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Abstract 
Classical linear regression model and the respective tests are based on an assumption of 
normally distributed response variables and on an assumption of variance equality. If the 
normality assumption is not fulfilled, then the response variables are usually transformed. 
In the first part of this work variance stabilising transformations are discussed. Great deal 
of attention is given to random variables of Poisson and negative binomial distribution, for 
which generalised variance stabilising transformations wi th addition constants in their ar­
guments are studied. Opt imal values of the constants for the generalised transformations 
are determined. The second part aims to provide a comparison of the transformations 
introduced in the first part and some other commonly used transformations. The com­
parison is done wi th in the A N O V A framework by testing the hypothesis of equality of 
expectations among p random samples v ia F test. The properties of the distribution of 
the F test under the assumptions of equal and unequal variances are studied. F ina l ly a 
comparison of the power functions of the F test applied to p random samples from Poisson 
distribution transformed via square root, logarithmic and Yeo-Johnson transformation, 
and to p random sample of negative binomial distribution transformed v ia argument of hy­
perbolic sine, logarithmic and the Yeo-Johnson transformation is carried out theoretically 
and by simulations. 

Abstrakt 
Klasická l ineární regrese a z ní odvozené testy hypotéz jsou založeny na p ředpok ladu nor­
málního rozdělení a shodnosti rozptylu závislých proměnných . V př ípadě že jsou předpok­
lady normality porušeny, obvykle se užívá t ransformací závisle proměnných. P rvn í část 
t é t o práce se zabývá transformacemi stabilizujícími rozptyl. Značná pozornost je udělena 
n á h o d n ý m veličinám s Poissonovým a negat ivně b inomickým rozdělením, pro k teré jsou 
s tudovány zobecněné transformace stabilizující rozptyl obsahující parametry v argumentu 
navíc. Pro tyto parametry jsou stanoveny jejich op t imáln í hodnoty. Cílem druhé části 
práce je provést srovnání t ransformací uvedených v první části a dalších často užívaných 
t ransformací . Srovnání je provedeno v rámci analýzy rozptylu t e s tován ím hypotézy shod­
nosti s t ředních hodnot p nezávislých náhodných výběrů s pomocí F testu. V t é to části 
jsou nejprve s tudovány vlastnosti F testu za p ředpok ladu shodných a neshodných rozptylů 
např íč výběry. Následně je provedeno srovnání silofunkcí F testu apl ikovaného pro p 
výběrů z Poissonova rozdělení t ransformovanými odmocninovou, logaritmickou a Yeo 
Johnsnovou t ransformací a z nega t ivně binomického rozdělení t ransformovaného argu­
mentem hyperbolického sinu, logaritmickou a Yeo-Johnsnovou t ransformací . 

Keywords 
Poisson distribution, negative binomial distribution, variance stabilising transformation, 
logarithmic transformation, square root transformation, argument of hyperbolic sine trans­
formation, Yeo-Johnson transformation, Linear regression, A N O V A , F-test, power func­
tion 
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Preface 

Classical linear regression model and the respective tests are based on an assumption of 
normally distributed response variables and on an assumption of variance equality. If the 
normality assumption is not fulfilled, then the response variables are usually transformed. 
In literature, there are several transformations suggested for the frequently occurring 
distributions of the response variables. Often, the logarithmic transformation is applied. 
The problem of calculating a logarithm of nonnegative values is usually solved by adding 
a constant 1. This work aims to study the logarithmic transformation l n ( X + 1) and 
alternative transformations that can be used instead of l n ( X +1) and provide comparisons 
of the studied transformations. Great deal of attention is paid to random variables X of 
Poisson and Negative binomial distribution. 

In the first chapter the necessary theoretical background concerning matrix theory 
and properties of selected probability distributions is introduced. In the last section of 
the first chapter some basic results of estimation theory are summarised. 

In the second chapter the important results concerning transformations of random 
variables are introduced. Namely the variance stabilising transformation and a possible 
way of determining it given a random variable of arbitrary probability distribution. In the 
second and the thi rd section of the second chapter the commonly used variance stabilising 
transformations used for normality approximation are discussed. 

In the thi rd chapter selected generalised variance stabilising transformations wi th ad­
ditional general constants added for random variables wi th Poisson and Negative binomial 
probability distributions are studied. Great deal of attention is given to finding approxi­
mations of numerical characteristics of the transformed variables when the studied trans­
formations are applied, namely the variance. Using the approximations of the numerical 
characteristic optimal values for the general constants are found. 

The fourth and fifth chapter both tackle with the problematic of comparison of the 
transformations introduced in Chapter 3 of the work. The comparison itself is done within 
the One-Way Analysis of Variance Framework by testing the hypothesis of equality of ex­
pectations of random samples originating from Poisson or Negative binomial distribution, 
that were transformed either via transformation l n ( X + 1) or v ia the variance stabilising 
transformations introduced in Chapter 3, evaluating the power functions of the tests and 
comparing them. 

The fourth chapter provides a theoretical background for the framework of the trans­
formations comparison. It is assumed that some of the transformations might not have 
the variance stabilising effect, for such cases an approximation of the distribution of the 
test statistic in case of violated assumption of equality of variances is derived. 

The first two sections of the fifth chapter provide some additional information about 
the transformation l n ( X + 1) applied to either Poisson distributed random variable or 
Negative binomially distributed random variable. Namely, for both cases the approxima­
tions of the moments of Y — l n ( X + 1) are derived. The rest of the chapter describes 

13 



the used methods and provides the computational and graphical results of the numerical 
analysis. First the goodness of al l the derived numerical characteristics approximations 
and other approximations is checked. Fina l ly the power functions of the executed tests 
are computed by two different approaches, one theoretical and one based on simulations 
and compared. 

14 



Chapter 1 

Theoretical Basis 

Before we start with the topic of interest of this work, we first define some basic tools 
that wi l l be used in our study. The whole chapter is based on [2], [3], [10] and [13]. 

1.1 Basic Concepts 
In this section, various theoretical results concerning special functions and Touchard poly­
nomials are collected. The content of this section are based on [2] and [3]. 

1.1.1 Special Functions 
Definition 1.1. (Gamma Function) Let a > 0. We define gamma function T(a) as 

oc 
a—1 —x T(a) = / xa-'e~xdx (1.11 

o 

Definition 1.2. Let T(t) be a Gamma function given by Definition 1.1, and assume that 
p is a nonnegative integer. We define a polygamma function of order p by 

V { t ) = [ j t ) l n r ( t ) - ( L 2 ) 

Namely for p = 0 we obtain 

*M=l! ) t o r M = l l - ( L 3 ) 

Function ip(t) w i l l be called digamma function. 

Definition 1.3. Let a > 0, and b > 0. We define beta function B(a, b) as 

B(a,b) = I xa-l{l-x)b-ldx (1.4) 
o 

1.1.2 Touchard polynomials 

In this subsection we provide some results for Touchard polynomials which wi l l be used 
in Section 3.1. This subsection is based on [3]. 
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Definition 1.4. (Touchard polynomials) The collection {T„ : n > 0} of the Touchard 
(also called exponential) polynomials in one dimension is defined as To = 1 and 

n 
Tn(x) = ^S(n)k)xk

) n>l (1.5) 
k=l 

Where S(n, k) are Stirl ing numbers of the second kind, as defined in [3]. 

1.2 Results of Matrix Theory 
In this section we wi l l provide some useful properties of particular types of matrices that 
appear in Classical Linear Regression and Analysis of Variance. This chapter is mainly 
based on [2], some important results are taken from [13]. Where there can not be any 
misunderstanding, we wi l l by abuse of notation drop the indexes denoting the type of a 
matrix. 

Proposition 1.5. Let A n x n , B n x n be matrices, then if B is nonsignular, rank(AB) = 
rank(BA) = rank(A) 

Proof. See [10]. • 

Proposition 1.6. Let A m x n be a m x n matrix, such that rank(Amxn) — r > 1, then 
there exist matrices B m x r and C r x n , such that A m x n = B m x r C r x n , and rank(Bmxr) = 
rank(Crxn) = r. 

Proof. A s columns of B we take those r linearly independent columns of matrix A , whose 
existence follows from the assumption rank(A) = r. Then the j - t h column of the matrix 
A is a linear combination of the columns of matrix B wi th some coefficients c\j, . . . , c r j . 
Assume that a vector of these coefficients is the j - t h column of matrix C . 

Since the rank of product of two matrices is at most equal to the rank of any of the 
matrices entering the product we have that rank(B) > r , and rank(C > r. But since B 
has r columns, and C r rows, we also get rank(B) < r , and rank{C) < r which concludes 
the proof. • 

1.2.1 Symmetric Matrices, Positive Semidefinite, and Definite 
Matrices 

Definition 1.7. A square matrix A m x m is called positively semidefinite, and we denote 
A m x m > 0, if it is symmetric and for every m-dimensional vector x m ^ 0 we have 

X m A m x m X m > 0. (1-^) 

Definition 1.8. A square matrix A m x m is called positively definite, and we denote 
A m x m > 0, if it is symmetric, and for every nonzero m-dimensional vector x m we have 

^ m ^ m x m ^ > 0. ( l - ^) 

Definition 1.9. Let % be a Hilbert space, a subset Ai of % that is closed under the 
addition of vectors, and scalar multiplication is called a linear manifold. 

Proposition 1.10. Let A p x p be a symmetric real matrix, then the eigenvectors pi7 

corresponding to eigenvalues \ , \j, where A« 7̂  \j are orthogonal. 
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Proof. From the definition we have 

= A i p i s Apj = XjPj. (1.8) 

Mult ip l ica t ion of the first by pj and the second by pj and a subtraction gives (Aj — 
\j)pjpj = 0, and since the eigenvalues are distinct we have that pt, and p̂ - are orthogonal. 

• 
P r o p o s i t i o n 1.11. Let A p x p be a real matrix. If x is an arbitrary non-null vector, there 
exists an eigenvector y belonging to the linear manifold M. ( 

Proof. The vectors x, A x , . . . can not all be independent. Let k be the smallest value, 
such that 

A f c x + 6 f c _ 1 A f c - 1 x + ... + 6 0x = 0. (1.9) 

Factorising (1.9), we see that 

and therefore 

where 

(A - /ill) • ... • (A - /ifcl)x = 0, (1.10) 

( A - / x 1 I ) y = 0, (1.11) 

y = ( A - / i 2 I ) . . . . . ( A - / / f e I ) ^ 0 . (1.12) 

Furthermore, (A — /xil)y = 0, i . e. y is the eigenvector associated wi th the eigenvalue 
fj,i. Since A is real, /xi is real (see [13], or [2]). Similarly each /tj is real, and the equation 
(1.12) shows that y e M ( x , A x , A 2 x , . . . ) . • 

Following important result wi l l be provided wi th complete proof which can also be 
found in [13]. The proof is of importance, as it is constructive, and some steps of it wi l l 
come in handy again in Chapter 4 Section 4.2. 

P r o p o s i t i o n 1.12. Let A m x m be a real symmetric matrix. Let us denote A i > ... > A m 

the eigenvalues of A including the multiplicities. Put A m x m = diag(\i,Am). Then there 
exists an orthogonal matrix Pmxm such that each column vector pi of P is an eigenvector 
corresponding to Xi, and 

A — P A PT and T — P PT (1 11") 

Proof. Suppose there exist s orthonormal vectors p 1 ; p s such that 

A P i = A i P i , i = l,...,s. (1.14) 

The result (1.14) implies, that A 2 p ^ = \{Api = A f p ^ , A r p j = A r P j , . . . . Choose a vector 
x orthogonal to Ai(p1,ps), then 

x T A ^ p , = x T A [ p , = 0 (1.15) 

for al l r and % = l,...,s. Hence, due to symmetry of A we have M. (x, A x , A 2 x, . . . ) 
is orthogonal to Ai(pi,ps). From Proposition 1.11 we know, that there exists an 
eigenvector p s + 1 e A4(x, A x , A 2 x , . . . ) , which in view of (1.15) is orthogonal to p 1 ; p s . 

Since p x can be chosen corresponding to any latent vector to start with, we have 
established the existence of m mutually orthogonal latent vectors p 1 ; . . . , p m such that 

Api = Xipi, 1=1,...,771, (1.16) 
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which may be written 

A P = P A , PP1 = I. (1.17) 

where P is the orthogonal matrix wi th Pj as its columns and A is the diagonal matrix 
wi th A, as its i-th diagonal element. 

• 

Due to the nonnegativity of al l eigenvalues of a positive semidefinite matrix we can 
define following useful term. 

Definition 1.13. Let A m x m be a positive semidefinite matrix, let us denote A 
diag(y/Xi,\/A^) a n eigenvalue square root matrix. 

1 2 mxm 

Remark 1.14. It is easy to see that A^iXmA^iXm = A m x m . 

Proposition 1.15. Let A m x m be a positive semidefinite matrix of rank(Amxm) — r > 1. 
Then there exists a matrix B m x r such that rank(Bmxr) = r and we have 

A J3 J}1 ; i . i 8 ) 

Proof. B y Proposition 1.12 we have that A m x m = U m x m A m x m U ^ x m . From the assump­
tion rank(Amxm) — r > 1 follows that rank(Amxm) = r. Hence, A m x m has to have 
form A m x m = diag(\i,Ar, 0 , 0 ) . When using the block notation, we can write 

i 
; L , 0 ) m x ( m _ r ) , where A 2 

x *-m X m 

( VÄT o 

o 
0 

0 
0 

\ 0 0 

o \ 

0 

o 1 

We have that 

A = U A ä A ä U T = U(L,0) 
0 

U T = (UL,0) 
L T U T 

0 
U L L T U T = B B T . 

where B = U L . Since U is regular, we have that rank(B) = r. • 

1.2.2 Eigenvalues 

Proposition 1.16. Let A n x n be a real matrix with eigenvalues A i , A n . Then 

n 

Tr(A) = J2^-
i=l 

; i . i 9 ) 

Proof. The proof is based on the theory of Jordan Canonical Forms that is not developed 
in this work, for details see [10]. • 
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Proposition 1.17. Let A n x n be a real matrix with eigenvalues Xi: % = l,...n, and let 
Bmxm be a real matrix with eigenvalues fa, % — 1, ...m. Then the eigenvalues of A® B 
are 

fanj • • • ; Anfan. (1.20) 

Moreover, if Xi,...,Xp are linearly independent right eigenvectors of A corresponding to 
X1,...,Xp (p < n), and Zi,...,zq are linearly independent right eigenvectors of B cor­
responding to fa,fxq (q < m), then Xi ® Zj G M.nm are linearly independent right 
eigenvectors of A® B corresponding to Xifa, where % — 1, ...,p, and j = 1 , q . 

Proof See [10]. • 

1.2.3 Idempotent matrices 
Definition 1.18. We say that an m-dimensional matrix is idempotent if A 2

m x m = A m x m . 

Proposition 1.19. Eigenvalues of idempotent matrix are only zeroes and ones. 

Proof We know, that A is an eigenvalue and x m ^ 0 a corresponding eigenvector of a 
matrix A m x m , if A m x m x m = Ax m . If we mult iply this equation from the left by the 
matrix A m x m we obtain A ^ x m x m = A A m x m x m . O n the left hand side of the equality 
we have A ^ x m x m = A m x m x m = A x m , and on the right hand side we have A A m x m x m = 
A 2 x m . Hence, we get the equality A x m = A 2 x m . Since x m ^ 0 by assumption, obviously 
A(l — A) = 0 must be satisfied, hence, A has to be either zero, or one. • 

Proposition 1.20. Let A m x m be an idempotent matrix. The rank(Amxm) of A m x m is 
equal to its trace. 

Proof. Let rank(Amxm) = r. If r = 0, then the statement is obviously satisfied, 
therefore assume that r > 1. B y Proposition 1.6 we have that A n x n = B n x r . C r x n , 
where rank(Bnxr) = rank{Crxn) = r. Let us denote L r x n the left inverse matrix 
(see [10]) wi th respect to matrix B n x r , and P n x r the right inverse matrix (see [10]) 
wi th respect to C r x n . The assumption A n x n = A 2

x n can be written in the form 
B n x r C r x n B n x r C r x n = B n x r C r x n . Now by mult iplying by L r x n from the left and P n x r 

from the right, we obtain 

L ( B C B C ) P = L ( B C ) P 

= (LB)(CP) 

= 1 (1.21) 

Since also ( L B ) C B ( C P ) = I C B I = C B , we have C B = I. From here follows that 

7V(A) = T r ( B C ) = T r ( C B ) = Tr(I) = r = rank(A) (1.22) 

• 
Proposition 1.21. Symmetric idempotent matrix is positively semidefinite. 

Proof. Let A n x n be a symmetric idempotent matrix. Let x„ be an n-dimensional vector. 
Since A = A 2 , and A T = A we have 

x T A x = x T A 2 x = x T A T A x = (Ax) T (Ax) > 0. (1.23) 

• 
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1.2.4 Pseudoinverse Matrices 
Definition 1.22. Let A m x n be a matrix. A pseudoinverse matrix A ~ x m of A m x n is such 
matrix, that satisfies 

A A A = A . (1.24) 

Remark 1.23. Pseudoinverse matrix A~xm of A m x n always exists, but is not given 
uniquely. For more detailed statement and proof the reader is kindly advised to see [2]. 

Proposition 1.24. Let rank(Amxr) — r > 1. Then for any pseudoinverses A~, AT~, 
(AAT)~ we have that 

(i) A~ A = I, 

(ii) ATAT~ = I, 

(Hi) AT(AAT)~A = I. 

Proof, (i) From the assumptions of the theorem follows, that the columns of the matrix 
A are linearly independent. I. e. for every vector y 6 l r the following holds 

[Ay] = 0 [y = 0]. (1.25) 

B y the definition of pseudoinverse matrix we have that A A ~ A x = A x for every x e M.r. 
Therefore we have A ( A ~ A x — x) = 0 and by using (1.25) we obtain, that A ~ A x = x, 
and since this holds for arbitrary x, we have A - A = I. 

(ii) The proof is done analogously as (i). 
(Hi) Let us denote A T ( A A T ) ~ A = C . B y the definition of pseudoinverse matrix we 

have that A C A T = A A T . If we mult iply by A ~ from the left, and by A T _ from the 
right, due to (i), (ii) we obtain C = I. • 

1.3 Properties of Selected Probability Distributions 
In this section we wi l l provide characteristics of the probability distributions used in the 
work. This section is based mainly on [2] and [4]. The details of some computations are 
featured in the appendix A of this work. 

1.3.1 Poisson Probabili ty Distribution 
Definition 1.25. Let A G [0, oo) and let X be a random variable, such that 

i 0 otherwise (1-26) 

then we say that X has a Poisson probability distribution with parameter A, and we write 
X ~ Po(X). 

Proposition 1.26. Let X be a random variable with Poisson probability distribution, 
then the expectation of X is 

EX = A. (1.27) 

Proof. Comes directly from Lemma A . l . • 
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Proposition 1.27. Let X be a random variable with Poisson probability distribution, 
then the variance of X is 

varX = A. (1.28) 

Proof. B y Lemma A.2 we have that 

EX2 = A 2 + A. (1.29) 

Variance of X is then given by (see [2]), 

varX = E [X - EX]2 = E X 2 - ( E X ) 2 = A 2 + A - A 2 = A. (1.30) 

• 

1.3.2 Negative Binomial Probabili ty Distribution 
Definition 1.28. Let K G N and p G (0,1), let X be a random variable such that 

p(x) r C T V C 1 - ? ) " f°r v x G N 0 , 
[ 0 otherwise 

then we say that X has a negative binomial probability distribution and we write X ~ 
NBi(n, q). 

Proposition 1.29. Let X be a random variable with negative binomial probability distri­
bution, then the expectation of X is 

EX = K { 1 ~ q ) . (1.32) 
q 

Proof. This comes directly from Lemma A.3. • 

Proposition 1.30. Let X be a random variable with negative binomial probability distri­
bution, then the variance of X is 

v a r X = . (1.33) 

Proof. B y using the results of Lemmata A.4, and A.3 we may write 

varX = E X 2 - ( E X ) 2 

K(K+ 1)(1 -qf n(l-q)q K2(l - q)2 

+ q2 q2 q2 

K[1 — 2q + q2 + q — q2 

Q2 

K{l-q) 
q2 

1.34) 

• 
Now we wi l l provide a generalisation of the negative binomial distribution for positive 

real valued parameter K. 
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Definition 1.31. Let K > 0 and p G (0,1), let X be a random variable such that 

p i x ) = i -«)- / « • v - e n«. (1.35) 
I 0 otherwise, 

then we say that X has a negative binomial probability distribution wi th positive real 
parameter K, and we write X ~ NBI(K, q). 

Further on we wi l l use a reparametrisation of the probability mass function of negative 
binomial distribution that wi l l be introduced in the following Proposition. 

Proposition 1.32. Let K > 0 and p G (0,1), let X be a random variable such that 
X ~ NBi(n,q). Set fj, = EX, then the probability mass function p(x) of X can be 
written as 

p{x;n,K) = \ fe) ' / o r V (1.36) 
I 0 otherwise. 

Proof. B y Lemma 1.29 we have 

EX = ^ = K { 1 - q ) . (1.37) 
q 

From here we obtain 

q=-^~- (1-38) 

B y plugging (1.38) into (1.41) we obtain (1.41) which concludes the proof. • 

Proposition 1.33. The variance of the negative binomially distributed random variable 
X under the reparametrisation introduced in Proposition 1.32 is 

u2 

v a r ( X ) = / x + — . (1.39) 
K 

Proof. B y plugging (1.38) into (1.33) we obtain 

var (X) = ±Z—JzL- I \ K = !^£Jt = ^ + ^ . (1.40) 
K2 \K + \1 J K K 

• 

1.3.3 Pearson C h i Square Distribution 
Definition 1.34. Let n > 1. Let X be a random variable such that 

i ^ S - i £2 1e 2 , x > 0, 
f(x) = <{ 2 T r ( § ) ' ' (1.41) 

0 otherwise, 

then we say that X has a x 2 probability distribution wi th n degrees of freedom denoted 

by xl-

Proposition 1.35. Let X1,...,Xn be independent identically distributed random vari­
ables, with Standard Gaussian probability distribution N(0,1). Then the random variable 
Y = (Xl + ...+Xl)~xl 
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Proof. We need to show that the probability density function of Y is 

Uy) = ^ ^ y ^ - 1 e ^ , y>o. ( 1 . 4 2 ) 

Let n — 1. Then for y > 0 is the distribution function G of a random variable Y given by 

G(y) = P(Y <y) = P(Xf < y) = P ( - ^ < X < y/y) = $ ( ^ ) - *(-y/y). (1-43) 

Since = <f>(x), we have that 

So we have that the formula (1-42) holds for n — 1. We wi l l continue via induction. Let 
(1.42) holds for some n > 1. Then fn+i(y) = J fn(y — z)f\{z)dz and after plugging in 
z = uy and some further computation we obtain density (1.42) corresponding to index 
n +1. • 

Let us denote by X ° = ( X ° , X ° ) T , where Xf are independent identically distributed 
Gaussian random variables with E ( X ° ) = 0, var (X°) = 1, i . e. X ° ~ Np(0,Ipxp). 

Proposition 1.36. Let X = (X1,...,Xn)T ~ Nn(fi, V), and let rank(V) = r > 1. 
Furthermore let B n x r be a matrix of rank r, such that V = BBT. Then fx + BX° ~ 
i V ( M , V). 

Proof. For every vector c n we have that 

cT(n + B X ° ) = cT/x + c T B X ° ~ N(cTn, c T B B T c ) , (1.45) 

where (1-45) comes from a property of multidimensional normal distribution (see [2]). • 

Proposition 1.37. Let X ~ iVn(/x, V), where rank( V) — r >1, then the random variable 
Y = (X — /j,)TV~(X— fj,) has distribution Xr for arbitrary choice of the pseudoinverse 
matrix V . 

Proof. Due to Proposition 1.36 X has the same distribution as ̂  + B X ° , where B B T = V . 
and X ° ~ iV r (0 ,1 ) . Therefore Y has the same distribution as 

( B X ° ) T ( B B T ) - ( B X ° ) = X 0 T B T ( B B T ) - B X ° = X 0 T X ° ; 

since due to Proposition 1.24 (in) B T ( B B ) ~ B = Irxr. Since we have also X 0 T X ° = 
( X ° ) 2 + ... + ( X ° ) 2 the statement follows from Proposition 1.35. • 

Proposition 1.38. Let X ~ Nn(0, V), let A n x n be as symmetric positive semidefinite 
matrix. If matrix A V is nonzero and idempotent, then the random variable XT AX has 
a distribution x2 with degrees of freedom m = Tr(AV). 

Proof. B y assumption A V ̂  0 we get that rank(A) > 1. Then A has by Proposition 
1.15 decomposition, A = B B T , where B is of type n x rank(A). Recall that due to 
Proposition 1.24 (i) we have that B B = I. Set Y = B T X . Then Y ~ N(0, B T V B ) and 
X T A X = Y Y . It is enough to see that B T V B is idempotent. In that case I is its pseudoin­
verse and due to Proposition 1.36 we have that Y T Y ~ Xri where r = rank(BT\"B) = 
T r ( B T V B ) = T r ( B B T V ) = T r ( A V ) . B y the assumption ( A V ) ( A V ) = A V . That 
means B B T V B B T V = B B T V . It follows, that B B B T V B B T V = B B B T V , i . e. 
( B T V B ) ( B T V B ) = ( B T V B ) . • 

23 



Proposition 1.39. Let X1, ...,Xn are independent random variables with Xj ~ X(//j, 1), 
i = 1 , n . Let A = Y17=i $ ^ ®- Then the distribution of random variable Y = Y17=i X? 
depends only on n and A and is called a noncentral x2 distribution with n degrees of 
freedom, and a parameter of noncentrality X, and is denoted Xn\-

Proof Set X ° = X , - X ° = ( X ? , X ° n ) T , » = (^,...,^n)T. Then Y = ( X ° + 
/j,)T(X° + fx). Since A 7̂  0, there is such an orthonormal matrix B , such that its first row 
is equal to fiT. Since X ° ~ N(0,1) we have that Z = B X ° ~ N(0,1) (This can be seen 
as a result of a more general statement, that linear combination of independent identically 
distributed Gaussian random variables is again Gaussian wi th corresponding parameters, 
for details see [2]). Out of properties of B we have that a = B ^ = ( V A , 0 , 0 ) T . 

Therefore we have 

Y = ( X ° + ^ ) T ( X ° + ji) = ( X ° + m ) T B T B ( X ° + fj,) 

= ( B X ° + B ^ ) T ( B X ° + B ^ ) = (Z + a) T (Z + a) (1.46) 

has distribution dependant only on n and A. • 

1.4 Estimation theory 
In this section we wi l l provide theory concerning estimators of parameters of random 
variables. This section is mainly based on [2]. 

