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Abstrakt 

Elektronová paramagnetická resonanční (EPR) spektroskopie je fyzikálně-
chemická metoda sloužící pro zkoumání látek s nepárovými elektrony. Zkoumá rozdělení energií 
spinu nepárového elektronu v magnetickém poli a přechody mezi jednotlivými spinovými stavy 
vyvolané působením mikrovlnného záření. Tato bakalářská práce je zaměřena na popis EPR 
spektroskopie, na výpočet relaxačních časů pomocí rychlých skenů radikálů a na vývoj 
automatického párovacího softwaru pro skládání Gaussovských paprsků. Výsledek této práce je 
implementace vyvinutého softwaru, vyhodnocení jeho vlivu na kvalitu signálu a následný výpočet 
relaxačních časů. 

Summary 

Electron paramagnetic resonance (EPR) spectroscopy is a Physico-chemical method used 
to investigate substances with unpaired electrons. It investigates the distribution of spin energies 
of an unpaired electron in a magnetic field and the transitions between individual spin states caused 
by the action of microwave radiation. This bachelor thesis is focused on the description of EPR 
spectroscopy, the calculation of relaxation times using the rapid scan method on radicals and the 
development of automatic coupling software for Gaussian beam coupling. The result of this work 
is the implementation of the developed software, evaluation of its influence on the signal quality 
and subsequent calculation of relaxation times. 
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1. Introduction 
Nanotechnology is becoming a hot topic because of its possible applications in broad 

spectrum of fields such as medicine, mechanical engineering, and electronics. One of the 
applications are advanced materials. This raises a demand for more detailed understanding of the 
molecular structure. The electron paramagnetic resonance spectroscopy is a method of studying 
interactions of paramagnetic radicals with microwaves in a magnetic field. 

For performing an EPR experiments the sample needs to be irradiated. Then the 
absorption of the microwave is recorded. In CEITEC BUT the spectroscope is unique because it 
consists of two separated parts, the magnet, and the quasi-optical table with five degrees of 
freedom, which moves above the magnet. This brings a necessity of coupling the table precisely 
above the probe inserted in magnet. The coupling, while done manually, is highly time 
consuming. This bachelor's thesis aims to develop the software which couples the table and a 
magnet automatically. 

There are several possibilities how to perform an EPR experiment, one of which 
is rapid scan. The method when the frequency is quickly swept through the resonance point. This 
causes wiggles in the recorded signal. These wiggles contain an information about relaxation 
times of the sample. This thesis will demonstrate the influence of the coupling software on the 
quality of recorded signal and then, from the enhanced signal, the relaxation time of the 
examined sample will be computed.2. Introduction to the EPR 
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2. Introduction to the EPR 
2.1 History 

The history of electron paramagnetic resonance (EPR) and nuclear paramagnetic resonance 
(NMR) dates back towards the end of World War II as a consequence of the components developed 
for Radio Detection And Ranging (RADAR). Yevgeny Konstantinovich Zavoisky employed the 
newly developed M W techniques in the construction of the first EPR spectrometer [2]. He was the 
first one to detect EPR phenomena at Kazan University in 1944. He also tried to detect the NMR 
in solids and liquids before. Even though he had a sufficient enough detection system for the 
resonance signals he was not able to fulfil strict requirements for a homogenous magnetic field at 
that time. Two years later in 1946, the NMR in solids and liquids was observed by a group of 
scientists around Purcell, Torrey and Pound at Harvard and independently by Bloch, Hansen and 
Packard at Stanford. These N M R experiments were very quickly awarded the Nobel Prize in 1952 
[1]. However, Zavoisky's work was ignored by western scientific society mainly due to the Iron 
Curtain as well as the poor political relationship between world powers. 

Ever since NMR studies and experiments took off rapidly and gained huge interest. The 
potential of EPR was rather unrecognized. The reason is very practical. NMR experiments were 
easier to perform. The exact answer is in the nucleus and electron mass, where the mass of the 
nucleus is about three orders of magnitude higher than an electron, which leads to resonance at 
different frequencies. For electron, resonance is observed at GHz frequencies but for nucleus at 
MHz range [2], which makes experiments way easier to perform because the technologies such as 
sources of MHz radiation, detectors, waveguides were more accessible than components for higher 
frequencies at that time, thus the huge interest in NMR at that point in the history. 

Moving forward to the late 1970's Yakov Lebedev was the first who performs high-field 
EPR experiments employing 148 GHz radiation with a 5 T superconducting magnet to enhance 
sensitivity and resolution in his study of complex spin states [1] mixture of various interactions 
such as Zeeman, hyperfine etc. (further in chapter 2), which signal often overlaps at lower 
frequency bands. 

Even until today the imbalance and gap between EPR and N M R may be observed. 
Although NMR is now well established in science and medicine, EPR is becoming a very hot topic 
in the last decade most importantly thanks to improvements in other fields of technology and 
engineering (it was only after the end of the Cold War in the early 1990s when low-noise mm 
microwave sources, fast switches and detectors became available for unclassified research [1]). 
Technologies in different fields (microwave, cryomagnetic, data processing, and data acquisition) 
enable huge improvements, particularly in EPR spectroscopy. At the beginning of the EPR 
experiments, the continuous wave (CW) microwave technique was a staple approach in the 
irradiation of the sample. Later it was mainly pulsed microwaves and now we are drawing our 
attention towards Rapid Scan (RS) method. RS is a revolutionary technique that can improve the 
signal to noise ratio and significantly decreases the acquisition time [39] (the detailed principle is 
in chapter 3). 
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2.2 Motivation 
The idea of precise measurements of the spin states relaxation on different radicals is very 

tempting. Even more, if we would take into consideration the rise of the importance of 
nanotechnology in fields such as mechanical engineering, electronics and medicine. For example, 
Moore's law says that the number of transistors in a dense integrated circuit (IC) doubles about 
every two years. Currently, commercially used silicon transistors are at the size of nanometres. To 
keep up with this pace in order to produce high-performance integrated circuits which spread 
widely into almost every sophisticated gadget around us, we need to understand the nanostructure 
of materials and, most importantly its behaviour approaching sizes very close to the size of 
molecules or even individual atoms soon. This is just a particular example from the world of 
electronics, although such knowledge and methods would be applicable in many other fields 
creating new paths to walk on or enhancing existing methods. 

Also implementing new techniques such as a dynamic nuclear polarization (DNP, described in 
detail in chapter 2) on radicals as Tetramethylpiperidinoxyl (TEMPO) to enhance NMR signal by 
several magnitudes. This kind of technique could enhance current medical procedures such as 
magnetic resonance imagining (MRI). Implementation of the DNP method into MRI could easily 
halve the acquisition time which is currently necessary. On one hand, this could lead to higher 
accessibility of this modern diagnostic procedure. Although, there is still a long way to come until 
such applications. As scientists, we have to stay positive and do everything we can to better the 
future. 

