
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY O F T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY O F INFORMATION T E C H N O L O G Y

DEPARTMENT O F C O M P U T E R S Y S T E M S

EFFICIENT IMPLEMENTATION OF HIGH PERFOR
MANCE ALGORITHMS ON INTEL X E O N PHI

BAKALÁRSKA PRACE
B A C H E L O R ' S THESIS

AUTOR PRÁCE DOMINIK ŠIMEK
AUTHOR

BRNO 2015

VYSOKÉ UČENI TECHNICKE V B R N E
BRNO UNIVERSITY O F T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY O F INFORMATION T E C H N O L O G Y

DEPARTMENT O F C O M P U T E R S Y S T E M S

EFEKTIVNÍ IMPLEMENTACE VÝPOČETNĚ NÁROČNÝCH
ALGORITMŮ NA INTEL X E O N PHI
EFFICIENT IMPLEMENTATION OF HIGH P E R F O R M A N C E ALGORITHMS ON INTEL X E O N PHI

BAKALÁŘSKÁ PRACE
B A C H E L O R ' S THESIS

AUTOR PRÁCE DOMINIK ŠIMEK
AUTHOR

VEDOUCÍ PRÁCE Ing. JIŘÍ JAROŠ, Ph.D.
S U P E R V I S O R

BRNO 2015

Abstrakt
T á t o p r á c a sa z a o b e r á i m p l e m e n t á c i o u a op t ima l i zác iou v ý p o č t o v o n á r o č n ý c h algoritmov na
koprocesore Intel X e o n P h i . Koprocesor X e o n P h i bo l p r e d s t a v e n ý firmou Intel v roku 2012
ako o d p o v e ď na obrovský n á r a s t v použ ívan í technológie G P G P U . X e o n P h i disponuje pod
statne väčš ím v ý k o n o m ako procesor, preto je podobne ako G P G P U vhodnou platformou
pre beh v ý p o č t o v o n á r o č n ý c h programov. X e o n P h i za t iaľ v praxi nie je velmi používaný ,
preto je p o t r e b n é hľadať m o ž n é oblasti uplatnenia. R o z r a s t á sa ale jeho použ i t i e v su-
p e r p o č í t a č o v ý c h cen t r ách , n a p r í k l a d M i l k y W a y 2 - G u a n g z h o u (Cina) , S a l o m o n - O s t r a v a .
Cieľom tohto dokumentu je oboznámiť č i ta teľa s problematikou i m p l e m e n t á c i e n á r o č n ý c h
algoritmov na akceleračnej karte X e o n P h i , ich op t ima l i zác ie a meranie výkonu . V ý k o n
koprocesoru Intel X e o n P h i bude p o r o v n á v a n ý s v ý k o n o m procesorov Intel Xeon .

V teoretickej čas t i p r á c e bude č i ta teľ o b o z n á m e n ý s a r c h i t e k t ú r o u a p r i nc ípmi koproce
soru X e o n P h i . Budeme sa venovať v ý h o d á m ale aj n e v ý h o d á m tohto koprocesoru, k to ré
b u d ú ča s to p o r o v n á v a n é s v šeobecnými v l a s tnosťami procesorov. T é m o u bude t ak t i e ž
o tázka , kedy je v h o d n é zvoliť pre v ý p o č e t akcelerečnú kar tu X e o n P h i a kedy procesor.
Detailne si vysve t l íme a z n á z o r n í m e v ý b e r v h o d n ý c h algoritmov pre X e o n P h i , postup ich
imp lemen tác i e , op t imal izác ie a meranie výkonu . O k r e m toho b u d ú r o z o b e r a n é p r o b l é m y a
úskal ia , k t o r é m ô ž u n a s t a ť p r i imp lemen tác i i algoritmov a použ ívan í koprocesoru.

D a n é d e m o n š t r u j e m e na j skôr na ukážkových p r o b l é m o c h , k t o r é bol i r iešené na Os
travskom s u p e r p o č í t a č i Anse lm. V prvom rade to b u d ú j e d n o d u c h é benchamrky typu
násoben ie m a t í c , n á s o b e n i e matice a vektora, na k t o r ý c h b u d ú u k á z a n é z á k l a d n é p r inc ípy
i m p l e m e n t á c i e o p t i m á l n y c h algoritmov pre koprocesor X e o n P h i . N a p r í k l a d pr i benchmarku
n á s o b e n i a matice a vektora bolo d o s i a h n u t ý c h asi 6.5% teore t ického v ý k o n u koprocesoru.
Ďa l š ím, komplexne j š ím p r o b l é m o m bude " N - B o d y Simulat ion" - s imulác ia pohybu čas t íc v
priestore, na k torom sme otestovali p o t e n c i á l X e o n P h i . V ý k o n koprocesoru sa p r i tomto
benchmarku vyšp lha l až na viac ako 35% teore t i ckého v ý k o n u - 7 2 5 g F L O P S (m a x i m á l n y
výkon 2000 g F L O P S pre d á t a s jednoduchou p resnosťou) . Č i t a t e ľ sa okrem iného môže
dozvedieť aj zau j ímavé informácie z oblasti fyzikálnych s imuláci í , k o n k r é t n e bude reč o
module pre M A T L A B (k-Wave). K - W a v e sa z a o b e r á s imulác iou š í renia akus t i ckých v l n v
I D , 2D a 3D, čo sa využ íva n a p r í k l a d pr i s imuláci i š í renia u l t r a z v u k o v ý c h v l n v m ä k k ý c h
t kan ivách . N a koniec si s t r u č n e povieme o p o r t o v a n í už exis tu júc ich knižníc , modulov či
programov na X e o n P h i zo snahou využ i t i a jeho po t enc i á lu . Bude to n a p r í k l a d kroskom-
pilácia knižn íc H D F 5 , Z L I B či konca interpretu jazyka P y t h o n s modu lmi N u m p y a Scipy.

Klíčová slova
Intel X e o n P h i , k-Wave, M I C , N - B o d y , Súčin m a t í c , Súčin matice a vektora, V ý p o č t o v o
n á r o č n é algoritmy, I-vektor.

Abstract
This thesis is dedicated to the implementat ion of high performance algorithms on the In
tel X e o n P h i coprocessor. The X e o n ph i was introduced by Intel as a new M I C (Many
Integrated Core) architecture i n 2012. The theoretical part of the thesis is focused on the
architecture of the coprocessor (with peak performance of 2 t F L O P S for a single precision
data) and on the procedure of algorithms implementat ion and opt imizat ion. The theoretical
knowledge is then applied to a pract ical examples wi th demonstration of the implementa
t ion and the opt imizat ion of algorithms and work wi th the coprocessor. In the practical
part of the thesis, simple benchmarks such as a vector matr ix mul t ip l ica t ion and a matr ix
mul t ip l icat ion are explained and implemented. In the first benchmark 6.5% of theoretical
coprocessor performance was achieved, i n the second it was much more. In following chap
ter a more complex benchmark - s imulation of a particles system (N-Body) , that reached
more than 35% of coprocessor performance (725 g F L O P S) , is discussed. The following sec
t ion is dedicated to some interesting problems such as opt imizat ion of a M A T L A B module
k-Wave (propagation of the ul trasound waves), extraction of I-vector (speech processing),
cross-compilation of existing libraries, modules and programs. In the conclusion of the
thesis the usage the potential of the Intel X e o n P h i is evaluated.

Keywords
Intel X e o n P h i , k-Wave, M I C , N - B o d y , M a t r i x mul t ip l ica t ion, M a t r i x vector mul t ip l ica t ion,
H P C , I-vector.

Citace
Domin ik Šimek: Efficient Implementation of H i g h Performance Algor i thms on Intel X e o n
P h i , b a k a l á ř s k á p ráce , Brno , F I T V U T v B r n ě , 2015

4

Efficient Implementation of High Performance Al
gorithms on Intel Xeon Phi

Prohlášení
Proh lašu j i , že jsem tuto b a k a l á ř s k o u p rác i vypracoval s a m o s t a t n ě pod v e d e n í m pana Ing.
J i ř ího J a r o š a , P h . D . U v e d l jsem všechny l i t e rá rn í prameny a publikace, ze k t e r ý c h jsem
čerpal .

Domin ik Š imek
M a y 19, 2015

Acknowledgment
I would like to thank my supervisor Ing. J i ř í J a r o š , P h . D . who provided me a valuable
advice and experiences. Wi thou t his help and guidance this thesis would not have been
possible. M a n y thanks also Doc . D r . Ing. Jan Cernocký , Ing. T o m á š K a š p á r e k and Ing.
O n d ř e j Glembek, P h . D . who enabled me to enrich my thesis on a new ideas and experi
ences. I acknowledge and thank very much the IT4Innovations Centre of Excellence project
(CZ.1.05/1.1.00/02.0070), funded by the European Regional Development F u n d and the
national budget of the Czech Republ ic v ia the Research and Development for Innovations
Operat ional Programme, as well as Czech M i n i s t r y of Educat ion , Y o u t h and Sports v ia the
project Large Research, Development and Innovations Infrastructures (LM2011033).

© Domin ik Simek, 2015.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 Intel X e o n P h i 4
2.1 His tory 4
2.2 Basic information 5

2.2.1 Vector Processing U n i t 6
2.2.2 System connection 6
2.2.3 Streaming stores 7
2.2.4 Cache memories 8
2.2.5 Threads 8

2.3 Introduction of work station and summary 8
2.3.1 Detai led specification of the Intel X e o n P h i coprocessor 9

3 Process for algorithm implementation 11
3.1 P la t form selection 11
3.2 Op t imiza t ion process 12

3.2.1 Introduction to opt imizat ion 12
3.2.2 Vectorizat ion 14
3.2.3 M e m o r y layout 14
3.2.4 Direct ive ivdep/IVDEP 15
3.2.5 Direct ive simd/SIMD 15
3.2.6 Direct ive vector aligned/VECTOR ALIGNED 15
3.2.7 Direct ive omp p a r a l l e l 16
3.2.8 Direct ive omp for 16
3.2.9 M e m o r y allocation 16
3.2.10 B i n d i n g of threads 16
3.2.11 N U M A Firs t Touch Pol icy 17

3.3 P rogramming models 17
3.3.1 Nat ive mode 17
3.3.2 Offload mode 18

3.4 Performance measurement 19
3.4.1 T ime measurement 19
3.4.2 P A P I 19

4 Intel X e o n P h i in practice 21
4.1 M a t r i x vector mul t ip l ica t ion (matvec) 21

4.1.1 Introduction of the benchmark 21
4.1.2 Naive implementation 22

1

4.1.3 Au tomat i c optimizations, vectorization, padding 23
4.1.4 Dynamic allocation, data alignment 24
4.1.5 Parel le l processing on thread level 25
4.1.6 Matvec on the X e o n P h i coprocessor 26

4.2 Mul t i p l i ca t i on of two matrixes (matmul) 29
4.3 N - B o d y Simulat ion 31

4.3.1 Introduction of the benchmark 31
4.3.2 Naive implementat ion 32
4.3.3 A l g o r i t h m enhancement, automatic optimizations 33
4.3.4 Para l le l processing on thread level 33
4.3.5 N - B o d y on the X e o n P h i coprocessor 34
4.3.6 Cache blocking 36
4.3.7 Offload mode 37

4.4 K - W a v e 38
4.5 Cross-compilat ion of existing libraries, modules, programs 39

4.6 Ex t rac t ion of I-vector 40

5 Conclusion 42

A Content of C D 44

2

Chapter 1

Introduction

In 2012, Intel has introduced new coprocessor - X e o n P h i , (Xeon family) which was response
to gigantic boom of the G P G P U architecture. The mot ivat ion for creation of this thesis is
deployment and enhancement of a computat ional ly intensive algorithms on the coprocessor
Intel X e o n P h i (hereinafter referred to as M I C) . After opt imizat ion of the application,
the M I C disposes wi th significantly higher performance than the processor; it is therefore
suitable for use w i t h computat ional ly intensive programs.

The goal of this work is to familiarize the reader w i t h issues of implementing of high
performance algorithms on the M I C card, their opt imizat ion and performance comparison.
M I C performance w i l l be compared wi th the performance and other important parameters
of Intel X e o n processor (hereinafter referred to as C P U) . This work is very interesting
mainly because of new Supercomputer construction i n O s t r a v a - S a l o m o n . Salomon w i l l
contain 864 M I C card, which ranks it among the top 5 Supercomputers i n the world. This
work is great chance to gain lot of experiences wi th our coprocessor. Another great example
is M i l k y W a y 2 - Supercomputer composed exclusively of Intel X e o n processors and X e o n
P h i coprocessors. Dur ing work on this thesis was used Supercomputer i n Ostrava - Anse lm
containing 4 M I C accelerators.