1.4.1 Statistics and Unbiased Estimators 
Assume that random vector X = ( X ! , . . . , X „ ) T has a probability density /(x, 0) wi th 
respect to some a-fmite measure /x, where 6 = (#1, ...,9m)T is an unknown parameter. 
Our goal is to get the best estimate of 6 based on the vector X , while about 6 we know 
only that it belongs to some parametric space Q C M m . When we are doing a point 
estimate our task is to find a measurable mapping g : (Rn,Bn) —> (M.m,Bm), such that 
the random vector T = g(X) would be in some sense the best approximation of the value 
e. 

Definition 1.40. Assume that T is an estimator of an unknown parameter 0. We say 
that T is unbiased, if E T = 6 for V0 e £1 If E T = 6 + b(0), where function b is not 
identically zero on fl we call estimator T biased. 
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Chapter 2 

Transformations of Random 
Variables 

In the following text we wi l l provide some theoretical background regarding the most com­
mon transformations of random variables. This chapter is based mainly on [1], partially 
also on [16]. 

Let X be a random variable with probability density / and set Y = t(X), where t is 
measurable function wi th respect to Lebesgue measure. 

In classical linear regression model, as well as in corresponding tests it is assumed that 
the response variable are n independent Gaussian random variables Xj , % — 1 , n . In 
such case we have 

where variance of Xi is independent of the expectation of Xi, i . e. a2 is constant wi th 
respect to the parameter 9i. In practice this might, and quite often is not the case. In 
the following we wi l l consider a situation when the independence hypothesis is violated 
and derive a transformation tackling this problem. 

Let X be a random variable with a probability distribution that is depending on a 
parameter 9. Let the parameter be such that E X = 9. Furthermore assume that the 
variance varX = a2 is a function of the parameter 9 as well, i . e. varX = cr2(9). Our 
task is to find a nonconstant function g, such that Y = g(X) would have a variance, 
that does not depend on 9. In general this problem does not have a solution, we wi l l try 
to obtain at least a suitable approximation. In the following theorem we wi l l considered 
random variable Y to be obtained via transformation Y = g(9) + (X — 9)g'(9), rather than 
using Y = g(X). We are hence, approximating g(X) by it 's Taylor expansion around the 
point 9 up to a linear term. 

Theorem 2.1. Let X be a random variable with probability distribution dependent on 
a parameter 9, such that E X = 9, and varX = o~2{9). Let g be a function that is 
smooth along with it's first and second derivative. Let Y be a random variable given by 
Y = g{9) + (X — 9)g'{9), then varF is constant with respect to 9 if 

2.1 Variance Stabilising Transformation 

Xj ~ N{ßi,a2), where E X j = 9i: and varXj = a2, i 

(2.1) 
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Proof. B y definition of Y we have 

EY = [g (0 )+g ' (0 )X-g ' (0)0] 

= g(9)+g'(9)9-g'(9)9 

= 9(0), (2.2) 

and 

varF = EY2 - (EY)2 

= E[g(e) + (X-e)g'(9)}2-(EY)2 

= E[g2(9)+2Xg'(9)g(9) - 29g\9)g{9) + X2{g\9))2 - 2X9{g'{9)f 

+ 92{g'(9))2]-{g(9))2. (2.3) 

Since we have that E X 2 = a2 + (EX)2 = a2 + 92 we can plug it in (2.3) and obtain 

varF = a2(9)(g'(9))2. (2.4) 

In order for varY to be independent wi th respect to 9 we need 

a(9)g'(9) = c, (2.5) 

where c is an arbitrary constant. Out of this condition we obtain 

which concludes the proof. • 

Definition 2.2. The function g from Theorem 2.1 that satisfies (2.1) is called variance 
stabilising transformation. 

2.2 Box - Cox Transformation 
In this section we wi l l describe the Box-Cox transformation. A transformation from the 
family of power transformations that is often applied on nonnormal response data in order 
to achieve stability of variances among the data. This section is based on [16]. Suppose 
we have data sample ( X 1 ; ...,Xn) of a distribution of a variable X that is strictly positive. 
We wi l l consider a power transformation 

Z = Xx (2.6) 

and try to find the best value of A to use. It is obvious that a problem occurs for the 
choice A = 0 that would make al l the entries of the sample equal to one. 

Definition 2.3. Given a random variable Y we define the family of power transformations 
for varying parameter A as follows 

( (Yx - 1)/A for A + 0, 
W = < . (2.7) 

[ ln(Y), for A = 0 

We wi l l call this family of transformations Box-Cox transformations. 
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B o x - C o x Transformat ions for Different Values of L a m b d a 

The problem in A = 0 is overcome, because ln (Y) is the appropriate l imit of (Yx — 1)/A 
as A —> 0. Therefore the family of transformations is now continuous in A. 

The values of W of (2.7) can change greatly as A varies, which complicates finding 
the optimal value of A. For that reason we shall introduce an alternative form of family 
of transformations W. 

Definition 2.4. Given a random variable Y we define the family of power transformations 
for varying parameter A as follows 

( (Yx - 1)/(A • Yx~l) for A + 0, 
V = { , (2.8) 

[ y i n ( Y ) , for A = 0 

where the term yA _ 1 is the n-th power of the appropriate Jacobian of the transformation 
which converts the set into the set of Wi. 

Remark 2.5. The multiplication with the the n-th power of the Jacobian of the trans­
formation which converts the set Y;t into the set of Wi ensures that the unit volume is 
preserved in moving from the set ofYi to Wi. 

The best value of the parameter A can be determined by using maximum likelihood 
estimation (see [16]). In [17] the estimation via maximum likelihood and also its Bayesian 
equivalent is discussed. 

It is also possible to relax the assumption of the positiveness of X, if it is negative, 
but bounded from below, by introducing a shift parameter. In such scenario however the 
standard asymptotic results of maximum likelihood theory may not apply since the range 
of the distribution is determined by unknown shift parameter (see [18]). 
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2.3 Yeo-Johnson Transformation 
In the previous section we have discussed the Box-Cox transformations family. Our main 
l imitat ion was the assumption of positiveness of the random variable X to which the 
transformation was applied. In this section we wi l l discuss another family of transfor­
mations appropriate to approximate normality, the Yeo-Johnson transformations, which 
unlike the Box-Cox transformations are well defined on the whole real line, so we may 
drop the assumption on positiveness of X. This section is based on [18]. 

Definition 2.6. Let X be a real random variable, we define a family of Yeo-Johnson 
transformations as follows. 

J 

(i+x)> 
l n ( l + X ) 

2 - A 
l n ( l - X) 

for X > 0, A ^ 0 
for X > 0, A = 0, 
for X < 0, A ^ 2, 
for X < OA = 2. 

(2.9) 

The transformation given by (2.9) is also designed so that it would reduce the skewness 
parameter of the variable X. The value of the parameter A can be estimated by maximum 
likelihood estimation (see [18]). 
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Chapter 3 

A Study of Selected Transformations 

3.1 Variance Stabilising Transformation for Random 
Variable with Poisson Probability Distribution 

In this section we wi l l study a behaviour of a variance stabilising transformation of a 
random variable X wi th Poisson probability distribution, when a nonnegative constant c 
is added. We wi l l derive moments of the transformed variable and find an optimal value 
of c such that the transformation would stabilise the variance of X. The content of this 
section is based on [1]. 

First we wi l l provide derivation of the variance stabilising transformation using the 
formula (2.1) of Theorem 2.1. 

Proposition 3.1. Let X ~ -Po(A) be a random variable with Poisson probability distri­
bution. Then the variance stabilising transformation in the sense of the Theorem 2.1 is 
given by 

Y = g(X) = V^ (3.1) 

Proof. B y Proposition 1.27 we have that 

var (X) = A, (3.2) 

hence, the standard deviation of X is a = \f~\. The random variable X clearly satisfies 
the assumptions of Theorem 2.1, hence, the variance stabilising transformation g is given 
by 

-j= = 2cQV\ + c1. (3.3) 

B y choosing c 0 = \, and C\ = 0 we get g(x) = y/x. • 

In the rest of this section if not explicitly stated otherwise we wi l l assume that X is 
a random variable wi th Poisson probability distribution and parameter A (see Definition 
1.25), and Y a random variable obtained by transformation 

Y = VX + c (3.4) 

where c is a positive constant. In order to simplify the following computations, we wi l l 
first consider the following, let 

Z = X - \ (3.5) 
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be a random variable, and 

The transformation 3.4 is then 

A' = A + c. 

Y = VZ + A'. 

B y Taylor theorem for any z > — A' we obtain an infinite series representation 

y A' 
1 + a i — - a 2 ( —) + ... + ( - l ) s a s _ i 

s - l 

+ i?s 

where i ? s is a reminder term and coefficients as are given by 

_!-2s + 3 
- 1 

Lemma 3.2. For z > 0 #ie term i ? s satisfies 

2ss\ 

\R.,\ < 
( A O 

Proof. This is a direct result of Lagrange's form of the reminder term (see [6]). 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

• 
Now we would like to find a bound C(s) for Rs such that \RS\ < C(s) on a larger 

interval, namely z > — A . 

Lemma 3.3. For z > — \' the term Rs satisfies 

\RS\ < G(s) 
1 1 - 1 ; ( A ' ) S " ^ 

Proof. If we assume that \z\ < A , we obtain directly from (3.8) the following 

2 

RS(X 2 
A' A 

1 + a i — - a 2 — + . . . + ( - l ) s a *s- l 

s - l 

n = l ^ 

(3.11) 

(3.12) 

We notice that the series on the right hand side of the equation (3.11) is convergent and 
hence, we can write 

* 2 
E ( - 1 ) l + 1 ( 

n=l 
" A' 

(3.13) 

where the right hand side is convergent and bounded. Let us assume G(s) as the bound 
of the right hand side to its absolute magnitude, then we have 

\RS\ < G(s) 1 1 ; 
1 1 - 1 ; ( A ' ) S " ^ 

(3.14) 

Due to Lemma 3.2 the inequality (3.10) holds, if we compare (3.10) wi th (3.14) we see, 
that (3.14) holds for al l z > - A ' . • 

Following propositions wi l l provide us wi th some tools necessary for deriving the ap­
proximations of expectation and variance of Y. 
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Lemma 3.4. Let us denote (i'z k = EZk the k-th moment of Z and \ix,k = E [ X — E X ] F C . 
the k-th central moment of X. Then we have 

Vz,k = Vx,k ( 3 . 1 5 ) 

Proof. B y the properties of a random variable wi th Poisson probability distribution we 
have E X = A (see [2]), 

= E [ X - A ] F E 

= E [ X - E X ] F E 

= fJ>x,k-

• 
Lemma 3.5. For every n > 0, one has that 

E A [ X ] F C = T F C ( A ) , A > 0 , ( 3 . 1 6 ) 

where Tn is the n-th Touchard polynomial, as defined in Definition 1.4-

Proof. The proof uses results of the theory of Be l l polynomials and cumulants, which is 
not developed in this work, and therefore the proof is not given here, and can be found 
in [3]. • 

Corollary 3.6. For every n > 0, there exists a polynomial of degree at most n, denoted 
by Tn, such that 

fn(\) = Ex[(X-\)n], A > 0 . ( 3 . 1 7 ) 

Proof. This is a direct result of a Lemma 3.5 (see [3]). • 

Lemma 3.7. For every n > 1 we have 

T „ + 1 ( A ) = A 2 ( ™ W ) . ( 3 . 1 8 ) 

fc=0 ^ ' 

Proof. The proof of this Lemma is based on a theory that is not developed in this work 
and can be found in [3]. • 

Remark 3.8. Using the results obtained by Lemmata 3.4, 3.7, and Corollary 3.6 we 
obtain by direct computation the first few moments of Z: 

Vz,i = 0, 

A*Z,2 = A , 
/ 

l^z,?, = A , 

A*Z,4 = 3 A 2 

VZ,5 = 10A 

f^Zfi = 1 5 A 2 5 A 2 + A . ( 3 . 1 9 ) 

Let us first derive the approximation of the expected value E F for A large. 
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L e m m a 3.9. Let Y be the random variable obtained by transformation (3.4). Then its 
expectation may be approximated by 

EY = V\ + 1 1 24c 

8A2 128A2 
7 

3 - + 0 
1 

XT 

Proof B y the Corollary 3.6 we may take expected values of the right hand side 
and its powers, and derive asymptotic expansions for the moments of Y as A — 

For the expected values we have 

r r-— 1 z 1 z 2 1 z 3 

El V A + c + r - T + 

(3.20) 

of (3.8), 
* 00. 

EY 
2(A + c)i 

7 Z5 5 Z 4  

Í 2 8 ( A + c)I + 256 ( T 

(A + c) 
21 

c 2 

16(A + c)3 

1024(A + C)¥ V(A + c) 

B y using (3.19), and the linearity property of expectation (see [4]) we obtain 

EY=V\+c+ 
0 A 

+ 
A 

2(A + c)^ 8(A + C ) § 16(A + c)3 

5 3A 2 + A 7 10A 2 + A _ 21 15A 3 + 25A 2 + A 

C 2 128 (A + c)a 256 (A + C)I 1024 (A + c)¥ 
We derive the asymptotic expansions of all listed fractions 

+ 0 
(A + c) 

EY = V\ + c + c 1 1 3 

8 Ä I + 16ÄI 

15 c 2 

64 A^ 
+ 0 

+ 

+ 

1 1 

16 XI 
35 1 
128 XI 

5 c 

32 XI O ( 1 M 
T T + 

VA2/. 
15 1 1 1 0 5 c - 1 0 

1 w 
— + 

VA2/. 
315 

1024A 

128 Ai 256 A^ + 0 Al 

Hence, 

EY = y/X + 

__ 15 c^ 

64 Af 

1 1 3 c 

8 X I + 16 A t 

1 1 

Tě X T " 
5 c 1 1 0 5 c - 1 0 

K + + 

A2 

15 1 

128 A 
35 1 315 1 

32 At 256 

24c n 1 1 
V A + c - - — + 

8A2 128AÍ 

A2 
7 

+ 

128 A§ 1024 A 

240c 2 + 260c - 75 

A5 
+ 0 

+ 0 

1 

X i 

A2-

A n d we get the approximation of the expectation of Y 

EY 
r- 1 1 24c - 7 / 1 

V A + c - - - + - + 0[ — 
8A2 128AÍ VAf 

(3.21) 

. (3.22) 

(3.23) 

(3.24) 

(3.25) 

• 

Let us now derive the approximation of variance of Y. 

L e m m a 3.10. Let Y be the random variable obtained by transformation (3.4). Then its 
variance may be approximated by 

1 3 - 8 c 3 2 c 2 - 5 2 c + 1 7 ( \ 
4 + 32A + 128A 2 + I A^ 

v a r V (3.26) 
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Proof. In order to obtain the approximation of variance of F we wi l l use (3.20) to compute 
(EY)2 i . e. 

( E F ) 2 = A + c + - 5 - - 2 - y/X + c • I • \ + 2 • VX + c • ~J 
64A 8 X* 128Xl 

-240c 2 + 260c - 75 1 24c - 7 / 1 
+ 2 - v / A ~ T ^ s 2- — - + 0 — . (3.27) 

1024Af 8A^ 128Ai V * Y 

The following holds for A — > oc 

and by pluging it into (3.27) we obtain 

2 1 1 c c 2 24c - 7 24c 2 - 7c 
{ E Y ) - A + C + 6 4 A ~ 4 ~ 8 A + 32A 2 7 + " 6 4 A _ + 128A 2 

- 2 4 0 c 2 + 260c - 75 7 - 24c / 1 
+ + w + 0 U J ' ( 3 ' 2 9 ) 

and after some further computation we finally obtain 

, „ „ N 2 1 , 8 c - 3 - 3 2 c 2 + 5 2 c - 1 7 / 1 \ 

( E y ) 2 = _ _ + A + c + _ + _ + 0 ( _ j . (3.30) 

E F 2 is obtained as follows 

E F 2 = E ( V / ^ T A 7 ) 2 = E ( Z + A ' ) = A ' = A + C. (3.31) 

A n d finally we can derive the variance of Y 

varF = E ( F - E F ) 2 = E F 2 - ( E F ) 2 

1 , 3 - 8c 32c 2 - 52c + 17 / 1 
= A + C + 4 - A - C + ^ 2 A ~ + 128A 2 + ° U 

1 3 - 8 c 3 2 c 2 - 5 2 c + 1 7 „ / 1 \ 
+ ^ 7 7 V - + 7 ^ ( 3 - 3 2 ) 

• 
4 32A 128A 2 V A 3 

We w i l l now show that for the choice of c = | F has most nearly constant variance 
for large values of parameter A. 

Theorem 3.11. Let Y be a random variable obtained using transformation (3.4), where 
c is a positive parameter. Let us denote 

. . 1 3 - 8 c 3 2 c 2 - 5 2 c + 1 7 
M A > c ) = v a r y _ _ = _ + _ _ _ + 0 ( _ j . (3.33) 

Then m i n c > 0 { | / i ( A , c) |} ; given that c is constant with respect to X is attained for c — | for 
X —> oo. 

Proof. From the form of h(X, c) given by (3.33) we observe, that the terms wi l l vanish 
one after another as A —> oo wi th the term vanishing the last for its denominator 
is of linear order, hence, the minimum wi l l be attained for A —> oo if 3+Jp = 0 from here 
we obtain that c = | . • 
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Lemma 3.12. Let Yi,...,Yn be a random sample of the distribution identical to the one 
ofY given by (3.4). Let us denote Ay the estimate of A derived by applying the transfor­
mation (3.4) in reverse to Y = - Ylk=i ^k ° / •••) for n —^ 00• Then 

1 
A> 

1 8c - 3 
A " 4 + ^ 2 T 

+ 0[-j 
A^ 

Proof. Set 

From 3.20 we have 

y/XY + 

E(y) = v V T 

/r 1 2 4 c - 7 _ 
v A + c r + 3 - + O 

8\2 1 2 8 A 2 

1 

A ! 

(3.34) 

(3.35) 

(3.36) 

B y taking a square of (3.36) we obtain the following 

Ay + c = A + c + — + -2y/X + c r + 2y/X + c 
64A 8\h 

2 4 c - 7 

128A§ 
+ 0 

At 
(3.37) 

Now we substitute the term v A + c on the right hand side of (3.37) by (3.28) and obtain 

Av 
64A 

A2 + 
2 " At At 

+ 0 
A^ 

1 c 2 

A + 

2 A 
1 1 c 

64A ~ 4 ~ 8A + 

x 1 8 c - 3 _ 
A " 4 + l ! 2 T + 0 

A§ 
2 4 c - 7 

64A 

« 3 

A^ 

8 A 2 

2 4 c - 7 

A2 

+ 01 T T 
A2 

+ 0(TT 
A^ 

(3.38) 

• as intended. 

Definition 3.13. Regarding the results obtained in Lemma 3.12 we define the bias as 

bY = Ay - A. (3.39) 

Corollary 3.14. The following equation holds 

1 
"4 

3 c - 3 
32A 

0[ — 
1 

A2 

Proof. This is a direct result of Lemma 3.12. 

W i t h the Corollary 3.14 we can state the following Theorem. 

(3.40) 

• 

Theorem 3.15. Let X be a random variable with Poisson distribution with parameter 
A. Let Y be a random variable given by transformation (3.4). Then min c > 0 {|6y(A,c)\}, 
given that c is constant with respect to A is attained c — | as A —> 00. 

Proof. The term whose denominator is a linear function of A wi l l vanish the last as 
A —> 00. Therefore we achieve a minimal value of |6y(A, c)| by eliminating this term by 
choosing c = I as A —> 00. • 
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3.2 Study of Chosen Transformations for Random 
Variable with Negative Binomial Probability Dis­
tribution 

In this section we wi l l study the variance stabilising transformations for the random 
variable X with a negative binomial probability distribution wi th expected value \i (see 
Proposition 1.32) and a known shape parameter K. Its probability mass function is given 
by (1.41) of Proposition 1.32, its variance is given by Proposition 1.33. Many of the 
theoretical results of this section are based on [1]. 

First we wi l l provide derivation of the variance stabilising transformation using the 
formula (2.1) of Theorem 2.1. 

Proposition 3.16. Let X ~ NBi((j,,K) be a random variable with negative binomial 
probability distribution. Then the variance stabilising transformation in the sense of the 
Theorem 2.1 is given by 

Y = g(X) = 2 s i n h " 1 (J^)- (3-41) 

Proof. B y Proposition 1.33 we have that 

K 

hence, the standard deviation a of X is given by 

u2 

v a r ( X ) = / x + — , (3.42) 

a=\lfi+^-. (3.43) 

The random variable X clearly satisfies the assumptions of Theorem 2.1, hence, the 
variance stabilising transformation g is given by 

f dfj, !- f dfj, !- f dfi 
9W = co / ; = CoVK / , = CoV« 

1 

c o v ^ / ; d \ , (3.44) 

> + ! ) ' 1 

where c 0 is a constant. In order to compute this integral we wi l l first substitute u for 
fj, + | to obtain 

g(u) = c 0 ^ f (3.45) 

There are several possibilities to solve this integral, one might be for example to use a 
transformation of u into hyperbolometric function and then use the corresponding hy-
perbolometric identity formula. We wi l l for instance use another possible approach and 
substitute u wi th the term iftsec(s) to get 

_ f ^Ktan(s) sec(s)ds _ f ^Ktan(s) sec(s)ds 
9{s) = C0VK I = = = C O V K / — = - (3.46) 

l K 2 s e c 2 ( s ) _ £ J ^ V s e c 2 ^ ) - ! 
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Using now the following trigonometric identity (see [5]) 

sec 2(s) — 1 = tan 2 (s) (3.47) 

we obtain 

g(s) = CQ\J~K [ sec(s)ds = CQ\J~K [ —ds = CQ\J~K f 

J J cos(s) J 

ds 
l+s in(s) 

cos(s) 

l+sin(£) c o s ( s ) 
cos(s) 

l+s in(s) 
cos 2 (s) 

l+s in(s) 
cos(s) 

ds (3.48) 

we notice that 1 + S 1 " W 
cos(s) 

we have 

sec(s) + tan(s) and ^ ^ " f f = ^ ( s e c ( s ) + tan(s)), and therefore 

g(s) — Coy/~K,\n [tan(s) + sec(s)] + C\. (3.49) 

Now we return to the original variable /x. First , we have that s = s e c - 1 (—), so we obtain 

g(u) = c o v ^ l n 
_1f2u\\ ( _1(2u\ 

tan ( sec I — I I + sec I sec I — I + C i . (3.50) 

Now using that sec sec 1(z) = z and tan sec 1 (z ) = \ / l - ^ - z w e obtain that 

+ C i , g(u) = c 0 \ / re ln 

which can be written as 

g(u) = c 0 \ / re ln 

2u I re2 2u 

K V 4-u2 re 

revv1-!^2 
+ C i 

(3.51) 

(3.52) 

K + 2/1 

2K 
2a 1 -

A n d finally we have u — | + /x hence, we obtain 

g(fi) = c 0 \ / re ln 

= c 0 \ / rehi 

= C O \ / K to­

re 
K + 2/x)2 

+ 2 + C i 

K + 2flf /4/xre + 4/X 2 

K + 2^if 
+ 1 

2yV« + /x2 + (re + 2/x) 

+ C I 

+ C i 

Now we observe that 

2y //xre + /x2 + (re + 2/x) = /x + 2 A//xre + /x 2 + (/x + re) = (A//x + A//X + re)2, 

and therefore we get 

(3.53) 

(3.54) 

#(//) = 2c 0 \ / re ln V /reT//+ y/JJL 
+ c\ = 2co\ / re l n 1 + Z + + C i 

2co\/resinh 1 (^j^ + C i (3.55) 

Where the last equality is due to definition of argument of hyperbolic sine via natural 
logarithm (see [5]). B y choosing CQ = 4^, and c i = 0 we get the desired form of the 
transformation g, which concludes the proof. • 
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The case when the ratio ^ is constant and JJL large allows direct application of asymp­
totic expansions in order to obtain the approximations of characteristics of the transformed 
random variable, similarly to the Poisson case seen in the previous section, or a binomial 
case (see [1]). More details can be found in [1]. It is of more interest, however to consider 
\i large and n fixed. The preceding method ceases to work in this case (see [1]), and hence, 
different strategy is needed. 

We wi l l consider the following two transformations, that we wi l l study further 

Y = 2 • sinh" 

and 

X + c 
K + d 

(3.56) 

Y = \n(X + A). (3.57) 

where c and d are positive constants, and term A w i l l be determined later. 
The reason for introducing the transformation (3.56) is obvious, it comes as a general­

isation of transformation (3.41) obtained via applying the Theorem 2.1. In what follows 
we wi l l see that the linear term of the asymptotic series expansion of the transformation 
(3.56) for x large is in fact the transformation (3.57) for a specific choice of A. Hence, the 
transformation (3.57) might be viewed as an approximation of (3.56). 

Lemma 3.17. A transformation of random variable X given by (3.56) differs from a 
term 

2 • In (yfx + c+Vx + c + K + d) (3.58) 

by a constant with respect to x. 

Proof. B y the relation of inverse hyperbolic sine and natural logarithm ( see [5]) we have 

s m h _ 1 ( z ) = ln(z + Vl + z2), (3.59) 

where in our case z — ^/^j. B y plugging in we obtain 

. / lx + c r x + c\ n , /\/x + c y/x + c+ K + d 
sinh 1(z) = 2 • In W + , H = 2 • In - . + 

K + d V K + dJ ~ + d y/n + d 
2 • In ( V x + c + Vx + c + K + d) - 2 • In {y/n + d). 

where r\ — — 2 • In {\JK + d) is the constant with respect to x. • 

For x large enough we can obtain the following result. 