2.2 Description of the main goal 
The final target of this thesis is to perform measurements of spin states on liquid dynamic 

nuclear polarizable radicals (TEMPO or lithium phthalocyanine (LiPC)) in RS mode on EPR 
spectrometer at CEITEC BUT and comparing these results with measurements implementing a 
newly developed automatic coupling mechanism to enhance the signal to noise (S/N) ratio 
potentially. The path leading to such measurements will be build up through several sub-steps 
implementing all aspects of mechatronics, which will be covered in the following chapters. A 
theoretical part gives insight into EPR spectroscopy, description of the instrumentation, coupling 
and propagation of Gaussian beams. Then the development of an automatic coupling mechanism 
involving the design of the new mechanical parts for spectrometer and programming a brand-new 
coupling algorithm. A l l this eventually results in measurements of spin states and a final discussion 
on achieved results and their applications. 
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3. EPR Theory 
In this chapter, there is going to be the theory build up around electron spin, spin excitation 

and relaxation. That will peak out in explaining the dynamic nuclear polarization method as a tool 
of enhancing NMR signal by tens or hundreds of magnitude. 

In the EPR spectroscopy sometimes also known as electron spin resonance (ESR) 
spectroscopy the main object of studies are unpaired electrons. Subatomic particles such as 
electrons may be described by 4 quantum numbers: principal (n), azimuthal (I), magnetic (m() and 
spin (s). 

The principal quantum number (n) describes the energy level of a shell in which an electron 
is located and may have the value in a range from 1 to the value of the outermost valence electron 
of the atom (n = 1, 2,...) [32]. 

The azimuthal quantum number (I), also known as the orbital or angular quantum number. 
The azimuthal quantum number is the second of a set of quantum numbers that describe the 
unique quantum state of an electron [33]. It gives information about the shape and symmetry of 
the electron orbital. Every shape has assigned its quantum number from the following group: s = 
0,p = 1, = 2 , / = 3,g = 4. The azimuthal number may be within the interval: I = 0,1, ...,n — 
1; where the n is a principal quantum number. 

The magnetic quantum number (m () defines the orientation of the electron orbital in space. 
It distinguishes the orbitals available within a subshell and is used to calculate the azimuthal 
component of the orientation of the orbital in space [34]. It must lay in the interval < >; 
where the I is the azimuthal quantum number and values are spaced by an integer. It describes 
which case (which space projection of the orbital) from all the possibilities it does occupy. 

Finally, the spin quantum number (ms) describes the angular momentum of an electron. 
An electron spins around an axis and has both angular momentum and orbital angular momentum. 
Because angular momentum is a vector, the spin quantum number has both a magnitude (1/2) and 
direction (+ or -) [35]. An isolated electron, all alone in space without any outside forces, still has 
an intrinsic angular momentum called spin S. Because an electron is charged, the angular motion 
of this charged particle generates a magnetic field. In other words, the electron due to its charge 
and angular momentum, acts like a little bar magnet, or magnetic dipole, with a magnetic moment 

The magnitude of an intrinsic angular momentum spin |S| can be calculated from the 
following equation 2.1 

Where s is the spin quantum number and h = 1.0 5 4 5 7 1 8 1 7-10 3 4 J • s [31] is reduced 
Planck's constant (h = —) 

3.1 Electron Spin 

\ie [3]. 

(2.1) 
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3.2 Electron excitation 
In nature, it is very common for everything from the macroscale to microscale to occur and 

exist at a lower possible energy level. On the macroscale, for instance, the ball rolls down the hill 
to lower its energy and eventually ends up in a stable position with the lowest mechanical energy. 
On microscale molecules and atoms have the same tendency to be in a stable state with the lowest 
possible energy (ground state). However, there are methods on how to induce higher energy states 
than the ground state. 

Excitation of the bounded electron elevates its energy after an energy absorption to a higher 
energetic but still bounded state. If the elevation in energy would be too high the electron would 
cease the bound to the atom and the atom would become ionized [5]. For example, let us have the 
free hydrogen atom with a single electron occupying Is orbital, (Fig. 2-1 A) after irradiating such 
atom, the electron may absorb the precise amount/quantum of energy equivalent to the energy 
difference of both states: 

AE = hv (2.2) 

Where AE is the energy difference between states; v is the frequency of the absorbed 
radiation; h = 6.626 069 934 • 10~ 3 4 Js [4] is Planck's constant. 

Fig. 2-1 A) Transition associated with the absorption of electromagnetic energy [6] 

B) States with minimal and maximal energy level based on the mutual alignment 
of vectors \ie and B0 [3] 

An excited state is usually not very stable because a system occurs in a higher energy state 
than in which it could be, so the electron tends to get back to the ground state to minimalize the 
overall energy. Very often spontaneous emission (or induced emission if the state is meta-stable) 
will occur followed by an emission of the energy and again obeying the difference between states 
according to the equation (2.2). This process is often called decay and it is the opposite of 
excitation [5]. 

The process above describes electron excitation in terms of gaining a higher principal 
quantum number and transitions between different quantum shells (energy levels). Nevertheless, 
excitation is a lot wider concept. For example, EPR spectroscopy is making use of excitation of 
spin quantum number. For better understanding such phenomena there is a need to apply the 
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knowledge described in chapter 2.1 about electron spin, where it is established that electron acts 
like a little bar magnet, or magnetic dipole, with a magnetic moment /Ze[3]. Without the presence 
of an outer magnetic field, the unpaired electron may be present at two quantum states +1/2 or -1/2 
with the same energy. These states are referred to as degenerated [40]. However, with the outer 
magnetic field's help, where the electron may be polarized, these two states exhibit a difference in 
energy levels (Fig. 2-1 B). This is going to be the subject of the following chapter dedicated to the 
Zeeman effect. 

3.3 Zeeman effect 
The energy differences studied in EPR spectroscopy are predominately due to the 

interaction of unpaired electrons in the sample with microwaves and a magnetic field produced in 
the laboratory. This effect is called the Zeeman Effect. The magnetic field B0, produces two energy 
levels for the magnetic moment ms, of the electron [3]. 

where the magnetic moment \ie is: 

E — ~\te • B0 (2.3) 

(2.4) 

where the S is the intrinsic angular momentum. The parallel alignment has a value of -1/2 and 
antiparallel +1/2 [3]; g = 2.002 319 277 8 [3] (for a free electron) is Lande factor also known as 
g-factor and fiB = 9.274 015 4 • 1 0 - 2 4 J [7] is the exact value of Bohr magneton. 

A combination of equations 2.3 and 2.4 gets the electron energy of the magnetic moment: 

E=S-g-iiB-% (2.5) 

The two very important assumptions arise from equation 2.5. If the value of an external 
magnetic field B0 = 0, there is no energy difference between states so AE = 0. The second 
important finding is that the energy difference between the two polarizations has a linear 
dependency on the magnetic field B0. 