The biggest challenge of the thesis is that the M I C is relatively new and unexplored
architecture. There are not many people who have worked wi th this technology, and there
are not many pract ical examples of its use. It can be very interesting to find new ways and
possibilities of using this technology.

Firs t , the reader w i l l be informed wi th the architecture and principles of the M I C card.
We w i l l deal w i th pros and cons of the M I C , which w i l l be frequently compared wi th general
properties of C P U . We w i l l also deal w i th the question when it is suitable to choose the M I C
card for the computat ion and when to choose a C P U . Further chapters of theoretical part
w i l l explain selection of suitable algorithms for M I C , procedure of their implementat ion and
opt imizat ion.

Fi rs t pract ical examples w i l l be simple benchmarks like vector matr ix mul t ip l ica t ion and
matr ix mult ipl icat ion, on which basic principles of op t imal algorithms implementat ion w i l l
be demonstrated. The second problem w i l l be the " N - B o d y Simulat ion" (particles system),
based on which we w i l l test the potential of a M I C . Later we w i l l focus on the significantly
more complex application - M A T L A B module k-Wave. K - W a v e deals w i th the s imulat ion
of acoustic waves propagation i n I D , 2D and 3D. Th i s can be used e.g. for s imulat ion of
ultrasound waves propagation i n soft tissues. In the end, we w i l l briefly discuss por t ing of
existing libraries, modules or programs to M I C wi th the focus on using its potential . It w i l l
be e.g. H D F 5 , Z L I B libraries or P y t h o n interpreter (with N u m p y and Scipy modules).

3

Chapter 2

Intel Xeon Phi

2.1 History
The development of M I C began in 2001 when a solution for energy reduction of the Intel
X e o n processor family was being sought. It was discovered that a simple low frequency
M I C architecture wi th an appropriate software support w i l l be able to produce higher per
formance and better performance/Watt ratio. The M I C abbreviation comes from the term
M a n y Integrated Core and is the technology of the Intel Company - Intel M a n y Integrated
Core Archi tecture. S imply said, the Intel M I C architecture combines many Intel processor
cores (fast interconnect) on a single chip. The rest of the chapter is based on information
from [1] and [].

Apar t from using this technology i n computer graphics, there is a plethora of scientific
and technical application, which can uti l ize the advantages of the M I C architecture. C o m
putat ionally intensive applications can profit from the advantages of the M I C architecture
by scaling at the threads and processes level. However, this solution required a new design
of the micro architecture. Intel x86 (Pentium) cores were used as the bases, which incorpo
rated a new, enhanced instructions set A V X - 5 1 2 . For this architecture an operating system
was developed and adjusted, based on the standard L i n u x core. Overa l l support for the
L i n u x platform has been created, which is used in given field to a great extent. A t the same
time, tools for algori thm opt imizat ion tools was created (Intel Debugger, Intel Ampli f ier
X E , Intel M a t h Ke rne l Library , etc.).

The goal was to create a hardware and software solution, which would meet the re
quirements of the applications for scientific and technical computations. The newly created
hardware was named K N C and its performance reached 1 t F L O P S for double precision
data. Th is hardware was later marked and named as Intel X e o n P h i , presenting to public
by the end of 2012. A t first glance, it can be seen that the technology is quiet young,
therefore we can use the possibil i ty to t ry something new, something that has not been
used for many years and contribute wi th it to the use of M I C , eventually simplify work
wi th them. Despite its great potential , this architecture is s t i l l very rarely used; therefore
it is worth the effort to introduce a new view, which would demonstrate its effective use
and maintenance. We w i l l discuss the architecture, principles and performance i n detail in
subsequent chapters.

4

2.2 Basic information

Intel X e o n P h i is a coprocessor of the M I C architecture (Intel M a n y Integrated Core A r c h i
tecture). A s already stated, the M I C architecture combines many Intel processor cores on
a single chip. The Intel M I C architecture is focused on highly demanding and parallel com
putat ion called H P C (High Performance Comput ing) , which find applications i n physics,
biology, chemistry, financial services, etc. The M I C architecture is suitable for achieving
high performance and throughput especially in clusters, where it works together w i th the
processor or other coprocessors. The key attribute of the micro architecture is the fact that
it was created to provide a universal programming environment similar to the programming
language of classic Intel X e o n processors.

Intel X e o n P h i is composed mostly of compute cores, cache memories, memory con
trollers, client's logic of P C I e and high throughput memory (all of these components are
interconnected through a two-way circular connection). One core comprises of an L I in
struction cache and an L I data cache. Except for this, each core has its own L 2 cache,
which is fully coherent among other cores, thanks to a globally distr ibuted tag directory.
The Cl ient ' s logic of the P C I e and memory controllers offers direct interface to the M I C
main memory (G D D R 5) and the P C I e bus.

Each compute core is designed in a way to be energy efficient while offering high through
put for highly parallel tasks. If we go deeper, we discover that the cores use an "in-order
pipeline", while each core provides 4 hardware threads (Figure 2.1 top left corner) and uses
Hyper-threading (as opposed to a C P U , offering two hardware threads per 1 core). Decod
ing of 1 instruct ion takes 2 clock cycles, therefore it is very important to use at least 2 H W
threads (this w i l l cover the gap between decoding). We can see that there are 2 p i p e s -
"Pipe 0" (general) and "Pipe 1" (only for scalar unit) i n Figure 2.1. The performance is
hidden i n a V P U unit , which is capable to process 512 bit vector data at once. O f course,
the core contains also a scalar unit, and support for the I A architecture (IA-32, IA-64) is
also secured (only 2% of the core surface area). The Intel X e o n P h i coprocessor has more
than 50 cores (depending on the model), supplying the unit w i th significant performance.
Other basic components of M I C core are depicted in Figure 2.1.

The Intel X e o n P h i coprocessor is controlled by a L i n u x operating system, adapted
for the needs of given coprocessor, supports the x86 memory configuration, arithmetic
of floating decimal I E E E 754 and is capable of running an application created i n the C ,
C + + and For t ran programming languages. M I C is supported by a r ich developmental
environment like the compiler (Intel compiler), l ibrary for working w i t h threads (O p e n M P) ,
l ibrary for work wi th processes (M P I) , mathematical libraries (M K L) , environment for
performance measuring, debugging tools, etc. Even though the M I C runs its own operating
system, it cannot be used independently; therefore it is attached to a C P U , called the
host through the P C I Express bus (PCIe) . A s the coprocessor runs the L i n u x operating
system, the v i r tua l T C P / I P stack can be implemented by the means of the P C I e bus,
allowing the user to access the coprocessor as a network node. Thanks to this, the user can
connect to the M I C through a secured shell and direct ly start ind iv idua l tasks, or batches
of tasks. Appl ica t ions can be created in several modes; we w i l l focus on the Nat ive mode
and Offload mode. We w i l l discuss the use of ind iv idua l modes and differences between
them i n subsequent chapters.

Several X e o n Ph is coprocessors can be connected to a single hosting system. W i t h i n an
ind iv idua l system, ind iv idua l coprocessors can communicate between one another by the
means of a peer-to-peer method through the P C I e bus without any act ivi ty of the host. The

5

2.2.1 V e c t o r P r o c e s s i n g U n i t

The most important part of the M I C core is the V P U - V e c t o r Processing U n i t . V P U
contains a new special instructions set of 512 bit S I M D instructions known as Intel Ini t ia l
M a n y Core Instructions (Intel I M C I) . Thus our V P U can perform 16 operations wi th a
single precision (from here on as SP) and 8 operations wi th double precision (from here
on as D P) in 1 cycle, which by itself sets high performance per core. V P U also supports
F M A instructions (Fused M u l t i p l y - A d d) , therefore it can realize 32 S P operations and 16
D P operations at the same time. F M A instructions support mul t ip l ica t ion and addi t ion of
operands at the same time (F M A is perfect for vector dot product routines).

F rom the energy point of view V P U is a highly developed technology, especially for H P C
where the load of the processor's cores is very high. A single operation can perform a lot
of work a l l at once. Wi thou t V P U , it would be necessary to repeat certain instructions for
each vector component. For the support of 512 bit S I M D instructions, it was necessary to
perform various adjustments, like a masking register added into the V P U allowing "per lane
predicated execution" (this improved the efficiency of the software pipelining). V P U also
supports Gather and Scatter instructions, which allow non-unit stride vector memory access.
E M U (Extended M a t h Un i t) can perform transcendent operations like roots, logarithms and
other, while opt imal ly using the core's performance.

2.2.2 S y s t e m connec t ion

A s already stated, connection of ind iv idua l parts wi th in the coprocessor is realized through
a two-way circular connection. Each direction is composed of 3 independent rings. The first
and the most complex one is the data block r ing (B L - F i g u r e 2.2). Its wid th of 64 bytes
secures support for high throughput, required due to high number of cores. The Address
r ing (A D - F i g u r e 2.2) is i n contrast simpler and smaller. It serves for sending of memory
addresses and read/wri te commands. The last and the smallest one is the acknowledgment
r ing (A K - F i g u r e 2.2), sending the regulation of the flow.

6

If a core is not successful i n accessing own L 2 cache (L2 miss), the request for the address
is sent by the address r ing to the tag directories (T D - F i g u r e 2.2). A M e m o r y addresses
are jo in t ly distr ibuted among tag directories to ensure smooth operation on a given ring. If
requested data is found in the L 2 cache of another core, the request is sent by the address
r ing to the L 2 cache of that core. Subsequently, the data block is sent to the data block
ring. If the requested data is not found in any cache, the memory address is sent from the
tag directory to the memory bus, and the memory controller serves the request. M e m o r y
controllers are symmetr ical ly distr ibuted around the r ing which eliminates hotspots and
helps to achieve quick response.

Dur ing a memory access, whenever there is a L 2 miss in the core, the core generates
a request for an address sent through the address r ing (A D) to the tag directory (T D) . If
the data is not even found in the tag directory, the core generates another request for the
address; this t ime the request is directed to the memory. The memory bus picks up the
data block from the memory, and sends it to the core by the data r ing (B L) . D u r i n g this
process, there are 2 requests for an address, 2 acknowledgment messages (through A K) and
1 data block sent through the r ing.

Figure 2.2: Intel X e o n P h i system connection [3].

2.2.3 S t r e a m i n g stores

Streaming stores are another key enhancement, focused on further improvement of memory
throughput. Pseudo code 2.1, which demonstrating so called "Streams Tr iad" is bellow:

1 f o r (i =0; i < N; i++)
2 {
3 A[i] = k * B[i] + C[i] ;
4 >

Lis t ing 2.1: Streaming Tr iad example

The pseudo code "Stream Tr iad" reads 2 arrays - B , C and writes i n array A. Historical ly,
the core had had to read cache line before it started to write the addressed data. Therefore,
another, needles reading from the memory connected w i t h wr i t ing occurs. Streaming store
instructions allow the core to write i n the memory the entire cache line without the need for

7

reading it from the memory prior to the write. This reduces the number of transferred bytes
per 1 i teration from 256 B to 192 B . The bot tom line is that we never read from A and size of
A is bigger than size of L I cache. In our case when using streaming stores instructions, it is
necessary to perform operations: Read B, Read C, Write A. O n the contrary without the
use of stores streaming instructions it is necessary to perform operations: Read A, Read
B, Read C, Write A, which is 1 operation more when compared to the previous case.

2.2.4 C a c h e memor ies

A great amount of effort and attention was spent on the issue of cache memories providing
a high throughput. Every core is equipped wi th a 3 2 K B L I instruct ion cache, 3 2 K B L I
data cache and 512 K B L 2 cache. A l l cache memories are fully coherent, while they support
the x86 memory model . L I cache memories offer a throughput about 15 times higher than
the throughput of the main memory. In comparison wi th the main memory, the L 2 cache
is 7 times faster. Because of this, effective use of cache memories is the key factor for
achieving peak performance on a M I C . Moreover, working wi th cache memories is many
times more energy efficient than work wi th the main memory. Therefore, when processing
large amounts of data, is very suitable to use "cache-blocking", which can help to improve
cache ut i l izat ion.

2.2.5 T h r e a d s

If we take into account the fact, that the X e o n P h i offers more than 50 cores, while each core
disposes wi th 4 hardware threads, we are getting a fairly decent amount of usable threads. In
comparison wi th the X e o n processor, which uses 8/16 (Hyper-threading off/on) threads at
the most, the 200 threads is an astonishing number. O f course, it is not completely simple
to effectively use such many threads. Therefore later on, we w i l l talk about procedures
which can help us to achieve high performance. A s long as our algori thm cannot be scaled
for at least 2 threads per core, the application w i l l most l ikely run ineffectively and even
slowly than on a X e o n processor. The use of at least 2 threads per core allows covering
performance deficiencies of weaker cores (2 clock cycles instruction decoding), which when
compared to the X e o n processor are about 40 times slower (1 X e o n P h i thread vs. 1 X e o n
thread). P ic ture 2.3 depicts the difference of algori thm scaling on the X e o n processor and
the X e o n P h i coprocessor. We can observe that the m a x i m u m performance can be reached
on the X e o n P h i coprocessor only when using at least 2 threads per core.