Lemma 3.18. Let Y be the random variable given by transformations (3.56) or (3.57). 
Assume that X —> oo. Then we have the following approximation 

Y = r 1 + r 2 + l n ( X ) + | - + O (J^j . (3.60) 

where for (3.56) we have r\ = —2 ln(\/K + d) (see Lemma 3.17), r2 = 21n(2) and 

A = ^(2c + n + d), (3.61) 

B2 = I (8c 2 + 8C(K + d) + 3(K + d)2). (3.62) 
8 

and for (3.57) r\ = r 2 = 0 and 
B = A. (3.63) 
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Proof. Let us consider the transformation given by (3.56), due to Lemma 3.17 we have 

y = 2 • In [y/x + c + \ / x + c + « + d) + n = In ^ ( \ / x + c + \ / X + C + K + d ) 2 ) + r i 

= In (2x + 2c + K + d + 2 • -s/x + c • -s/a; + c + K + d) + r i . (3.64) 

Now given the x —>• oo we can derive the asymptotic series 

/ ; , 1 K + d 1 {K + df / 1 \ 
Vx + c + K + d= Vx + c + - r - - • - + O j 

2 (x + c) 2 o (x + c) 2 V (x + c) 2 / 

and by plugging it in (3.64) we obtain 

?/ = l n ( 2 x + 2c + fi; + d + 2- y/x + c 

1 

, 1 K + d 1 (ft + d) 2 

V £ + c + - • r • 3-

2 (x + c)a 8 (x + c)2 

+ 0 X + C) 2 
+ r i 

= In ( 4x + 4c + 2K + 2d - \ • £̂±̂ 1? + o 
4 (x + c) 

In ( 4x + 4c + 2K + 2d - T • ( K + d ) 2 + O 

(x + c) 2 

1 

+ r i 

+ r-y. 
4 x + c ^ ( x + c ) 2 

Now we substitute the whole logarithm by its asymptotic expansion for x — > 00 to obtain 

y = 2 • ln(2) + ln(x) + 1 2 c + K + d + zÂ  + ^ + ~ jfe ~ l d X c + \ K + 

x 
+ 0 

X" 
+ r i 

2•ln(2) + ln (x ) + 
1 2c + K + d - ^ ( K + d) 2 - ^ ( 8 c 2 + 8(K + d) + 2(K + d) 

+ x x-

= 2 • ln(2) + ln(x) + • (2c + K + d) - • (8c 2 + 8(K + d) + 3(K + d) 2) + O f \ 
2x lbxz \x6 

+ r-y. 

Let us denote r 2 = 2-ln(2). We obtained the approximation (3.60) for (3.56). The second 
part of the statement concerning the transformation (3.57) is obtained immediately by 
taking the asymptotic expansion of y = ln(x + A) for x —> 00. • 

Definition 3.19. Let us introduce the following notation. B y Y* we denote the random 
variable, obtained from (3.60) as follows 

A B2 f 1 

Y* = Y - ry - r 2 = l n ( X ) + + 0[ — 
1 2 ^ j-r x 2X2 \X3 

(3.65) 

where for (3.56) the constants A and B are given by (3.61) and (3.62), and for (3.57) by 
(3.63). 
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We are interested in finding variance approximations of the transformations (3.56) 
and (3.57). Since the random variable Y* differs from Y given by (3.60) only by added 
constant, we have var[V] = var[Y*], and therefore we may in order to simplify our 
computations continue wi th Y* instead. Now we proceed to find an asymptotic expansion 
of the moment generating function of the approximation Y* given by Definition 3.19 as 
\i —> oo wi th K fixed. The moment generating function of Y* is given by 

oo 

M*(t) = J2er(x)tP(x)- (3-66) 
2 = 0 

(see [1]), i.e. if we plug in (1.32) for p(x) we have 

M* (t) = f e ^ ^ ± 4 ( — Y ( — Y (3-67) 
U ^ * ! R ( « ) \K + IJLJ \K + IJL) K 1 

Let us introduce a new parameter a. 

Proposition 3.20. Let 

a = l n ( ^ ± ^ ) , (3.68) 

then a —> 0 as \i —> oo. 

Proof. This is seen immediately by taking 

Definition 3.21. Let us denote u(a, x,t, n) as 

l i m i n ( E±H ) = o. (3.69) 

• 

u(a, x, t, K) = e y * t T ^ K h - a x . (3.70) 
x\r(K) 

Informally put, the following Lemma wi l l allow us to approximate an infinite sum in 
the moment generating function M(t) by an integral. 

Lemma 3.22. ,4s a —> 0 

u(a, x, t, K) — I u(a,x,t, K)dx (3-71) 
x=0 Jo 

tends to a finite limit (depending on K and t, and on which function y* of x is chosen, 
namely (3.56) or (3.57)). 

Proof. The proof relies on the use of Euler-Maclaurin expansion, a theory not developed 
in this work, for the complete proof the reader is kindly advised to see [1]. • 

Corollary 3.23. Let moment generating function be given by (3.66), let a —> 0, then 
following holds 

/•oo 

M*(t) = (1 -e~aY I u(a,x,t,n)dx + 0(aK) (3.72) 
Jo 
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Proof. Direct result of applying Lemma 3.22 to (3.66), see [1]. • 
In general the integral in (3.72) can not be evaluated exactly. A n approach is proposed 

in [1], based on expansion of ux(o:,x,t, K.) for x large asymptotically. The error of such 
expansion is always less than a multiple of the next term ( independent of a) for x > 1 
(see [1]). Integrating term by term between the limits 0 and oo gives then the following 
result. 

Theorem 3.24. Let t be confined to a neighbourhood of zero. M(t) can be expanded 
asymptotically for a —> 0 in the form 

M*(t) 

+ 

r(« +1) 
a*r(K) 
1 

. , 1 \ a 
1 + [A - -K )t 

2 J K + t- 1 + -[ A — -K ) + —K }t 

2 « A _ ! « ( « +3 ) ) t 
a 

[K + t- ! ) ( « + * - 2 ) 

2 ) 24 

+ ..\+0(aK) (3.73) 

The series in braces is continued as far as the term in an, where n is the greatest integer 
less than K. 

Proof. The proof is a result of the results (1.41), (3.66), and Lemmata 3.18, 3.21. For 
more detail the reader is kindly advised to see [1]. • 

We wi l l now derive the approximations of numerical characteristics of Y*, as mentioned 
already, we are namely interested in the variance approximations. For this we wi l l first 
need to derive the cumulant generating function. 

Lemma 3.25. Consider the moment generating function (3.73), then the corresponding 
cumulant generating function of Y* is given by 

K*(t) = - t - l n ( a ) + \nT(n + t) - l n r ( / c ) + <| [A-^KJt —-

+ (K + t- l)(/c + t - 2 ) 

1 (2A-K) (A-\K)t2~ 

[K + t-1] 
•a2 }+0(aK) (3.74) 

The series in braces is continued as far as the term in a" , where n is the greatest integer 
less than K. 

Proof. B y [1] the cumulant generating function is found by taking the logarithm of the 
moment generating function (3.73). B y doing so we obtain 

K*(t) = l n 

+ 
1 

. , 1 \ a 
+ [A - -K )t 

2 J K + t - 1 

KA K(K + 3) 
2 24 v ; 

In 

+ 

T(n + t) 
a*r(«;) 

1 
2 k A ~ J4K(K + 3"> 

-B2\t 

+ 
a 

[K + t- l)(n + t - 2) 
+ ... \+0(aK) 

+ l n n + M - ^ ) t ^ l + A — —K 
+ 2 4 K " 

•B2 It 
Q-

[K + t- 1)(K + * - 2) 
+ ...\+0(aK)\. (3.75) 
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Now we wi l l approximate the second logarithm by it 's Taylor series in a around the point 
a — 0. The complete form of the Taylor series used to approximate the second logarithm 
is featured in a maple worksheet on a C D attached as an appendix to this work (file 
CumulantGeneratingFunction.mw). We obtain 

(A — -K) • t 
K*(t) = In (r(/c + * ) ) - * • ln(a) - In (r(/c)) + 2—L— • a 

[ {\{A - \K)2 + ±K) • t2 + (\KA - ±K{K + 3) - \ B 2 ) • t  
+ \ ( K + * - 1 ) ( K + * - 2 ) 

1 (2A — K) • (A — \K) • t21 „ 

- i ( K + l - D » r + o w - ( 3 - 7 6 ) 

which concludes the proof. • 

Now we wi l l focus on finding the approximations of the variance of Y* using the 
cumulant generating function in the form given by (3.74). We wi l l separate different 
situations based on a value of parameter K. Further on we wi l l use the notation given by 
Definitions 1.1 and 1.2. Let us start by formalising following observation. 

Lemma 3.26. Let Y be given by Lemma 3.18, and Y* be given by Definition 3.19, then 
for the expectation of Y* we have 

E[Y*] = E [ F ] + n + r 2 , (3.77) 

where r-y = —2 ln( \ /«; + d) and r 2 = 21n(2) (see Lemmata 3.17, 3.18), and for any k-th 
central moment of Y* and Y 

l^Y*,k = fJ>Y,k (3.78) 

Proof. B y Definition 3.19 we have that 

Y* = Y - n - r 2 , (3.79) 

where ri, r 2 are deterministic constants. Then the first statement of the Lemma comes 
directly as a result of the property of expectation 

E[a + X] = a + E[X] (3.80) 

where X is an arbitrary random variable and a an arbitrary (deterministic) constant (see 
again [2], or [4]). The second statement is obtained as follows. Let 

liY*,k = E[Y + r-E[Y + r}]h (3.81) 

be the k-th central moment of Y*, where r = r\ + r 2 , then by property (3.80) we have 

[i,Y*,k = E [Y + r - E[Y + r\]h = E[Y + r - E[Y] - r]h = E [Y - E[Y}]h = /iY,k (3.82) 

• 

Remark 3.27. The second result of Lemma 3.26 namely implies that the variances ofY 
and Y* are the same. 
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Lemma 3.28. Let K > 1. Let the cumulant function K*(t) be given by Lemma 3.25, then 
the variance of the random variable Y can be approximated by 

K — 2A 
v a r F = ^ ' ( K ) + 7 —;a + 0{aK). (3.83) 

(K — I)2 

Proof. From Lemma 3.25 we have for K > 1 the following 

K*(t) = - t - l n ( a ) + lnr(re + t) - l n r ( r e ) + (A - ^njt — - + 0(aK). (3.84) 
V 2 / K ~\~ t 1 

The second cumulant is obtained by computing second derivative of cumulant generating 
function in t = 0 (see [3]). The second derivative of (3.84) wi th respect to t is given by 

(K*)"(t) = t//(K + t) + (A- \K) ~2jK

t ~ V + 0 K ) . ( 3 . 8 5 ) 

B y evaluating in t = 0 we obtain 

K — 2A 
h = (K*)"(0) = IP'(K) + —a + 0(aK), (3.86) 

[K — l)z 

where by hi we denote the second cumulant of Y*. The second cumulant of a random 
variable is equal to its second central moment (see [3]) which altogether wi th the result 
of the Lemma 3.26 concludes the proof. • 

W i t h the results of Lemma 3.28 we are now able to find an optimal choice for the 
constant A as wi l l be seen in the following theorem. The idea is, by the right choice of A , 
eliminate the term dependant on a that for a —> 0 converges to zero the slowest. 

Theorem 3.29. Let K > 1. Let us denote h(a, A) — varY—IP'(K). ThenmmA>o [\h(a,A 
given that A is constant with respect to a, is attained for A = \K. 

Proof. Since by assumption K > 1, by Theorem 3.28 we have that 

K-2A 
T 

From here follows that 

varF = ^ ' ( K ) + — ^ a + 0(aK). (3.87) 

K — 2A 
h(a, A) = —a + 0(aK). (3.88) 

(K, — I)2 

The term \h(a, A)\ w i l l be minimal for such a choice of A that w i l l ensure that 

K-2A , 
j — f j i = 0, ( 3 . 8 9 ) 

hence, A — \K. • 

Corollary 3.30. Let K > 1. Let A = \K, then d = —2c. 

Proof. B y Lemma 3.18 we have that 

A = i ( 2 c + re + d). (3.90) 

B y Theorem 3.29 we have that 

A = ^K. (3.91) 

B y subtracting (3.91) from (3.90) and some computation we obtain d = —2c. • 
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Let us for the completeness also derive the approximation of the expectation of Y for 
K > 1. 

Lemma 3.31. Let K > 1 and the cumulant function be given by Lemma 3.25, then the 
expectation of the random variable Y can be approximated by 

E[Y] = n + r 2 - ln(a) + V ( K ) + 0(aK), (3.92) 

where r\ and r<i are the constants introduced in Lemma 3.17 and Definition 3.19 respec­
tively. 

Proof. From Lemma 3.25 we have for K > 1 the following 

K*(t) = - t - l n ( a ) + \nT(K + t) - l n T f / c ) + ( A - - K )* + 0 ( a K ) . (3.93) 
V - / /,••/— 1 

The first cumulant is obtained by computing the first derivative of cumulant generating 
function in t = 0 (see [3]). The first derivative of (3.93) wi th respect to t is 

K'[t) = - ln(a) + ^ ( K + t) + (A - + 0 ( a K ) . (3.94) 

B y evaluating (3.94) in t = 0 we obtain 

A — -K 
fa = K'(0) = - ln(a) + V ( K ) + ^ - a + 0 ( a K ) . (3.95) 

AC — 1 

Since Ac > 1 we have by Theorem 3.29 A = and hence, the summand containing a in 
the first power is equal to zero. The fact that the first cumulant of a random variable is 
equal to the first moment (see [3]) altogether with the result introduced in Lemma 3.26 
concludes the proof. • 

We wi l l now use a more restrictive assumption on the shape parameter K, which wi l l 
in turn allow us to find a better approximation of the numerical characteristics of the 
transformed random variable Y. 

Lemma 3.32. Let n > 2. Assume that A = \K. Let the cumulant function K(t) be given 
by Theorem 3.25, then the variance of the random variable Y can be approximated by 

„ if/ \ « ( « - l ) ( « - 2 ) - (2AC-3)(5AC 2 - 3 K - 12 B2

} 2 / V (X 

v a r y = i/{K) + - i l k - l W . - 2 ) 2 ^ + ^ ^ 

Proof. From Lemma 3.25 we have for K > 2 the following 

K*{t) = In ( r ( K + * ) ) - * • ln(a) - In (T(K)) + =—— • n 

+ 

(A -\n)-t 

K + t - 1 
(\{A - \K)2 + ^ K ) • t2 + (\KA - ±K{K + 3) - \ B 2 ) • t 

(K + t- 1)(K + * - 2 ) 

1 (2A - K)-(A- \K) • i 

4 U + t 
a2 + 0(aK), (3.97) 
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The second cumulant is obtained by computing second derivative of cumulant generating 
function in t = 0 (see [3]). Using that A — \K the second derivative of (3.97) with respect 
to t is given by 

12B2 + 3 K 2 ) * 3 + (-3K6 + 9K2 - 6n)t2 

+ 

+ 

(K + t- 1 ) 3 (K + £ - 2 ) 3 

(36B2K2 - 15K 4 - 108B2K + 5 4 K 3 + 72B2 - 57K2 + 18K)* 

(n + t- 1 ) 3 (K + £ - 2 ) 3 

2 4 5 2 K 3 - 9K5 - 108B2K2 + 4 5 K 4 + 1 5 6 ß 2 K - 79K 3 - 72B2 + 5 7 K 2 - 14K 
a2 

(K + t- l ) 3 ( K + t - 2 ) 3 

+ 0(aK) (3.98) 

B y evaluating (3.98) for t = 0 and some further computation we obtain 

k 2 = ( A - ) » ( 0 ) = , , ( K ) + K ( K - 1 ) ( K - 2 ) - P K - 3 ) ^ - 3 K - 1 2 ^ ( 3 M ) 

where by fc2 we denote the second cumulant of Y*. B y [3] the second cumulant of a 
random variable is equal to its second central moment, which altogether wi th the result 
of Lemma 3.26 concludes the proof. • 

W i t h the results of Lemma 3.32 and Theorem 3.29 we are now able to find the optimal 
value of the constant c. 

Theorem 3.33. Let K > 2. Let us denote h(a, c) = varF—4>'(K). T/ ien min c > 0 [\h(a, c)|], 
given that c is constant with respect to a, is attained in 

1 a / 6 K ( 6 K 3 - 2 7 K 2 + 4 1 K - 2 1 ) - 6 K 2 + 9K 
c = - - • - ¥ . (3.100) 

6 2 K - 3 v ; 

Proof. Since by assumption K > 2, by Lemma 3.32 we have that 

,// x «(«- 1 ) ( « - 2 ) - ( 2 « - 3 ) ( 5 K 2 - 3 K - 12B2) 2 ^ / K X 

v a r y = V ' W + J 12(K - ! ) » ( « - W l « 2 + 0(a"). (3.101) 

From here by using (3.62) and Corollary 3.30 follows that 

, , K ( K - 1 ) ( K - 2 ) - ( 2 K - 3 ) ( 5 K 2 - 3 K - | [ 8 C 2 + 8 C ( K - 2 C ) + 3 ( K - 2 C ) 2 ] ) „ 
M a ' c ) = 1 2 ( K - 1 ) 2 ( K - 2 ) 2 a 

+ 0(aK). (3.102) 

The term \h(a, c)| wi l l be minimal for such a choice of c that w i l l ensure that 

K ( K - 1)(K - 2) - (2K - 3)(5K 2 - 3K - | [8c 2 + 8C(K - 2c) + 3(K - 2c)2]) 

12(K-1)2(K 
0 (3.103) 

This in general is a quadratic equation with respect to c, but since we assumed c to be a 
positive constant, we have to drop one of the solutions of (3.103), which leaves us wi th 

i a / 6 K ( 6 K 3 - 2 7 K 2 + 4 1 K - 2 1 ) - 6 K 2 + 9K 
c = - - • - * , (3.104) 

6 2 K - 3 ' v ; 

which concludes the proof. • 
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Corollary 3.34. Let c be optimal in the sense of Theorem 3.33, and K —> oo, then we 
have 

- M L + o ( ^ > <3-io5> 

Proof. B y Theorem 3.33 we have 

i V6\K(6K3-27K2+ 41K-21) -6K2 + 9K 
c= — l—l i . (3.106) 

6 2K - 3 v ; 

Since K —> oo we may approximate (3.106) by its asymptotic expansion up to term K ~ 2 

and obtain 

c=l + ^ - + 0 ( \ \ (3-107) 
8 192K \ K 2 , 

which concludes the proof. • 

To complete the theory of approximations for K > 2 let us find the approximation of 
the expectation of Y. 

Lemma 3.35. Let K > 2 and let the cumulant function K*(t) be given by Lemma 3.25, 
then the expectation of the random variable Y can be approximated by 

E(Y) = n + r 2 - ln(a) + ^ ( « ) + ^TT^OC2 + 0(aK). (3.108) 
Z4 ZK — O 

Proof. From Lemma 3.25 we have for K > 2 that the approximation of the cumulant 
generating function may be given by formula (3.97). The first cumulant is obtained by 
computing the first derivative of the cumulant generating function in t — 0 (see [3]). The 
first derivative of the approximation of the cumulant generating function (K*)'(t) is given 
by 

(K*)'(t) = - ln(a) + V ( K + t) + (A- \K)-. * ~ * + G(t, K, C, d) + 0(aK), (3.109) 
2 [K + t — l)z 

where G(t, K, C, d) represents the first derivative of the coefficient of a2 wi th respect to 
t. Taking this derivative is tedious, yet not particularly technically interesting part of 
the proof and hence, the detailed form and derivation of the term G(t, K, C, d) is provided 
in the Maple Document Expectat ionQuadraticTermApprox.mw included in the digital 
appendix of this work. Due to K > 2 we may apply the results given by Theorems 3.29, 
3.33 and Corollary 3.30, and plug the optimal values of the constants into (3.109), and 
by evaluating t = 0 we obtain 

h = - Ha) + ^ ( « ) + ^ ^ r « 2 + 0(aK). (3.110) 
24 2K — 3 

The fact that the first cumulant of a random variable is equal to its first moment (see [3]) 
altogether wi th the result of the Lemma 3.26 concludes the proof. • 

We have found optimal values of al l the constants of the generalised transformations 
proposed in this section. We wi l l end this section by discussing the behaviour of the shape 
characteristics of the transformed random variable when \i is large. 
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Theorem 3.36. The limiting value of the skewness parameter 71 of the random variable 
Y obtained via transformation (3.56) or (3.57) for \i —> 00 is 

7i = 3 - (3.111) 
2 

Proof. The skewness parameter is given by 

7, = , (3.112) 

where //y^ and /xy ;2 are the third and second central moments of Y. If we use the re­
lationship between central moments and cumulants (see [3]) altogether with the second 
result of Lemma 3.26, we can rewrite (3.112) in the following way 

7i = - ^ r , (3.H3) 
F 2 J 2 

where k% and k2 are the third and second cumulants of Y*. We can obtain their asymptotic 
expansions by evaluating the third and the second derivative of the cumulant generating 
function asymptotic expansion given by (3.74) in t = 0. Let us for the sake of simplicity 
denote 

O f t = (3.H4) 

and 

H(t,K 
\{A - \K)2 + £ K ) • t2 + {\KA - ±K{K + 3) - \ B 2 ) 1 (2A - K)(A - \n)t2 

( K + * - 1 ) ( K + * - 2 ) 4 (n + t - 1 ) 2 

(3.115) 

The second derivative is given by 

(K*)"(t) = ip'(t + K) + G"(t, n)a + H"(t, n)a2 (3.116) 

and by evaluating it in t = 0 we obtain 

k2 = (K*)"(0) = II/(K) + G"(0, n)a + H"{0, n)a2. (3.117) 

Similarly the thi rd derivative 

k3 = (K*)'"(0) = ^ " ( K ) + G""(0, «)o! + #"'(0, K ) a 2 . (3.118) 

B y plugging (3.116) and (3.118) into (3.113) we obtain 

r(K) + G"'(0,K)a + H"'(0,K)a2 

7i = 3"- (3.119) 
[II>'(K) + G"(0, /c)a + #"(0, K ) a 2 ] 2 

Due to the reparametrisation introduced in Proposition 3.20 taking limit for m —> 00 
is equivalent to the l imit for a —> 0 and i f we proceed to take this l imit of (3.119) we 
obtain 

7i = T ^ r f i - (3-120) 

• 
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Theorem 3.37. The limiting value of the kurtosis parameter 7 2 of the random variable 
Y obtained via transformation (3.56) or (3.57) for \i —> oo is 

7i = TTTTHT^- 3 - 1 2 1 

Proof. The kurtosis parameter is given by 

7 2 = 7 ^ - 3 , (3.122) 

where HY,4 and HY,2 are the forth and second central moments of Y. If we use the relation­
ship between central moments and cumulants (see [3]) altogether wi th the second result 
of the Lemma 3.26, we can rewrite (3.122) in the following way 

/c4 + 3k. 7 2 = —r - - 3, (3.123) 
^ 2 

where k<± and k<i are the fourth and second cumulants of Y* respectively and we can 
obtain their asymptotic expansions by evaluating the fourth and the second derivative of 
the cumulant generating function asymptotic expansion given by (3.74) in t — 0. A s in 
Theorem 3.36 let us for the sake of simplicity denote 

G ^ J - ^ M (3 ,24) 

and 

H(t K) = ( ^ - H 2 + S " ) • ^ + (\kA ~ T A K + 3) - 1 (2A - K ) ( A - \K)t2 

(k + * - 1 ) ( k + * - 2 ) 4 (n + t - 1 ) 2 

(3.125) 

The second derivative evaluated in t = 0 is given by 

k2 = (K*)"(0) = V»'(k) + G"{0, n)a + H"{0, n)a2. (3.126) 

Similarly for the fourth derivative we have 

h = (K*)iv(0) = ip'"(K) + Giv(0, K)a + Hiv(0, n)a2. (3.127) 

by plugging (3.126), (3.127) back into (3.123) we obtain 

_ V"{K) + Giv(0, K)Q + Hiv(0, n)a2 + 3[JJ'(K) + G"(0, n)a + H"(0, K)a2}2  

7 2 ~ [i;'(K) + G"(0,K)a + H"(0,K)a2]2 { } 

Due to the reparametrisation introduced in Proposition 3.20 taking limit for m —> 00 is 
equivalent to the l imit for a —> 0 and i f we proceed to take this l imit of (3.2) we obtain 

I1/"(K) 
l 2 = WW>' ( 3 ' 1 2 9 ) 

• 
Remark 3.38. It is easy to see, that the limiting value of skewness for \i —> 00 given 
by Theorem 3.36 goes to zero, as K goes to infinity, therefore, for large values of n the 
distribution ofY acts as the normal distribution. 
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Chapter 4 

Theoretical Background of 
Performance Comparison of Selected 
Transformations Within ANOVA 
Framework 

In this chapter our goal w i l l be to provide a theoretical tool that wi l l be used to compare 
performance of the transformations studied in Chapter 3 and some other commonly used 
transformations, namely l n ( V + 1). The comparison wi l l be done within the One-Way 
Analysis of Variance Framework (see [2] or [8] for more detail about One-Way A N O V A ) . 

We wi l l now provide a brief description of the assumed model. Let us have p samples 
Y i = ( Y n , Y l n ) , Y p = (Ypl,Ypn) of equal size n from independent distributions 

Cp{6p) in sequence, such that E Y ^ = Oi for al l i — 1, ...,p and all j = 1, ...,n. 
The task is to test the hypothesis 

i J o : 0 i = ... = 0 P (4.1) 

of equality of expectations among the p samples against the alternative 

Hi : 3i, k e {1, ...,p} i ^ k such that Q{ ^ 9k (4.2) 

of inequality of expectations among the samples. The test w i l l be based on the F statistics. 
The comparison of the transformations wi l l be done by comparing the powers of the F 
test while testing the hypothesis of equality of expectations (4.1) of p random samples 
from either Poisson or negative Binomial probability distribution, on which the above 
mentioned transformations wi l l be applied in order to meet the assumptions of One-
Way A N O V A . Furthermore we wi l l assume, that some of the transformations considered 
wi l l not have the variance stabilising effect, and therefore in order to proceed wi th the 
comparison in Section 4.2 we wi l l study the properties of the F statistic for the case of 
violated equality of variances assumption. 

In Theorems and statements as well as in their respective proofs through the whole 
chapter matrices and vectors of different dimensions wi l l be used. Where needed, we 
wi l l differentiate between the same kinds of matrices of different type by stating their 
type as the lower index. E . g. I n x n w i l l denote the identity matrix of a type n x n , 
whereas Ipxp w i l l denote the identity matrix of a type p x p. In such case the notation 
wi l l be kept through the whole statement and the respective proof. In cases where no 
misunderstanding wi l l be possible however, we wi l l write the matrix along wi th its type 
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only when introducing it (e. g. in the statement of a theorem) and afterwards (e. g. in 
the respective proof) we wi l l , by abuse of notation, drop the index in order to make the 
text more compact and legible. 

