johnson transformation simulated p.f.: black dot. Computed for µ1 = 50, κ = 10,
and coefficient of Yeo Johnson transformation λY J = 0.3.
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Figure 5.33: Comparison of the power functions. Transformation Y =
2 sinh−1(

√
(X + c)/(κ+ d)) theoretical p. f.: blue line, simulated p.f.: green + symb.,

transformation Y = ln(X + 1) theoretical p. f.: red line, simulated p.f.: orange × symb.,
Yeo-Johnson transformation simulated p.f.: black dot. Computed for µ1 = 100, κ = 10,
and coefficient of Yeo Johnson transformation λY J = 0.9.
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Appendix A

Computation of Numerical
Characteristics of Selected
Distributions

A.0.5 Poisson Probability Distrbution

Lemma A.1. Let X : Ω −→ N0 be a random variable with Poisson probability distribu-
tion, then the first moment of X is

EX = λ. (A.1)

Proof. By the definition of expectation of discreet random variable (see [2]) we have

EX =
∞∑
x=0

x · p(x) =
∞∑
x=0

x · e−λλ
x

x!
(A.2)

Since the term of the sum for x = 0 is equal to zero we have the following

e−λ
∞∑
x=1

x · λ
x

x!
= e−λ

∞∑
x=1

λ · λx−1

(x− 1)!
= λe−λ

∞∑
x=0

λx

x!
= λe−λeλ = λ (A.3)

Lemma A.2. Let X : Ω −→ N0 be a random variable with Poisson probability distribu-
tion, then the second moment of X is

EX2 = λ. (A.4)

Proof. Second moment of the discreet random variable X is given by (see [2])

EX2 =
∞∑
x=0

x2p(x) =
∞∑
x=0

x2e−λ
λx

x!
(A.5)

Since the first term of the sum for x = 0 is equal to zero we have the following

EX2 =
∞∑
x=1

x2λ
x

x!
= e−λ

∞∑
x=1

x2 · λ · λx−1

x · (x− 1)!
= λe−λ

∞∑
i=1

x · λx−1

(x− 1)!
= λe−λ

∞∑
i=1

x
λx−1

(n− 1)!

= λe−λ
∞∑
i=0

(x+ 1)
λx

x!
= λe−λ

∞∑
i=0

[
x
λx

x!
+
λx

x!

]
= λe−λ

[ ∞∑
i=0

x
λx

x!
+
∞∑
i=0

λx

x!

]
= λe−λ

∞∑
i=0

x
λx

x!
+ λe−λ

∞∑
i=0

λx

x!
(A.6)
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In the proof of the Lemma A.1 we have seen that e−λ
∑∞

i=0 x
λx

x!
= λ. Using this result we

finally obtain
EX2 = λ2 + λ. (A.7)

A.0.6 Negative Binomial Probability Disribution

Lemma A.3. Let X : Ω −→ N0 be a random variable with negative binomial probability
distribution, then the first moment of X is

EX =
κ(1− q)

q
. (A.8)

Proof. By the definition of first moment of random variable with discrete probability
distribution (see [2]) we have

EX =
∞∑
x=0

x · p(x). (A.9)

For our case we obtain

EX =
∞∑
x=0

x

(
κ+ x− 1

x

)
qκ(1− q)x =

∞∑
x=0

x
(x+ κ− 1)!

x!(κ− 1)!
qκ(1− q)x

=
∞∑
x=0

(x+ κ− 1)!

(x− 1)!(κ− 1)!
· κ
κ
qκ(1− q)x =

∞∑
x=0

κ · (x+ κ− 1)!

(x− 1)!κ!
· qκ(1− q)x

=
∞∑
x=0

κ

(
κ+ x− 1

κ

)
qκ(1− q)x. (A.10)

Since the term of the sum (A.10) for x = 0 is equal to zero we may write

EX =
∞∑
x=1

κ

(
κ+ x− 1

κ

)
qκ(1− q)x. (A.11)

Let us now introduce a following reparametrisation, let y = x− 1, and δ = κ+ 1,

EX =
∞∑
y=0

(δ − 1)

(
δ + x− 1

δ − 1

)
qδ−1(1− q)(1− q)y

= (δ − 1)(1− q)qδ−1

∞∑
y=0

(
δ + x− 1

δ − 1

)
(1− q)y

= (δ − 1)(1− q)qδ−1 1

[1− (1− q)]δ
. (A.12)