2.3 Introduction of work station and summary

A l l measurements and application development for this thesis were performed on the Anse lm
supercomputer in Ostrava. Further, basic properties and parameters of the Anse lm super
computer w i l l be presented to give the reader an idea about the machine, which measure
ments and testing of developed applications were performed on. Anse lm is a cluster based
on Intel x86-64 nodes buil t on B u l l Ext reme Comput ing bul lx technology. The peak perfor
mance reaches the level of 94.5 Tf lop/s . The cluster contains 4 types of computing nodes
[5]:

1. Comput ing nodes without accelerator-180 nodes

2. Comput ing nodes of the Fat t y p e - 2 nodes

8

Threads

Figure 2.3: Scaling on threads level (Xeon P h i vs. Xeon) [1].

3. Comput ing nodes wi th a G P U accelerator - 23 nodes

4. Comput ing nodes wi th a M I C accelerator - 4 nodes (for this thesis the most important
ones):

• 64 processor cores to ta l (3 8 . 4 g F L O P S per core for S P data)

• 2x Intel Sandy Bridge E5-2470, 8 core, 2.3 G H z processor for each node

• l x M I C accelerator Intel X e o n P h i 5110P per node

• bul lx B510 blade servers

• memory organization:

— 2 sockets per node

— data transfer speed up to 1600 M T / s

— memory controllers are integrated i n the processor

- 6x D D R 3 D I M M S per node

- 3x D D R 3 D I M M S per processor (38.4 G B / s)

- l x D D R 3 D I M M S per channel

2.3.1 D e t a i l e d specif icat ion of the Intel X e o n P h i coprocessor

• Pen t ium scalar I S A including x87 []

• A V X - 5 1 2 (extended instruct ion set)

• In-order operations, super-scalar issue

9

F u l l 64 bit addressing

4 hardware threads per core

50 to 61 cores (in our case 60 cores)

2 cycle decoder

Scalar and vector unit

2x pipeline (scalar and vector/scalar)

6-16 G B G D D R 5

3 2 0 G B / s

Peak performance 2 t F L O P S for S P data

L I cache:

— 32 B instruct ion cache per core

— 32 K B data cache per core

— 8 way associative

— 64 B cache line

— 3 cycle latency

— up to 8 unresolved requests

— Fu l ly coherent

L 2 cache:

— 5 1 2 K B per core

— 8 way associative

— 64 B cache line

— 11 cycle latency

— Inclusive

— U p to 32 unresolved requests

— Streaming H W prefetcher

— Fu l ly coherent

10

Chapter 3

Process for algorithm
implementation

3.1 Platform selection

A t the beginning we should clarify when is it suitable for application to use a C P U and
when a M I C . Therefore we summarize 3.1 the most significant differences. This chapter is
based on information from [1], [3], [4] and [2].

Table 3.1: Compar ison of a features of the C P U and the M I C .
Intel X e o n processor (C P U) : Intel X e o n P h i coprocessor (M I C) :
H i g h performance of single thread H i g h level parallel processing
H i g h capacity memory H i g h throughput memory
8 cores U p to 61 cores (in our case 60)
2 hardware threads per core 4 hardware threads per core
Hyperthreading: Yes (but now always used) Hyperthreading: Yes
S I M D instructions (256 bit registers) S I M D instructions (512 bit registers)
Intel A V X Intel A V X - 5 1 2
Vi r tua l i za t ion , A E S Gather/scat ter instructions, F M A
Intel 307/614 g F L O P S (8/16 threads, SP) 2000 g F L O P S (SP)
38,4 G B / s 320 G B / s

Differences i n the architecture of the C P U and M I C definitely aren't negligible. A n d
it is necessary to consider them when selecting a platform for running an applicat ion and
for wr i t ing the applicat ion itself. A s long as our application is not opt imized sufficiently,
it is not suitable to use a M I C , it is better to choose a C P U . The C P U is designed in a
way that allows for sufficient performance even when running a not opt imized application
on single thread. O n the contrary running an application, which is not vectorized and
sufficiently parallelized for a M I C , we are left w i t h results orders of magnitude worse than
on a processor. Decision making process for selection of suitable platform can be seen in
the picture 3.1.

W h e n choosing the platform it is therefore necessary to consider: the possibil i ty of using
a large number of threads, the possibil i ty of vectorization and the possibil i ty to use high
throughput memory. Based on the above picture we start the decision making process w i th
number of usable threads. If our applicat ion can use more than 100 threads (of course 100

11

Figure 3.1: Process for platform selection [1].

threads is not precisely set value, it depends on specific application), a M I C can seem like
a good choice. However, i f our application is not capable to use this number of threads, it
is better to use the processor instead.

If our program can also profit from wide vectors (512 bit A V X registers for X e o n P h i) , the
coprocessor w i l l be the correct choice. O f course, everything depends on the opt imizat ion
of the algori thm, which is the key aspect of performance.

If we are not capable to vectorize the code sufficiently, the Intel X e o n P h i coprocessor
is providing us w i t h the possibil i ty to use high throughput memory, e.g. for processing of
a large data (through high number of threads). If we are not able to use even this option,
we use the X e o n processor to run the application.

3.2 Optimization process

3.2.1 I n t r o d u c t i o n to o p t i m i z a t i o n

It is suitable and recommended to optimize the applicat ion for the C P U first. After reaching
high level of opt imizat ion especially if our applicat ion is capable of using a high number
of threads, we can move to the M I C platform. W h e n developing applications for this
platform it is necessary (for now) to use an Intel compiler (ice, iepe, i for t) to generate
code for the M I C architecture. Furthermore the compiler automatical ly t ry ing to optimize
the code (if the opt imizat ion is not expl ic i t ly turned off). However, this is not always
possible, especially due to naive algorithms, which are not opt imized. Frequent reasons are
jumps and branching, which are constantly repeated i n every iteration, embedded loops,
poor work w i t h memory or s imply incorrectly chosen algori thm structure. W i t h a great
number of iterations, a single condit ion that the program has to evaluate in every i teration
can unbelievable slow down the program. Furthermore this loop cannot be unrolled and
vectorized. S imi lar ly it is more than suitable to eliminate the number of accesses to the
main memory, which results in the processor wait ing for the data a number of cycles more
than reading the data from the cache memory.

Removal of needless and frequently repeated jumps i n the algori thm and enhancement
of reading the data from the cache memory can br ing us significantly higher performance.
However, it is possible that the code modified i n this way w i l l not be "appealing" from a

12

programmer point of view, it w i l l not be readable and transparent, which we are t ry ing to
have most of the time. It is price pa id for achieving the m a x i m u m performance. Sometimes,
it is necessary to use such constructs which make the code intricate but the compiler can
optimize them better and thus generate a significantly faster code.

However, automatic optimizations of the compiler do not have to be sufficient, therefore
there are several ways how to help the opt imizat ion. Later on we w i l l deal especially wi th
compiler directives like "Intel #pragma" or " O p e n M P ^ p r a g m a " , which are special marks
for compiler, thank to which it can optimize the code i n a better (worse) way. These
directives are placed usually above the loops we are t ry ing to optimize. Thanks to these
special designations we know e.g. how to signal the compiler that it can (or even has
to) vectorize a given section of the code, start it on several threads, mark that a given
data is aligned i n the memory, etc. A l l of these compiler options can only be used i f
we precisely know their meaning and consequences of use, otherwise many issues might
occur bad computing results or even an unexpected crash of the program. Thats why the
meaning of ind iv idua l directives (of course only a few significant ones, others can be found
directly in the compiler documentation 1 , some Intel guides 2 , etc.) w i l l be explained and
demonstrated on prime examples.

For peak performance the most important opt imizat ion steps are: vectorization, ex
ploi t ing the cache memory and running the program on many threads. Vector izat ion is
extremely important especially because the C P U / M I C can employ V P U to treat vectors
instead of scalar operations. The exploi t ing of the cache memories can be enhanced by
keeping the working data i n cache as along as possible and not move it needlessly between
the main memory and on-chip memory. Another important thing is the parallel izat ion of
the algori thm on the thread level. Under this term we mean spl i t t ing the computing (if it is
possible) among several threads. E a c h hardware thread computes results for its own data
block, which in the end make up for the final result. A t every step of the opt imizat ion, it
is necessary to consider a large number of factors affecting the end speed of the program.
Since there's no silver bullet, one must experiment. Detai led process of opt imizat ion w i l l
be outl ined in subsequent chapters.

If we have reached the state when our code is sufficiently vectorized, parallel and we
believe we cannot enhance the C P U ' s performance anymore, it is t ime to move to the M I C .
Unl ike 8/16 hardware threads offered by the C P U , the M I C offers more than 200 hardware
threads. It is here where we find the possibil i ty how to very quickly and s imply t ry to
accelerate the computing on the M I C when compared to the C P U . Therefore it is advisable
to experiment w i th various numbers of threads, e.g. 60, 120, 180 and 240 threads. In
theory, it should be that by doubling the number of threads the computing t ime shortens
to half. However the reality is frequently different, it depends on the type of algori thm and
level of opt imizat ion (and overhead caused by threads communication).

In order to make such a large number of threads sensible, it is necessary to secure that
al l the threads have enough work to do, otherwise overhead can slow down the program.
Thus, the size of processed data is another important factor for selection of the suitable
platform. If the computing t ime is better when compared to the C P U , we are on the
right way to exploit the potential of the M I C , however the algori thm can be probably s t i l l
modified and improved to achieve higher performance.

Appl i ca t ion which was op t imal for the C P U does not have to be op t imal for our copro-

1https://software.intel.com/en-us/compiler_15.0_ug_c
2https://software.intel.com/en-us/articles/getting-started-with-intel-composer-xe-2013-

compiler-pragmas-and-directives

13

https://software.intel.com/en-us/compiler_15.0_ug_c
https://software.intel.com/en-us/articles/getting-started-with-intel-composer-xe-2013-

cessor due to different architecture. For example, the M I C when compared to the processor
has a higher memory throughput, bigger L 2 cache, enhanced instruction set, etc. Thus, i f
we want to get m a x i m u m out of the M I C , it is necessary to consider a l l the aspects and
modify the code based on its needs.

3.2.2 V e c t o r i z a t i o n

Simply told, vectorization is a transformation of scalar operations to vector operations.
Scalar operations work wi th 1 pair of operands. W h i l e vector operations can process many
more pairs of operands at the same t ime.Vectorizat ion is realized by the compiler (and
user) by packing a sequence of scalar operations into a vector one. Dur ing vectorization
512 bit S I M D (Single Precis ion M u l t i p l e Data) instructions are generated. In our case the
processing of S I M D instruct ion is secured by the V P U unit , which as we already stated can
process 512 bit vectors of operands.

The Intel compiler can automatical ly vectorize sample codes (as long as optimizations
aren't expl ic i t ly prohibited) based on certain heuristics. Au toma t i c opt imizat ion are ex
ecuted only i f the compiler is sure that the vectorization of the code won't change its
semantics (e.g. dur ing mutual data dependency of processed vector elements). In the cases
when the compiler refuses to vectorize the code (and we are certain that vectorization won't
affect the semantics of the code), it is possible to override standard behavior by compiler
directives like #pragma ivdep, #pragma simd. The meaning of ind iv idua l directives w i l l
be explained later.

3.2.3 M e m o r y layout

Dur ing algori thm opt imizat ion a good storage of data in memory is extremely important .
If we have decided to store data i n structures, we usually have 2 options ava i l ab le - array
of structures (AoS) and Structure of arrays (SoA) . F i rs t way (AoS) can have the following
form:

s t r u c t
s
X

f l o a t x;
f l o a t y;
f l o a t z;

> AoS [N] ;

Lis t ing 3.1: A r r a y of structures example

If we consider , general data storage i n array we discover that ind iv idua l components of
the array are stored continuously i n memory. In this case, we w i l l have an array of struc
tures stored i n memory containing items x, y, z. Th is t r in i ty represents one structure, i.e.
one element of the array. Next element of the array w i l l be another structure etc. Between
ind iv idua l elements of the array there can be a certain padding, which serves for better
alignment of data in the memory. The downside of this solution is especially that i f our
algori thm wants to read/wri te f rom/to a l l elements (structures) for example component x,
it is not possible to use simple and quick read/wri te vector instructions, but gather/scatter
instructions. These instructions allow non-unit stride memory access. Under these circum
stances the compiler won't vectorize the code, thus we loose performance. Moreover, the

14

gather/scatter instructions require more C P U cycles than simple load/store instructions.
To make data SIMD-fr iendly, structure of arrays (SoA) w i l l be better way:

s t r u c t
{

f l o a t x[N] ;
f l o a t y[N];
f l o a t z[N] ;

> SoA;

Lis t ing 3.2: Structure of arrays example

D a t a stored i n a S o A is in this case more preferable solution because it eliminates the
need of gather/scatter instructions. In this case, we have arrays x, y, z stored contin
uously in the memory. These 3 arrays together make up one structure. If our algori thm
repeatedly accesses neighbors elements of array x (unit stride), the compiler can generate
vector read/wri te instructions. Prefetching of data to cache memory works also better
while we can maximal ly use their size. Th is solution is more suitable also i n regards to the
alignment of data in memory because it is sufficient to align the whole arrays once (not
every array component as was the case w i t h A o S) . Thus the paddings don't occupy memory
space.