4.1 Theoretical Results for Power of F-Test 
We wi l l first provide a derivation of the power of the F-test, when the assumption on 
the equality of variances is satisfied. This section is based on results from [2], [8], results 
concerning matrix algebra can be found for example in [10]. Assume the classical One­
way Analysis of Variance setting (for more details see [2], [8]). For each % = 1, ...,p set 
Y j = (Yn,Yin)T the random sample of a size n of N(9i,a) and assume that the p 
random samples are mutually independent. B y stacking the p samples above each other 
we obtain a random vector Y = ( Y n , Y \ n , Y p i , Y p n ) T , wi th distribution 

Y ~ Nnp{6 <g> 1„, a2Inpxnp), (4.3) 

where 6 = 6P = (9\,9P)T, and a2 is the variance. Let us furthermore denote 

— 1 " 
Y * = - X X ' f ° r i = l i - i P (4-4) 

7 1 3=1 

the arithmetic mean of each sample, and by 

•i P n 
Y = ™ E E ^ ' M i = l,-,P (4.5) 

y i=i j=i 

the arithmetic mean of al l the samples. 
The test statistic derived from the likelihood ratio test statistic is of following form 

(see [2], [8]) 

„_p(n-l) E L i < Y i ~ Y ? _p(n-l)K1 

P - 1 ^ E ? = 1 E " = 1 ( ^ - ^ ) 2 p - i K, 
(4.6) 

For computing the power of the test based on the statistic (4.6) it is necessary to know 
the distribution of F under the nul l hypothesis and the alternative. Using the matrix 
notation, statistics Ki,K2 can be expressed as follows 

Kl = ^ 2 ^~-^pxp ® ^Ipxp p " ^ " ^ ^ ^~^pxp ® l n ^ = Y npW\.npxnp^iY n p (4.7) 

1 T ( 1 J, \ rp 

K-2 = ^np I ^-npxnp ~^-pxp ® ( l n l n ) J^np = ^np^-npxnp,2^np (4-8) 

The first important result is given by the following lemma. 

Lemma 4.1. Quadratic forms K\, K2 given by (4.7), (4.8) are independent both under 
null hypothesis and alternative. 

.21 Proof. It is enough to see that M n p x n P : 1 a 2 l n p x n p M n p x n P : 2 = 0npxnp (see [2]), where by 0 we 
[•npxnp,lO~ ~^-npxnp^^-npxnp,2; denote the matrix, whose entries are only zeros. Let us denote P 0 — M n „ x n „ 1 a 2 I n „ x n „ M r 
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then we have 

1. 
o 

n . . 
., i "lpxp ® In 

(T2 V n 

2T _ / T 
InriYnT) <-» I -L 

T 1„1 

'•npxnp ̂ 2 \ npxnp II '-pxp ( I n l 

~9 I ~*-pXp 

n i l 
9 I ••-pxp 

Lpxp 

Lpxp 

p 
1 

1 1 T 

Lpxp 

Lpxp 

Let us denote 

Pi = 

lpxp <S> l r 

Ipxplpxp 

(lpxp ® Inxn) 

•-pxp <y •"•nXrv 

lpxp 

Lpxp 

(O* 

Inpxnp lpxp ® (lnlf i . 

(lpxp ® Inxn) IpXi 

( I n l D 

- I 
n •pxp ( i n O 

lpxp 

Ipxplpxp i - i T i iT) 

np X npj 

and hence, also Pr, = 0 

(4.9) 

npxnp-

(4.10) 

• 

4.1.1 The Distribution of Denominator 
The following Lemma wi l l be given for a quadratic form 

K' — v T I V P „ V 
I*-2 — np npxnp,2 x np 

(4.11) 

with more general matrix M' n p X „p , 2 = c r 2 M n p X n p ,2 - It is obvious, that the same results 
hold for K2 wi th M n p X n p , 2 -

Lemma 4.2. Let K'2 be a quadratic form given by (4.11), assume that under null hy­
pothesis Ynp ~ Nnp(91np,a2lnpxnp), and under alternative Ynp ~ Nnp(0 <8> In, cr 2 I n p X n p), 
where 0 — (0\, ...,9P)T, then we have 

K'2 = ( Ynp — 0p® l n ) T M'npxnp,2( Ynp — 6p® ln) = ( Ynp — 91np) M'npxnpfii Ynp — 9 lnp). 
(4.12) 

Proof. Let us first show that (Ynp - 9 l n p ) T M \ p x n P i 2 ( Y n p - 91np) — K'2. We have that 

^20 = i^np ^lnp) -M- npxnpfii^np 9^-np) 
= ( Y ^ p M ' n p X n P ) 2 ~~ ̂ l n p M ' n p x n p , 2 ) ( Y n p — 91np) 
= ( Y n p M ' n p x n p , 2 Y n p — ^ l n p M npxnp,2^np Y n p M upxrip^^np 

+ 01npM'npxnp,201np) (4.13) 

Observe that 

•50 



1 T TV III 

np npxnp,2 np npxnp 
n '-pxp 1 V 

= 1 np T T I 
y*-p *-pXp) 

Consequently also M ' 
to symmetry of M.\pxnp^ 

npxnp,2 *-np 

-VI V 
J-n n n 

n 
1 T 1\/T' 

np npxnp,2 

np 

1T 

- P - i 
n pxp 1 I1 

np \^p ) ^ \^n) ~npxnp 
(4.14) 

) T = 0, where the first equation is due 
, and hence, we have K 2 0 = Y M ' 

Let us now see that (Y, 
before we have 

np Or, 
np 

1 \TA/f> ( V *-n) l v ± npxnp,2\ A np 

v 
npxnp,2 A np 

Op <g> ln) = 

K'2. 
K2 Similarly as 

Ki = (Y„p - op ® i n ) T M ' 

= ( Y l p M ' n p x n P i 2 — (61 

ny J - * - 1 - npxnp,2\ np ^p 
® 1 J T M ' npxnp 2) ( Y n p - (0 p ® l n ) ) 

( Y T M ' 
V np 

v 
npxnp,2 A np 

+ (0 P ® 

and we have that 

(0 P (8) 

M npxnp,2 

(6>p̂  

^lnp) ; 

1 ^ T V P V J-n/ l v - 1 npxnp,2 A np Y r 1\/P np1*-1- npxnp,2 {Op 

(4.15) 

l n ) I p M ' npxnp,2 {Op 

{Op 

Lnpx np 
n 

Lpxp vA"Ara, 

{0 
n '-pxp 1 V 

K*-n*-n, 

{0 {0p lpxp I 
n 

VI V 
A n -"-n J-n 

= {°T

P 

npxnp,2 

-VI 

J-n/ l v - 1 npxnp,2. 

0 (4.16) 

T = 0, where the first Again we have also that M ' n p x n P i 2 ( 0 p <8> 1 )̂ = (0p 
equation is due to symmetry of M ' n p x n P i 2 , and hence, we have K'21 = Y ^ p M ' 
K ' 2 , which concludes the proof. 

npxnp,2 Y n p 

• 
Definition 4 .3 . Let us define a matrix H of a type p x p a s 

H pxp •-pxp T n l 
P P*~p 

p p 

4 \ 

V 

(4.17) 

this matrix is called the Centering matrix of a type pxp (see [11]). 

Lemma 4 .4 . The matrix Hpxp given by Definition (4.3) is positively semidefinite and 
idempotent, and rank(Hpxp) = p — 1. 

Proof. We wi l l first show, that matrix H „ x „ is idempotent. We have that 

H pxp HpxpHpxp ^Ipxp ^ A p A p 

I - - 1 1 T 4- — 1 1 T 1 1 T 

ipxp p P P p2 P P P P 

I - - 1 1 T 

PXP p p p 
2_ 

V 
lpxp „ l p l p p2^~"P~^~P 

I - - 1 1 T H •pxp (4.18) 

51 



Obviously by its definition the matrix Hpxp is symmetric. Due to Proposition 1.21 we 
have that a symmetric, idempotent matrix is positively semidefmite. It is also easy to 
see, that the trace of Hpxp is p — 1. Due to Proposition 1.20 we have that rank(Hpxp) = 
Tr{Hpxp) = p - 1. • 

Lemma 4.5. The matrix M'npxnPj2 is nonzero, and idempotent, with trace p(n — 1). 

Proof. The fact that M ' n p x n | ) i 2 is nonzero is obvious. Idempotency of M ' n p x n p i 2 follows 
from the fact that 

•M- npxnp,2 Inpxnp ~Ipxp ® l n l « Ipxp ® Inxn ~Ipxp ® l n l « 

Ipxp 
1 T T 1 1 T 

n 
I p X p ® H n x n , (4.19) 

where H n x n is a Centering matr ix from Definition 4.3. Due to Lemma 4.4 we have, 
that H n x n is idempotent, Ipxp is clearly idempotent as well, and it is easy to see that a 
Kronecker product of two idempotent matrices is again an idempotent matrix. Due to 
Proposition 1.20 we have that rank(M.\pxnPt2) = T r ( M ; ' n p x n p ^ ) = p{n — 1). • 

W i t h the previous Lemmata we can conclude about the distribution of the quadratic 
form K'2. That result is collected in the following theorem. 

Theorem 4.6. The distribution of K'2 is Xp(n-i) both under zero hypothesis and under 
the alternative. 

Proof. This comes as a direct result of Lemmata 4.2, and 4.5, and Proposition 1.38. • 

4.1.2 Distribution of the Numerator Under Alternative 
Let us now examine the quadratic form K\ of the numerator under the alternative. Let 
us denote 

Z p = { - \ p x p ® \ i \ Y n = (j1,...,Yp) (4.20) 
n 

the random vector Zp 

Proposition 4.7. The random vector Zp has a distribution Zp ~ Np(0p, ^Ipxp) 

Proof. This comes as a direct result of the distribution of the arithmetic mean (see [2]). • 

W i t h the 7iP and Hpxp notation we can express the quadratic form K\ in the following 
way 

Kx = — Z j H p x p Z p . (4.21) 
a 

Now let us introduce a new random vector XJP given by 

Up = —^-HpxpZp. (4.22) 

Proposition 4.8. The random vector Up given by equation (4.22) has a probability dis­

tribution Up ~ Np(^Hpxpdp,Hpxp) 
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Proof. The proof relies on the linearity property of the expectation and the properties of 
the normal distribution (see [2], [4]). We have that 

E(U) = E ( ^ H Z ) = ^ H E ( Z ) = ^ H 0 , (4.23) 
a a a 

and for the variance we have 

var(U) = v a r ( ^ H Z ) = ^ H v a r ( Z ) ^ H T = ^ - H - I H T , (4.24) 
a a a a2 n 

A n d due to Lemma 4.4 H is idempotent, and we have that 

var(U) = H . (4.25) 

• 
Proposition 4.9. Using the transformation given by equation (4.22) we can rewrite K\ 
as follows 

KX=UT

VUV. (4.26) 

Proof. We have 

t F U = ^ ( H Z f ^ ( H Z ) = ^ Z T H T H Z = ^ Z T H Z , (4.27) 
a a a a 

where the last equality is due to the idempotency of H . • 

Lemma 4.10. Let Hpxp be the centering matrix given by (4.17). Then there exists its 
decomposition 

HpXp = S p x ( p _ 1 )Sp X ( p _ 1 ) , such that Sp X ( p _ 1 )S p x ( p _ 1 ) = J(p_1)x(p_1) (4.28) 

Proof. Since H is positive semidefinite, with rank rank(H) = Tr(H) = p — 1 (see Propo­
sition 1.20), we have due to Proposition 1.15 that H = B B T , where B is a p x (p — 1) 
matrix and rank(B) = p — 1. Due to Lemma 4.4 H is also idempotent. Let L ( p _ ! ) x p be 
the left inverse of B , and P p x ( p _i) be the right inverse of B T . We have that 

L ( B B T B B T ) P = L ( B B T ) P = (LB) (B T P) = I, (4.29) 

where the first equality is due to idempotency of H = B B T . We also have that 

L ( B B T B B T ) P = ( L B ) B T B ( B T P ) = I B T B I = B T B , (4.30) 

and therefore B T B = 1. • 

Lemma 4.11. Let W p _ i be a random vector given by transformation W p _ i = S p x / p _ 1 ^ Up, 
where S p x / p _ 1 ^ is obtained via the decomposition of Centering matrix Hpxp as given in 

Lemma 4-10. Then W p _ i ~ Np_i ( ^ S p x / p _ 1 ) 0 p , /(p_i)x(p_i)), and the quadratic form K\ 
can be written as 

Kx = WTBTBW= WTW. (4.31) 
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Proof. Let us first show, that the distribution of W p _ i is Np_i ( : ^Bj x ( - p _ 1 - ) 0p, I ( p _i) x ( p _i) ) 
we wi l l again make use of the results of linearity of expectation as an operator and 
properties of the normal distribution (see [2], [4]). We have that 

E(W) = E ( B T U ) = B T E ( U ) = — B T H 0 „ , (4.32) 
a 

where the last equality is due to Proposition 4.8. For variance of W we have 

var(W) = v a r ( B T U ) = B T v a r ( U ) B = B T H B = B T B B T B = I (4.33) 

where var(U) = H is given by Proposition 4.8, and the last inequality is due to column 
orthogonality of B , which is given by Lemma 4.10. Last ly we have W = B T U and 
therefore also U = B W , and hence, using Proposition 4.9, 

Kx = U T U = ( B W ) T ( B W ) = W T B T B W = W T W . (4.34) 

• 
Theorem 4.12. The distribution of K1 under the alternative is K1 ~ Xp-i,s where param­

eter of noncentrality 5 = ^0TBBT0 = ^6THO = £ E L i ( ^ - # ) 2 > where 6 = ± £ J = 1 9j. 

Proof. This comes as a result of Lemma 4.11, and Proposition 1.39. • 

Corollary 4.13. The distribution of K\ under the null hypothesis 9\ = ... = 9P is central 
X2 with p — 1 degrees of freedom 

Proof. Given the hypothesis 9\ — ... — 9P, we have that the parameter of noncentrality 

5 = %eTBBTe = %eTne = % T,i=M - W = o • 

4.1.3 Power of F-Test 
W i t h the results regarding the distribution and independence of numerator and denom­
inator of the F statistic under null hypothesis and alternative, we are able to provide a 
result on the distribution of the F statistics. 

Theorem 4.14. The distribution of the F statistic (4.6) under the null hypothesis is 

F ~ ip-l ,p(n-l)-

Proof. Due to Corollary 4.13 we have that distribution of K\ under the null hypothesis is 
Xp-i, and due to Theorem 4.6 the distribution of K2 is both under the null hypothesis and 
the alternative x2

p{n- -iv We have seen in Lemma 4.1 that K\, and K2 are independent, 
and therefore we have F ~ F p _ l i P ( n _ 1 ) (see [8]). • 

Theorem 4.15. The distribution of the F statistic (4.6) under the alternative is F ~ 
Fp-i,P(n-i),5, with the parameter of noncentrality 8 — ^ Y7i=i(0i—9)2, where 9 = ^ Y7j=i 

Proof. Due to Theorem 4.12 the distribution of K\ under the alternative is noncentral 
Xp-i,s- ^ n e t ° Theorem 4.6 the distribution of K2 is both under the null hypothesis and 
the alternative Xp(n-i)- ^ e have seen in Lemma 4.1 that Ki, and K2 are independent, 
and hence, F statistic has the noncentral distribution i ^ - i ^ n - i ) ^ (see [8]). • 

Now we wi l l provide the formula for the power of the F-test. The power of a test 
at the significance level a is the conditional probability of rejecting the null hypothesis, 
given the condition that the alternative holds. 
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Definition 4.16. Let the test statistic be given by (4.6). We define the power of the 
F-test at the significance level a as 

(3a(d)=P{F>QF(l-a;p-l,p(n-l))\d}, (4.35) 

where by <3F(1 ~ a'iP ~ l,p(n ~ 1)) we denote the 1 — a quantile of F distribution wi th 
degrees of freedom p — 1, p(n — 1). 

Proposition 4.17. We may write the power of the F-test (3(0) as follows 

Pa(d) = 1 - TF5(QF(1 - a - p - l,p(n - l)),p- l,n(p - 1), 5) (4.36) 

where J 7 ^ is the distribution function of noncentral F distribution F p _i i P ( n _i)^ from the 
Theorem J^.15. 

Proof If P(A) > 0, then clearly P ( - |A) is also a probability measure on (Q,A) (see [4]), 
hence, it has al l the properties of probability measure, namely P(B\A) = 1 — P(B\A), 
where B is the opposite event to B. Hence, we have 

(3a(d) = P{F > QF(1 - a - p - l,p(n - 1))|0} (4.37) 

= 1 - P{F < QF(1 - a - p - l,p(n - 1))|0} 

= 1 - FFs(QF(l - a - p - l,p(n - l)),p- l,p(n - 1), S). (4.38) 

• 

4.2 Theoretical Results for Power of F-Test with Un­
equal Variances 

In this section we wi l l provide an approximation of the distribution of the F-test statistic 
in case that the assumption of the equality of variances is violated (see the beginning 
of the Chapter 4 for details about the One-Way Anova and the F test and [2] and [8], 
compare wi th Section 4.1). Some results of the matrix algebra not featured in Chapter 
1 may be found in [10]. Assume that we have p independent random samples Y i , Y p 

of a size n of probability distribution iV(/ij, of), where % — 1, ...,p. Set Y j = (Yn, ...,Yip)T 

for % = l,...,p B y stacking the samples one above another we obtain a random vector 
Y n p = ( I n , Y l n , Y p l , Y p n ) T wi th probability distribution 

Y - Nnp(0 (g) l n , diag(cr2) ® I n x n ) , (4.39) 

where 6 = 0P = (9\,0P)T, cr2 = cr2 = (of, •••,cr2) the vector of variances. 
The test statistic derived from the likelihood ratio test statistic is (see [2], [8]) 

„ Pin-I) E l M Y i - Y ) 2 p(n-l)K[ 

P - 1 EtiE" = 1 (^-^) 2 p- i W 
(4.40) 

where the terms Y, Yi are given by formulas (4.4) and (4.5) applied to the current setting. 
For computing the power of the test based on the statistic (4.40) it is necessary to know 
the distribution of F under the nul l hypothesis and the alternative. Using the matrix 
notation, statistics K\,K2 can be expressed as follows 

Ki — nYnp ^ — Ipxp ® l n ^ ^Ipxp ^Jn^PXP ^ ^ = ^nP^^ npxnp,l^np (4.41) 

K2

 = Y n j 9 ^f-npxnp ~Ipxp ® ( l n l n ) ^ Y n p = Y n p]V[ npxnp,2^np (4.42) 
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Lemma 4.18. Quadratic forms K[, K'2 given by (4.41), (4.42) are independent both 
under null hypothesis and alternative. 

Proof. A s previously in Lemma 4.18 we need to show M''npXnPtivar(Yrip)M,

npxnp^ = 
Onpxnp (see [2]). Let us denote 

Fo = M ' n p X n P j l v a r ( Y n p ) M ' n p x n p , 2 = M ' ' npxnp,i{diag((T2) ® Inxn)M\pxnp,2, (4.43) 

then we have 

(diag((T2) <8 I n x n ) ^I n p X r i p - ^Ip Xp <8> ( l » l £ ) J ( 4 - 4 4 ) 

Notice that the matrices (diag(cr2) <8 I n x „ ) , and ^ I n p x n P - ^I P x P <8 ( 1 „ 1 ^ ) ) commute, 

indeed we have 

P[ = (diag((T2) <8 I n x n ) ^ I „ p X n p - "^xp <8> ( I n O ^ 

= (diag(cT2) <g> I n x n ) I n p X „ p - (diag(cr2) <8> I n x n ) /. p ® ( 1 » 1 , ) . 

(diag(a2) <g> I n x n ) - ^ao (c r 2 )^ - Ip X p^ <8> ( I n x „ l n l ^ ) 

(diag((T2) <8 I n x n ) - ^ i m o ( < 7 2 ) ^ ® (MJD 

^•npxnp 

(diag(cr2) <g> I „ x n ) - f i l p x p d i a # ( < 7 2 ) ) <g> (1 

Inpxnp(diag{(T2) <g> I n x „ ) - f ~ W ® ( Inln)^ (diag((r2) <g> I „ x n ) 
^Inpxnp - ^Ipxp ® ( l n l D j (diag(cT2) (8) Inxn), (4-45) 

and hence, we can write 

Ipxp <8 l n 

^Inpxnp - ^Ipxp <8> (Inln)^ {diag{(T2) ® I 

(4.46) 

We have seen in the proof of Lemma 4.1 that the term 

^I p X p ® In") (ipxp - ^ M j ) ( ^ P x p ® I n ) (inpxnp " ^Ipxp ® ( l „ l £ ) ) = 0, (4.47) 

and hence, PQ = 0. • 
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4.2.1 Study of Denominator 
In the Section 4.1 we saw, that regardless of the assumption on variance of Y we have 

K1 — ~vT 1VP v 
ly2 — np npxnp,2 1 np 

— ( Y n p Bp ®) In) -M-'npxnp,2 ( Y n p Bp ®) In) 

( Y n p 91.np) ]VI npxnp,2^Ynp f91np). (4.48) 

Therefore we may without the loss of generality in the following consider the expression 

K'2 = (Ynp -Bp® l „ ) T M ' n p x n | ) i 2 ( Y n | ) -Bp® ln) (4.49) 

Proposition 4.19. Let us denote Y0 = (Y—Bp®ln), then Y0 ~ Nnp(0,diag(crp

i)®lnxn). 
and the quadratic form may be written as 

K'2=YT

0M>npXnptYQ. (4.50) 

Proof. Due to linearity of expectation and properties of the normal distribution (see [4]) 
we have that 

E ( Y 0 ) = E ( Y -Bp® ln) = E ( Y ) - Bp ® l n = Bp ® 1„ - Bp ® ln = 0. (4.51) 

A n d for the variance 

var(Yo) = v a r ( Y - Bp ® ln) = var (Y) = diagitf) ® I n x n . (4.52) 

The result (4.50) is obvious. • 

Proposition 4.20. Let X0 ~ Nnp(0np, I n p x n p ) , then there exists a matrix Tnpxnp such 
that 

Y0 = TX0. (4.53) 

Proof. We wi l l provide a constructive proof by finding the matrix T . In order for T to 
satisfy (4.53), the following must hold. 

0 = E(Y„) = E ( T X 0 ) = T E ( X 0 ) = TO, (4.54) 

and 
diag{(T2) ® I = var(Yo) = v a r ( T X 0 ) = T v a r ( X 0 ) T T = T I T T . (4.55) 

Since the equation (4.54) is satisfied for any matrix T , by choosing T = diag{(Tp) ®Inxn, 
where crp = ( o " i , a p ) T is the vector of standard deviations of Y , also the equation (4.55) 
is satisfied, which concludes the proof. • 

Lemma 4.21. The quadratic form K'2 may be written in a form 

K ' 2 = XQ NnpxnpX0, (4.56) 

where 

1 
N n p x n p = diag(cr ) ® 1 -,T 

inxn -Ln-L

n n 
(4.57) 
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Proof. Let us first see, that (4.57) holds. We have 

N = T M ' npxnp,2 -

(diag(crp Ir Innxnp Ipxp 
n 

^ l n l n ) (diag(crp) <g> I n x n ) 

(diag(crp) ® I 

(diag(crp) ® I n x „ ) ) ^ I p x p 

(diag(crp)Ipxp) <g> ^1 
ra x n 

(diag(o-p)Ipxpdiag(crp)) 

diag(cr2" 

Ipxp ® Inxn) Ipxp 1 1 T 

1 
("Inxn) 

(diag(crp) ® I r 

(diag(crp) ® I n x „ 

1 
("Inxn) (l^-^n, (diag(crp Ir 

(I ) _ _ c i 1'J -
V-'-nxny ?7, 

T - - l r 

Seeing that (4.56) is satisfied is simple. Indeed, we have due to Proposition 4.19 

AT 2 — Y Q ]V1 npxnp,2 Y Q . 

(4.58) 

(4.59) 

Since due to Proposition 4.20 Y 0 = T X 0 , by plugging this into (4.59) we obtain 

npxnp,2 A".; = ( T X 0 ) T M ' n p x n p , 2 ( T X 0 ) = X ^ T T M ' n p x n p , 2 T X 0 = X ^ N X 0 . (4.60) 

• 
Our task now is to find eigenvalues and eigenvectors of the matrix N so we can 

determine, what is the distribution of the quadratic form K 2 . Let us introduce the 

following notation. Let N i = diag(cr2), and N 2 L ±1 1 T 

Proposition 4.22. The matrix AT2 is symmetric, idempotent, and positive semidefinite. 

Proof. Observe that N 2 = H n x n is in fact a Centering matrix of a type n x n a s defined in 
Section 4.1, Definition 4.3. The proof of symmetry, idempotency, and positive definitness 
of a Centering matrix is given by Lemma 4.4. • 

Lemma 4.23. N2 has n — 1 eigenvalues equal to one, and one eigenvalue equal to zero. 

Proof. In Proposition 4.22 we have seen that N2 is idempotent. Furthermore we have by 
Proposition 1.16 that 

^ A , = T r ( N 2 ) = n - l , (4.61) 

and since due to Proposition 1.19 we have that eigenvalues of Idempotent matrix are 
either ones or zeroes, we see that n — 1 eigenvalues have to be ones and exactly one 
eigenvalue is zero. • 

Lemma 4.24. Eigenvalues of matrix Ni are o \ , a p . 

Proof. This follows tr ivial ly from the form of characteristic polynomial of a diagonal 
matrix. • 
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Lemma 4.25. Eigenvalues of the matrix N with their multiplicities are a2,...,a2 with 
multiplicities n — 1, and 0 with multiplicity p. 

Proof. Due to Proposition 1.17, and Lemma 4.24 we have that the eigenvalues of a K r o -
necker product of matrices N i , N 2 are 

2 2 2 2 2 / \ 
c r ^ i , a ^ m , a2/j,i,a2fim,anfim, (4.62) 

where of are the eigenvalues of N i and /Xj are the eigenvalues of N 2 . Since by Lemma 
4.23 exactly one eigenvalue of N 2 is fij = 0, and the rest are ones, exactly p terms of 
(4.62) are zeroes and n — 1 are erf for % — 1, ...,p. • 

Theorem 4.26. There exists a decomposition of N such that 

N=PAPT, andPPT = I, (4.63) 

where P is the column orthonormal matrix of eigenvectors of N. Consequently the 
quadratic form K2 can be written in the form 

K'2 = X^PAPTX0 = VTA V, (4.64) 

where V is a Gaussian random vector given by V = PTX0, satisfying E(V) = 0, and 
var( V) — I. 