By returning back to the original parametrisation we obtain

EX =
κ(1− p)qκ

q−κ−1
=
κ(1− q)

q
. (A.13)
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Lemma A.4. Let X : Ω −→ N0 be a random variable with negative binomial probability
distribution, then the variance of X is

varX =
κ(1− q)

q2
. (A.14)

Proof. By the definition of k-th moment of random variable with discrete probability
distribution (see [2]) we have that

EXk =
∞∑
x=0

xk · p(x). (A.15)

For our case we obtain

EX2 =
∞∑
x=0

x2

(
κ+ x− 1

x

)
qκ(1− q)x =

∞∑
x=0

x2 (x+ κ− 1)!

x!(κ− 1)!
qκ(1− q)x

=
∞∑
x=0

x · (x+ κ− 1)!

(x− 1)!(κ− 1)!
· κ
κ
· qκ(1− q)x =

∞∑
x=0

xκ · (x+ κ− 1)!

(x− 1)!κ!
· qκ(1− q)x

=
∞∑
x=0

xκ

(
κ+ x− 1

κ

)
qκ(1− q)x. (A.16)

Since the term of the sum (A.16) for x = 0 is equal to zero we may write

EX2 =
∞∑
x=1

xκ

(
κ+ x− 1

κ

)
qκ(1− q)x. (A.17)

We introduce following reparametrisation, let y = x − 1 and δ = κ + 1, with the
reparametrisation we have

EX2 =
∞∑
y=0

(δ − 1)(y + 1)

(
δ + y − 1

δ − 1

)
qδ−1(1− q)(1− q)y

=
∞∑
y=0

(δ − 1)

[
y

(
δ + y − 1

δ − 1

)
qδ−1(1− q)(1− q)y +

(
δ + y − 1

δ − 1

)
qδ−1(1− q)(1− q)y

]

=
∞∑
y=0

(δ − 1)y

(
δ + y − 1

δ − 1

)
qδ−1(1− q)(1− q)y

+
∞∑
y=0

(δ − 1)

(
δ + y − 1

δ − 1

)
qδ−1(1− q)(1− q)y. (A.18)

Let us denote

S1 =
∞∑
y=0

(δ − 1)y

(
δ + y − 1

δ − 1

)
qδ−1(1− q)(1− q)y, (A.19)

and

S2 =
∞∑
y=0

(δ − 1)

(
δ + y − 1

δ − 1

)
qδ−1(1− q)(1− q)y (A.20)
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For S1 we have

S1 =
∞∑
y=0

(δ − 1)y

(
δ + y − 1

δ − 1

)
qδ−1(1− q)(1− q)y

=
∞∑
y=0

(δ − 1)y
(δ + y − 1)!

(δ − 1)!y!
qδ−1(1− q)(1− q)y

=
∞∑
y=0

(δ − 1)δ
(δ + y − 1)!

δ!(y − 1)!
qδ−1(1− q)(1− q)y

=
∞∑
y=0

(δ − 1)δ

(
δ + y − 1

δ

)
qδ−1(1− q)(1− q)y. (A.21)

Since the term of S1 for y = 0 is equal to zero, we may write

S1 =
∞∑
y=1

(δ − 1)δ

(
δ + y − 1

δ

)
qδ−1(1− q)(1− q)y. (A.22)

We introduce the following reparametrisation, let z = y − 1, and let τ = δ + 1. With the
reparametrisation we have

S1 =
∞∑
z=0

(τ − 2)(τ − 1)

(
δ + y − 1

τ − 1

)
qτ−2(1− q)2(1− q)z

= (τ − 2)(τ − 1)qτ−2(1− q)2 1

[1− (1− q)]τ
. (A.23)

If we return to the original parametrisation we obtain

S1 =
κ(κ+ 1)qκ(1− q)2

qκ+2
=
κ(κ+ 1)(1− q)2

q2
. (A.24)

By the proof of Proposition A.3 for S2 we have

S2 =
κ(1− q)

q
, (A.25)

so

EX2 =
κ(κ+ 1)(1− q)2

q2
+
κ(1− q)

q
. (A.26)
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Conclusion

After introducing the necessary theoretical background for this work in Chapter 1 and 2,
the variance stabilising transformations for random variables with Poisson and negative
binomial distribution were studied. Based on the work [1] generalised versions of these
transformations with additional parameters inside the arguments were presented, namely
Y =

√
X + c, where c > 0 for Poisson case and Y = 2 sinh−1

(√
(X + c)/(κ+ d)

)
and

Y = ln(X + A), where A, c, d > 0 for the negative binomial case. A great part of the
Chapter 3 tackles with the problematic of approximating numerical characteristics of the
random variables transformed via the presented generalised transformations in order to
determine the optimal value of the additional parameters.