E[J] S p l i t of energy levels a ms = 1/2 

B n = 0 

hv 

T r a n s i t i o n be tween energy levels 
i n d u c e d b y m i c r o w a v e i r r a d i a t i o n 

ms = - 1 / 2 Bo[T\ 

Fig. 2-2 Linear splitting of spectral lines and the increasing energy difference 
between states in the increasing outer magnetic field B0 [8] 
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3.4 The spin Hamiltonian 
The Zeeman effect is just an interaction between an electron and a microwave in the magnetic 

field. Although it may be one of the most significant interactions taking part in the observation of 
the sample certainly, it is not the only one, especially in spin systems with the spin >l/2 [9]. There 
is a lot more going on in the sample and several other interactions take part in as well which are 
splitting the spectral line more and more. In particular, models considering electron-proton 
interactions and system with higher spins than 1/2. 

It is beneficial to quantify all these interactions. In classical mechanics, the system energy can 
be expressed as the sum of the kinetic and potential energies. For quantum mechanics, the elements 
of this energy expression are transformed into the corresponding quantum mechanical operators. 
The Hamiltonian contains the operations associated with the kinetic and potential energies. This 
may provide a lot more useful information about the composition and arrangement of the studied 
sample. A l l these interactions are summed up in the spin Hamiltonian: 

H = HEZ + HZF + HNZ + HNQ + HEE + HHF + HSHF (2.6) 

Where the individual components are: 

HEZ - general Electron-Zeeman interaction between an external magnetic field B0 and 
magnetic moment of the electron [ie, the detailed explanation is provided above in chapter 2.3 

HZF - zero-field interaction describes various interactions of the energy levels of an electron 
spin energy which occurs even without the presence of an external magnetic field at B0 = 0 

HNZ - Nuclear-Zeeman is the spin Hamiltonian term describing the interaction of a nuclear 
spin with the external magnetic field [9]. The interaction very similar to the Electron-Zeeman 
interaction, however, focused on the energy of the nuclei. 

HNQ - The nuclear quadrupole interaction takes place between the electric field gradient with 
the quadrupole moment of the nuclear charge distribution [10] 

HEE - Electron-Electron interaction, since every electron in the sample carries its charge, their 
magnetic moments naturally interact with each other 

HHF - Hyper-Fine interaction between the magnetic moment of the electron fie and magnetic 
moment of its nucleus fin 

HSHF - Super Hyper-Fine interaction between the magnetic moment of the electron [ie and 
other nearby nuclei except its own [9] 
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3.5 Magnetic relaxations 
Sub-chapter 2.2 was dedicated to the possibility and the ways of exciting an electron to higher 

states. However, as stated above, it is either an unstable or meta-stable state thus the relaxation of 
the electrons occurs after a short time. This phenomenon taking place in the outer magnetic field 
B0. Magnetic relaxation describes what is happening shortly after the electron spins are excited 
into an antiparallel state towards the magnetic field. 

Each electron has its magnetic dipole moment (MDM). In a simplified model, the sum of all 
MDMs is referred to as M0 in the figures showing the average of the system. Before irradiation, 
all the MDMs are aligned with the magnetic field as shown in Fig. 2-3A(l). In 3D it means that 
the orientation of M0 slightly precess around the z-axis [11] (amplitude in the z-axis is maximal 
and projection in the x-y plane is minimal/zero). 

After absorbing radiation all the MDMs are flipped from the alignment in the z-direction into 
the x-y plane [11] (Fig. 2-3A(2)). Immediately after absorbing the microwave pulse the projection 
of M0 in x-y plane is maximal and amplitude in the z-axis is zero. 

During relaxation, the amplitude in the z-axis will slowly increase (Fig. 2-4B) while the 
amplitude in the x-y plane slowly decreases (Fig. 2-4C). 7X relaxation is the time taken for the z 
vector to regain strength, whereas T2 relaxation is the time taken for the x-y vector to decay. [11] 

Important thing is that each return of the electron to the ground state invokes a small but 
measurable pulse of energy which can be captured and processed. Based on these measurements, 
characteristic constants Tt (63% of maxmal strength, Fig. 2-3D) and T2 (0.37% of maximum, 
Fig. 2-3E) are determined. 

Fig. 2-3 A) System shortly before irradiation, the maximal amplitude of M0 in z-axis (1), 
Immediately after irradiation, maximal projection of M0 in x-y plane (2). 
B) Z-vector of M0 regaining its strength. C) Vanishing x-y projection of M0. 
D) T± relaxation E) T2 decay 
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3.6 Dynamic Nuclear Polarization (DNP) 
Nowadays the nuclear magnetic resonance is a widely used experimental method. It is also 

used for example in medicine as MRI, one of the best imagining method currently available. 
However, it also does have a problematic side. The major problem is low signal intensity. This 
problem is currently overcome by averaging thousands of images, which takes a large portion of 
time (tens of minutes to a couple of hours). DNP increases the sensitivity of NMR by transferring 
the large spin polarization from stable paramagnetic centres to the nuclear spin reservoir [38], 
which erases the need for averaging all of the images thus lowering the acquisition time down to 
a single measurement with a duration of tens milliseconds up to a couple of seconds. 

The essential benefit is that getting a much larger signal intensity than without DNP. This 
opens new opportunities when an experiment takes a lot less time to perform because there is no 
need to spend so much time averaging plenty of results as it would be necessary without using a 
DNP. And what is even more interesting that with such a technique, it is possible to look at samples 
that could not be examined in the classical N M R approach. 

An awesome application of THz DNP in NMR is the drastic gain in sensitivity (Fig. 2-4) in 
the study of amyloid fibrils where the TOTAPOL as a biradical polarizing agent was used [38]. 

6 = 35 

THz on 
£=35 

=35 

THz off 
150 100 50 ,3C Chemical Shift (ppm) 

Fig. 2-4 Significantly enhanced signal after application of DNP method and 0.263 THz 
radiation on the samples of amyloid fibrils by [38]. The figure is taken from [38] 
and adjusted. 

The energy level diagram (Fig. 2-5) demonstrates the DNP mechanism on a single pair of 
electron and nucleus coupled together. Chapter 1.1 shows that resonance for an electron is at GHz 
range whereas resonance for proton is at MHz range, therefore under normal circumstances, only 
single transitions are allowed, represented by blue arrows [12] Either the electron (irradiation at 
GHz frequencies) or proton (MHz frequencies) may be promoted to higher energy state after 
interaction with radiation. 