3.2.4 Directive ivdep/IVDEP

The directive i v d e p / I V D E P instructs the compiler to ignore expected data (vector) depen
dencies in for loops. Implici t ly, the compiler treats expected data dependencies as proved
data dependencies. This is conditioned by the fact that i f the compiler doesn't have a
confirmed data independency in a given loop, it w i l l not execute vectorization due to the
possibili ty of unexpected behavior of the program. The use of ivdep directive is therefore
suitable only in case when we are sure that expected data dependencies do not apply and
the code can be vectorized safely. If the data dependency is confirmed, the compiler s imply
ignores the ivdep directive.

3.2.5 Directive simd/SIMD

The s imd directives serves just like the ivdep directive for sending an instruct ion to the
compiler to vectorize the processed section of the code (internal loop). A s opposed to the
ivdep directive, there is one significant difference. P ragma simd instructs the compiler to
always vectorize the cycle located under this directive. A l l data dependencies including
the confirmed ones are ignored, the heuristic of the compiler is completely changed, loop
is vectorized irrelevantly on the possibil i ty of negative consequences on the the applica
t ion. W i t h incorrect use computat ional errors or other unexpected behavior might occur.
P ragma simd is a powerful tool giving the programmer full control over the vectorization
possibilities.

3.2.6 Directive vector aligned/VECTOR ALIGNED

W h e n using this directive, we again instruct the compiler that it can ignore its opt imal
heuristics, this t ime regarding the data alignment i n memory. B u t i n order to use the vector
aligned directive, we have to store the data (arrays) i n memory at aligned addresses. For this

15

purposes a _mm_malloc(int s ize , int al ign) function can be used. It aligns the data in
memory for multiples of the a l i gn parameter. B y using the vector aligned directive the
compiler can generate instructions for moving aligned arrays, thus the runtime alignment
control does not have to be performed. Conversely, unaligned data forcing compiler to
generate gather/scatter instruction. Aga in , one must be extra careful when using the
vector aligned directive and use it only if we are certain that data is aligned. Otherwise
the code w i l l crash.

3.2.7 D i r e c t i v e omp p a r a l l e l

Pragma omp p a r a l l e l expl ici t ly authorizes the compiler for parallel ization of selected sec
t ion of the code. The directive is part of the OpenMP l ibrary. The directive creates a logic
group of threads (executing the same code), the number of which can be set by changing
the environment variable (export OMP_NUM_THREADS=N) or direct ly in the source code by
using the function omp_set_num_threads (for C and C + + languages). For the M I C it is
possible to create and use i n this way more than 200 threads that works really i n parallel .

3.2.8 D i r e c t i v e omp f o r

The omp for directive authorizes the compiler for dis t r ibut ion of ind iv idua l loop itera
tions among a logic group of threads created by on omp p a r a l l e l directive. The direc
tive has to be placed in the code immediately before the for loop. It is important to
consider and correctly determine which variables w i l l be shared among the threads and
which w i l l be private for each threads. Before parallel ization of the cycle it is neces
sary to secure that ind iv idua l iterations w i l l be independent, otherwise incorrect results
occur and the computat ion slows down. It is necessary for the i teration variable to be
private for each thread. The i teration variable cannot be changed i n the body of the
loop; the loop can only have one entry point, one exit point and it cannot contains
break command (or any other jump command). There are lot of clauses 3 associated wi th omp
for directive which can influence threads behavior. It is used e.g. for threads scheduling,
synchronization (barrier), reduction etc.

3.2.9 M e m o r y a l locat ion

For dynamic allocation of aligned memory block _mm_malloc (int s i ze , int al ign) func
t ion can be used. The s ize parameter indicates memory size (in Bytes) . D a t a is aligned
in the memory to multiples of the a l i gn parameter. For the Intel X e o n P h i coprocessors
it is suitable to align the data to multiples of 64Bytes (64Bytes cache line).

To release of dynamical ly allocated memory (with the _mm_malloc function) it is neces
sary to use the _mm_free function. W h e n using the standard function free (void *p) we
risk unexpected program behavior.

3.2.10 B i n d i n g of threads

KMP.AFFINITY is an environment variable that determines the placement of threads across
the C P U or M I C cores. We can use 2 basic types of threads a f f in i ty -scat ter and
compact. The scatter affinity determines that threads are evenly distr ibuted over cores

3 L i s t o f clauses assoc ia ted w i t h omp f o r d i rec t ive c a n be found o n page h t t p s : / / c o m p u t i n g . l l n l . g o v /
t u t o r i a l s / openMP /

16

https://computing.llnl.gov/

of the C P U / M I C . So i f we want to use 120 threads on a M I C , and set the threads affinity
to scatter, each core of the M I C w i l l obtain 2 threads to run. Therefore, the load w i l l be
evenly distr ibuted between a l l cores. O n the other hand i f we set the threads affinity to
compact, each core w i l l run the m a x i m u m number of threads (4 i n our case), thus we fully
use 30 cores while other 30 are idle. W h i c h threads dis t r ibut ion is more suitable depends
on specific algori thm, quantity of processed data, etc.

3.2.11 N U M A F i r s t T o u c h P o l i c y

The N U M A abbreviation means Non-Uni fo rm M e m o r y Access. It is a technology used in
modern systems for faster access of the processor to memory. The processor works wi th
memory integrated directly on the chip (On-chip memory) or memory, which is connected
to the processor through bus (Off-chip memory). For example our X e o n P h i coprocessor
has its own L I and L 2 cache on each core, while it is connected to the main memory through
P C I e bus. The issue is that each core (or thread) can have access to given section of the
memory of different complexity. Therefore it is suitable for the data to be distr ibuted in
the memory in such a way, that each thread w i l l have data stored in the memory as close
as possible to given core.

This case can be achieved by the method called " N U M A Fi rs t Touch P o l i c y " . In this case
we use the fact that the memory is physically occupied only at the moment of its pr imary
ini t ia l izat ion. Therefore, the pr imary in i t ia l iza t ion of the memory has to be executed in
parallel by a l l the threads. B y this we w i l l achieve that every thread w i l l place its data
into a memory where they have best access. D u r i n g the pr imary memory in i t ia l iza t ion by
a single thread a l l the data would be placed i n a way where other threads could have slower
access.

3.3 Programming models

Programing models are in this case different approaches to creation of applicat ion (in terms
of M I C ut i l iza t ion dur ing program runtime). We distinguish 2 basic models (discussed in
this thes is) -na t ive and offload. Another interesting model is also cluster mode (when we
use more M I C s at once).

3.3.1 N a t i v e m o d e

It is suitable to use the native mode only for programs made mostly of operations which can
be parallelized either by vectors or threads (both i n best case). These programs should not
execute a greater number of I / O operations; M I C cannot handle them as good as the host
system. It is not suitable for programs containing significant sections of the code processed
sequentially.

Creat ing a native applicat ion for a M I C isn't difficult. Source code wri t ten i n C , C + + or
For t ran languages and Intel compiler is sufficient. Th is code then needs to be compiled wi th
the -mmic parameter, specifying that this is a program created for the M I C architecture.
After successful compilat ion, the program is ready for execution. Since it 's a native program,
it is necessary to be logged in on specific M I C card v ia ssh. We should set necessary
environment variables and execute the program. If the host system doesn't share the file
system w i t h the coprocessor, it is necessary to manual ly copy the executable file, libraries
and other important files over. The scp u t i l i ty serves for this purpose. Advantages of the

17

native mode are simpler implementat ion and the resulting speed of the program. O f course
the resulting speed of the program depends on a number of factors, so it is suitable to use
it only under certain conditions.

3.3.2 Off load m o d e

The offload modes pr imar i ly uses C P U to run the application, however some parts of the
program run on a M I C . It's a more complex solution than the native mode, its implemen
tat ion is slightly more difficult. Th is mode is very similar to G P G P U programing (we can
use also O p e n C V) . The program itself is developed and executed on the host system while
some computat ion parts are offloaded to the M I C . Offload applications are suitable in cases
when a program executes a great number of I / O operations (generally operations performed
sequentially), while it contains computat ional ly demanding sections which can be processed
in parallel . Sequential operations are computed by the host system and parallel sections
w i l l be processed on the M I C (using a great number of threads). There are two basic types
of offload mode.

M o d e l without a shared virtual memory is more demanding on the implementat ion
but allows the programmer full control over the data transfers between C P U and M I C .
After launch, the program is executed on the C P U unt i l the #pragma off load 4 directive
is encountered (this is an Intel compiler directive, O M P directives can be used as well, e.g.
#pragma omp target). Th is directive causes that the compiler and runtime l ibrary w i l l
perform a data transfer (the programmer could decide what exactly w i l l be transferred)
between the C P U and the M I C , execution of the program on M I C , eventual data transfer
back from the M I C to the C P U . O n l y scalar data types, arrays and structures can be
transferred (types which can be copied by the memcpy function). If we want to work i n the
offload mode wi th more complex data types or dynamic structures, we have to use a model
w i th shared v i r tua l memory. C P U and M I C can execute code i n parallel, of course wi th
l imi ta t ion when wait ing for various data. This offload mode is supported by the C , C + +
and For t ran languages. D a t a transfer between host and coprocessor has to be expl ici t ly
solved by the programmer; the compiler is not able to do it on its own.

Parts of the code (function), which we want to execute on the coprocessor in offload
mode has to be added an attr ibute dur ing its definition (declaration). It tells the com
piler that this code is designed for the M I C architecture. This can be done e.g. by
__attribute__((target (mic))) . Declarat ion of the function designed for offload mode
can have this form:

__attribute__((target (mic))) void of fload_f unction (void);

Pseudo code example of offiad usage:

// code running on the processor
processor.!unctionO ;
#pragma o f f l o a d target(mic)
{

// code running on the coprocessor
of f l o a d _ f unctionO ;

>

4 L i s t of clauses assoc ia ted w i t h offload d i rec t ive c a n be f o u n d o n page https://software, i n t e l .
com/en-us/articles/xeon-phi-coprocessor-data-transfer-array—of-pointers-using-language-
ex t e n s i o n s - f o r - o f f l o a d

18

https://software

8 // code running on the processor
9 processor_function();

Lis t ing 3.3: Example of offload mode usage

The model w i th shared virtual memory relates to the extension of the C + + - "Intel
C i l k P lus language". For offload mode _Cilk_shared and _Cilk_of f load keywords are used.
The offload model w i t h the use of Intel C i l k P lus language does not have support for the
Fortran. Variables, we want to share between C P U and M I C are marked specially by the key
word _Cilk_shared. These variables can then be used on the C P U as well as the M I C . For
dynamic memory allocation _0f f load_shared_malloc, _0f f load_shared_aligned_malloc,
_0f f load_shared_f ree and _0f f load_shared_aligned_f ree are used.

A s stated, this mode allows transferring more complex data types like dynamic struc
tures, objects, pointers, etc. Work i n this offload mode is simpler; the programmer is not
dealing wi th data transfer between C P U and M I C as much as is the case without shared
v i r tua l memory.

Apar t from previous two offload models, also the A u t o Offloading mode can be used.
This mode can be used w i t h routines of the Intel M K L library. If our program uses a M K L
function and processes sufficient a quantity of data, the computat ion can be automatical ly
moved to the M I C . After computat ion on the coprocessor, the result is returned to the host
system. To achieve the automatic offload, we have to enable it e.g. by setting environment
variable MKL_MIC_ENABLE=l). We w i l l discuss this process in more detai l in a pract ical
example.

3.4 Performance measurement

3.4.1 T i m e measurement

Time measurement of computing can be realized i n many way. E . g . cal l ing of the gettimeof day
(library sys/time.h) function can be used before beginning the computat ion and after the
computation, while the results are stored in the timeval structure. The resulting times
have to be s imply subtracted from one another to get final t ime. Even simpler is to use the
function omp_get_wtime (l ibrary omp.h), also before beginning the computat ion and after
its completion. However, i f we want to know as much as possible about the performance
of our application, t ime measurement is not sufficient on its own. Because of this it is
suitable to use a more powerful tool , which could provide us accurate information about
the operation of our program. For this purpose we decided to use the PAPI l ibrary.