For the Poisson distributed random variable the approximations of the numerical
characteristics were found by taking Taylor expansion of the transformation, computing
the numerical characteristic of the Taylor expansion term by term and then expanding
each term asymptotically for large values of the parameter λ of Poisson distribution. In
such way expansions dependant on the additional parameter were found. The optimal
value of the parameter was chosen in such a way, so that the coefficient of the term
dependant on λ of the highest degree in the variance approximation expansion would be
zero. The optimal value of the parameter for the Poisson distributed random variable
was determined to be c = 3

8
. Additionally it was seen in the end of the Section 3.1, that

the optimal value of the parameter c minimises the bias bY , which was defined as the
difference of the parameter λ and its estimate λY derived by applying the transformation
in reverse to arithmetic mean of transformed a random sample of a Poisson distribution
with parameter λ.

For negative binomially distributed random variable X ∼ NBi(µ, κ) case first the
asymptotic expansion of the moment generating function and consequently the cumulant
generating function of the transformed random variable were found. The approximations
of the numerical characteristics were derived from the cumulant generating function ap-
proximation. In this case the approximations are dependant on the shape parameter κ of
the negative binomial distribution and for higher values of κ we can obtain better approxi-
mations. The idea behind finding the optimal values of the parameters A, c, d is similar to
the Poisson case. Again an approximation of variance of the transformed random variable
in a form of an expansion was used. The optimal value of the constant was picked so that
the coefficient of the term of the variance approximation dependant on the expectation
parameter µ of the highest order would be zero. The optimal value of A was determined
to be A = 1

2
κ. The optimal value of d = −2c and finally c = 3

8
+ 23

192κ
+O

(
1
κ2

) for κ large.
At the end of the Section 3.2 limiting values of skewness parameter for the transformed
random variables were derived as a functions of κ that tend to zero for κ large.

The second goal of the thesis was to provide comparison of the transformations intro-
duced in the Section 3 with some other commonly used transformations of the random
variable both theoretically and via simulations. The comparison was done within One-
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Way ANOVA framework by comparing power functions of the F test used to test the
hypothesis of equality of expectations among p random samples of equal size n of Poisson
or negative binomial distribution to which one of the transformations was applied. The
Chapter 4 presents the theoretical background for the comparison. Additionally it was
assumed that for some transformations the assumption of equal variances necessary for
the One-Way ANOVA was violated. In order to proceed with the comparison in Section
4.2 the F statistic under the relaxed assumption of unequal variances is studied. With the
results of Subsections 4.2.1 and 4.2.2 it is found out, that given the assumption of equal
variances violated, the F statistic may be expressed as a ratio of linear combinations of χ2

distributed random variables with positive coefficients. Using this result and the results
of [12] the ratio is approximated by one F distributed random variable multiplied by a
constant.

In the fifth and final chapter the numerical comparison itself is carried out by com-
puting the power functions of the F test for transformations introduced in Chapter 3
and for a transformation ln(X + 1), when applied to sample of either Poisson or negative
binomial distribution. Two different approaches were used, a theoretical one, based on
the definition of the power of a test, using the approximations of the numerical charac-
teristics of the transformed random variables and a an approach via simulations. Both
of the approaches were described in detail in Section 5.4. Additionally Yeo-Johnson was
added to the comparison but only via the approach by simulations. To get better in-
sight a goodness of approximations of the numerical characteristics of the transformed
random variables was checked by comparing them with their respective estimations from
generated samples.