Usually, the red transitions are strictly forbidden. However, the hyperfine coupling between 
the spins is of sufficient magnitude that the 4 energy levels are not pure states, and consequently 
these transitions become partially allowed [12]. Hyperfine coupling is caused by the interaction 
between the magnetic moments arising from the spins of both the nucleus and electrons in atoms. 
In a single electron system, the electron with its magnetic moment moves within the magnetic 
dipole field of the nucleus. This spin interaction in turn causes splitting of the fine structure of 
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spectral lines into smaller components called hyperfine structure. The hyperfine structure is 
approximately 1000 times smaller than the fine structure [41]. 

E[J] -e + n 
-e - n 

+ e + n 
+ e - n 

Fig. 2-5 Energy level transitions (Single transition - blue; DNP polarization - red) 
Energy transitions associated with electrons are higher than nuclear transitions 
according to equation 2.2 in chapter 2.2. Energy captured by an electron from the 
radiation in the GHz range is greater than the energy received by proton from the 
MHz region. 

There is pressure to discover and synthesize radicals with as fast relaxation times as possible. 
These radicals may transfer their polarization via hyperfine coupling to nuclei repeatedly and raise 
the excited population of nuclei even by tens of per cent, which will then lead to the relaxation of 
a larger mass of nuclei eventually resulting in a substantially increased signal intensity. 
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4. Instrumentation 
In the following chapter the main focus is going to be dedicated to the description of the 

theory around High Field EPR (HF-EPR), different methods of scanning of the samples and at 
the end also to the hardware installed and used in the THz spectroscopy laboratory at CEITEC 
BUT. 

3.1 Field-domain versus Frequency-domain EPR 

There are two main streams in performing an EPR experiment. As we already know the 
Lande factor (g-factor) is a specific fingerprint for every studied element. When I combine the 
equations 2.2 and 2.5 and express g-factor into equation 3.1 

9 h-v (3.1) 

Where: h (Planck constant) ms (spin projection) pLB (Bohr magneton) are all constants the 
g-factor becomes the dependent variable on two independent variables: frequency v and magnetic 
field BQ. From equation 3.1 arises two methods of EPR scanning, frequency and field domain. 

The frequency-domain EPR is the way of experimenting while the external field B0 is set 
to the fixed value and frequency is swept through the spectrum to find and match resonance (see 
Fig. 3-1 A). This method may be quite challenging on microwave source which is expected to be 
able to produce constant mw power and steady change of microwave frequency throughout the 
whole spectrum. 

The second possibility is to lock microwave frequency and change the magnetic field at a 
steady pace. At a certain point, the strength of the magnetic field reaches the ideal value for 
observing resonance (see Fig. 3-IB). This method, called field domain, is more common but on 
the other hand, the experiment duration is prolonged due to the necessity of a much slower sweep 
with the magnetic field in contrast to the possible speed of frequency speed. 

0 

Two possible energy states produced by 
E[J] growing magnitude of magnetic fieldi?o 

f3 A 

Two possible energy states produced 
'-£'[</] by locked magnetic field BQ 

/ Bo[T] 
-a J Resonance point 

Constant magnitude of energy delivered by 
radiation at locked frequency 

(A) 

Resonance point 

Energy delivered to the system by irradiation 
at certain frequency 

(B) 

Fig. 3-2 A) Visualization of the frequency domain, steady magnetic field producing two 
possible states a and B. Increasing microwave frequency delivers larger and larger 
quanta of energy until the resonance point is reached. B) Field domain approach. 
The energy delivered by microwave radiation is of the same magnitude, whereas 
the growing strength of the magnetic field increases the difference between states 
a and B until it matches desired AE. 
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4.1 Reason for High-Field EPR 
The previous section discussed two possible methods of differentiating the energy levels 

and this part gives the main benefits of utilization of the high field (HF) at low temperatures. 

As the sample consists of thousands of molecules it would not be a wrong assumption 
arising from classical physics on a macro scale that the system favours the energy state with lower 
energy. However, while dealing with molecules having such small dimensions one needs to 
consider the point of view of quantum physics, which describes the systems rather by the 
possibility of molecules occupying a certain energy level. At temperatures close to absolute zero, 
we would indeed predict that the vast majority of spins would have quantum amplitudes vastly 
favouring the lower energy (parallel) state. At room temperatures, however, this tendency for spins 
to prefer the lower energy level is opposed by thermal motions that tend to equalize the two energy 
levels. The resultant equilibrium distribution is therefore a compromise predicted by the 
Boltzmann distribution [19]. 

^ = e x P ( - - ) 3.2 

Where Np is the number of molecules occupying the antiparallel state; Na is the number of 
molecules occupying the parallel state; AE is the energy difference between states; T is the 
thermodynamic temperature in Kelvin and k is the Boltzman constant k = 1.380 658 • 1 0 - 2 3 [7] 

For the ratio Np/ Na « 1 there is almost no difference in the population of different energy 
levels which means that no absorption may be detected. This implies that for the ideal absorption 
it is optimal for this ratio to be as close as possible to 0, which it does at a high magnetic field and 
the temperatures close to 0 K. The following table 3-1 compares the ratios of different frequency 
bands at room temperature and the temperature very close to 0 K. However, the ratio drops slightly 
due to a stronger magnetic field even at room temperature, the most significant drops come with 
lowering the temperature as well. For instance ratio at room temperature for Y-band is almost 1:10, 
but for 2 K it drops down to 1:2000, which promises considerably larger absorption. 

Tab. 3-1; Occupancy rate of energy levels a and P at different frequency bands and temperatures 

Frequency 
band 

Frequency 
[GHz] 

Magnetic field [T] 
for g = 2 

^ at 293 K ^ a t 2 t f 

X-band 9.6 0.343 998/1000 794/103 

Q-band 35 1.250 994/1000 432/103 

W-band 95 3.394 984/1000 102/103 

Y-band 420 15.004 934/1000 42/105 
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The next benefit of the application of the HF-EPR is for the samples consisting of two or 
even more species with dissimilar g-factors. At lower frequencies, it may be very complicated to 
distinguish these two different signals in EPR spectra. Nevertheless, the HF-EPR has a higher 
resolution which may even completely separate these two signals from each other. Fig. 3-1 
demonstrates how the resolution increases with a stronger field and higher frequency. 

The third benefit is the recognition of a hyperfine coupling from two species with different 
g-factors. It was explained how the HF-EPR enhances resolution and separates the overlapping 
signals. But there may be signal-splitting not only due to dissimilar g-factors but also due to 
hyperfine interaction between electron and nuclei. The nuclei of the atoms in a molecule or 
complex have a magnetic moment, which produces a local magnetic field at the electron. The 
magnetic moment of the nucleus acts like a bar magnet and produces a magnetic field at the 
electron, B,. This magnetic field opposes or adds to the magnetic field from the laboratory magnet, 
depending on the alignment of the moment of the nucleus [6]. When 5 7 adds to the magnetic field, 
less magnetic field is needed from the magnet and therefore the field for resonance is lowered by 
Bj and vice versa. Fig. 3-2 shows signal split for a spin 1/2 of a hydrogen nucleus. 