3.4.2 P A P I

The P A P I l ibrary 5 provides a development tool w i th simple interface for work wi th hard
ware counters on majori ty of microprocessors. The P A P I l ibrary allows the programmer
almost in real t ime to see dependencies between the performance of developed software
and processor events. P A P I provides access to a collection of components, which allow for
performance measurement and possibilities across hardware and the program itself.

After instal l ing the P A P I library, by using the papi_avail (or p a p i J i a t i v e _ a v a i l)
command one can find out which hardware counters are available. In this project, the
following P A P I options have been used.

5 T h e P A P I l i b r a r y is ava i l ab le together w i t h the d o c u m e n t a t i o n o n page h t t p: / / i c l . cs. u t k . e d u / p a p i /

19

• PAPI_FP_OPS-Floating point operations per second

• PAPI_SP_OPS- Vector (floating point) operations per second

• perf : :L1 -DCACHE -L0ADS-L1 data cache loads

• perf: :L1 -DCACHE -ST0RES-L1 data cache stores

• PAPI_L1_DCM-L1 data cache misses

• PAPI_L2_DCA-L2 data cache accesses

• PAPI_L2_DCM-L2 data cache misses

P A P I has a very good support for X e o n processors. Unfortunately, at the t ime of
creation of this thesis it had only a l imi ted support for X e o n P h i coprocessors. E . g . the
support for number of F P vector operations was missing, which is a significant indicator
for program opt imizat ion. However, i f we develop application for C P U and M I C at the
same time, it is sufficient to measure performance and computat ion t ime on the C P U and
computat ion t ime on the M I C . Based on the computat ion t ime on the M I C it is then very
simple to calculate reached performance i n comparison w i t h the C P U . If we want to get
really detailed information about our application, the most suitable solution is to use a
powerful tool direct ly from Intel - V T u n e Ampl i f ie r . Th is tool collects information during
the operation of the program, which is then displayed in graphic form.

20

Chapter 4

Intel Xeon Phi in practice

So far we have been dealing mostly wi th theory in the field of architecture and implemen
tat ion of algorithms on the M I C . Now, the t ime has come to move from theory to practice.
In the following subchapters we w i l l describe two exemplary tasks, implemented i n this
thesis. We w i l l begin wi th a well know benchmark, which is a mat r ix vector mul t ip l ica
t ion. Later , we w i l l describe a more complex algori thm representing simulat ion of particles
system (N-Body) . B o t h applications are implemented wi th the purpose of achieving the
highest performance of the M I C (we w i l l going to expertise and experience). After solving
these examples, we w i l l focus on much more complicated problems such as opt imizat ion of
k-Wave simulations or cross-compilation of some existing programs and libraries.

4 . 1 Matrix vector multiplication (matvec)

4.1.1 I n t r o d u c t i o n of the b e n c h m a r k

This is essentially a simple algorithm, which can be described by a pseudo code, as follows:

f o r (i = 0; i < ROWS; i++)
{

f o r (j = 0; j < COLS;
{

v e c t o r _ f i n a l [i] += matrix[i] [j] * v e c t o r [j] ;
>

}

Lis t ing 4.1: M a t r i x vector mul t ip l ica t ion pseudo code.

The result of matr ix vector mul t ip l ica t ion is therefore a vector. Every elements (of final
vector) are a dot product of one mat r ix row and input vector. A t first sight the algori thm
appears to be simple (is true) but we cannot ca l l it an op t imal implementat ion capable of
exploit ing the performance of the C P U / M I C . The following pars describe how to proceed
wi th opt imizat ion of this algori thm. F i rs t , I w i l l remind that dur ing the creation of this
thesis the Intel C + + compiler was exclusively used (icpc). Therefore, a l l possibilities
and options of the compiler mentioned apply to the Intel compiler and do not have to
be compatible w i th other compilers. Significance of some used compiler options w i l l by
described, but for deeper understanding it is good to go over the documentat ion 1 .

1https://software.intel.com/en-us/compiler_15.0_ug_c

21

https://software.intel.com/en-us/compiler_15.0_ug_c

4.1.2 N a i v e i m p l e m e n t a t i o n

The naive implementat ion i n C + + language is stems from the pseudo code 4.1. Individual
vectors are allocated stat ically on the stack. The matr ix is represented by a 2 dimensional
array also allocated stat ically on the stack. The arrays are not aligned i n the memory,
optimizations of the compiler are deactivated by the means of the -00 switch (impl ic i t ly
-02) (wen are using no vectorization and no parallelism). The compilat ion of the program
can be done as follows:

1 [host]$ icpc -00 matvec.cpp -o matvec-host # f o r CPU
2 [host]$ icpc -mmic -00 matvec.cpp -o matvec-mic # f o r MIC

Lis t ing 4.2: The compilat ion for C P U and M I C .

After compilat ion, we get an executable file. After execution we can check the result of
the computat ion and the program's running time.

In order to analyze the performance, it is necessary to create a more complex project
to simpler work wi th source codes. For purposes of this thesis the matvec/ directory has
been created (everything is located i n the Append ix A , next we w i l l identify each step of
opt imizat ion only by directory name). The project was managed by the means of the Gi t lab
system (hosted on the school server h t t p : / / p c j a r o s - g p u . f i t . v u t b r . c z /) . A l l source
codes are also available at the B i t bucket h t t p s : / / b i t b u c k e t . o r g / x s i m e k 2 3 / i n t e l - x e o n -
p h i - b a c h e l o r - t h e s i s .

The matvec/naive directory contains naive implementat ion of the algori thm described
in the benchmark introduct ion 4.1.1. Compi la t ion of the source files (make) is followed by
the execution of the program (make run) for the mat r ix size 64*64 items (on C P U) . We
decided to use single precision for mat r ix and vector data. We are working wi th matr ix
size of 1 6 K B and 2 vectors, each of 2 5 6 B big. We set the repetit ion of computat ion at e.g.
1000000.

The application is compiled and executed on the C P U . Under these conditions, the
computat ion t ime is 14.85 seconds and performance is only 593.5 m F L O P S (floating point
operations per second). This is about 1.5% of total core performance. We can see (Table
4.1) that number of vector and scalar operations are the same. It is because the compiler
generate S S E / A V X instruction, but uses only single vector line (scalar operations) while
other lines are masked.

Table 4.1: Performance measurement of naive implementation, compiler options disabled
(C P U) .

M a t r i x Size (items) 64x64 128x128
W a l l T i m e (s) 14.85 59.89
Scalar F P Operations (m F L O P S) 593.5 607.1
Vector F P Operations (m F L O P S) 593.5 (1.5%) 607.1 (1.6%)
L I miss 0% 1%
L2 miss 0% 0%

B y using the -optreport and -vec-report3 options, the compiler provides us informa
t ion about program optimizations. It is e.g. information about what loops were vectorized,
unrolled, etc. Based on the compiler information we know that the nested loop could not

22

http://pcjaros-gpu.fit.vutbr.cz/

be vectorized. Therefore, we w i l l have the opportuni ty to take certain steps leading to
successful vectorization.

4.1.3 A u t o m a t i c opt imiza t ions , vec tor iza t ion , p a d d i n g

The first choice is to enable automatic optimizations by the -02, or the -03 option. Further,
we te l l the compiler that we want to use (if possible) the A V X instruction set. We do this
by -xavx (0PTFLAGS=-03 -xavx) switch. After compilat ion of the program we discover
that the internal loop cannot be vectorized due to presumed data dependences of the
vectors. However, in our case there are no real data dependencies, therefore we submit
this information to the compiler, e.g. by using the IVDEP directive. Adjusted pseudo code
can look like this:

f o r (i = 0; i < ROWS; i++)
{

#pragma ivdep
f o r (j = 0; j < COLS;
{

v e c t o r _ f i n a l [i] += matrix[i] [j] * v e c t o r [j] ;
>

}

Lis t ing 4.3: M a t r i x and vector mul t ip l ica t ion pseudo code, I V D E P directive.

Another important feature is a nice mat r ix size. Pre t ty good mat r ix sizes are multiples
of 16. If we had a mat r ix of size e.g. 63*63, the performance decreases due to bad memory
alignment. For better memory alignment we have to add some padding (during ini t ia l izat ion
of matr ix and vector), which fills empty elements i n the matr ix (then we w i l l have matr ix
of size 64*64). After compilat ion and execution we are able to achieve results:

Table 4.2: Performance measurement of vectorized implementation, compiler options en
abled, xavx (C P U) .

M a t r i x Size (items) 64x64 128x128
Wal l T i m e (s) 0.66 2.87
Scalar F P Operations (m F L O P S) 96.9 48.3
Vector F P Operations (m F L O P S) 13841.5 (36%) 13250.5 (35%)
L I miss 0% 22%
L2 miss 0% 0%

From table 4.2, we can see significant improvement. The computat ion speed increased
more than 20 times, the number of vector operations executed per second too. In this
case, we achieved 35% of core performance. If we use mat r ix of size 128*128, performance
w i l l sl ightly slow down. It is cause by bigger size of the mat r ix (6 4 K B) , which is 2 time
bigger than L I cache (data are located i n L 2 cache). However, we s t i l l cannot be satisfied
because there are s t i l l more steps, through which further increase of performance could
be achieved. We can also see importance of padding (data alignment) i n the Figure 4.1.
Depending on the data size, we can achieve more than two-fold increase of performance
(due to better memory alignment). Source files of this step can be found i n the directory
matvec/vec-padding.

23

CO
C L

o

o c

C L

I P a d d i n g = 0

I P a d d i n g = 1

63x63 127x127

Matrix size (elements)

Figure 4.1: Padd ing experimets (C P U) .

4.1.4 D y n a m i c a l locat ion , d a t a a l ignment

Another very important step of opt imizat ion w i l l be storing the data i n the memory. We
begin by allocating the data dynamically. This is necessary due to a large quanti ty of data
w i l l be used for future tasks. Under normal condit ion we would use m a l l o c for dynamic
memory allocation on the heap. However, we demand the data to be aligned i n the memory
(_mm_mallocand _mm_free, see Section 3.2.9). For C P U it is suitable to align the data to
32 Bytes , for M I C 64 Bytes . However, we can use a uniform alignment to 64 Bytes . W h e n
the vectors i n the memory are aligned, we have to inform the compiler about that. We can
use e.g. the VECTOR ALIGNED directive. After adjustment the code can look like:

f o r (i = 0; i < ROWS; i++)
{

#pragma vector aligned
#pragma ivdep
f o r (j = 0; j < COLS;
{

v e c t o r _ f i n a l [i] += matrix[i] [j] * v e c t o r [j] ;
>

}

Lis t ing 4.4: M a t r i x vector mul t ip l ica t ion pseudo code, I V D E P , V E C T O R A L I G N E D
directives.

Look ing at the Table 4.3, computat ion t ime is slightly smaller than in previous case
(Table 4.2). The number of vector operations increased by 2-6%; on the other hand the
number of scalar operations shrank greatly (in comparison wi th naive implementat ion (Ta
ble 4.1)). Th is is caused by the fact that w i th data aligned in the memory the compiler
can generate instructions for work wi th aligned vectors, which are much more faster than

24

Table 4.3: Performance measurement, dynamic allocation, aligned data (C P U) ,
M a t r i x Size (items) 64x64 128x128
Wal l T i m e (s) 0.55 2.60
Scalar F P Operations (m F L O P S) 92.3 44.6
Vector F P Operations (m F L O P S) 16216.6 (42%) 14017.1 (37%)
L I miss 0% 19%
L2 miss 0% 0%

instructions moving unaligned data. Load/s tore of unaligned data is more expensive oper
ation. Th is is due to scalar load/store instructions must be performed before we achieve
aligned addresses. Work wi th unaligned data includes scalar "prefix" (unaligned addresses),
vector load/store (aligned addresses) and scalar "suffix" (unaligned addresses). Source files
of this step can be found i n the directory matvec/dynamic-aligned.

4.1.5 Pare l l e l process ing o n t h r e a d level

It is t ime to move from the features of the compiler to the features offered by multi-core
C P U . We w i l l t ry to execute the application on more than 1 thread. This can be achieved
by a directive from the l ibrary O p e n M P -#pragma omp p a r a l l e l for (see Sections 3.2.6,
3.2.7). The adjusted code w i l l looks like:

#pragma omp p a r a l l e l f o r
f o r d = 0; i < ROWS; i++)
{

#pragma vector aligned
#pragma ivdep
f o r (j = 0; j < COLS;
{

v e c t o r _ f i n a l [i] += matrix[i] [j] * v e c t o r [j] ;
>

}

Lis t ing 4.5: M a t r i x vector mul t ip l ica t ion pseudo code, P A R A L L E L directive.