Proof. Since N is clearly a symmetric real matrix the decomposition (4.63) is given by 
Proposition 1.12. The equation (4.64) is obtained merely by plugging (4.63) into (4.56). 
V is clearly Gaussian, since it is obtained as a linear transformation of Gaussian random 
vector X 0 (see [2]), as for the characteristics we have 

E(V) = E ( P T X 0 ) = P T E ( X 0 ) = 0, (4.65) 

since E ( X 0 ) = 0, and 

var(V) = v a r ( P T X 0 ) = P T v a r ( X 0 ) P = P T I ( X 0 ) P = I, (4.66) 

where the last equality is due to matrix P being column orthonormal matrix. • 

Corollary 4.27. Quadratic form K'2 can be expressed as 

v 
5 > p Q , (4.67) 
i=l 

a linear combination of p independent identically distributed random variables ~ Xn-i 
i = l,...,p. 

Proof. Due to Theorem 4.26 we have that K'2 = V T A V , evaluating the product we obtain 
that 

np 

K2 = J2\iV2, (4.68) 
i=l 

where A, are the eigenvalues of N and V* are the entries of the vector V ~ A/"(0,1). Due 
to Lemma 4.25 we have that p eigenvalues of N are zeroes, hence, p terms in the sum 
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of (4.68) are zeroes. Furthermore also due to 4.25 we have that the rest of p(n — 1) 
eigenvalues are a 2 , . . . ,<7p, each wi th mult ipl ici ty n — 1, hence, we have that 

p(n—1) 

K = X ^ = a ' V ? + - + a l V « - l + rtVn + - + <&L-2 + - + ^X(n-1) 
i=l 

= ai(V? + ... + V2_x) + ... + a2

p(Vp\n_1}_n+2 + ... + Vp\n_1}). (4.69) 

Clearly Vi ~ 7V(0,1), and are mutually independent (var(V) = I), and hence, due to 
Proposition 1.35 we have that X1 = ( I f + ... + V ^ - i ) ~ xl-i, ^ P = ( V 2 ^ ^ ^ + ... + 

^f( n _i)) ~ Xn - i ) a r e V independent identically distributed random variables, and we may 
write 

v 
K 2 = J > 2 X , . (4.70) 

i=l 

• 
4.2.2 Study of Numerator 
Let us recall the random vector 

Z p = [ h p x p ® lT

n)Y = ( F l s Y n ) , (4.71) 

that we introduced already in Section 4.1 (see (4.20)). 

Proposition 4.28. The distribution of Zp is Np(0, -diag(cr2)), 

Proof. This comes directly as a result of distribution of arithmetic mean (see [2]). • 

Let us recall that in Section 4.1 we have defined the Centering matrix Hpxp (see 
Definition 4.3). W i t h the notion of Z , and the Centering matrix H we can rewrite K[ in 
the following form 

K[ = nZ^UpxpZp. (4.72) 

Now let us introduce a new random vector XJp by 

U p = V^KPxPZP (4.73) 

Proposition 4.29. The random vector Up given by equation 4-73 has a probability dis­
tribution Up ~ Np(y/nHpXpO,HpXpdiag((Tp)HpXp, and the quadratic form K[ may be 
expressed as follows 

K[=UT

pUp. (4.74) 

Proof. 

E ( U ) = E ( ^ n H Z ) = V n H E ( Z ) = y ^ H f l , (4.75) 

and for the variance we have 

var (U) = v a r ( V n H Z ) = v ^ H v a ^ Z ) ̂ / n H T = n H - & g ( ( T 2 ) H T = Hdiag{(T2)HT., 

(4.76) 

A s for the second part, we have 

U T U = V n ( H Z ) T V n ( H Z ) = n Z T H T H Z = n Z T H Z , (4.77) 

where the last equality is due to the idempotency of Hpxp. • 
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Proposition 4.30. There exists a random vector X0 ~ Np(fj,p, Ipxp), and a matrix Spxp 

such that 

Up = SpXpX0, (4.78) 

and consequently the quadratic form K[ can be written as 

K[ = X% SpXpSpXpX0. (4.79) 

Proof We w i l l provide a constructive proof of (4.78) by finding the matrix S, and the 
vector X 0 . In order for S, and X 0 to satisfy (4.78), the following must hold. 

V ^ H f l = E(U) = E ( S X 0 ) = S E ( X 0 ) = Sfi, (4.80) 

and 
Udiag((T2)UT = var(U) = var(SX 0 ) = Svar (X 0 )S T = SIS T . (4.81) 

B y choosing S = HpXpdiag((Tp), where crp = (o"i, ...,ap)T, is the vector of standard devi­
ations of Y , and Hpxp is a Centering matrix, the equation (4.81) is satisfied. If we now 
plug S = HpXpdiag((Tp) into (4.80) we get that in order for the equality to be satisfied 

A s for the second part, we have 

K[ = U T U = ( S X 0 ) T S X 0 = X T S T S X 0 . (4.82) 

• 
Proposition 4.31. The matrix SpXpSpxp is positively semidefinite of a rank p — 1. 

Proof Let us first do a following observation 

S T S = (~H_diag(cr))T~iidiag(cr) = diag{cr)~HH.diag{cr) = diag{cr)~H.diag{cr), (4.83) 

where the second equality is due to symmetry, and the third equality is due to idempotency 
of the centering matrix H . Now let v p e W be an arbitrary vector. First we check the 
symmetry 

[diag(cr)'Hdiag(cr))T = (diag(cr)T (diag(cr)il)T 

= (diag(cr))T~iiT diag(cr)T 

= diag(cr)iidiag(cr), (4.84) 

where the last equality is due to the symmetry of H and diag(cr). Now we check the 
condition of positive semidefiniteness 

vTdiag(cr)~H.diag(cr)v = [(diag(cr))T (yT)T~\T~H.diag(cr)v = (diag(cr)\)T'Hdiag(a)v, 

(4.85) 

and if we denote u = diag(cr)v, then up e M.p is again an arbitrary vector, and we have 

u H u > 0, (4.86) 

due to positive semidefmitness of the centering matrix H . Regarding the rank, clearly 
diag(cr) is of a full rank p, since it is a diagonal matrix. We also know that the rank of the 
Centering matrix H is p — 1 (see Lemma 4.4). Due to the Proposition 1.5 we have that 
rank(diag(cr)'H.) = rank(ii) = p — 1, and therefore by applying the proposition again we 
have rank(diag(cr)'H.diag(cr)) = p — 1. • 
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Theorem 4.32. There exists a decomposition of matrix SpxpSpXp such that 

Spxp^pxp = PpxpA-pxpPpxpi and PpxpPpXp = Ipxpi (4.87) 

where Ppxp is an orthonormal matrix of eigenvectors of SpxpSpxp. Consequently the 
quadratic form K[ can be written in the form 

K[ — -X'o'Ppxp-h-pXpPpXpX0 = VpApxp Vp, (4.88) 

where Vp is a Gaussian random vector given by Vp = PpxpX0, satisfying E( Vp) = 
PpXpHp, and var( Vp) = Ipxp. 

Proof. Due to Proposition 4.31 S T S is a real symmetric positive semidefinite matrix, and 
hence, we can apply Proposition 1.12 to obtain (4.87). The equation (4.88) is obtained 
merely by plugging (4.87) into (4.79). V is clearly Gaussian, since it is obtained as a 
linear transformation of Gaussian random vector X o (see [2]), as for the characteristics 
we have 

E(Z) = E ( P T X 0 ) = P T E ( X 0 ) = PTn, (4.89) 

since E(Xrj) = /x, and 

var(Z) = v a r ( P T X 0 ) = P T v a r ( X 0 ) P = P T I P = I, (4.90) 

where the last equality is due to matrix P being an orthonormal matrix. • 

Corollary 4.33. Quadratic form K[ can be expressed as 

p-i 

K[ = Y,KX» (4-91) 
i=l 

a linear combination of p — 1 independent random variables Xi ~ xis- i = 1> ••••>P ~ 1> 
where strictly positive numbers A« are the nonzero eigenvalues of SpXpSpXp. 

Proof. Due to Theorem 4.32 we have that K[ = V T A V , evaluating the product we obtain 
that 

K'1 = J2W?, (4-92) 
i = i 

where A« are the eigenvalues of S T S and Vi are the mutually independent entries of the 
vector V ~ N(PTfx, I). If we denote P = [ p 1 ; p p ] , where p l 5 p p are the correspond­
ing eigenvectors of S T S , we have that PT\i = (pf/x, . . . , p J / x ) T , and hence, we can write 
the distribution of each entry of V as Vi ~ N(pffj,, 1). B y applying the Proposition 1.39 
for special case j — 1, we obtain that each V? ~ xi s-i where Si = (pf /x) 2 for each JQ. Due 
to Proposition 4.31 we have that rank(STS) — p — 1, and hence, exactly one eigenvalue 
of S T S is equal to zero, and we can write 

P-I 

K[ = J 2 ^ ( 4-93) 
i=l 

where the Aj, % — 1, ...,p — 1 are the remaining nonzero eigenvalues of S T S . Finally, since 
S T S is positive semidefinite as seen in Proposition 4.31, al l its nonzero eigenvalues are 
strictly positive. • 
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4.2.3 Approximation of F Statistic 
We have seen in the previous subsections, that the denominator of the F statistic in case 
of violated variance equality assumption is a linear combination of central x2 distributed 
independent random variables, and the numerator is a linear combination of noncentral 
X2 distributed independent random variables. In order to determine the power of the 
F-test based on the test statistic (4.40) we wi l l provide a method of approximating linear 
combinations of independent x2 random variable by a single x2 random variable. The 
following two statements are based on [12]. 

Lemma 4.34. Let Q = Y^!k=i A * X f c , with \ > 0 and Xk mutually independent random 
variables with probability distribution xlk,sk> then there exist strictly positive numbers 
A*,z/*, and nonnegative number 5*, such that Q* = \*X*, with X* ~ xl* <5„> satisfying 
E(Q) = E(Q*), and var(Q) = var(Q*), and therefore 

P{Q <q}~ P{Q* < q}, (4.94) 

and the formulas for the parameters are 

A* = (4.95) 
Rx + 2R2 

R1(R1 + 2R2) 

R2(Ry + 2R2) 

(4.96) 

(4.97) 

with 

i?3 + 2i?4 

m 

^ A r t = i ? 1 = A V , (4.98) 

k=l 

X ^ k + X k 5 k = Ri + Ri = A > * + 5*), (4.99) 
k=l k=l 

m m 

2 X&k + 4 Yl X^5k = 2 i ? 3 + 4S± = 2(A*) V + 25*). (4.100) 
k=l k=l 

Proof. See [12] for details. • 

Theorem 4.35. Let Qi = J2T=i A * X f c , and Q2 = Y^k=^+i A * X f c , where Xk > 0, and 
random variables Xk are all mutually independent with probability distributions xtksk> 
with 5k = 0 for k > mi, then there exist strictly positive numbers \l, \ 2 , v*, v2 and 
nonnegative number 5\ such that Q\ = A^jX^ ~ xl* s*, Q2 — A 2 X 2 ~ xl*-, and we have 
E{Q1) = E(Ql), var(Qi) = var{Q*), and E(Q2) = E(Q*2), var(Q2) = var(Q*2). In turn 
with r* = r • T § H L 

P{% < R \ « W T ^ T < A = P { § ^ < r • ^ ) = FFs{r*-vty2,5\). (4.101) 

Proof. This is a result of Lemma 4.34. • 
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Using Lemma 4.34, and Theorem 4.35 we are able to approximate distribution of the 
ratio (4.40) of quadratic forms K[, K2 expressed as linear combinations of x2 distributed 
random variables wi th strictly positive coefficients (see Corollaries 4.27, 4.33) by a single 
random variable wi th F distribution wi th nonnegative noncentrality parameter. In fact, it 
can be seen, that the noncentrality parameter is zero under the hypothesis H0 of equality 
of expectations of the samples, and positive under the alternative Hi. This is summarised 
in the following theorem. 

Theorem 4.36. The random variable F given by (4.40) assuming unequal variances of the 
p samples may be approximated by a random variable F* where T H T - F * where 
the parameters A*, X2, is*, is2, SI are given by Lemma 4-34, and Theorem 4-35. Moreover, 
under the hypothesis H0 of equality of expectations of the samples is the parameter SI = 0, 
and under the alternative Hi (see (4.2),) SI is positive. 

Proof. Step 1. It is easily seen, that the approximation provided by Lemma 4.34, and 
consequently by Theorem 4.35 may be applied. Indeed, due to Corollaries 4.27, and 
4.33 we have seen, that K[ and K'2 respectively may be written in the form of linear 
combination of independent x2 distributed random variables, moreover, we have seen, 
that coefficients of the linear combination for K[ are strictly positive. It is obvious that 
the coefficients of the linear combination for K2 are also strictly positive, since they are 
precisely the variances o 2 , o 2 of the p samples. Neither mult iplying K[ by p(n — 1) nor 
K'2 by p — 1 has any effect on the parity of the coefficients of the sum i . e. the coefficients 
n(p — l )Aj , % — 1, ...p — 1 and (p — l ) o | , j = 1, ...,p are sti l l positive coefficients of linear 
combinations of x2 distributed random variables say K" — p(n — l)K[ and K2 = {p—l)K2 

K" 

such that F = -r^j and hence, we may apply Lemma 4.34 and consequently Theorem 4.35. 

Step 2. We wi l l now show, that the distribution of ^r^F* under the null hypothesis 
A2U2 

is central F. In other words we want to show, that the parameter S* given by (4.97), is 
equal to zero. This is only possible, if the parameters Si of al l the random variables Vi, 
i = 1, ...,p — 1 appearing in the second power in the linear combination are equal to zero 
(see proof of 4.33). This is equivalent to asking for expectation of each Vi of the linear 
combination to be equal to zero. The expectation of Vi is given by the product pj/J, (see 
Corollary 4.33), where p̂  is an eigenvector - a column of the matrix P of eigenvectors of 
S T S, and \i is a vector defined in Proposition 4.30. In order to see, that the product is 
indeed zero for each % = 1,..., p — 1 it is necessary to know what are the entries of the 
matrix S T S. We have that 

S T S = diag(cr)tlp><pdiag(cr) 

a 
- o 2 O i 

- 0 - 3 0 - 1 -

- 0 - 1 0 2 

o 2

2 ( l -

-0301 

1 

V 

-0103 
-0203 

o , 2 f l -

- 0 » 0 2 ; -0p03" 0 : 

(4.102) 
Let us now find an eigenvector pp of the matrix S T S corresponding wi th the single zero 
eigenvalue of S T S. We need to find a nontrivial solution of 

- 0 i 0 P 

- 0 2 0 P 

-OSO-p-

[S S - A pI)p 0 where 
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A„ = 0. I. e. 

a 
-0-2(Ti 

-<J3<Jl 
V 

-o-p(Ji: 

-cr 3cri-

-o-po-2-

1 -Oi(J3 

-a2a3 

a2(l -

-o-pO-3: 

-o-io-p-

-0-30-p-

( PPA \ 

Pp,3 

( 0 \ 
0 
0 

V 0 J \ 'f'^p -f'"p 'F-"p -p\~ p 

Since the standard deviations are by definition positive, we can for % — 1 
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From the system of the equations (4.104) it is obvious that the nontrivial solution is 
pp = c • (^- , . . . ,^-) , where c is a real constant. Due to Theorem 4.32, there exists a 

decomposition of S T S into a product of a diagonal matrix of eigenvalues of S T S , and 
an orthogonal matrix P , whose columns are eigenvectors of S T S . This implies that the 
arithmetic and geometric multiplici ty of each eigenvalue of S T S are equal (see for example 
[13]), namely both the geometric and algebraic multiplici ty of \ p = 0 is equal to one. We 
want to see that the vector pp is always present among the columns of P . We recall 
now, how the matrix P was found in the proof of Proposition 1.12. We have assumed the 
existence of an orthonormal set p l 5 p s , choose a vector x orthogonal to A i ( p 1 ; p s ) , 
and it was show that there exists an eigenvector p s + 1 e M.(x, A x , A 2 x , . . . ) , which is 
orthogonal to p 1 ; p s . Two possibilities may arise, either pp belongs to the orthonormal 
set p 1 ; p s , and hence, is one of the columns of P , or it does not belong into p 1 ; p s , 
but then, by choosing x we must eventually pick x = pp, since the mult ipl ici ty of \ p is 
one and therefore using Proposition 1.10 we have that pp is orthogonal to al l eigenvectors 
corresponding to any other eigenvalue of S T S . Clearly then pp is the eigenvector p s + 1 e 

A 4 ( p p , S T S p p , . . . ) , where ( S T S ) f c p p = 0 for k > 0 and hence, is again one of the columns 
of P . 

Fina l ly we observe, that under the hypothesis H0 : 6\ = ... = 9P (see (4.1)) of equality 
of expectations among the random sample the vector fj, = (^-,...,^-) = #(^-,^-), 

and therefore is obviously orthogonal to al l eigenvectors of S T S but pp. Therefore the 
expectations of al l entries of the vector V (see Corollary 4.33) apart from one is equal to 
zero. But the coefficient of the one eigenvalue wi th a nonzero expectation is \ p = 0 and 
so it is not present in the linear combination K[. 

S t e p 3. Lastly, let us see that under the alternative the coefficient d~l is strictly 
positive, that is equivalent to the claim, that there exists at least one random variable 
Xi in the linear combination K[ that has nonzero expectation. The vector fj, under the 
alternative has the form fj, = (^ L , . . . , ^ E ) . Clearly fj, is not orthogonal wi th pp, and 
/j, 7̂  c • p p , where c G M . Therefore it can not be orthogonal to p l 5 ..-Pp^ either since 
vectors p 1 ; . . . p form an orthonormal base and hence, the product pjf-i w i l l be nonzero 
for all % , p which concludes the proof. • 
R e m a r k 4 .37. For the end of this subsection let us remark, that the results for the power 
functions of the F statistic introduced in the Subsection 4-1-3 hold for the F statistic 
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developed under the assumption of unequal variances. The degrees of freedom of ^ 
must be of course taken in accordance with Theorem 4-35 under the hypothesis H0. 
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Chapter 5 

Application and Results of 
Comparison of Selected 
Transformations within ANOVA 
Framework 

In this chapter we wi l l apply the theoretical results obtained in the Chapters 3 and 4 on 
samples from Poission and negative binomial distribution. 

For a random variable wi th Poisson or negative binomial probability distribution a 
logarithmic transformation is often used (see [15]). The problem of occurrence of zero 
observations is solved usually by adding one. The goal of this chapter is to provide com­
putations of both theoretical and simulated powers of the F test (see the first paragraph of 
Chapter 4 for the description of the model and Sections 4.1 and 4.2, where the F statistic 
under the assumption of equal and unequal variances is studied, for further reading about 
One-Way Anova see [2], or [8]) applied to test the hypothesis of equality of expectations 
of p samples from a size n of either Poisson or negative binomial probability distribution 
transformed via the logarithmic transformation 

F = l n ( X + l ) (5.1) 

and via the variance stabilising transformations introduced in Chapter 3 and compare 
them. We wi l l also provide all the necessary theory concerning the transformation (5.1) 
applied to Poisson and negative binomially distributed random variable. 

5.1 Transformation ln(X + 1) Applied on Sample 
from Poisson Distribution 

Through the whole section we wi l l assume, that X ~ Po{\) if not explicitly stated 
otherwise. The goal of this section is to develop approximation formulae for the numerical 
characteristics of random variable Y obtained via the transformation (5.1) when applied 
to X. From these approximations we wi l l see that in the model we are assuming the 
approximation of variance of Y is a function of the parameter A of the Poisson distribution 
(see Proposition 1.25) and therefore it can not be equal among p samples from Poisson 
distributions Po(Aj), % = 1, ...,p transformed via (5.1). 

For the Poisson case, the transformation (5.1) can not be obtained neither as a result of 
the variance stabilising condition (2.1) nor by any other natural way. In order to develop 
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the approximations of numerical characteristics of random variable Y obtained via the 
transformation (5.1) when applied to X we wi l l use the same method that was applied 
in Section 3.1 when dealing wi th transformation (3.4) which is based on [1]. Since the 
procedure is almost identical we wi l l omit some details. 

Let us as in Section 3.1 consider the following, let 

Z = X-X (5.2) 

be a random variable, and 

A' = A + 1. (5.3) 

The transformation (5.1) may be rewritten as 

F = l n ( Z + A'). (5.4) 

B y Taylor theorem for any z > — A' we obtain an infinite series representation 

» = l l l ( A , ) + 7? ~ w r z 2 + " i w " + - + ( . - D W - ^ ' + R " ( 5 ' 5 ) 

where Rs is a reminder term. 

Lemma 5.1. For z > 0 the term Rs satisfies 

IM < ̂  (5.6) 

Proof. This is a direct result of Lagrange's form of the reminder term (see [6]). • 

The following Lemma corresponds with the Lemma 3.3. 

Lemma 5.2. For z > —A' the term Rs satisfies 

\Rs\<G(s)-±-\zs\ (5.7) 

Proof. The idea of the proof is identical wi th the one of the proof of Lemma 3.3 and 
hence, wi l l be omitted. • 

Remark 5.3. In this section we set the random variables X and Z to be the same as those 
introduced in the Section 3.1. Therefore the Lemmata 3.4, 3.5, 3.7, and the Corollary 3.6 
hold and the result (3.19) given by Remark 3.8 is valid as well. 

Lemma 5.4. Let Y be the random variable obtained by transformation (5.1) applied on 
X. Then its expectation may be approximated by 

B F = 1 " ( A + 1 ) - 2 l + I ^ + 0 (^)' <6'8> 
Proof. B y Corollary 3.6 we may take the expectation of the right hand side of (5.5) and 
its powers and derive asymptotic expansions for the moments of Y as A —> oo. For the 
expected values we have 

1 „ 1 - 2 1 _ * 1 EY = E\ ln(A + 1) + -Z - — — Zl + 
A + l 2(A + 1 ) 2 3(A + 1 ) 3 4(A + 1) 

1 

5(A + 1 ) 5 ~ 6 ( 1 + 1 ) + V T ^ V ^ - Z T T 1 ^ 6 + 0[z*)\. (5.9) 
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B y using (3.19) and the linearity property of the expectation (see [4]) we obtain 

A A _ 3A 2 + A 10A 2 + A 
~ n ( ' ~ 2(A + l ) 2 + 3(A + l ) 3 ~ 4(A + l ) 4 + 5(A + l ) 5 

6(A + 1) 6 V ^ 4 

Now by approximating al l listed terms with their asymptotic expansions for A — > oo and 
some further computation we obtain 

E y - = . n ( A + l ) - i + I ^ 5 - i i 5 - I | | J + o ( i ) , (5.11) 

which concludes the proof (for more details on the exact form of the asymptotic ex­
pansions used and the additional computations the reader is kindly advised to see file 
LnPlusOnePoExpectat ion.mw that can be found on the included C D of the electronic 
appendix of this work. • 

Theorem 5.5. Let Y be the random variable obtained by transformation (5.1) applied on 
X. Then its variance may be approximated by 

1 - ln(A) + ln(A + 1) _ 1 9 - 71n(A) + 71n(A 
"A 6 A 2 

Proof. The variance of Y may be obtained as v a r F = EY2 — (EY)2 (see [2]), hence, we 
wi l l proceed wi th finding the approximations for EY2 and (EY)2. The random variable 
Y2 = ( l n ( X + 1)) = ( l n ( Z + A')) where the last equation is due to reparametrisation 
given by (5.2) and (5.3) may be expanded into Taylor series as follows 

v a r F = x 1 1 1 V / V 1 1 1 1 V / V Z±L-L± 1 7Q ' ^ Z ti ( 5 . i2 ) 

21n(A') / ln(A') 1 \ 2 /21n(A' 
ž/ = ln 2 (A') + — ^ + + + 

A' V M 2 ( A ' ) 2 / \ 3 (A ' ) 3 (A') 
3 

+ + (5-13) 
2 (A ' ) 4 12(A')Z 

For a Lagrange reminder term Rs of the Taylor series statements similar to Lemmata 5.1, 
and 5.2 may be shown. We wi l l omit them. Furthermore as already mentioned in Remark 
5.3 the Lemmata 3.4, 3.5, 3.7, and the Corollary 3.6 hold and the result (3.19) given by 
Remark 3.8 is valid as well. Therefore we take expectations of the random equivalent of 
the right hand side of (5.13) and its powers, and derive asymptotic expansions for the 
moments of Y as A —> oo. We suppose that the idea of this step is rather obvious since 
it was used on multiple occasions in proofs in Section 3.1 as well as in previous Lemma of 
this section, hence, we wi l l omit writ ing al l the computations explicitly. Reader interested 
in the details of this computation is kindly advised to see file LnPlusOnePoVariance.mw 
included in on the C D of the electronic appendix of this work. 

From the computation we get that the expectation of Y2 may be approximated by 

EY2 = ln 2 (A + 1) + ^ - 4 ^ 2 - +°{y3)- (5-14) 

We obtain the term (EY)2 by computing the second power of formula (5.8) and neglecting 
the terms of order O ( i ) . Hence, 

>2 , 2 , , , ln(A + l ) , 71n(A + l ) , 1 / 1 
{EYy = M A + D _ + + W + 0 \ T , ] . (5.15) 
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The approximation of variance of Y is then obtained by taking 

varF = E Y 2 - ( E Y ) 2 . (5.16) 

• 
A s an immediate result of the variance approximation formula we have the result about 

inequality of variance approximations among p independent random samples X i , . . . , X p 

from distributions Po(Aj), % = l,...,p transformed via (5.1), when their expectations are 
not equal. 

Corollary 5.6. Let X1,...,Xp be p independent samples from distributions Po(Xi),..., 
Po(Xp). We assume that there exist i,k G {l,...,p}, % ^ k such that A« ^ Xk, i. e. 
the hypothesis Hi of inequality of expectations holds (see (4.2),). Let Y i , . . . , Yp be the 
p random samples obtained from Xi,...,Xp by applying the transformation (5.1). Let 
c r f i , o \ n , a p l , a p n be the approximations of the variance of the random variables 
Yij, % = l,...,p j = l , . . . , n obtained via Theorem 5.5. Then a2^ ^ for all % ^ k, 
i,ke {l,...,p}. 

Proof. We clearly have that for % fixed we have of- = o\ for all j, I G {l,...,p}. From 
equation (5.12) we see, that <T?- = a2(Xij). Therefore given that there exist i,k such that 
Hi ^ k then A« ̂  Xk, the variance approximations a2^ = a 2 (Aj) and = cr2(Xk) have to 
be different. • 

Let us also present rather obvious, yet important result covering the case when the 
assumed random variables that undergo the transformation (5.1) have equal expectations. 