Very important is that this distance 5 7 is independent of the strength of the magnetic field. 
In HF it is possible to distinguish if the split is caused by the different g-factors or by the hyperfine 
interaction 

X-band Q-band W-band 

Fig. 3-1 Two species of different g-values are very difficult to distinguish at the X-band 
frequency. The situation is better for Q-band, but the lines are fully separated only 
for W-band [2]. 

B B 

Fig. 3-2 Figure taken from [6] and adjusted. The spectral split by hyperfine interaction 
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4.2 EPR scanning methods 
Continuous-wave EPR spectra are recorded by putting a sample into a microwave 

irradiation field of constant frequency v and sweeping the external magnetic field B0 until the 
resonance condition is fulfilled [21]. Such measurement may be used for instance in finding the 
exact value of the resonance point. There may be calculated a theoretical expected resonance point 
in advance and after that, the cw EPR spectra of a particular sample is recorded by slow sweep 
with magnetic field in the adjacent surrounding of theoretical B0 value. From this experiment, the 
resonance point is either confirmed or slightly corrected and adjusted to actual conditions. 

In pulse EPR the spectrum is recorded by exciting a large frequency range simultaneously 
with a single high-power mw pulse of given frequency v at a constant magnetic field B0. However, 
there are certain technical limitations in the pulsed method. During and immediately after the M W 
pulse, the sensitive detector must be protected from the high mw power in the resonator, and signal 
recording is not possible. This so-called dead time of the spectrometer depends on the bandwidth 
of the resonator and for instance, at X-band, it is in the range of 100 ns [21]. Pulsed EPR 
techniques such as electron spin echo envelope modulation or pulsed electron-nuclear double 
resonance can reveal the interactions of the electron spin with its surrounding nuclear spins [22]. 

In the first described method cw EPR, the magnetic field is scanned slowly through the 
resonance but on the contrary the rapid scan (rs) EPR is the cw EPR method where the magnetic 
field or in most cases the frequency is repeatedly scanned through the spectrum at rates that are 
much faster than in conventional cw EPR. Rs EPR is particularly advantageous when the scan rate 
through resonance is fast relative to electron spin relaxation rates. In such scans, there may be 
oscillations on the trailing edge of the spectrum. These oscillations can be removed by 
mathematical deconvolution to recover the slow-scan absorption spectrum [23] (see Fig. 3-2). On 
one hand, rs EPR demands more complicated math and data processing in the background but on 
the other hand, it offers great benefits such as the slow-scan spectra with much higher resolution 
than cw EPR, absence of dead time unlike the pulsed EPR and access to the shorter relaxation 
times. A l l of these advantages are possible because the spin system can handle much higher 
excitation power with no visible saturation than in a conventional slow sweep experiment [24]. 
Those are the reasons why it is the point of our great interest. 

The calculation of the spin relaxation times is based on modified Bloch equations. 
The Bloch equations are a set of macroscopic equations that are used to calculate the nuclear 
magnetization M = (Mx, My, Mz) as a function of time when relaxation times Tt and T2 are 
present [46]. 

RS spectrum 
Deconvoluted spectrum 

Frequency 

Fig. 3-2 Rapid scan spectrum before and after mathematical deconvolution 
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Modified Bloch equations: 

(3.3) 

(3.4) 

—-= — - + yB1Mv 

dt dt 7\ / 1 y 
(3.5) 

Where /W is the offset of a spectrum from the centre of the sweep, y = —1.7608 • 
10 7 rad/(s • G) is the electron gyromagnetic ratio, 5 X is the microwave magnetic field [47]. A 
deeper analysis of the equation is in [47] by Dr Oleksii Laguta. For the calculation of relaxation 
times will be used software based on these equations and made also by Dr Oleksii Laguta. 

The rapid scan method has one crucial condition which must be met. The frequency of the 
sweep must be substantially larger than the relaxation time of the sample. 

df 1 
dt^fi 

df 1 
dt ~ r 2

2 

df 1 
dt > : > Tl 

A) B) C) 

Fig. 3-3 A) Condition for the rapid scan was not met and the recorded spectrum is classical 
frequency domain sweep. B) The speed of a frequency sweep rises but still is not 
enough. C) Condition for the rapid scan method is met and the frequency sweep is 
considerably larger than the relaxation time hence the rapid scan spectrum may be 
recorded and observed. Pictures taken and adjusted from [47] 
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4.3 Hardware in CEITEC BUT 
The major topic of the following chapter is going to be the essential parts and components 

of the spectroscope in the magneto-optical laboratory at CEITEC BUT. At first, there is going to 
be the actual visual representation of the spectroscope (Fig. 3-3), then the model with the essential 
components and the path of the mw radiation (Fig. 3-4) which should give the reader a closer sense 
of the component layout and its function. 

In the figure (Fig. 3-3) there is a picture of the spectroscope. Note that the EPR 
spectroscope is an assembly of two parts, magnet frame and movable EPR table with the quasi 
optics. In the figure, the table is not currently above the probe insert in the magnet so-called loading 
position, which means that no measurements may be executed at the moment. However, at this 
stage, most of the maintenance, diagnostics and adjustment of the hardware might be done. 

Fig. 3-3 Frequency Rapid Scan Electron Spin Resonance spectroscope (FRASCAN) 
Actual spectroscope set up as of March 26 2021 
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The following scheme (Fig. 3-4) represents the model of the actual spectroscope with an 
indication of the crucial components. 

M W 
Sources Amplifiers Circulator Detectors Mixer 

Z Reference arm 

'Xy 

PC signal processing 

Resulting singal 

X 

Cryostať' 

Electromagnets' 

Rails 
Quasi-Optic bridge 

^ • j-roue 
\ 
s Sample 
\ 
\ 

\ - Modulation coils 

Fig. 3-4 Scheme of the spectroscope hardware with the mw radiation path 

The upcoming paragraphs describe all the individual parts. For simplicity, the description 
will follow the path of the beam from the source to the computer signal processing. 

MW Sources: Most millimetre and submillimetre mw sources for EPR spectroscopy can 
be divided into two groups: vacuum-tube oscillators and solid-state oscillators. Vacuum-tube 
oscillators such as klystrons, BWOs, gyrotrons, extended interaction oscillators (EIOs) and 
magnetrons have been and still are used as coherent mm-wave sources. They are, however, 
increasingly replaced by solid-state oscillators, which are smaller, easier to operate and reach 
excellent performance with increased reliability [1]. There are used two synthesizers as a source 
of microwaves capable of the frequency sweep. One as a measurement beam and the second as a 
reference arm. 