This directive w i l l distribute a given number of matr ix lines, input vector and final
vector among threads. Iteration variables has to be expl ic i t ly set as private or they can
be created directly at loop entrance (e.g. for(unsigned i = 0; i < COLS; i++)). Let
us remind that stated code samples are only pseudo codes (check Append ix A for specific
source codes). Computa t ion w i l l be tested for 1, 2, 4, 8 and 16 (2 x C P U) threads. We
can see a strange behavior when we start w i t h mat r ix size 64*64. We can see in Table 4.4
that the computat ion t ime increases wi th increasing number of threads. Th is phenomenon
is caused by the overhead related to the creation and maintenance of a "large" number of
threads, while ind iv idua l threads do not have sufficient amount of work. This also causes
"fake sharing" of memory between threads. E a c h thread has only 8 elements for processing
(each thread w i l l rewrite cache line of other threads). The L 2 miss rates depicted in the
Table 4.4 are very high. This is also due to fake memory sharing and cache line invalidat ion.

Due to previous phenomenon, it 's t ime to get a l i t t le bit more intense and t ry the
computat ion for larger mat r ix and smaller number of repetitions (for shorter computat ion
t ime). M a t r i x size w i l l be set e.g. at 2048*2048 items (1 6 M B) , we select 1000 repetitions.

25

Table 4.4: Performance measurement of omp parallel version, mat r ix size 64*64 (1 6 K B) ,
"bad" results (C P U) .

Threads Wal l T i m e (s) Vector F P Ops (m F L O P S) L I miss L 2 miss
1 0.787 12086 (31%) 1% 0%
2 2.527 3861.2 (5%) 1% 90%
4 2.441 3843.4 (2.5%) 1% 93%
8 2.990 3202.2 (1%) 1% 95%
16 4.237 2243.4 (0.37%) 1% 97%

Increase of performance depending on the number of threads is depicted in Table 4.5 and
Figure 4.2.

Table 4.5: Performance measurement of omp parallel version, mat r ix size 2048*2048 (16 M B
C P U) .

Threads Wal l T i m e (s) Vector F P Ops (m F L O P S) L I miss L 2 miss
1 0.895 12030.8 (31%) 25% 64%
2 0.395 26460 (34%) 25% 60%
4 0.205 51661.4 (33%) 24% 60%
8 0.135 91309 (29%) 24% 63%
16 0.06 173723 (28%) 23% 63%

So 1 C P U computed the result the fastest on 8 threads. Specifically i n 0.135 seconds
reaching performance 9 1 g F L O P S (29% of theoretical performance). Two C P U s achieved
performance 1 7 3 g F L O P S (28%). The L I and L 2 miss rates is relatively balanced in com
parison wi th results depicted in the Table 4.4 (fake memory sharing was el iminated by large
matr ix size). Figure 4.2 also shows that the most "beautiful" scaling was reached wi th the
matr ix size 2048*2048. There is sufficient amount of data for a l l threads while data are
s t i l l fitted in the L 3 cache. Now that the algori thm is opt imized sufficiently, we can move
to the Intel X e o n P h i coprocessor.

4.1.6 M a t v e c o n the X e o n P h i coprocessor

The Fi rs t step i n transferring our application to the M I C w i l l be a very simple adjustment
of the Makefile. We add the -mmic parameter to compiler flags (CXXFLAGS+='-mmic').
This w i l l make the compiler generate code for the M I C . We also have to remove the -xavx
options since it is not supported by the M I C . Let ' s compile and run our program.

[host]$ cd nbody/omp-parallel-mic
[host]$ make
[host]$ ssh micO
[mic0]$ cd nbody/omp-parallel-mic
[mic0]$ export 0MP_NUM_THREADS=1 # l a t e r e.g. 120, 180, 240
[mic0]$ # following l i n e - direcotory with MIC shared l i b r a r i e s
[mic0]$ export LD_LIBRARY_PATH=/path/to/lib/mic:$LD_LIBRARY_PATH
[mic0]$./matvec

Lis t ing 4.6: Compi la t ion and execution a native aplication for X e o n P h i .

26

64x64 (16 KB)
1024x1024 (4 MB)
2048x2048 (16 MB)
4096x4096 (64 MB)

0 2 4 6 8 10 12 14

Threads

Figure 4.2: Scale computat ion to more threads (C P U) .

Let 's compare single thread performance of application (naive implementat ion on C P U ,
dynamic and aligned version on C P U & M I C) at first. We can see great difference between
naive (no optimizations) implementat ion and opt imized version i n Figure 4.3 (more than
20 times faster). Figure 4.3 also shows that M I C has much worse results than C P U when
we using only 1 thread (M I C is more than 10 times slower). It is mainly due to low core
frequency and 2 cycles instruct ion decoding described i n the Section 2.2.

The M I C offers us significantly more hardware threads than the C P U . Therefore, we
can start experimenting and execute the program using 1, 2, 4, 8, 16, 32, 60, 120, 180
and 240 threads. Figure 4.4 and Table 4.6 contain results of the measurements for the
matr ix 2048*2048 elements (1 6 M B) and 1000 repetitions. A s we can see from the Figure
4.4 and Table 4.6, the M I C needs much more threads to achieve satisfactory results. B u t
the dependency of a speed up (on threads number) and process of scaling can be clearly
seen. More data means better workload of the threads and we can see more "beautiful"
scaling.

However, at the end we achieved only slightly better result than on the processor. The
coprocessor calculated the result on 240 threads in 1.127 seconds, which almost equal w i th
1.135 second that achieved processor (8 threads). Two C P U s are i n this case much better
than M I C (almost 2 times).

Therefore, we must even t ry to increase the matr ix size (lot of threads = = overhead)
and compare the results. G r a p h 4.5 describes comparison of C P U and M I C performance.
We can see that w i th mat r ix size 8192*8192 is performance of the M I C more than 5 times
higher than performance of the C P U (and 3 times higher than 2 C P U s) . In this case we
achieved performance about 1 3 0 g F L O P S on the M I C - 6 . 5 % of theoretical performance (1
C P U - 8 % and 2 C P U - 6 . 7 %) .

Of course we have not used a l l available opt imizat ion possibilities (6.5% of theoretical
performance is not very much), but for demonstration purposes this level of opt imizat ion
is sufficient. It would definitely be suitable to compute mul t ip l ica t ion for data block the

27

70

64x64 128x128

Matrix size (elements)

Figure 4.3: Single thread comparison (C P U / M I C) .

64x64 (16 KB)
1024x1024 (4 MB)
2048x2048 (16 MB)
4096x4096 (64 MB)

0 20 40 60 80 100 120 140 160 180 200 220 240

Threads

Figure 4.4: Scale computat ion to more threads (M I C) .

28

Table 4.6: Performance measurement of omp parallel version, mat r ix size 2048*2048 ele
ments (1 6 M B , M I C) .

Threads Wal l T i m e (s)
1 4.042
2 3.824
4 3.841
8 1.983
16 1.098
30 0.599
60 0.360
120 0.246
180 0.164
240 0.127

approximate size of cache memory (cache blocking), but we w i l l deal w i th this in the N -
B o d y benchmark. Implementation of this task is nice mainly as "tutorial" , i n real situations
is better to use highly opt imized routines, e.g. from Intel M K L . Source files of this step
can be found in the directory matvec/omp-parallel-mic.

4.2 Multiplication of two matrixes (matmul)

From the mat r ix vector mul t ip l ica t ion we now move to mul t ip l ica t ion of two matrixes. This
t ime we won't implement the algori thm itself. We w i l l experiment w i th opt imized routine
from the M K L - D G E M M . The D G E M M (in our case cblas_dgemm) function compute ma
t r ix mul t ip l ica t ion for double precision data. Since this function is part of the Intel M K L
library, it is highly opt imized for the C P U as well as the M I C . Except for this it can highly
util ize the potential of the machine. We can therefore directly test speed up of the M I C in
comparison to the C P U (or 2 C P U s) . Moreover, we can demonstrate the use of the A u t o
Offload mode here.

Let 's start w i th the mat r ix of the size 1024*1024 (we w i l l gradually double this size).
To see results of this experiment look at Figure 4.6.

Unfortunately, we weren't able to measure performance of D G E M M by P A P I (only wal l
t ime). O n the other hand, Intel published their S G E M M / D G E M M benchmark 2 and we can
compare our results. Intel achieved performance 8 3 7 g F L O P S (on the M I C same as our one)
which is 83% of theoretical performance. Two C P U s (16 threads) produced performance
5 4 8 g F L O P S which is about 1.5 t ime smaller than the performance of the M I C . For the
matr ix size 16384*16384 are our results very similar (Intel used similar mat r ix size). The
M I C is much faster i n comparison wi th 1 C P U (4 times for matr ix 4096*4096). It means
that using of M I C can has a sense.

If we want to use the Au toma t i c Offload (A O) , we have to compile the code for the C P U
(without -mmic), set the environment variable export MKL_MIC_ENABLE=1 and execute the
program. If we want to check whether offload was performed, we set the environment
variable export OFFLOAD_REP0RT=2. If we want to set the number of coprocessor threads,
we set export MIC_ENV_PREFIX=MIC; export MIC_0MP_NUM_THREADS=240. W h e n execut-

2 S G E M M / D G E M M benchmark by Intel:
http: //www. i n t e l . com/content/www/us/en/benchmarks/server/xeon-phi/xeon-phi-sgemm-dgemm.html

29

25

20

_ 15
in

^ 10

>

Gil • •
L o-

M m ' ; '

11 x CPU (8 threads)
12 x CPU (16 threads)
l x MIC (240 threads)

0
4096*4096 (64 MB) 16384*16384 (1024 MB)

2048*2048 (16MB) 8192*8192 (256 MB)

Matrix size (elements)

Figure 4.5: Matvec comparison C P U vs. M I C .

1024x1024 2048x2048 4096x4096 8192x8192 16384x16384

Matrix size (items)

Figure 4.6: Speed up of the M I C against the C P U in the mat r ix mul t ip l ica t ion (matmul).

30

ing the program wi th various matr ix sizes we discover that the A O takes place only after
crossing a certain mat r ix size. Th is is caused by l ibrary runtime heuristics which allows
A O only i f it presumes that the computat ion on the M I C would has sense.

Automat ic Offload can also be used for example wi th P y t h o n language, specifically w i th
modules N u m p y and Scipy. If we want to use A O wi th this modules, they w i l l have to be
linked wi th Intel M K L .

In this example we can simply experiment w i th KMP.AFFINITY. G r a p h 4.7 shows dif
ferences of wal l times when we are using compact or scatter threads affinity. A s we can
see, importance of threads affinity depends on matr ix size (generally depends mainly on
specific algorithm). Source code of examples associated wi th this section can be found in
the matmul/ directory.

at

40

35

30

25

20

15

10

5

0

35.403

1 25.70S 1 25.70S

1
1
1

1
1
1

1
1
1

0.122 0.103 0.167 0.156 0.707 0.399
2 052

1024x1024 2048x2048 4096x4096 8192x8192 16384x16384

Matrix Size (items)

I scatter
I compact

Figure 4.7: Compar ison of the compact and the scatter threads affinity (matmul).

4.3 N-Body Simulation

4.3.1 I n t r o d u c t i o n of the b e n c h m a r k

N - B o d y is some physical s imulation strongly associated wi th H P C . There are lot of bench
marks (with some modifications) dealing wi th this problem. It is a more complex task
incorporating significantly more computations (not only M A D like matvec). It w i l l be a
computat ion of mutua l force influence of bodies and its opt imizat ion. E a c h body has a
certain weight, speed and posit ion i n space. Grav i ta t iona l forces of other bodies affect the
specific body. Thei r forces have various directions and their resultant causes a change in
body speed. A t first it is necessary to compute the force affecting every body. It is given
by vector sum of par t ia l forces caused by gravitat ional effect of other bodies. We compute
the force between 2 bodies by equation 4.1.

G * m i * m 2 , ,
R 2 y * - 1)

31

F is force between 2 bodies, G is gravitat ional constant, 7 7 1 1 , 7 7 1 2 are weights of bodies, R
is distance between bodies. Hav ing this force we can calculate the acceleration of body by
equation 4.2.

fl(i+l) = 2 ^ n (4 _ 2)

777.

Consequently we can calculate new velocity of the body by equation 4.3

„(i+i) = v i + fl(i+i) * A T (4.3)

The last equation 4.4 is used to calculate a new posit ion of the body.

r(i+i) = r » + * A T (4.4)

To summarize, in each step we compute forces among ind iv idua l bodies, changes of
the speed and positions. The simulation of N particles movement in S T E P S steps can be
describe by Pseudo code 4.8.