A study of the properties of the parameter estimates of random variable of Pois-
son and negative binomial distribution via simulations was provided in this section as
well. A sample of either Poisson or negative binomial distribution was generated and
transformed via Y =

√
X + 3/8 and Y = ln(X + 1) for the Poisson case and via

Y = 2 sinh−1(
√

(X + c)/(κ+ d)) and Y = ln(X + 1) for the negative binomial case.
Expectation of the transformed sample was estimated using arithmetic mean. The re-
spective transformation was then applied to the arithmetic mean in reverse to obtain an
estimate λY of parameter λ of the Poisson distribution or µY of the parameter µ of neg-
ative binomial distribution in the respective case. This procedure was repeated k times
for the same settings of parameters λ or µ to obtain a random samples of the estimate
λY or µY . Two interesting results were obtained in this study. For both the Poisson and
negative binomial case the respective estimates were biased. In the negative binomial case
however the value of bias decreased as the value of the shape parameter κ grew.

Two interesting facts came as results of the check of the goodness of the approxima-
tions. First, for negative binomial case it was found out, that with increasing value of the
shape parameter κ the value of µ for which the sample variance became approximately
stable increased. This was more evident for the transformation ln(X + 1), the increase of
µ for Y = 2 sinh−1

(√
(X + c)/(κ+ d)

)
was significantly slower. Second, for the Poisson

case the variance of the random variable transformed via ln(X+1) did not become stable
for values of λ up to approximately one hundred which might pose a problem when using
this transformation for small values of the parameter λ. On the other hand, the variance
of the random variable obtained via transformation Y =

√
X + 3/8 was stable even for

relatively small values of λ.
Finally, in the last part of the Chapter 5 the power function comparison was carried

out. For the Poisson case, random samples of Poisson distribution with values of param-
eter λ = 5, 10, 20, 50 transformed via transformations Y =

√
X + 3/8, Y = ln(X + 1)
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and the Yeo-Johnson transformation were considered. In general the simulated power
functions attained values close to their theoretical counterparts for both Y =

√
X + 3/8

and Y = ln(X + 1). Both the simulated and the theoretical power function of the F test
applied to a sample transformed via Y =

√
X + 3/8 scored a little better than the sim-

ulated and theoretical power function of the F test applied to a sample transformed via
Y = ln(X+1) and similarly to the simulated the power function of the F test applied to a
sample transformed via Yeo-Johnson transformation. The similarity of the Yeo-Johnson
and the Y =

√
X + 3/8 case may be explained by the fact, that the optimal values of the

parameter of Yeo-Johnson transformation obtained via maximum likelihood estimation
were close to the power of the square root 0.5. Namely in the case λ = 5 the optimal
value of the Yeo-Johnson transformation parameter was 0.45. For increasing values of
the parameter λ the difference between all the power functions became smaller. For value
of λ = 50 was the difference already practically negligible, however we conclude that
for smaller values of λ one should tend to choose either Yeo-Johnson transformation or
Y =

√
X + 3/8 over Y = ln(X + 1).

For the negative binomial case, random samples of negative binomial distribution
with values of parameter µ = 30, 50, 100, and values of shape parameter κ = 3, 5, 10,
transformed via Y = 2 sinh−1

(√
(X + c)/(κ+ d)

)
, Y = ln(X + 1), and the Yeo-Johnson

transformation were considered.
We observed, that for this case two possibly pathological phenomena occurs for certain

settings of parameters µ and κ where the theoretical power function of the F test applied
to a random sample transformed via Y = ln(X + 1) behaves oddly and differently than
its simulated counterpart. For setting µ = 30 and κ = 3 the above mentioned theoretical
power function scores higher than its simulated counterpart and both theoretical and
simulated power function of the F test applied to a random sample transformed via
Y = 2 sinh−1

(√
(X + c)/(κ+ d)

)
, topped only by the power function of the F test applied

to Yeo-Johnson transformed sample. We see two possible factors whose interplay led to
the occurrence of this phenomena. First, as seen from the Figure 5.36, the absolute value
of sample skewness of the sample transformed via Y = ln(X + 1) is the highest out of
all values of parameter κ that were considered, so there might be a significant departure
from normality of the transformed sample. The second factor is the quality of the variance
approximation used to compute the theoretical power function, which is rather poor for
small values of parameters µ and κ for the transformation Y = ln(X + 1). In fact the
approximation drops rapidly below any bound as µ tends to zero.