Amplifiers: For frequencies above the sources' capability, it is necessary to employ one or 
more stages of frequency multiplication [1]. This is where the mw amplifiers play an important 
role. Not only they can boost the mw to the desired frequency, but they also dampen down higher 
orders of harmonic frequencies. 

Circulator: A circulator is a passive, non-reciprocal three or four-port device that only 
allows a microwave or radio-frequency signal to exit through the port directly after the one it 
entered [25]. The circulator is crucial in terms of handling the beam propagation. The mw radiation 
produced and amplified enters port 1 (port numbers are at Fig 3-4) and exits from port 2 right into 
the sample. When any part of given radiation is reflected from the sample to the circulator's port 
number 2 it does not come back to port 1, however, it exits from port 3 and travels right to the 
detector. 
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Detectors: The end part of the beam is in detectors. The most widely used in EPR 
applications are bolometers. Bolometers are based on resistive temperature sensors. 
A bolometer detects electromagnetic radiation by absorption of radiation that increases its 
temperature. A small AT gives rise to a large resistance change AR [26]. 

There is also an alternative and the second very popular stream in detector devices in EPR 
spectroscopy and it is a Schottky diode-based method. Schottky diode detectors have long been 
used at mm and submm-wavelengths because of their high sensitivity, their ability to operate at 
ambient or cryogenic temperature and their fast response time compared with other room-
temperature detectors [27]. Schottky diodes are more popular in pulsed EPR due to their fast 
response time, unlike the bolometers which are rather applied in field-domain experiments for the 
sake of their slow response time. 

Mixer: A mixer is a three-port component, which performs the task of frequency 
conversion. Two of a mixer's three ports serve as inputs, while the other port serves as an output 
port. An ideal mixer produces an output that consists of the sum and difference frequencies of its 
two input signals. In other words: fout = finl + fin2 [28]. 

Probe: A probe is a long tube that has the sample attached at one of the ends. The end with 
the sample is inserted into the cryostat. The important part about the probe is not only the part with 
the sample but its cavity as well. Microwave cavities are used for amplifying weak signals from 
the sample. A microwave cavity is simply a metal box with a rectangular or cylindrical shape that 
resonates with microwaves much as an organ pipe resonates with sound waves. Resonance means 
that the cavity stores the microwave energy; therefore, at the resonance frequency of the cavity, 
no microwaves will be reflected, but will remain inside the cavity [6]. 

Modulation coils: EPR spectroscopists use a technique known as phase-sensitive detection 
to enhance the sensitivity of the spectrometer. The advantages include less noise from the detection 
diode and the elimination of baseline instabilities due to the drift in DC electronics. The detection 
scheme works as follows. The magnetic field strength which the sample sees is modulated (varied) 
sinusoidally at the modulation frequency. If there is an EPR signal, the field modulation quickly 
sweeps through part of the signal and the microwaves reflected from the cavity are amplitude 
modulated at the same frequency. For an EPR signal which is approximately linear over an interval 
as wide as the modulation amplitude, the EPR signal is transformed into a sine wave with an 
amplitude proportional to the slope of the signal [6]. 

The signal channel (more commonly known as a lock-in amplifier or phase-sensitive 
detector) produces a DC signal proportional to the amplitude of the modulated EPR signal. It 
compares the modulated signal with a reference signal having the same frequency as the field 
modulation and it is only sensitive to signals which have the same frequency and phase as the field 
modulation. Any signals which do not fulfil these requirements (i.e., noise and electrical 
interference) are suppressed [6]. 

Thanks to a lock-in amplifier's ability to extract very small signals buried in noise, it is 
possible to expand the reach of experimental setups. The working principle of a lock-in amplifier, 
called demodulation or phase-sensitive detection, rests on mixing the measured signal with a 
reference frequency followed by low-pass filtering [29]. 
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Cryostat and electromagnets: The end of the probe with a sample is inserted into the 
cryostat with large electromagnets. These electromagnets produce a homogenous magnetic field 
with a precisely defined direction. The strength of the magnetic field may reach up to 16 T. To 
produce such a magnetic field immensely large current flows through the electromagnets. This 
being the reason they must be cooled down under the 10 K to guarantee superconductivity. To 
ensure such low temperatures the cryostat takes part in. A cryostat is a machine that maintains the 
cryogenic temperature of samples or devices placed inside it. Cryostats use several refrigeration 
methods to achieve low temperatures, such as a helium bath with liquid helium or liquid nitrogen 
[30]. 

The last but not least and very important components for this thesis are Bosch Rexroth 
servo motors. These servo motors enable manipulation with the quasi-optic bridge (which houses 
the mw sources, detectors, amplifiers etc.). Spectroscope in THz laboratory at CEITEC BUT is 
equipped with 5 synchronous servo motors giving the system 5 degrees of freedom which the three 
of them being the movement along the axis x, y, z and the other two tilts around x, y axes (axes 
sketched on Fig. 3-4). These servos are controlled via Lab View. Bosch Rexroth encourages this 
type of handling supporting it with regular updates of their library eal4LAB VIEW. 
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5. Gaussian beams 
In the fourth chapter, I am going to shed some light on the Gaussian beams. The first part 

will be more explanatory including the propagation of Gaussian beams and essential theory. The 
second part will cover more of the application of the theory as well as arising problems with the 
coupling of such beams. This part is essential because the spectroscope in the Magneto-Optical 
lab is very unique. As the figures (Fig. 3-3 and Fig. 3-4) show, the optical bridge is placed on top 
of the rails which enable its movement. However, that is the reason why it is crucial to recouple 
the optical bridge with the probe below every single time the probe is inserted. There are high 
demands on the quality of coupling because the coupling quality itself directly affects the signal 
intensity hence the resultant quality of measurement. 

5.1 Electromagnetic radiation 
Electromagnetic radiation (ER) is an inseparable part of the universe and the nature around 

us. The basic concept of ER is that it is the flow of the energy at the universal speed of 
light through free space or through a material medium in the form of the electric and magnetic 
fields that make up electromagnetic waves [13]. 

The characteristic quantity of every ER is its wavelength or frequency which are dependent 
on each other as shown in equation 4.1. 

Where A is the wavelength, v is the frequency and c = 299 792 458 m/s [7] is the speed 
of light. 

There is a broad spectrum of ER beginning with radio wave with a wavelength of 
kilometres even tens of kilometres. Then as the wavelength shortens and the frequency and energy 
of radiation grow (equation 2.2), there are microwaves which prefix indicates its wavelength is in 
micrometres. Then there is a region of visible light in nanometres after which we get to the highly 
energized and radioactive radiation such as x-rays and gamma rays with the wavelength of 
hundreds and even as low as tens of picometers. 

Every ER incorporates an electric and magnetic component; therefore, the ER is a fusion 
of these two waves, which undulates in perpendicular planes to each other. The direction of the 
ER propagation and the magnitude of the flow of the energy is described by the Poynting vector S 
(eq.4.2). 