1 // each step of simulation
2 f o r (s t e p = 0; step < steps; step++)
3 {

4 // i t e r a t e through a l l bodies
5 f o r (i =0; i < N; i++)
6 {

7 // c a l c u l a t e force between bodies
8 f o r (j = 0; j < N;
9 {

1 0 i f (p a r t i c l e [i] != p a r t i c l e [j])
1 1 F = c a l c u l a t e _ f orce (p a r t i c l e [i] , p a r t i c l e [j]);
12 }

1 3 // c a l c u l a t e a c c e l e r a t i o n
1 4 ACC = c a l c u l a t e _ a c c (p a r t i c l e [i] , F);
1 5 // c a l c u l a t e v e l o c i t y
16 VEL = c a l c u l a t e _ v e l (p a r t i c l e [i] , ACC);
1 7 // c a l c u l a t e p o s i t i o n
is POS = c a l c u l a t e _ p o s (p a r t i c l e [i] , VEL);
19 >

2 0 >

Lis t ing 4.7: Pseudo code of the N - B o d y algorithm.

4.3.2 N a i v e i m p l e m e n t a t i o n

Let 's start w i th a simple implementat ion to validate the code. Dur ing implementat ion we
can proceed according to the relations stated above and the Pseudo code 4.8. L ike i n the
matvec benchmark the application was implemented and opt imized for the C P U at first.
After compil ing the program through appended Makefile and subsequent execution, we
achieved results shown i n Table 4.7. A s we can see the results are not satisfactory, mainly
due to very smal l number of vector operations.

After confirming the accuracy of the computat ion, this version of the program was
taken as reference for checking the correctness of the computat ion and opt imizat ion of the
algori thm. A t first glance the code is far from opt imized ones, therefore several steps for
opt imizat ion have to be taken. We w i l l proceed just like w i th matr ix vector mul t ip l ica t ion.
This implementat ion can be found in the nbody/naive directory.

32

Table 4.7: Performance measurement of the naive implementat ion (C P U) ,
N u m b e r of bodies 1000 (27.3 K B) 10000 (273 K B)
W a l l T i m e (s) 16.000 1600.270
Scalar F P Ops (m F L O P S) 1499.51 1500.45
Vector F P Ops (m F L O P S) 250.75 (0.65%) 250.79 (0.65%)
L I miss 0% 10%
L2 miss 1% 2%

4.3.3 A l g o r i t h m enhancement , a u t o m a t i c opt imiza t ions

So far our code contains badly designed algori thm especially w i th respect to the structure
of loops, jumps i n loops and data storage i n memory. F i rs t step is the removal branches
from the loop. This branch is to ignore the identical particles (this avoiding divis ion by
zero). The condit ion was removed by adding very smal l constant to the distance between
the particles. The constant has such a smal l value that its consequence on accuracy of the
computat ion is negligible.

Further, it is necessary to adjust data layout in memory. For clari ty it is good to cover
ind iv idua l particle attributes into a structure. A s we explained i n the theoretical part, there
is a big difference between array of structures or structure of arrays where S o A is said to be
more SIMD-fr iendly. A g a i n we choose dynamic allocation and data alignment to 64 Bytes.
After the modification of the algori thm we get significantly better results (see Table4.8).

Table 4.8: Performance measurement of a better implementat ion (st i l l single thread), au-
tomatic optimizations (C P U) .

N u m b e r of bodies 1000 (27.3 K B) 10000 (273 K B)
W a l l T i m e (s) 1.110 107.120
Scalar F P Operations (m F L O P S) 17.85 1.84
Vector F P Operations (m F L O P S) 26165.70 (68%) 27076.60 (70%)
L I miss 0% 22%
L2 miss 2% 2%

The results speak for themselves; the computat ion t ime shrank almost 15 times, not to
mention the number of vector computations. It's worth mentioning that there is not a single
compiler directive, it is exclusively the code structure enhancement, better data layout and
automatic opt imizat ion of the compiler. It needs to be said that the applicat ion is s t i l l run
ning only on 1 thread. Performance 2 7 g F L O P S is very good result, it is 70% of theoretical
performance. Source codes can be found in the directory nbody/non-jump-auto-opt.

4.3.4 P a r a l l e l process ing o n t h r e a d level

W h e n looking at a force computat ion, we can see that a loop is s t i l l complicated. It is
possible to exempt computat ion of acceleration (and particle speed) from this loop. We
must store resultant force (for each particle) to array, which we w i l l add to the structure of
the particle system. Thus we can compute acceleration and new speed i n an ind iv idua l loop;
we compute the new particle posit ion in the same way. These shorter and simpler loops
can be vectorized better. O n the other hand, structure of particles system now contains

33

13 arrays (not 7 as in previous case). Th is means that we w i l l work wi th 5 0 . 7 K B (1000
bodies) and 5 0 7 K B (10000 bodies) of data (we use single precision).

Let 's add the omp p a r a l l e l for directive above loops which can be executed i n parallel .
In our case it is the loops for in i t ia t ion of force, computat ion of force, computat ion of
acceleration, computat ion of speed and computat ion of posit ion. Further, we add the
directive simd above loops which can be vectorized (the most nested loops). A t this point
we w i l l t ry to run improved program on a single thread and compare results. See Table 4.9
for complete results. Note that number of scalar operations is very small .

Table 4.9: Performance measurement of the omp version, single thread only (C
N u m b e r of bodies 1000 (5 0 . 7 K B) 10000 (507 K B)
W a l l T i m e (s) 1.022 104.105
Scalar F P Operations (m F L O P S) 0.14 0.07
Vector F P Operations (m F L O P S) 28494.30 28020.80
L I miss 1% 30%
L2 miss 1% 1%

-U).

It's good to advise the compiler that the data in memory is aligned. However, due to a
large number of threads the alignment breaks down and the program crashes might occur.
Therefore, for s implic i ty we w i l l execute the program for such number of particles for which
data w i l l be s t i l l aligned even after particles dis t r ibut ion among a l l threads. Now we w i l l
run the computat ion for 10000 particles and 1000 steps subsequently on 1, 2, 4, 8 and 16
threads. The results of the measurements are listed i n Table 4.10 and Figure 4.8.

Table 4.10: Performance measurement of the omp parallel version, 10000 bodies, scaling
(C P U) .

Threads Wal l T i m e (s) Vector F P Ops (m F L O P S) L I miss L2 miss
1 103.937 28063.3 30% 1%
2 552.254 55831.3 31% 1%
4 26.164 111453.0 31% 1%
8 13.745 212304.0 31% 2%
16 0.532 393308.0 30% 3%

Figure 4.8 clearly shows dependency of computat ion t ime on the number of threads.
Computa t ion took 13.745 seconds on 8 threads while we achieved performance more than
2 1 0 g F L O P S (68% of theoretical). T w o C P U s provide performance 390 g F L O P S (63%).
W h e n we work wi th only 2000 particles, the performance is almost same for single thread
and for more threads (2, 4, 8, 16). It can be caused by bad workload of each thread. If
we exceed a certain threshold (number of bodies), scaling is much better (see Figure 4.8).
Source codes can be found in the directory nbody/omp-parallel.

4.3.5 N - B o d y o n the X e o n P h i coprocessor

Firs t , we w i l l compare single tread programs. It w i l l be naive implementat ion on C P U and
previous implementat ion (Section 4.3.4) on C P U & M I C . We can see (Figure 4.9) similar
results to matvec (Figure 4.3). Single thread application running on M I C has about 5 time
worse results than on the C P U .

34

2000 (100KB)
10000 (500KB)
100000 (5MB)

Threads

Figure 4.8: Scale the computat ion to a more threads (C P U) .

1600.27 1600.27 1600.27 1600.27 1600.27 1600.27 1600.27

470.49

1600.27

470.49

16 1.02 4.863

1600.27

104.1

470.49

I Naive-CPU
lOptimized-CPU
Optimized-MIC

1000 10000

Number of bodies

Figure 4.9: Single thread comparison (C P U / M I C) .

35

The next step w i l l be the program execution (10000 bodies and 1000 repetitions) on the
M I C , while using 1, 2, 4, 8, 16, 32, 60, 120, 180 and 240 threads. Figure 4.10 and Table 4.11
depicts the course of the applicat ion scaling (on the M I C) . The computat ion t ime when
using 240 threads was 3.4 times smaller than on the C P U . It means that performance on
240 threads provide more than 7 2 5 g F L O P S (36% of theoretical performance). O n the
other hand, single thread computat ion took as long as 471 seconds, which is about 4 times
more than when using 1 thread on the C P U . These results speak for themselves. The key
to high performance on the M I C is without a doubt using a large number of threads. We
can also see course of scaling for other number of bodies. E . g . 2000 particles have slower
scaling course (small threads workload) than greater numbers of bodies.

However, we are not yet done wi th opt imizat ion, there are s t i l l several possibilities,
through which we can better uti l ize the potential of the M I C . The source codes are available
in the directory nbody/omp-parallel-mic.

Table 4.11: Performance measurement of the omp parallel version, 10000 bodies and 1000
runs (M I C) .

Threads Wal l T i m e (s)
1 471.662
2 267.336
4 226.572
8 108.587
16 54.360
30 29.479
60 15.161
120 7.908
180 5.253
240 4.017

4.3.6 C a c h e b lock ing

The Xeon P h i coprocessor offers us very quick cache memories. The next step of opt imiza
t ion w i l l be the effort to exploit cache memories as best as possible. For this step we w i l l
use the famous me thod-cache blocking. This method is based on spl i t t ing a large number
of data into smaller blocks, usually blocks of the cache size. The principle is using the
data stored in cache as many times as it 's possible before moving them again to the main
memory. This data reusable (from the cache memory) eliminates the number of accesses
to the main memory, thus the C P U / M I C doesn't have to wait so long for the data. The
process for loop t i l ing may look like:

// simple i t e r a t i n g through array
f o r (i =0; i < N; i++)
{

A[i] = do_something() ;
}

// cache-blocking
f o r (i = 0; i < N; i += BLOCK)
{

36

TZ 140
CC
a:
.c
+j

120
CD

O l

sin

100
CC

0

nt

80
o
'S

60
E

CO

40
H—
o
O .

20 3 20
" C

tu
tu

0 Q. 0
(fi

0
0 5 0 1()0 IE >0 2()0

2000 (100KB)
10000 (500KB)
100000 (5MB)

Threads

Figure 4.10: Scale computat ion to a more threads (M I C) .

f o r (b = j ; b < min(N, j + BLOCK); b++)
{

A[b] = do_something() ;
}

Lis t ing 4.8: Pseudo code of the cache-blocking.

Setting the correct block size for processing doesn't have to be decisive. It depends on
the cache size (there is a difference i f we want to keep the data in L I or L 2 cache), type of
algori thm, etc. We must experiment w i th the block size, we can start e.g. w i th the size 1/2
of L I cache. We subsequently increase the block size and observe the acceleration/slowdown
of computat ion. Now, we w i l l run simulat ion for much more particles because we must have
data bigger than a l l caches (e.g. 1105920 particles). Figure 4.11 describes differences among
wal l times of programs wi th the various block sizes. We can see that we have not achieved
satisfactory results w i th any block size. It can be caused by strong hardware and software
prefetching or some other hardware and compiler optimizations. Source code can be found
in the directory n b o d y / c a c h e - b l o c k - m i c .

4.3.7 Off load m o d e

So far we have been dealing wi th programming of native applications for X e o n P h i . A s
we said at the beginning, X e o n P h i is not capable to process I / O operation as fast as the
C P U . Before beginning the computat ion, our program reads large amount of data from the
file. After completing the computat ion writes the same amount of data into the file. D a t a
reading t ime from file on the M I C is several times higher than on the C P U ; therefore we
w i l l t ry to use the offload mode. The program w i l l be run on the host system. Host reads
the data and sends it to the M I C . After that, the M I C runs a simulat ion and sends the
data back to the host system (C P U subsequently writes them i n a file). In this case, the

37

1024*256 • i
1024*128 _ _ _ _ _ _ _ _ _ _ _ _ _ _ M ^ ^ ^ ^ ^ ^ M ^ ^ ^ ^ ^ ^ ^ H H _ _ _ _ _ _ _ _ _ _ B

1024*64 M ^ H ^ ^ M ^ ^ ^ ^ ^ ^ ^ M ^ ^ ^ ^ ^ ^ ^ ^ H ^ H
1024*18 • ^ • • • H
1024*16 • !
1024*14 • I
1024*12
1024*10 •••••••••••••••••••••••••••••••••M

1024*8 • ^ • • i
1024*6 ^ ^ ^ ^ ^ ^ ^ M ^ ^ ^ ^ ™ ^ ^ ^ ^ ™ ^ ^ ^ ^ ^ ™
1024*4 ^ ^ • • • • • • ^ • • • • • • ^ • • • • • • • • • • • • • ^ • • 1
1024*2 B H H a H H H B H H H H H H H B H H H H H H H H H H H H H B H H H B

1024*1 •
1024*1/2 • ^ • 1

No Blocking ' ^ • • • • • • ^ • • • • • • • ^ • • • • • • ^ • • • — • ^ — i |
0 20 40 60 80 100 120

Wall Time (s)

Figure 4.11: Cache blocking, various block sizes (M I C) .

implementation w i l l be more difficult than wi th the native mode. This is complicated by
the fact that it is not possible to copy other than simple data types to the M I C (it cannot
be a structure of pointers). Before copying the data to the M I C we have to perform manual
decomposition of pointer structure to ind iv idua l arrays, which we copy to the M I C and
store back to the structure. We add required offload directives and compile the program.
This t ime the program w i l l be compiled for the host system, i.e. without the -mmic option.