Corollary 5.7. Let X \ , X p bep independent random samples from distributions Po(Xi), 
i = l,...,p. We assume that the expectations A« is equal for all i = l,...,p (i. e. 
the hypothesis H0 of equality of expectations holds, see (4.1),). Let Y1,..., Yp be the 
p random samples obtained from X1,...,Xp by applying the transformation (5.1). Let 
o \ x , o \ n , a p l , a p n be the approximations of the variance of the random variables 
Y^, i = l,...,p, j = l,...,n obtained via Theorem 5.5. Then o\x = o\n = ... = apl = 

Proof. We clearly have that for i fixed we have a2^ = o\ for al l j , / G {1, ...,p}. We have 
already seen in proof of Corollary 5.6, that the variability in the variance approximations 
a2j = <r2(Aj) of the variance of random variables Y^ is caused by the fact that there exist 
i,k G {l,...,p} such that Aj, A& different. If we assume the converse we obviously get 

Based on Lemmata 3.9, 3.10 and the proofs of the Corollaries 5.6, 5.7 we wi l l in a form 
of remark introduce the result on equality of variances when the transformation (3.4) is 
applied. 

Remark 5.8. Let Y i , . . . , Yp be p independent random samples of a size obtained by 
transforming independent random samples X \ , X p of a size n from distributions Po(Xi) 
via transformation (3.4). 

The idea of the method for finding the optimal values of the constants introduced in 
the transformation (3.4) was to choose the constant in such way, that the term of the 
variance of Y of the highest order that is dependant on X would vanish. The higher order 
terms dependant on X still survive, but for X large their input will be not significant and 

= ... = a

2

p l = a2

n = a2. • 
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hence, we may neglect them. Therefore we may say that the variance approximations of 
random variables Ytj obtained via the transformation ( 3 . 4 ) from the random variables Xij 
will be equal up to the term of the order we decide to neglect regardless of whether the 
hypothesis H0 or Hi holds. 

5.2 Transformation ln(X + 1) Applied on Sample 
from Negative Binomial Distribution 

The goal of this section is to develop approximation formulae for the numerical char­
acteristics of random variable Y obtained via the transformation ( 5 . 1 ) when applied to 
X ~ NBi(fi, K). From these approximations we wi l l see that in the model we are assum­
ing the approximation of variance of Y is a function of the parameter /x of the negative 
binomial distribution (see Proposition 1.32) and therefore it can not be equal among p 
samples from distributions NBi(fii, K ) , % — 1, ...,p transformed by ( 5 . 1 ) . 

Hereinafter, whenever we assume p samples X i , . . . , X P from negative binomial distri­
butions NBi((j,i, K ) , NBi((j,i, K) in sequence, we wi l l always assume that the parameter 
K is identical for each distribution. 

For the negative binomial case the transformation ( 5 . 1 ) is not obtained directly as a 
result of the variance stabilising condition ( 2 . 1 ) but may be obtained as a special case 
of the transformation ( 3 . 5 7 ) , where for the parameter A we choose the value A — 1. 

First let us observe how the expectation and variance of Y transformed v ia ( 5 . 1 ) can be 
approximated. 

Lemma 5.9. Let Y be a random variable obtained by transformation ( 5 . 1 ) . Let K > 2 

and let the cumulant function K*(t) be given by Lemma 3.25, then the expectation of the 
random variable Y can be approximated by 

r.™ w N / / \ I K 5 - 1 3 K 4 + 5 3 K 3 - 9 5 K 2 + 7 8 K - 2 4 2 ^ . . 
E(Y) = ~ In(a) + m + - ( w _ 1 ) 8 ( | 6 _ 2 ) a ^ + °(°") 

( 5 . 1 7 ) 

Proof. The transformation ( 5 . 1 ) may be obtained from ( 3 . 5 7 ) by taking A — 1, therefore 
the moment generating function approximation given by Theorem 3 . 7 3 and consequently 
also the cumulant generating function approximation given by Lemma 3 . 2 5 are valid 
for this transformation as well just by taking A = B = 1, where the second equation 
comes from the result ( 3 . 5 7 ) . The first cumulant is obtained by computing the first 
derivative of the cumulant generating function in t — 0 (see [3]). The first derivative of 
the approximation of the cumulant generating function (K*)'(t) is given by 

(K*)'(t) = - ln(a) + V(« + t ) + ( l - \K ] K ~ l , , 2 a + H{t, K ) + 0{aK), ( 5 . 1 8 ) 

where H(t, K ) represents the first derivative of the coefficient of a2 wi th respect to t, 
where A = B = 1. Taking this derivative is tedious, yet not particularly technically 
interesting part of the proof and hence, the detailed form and derivation of the term 
H(t, K) is provided in the Maple Document LnPlusOneNBSecondDegreeExp.mw included 
in the digital appendix of this work. B y evaluating in t = 0 we obtain 

, . . ( . . 1 - I K I K 5 - 1 3 K 4 + 5 3 K 3 - 9 5 K 2 + 7 8 K - 2 4 2 ^ . . 
k l = - Ha) + *(K) + - ^ a - { K _ m K _ 2 ) 2 « 2 + ° ^ K ) 

( 5 . 1 9 ) 
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The fact that the first cumulant of a random variable is equal to its first moment (see [3]) 
altogether wi th the first result of Lemma 3.26 concludes the proof. • 

Theorem 5.10. Let Y be a random variable obtained by transformation (5.1). Let K > 2 
and let the cumulant function K*(t) be given by Lemma 3.25, then the variance of the 
random variable Y given by (5.1) can be approximated by 

i. . K — 2 1 6 K 6 - 66K 5 + 287K 4 - 638K 3 + 769K 2 - 478K + 120 2 K . 
v a r F = V (K) + ^ — T F « + - ( « - l ) 4 ( « _ 2 ) 3 a + ° ( « } ' 

(5.20) 

Proof. A s mentioned already in the proof of Lemma 5.9 the moment and consequently the 
cumulant generating function approximations derived for random variable transformed via 
(3.57) stay valid, and the formulae for the transformation (5.1) are obtained by simply 
taking A = B = 1. In order to obtain the second cumulant we need to compute the 
second derivative of the cumulant generating function and evaluate it in t — 0 (see [3]). 
The second derivative of K*(t) is given by 

(K*)"(t) = i)'{K + t) - 2 (l - 1«) ( / c ^ t " - l ) 3 Q + L ( t ' K ) + ( 5 - 2 1 ) 

where L(t, K) represents the second derivative of the coefficient of a2 wi th respect to t, 
where A = B = 1. A s before the computation of the derivative wi l l not be presented in 
this proof, but can again be found in the Maple Document LnPlusOneNBSecondDegree-
Var.mw included in the digital appendix of this work. B y evaluating (5.21) in t = 0 we 
obtain 

, „ x 1 6 K 6 - 6 6 K 5 + 287K 4 - 638K 3 + 769K 2 - 478K + 120 2 ^ / K N 

*• ="> M + J ^ v f a + ~ 2 ( « - i ) ' ( « - 2 y a + 0 ( a ) -
(5.22) 

The fact that the second cumulant of a random variable is equal to its second central 
moment (see [3]) altogether with the second result of Lemma 3.26 concludes the proof. • 

A s an immediate result of the variance approximation formula we have the result about 
inequality of variance approximations among p independent random samples X i , . . . , X p 

from distributions NBi(/j,i, K ) , % — 1, ...,p transformed v ia (5.1), when their expectations 
are not equal. 

Corollary 5.11. Let X 1 : X p bep independent samples from distributions NBi(/j,i, K ) , .... 
NBi((j,p, K) in sequence. We assume that there exist i,k 6 {l,...,p}, % ̂  k such that 
(J>i 7̂  f^k, i- e. the hypothesis of inequality of expectations holds (see (4.2)^). Let 
Yi,...,Yp be the p random samples obtained from Xi,...,Xp by applying the transfor­
mation (5.1). Let c r f i , a 2

n , a p l , a 2

n be the approximations of the variance of the 
random variables Yij, % — 1, ...,p j — 1 , n obtained via Theorem 5.5. Then a2^ ^ o\j 
for all % 7̂  k, i, k G {1, ...,p}. 

Proof. We clearly have that for % fixed we have a2^ = o\ for all j, I G {l,...,p}. From 
equation (5.12) we see, that a2^ = r j 2 ( /Xj j ) . Therefore given that there exist i, k such that 
Hi ^ k then //j ^ the variance approximations a2^ = cr 2(/Xj) and = a 2(/Xfc) have to 
be different. • 

Let us also present rather obvious, yet important result covering the case when the 
assumed random variables that undergo the transformation (5.1) have equal expectations. 

72 



Corollary 5.12. Let Xl,...,Xp be p independent random samples from distributions 
NBi((j,i, K), % = l,...,p. We assume that the expectations (ii is equal for alii = l,...,p 
(i. e. the hypothesis H0 of equality of expectations holds, see (4.1),). Let Yi,..., Yp be 
the p random samples obtained from Xi,...,Xp by applying the transformation (5.1). Let 
a 2 ! , a \ n 1 a p l , a p n be the approximations of the variance of the random variables 
Yij, i = l,...,p, j = l , . . . , n obtained via Theorem 5.5. Then a\x = o\n = ... = a2

x = 
°pn = <r. 

Proof. We clearly have that for i fixed we have cr?- = o\ for al l j , / G {1, ...,p}. We have 
already seen in proof of Corollary 5.6, that the variability in the variance approximations 
a2j = <T2(/Xj) of the variance of random variables is caused by the fact that there exist 
i,k G {1, such that /x«, different. If we assume the converse we obviously get 

o\l = o\n = - = Oil = Opn = O2. • 

Based on Lemmata 3.9, 3.10 and the proofs of the Corollaries 5.6, 5.7 we wi l l in a form 
of remark introduce the result on equality of variances when the transformation (3.4) is 
applied. 

Remark 5.13. Let Y1,..., Yp be p independent random samples of a size obtained by 
transforming independent random samples X 1 : X p of a size n from distributions 
NBi((j,i,K) via transformation (3.4). 

The idea of the method for finding the optimal values of the constants introduced in the 
transformation (3.4) was to choose the constants in such way, that the coefficient of the 
term of the variance ofY of the smallest order that is dependant a (see Proposition 3.20) 
would be zero. The higher order terms dependant on a still survive, but for a small (i. 
e. \i large) their input will be not significant and hence, we may neglect them. Therefore 
we may say that the variance approximations of random variables Y^ obtained via the 
transformation (3.4) from the random variables Xtj will be equal up to the term of the 
order we decide to neglect regardless of whether the hypothesis H0 or H1 holds. 

5.3 Simulation Study of Used Approximations, Ef­
fect of Transformations on Parameter Estimates 
of Poisson or Negative Binomial Distribution 

In this section we wi l l check the quality of the approximations of the numerical character­
istics of the transformed variables introduced in the Sections 3.1, 3.2, 5.1, and 5.2 as well 
as the approximation of the ratio of two linear combinations of independent x2 distributed 
random variables introduced in the Subsection 4.2.3 via simulation. Addi t ional ly we wi l l 
study v ia simulation the effect of the transformations on the expectation parameter of 
both Poisson and negative binomially distributed variables. 

We wi l l restrict ourselves to the comparison of the numerical characteristics of the 
random variable Y obtained via applying transformation (3.4) or (5.1) on random variable 
X ~ Po(X) for the Poisson case, and of the random variable Y obtained v ia transformation 
(3.56) and (5.1) applied on random variable X ~ NBi(fx, K) in the negative binomial case. 

We are aware that in the negative binomial case for small values of K the normality 
assumption might be violated due to big absolute values of the skewness parameter of 
the transformed variable since we determined in Section 3.2, that the l imit ing value of 
skewness tends to zero for large values of K (see Theorem 3.36). Hence, we wi l l assume 
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that K > 2. Therefore we wi l l also not study the transformation (3.57), since we consider it 
to be only an approximation of (3.56) (see Lemma 3.18), and the value of K is sufficient for 
Theorem 3.33 and Corollary 3.30 to hold and so al l the optimal values of the constants of 
(3.56) may be determined. When referring to the transformation (3.56) we wi l l hereinafter 
assume that the constants c and d are chosen to be optimal. 

Let us begin by checking goodness of the approximations of the numerical charac­
teristics. Since the process is identical regardless of whether it is done for Poisson or 
negative binomial case we wi l l describe it for the Poisson case, while the corresponding 
data used for the negative binomial case wi l l be mentioned in brackets. We wi l l do this 
by evaluating the formulae (3.20), (3.26), (5.8), (5.12), ((3.96), (3.108), (5.17), (5.20)) for 
values of A (//) in a given interval I and comparing them with the values of estimators of 
the corresponding numerical characteristic. The estimators are computed from generated 
sample of a size n of a distribution -Po(A) (NBi(fi, K,)) for A G IpQ (/x G INBI), on which 
the transformation (3.4), or (5.1) ((3.56), or (5.1)) was applied. A s an estimator of the 
expectation we use in both cases the arithmetic mean given by 

— 1 " 
Y = - Y i Y i (5.23) 

i=i 

and as an estimator of the variance we use in both cases the sample variance given by 

* 2 = ^ X > - F ) 2 - ( 5 - 2 4 ) 
i=l 

We wi l l also check the goodness of approximation given by Theorem 4.35, that wi l l 
be done in following way. Assume we have p independent random samples X i , . . . , X p 

from Po(Aj) (NBi([/,i,K) ) , % = l,...,p. We choose the expectation A i (//i) and a step 
h. Expectation parameters of al l other distributions differ from Ai (/xi) by multiples 
of h. We apply the transformation (5.1) on the independent random samples X j , from 
Po(Xi) (NBi([/,i, K) ) % = l,...,p in order to obtain transformed random samples Y j , 
% — 1, ...,p and determine their numerical characteristics via formulas (5.8), (5.12) ((5.17) 
and (5.20)). Using the numerical characteristics we compute the vector fj, and the matrix 
S T S (see Proposition 4.30). We find the eigenvalues Aj and eigenvectors for % — 1, ...,p 
o f S T S . The nonzero eigenvalues of S S are the coefficients of the linear combination K[. 
The degrees of freedom of the independent \ 2 distributed random variables of the linear 
combination K[ are al l equal to one. (see Corollary 4.33). Using the eigenvectors of S T S 
and the vector fj, the noncentrality parameters of the independent x2 distributed random 
variables of the linear combination K[ are determined via formua Si = (pjfj,)2 for % = 
1, ...,p (see proof of Corollary 4.33). Due to Corollary 4.27 we know that the coefficients 
of the linear combination K2 are actually variances of of the transformed random samples 
Y j for % — 1, ...,p. In the computations we wi l l use the approximations given by (5.12) 
((5.20)). From the same Corollary we also obtain that the degrees of freedom of each 
independent central \ 2 distributed random variable in the linear combination K'2 are 
equal to n — 1. W i t h al l the parameters of al l the random variables of the quadratic forms 
K[ and K2 determined, we can generate them numerically and compute the ratio (4.40). 
We do so repeatedly in order to obtain a random sample of the ratio (4.40), from which we 
determine the empirical quantile function. Moreover, we use the parameters of the random 
variables of the quadratic forms K[ and K'2 , to compute the values of the coefficients A^, X2 

(see (4.95)), the degrees of freedom u*,u2 (see (4.96)), and the noncentrality parameter 
51 (see (4.97)) by applying Lemma 4.34 and Theorem 4.35. Hence, we determine the 

74 



parameters of the approximation and we can generate its quantiles, which we compare 
graphically with the empirical quantiles. The empirical quantiles in the computation were 
computed in the R, using function " quantiles". 

F ina l ly we wi l l study the effect of the transformations (3.4) and (5.1) ((3.56) and 
(5.1)) on the data v ia estimates of the parameter A (//) of the Poisson (negative bino­
mial) distribution. This wi l l be done as follows. Let X 1 ; ...,Xn be a sample of Poisson 
distribution Po(\) (negative binomial distribution NBi(p, K)). We transform this sample 
via transformation (3.4) or (5.1) ((3.56) or (5.1)) to obtain random sample Y i , ...,Yn. We 
estimate the expectation of the transformed random sample via arithmetic mean Y given 
by formula (5.23). We apply the respective transformation in reverse to the value of the 
arithmetic mean Y and obtain an estimate Ay of A (/xy of //). We wi l l repeat the pro­
cedure described above /c-times for the same setting of parameter A (p, and K) and using 
formulas (5.23) and (5.24) compute the arithmetical mean Ay (JLY) and sample variance 
s2 of the sample of Ay (/xy) obtained via the repetition. When describing the results of 
this study we wi l l frequently use the term bias defined in Definition 3.13. 

5.3.1 Data Input and Results for Poisson Case 
The interval I for the parameter A was set to I = [0, 500] the sample size used in the 
simulated sample was set on n = 10000. In al l the figures the blue line represents the 
values of the approximations and red points represent the values obtained via simulations. 
We can conclude given the Figures 5.1a, 5.2a, 5.1b, and 5.2b that al l the approximation 
fit rather well. We can observe that the transformation (3.4) provides a good variance 
stabilisation even for small values of A (see Figure 5.2a). O n the other hand, the variance 
for the transformation (5.1) continues to decrease for increasing values of A, which might 
pose a significant problem namely for small values of A (see Figure 5.2b). 

We wi l l continue by providing some numerical results on the goodness of approximation 
introduced in the Theorem 4.35. The empirical quantile function is computed from a 
random sample of the distribution of F statistic of a size k = 1000 according to the 
procedure described earlier in this Section. The number of assumed random subsamples 
is p = 3 and their size is n = 100. The graphical comparison is done for the following values 
of the parameters of the original Poisson distributed random variable A = 15,50,100 and 
corresponding values of steps h = 3,10, 20. The values of A 2 and A3 are obtained as 
follows. 

Xj = A i + (-l)j(kh0) k = 0, ...,30, (5.25) 

so that the difference Apj = \pi — pj\ for j = 2, 3 increases with the value of k. The blue 
line represents the quantile function of the random variable j^F* (see Theorem 4.35), 
the red points are the values of the empirical quantile function. We conclude that for all 
used values of parameters the approximation has a good fit. 

Finally, we wi l l also provide the results of the study of the effect of the transformations 
(3.4) and (5.1) on the parameter A. The study was done for the values A = 5,10,20,50, 
The sample size was set to n — 100, the number of repetitions was set to k — 1000. His­
tograms for each respective setting can be seen on Figures 5.4a, 5.4b, 5.5a, 5.5b, 5.6a, 5.6b, 
5.7a, and 5.7b. The values of the arithmetical mean and sample variance of the samples 
from distribution identical to that of Ay for each respective setting are collected in the 
Table 5.1. From the histograms we can observe that for both transformations the estimate 
Ay is biased. The sample characteristics of the estimate provided in the table supports 
this statement. We can also observe that the bias is smaller for the transformation (3.4). 
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Transformation Parameter A = 5 A = 10 A = 20 A = 50 

Y = y/X + 3/8 Ay 4.749 9.745 19.738 49.758 
s2 0.053 0.098 0.196 0.520 

Y = l n ( X + 1) Ay 4.553 9.519 19.503 49.514 
s2 0.056 0.101 0.198 0.522 

Table 5.1: Ari thmetic mean and sample variance of samples of distribution identical to 
Ay. 

Transformation (3.4), Expectation Comparison Transformation (5.1), Expectation Comparison 

(a) Comparison of expectation approxima- (b) Comparison of expectation approxima­
tion formula and arithmetic mean for trans- tion formula and arithmetic mean for trans­
formation Y = y/X + 3/8 (see (3.4)). formation Y = ln(X + 1) (see (5.1)). 

Figure 5.1: Comparison of expectation approximation formulae and expectation estimates 
via arithmetic mean for Po(X) 
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Transformation (3.4), Variance Comparison Transformation (5.1), Variance Comparison 

(a) Comparison of variance approximation (b) Comparison of variance approximation 
formula and sample variance for transfer- formula and sample variance for transfor­
mation Y = y/X + 3/8 (see (3.4)). mation Y = ln(X + 1) (see (5.1)). 

Figure 5.2: Comparison of variance approximation formulae and variance estimates via 
sample variance mean for Po(X) 

Comparison of Quantile Functions, lambda = 15, h = 3 Comparison of Quantile Functions, lambda = 100, h = 20 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

P P 

(a) Comparison of the quantile function of 
random variable F* and empirical quantile 
function of the ratio (4.40) for A = 15, h = 
3 . 

(b) Comparison of the quantile function of 
random variable F* and empirical quantile 
function of the ratio (4.40) for A = 100, 
h = 20 . 

Figure 5.3: Comparison of the quantile function of random variable F* and empirical 
quantile function of the ratio (4.40) for Po(X). 

77 



Y = sqrt(X + 3/8) for lambda = 5 Y = sqrt(X + 3/8) for lambda = 10 

(a) Histogram of Ay for A = 5 (b) Histogram of Ay for A = 10 

Figure 5.4: Histograms of Ay for transformation Y = y/X + 3/8 for sample size n = 100 
and number of repetitions k = 1000 for Po(X). 

Y = sqrf(X + 3/8) for lambda = 20 

18.5 19.0 19.5 20.0 20.5 21.0 

Y = sqrt(X + 3/8) for lambda = 50 

50 51 

(a) Histogram of Ay for A = 20 (b) Histogram of Ay for A = 50 

Figure 5.5: Histograms of Ay for transformation Y = \JX + 3/8 for sample size n = 100 
and number of repetitions k = 1000 for Po(X). 
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5.3.2 Data Input and Results for Negative Binomial Case 
The interval I for the parameter \x was set to I = [0,250]. The sample size used in the 
simulated sample was set on n = 10000. The comparison was done for few different values 
of the shape parameter K. Namely K — 3,5,10. The value of the shape parameter proved 
to affect both the quality of the approximation and the stability of the sample variance. 
O n the other hand, the effect of varying parameter K on the expectation approximation 
did not affect the quality of fit. 

In al l the figures the blue line represents the values of the approximations and red 
point represent the values obtained v ia simulations. 

The Figures 5.8a, 5.8b display the comparison of the expectation approximations and 
their estimates for the transformation (3.56) and (5.1). We can see that the approximation 
formulae and the estimates have good fit on the whole interval / . 

Let us now turn our attention towards the variances. From the Figures 5.9a, 5.9b we 
can observe that for small values of \i (up to approximately \x = 19 for transformation 
(3.56) and \x = 38 for transformation (5.1)) the variance approximation differs from the 
sample variance greatly. These values of \x also describe approximately the point where 
the sample variances become stable. A n interesting result is that the value of \i at which 
the sample variance of the sample to which the transformation (3.56) was applied is 
significantly lesser than the value of \x for which the same happens when (5.1) is applied. 
This difference increases wi th the increasing values of K as can be seen in Figures 5.10a, 
5.10b and 5.11a, 5.11b, however the growth of the crit ical value of \x for the transformation 
(3.56) is significantly slower than for the transformation (5.1). For K = 5 the crit ical value 
for (3.56) is st i l l somewhere around \i = 19, however for the transformation (5.10b) it is 
already \i = 75 and for K = 5 it is \i = 29 for (3.56) versus \i = 90 for (5.1). 

Let us continue by providing some numerical results on the goodness of approximation 
introduced in the Theorem 4.35, when applied on the ratio F = ~ r ^ ^ f , where K[ is 
given by (4.91) and K'2 is given by (4.67). Let us denote as before by F* the random 
variable obtained by applying Theorem 4.35 onto (4.40). We wi l l check the goodness 
of the approximation by comparing quantile function of the random variable F* wi th a 
empirical quantile function of the random variable F. The empirical quantile function is 
computed from a random sample of F of a size n = 1000. The random sample of F is 
obtained by generating random samples from each \ 2 distributed random variable of the 
linear combination K[ and K2 and then computing their ratio F. 

The graphical comparison is done for the following values of the parameters of the 
original negative binomially distributed random variable \i = 15, 50,100 and K = 3, 5. 
The values of fij, j = 2, 3 were computed as follows 

p. = A t l + (-iy(kh) k = 0 , 3 0 , (5.26) 

so that the difference A/Xj = — fij\ for j — 2, 3 increases with the value of k. The blue 
line represents the the quantile function of the random variable F*, the red points are the 
values of the empirical quantile function. 

We see from the Figures 5.12a, 5.12b, 5.12c, 5.13a, 5.13b, and 5.13c that for al l tested 
values we obtain a good fit. 

F ina l ly we wi l l also provide the results of the study of the effect of the transformations 
(3.56) and (5.1) on the parameter \i. The study was done for the values of \i = 30, 50,100 
wi th the respective setting of the shape parameter K — 3,5,10. The sample size was 
set to n — 100. The number of repetitions was set to k = 1000. Histograms for each 
respective setting can be seen on Figures 5.14a, 5.14b, 5.14c, 5.15a, 5.15b, 5.15c, 5.16a, 
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^ = 2 ^ n h - 1 ( y S ) / x y /x = 30 /x = 50 /x = 100 s2 /x = 30 /x = 50 /x = 100 

K = 3 24.948 41.898 84.436 9.717 22.489 97.027 
K = 5 26.897 44.923 90.290 6.092 15.873 63.794 
K = 10 28.341 47.466 94.917 3.639 9.661 35.467 

Y = l n ( X + 1) /x = 30 /x = 50 /x = 100 s2 /x = 30 /x = 50 /x = 100 
K = 3 24.923 41.747 83.954 9.286 25.764 99.045 
AC = 5 26.860 44.840 90.266 6.541 18.696 68.146 
AC = 10 28.086 47.252 94.727 3.558 8.641 35.506 

Table 5.2: Table of arithmetic mean and sample skewness of a sample from distribution 
identical to /xy. 

5.16b, 5.16c, 5.17a, 5.17b, 5.17c, 5.18a, 5.18b, 5.18c, 5.19a, 5.19b, and 5.19c. The values of 
the arithmetical mean and sample variance of the samples from the distribution identical 
wi th the distribution of /xy are collected in Table 5.2. From the histograms we can observe 
that the estimate /xy obtained wi th the use of any of the two transformations (3.56) and 
(5.1) is biased. However we notice that the bias is bigger for the case when transformation 
(5.1) is used. Another interesting result is that for increasing values of K the bias gets 
smaller. These observations are supported by the data collected in the table. Addi t ional ly 
we can observe from the table, that the sample variance of the estimates /xy decreases for 
both transformations as the parameter K grows. 
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Y = ln(X + 1), for lambda = 5 Y = ln(X + 1), for lambda = 10 

(a) Histogram of Ay for A = 5 (b) Histogram of Ay for A = 10 

Figure 5.6: Histograms of Ay for transformation Y = l n ( X + 1) for sample size n = 100 
and number of repetitions k = 1000 for Po(X). 

Y = ln(X + 1), for lambda = 20 Y = ln(X + 1), for lambda = 50 

18.0 18.5 19.0 19.5 20.0 20.5 21.0 47 48 50 51 

(a) Histogram of Ay for A = 20 (b) Histogram of Ay for A = 50 

Figure 5.7: Histograms of Ay for transformation Y = l n X + 1 for sample size n 
and number of repetitions k = 1000 for Po(X). 