S = -ExB (4.2) 
Ho 

The Poynting vector Sis defined as to be equal to the cross product of l / u 0 times the 
electric magnetic field E and magnetic field B , where u 0 is the permeability of the medium 
through which the radiation passes [14]. 
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The direction of beam propagation at velocity c (direction of Poynting vector S) may be 
found by the right-hand rule at any combination of vectors E and B. Let the fingers of the right 
hand follow the vector E, twist them into the direction of B then the thumb points in the same 
direction as the S. It is necessary to keep the right order of vectors, the first one electric then 
magnetic. 

5.2 Particle and wave approach to radiation 
With basic ER theory covered in chapter 4.1 we know, what the radiation consists of and 

in which direction it propagates. However, there are several approaches simplifying the concept 
of propagation of radiation. 

A first straightforward concept is a geometrical approach which assumes the radiation is a 
flow of particles (at some point even just a centre of mass without any dimensions) obeying the 
classical mechanical approach of physics, which is very useful in optics, particularly for example 
in tracking ray's trajectory via optical frameworks. Geometrical optics is a branch of optics where 
light is described by rays. Light rays are conceived as geometrical lines originating from sources, 
extending through media, and being revealed by detectors; their directions account for paths along 
which light flows [15]. In certain applications this approach with its principles is handy. However, 
it completely ignores the wave nature of the radiation from wave-particle duality. 

A l l physical entities have a dual character; they are waves and particles at the same time. 
Everything we used to regard as being exclusively a wave has, at the same time, a corpuscular 
character, while everything we thought of as strictly a particle behaves also as a wave [16]. The 
behaviour of the entity will depend on an experiment or rather a feature we would like to observe. 
In above mentioned geometrical optics the light (or any other ER) behaves strongly as a flow of 
particles, nevertheless Gaussian beams or even their coupling demands taking into consideration 
the wave character of ER as well as wave phenomena bounded to it such as interference, diffraction 
etc. 

5.3 Characteristics of Gaussian beam 
Now that I have explained all the essential theory behind the ER propagation it is time to 

shed some light on the Gaussian beam. The best example is light emitted by LASER, which is a 
source of monochromatic ER in the visible spectrum, but the theory may be applied also on 
microwaves or any other radiation outside of the visible spectrum. I have chosen a LASER for its 
easy imagination. 

After producing light with a given power, the ray on its own tends to diverge and lose its 
intensity (irradiance profile starts to broaden Fig. 4-2) due to diffraction and the overall wave 
nature of ER. 
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Fig. 4-2 Broadening waist w(z) with increasing distance from the source of the radiation 
due to diffraction 

The intensity of the beam is given by equation 4.3 which is dependent on the power of the 
ER source P, radial distance r from the centre point in the perpendicular plane to the direction of 
propagation and the beam waist w(z) which is dependent on the z which is the distance from the 
source in direction of the propagation. 

7 0 ) = ~Tv exp 4.3 
nw(zY w(z)2 

The waist of a Gaussian beam is defined as the location where the irradiance is 
1/e2 (13.5%) of its maximum value [17]. 

However, there are possibilities for how to adjust the beam and gain the intensity. The ray 
passing through the lens or the system of lenses may be focused, which means shrinking the waist 
to minimal possible value of w 0 into the focal point / (see Fig. 4-3) thus receiving higher 
intensities for possible detection. 

\-4 
r 

\-4 
r 

-—. 

•— „ - z 
" - ̂  

/ 
Fig. 4-3 Beam focused by the converging lens into the focal point / where the beam waist 

w0 reaches its lowest value 

Theoretically, it would be ideal to focus all the radiation into one point, that way we would 
get the intensity approaching infinity. Nevertheless, this is not possible due to the undulation, so 
we are limited to a certain minimal beam waist. As shown in Fig. 4-3 after passing the lens the 
beam is converging until it reaches its minimal diameter d (while talking about the beams it is 
common to use term beam waist w which is half of the diameter d = 2w) and after that, it diverges 
again. 

Fig. 4-4 demonstrates the intensity distribution in the Gaussian beam. In many laser optics 
applications, the laser beam is assumed to be Gaussian with an irradiance profile that follows an 
ideal Gaussian distribution [17]. Although Fig. 4-4 displays only one possible mode of the 
Gaussian beam, there are more of them that differ from each other by the place of their maximum 
intensity. Higher orders of Gaussian beams do not have to have only one intensity maximum. The 
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maximum might also alternate with the minimum; these higher-order Gaussian beams are referred 
to as different modes. 

Relative 
intensity 

1/e 2 

Radial position 

Fig 4-4 Intensity distribution of the Gaussian beam in the mode 0;0. The image was taken 
and adjusted from [17]. 

5.4 Gaussian beams coupling 
One of the well-known phenomena in wave conception of radiation is interference. If the 

two or more waves meet each other and they are ideally coherent (waves have the same frequency, 
same phase difference and same waveform [42]), they interact with each other. There are two 
ideal types of interference: constructive and destructive. Destructive interference is when two 
coherent waves meet, and they are in antiphase and cancel each other. On the other hand, there is 
constructive interference when the resulting wave is a sum of these two waves, which met in 
phase [43]. This is the principle I would like to incorporate in the coupling of the two beams. 

The most crucial issue in designing and setting up a Gaussian beam transfer line is the 
sensitivity of the system to misalignment. Since in our case, the microwave setup does not consist 
of one single piece (see chapter 3. Instrumentation), it must be realigned frequently. It is therefore 
of importance to know which kind of results in the most serious insertion loss and how critical it 

1. Lateral misalignment happens when the central axes of both beams do not lay on each 
other. In an ideal situation, they should merge and make up only one straight line. 
Although, there is always at least slight misalignment. In Fig. 4-5A the situation is 
simplified into the one axis with Ax, however, Fig 4-5B shows the full-sized problem 
when the misalignment Ar is a two-dimensional problem in the plane perpendicular to 
the direction of propagation. 

is [18]. 
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2. Longitudinal misalignment describes a situation when despite the central axis are 
perfectly merged so there is not any lateral misalignment, the beams are not coupled 
ideally as their minimal waist w 0(z) are at a different z coordinate Az as it is shown in 

Fig. 4-6 Illustrative demonstration of longitudinally misaligned beams with deviation Az, 
the narrowest parts of the beams are at a different z coordinate 

3. The third angular misalignment is the matter of the mutual tilt of the beams A9. 
Regardless of the flawless correction of the previous 2 misalignments, there is still an 
urge to ensure both beams are as parallel as possible, and their mutual tilt is approaching 
zero degrees. The situation is demonstrated in Fig. 4-7. 