A second pathological phenomena occurred for small values of µ and the largest as-
sumed value of κ, where the theoretical power function of the F test applied to a sample
transformed via Y = ln(X + 1) scored significantly worse than its simulated counterpart
and all the other power functions. We explain this by what we observed in the Subsection
5.3.2, where we saw that for increasing values of κ it takes larger value of µ for both
sample variance and variance approximation to become at least close to stable. This
phenomena is more significant for the sample transformed via Y = ln(X + 1). Moreover
the variance approximation for the case of κ = 10 grows above all bounds rapidly, hence
for small values of µ the power function computation using this approximation might be
heavily vitiated by error.

In general, save the pathological cases described above both the theoretical and the
simulated power function of the F test applied to a Y = 2 sinh−1

(√
(X + c)/(κ+ d)

)
transformed sample scores always slightly better than the power functions of the F test
applied to a sample transformed via Y = ln(X + 1), but the Yeo-Johnson transformation
outperforms both of the two other transformations in all cases but one, for the setting µ =
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30, κ = 5. This is however because by the parameter of the Yeo-Johnson transformation
estimated via the maximum likelihood estimation was close to 0 for which the Yeo-Johnson
transformation coincides with the transformation Y = ln(X + 1).

For the increasing values of the parameters κ and µ the difference between all the
power functions became smaller.

We conclude for the negative binomial case that for the small values of κ and µ one shall
tend to choose Yeo-Johnson transformation over the other two discussed transformations,
save the case when the estimated best value of the parameter of the Yeo-Johnson transfor-
mation is very close to 0. In such case we suggest to use Y = 2 sinh−1

(√
(X + c)/(κ+ d)

)
.

For small values of µ (say around µ = 30) and large values of κ (say around κ = 10)
one should choose preferably again the Yeo-Johnson transformation, possibly also Y =
2 sinh−1

(√
(X + c)/(κ+ d)

)
. For large values of the parameters the difference between

the power functions becomes increasingly insignificant, we would favorize the more sophis-
ticated transformations, however the transformation Y = ln(X + 1) should be sufficient
as well.
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Notation Index

R The set of real numbers
Rn The n-dimensional real space
⊗ Kronecker product
X, Y Random variables
EX Expectation of a random variable X
varX Variance of a random variable X
Po(λ) Poisson distribution of parameter λ
NBi(r, p) Negative binomial distribution of parameters r and p
N(µ, σ2) Normal distribution of expectation µ and variance σ2

N(0, 1) Standard normal distribution
Φ(x) Distribution function of standard normal distribution
φ Probability density function of standard normal distribution
χ2
n Pearson χ2 square distribution with n degrees of freedom
χ2
n,δ Noncentral Pearson χ2 square distribution with n degrees of freedom

and noncentrality parameter δ
Fs,t Fisher Snedecor distribution of parameters s and t
Fs,t,δ Noncentral Fisher Snedecor distribution of parameters s and t and noncentrality

parameter δ
FF Distribution function of F -distributed random variable
FFδ Distribution function of noncentral Fisher Snedecor distributed random variable with noncentrality parameter δ
QF (r; s, t) r-th quantile of F distribution
µ′X,k k-th general moment
µX,k k-th central moment
xn n-dimensional real (deterministic) vector
1n n-dimensional vector of ones
Xn n-dimensional random vector
Nn(µ,V) n-dimensional normal distribution of vector of expectations µ and variance

matrix V
EX Expectation of a random vector X
varX Variance of a random vector X
Am×n A matrix of a type n×
diag(xp) Diagonal matrix with p dimensional vector x on the main diagonal
A2
p×p Matrix product Ap×pAp×p

In×n Identity matrix of a type n× n
Tr(An×n) Trace of a matrix An×n
rank(Am×n) Rank of a matrix Am×n
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Electronic Appendix Index

Po Goodness of Approximations.R
NBi Goodness of Approximations.R
Po Power Functions Comparison.R
NBi Power Functions Comparison.R
Po Histograms.R
NBi Histograms.R
CummulantGeneratingFunction.mw
ExpecationQuadraticTermApprox.mw
LnPlusOneNB2ndDegreeExp.mw
LnPlusOneNB2ndDegreeVar.mw
LnPlusOnePoExpecatation.mw
LnPlusOnePoVariance.mw
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