100 
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Transformation (3.56) Expectation Comparison, kappa = 3 Transformation (5.1) Expectation Comparison, kappa = 3 

(a) Comparison of expectation approxima- (b) Comparison of expectation approxima­
tion formula and arithmetic mean for Y = tion formula and arithmetic mean for trans-
2 s i n h - l ( 1 / ( X + c ) / (« + d)) (see (3.56)) for formation Y = ln(X + 1) (see (5.1)) for 
K = 3. K = 3. 

Figure 5.8: Comparison of expectation approximation formulae and arithmetic mean for 
NBi(ji,3). 

Transformation (3.56) Variance Comparison, kappa = 3 Transformation (5.1) Variance Comparison, kappa = 3 

mu mu 

(a) Comparison of variance approximation (b) Comparison of variance approxima-
formula and sample variance for Y = tion formula and sample variance for Y = 
2 s i n h - 1 ( v / ( X + c ) / (« + d)) (see (3.56)) for ln(X + 1) (see (5.1)) for K = 3. The hori-
K = 3. The horizontal line is at fi = 19. zontal line is at \x = 38. 

Figure 5.9: Comparison of variance approximation formulae and sample variance for 
NBi(ji,3). 
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Transformation (3.56) Variance Comparison, kappa = 5 Transformation (5.1) Variance Comparison, kappa = 5 

(a) Comparison of variance approximation (b) Comparison of variance approxima-
formula and sample variance for Y = tion formula and sample variance for Y = 
2 s i n h - 1 ( v / ( X + c) / (« + d)) (see (3.56)) for ln(X + 1) (see (5.1)) for K = 5. The hori-
K = 5. The horizontal line is at fi = 19. zontal line is at fi = 75. 

Figure 5.10: Comparison of variance approximation formulae and sample variance for 
NBi(fi,5). 

Transformation (3.56) Variance Comparison, kappa =10 Transformation (5.1) Variance Comparison, kappa =10 

0 50 100 150 200 250 0 50 100 150 200 

(a) Comparison of variance approximation 
formula and sample variance for Y = 
2 s i n h - 1 ( v / ( X + c) / (« + d)) (see (3.56)) for 
K = 10. The horizontal line is at \x = 29. 

(b) Comparison of variance approxima­
tion formula and sample variance for Y = 
ln(X + 1) (see (5.1)) for K = 10. The hori­
zontal line is at /x = 90. 

Figure 5.11: Comparison of variance approximation formulae and sample variance for 
NBi(p,10). 
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Comparison of Quantile Functions mu = 15, kappa = 3, h = 3 Comparison of Ouantile Functions mu = 50, kappa = 3, h = 10 Comparison of Ouantile Functions mu = 100, kappa = 3, h = 20 

0.0 0.2 OA 0.6 0.8 1.0 

(a) Comparison of the quantile 
function of random variable F* 
and empirical quantile function 
of the ratio(4.40) for \x = 15, 
K = 3, h = 3 . 

0.0 0.2 OA 0.6 0.8 1.0 

(b) Comparison of the quantile 
function of random variable F* 
and empirical quantile function 
of the ratio (4.40) for \x = 50, 
K = 3, h = 10. 

0.0 0.2 OA 0.6 0.8 1.0 

(c) Comparison of the quantile 
function of random variable F* 
and empirical quantile function 
of the ratio (4.40) for fi = 100, 
K = 3, h = 20. 

Figure 5.12: Comparison of the quantile function of random variable F* and empirical 
quantile function of the ratio (4.40) for NBi((j,,3). 

Comparison of Ouantile Functions mu = 15, kappa = 5, h = 3 

0.0 0.2 OA 0.6 0.8 1.0 

(a) Comparison of the quantile 
function of random variable F* 
and empirical quantile function 
of the ratio(4.40) for \x = 15, 
K = 5, h = 3 . 

Comparison of Ouantile Functions mu = 50, kappa = 5, h = 10 

0.0 0.2 OA 0.6 0.8 1.0 

(b) Comparison of the quantile 
function of random variable F* 
and empirical quantile function 
of the ratio (4.40) for \x = 50, 
K = 5, h = 10. 

Comparison of Ouantile Functions mu = 100, kappa = 5, h = 20 

0.0 0.2 OA 0.6 0.8 1.0 

(c) Comparison of the quantile 
function of random variable F* 
and empirical quantile function 
of the ratio (4.40) for fi = 100, 
« = 5, h = 20. 

Figure 5.13: Comparison of the quantile function of random variable F* and empirical 
quantile function of the ratio (4.40) for NBi((j,,5). 
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Y = 2asinh(...), for mu = 30 , kappa = 3 Y = 2asinh(...), for mu = 50, kappa = 3 Y =2asinh(...), formu= 100, kappa = 3 

20 25 30 35 30 35 40 45 50 55 70 30 90 100 110 120 

(a) Histogram of fiy for fi = 30 (b) Histogram of fiy for fi = 50 (c) Histogram of fiy for fi = 100 

Figure 5.14: Histograms of fiy for transformation Y = 2 s i n h _ 1 ( ^ / ( X + C)/(K + d)) for 
K = 3, sample size n = 100, and number of repetitions k = 1000 

Y = 2asinh(...), for mu = 30 , kappa =5 Y = 2asinh(...), for mu = 50, kappa =5 Y = 2asinh(...), for mu = 100 , kappa = 5 

(a) Histogram of fiy for fi = 30 (b) Histogram of fiy for fi = 50 (c) Histogram of fiy for fi = 100 

Figure 5.15: Histograms of \iy for transformation Y = 2 s i n h _ 1 ( ^ / ( X + C)/(K + d)) for 
K — 5, sample size n = 100, and number of repetitions k = 1000 

Y = 2asinh(...), for mu = 30 , kappa =10 Y = 2asinh(...), for mu = 50, kappa =10 Y = 2asinh(...), for mu = 100 , kappa = 10 

22 24 26 23 30 32 34 40 45 50 55 70 30 90 100 110 

(a) Histogram of fiy for \x = 30 (b) Histogram of fiy for /j, = 50 (c) Histogram of /j,y for /j, = 100 

Figure 5.16: Histograms of fiy for transformation Y = 2 s i n h _ 1 ( ^ / ( X + C)/(K + d)) for 
K = 10, sample size n = 100, and number of repetitions k = 1000 
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Y = ln(X + 1), for mu = 30 , kappa = 3 Y = ln(X + 1), for mu = 50 , kappa = 3 Y = ln(X + 1),formu= 100 , kappa = 3 

20 25 30 35 70 30 90 100 110 120 

(a) Histogram of /xy for /x = 30 (b) Histogram of /xy for /x = 50 (c) Histogram of /xy for /x = 100 

Figure 5.17: Histograms of /xy for transformation Y = l n ( X + 1) for K = 3, sample size 
n = 100, and number of repetitions k = 1000 

Y = ln(X + 1), for mu = 30 , kappa = 5 Y = ln(X + 1), for mu = 50 , kappa = 5 Y = ln(X + 1),formu= 100 , kappa = 5 

45 50 55 70 30 90 100 110 120 

(a) Histogram of /xy for /x = 30 (b) Histogram of /xy for /x = 50 (c) Histogram of /xy for /x = 100 

Figure 5.18: Histograms of /xy for transformation Y = l n ( X + 1) for K — 5, sample size 
n = 100, and number of repetitions k = 1000 

Y = ln(X +1), for mu = 30 , kappa = 10 Y = ln(X + 1), for mu = 50 , kappa = 10 

22 24 26 23 30 32 34 45 50 55 

Y = ln(X + 1), for mu = 100 , kappa = 10 

90 10C 

(a) Histogram of /xy for /x = 30 (b) Histogram of /xy for /x = 50 (c) Histogram of /xy for /x = 100 

Figure 5.19: Histograms of /xy for transformation Y = ln(X + 1) for K = 10, sample size 
n = 100, and number of repetitions k = 1000 
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5.4 Comparison of Power Functions by Simulation 

In this section we wi l l describe how the power functions of the F-test applied to test 
the hypothesis of equality of expectations (4.1) (see the beginning of the Chapter 4) of p 
random samples of the same size n are computed either by using formula (4.36), or v ia 
simulations. In the further text we wi l l denote the power function computations based 
on the formula (4.36) as theoretical power functions. When the approach via simulations 
is used, we wi l l refer to simulated power functions. 

Let us start by describing how the simulated power functions are computed for either 
Poisson or negative binomial data. The simulated power functions are computed in the 
following way. We choose a step h and an ini t ia l value of expectation Ai for Poisson case 
or Hi for negative binomial case. Addi t ional ly for the negative binomial case we choose 
the value of the parameter K. We generate p random samples X j for % — 1, ...,p of a size n 
from Po(Aj) for % — 1, ...,p in the Poisson case, and from NBi((n, n) for % — 1, ...,p in neg­
ative binomial case where, the values A 2 , \ p or /x 2, HP for the negative binomial case 
are obtained from Ai or Hi by adding multiples of the step h. We transform the random 
samples using transformations (3.4), (5.1), and (2.9) for the Poisson case and transforma­
tions (3.56), (5.1), and (2.9) for the negative binomial case obtaining transformed random 
samples Y« for i = 1, ...,p. The best value of the parameter of Yeo-Johnson transforma­
tion is determined via maximum likelihood method. Using formula (4.6) we compute 
the F statistic, where for input vector Ynp = ( Y n , Y " l n , Y p i , Y p n ) T we take the 
transformed samples Y j = (Yn, ...,Yin)T for % — 1, ...,p stacked one above each other. We 
compare the value of the F statistic with quantile QF{1 — &,p — l,p(n — 1)) and decide 
about the result of the test. We repeat this process k times for the same setting of param­
eters and compute the relative frequency of rejecting hypothesis HQ. B y increasing the 
value of step h and repeating the described procedure we obtain values of the simulated 
power function al l across the interval [0,1]. 

5.4.1 Computation of Theoretical Power Function under Asump-
tion of Equal Variances 

In this subsection we wi l l describe how the theoretical power function of the F test 
applied to test the hypothesis of equality of expectations (4.1), (see the beginning of 
the Chapter 4) of p random samples X i , . . . , X p of a size n of either Poisson or negative 
binomial distribution transformed via (3.4) or (3.56) is computed. The computation is 
based on the formulae and results provided in Chapter 3 and Section 4.1, and is done as 
follows. A s in Section 5.3 the general procedure is identical for both Poisson and negative 
binomial cases, save the applied transformations. The description wi l l be provided for 
Poisson distribution, while the corresponding data for negative binomial distribution wi l l 
be provided in brackets following the data for Poisson distribution. Let X i , . . . , X P be p 
samples of a size n from a distribution Po(Aj) (NBi((ii, i — 1, •••,£>• We choose the 
value A i (fii) and the step h. The values Aj (fa) for % = 2, ...,p differ from the value Ai 
(fj>i) by a multiples of the step. 

We compute the numerical characteristics of random variables Yij i = l,...,p, j = 
1, ...,n of the random samples Y i , Y p obtained by applying the transformation (3.4) 
((3.56)) on ^ for i = 1, ...,p by formulae (3.20) and (3.26) ((3.108) and (3.96)). We have 
seen in the Subsection 4.1.3, Proposition 4.17 that, given that the assumption of equal 
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variances holds, the power function /3a(0) on the significance level a is given by formula 

f3a{6) = 1 -FFs(QF(l -a;s,t),s, t,5)) (5.27) 

where, 6 is the p-dimensional vector of expectations, s = p — 1 and t = p(n — 1) are 
the degrees of freedom of the F distributed random variable under the hypothesis H0 of 
equality of expectations and S is the noncentrality parameter given by 

For the values of the entries of 6 we take the expectation approximations EYj j of the 
transformed random variables Y ^ , for % — 1, ...,p, and j fixed, obtained via (3.20) ((3.108)). 
Note that E Y ^ = EYj / for each j, I G {1, . . . ,n}, so it does not matter which j we pick. 
For the value of a2 we take the variance approximation varYjj of the transformed random 
variables Y^, for % and j fixed, given by (3.26) ((3.96)). This is because v a r Y y = varYj/ 
for each j, I G { 1 , n } , and by Remark 5.8 (Remark 5.13) also v a r Y ^ = varY"^ for each 
i,k G {1, ...,p} up to a term that we decide to neglect. 

We start the computation by setting h = 0 and hence, 9\ — ... — 9p. We proceed to 
increase the difference between the expectations in order to obtain a range of values of 
f3a{6) from the whole interval of values [a, 1]. The precise description of how this is done 
is provided in Subsection 5.4.3 (Subsection 5.4.4). 

5.4.2 Computation of Theoretical Power Function Under As­
sumption of Unequal Variances 

In this subsection we wi l l describe how the theoretical power function of the F test applied 
to test the hypothesis of equality of expectations (4.1) (see the beginning of the Chap­
ter 4) of p random samples X i , . . . , X p of a size n of either Poisson or negative binomial 
distribution transformed v ia for the transformation (5.1) is computed, the general pro­
cedure is identical for both Poisson and negative binomially distributed random variable 
samples, save the applied transformations. The description wi l l be provided for Poisson 
distribution, while the corresponding data for negative binomial distribution wi l l be pro­
vided in brackets following the data for Poisson distribution. The situation is a bit more 
complicated in this case because of the assumption of the equality of variances among 
the samples is violated, and is based mainly on the results developed in Section 4.2. Let 
X i , . . . , X P be p samples of a size n from distribution Po(Aj) (xVPz(/Xj, nj), % — 1, ...,p. We 
again choose the value A i (/xi) and the step h. The values A« (/Xj) for % = 2, ...,p differ 
from the value A i (/xi) by a multiples of the step. The precise description of how this is 
done in the computations is provided in Subsection 5.4.3 (Subsection 5.4.4). 

Let Y j % = 1, ...,p be the random samples obtained by applying the transformation 
(5.1) on independent samples X j for % = l,...,p from distribution Po(Aj) (NBi([/,i, K)). 
The numerical characteristics of the transformed random variables Yjj are computed by 
approximation formulae (5.17), and (5.20). To compute the power function we need to 
determine the degrees of freedom of the F statistic under the hypothesis H0. It can be 
easily seen, that the degrees of freedom of the F statistic under the hypothesis H0, given 
the assumption that the variances are not equal, in the model we are assuming, where the 
variance approximation is a function of the expectation, is again s — p — 1, t — p(n — 1). 
This is summed up in the following Lemma. 

(5.28) 
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Lemma 5.14. Assume that we have p independent samples X 1 , X p of a size n from 
distributions £(0i), ...,C(9P) (either Poisson or negative binomial) in sequence, where the 
parameters 9i are chosen in such a way that for each % = 1, ...,p andj = 1 , n , E X j j = 9i, 
Furthermore assume that the null hypothesis (4.1) of the equality of expectations holds, i. 
e. 9i = ... = 9P = 9. Let us denote Y1 = ( Y n , Y l n ) , Y p = ( Y p l , Y p n ) the p random 
samples obtained from random samples X1,...,Xp by applying transformation (5.1). Let 
ofj variances of random variables Y^ fori = 1, ...,p, j = 1, ...,n. Then the distribution of 
the test statistics F given by (4.40) may be modelled by 

F ~ F p _ i ! P ( „ _ i ) . (5.29) 

Proof Obviously cr?- = of for each j,l e { 1 , n } . Let us denote c r 2 = ( a 2 , a 2 ) , where 
for any fixed « £ { l , . . . , n } we have of = ofj for any j = 1 , n . Let us recall that through 
this chapter we consider the following model c r 2 = ( c r 2 , c r 2 ) = ( c r 2 ( # i ) , o 2 ( 9 p j ) , where 
by abuse of notation we wi l l for the sake of the proof identify the variances of wi th their 
respective approximations (5.12) or (5.20) depending on whether are we assuming the 
Poisson or the negative binomial case. I. e. al l the variability in the variances among 
the p random samples is caused by the difference of expectations 9i among the samples. 
Given that the hypothesis H0 holds, this implies, that 

of = ... =a2

p = o2. (5.30) 

Let us first focus on K[. App ly ing this result to the matrix S T S (see Proposition 4.30) 
we obtain 

S T S = diag(cr)~iidiag(cr) = c r 2 H, (5.31) 

and since we have that for any matrix A wi th a nonzero eigenvector x , a corresponding 
eigenvalue A and a nonzero real a 

( « A ) x = a ( A x ) = a(Ax) = (oA)x (5.32) 

and so x is an eigenvector of aA for the eigenvalue aX, and the matrix H is symmetric 
and idempotent of a rank p—1 (see Lemma 4.4) and therefore p — 1 of its eigenvalues are 
equal to one and one to zero (see Proposition 1.19), the matrix S T S has p—1 eigenvalues 
equal to o2 and one eigenvalue equal to 0. Using this result with the one presented in 
Corollary 4.33 we obtain 

K[ = o2{V2+ ... + ¥;_,), (5.33) 

where the Vi are independent, identically distributed wi th variance equal to one. Moreover 
we have seen in the second step of the proof of the Theorem 4.36 that the expectation of 
each Vi is equal to zero, hence, 

K[ = o2Xu (5.34) 

where X1 ~ Xp-i ( s e e Proposition 1.35). 
A simpler situation is wi th K'2. B y Corollary 4.27, namely equation (4.68) and the 

result (5.30) we have that 

K'2 = o2{V2 + ... + Vp

2

(n_1))) (5.35) 

where V2 ~ N(0,1) are independent identically distributed random variables, and hence, 
due to Proposition 1.35 we can rewrite (5.35) in the form 

K'2 = o2X2 (5.36) 
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where X 2 ~ Xp(n-i)- Hence, combining the results (5.36) and (5.36) we get 

F_p(n-l)X1 

p - 1 X2 

(5.37) 

It can be already seen from definition of the F distribution, that F ~ F p _ l p ( n _ 1 ) (see [8]), 
moreover if we apply the approximation given by Theorem 4.35, we again obtain for this 
special case of ratio of two \ 2 distributed random variables that j^F* ~ F p _ i i P ( n _ i ) (see 
[8]). ^ ' • 

In the following statement we wi l l introduce the power function of the F test applied 
to test the hypothesis of equality of expectations (4.1) among the p samples of a size n 
from Poisson or negative binomial distribution transformed v ia (5.1). 

Theorem 5.15. Let us denote Y i = ( Y n , Y l n ) , Y p = (Ypl, ...,Ypn) the p random 
samples obtained by applying transformation (5.1) to independent random samples Xy = 
(Xn, ...,Xin),Xp = (Xpi, ...,Xpn) of a size n from given distributions C(9i), % — 1, ...,p 
(either Poisson or negative binomial) where the parameters 9i are chosen in such a way 
that E X j = 9i fori = l,...,p. Let o \ x , o 2

n , a p l , o 2

n be variances of random 
variables Y^, fori = l,...,p and j = l , . . . , n . Let the F test statistic be given by (4.40) 
Then the power function of the F test on the level of significance a may be approximated 
by 

Pa(0) = l-FFs(r*;vl,vZ,8*1), (5.38) 

where J7^ is the distribution function of F*, given by Theorem 4-35 and the constants 
v 1 ; v2-> ^ i and the parameter r* = jr^r are determined by Lemma 4-34 and Theorem 4-35. 
The value of r is given by 

r = QF(l-a;p-l,n(p-l)). (5.39) 

Proof Obviously cr?- = aft for each j,l e { 1 , n } . Let us denote c r 2 = ( o f , o 2 ) , where 
for any fixed % G { 1 , n } we have af = o4

2 for any j = 1 , n . Let us recall that through 
this chapter we consider the following model c r 2 = ( o 2 , o 2 ) = ( o 2 ( # i ) , a 2 ( 9 p j ) , where 
by abuse of notation we wi l l for the sake of the proof identify the variances o 2 wi th their 
respective approximations (5.12) or (5.20) depending on whether are we assuming the 
Poisson or the negative binomial case. I. e. al l the variability in the variances among the 
p random samples is caused by the difference of expectations 9i among the samples. Due 
to Proposition 4.17 the power function f3a{6) is in general case given by formula 

Pa(d) = l-FFs(QF(l-ar,s,t),v1,v2,6), (5.40) 

where J 7 ^ is the distribution function of the test statistic under the alternative (4.2), 
and the parameters s and t are the degrees of freedom of the test statistic under the null 
hypothesis (4.1). In Lemma 5.14 we have determined that s = p — 1 and t = p(n — 1). 

Due to Corollary 5.6 for Poisson case and Corollary 5.11 for negative binomial case if 
Hi given by (4.2) holds there exist i, k 6 {1, ...,p}, i ^ k such that af ^ o\, therefore the 
assumption of equal variances is violated. Due to Theorem 4.36 we may approximate the 
F statistic by F* according to Theorem 4.35, but in order to do so we need to compute 
the new value of quantile r* corresponding to the quantile r = QF(1 — a;p — 1, n{p — 1)) 
of the original test statistic F which concludes the proof. • 
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The practical computation of the the power function given by (5.38) is done in the 
following way. The numerical characteristics of the transformed random variables Yij i = 
1, ...,p, j = 1, . . .n introduced at the beginning of this subsection are used to compute the 
vector \i and the matrix S T S (see Proposition 4.30). The eigenvalues A« and eigenvectors 
Pj for % = l,...,p of S T S are found. The nonzero eigenvalues of S T S are the coefficients 
of the linear combination K[. The degrees of freedom of the independent x2 distributed 
random variables of the linear combination K[ are al l equal to one. (see Corollary 4.33). 
Using the eigenvectors of S T S and the vector \i the noncentrality parameters of the 
independent \ 2 distributed random variables of the linear combination K[ are determined 
via formula Si = ( p f /J,)2 for % — 1, ...,p (see proof of Corollary 4.33). Due to Corollary 
4.27 we know that the coefficients of the linear combination K2 are actually variances a2 

of the transformed random variables Y^ for % — 1, ...,p j — 1 , n . In the computations 
we wi l l use the approximations given by (5.12) for Poisson case and (5.20) for negative 
binomial case. From the same Corollary we also obtain that the degrees of freedom of 
each central \ 2 distributed random variable in the linear combination K2 are equal to 
n — 1. From these data we, by applying Lemma 4.34 and Theorem 4.35 compute the 
values of the coefficients A^, X2 (see (4.95)), the degrees of freedom v2 (see (4.96)), and 
the noncentrality parameter S\ (see (4.97)) of the approximation F*. F ina l ly also the 
value of quantile r* of the approximation, corresponding to the quantile r is determined 
by the formula introduced in the Theorem 4.35 where for r we take (5.39). A s in the case 
of equal variances (see Subsection 5.4.1) obtaining values of the power function /3a(/x) all 
across the interval [a, 1] is done by increasing the step h. 

5.4.3 Power Functions for Case of Poisson Distribution 
The computations in the work were done for p = 3, n = 100, the values of A i were set to 
5,10, 20, 50. The values of Xj, j = 2,3 were computed as follows 

Xj = A i + (-l)j(kh0) k — 0, ...,30, (5.41) 

so that the difference Afj,j = |/xi — fJ>j \ for j = 2, 3 increases with the value of k. The value 
of the step h and the values of k were picked in such a way that we would obtain values of 
the power function from the whole interval of values [0,1] and also keep the computations 
time-feasible. 

Addi t ional ly to the power functions of the F test when either of the two transforma­
tions (3.4) and (5.1) was applied, a power function of the F test when the Yeo-Johnson 
transformation (see Section 2.3) was applied was obtained via simulations. The parameter 
of the Yeo-Johnson transformation is traditionally denoted by A, to avoid confusion wi th 
the parameter of the Poisson distribution but keep the tradition we wi l l denote it Xyj-
The best value of the parameter XYJ was estimated via by maximum likelihood method 
for each setting of A i by applying the method on a sample from Po(Xi) of a size n = 100. 

For al l assumed values of A both the theoretical and the simulated power function of 
the F test applied to a sample transformed v ia transformation (3.4) scored better than the 
theoretical and simulated power function of the F test applied to a sample transformed v ia 
transformation (5.1). The simulated power functions attain values close to their respective 
theoretical counterparts. 

The simulated power function of the F test applied to a sample transformed via Yeo-
Johnson transformation scores similarly to simulated and theoretical power function of the 
F test applied to a sample transformed via transformation (3.4) and slightly better than 
the theoretical and simulated power function of the F test applied to a sample transformed 
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via transformation (5.1). The closest resemblance of power functions of Yeo-Johnson case 
and transformation (3.4) case is for A = 5 (see Figure 5.20). We may explain this by the 
fact that the value of the Yeo-Johnson transformation parameter is Xyj = 0.45, which is 
close to 0.5-the power of the square root. 

For increasing values of A all the power functions tend to attain increasingly similar 
values. 
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Figure 5.20: Comparison of the power functions. Transformation Y = y X + | theoretical 

p. f.: blue line, simulated p.f.: green + symb., transformation Y = l n ( X + 1) theoretical 
p. f.: red line, simulated p.f.: orange x symb., Yeo-Johnson transformation simulated 
p.f.: black dot. Computed for A i = 5, and coefficient of Yeo Johnson transformation 
\ Y J = 0.45. 
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Figure 5.21: Comparison of the power functions. Transformation Y = y X + | theoretical 

p. f.: blue line, simulated p.f.: green + symb., transformation Y = l n ( X + 1) theoretical 
p. f.: red line, simulated p.f.: orange x symb., Yeo-Johnson transformation simulated 
p.f.: black dot. Computed for A i = 5, and coefficient of Yeo Johnson transformation 
\Yj = 0.2. 
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Figure 5.22: Comparison of the power functions. Transformation Y = y X + | theoretical 

p. f.: blue line, simulated p.f.: green + symb., transformation Y = l n ( X + 1) theoretical 
p. f.: red line, simulated p.f.: orange x symb., Yeo-Johnson transformation simulated 
p.f.: black dot. Computed for A i = 20, and coefficient of Yeo Johnson transformation 
\ Y J = 0.95. 
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Figure 5.23: Comparison of the power functions. Transformation Y = y X + | theoretical 

p. f.: blue line, simulated p.f.: green + symb., transformation Y = l n ( X + 1) theoretical 
p. f.: red line, simulated p.f.: orange x symb., Yeo-Johnson transformation simulated 
p.f.: black dot. Computed for A i = 50, and coefficient of Yeo Johnson transformation 
A y j = 0.9. 
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5.4.4 Power Functions for Case of Negative Binomial Distribu­
tion 

The computations in the work were done for p = 3, n = 100 the values of (j>i were set 
to 30,50, and 100. The shape parameter K was set to K — 3,5, and 10. The values of 
fij, j = 2, 3 were computed as follows 

Hi = + (-l)j(kh) k — 0 , 3 0 , (5.42) 

so that the difference Afj,j = — (J,j \ f ° r 3 — 2, 3 increases with the value of k. The value 
of the step h and the values of k were picked in such a way that we would obtain values of 
the power function from the whole interval of values [0,1] and also keep the computations 
time-feasible 

Addi t ional ly to power functions for the F test when either of the two transformations 
(3.56) (5.1) was applied, a power function of the F test when the Yeo-Johnson transfor­
mation (see Section 2.3) was applied, was computed v ia simulations. The value of the 
parameter Xyj of the Yeo-Johnson transformation was estimated via maximum likelihood 
method for each setting of (j>i and K, by applying the method on a sample from NBi((ii, K) 
of a size n = 100. The values of Xyj for each setting may be found in the descriptions of 
each Figure. 