The comparison of the ind iv idua l program sections (M I C native vs. C P U + offload
to M I C) is depicted i n Figure 4.12. W h e n we read/wri te 1105920 bodies from the file v i a
f p r i n t f function, we achieved much worse results on the M I C than on the C P U . The
C P U handles I / O (single thread) operation so much better. It is more efficient to use some
king of buffers and read/wri te bigger chunks of data, less times (binary read/wri te is also
faster than fpr int f) . Source codes for the offload mode are available i n the directory
nbody/offload.

4.4 K-Wave

K - W a v e is an open source toolbox for M A T L A B , dealing wi th the simulat ion of acoustic
waves propagation i n I D , 2D and 3 D . It comprises of thousands lines of source code (C + +
language) opt imized for C P U using O p e n M P . So this t ime we w i l l not be creating the code
itself, we w i l l t ry to port the applicat ion to the M I C , measure performance, compare wi th
C P U and eventually optimize. We w i l l not be dealing wi th the internal structure of the
program; we w i l l only sum up the most basic information.

The program itself is composed of a large number of demanding computations. The
combination of this computations creates the simulation itself. Simulat ion uses own kernels,
but in majori ty of cases functions from the M K L library. It uses especially F F T functions
forming the biggest part of the simulat ion. For data load/store operations it uses the H D F 5
library, for data compression the Z L I B library.

38

160

Figure 4.12: Comparasion of the native and the offload mode (N-Body) , 1105920 bodies.

For the program compilat ion it 's necessary to prepare the H D F 5 and Z L I B libraries for
the M I C (non-standard libraries). Procedure of libraries compilat ion for the M I C w i l l be
described i n the Section 4.5.

After successful compilat ion, we can move to the performance testing on the M I C .
Immediately after starting the program we discover that the computat ion t ime on the
M I C is approx. two times longer than on the C P U . W i t h a complicated project like this
it is more difficult to discover the reasons for the low performance. However, the Intel
V T u n e Ampl i f ie r (profiling tool) serves us very good for this purpose. After the application
profiling we discover that a big part of the computat ion t ime is taken especially by the F F T
functions from the M K L library. Th is fact is not very heartwarming, because we are not
able to affect the performance of these functions. The profiling results show that the F F T
functions on the M I C takes longer t ime than on the C P U .

We have therefore decided to measure the performance of the F F T functions (on the
C P U & M I C) by means of simple benchmarks. O n 1 C P U we achieved performance of circa
7 0 g F L O P S (8 threads), on 2 C P U s 1 1 5 g F L O P S (depending on processed data size, etc.).
The M I C achieved i n majori ty of cases worse results or hardly reached the performance of
the C P U s .

Searching the web we can find other benchmarks related to F F T and Intel X e o n P h i ,
where results similar to ours were achieved. The performance of X e o n P h i also reached
around l O O g F L O P S . However, we were not able to solve this problem. It is possible that
the new M K L version w i l l br ing also a better F F T performance on the M I C .

4.5 Cross-compilation of existing libraries, modules, programs

Very interesting part of this work was the effort of por t ing various libraries, modules or
programs to the M I C . These included e.g. H D F 5 l ibrary (data model, file format for data
storing), Z L I B or B Z I P 2 libraries (data compression). A more complex problem was the

39

cross-compilation of the P y t h o n interpreter and its Numpy, Scipy or Ctypes modules. The
N u m p y and Scipy modules are widely used, especially i n H P C sphere. They contain a
large number of data types and highly opt imized routines. Furthermore, these modules can
be l inked directly w i th the M K L library. The effort for native running of stated libraries
and modules on the M I C was successful (from the functional point of view). F r o m the
performance point of view (e.g. P y t h o n language interpreter) it was worse. A s already
mentioned, low performance of the X e o n P h i cores does not allow "quick" running of the
programs using only 1 thread. The P y t h o n interpreter executes the code sequentially (with
the exception of opt imized functions calls), thus using only 1 thread.

Regarding the cross-compilation of existing programs (for the M I C) , it can be simple
or very difficult. Standard compilat ion and instal lat ion takes place usually in the following
steps:

1. Execut ion of a configuration script (. /configure)

2. Compi la t ion of a source files (make)

3. Installation (make i n s t a l l)

Various parameters can be given to the configuration script affecting the compilat ion.
So if we compile for the M I C , it is necessary to set the correct compiler options. E . g . we
have to state that we want to use the Intel compiler (CC=icc) and generate the binary for
the M I C (CFLAGS=-mmic). It's not always such easy; sometimes it is necessary to manually
adjust the Makefiles, configuration scripts, etc. The directory cross-compilation contains
some procedures of cross-compilation (Z L I B , B Z I P 2 or H D F 5 libraries). These procedures
are only "demo", for other versions of the libraries it might be necessary to do other
adjustments.

4.6 Extraction of I-vector

P y t h o n running natively on the M I C was designed for research group at the F I T V U T
focused on speech processing. It was so called the Ex t rac t ion of I-vector, which is quite a
significant part of speech processing. The applicat ion was created in the P y t h o n language
and used opt imized routines calls from Intel M K L .

A s already mentioned, the performance of the P y t h o n interpreter on the M I C was
not satisfactory. Sections of the code based on cal l ing the M K L functions displayed signs
of acceleration. B u t the code executed sequentially (1 thread) l i teral ly buried the entire
program. For comparison the program wal l t ime on the M I C was approx. 20 times higher
than on the C P U . The biggest part of the applicat ion wal l t ime was reading the data from
file (expected behavior). B u t even wi th computations themselves the coprocessor didn ' t
fair better than the C P U . Figure 4.13 depicts comparison (wall times) of ind iv idua l parts
of I-vector extractions (1 x C P U vs. 1 x M I C) .

40

E

O

O
Ü

H—

o
t
CO

C L

TOTAL 1
Saving l-vector~B

Comput ing l-vector •
Comput ing stats •

Apply ing floating C M V N ~U
Apply ing VAD~M
Loading V A D ~U

Reshap ing to S feaCa t •
Add ing derivates •

Extracting features ~m
Adding dither •

Read ing wave file •
Comput ing M W T •

Loading T matrix •
Precomput ing matr ices •

Loading U B M •
-4—

I CPU
I MIC

0% 20% 40% 60% 80% 100%

Ratio of wall times (MIC/CPU)

Figure 4.13: I-vector extraction, comparasion of ind iv idua l parts, C P U vs. M I C .

41

Chapter 5

Conclusion

This thesis deals w i th the implementat ion and opt imizat ion of a high performance algo
rithms on the Intel X e o n P h i . For demonstration purposes, simple benchmarks have been
implemented, from which we moved on to more complex ones. To gain experience wi th
the M I C , the mat r ix vector mul t ip l ica t ion has been chosen. The benchmark has been
implemented for the C P U reaching the performance 9 0 g F L O P S (29% of the theoretical
performance) at the first. Th is task reached performance about 1 3 0 g F L O P S on the M I C
(6.5%). Accelerat ion i n this case isn't significant, but in some cases (big matr ix) a speed up
of the M I C can be more than 4-fold. A similar a lgori thm was the mat r ix mul t ip l ica t ion (we
used opt imized function from the Intel M K L) . The M I C was doing quite well; w i th sufficient
data it reached more then 4-fold acceleration (compared wi th the C P U) . However, due to
problem wi th the P A P I we were unable to measure the m a x i m u m performance (g F L O P S) .

A l g o r i t h m reaching significantly higher performance on the C P U and the M I C was
the N-body simulat ion. The quickest version of the algori thm produced performance
2 1 0 g F L O P S (68%-1 x C P U) , 3 9 0 g F L O P S (6 3 % - 2 x C P U) and 7 2 5 g F L O P S (36%-1
x M I C) . The next step in our work was the port ing of M A T L A B module k-Wave to the
X e o n P h i . The effort to accelerate the computations by using X e o n P h i was unsuccessful
due to strange behavior of the F F T functions (from the M K L l ibrary) . These functions d id
not display signs of a speed up on the M I C . It was quite the opposite, in many cases they
were slower. The problem might be solved in the newer version of Intel M K L .

Conclusion of the thesis is focused on cross-compilation of existing libraries, modules and
programs. It deals e.g. w i t h libraries for work wi th files (H D F 5 , Z L I B , S Z I P) , interpreter
of the P y t h o n (with N u m p y and Scipy modules). P y t h o n running on the X e o n P h i should
have been used for speech processing, specifically for the I-vector extraction. However, the
X e o n P h i d id not br ing any speed up, quite the opposite, it brought a mult iple slowdown.

A l l the experiments show that the X e o n P h i is definitely suitable only for highly paral
lel tasks regarding threads and S I M D instructions. It is not suitable for programs, which
contain demanding computations processed sequentially (by using 1 thread or scalar op
erations). W h e n combining parallel and sequential computations, it is suitable to use the
offload mode or the C P U only.

I would like to continue i n my work wi th X e o n P h i in the future, since a new supercom
p u t e r - S a l o m o n (in Ostrava) w i l l be soon ready for use. The Salamon w i l l contains a large
number of X e o n P h i coprocessors. The plan includes e.g. the use of several coprocessors
for parallel solving of complex tasks.

42

Bibliography

[1] Intel Xeon Phi Coprocesor High Performance Programming. Elsevier Inc.y, 2013.
I S B N 978-0-12-410414-3.

[2] Blaise Barney. O p e n M P [online]. ht tps: / /computing. l ln l .gov/ tutoria ls /openMP,
Last modiefied: 2014-12-11 [cit. 2015-04-28].

[3] George Chrysos. Intel X e o n P h i Coprocessor - the Archi tecture [online].
https: / / sof tware . inte l . com/en-us /art ic les / inte l -xeon-phi -coprocessor-
codename-knights-corner, 2012-11-12 [cit. 2015-04-28].

[4] Intel. Ge t t ing Started wi th Intel Compi le r Pragmas and Directives [online].
ht tps : / / so f tware . in te l . com/en-us /ar t i c l e s /ge t t ing- s tar ted-wi th- in te l -
composer-xe-2013-compiler-pragmas-and-directives, 2014-08-29 [cit. 2015-04-28].

[5] R o m a n Sl iva and F i l i p Stanek. Best Pract ice Guide - Anse lm [online].
http:/ /www.prace-ri .eu/best-practice-guide-anselm-html/ , 2012-05 [cit.
2015-04-28].

43

https://computing.llnl.gov/tutorials/openMP
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-
https://software.intel.com/en-us/articles/getting-started-with-intel-
http://www.prace-ri.eu/best-practice-guide-anselm-html/

Appendix A

Content of CD

• cross-compilations/ - Directory containing some pract ical advices associated wi th
the cross-compilation of libraries Z L I B , SZIP , H D F 5 and G N U M A K E

• doc / - Directory containing h tml documentation (doxygen) and manual refrnan-
X e o n P h i . p d f (also generated by the doxygen)

• Doxyfile - Configurat ion file for the Doxygen

• fft-mkl - Directory containing samples of using F F T functions from the Intel M K L

• m a t m u l / - Directory containing the source code of the mat r ix mul t ip l ica t ion

• matvec/ - Directory containing the source code of the mat r ix vector mul t ip l ica t ion

• n b o d y / - Directory containing the source code of the N - B o d y Simulat ion

• p y t h on - m k l / - Directory containing samples of using Numpy, Scipy modules l inked
w i t h Intel M K L

• R E A D M E . m d - Basic information about the thesis, content of C D , directory struc
ture

• text / - Directory containing DTEXsource code of the thesis

A l l these directories contain their own R E A D M E . m d file w i th the information about
specific part of the thesis (benchmark, instructions, guidelines . . .) . For more information
(e.g. how to compile and run the program) see a specific R E A D M E . m d .

44