Let us also additionally to the power functions comparison Figures add Figures of 
a sample skewness as a function of increasing parameter \i for values of K = 3, 5,10 to 
obtain a better insight on when a possible problem with normality may arise. 

For the value of K = 3 (see Figure 5.25) an interesting phenomena occurs for the value 
of / i i = 30 where the theoretical power function of the F test applied to a random sample 
transformed via transformation (5.1) scores higher than the theoretical power function 
of the F test applied to a random sample transformed v ia transformation (3.56), and in 
most points even higher than both of the simulated power functions of F test applied 
to a random sample transformed via transformation (5.1) and (3.56), topped only by 
the power function of F test applied to a random sample transformed v ia Yeo-Johnson 
Transformation with Xyj = 0.25. Since this has not occurred for any other values of 
either K or (j>i we assume that the possible cause of this phenomena is rather the result of 
possible nonnormality of the transformed variables due to high absolute value of skewness 
(see Figure 5.24a) which is the highest of al l for the values of K considered and also because 
the variance approximation formula (5.20) neither does have a good fit nor "behaves well" 
for small values of (j>i for K = 3 (see Figure 5.9b). 

Another pathological case occurs for smaller values of (j>i — 30, 50 for the largest 
assumed value of K = 10 (see Figure 5.31 and 5.32) where the theoretical power function 
of the F test applied to a random sample transformed via transformation (5.1) scored 
significantly worse than both the corresponding simulated power function and al l the 
other power functions. We explain this by the phenomena observed in the Subsection 
5.3.2. We have seen that for increasing values of K it takes larger values of \i for both 
sample variance and the variance obtained via the approximation to stabilise (see Figure 
5.11b). The variance approximation (5.20) increases above al l bounds rapidly as \i tends 
to 0 from the right hand side and does not become even close to stable for values of \i 
around fx — 50. 

In general, save the pathological cases described above, the power function of the F 
test applied to a sample transformed via transformation (3.56) scores always a little better 
both for theoretical and simulated power functions. However the simulated power function 
of the F test applied to a sample transformed v ia Yeo-Johnson transformation scores the 
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best in al l cases but one. Indeed for Hi = 30 and K = 5 the simulated and theoretical 
power functions of the F test applied to a sample transformed via transformation (3.56) 
scores slightly better. That is caused by the fact that the parameter Xyj of the Yeo-
Johnson transformation estimated via maximum likelihood estimation happened to be 
very close to 0 so the Yeo-Johnson transformation almost coincided with transformation 
(5.1). 

Sample skewness comparison for kappa = 3 Sample skewness comparison for kappa = 5 

(a) Comparison of sample of transformed (b) Comparison of skewness of transformed 
samples for K = 3. samples for K = 5. 

Sample skewness comparison for kappa =10 

(c) Comparison of skewness of transformed 
samples for K = 10. 

Figure 5.24: Comparison of sample skewness of samples transformed via transformation 
Y = 2 s i n h " 1 ( v / ( X + C)/(K + dj) (blue) and transformation Y = l n ( X + 1) (red). The 
vertical lines are at [/, — 30, 50,100. 
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Figure 5.25: Comparison of the power functions. Transformation Y = 
2 s i n h - 1 ^ ( X + c)/(K + d)) theoretical p. f.: blue line, simulated p.f.: green + symb., 
transformation Y = l n ( X + 1) theoretical p. f.: red line, simulated p.f.: orange x symb., 
Yeo-Johnson transformation simulated p.f.: black dot. Computed for /xi = 30, K = 3, and 
coefficient of Yeo Johnson transformation Xyj = 0.25. 
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Figure 5.26: Comparison of the power functions. Transformation Y = 
2 s i n h - 1 ^ ( X + c)/(K + d)) theoretical p. f.: blue line, simulated p.f.: green + symb., 
transformation Y = l n ( X + 1) theoretical p. f.: red line, simulated p.f.: orange x symb., 
Yeo-Johnson transformation simulated p.f.: black dot. Computed for /xi = 50, K = 3, and 
coefficient of Yeo Johnson transformation Xyj = 0.25. 
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Figure 5.27: Comparison of the power functions. Transformation Y = 
2 s i n h - 1 ^ ( X + c)/(K + d)) theoretical p. f.: blue line, simulated p.f.: green + symb., 
transformation Y = l n ( X + 1) theoretical p. f.: red line, simulated p.f.: orange x symb., 
Yeo-Johnson transformation simulated p.f.: black dot. Computed for /xi = 100, K — 3, 
and coefficient of Yeo Johnson transformation Xyj = 0.25. 
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Figure 5.28: Comparison of the power functions. Transformation Y = 
2 s i n h - 1 ^ ( X + c)/(K + d)) theoretical p. f.: blue line, simulated p.f.: green + symb., 
transformation Y = l n ( X + 1) theoretical p. f.: red line, simulated p.f.: orange x symb., 
Yeo-Johnson transformation simulated p.f.: black dot. Computed for /xi = 30, K = 5, and 
coefficient of Yeo Johnson transformation Xyj = 0.05. 
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Figure 5.29: Comparison of the power functions. Transformation Y = 
2 s m l i - 1 ^ ( X + c)/(K + d)) theoretical p. f.: blue line, simulated p.f.: green + symb., 
transformation Y = l n ( X + 1) theoretical p. f.: red line, simulated p.f.: orange x symb., 
Yeo-Johnson transformation simulated p.f.: black dot. Computed for /xi = 50, K = 5, and 
coefficient of Yeo Johnson transformation Xyj = 0.5. 
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Figure 5.30: Comparison of the power functions. Transformation Y = 
2 s i n h - 1 ^ ( X + c)/(K + d)) theoretical p. f.: blue line, simulated p.f.: green + symb., 
transformation Y = l n ( X + 1) theoretical p. f.: red line, simulated p.f.: orange x symb., 
Yeo-Johnson transformation simulated p.f.: black dot. Computed for /xi = 100, K — 5, 
and coefficient of Yeo Johnson transformation Xyj = 0.1. 
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Figure 5.31: Comparison of the power functions. Transformation Y = 
2 s i n h - 1 ^ ( X + c)/(K + d)) theoretical p. f.: blue line, simulated p.f.: green + symb., 
transformation Y = l n ( X + 1) theoretical p. f.: red line, simulated p.f.: orange x symb., 
Yeo-Johnson transformation simulated p.f.: black dot. Computed for /xi = 30, K = 10, 
and coefficient of Yeo Johnson transformation Xyj = 0.4. 
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Figure 5.32: Comparison of the power functions. Transformation Y = 
2 s i n h - 1 ^ ( X + c)/(K + d)) theoretical p. f.: blue line, simulated p.f.: green + symb., 
transformation Y = l n ( X + 1) theoretical p. f.: red line, simulated p.f.: orange x symb., 
Yeo-Johnson transformation simulated p.f.: black dot. Computed for /xi = 50, K = 10, 
and coefficient of Yeo Johnson transformation Xyj = 0.3. 
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Figure 5.33: Comparison of the power functions. Transformation Y = 
2 s i n h - 1 ^ ( X + c)/(K + d)) theoretical p. f.: blue line, simulated p.f.: green + symb., 
transformation Y = l n ( X + 1) theoretical p. f.: red line, simulated p.f.: orange x symb., 
Yeo-Johnson transformation simulated p.f.: black dot. Computed for /xi = 100, K = 10, 
and coefficient of Yeo Johnson transformation Xyj = 0.9. 
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Appendix A 

Computation of Numerical 
Characteristics of Selected 
Distributions 

A.0.5 Poisson Probability Distrbution 
Lemma A . l . Let X : Q —> No be a random variable with Poisson probability distribu­
tion, then the first moment of X is 

EX = X. ( A . l ) 

Proof. B y the definition of expectation of discreet random variable (see [2]) we have 

Xx 

xl 
EX = ^ 2 x • p(x) — E x ' e A ' 

x=0 x=0 

Since the term of the sum for x = 0 is equal to zero we have the following 

- A 
oo . x oo \x—1 0 0 \x 

E * • = e ~ A E A • A ^ r = A e ~ A E 
^—' x\ ^ ( x - l ) ! ^—' x\ 

\ e - x e x = X 
x=l x=l x=0 

(A.2) 

(A.3) 

• 
Lemma A.2 . Let X : Q —> No be a random variable with Poisson probability distribu­
tion, then the second moment of X is 

EX2 = X. (A.4) 

Proof. Second moment of the discreet random variable X is given by (see [2]) 

,XX 

EX2 = ^x2p(x) = J ^ x V 
x=0 x=0 

XI 
(A.5) 

Since the first term of the sum for x = 0 is equal to zero we have the following 

A ;' 
E * 2 = £ ^ = ^ £ 

A • A 
x 

x=l x=l 

Xx 

x • (x — 1) 

x-l 00 00 

' — 7 T T = A e " A V x- — = A e " A V 
- 1 ) ! ^ ( x - l ) ! ^ 

' i=l
 v

 ' i=l 

A x-l 
X-

(n-1) 

A e - A E ( - + 1 ) ^ = A e - A E 
i=0 
oo 

i=0 

xx xx~ 
= Xe~x x— + — = Xe~x 

XI XI 

oo . x oo - x 

i=0 ' i=0 
\x ^ \x 

A e _ A E x n " + A e _ A E ^ 
i=0 ' i=0 

(A.6) 
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In the proof of the Lemma A . l we have seen that e A = X- Using this result we 
finally obtain 

EX2 = X2 + A. (A.7) 

• 

A.0.6 Negative Binomial Probability Disribution 
Lemma A . 3 . Let X : Q —> N0 be a random variable with negative binomial probability 
distribution, then the first moment of X is 

EX = K { 1 ~ q ) . (A.8) 
Q 

Proof. B y the definition of first moment of random variable wi th discrete probability 
distribution (see [2]) we have 

oo 

EX = ^ V p ( x ) . (A.9) 
x=0 

For our case we obtain 

e x = f > ( k + r J ) q K { i - q f = £ * ( ^ - ~ i v ' « " < i - q r 

x=0 ^ ' ' x=0 >' 

E (x + K—1)\ K K / 1 ^ (x + K - 1 ) ! K / 1 

x = 0 (x- 1 ) ! ( K - 1)! re ^ ( x - l ) ! r e ! 

= E " f / c + r 1 ) ^ 1 - ^ - ( a - i o ) 

Since the term of the sum (A. 10) for x = 0 is equal to zero we may write 

E X = f > ( " + * _ i y ( l - < z ) x - (A.11) 
x=l ^ ' 

Let us now introduce a following reparametrisation, let y — x — 1, and 5 = re + 1, 

E A = ^ - l ) ( 5 + ^ 1 ) / - 1 ( l - g ) ( l - ^ 
l/=0 ^ ' 

= ( « 5 - i ) ( i - ? v - i f : ( ^ ! 7 1 ) ( i - ( z ) 1 ' 
l/=0 ^ ' 

1 
^ - " ( ' - ^ - ' [ i - d ' - , ) ] « - <A-12> 

B y returning back to the original parametrisation we obtain 

E X = K { 1 ~ p ) f = K { 1 ~ q \ (A.13) 
q - K - i q v > 

• 
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Lemma A.4 . Let X : Q —> N0 be a random variable with negative binomial probability 
distribution, then the variance of X is 

v a r X = (A.14) 
q2 

Proof. B y the definition of k-th moment of random variable wi th discrete probability 
distribution (see [2]) we have that 

EXk = ^xk -p{x). (A.15) 
x=0 

For our case we obtain 

z=0 ^ ' x=0 >' 

E (x + K—1)\ K K / 1 . r ^ (x + K — 1)! 

( x - l W / c - l ) re v y ^ ( x - l ) ! r e ! v ^ 
oo 

= E ^ f K + ^ Va-?)*- (A.i6) 
x=0 

Since the term of the sum (A. 16) for x = 0 is equal to zero we may write 

E X 2 = f > ( K + X _ i y ( l - g r (A.17) 
x=l 

We introduce following reparametrisation, let y = x — 1 and 5 = re + 1, wi th the 
reparametrisation we have 

E X 2 = f > - l ) (y + 1) + * " X ) / - ( I - , ) ( ! - , )« 
y=0 ^ ' 

= f > - 1 ) [v(S+

s

y_~ - - <z)B + - ? ) ( ! - ? ) 

= D * - i ) i / ( < 5 t ! 7 1 ) ^ - 1 ( i - ? ) ( i - ? ) B 

?;=0 ^ ' 
oo 

+ E ( 5 - 1 ) ^ t ! l V " 1 ( l - ? ) ( l - ? ) w - (A-18) 

Let us denote 

and 

y=0 
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For Si we have 

S1 = f ^ { 5 - l ) y ( S ^ i y - \ l - q ) { l - q ) v 

= f > - 1 ) * ^ + r x ) - - ?)w- (A.21) 
y=0 ^ ' 

Since the term of Si for y = 0 is equal to zero, we may write 

j/=i V / 

We introduce the following reparametrisation, let z = y — 1, and let r = 8 + 1. W i t h the 
reparametrisation we have 

* = f > - 2)(r - 1) f5 + y_- V ^ l - g)2(l -

= (r - 2)(r - 1 ) ^ " 2 ( 1 - g ) » — L - ^ - . (A.23) 

If we return to the original parametrisation we obtain 

K(K+l)q"(l-q)2 /c(/c+l)(l-g)2 

6 1 - ^ - ~2 • (A-24) 

B y the proof of Proposition A . 3 for S2 we have 

S 2 = (A.25) 

SO 

E X 2 = ^ + 1 j 2
( 1 - g ) 2

+ ^ l . ( A 2 6 ) 

• 
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Conclusion 

After introducing the necessary theoretical background for this work in Chapter 1 and 2, 
the variance stabilising transformations for random variables wi th Poisson and negative 
binomial distribution were studied. Based on the work [1] generalised versions of these 
transformations wi th additional parameters inside the arguments were presented, namely 
Y = \/X + c, where c > 0 for Poisson case and Y = 2 s i n h _ 1 (y/{X + c)/(rc + dj) and 
Y = l n ( X + A), where A, c, d > 0 for the negative binomial case. A great part of the 
Chapter 3 tackles with the problematic of approximating numerical characteristics of the 
random variables transformed via the presented generalised transformations in order to 
determine the optimal value of the additional parameters. 

For the Poisson distributed random variable the approximations of the numerical 
characteristics were found by taking Taylor expansion of the transformation, computing 
the numerical characteristic of the Taylor expansion term by term and then expanding 
each term asymptotically for large values of the parameter A of Poisson distribution. In 
such way expansions dependant on the additional parameter were found. The optimal 
value of the parameter was chosen in such a way, so that the coefficient of the term 
dependant on A of the highest degree in the variance approximation expansion would be 
zero. The optimal value of the parameter for the Poisson distributed random variable 
was determined to be c = | . Addi t ional ly it was seen in the end of the Section 3.1, that 
the optimal value of the parameter c minimises the bias by, which was defined as the 
difference of the parameter A and its estimate Ay derived by applying the transformation 
in reverse to arithmetic mean of transformed a random sample of a Poisson distribution 
wi th parameter A. 

For negative binomially distributed random variable X ~ NBi(fi,K) case first the 
asymptotic expansion of the moment generating function and consequently the cumulant 
generating function of the transformed random variable were found. The approximations 
of the numerical characteristics were derived from the cumulant generating function ap­
proximation. In this case the approximations are dependant on the shape parameter K of 
the negative binomial distribution and for higher values of K we can obtain better approxi­
mations. The idea behind finding the optimal values of the parameters A, c, d is similar to 
the Poisson case. Aga in an approximation of variance of the transformed random variable 
in a form of an expansion was used. The optimal value of the constant was picked so that 
the coefficient of the term of the variance approximation dependant on the expectation 
parameter \x of the highest order would be zero. The optimal value of A was determined 
to be A = \K. The optimal value of d — —2c and finally c = | + y | |^ + 0(-^) for K large. 
A t the end of the Section 3.2 l imit ing values of skewness parameter for the transformed 
random variables were derived as a functions of K that tend to zero for K large. 

The second goal of the thesis was to provide comparison of the transformations intro­
duced in the Section 3 wi th some other commonly used transformations of the random 
variable both theoretically and via simulations. The comparison was done within One-
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Way A N O V A framework by comparing power functions of the F test used to test the 
hypothesis of equality of expectations among p random samples of equal size n of Poisson 
or negative binomial distribution to which one of the transformations was applied. The 
Chapter 4 presents the theoretical background for the comparison. Addi t ional ly it was 
assumed that for some transformations the assumption of equal variances necessary for 
the One-Way A N O V A was violated. In order to proceed wi th the comparison in Section 
4.2 the F statistic under the relaxed assumption of unequal variances is studied. W i t h the 
results of Subsections 4.2.1 and 4.2.2 it is found out, that given the assumption of equal 
variances violated, the F statistic may be expressed as a ratio of linear combinations of \ 2 

distributed random variables wi th positive coefficients. Using this result and the results 
of [12] the ratio is approximated by one F distributed random variable multiplied by a 
constant. 

In the fifth and final chapter the numerical comparison itself is carried out by com­
puting the power functions of the F test for transformations introduced in Chapter 3 
and for a transformation l n ( X + 1), when applied to sample of either Poisson or negative 
binomial distribution. Two different approaches were used, a theoretical one, based on 
the definition of the power of a test, using the approximations of the numerical charac­
teristics of the transformed random variables and a an approach v ia simulations. Bo th 
of the approaches were described in detail in Section 5.4. Addi t ional ly Yeo-Johnson was 
added to the comparison but only via the approach by simulations. To get better in­
sight a goodness of approximations of the numerical characteristics of the transformed 
random variables was checked by comparing them with their respective estimations from 
generated samples. 

A study of the properties of the parameter estimates of random variable of Pois­
son and negative binomial distribution via simulations was provided in this section as 
well. A sample of either Poisson or negative binomial distribution was generated and 
transformed via Y = \fX + 3/8 and Y = In ( A + 1) for the Poisson case and v ia 
Y = 2 s i n h _ 1 ( - \ / ( X + C)/(K + d)) and Y = l n ( X + 1) for the negative binomial case. 
Expectation of the transformed sample was estimated using arithmetic mean. The re­
spective transformation was then applied to the arithmetic mean in reverse to obtain an 
estimate Ay of parameter A of the Poisson distribution or \iY of the parameter \x of neg­
ative binomial distribution in the respective case. This procedure was repeated k times 
for the same settings of parameters A or /x to obtain a random samples of the estimate 
Ay or fiy Two interesting results were obtained in this study. For both the Poisson and 
negative binomial case the respective estimates were biased. In the negative binomial case 
however the value of bias decreased as the value of the shape parameter K grew. 

Two interesting facts came as results of the check of the goodness of the approxima­
tions. First , for negative binomial case it was found out, that wi th increasing value of the 
shape parameter K the value of \x for which the sample variance became approximately 
stable increased. This was more evident for the transformation l n ( X + 1), the increase of 
H for Y = 2 s i n h _ 1 ( A / ( X + C)/(K + d)) was significantly slower. Second, for the Poisson 
case the variance of the random variable transformed via l n ( X + 1) did not become stable 
for values of A up to approximately one hundred which might pose a problem when using 
this transformation for small values of the parameter A. O n the other hand, the variance 
of the random variable obtained v ia transformation Y = \JX + 3/8 was stable even for 
relatively small values of A. 

Finally, in the last part of the Chapter 5 the power function comparison was carried 
out. For the Poisson case, random samples of Poisson distribution wi th values of param­
eter A = 5,10, 20, 50 transformed via transformations Y = \JX + 3/8, Y = l n ( X + 1) 
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and the Yeo-Johnson transformation were considered. In general the simulated power 
functions attained values close to their theoretical counterparts for both Y = yJ~X + 3/8 
and Y = l n ( X + 1). Both the simulated and the theoretical power function of the F test 
applied to a sample transformed via Y = \[X + 3/8 scored a little better than the sim­
ulated and theoretical power function of the F test applied to a sample transformed v ia 
Y = l n ( X +1) and similarly to the simulated the power function of the F test applied to a 
sample transformed v ia Yeo-Johnson transformation. The similarity of the Yeo-Johnson 
and the Y = sjx + 3/8 case may be explained by the fact, that the optimal values of the 
parameter of Yeo-Johnson transformation obtained via maximum likelihood estimation 
were close to the power of the square root 0.5. Namely in the case A = 5 the optimal 
value of the Yeo-Johnson transformation parameter was 0.45. For increasing values of 
the parameter A the difference between al l the power functions became smaller. For value 
of A = 50 was the difference already practically negligible, however we conclude that 
for smaller values of A one should tend to choose either Yeo-Johnson transformation or 
Y = A / X + 3/8 over Y = l n ( X + 1). 

For the negative binomial case, random samples of negative binomial distribution 
wi th values of parameter \i = 30, 50,100, and values of shape parameter K — 3,5,10, 
transformed via Y = 2 s i nh" 1 (y/(X + c)/(K + d)), Y = l n ( X + 1), and the Yeo-Johnson 
transformation were considered. 

We observed, that for this case two possibly pathological phenomena occurs for certain 
settings of parameters \i and K where the theoretical power function of the F test applied 
to a random sample transformed v ia Y = l n ( X + 1) behaves oddly and differently than 
its simulated counterpart. For setting \i = 30 and K = 3 the above mentioned theoretical 
power function scores higher than its simulated counterpart and both theoretical and 
simulated power function of the F test applied to a random sample transformed v ia 
Y = 2 s i n h - 1 ( A / ( X + C)/(K + d)), topped only by the power function of the F test applied 
to Yeo-Johnson transformed sample. We see two possible factors whose interplay led to 
the occurrence of this phenomena. First , as seen from the Figure 5.36, the absolute value 
of sample skewness of the sample transformed v ia Y = l n ( X + 1) is the highest out of 
all values of parameter K that were considered, so there might be a significant departure 
from normality of the transformed sample. The second factor is the quality of the variance 
approximation used to compute the theoretical power function, which is rather poor for 
small values of parameters \x and K for the transformation Y = l n ( X + 1). In fact the 
approximation drops rapidly below any bound as \i tends to zero. 

A second pathological phenomena occurred for small values of \x and the largest as­
sumed value of K, where the theoretical power function of the F test applied to a sample 
transformed via Y = l n ( X + 1) scored significantly worse than its simulated counterpart 
and al l the other power functions. We explain this by what we observed in the Subsection 
5.3.2, where we saw that for increasing values of K it takes larger value of \i for both 
sample variance and variance approximation to become at least close to stable. This 
phenomena is more significant for the sample transformed via Y = l n ( X + 1). Moreover 
the variance approximation for the case of K — 10 grows above al l bounds rapidly, hence 
for small values of \i the power function computation using this approximation might be 
heavily vitiated by error. 

In general, save the pathological cases described above both the theoretical and the 
simulated power function of the F test applied to a Y = 2 s i n h - 1 ( A / ( X + C)/(K + d)) 
transformed sample scores always slightly better than the power functions of the F test 
applied to a sample transformed v ia Y = l n ( X + 1), but the Yeo-Johnson transformation 
outperforms both of the two other transformations in al l cases but one, for the setting \x = 
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30, K — 5. This is however because by the parameter of the Yeo-Johnson transformation 
estimated via the maximum likelihood estimation was close to 0 for which the Yeo-Johnson 
transformation coincides wi th the transformation Y = ln(X + 1). 

For the increasing values of the parameters K and \i the difference between al l the 
power functions became smaller. 

We conclude for the negative binomial case that for the small values of K and \x one shall 
tend to choose Yeo-Johnson transformation over the other two discussed transformations, 
save the case when the estimated best value of the parameter of the Yeo-Johnson transfor­
mation is very close to 0. In such case we suggest to use Y = 2 s i n h - 1 (A/(X + C)/(K + d)). 
For small values of \i (say around \i = 30) and large values of K (say around K — 10) 
one should choose preferably again the Yeo-Johnson transformation, possibly also Y = 
2 s i n h - 1 (y/(X + c)/(K + d)). For large values of the parameters the difference between 
the power functions becomes increasingly insignificant, we would favorize the more sophis­
ticated transformations, however the transformation Y — ha(X + 1) should be sufficient 
as well. 
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Notation Index 

E The set of real numbers 
W1 

<X> 

The n-dimensional real space 
Kronecker product 

X,Y Random variables 
EX Expectation of a random variable X 
varX Variance of a random variable X 
Po(X) Poisson distribution of parameter A 
NBi(r,p) 
N(fao-2) 

Negative binomial distribution of parameters r and p NBi(r,p) 
N(fao-2) Normal distribution of expectation \x and variance a2 

N(0,1) Standard normal distribution 
$(x) 

0 
Distr ibution function of standard normal distribution 
Probabil i ty density function of standard normal distribution 

x2 

A n 
Pearson y2 square distribution wi th n degrees of freedom 
Noncentral Pearson x2 square distribution with n degrees of freedom 
and noncentrality parameter S 

Fa,t Fisher Snedecor distribution of parameters s and t 
Fs,t,s Noncentral Fisher Snedecor distribution of parameters s and t and noncentrality 

parameter S 
FF Distr ibution function of F-distr ibuted random variable 

Distr ibution function of noncentral Fisher Snedecor distributed random variable wi th n 
QF(r;s,t) r - th quantile of F distribution 

t*X,k fc-th general moment 
HX,k fc-th central moment 
X-n n-dimensional real (deterministic) vector 

n-dimensional vector of ones 
X n n-dimensional random vector 

n-dimensional normal distribution of vector of expectations \x and variance 
matrix V 

E X Expectation of a random vector X 
varX Variance of a random vector X 
A A matrix of a type n x 
diagipup) 
A 2 

Diagonal matrix with p dimensional vector x on the main diagonal diagipup) 
A 2 Mat r ix product A p x p A p x p 

Inxn Identity matrix of a type n x n 
X V ( A n x n ) Trace of a matrix A n x n 

ron/c( A m x n ) Rank of a matrix A m x n 
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