Fig. 4-7 Mutual tilt of two beams with angular deviation AO 
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Now that the subject of correct alignment has been introduced, visualized, and classified 
into three main groups, it is time to add the mathematical description. First thing first there is 
necessary coefficient K, the coefficient of coupling, which represents the coupling precision, and 
its value may be within the interval of < 0; 1 >, where K = 0 indicates total misalignment and 
loss of power. On the other hand, K = 1 represents excellent coupling and ideal constructive 
interference of the two beams. For each of the three above mentioned misalignments, there is an 
equation according to [18], which describes dependency among K - coupling coefficient, w 0 -
minimal beam waist, A - wavelength and ArlAzlAO - corresponding deviation. 

1. Longitudinal coupling coefficient 

^Long — AJ±Az\ (4.1) 

2. Lateral coupling coefficient 

^ = e x P ( - ^ ) <4-2> 

3. Angular coupling coefficient 

KAng = exV(-(n-A6-^)2} (4.3) 

A l l the equations above are derived in [18], I have taken only the final form as their 
application is important for me. Since the spectrometer at CEITEC VUT is used in a variety of 
frequency bands (from X-band - 1 0 GHz up to the Y-band - 420 GHz) it would be helpful to 
investigate and plot for better visual representation how are different coupling coefficients 
dependent on the frequency. For this particular reason, I have run simulations in Matlab and plotted 
the resulting dependency in Fig. 4-8. 

Fig. 4-8 is simulated with the beam waist of w 0 = 9 mm (actual beam waist value used at 
CEITEC VUT). However, the following displacements Ar = 5 mm; Az = 180 mm; Ad = 
0.03 rad used in the simulation are intentionally large to illustrate the actual dependency 
throughout the spectrum. 
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Fig. 4-8 Matlab simulation of different displacements and their dependency on frequency. 

From Fig. 4-8 arise very important conclusions. The longitudinal misalignment plays 
a significant role at lower frequencies. On the other hand, at higher frequencies, the angular 
misalignment is very problematic. The lateral misalignment is not directly dependent on the 
frequency based on equation 4.2 and the data from a simulation. 
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Beam parameters 
we - 9 e - 3 ; 
d e l t a Z = 1 8 6 e - 3 ; 
d e l t a R = 5 e - 3 ; 
d e l t a F i = 0 . 9 3 J 
f r e q • 1 0 : 0 . 0 9 1 : 4 2 0 ; 
c - 3eS ; 
f o r i = i : l e n g t h ( f r e q ) 

l ambda ( i ) • c / ( f r e q ( i ) 
end 

Xbeam w a i s t [m] 
^ l o n g i t u d i n a l d i s p l a c e m e n t [m 
% l a t e r a l d i s p l a c e m e n t [a ] 
^ a n g u l a r d i s p l a c e m e n t [ r ad ] 
^ f r e q u e n c y [GHz] 10-428 GHz 
%speed o f l i g h t [m/s ] 

l e 9 ) ; W a v e l e n g t h [a] 

Dependency of Klong on frequency 
f o r j = l t l e n g t h ( l a m b d a ) 

K l o n g ( j ) - 4 / ( 4 + ( { l a m b d a ( i ) * d e l t a ! ) / ( p i • w 9 " 2 ) ) " 
end 
p l o t ( f r e q , K l o n g , V ) ; 
h o l d on 
c l e a r j ; 

Dependency of Klat on frequency 
17 f o r j = 1 : l eng th ( l ambda ) 

K l a t ( j ) = exp (- ( d e l t a R A 2 / w a A 2 ) ) ; 
19 end 
28 p l o t ( f r e q , K l a t , k ) ; 
21 h o l d on 
22 g r i d on 
23 c l e a r j ; 

Dependency of Kang on frequency 
24 f o r j « 1 : l e n g t h ( l a m b d a ) 
25 K a n g ( j ) = exp (- ( ( p i ' d e l t a F i • w6) / l a m b d a ( j ) ) * 2 ) ; 
26 end 
27 h = p l o t ( f r e q , K a n g , b ) ; 
28 g r i d on 
29 x l a b * l ( ' f [ G H z ] ' ) 
39 y l a b e l ( ' K [ - ] • ) 
31 t i t l e ( ' C o u p l i n g K o e f f i c i e n t ' ) 
321 l e g e n d ( ' K l o n g ' , ' K l a t ' , ' K a n g ' , ' L o c a t i o n ' , ' s o u t h e a s t ' ) 
33 c l e a r j ; 

Fig. 4-9 Example of simple Matlab code for simulation of equations 4.1, 4.2, 4.3 with variable 
inputs of beam waist and displacements for better inspection. 
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6. Aims of the thesis 
1. Description of Rapid scan EPR spectroscopy on DNP relevant radicals 

2. Calculations of the relaxation times via rapid scan on radicals 

3. Study of the effect of beam coupling on the rapid scan signal 

The theory relevant to the goals of the thesis was covered in the theoretical part. The 
following chapters will address the practical side of the goals. After addressing and implementing 
solutions there will be a part for comparison and evaluation of the results and final discussion with 
possible improvements for the future. 
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7. Testing holder 
The first practical task will further describe the purpose, design, and implementation of the 

testing holder for the probe outside of the cryostat. 

The main motivation for this enhancement is that the current spectroscope setup is 
equipped only with the main insert (see Fig. 3-3). It means that every single measurement or even 
simple test and maintenance must undergo full loading and unloading procedure, which is time-
consuming, especially when needed to apply repeatedly. 

The designed testing holder will address all these problems. Such a piece of equipment will 
serve for experiments that do not require a magnetic field. It may be also used for any maintenance 
or calibration, but most importantly for this thesis, it could be used for development and further 
enhancements of the automated coupling mechanism. 

Testing holder will be also useful for the time when the magnet is broken down. Situations, 
when the magnet is not functioning, occurs from time to time. At that moment testing holder may 
be used for experiments that do not require a magnetic field and the point of measurement is for 
example recording of the reflected power. 

The whole holder consists of several parts numbered in Fig. 6-1. Detailed drawings of each 
part and drawing of the full assembly are in the attached files. 

1 - Fundamental vertical plate 

2 - Bottom horizontal plate 

3 - Top horizontal plate 

4 - Thread 

5 -Nut 

6 - Bottom sliding bearing 

7 - Alutec connection 304343 

Fig. 6-1 Manufactured and assembled testing holder 

The base of the holder is the vertical plate which serves as an attachment to the aluminium 
beam and the framework itself. It has several holes drilled and prepared for the connection of the 
two vertical plates with default connection components from the Alutec catalogue. There are also 
smaller holes for securing pins which ensure geometrical parallelism of both horizontal plates. 
Each of these plates has a Teflon sliding bearing which ensures smooth and tight insertion of the 
probe without any scratches and deformations. The top plate, beside the plain bearing, has a tall 
and hollow thread with its nut. This thread and nut couple have a function of final fine adjustment 
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of the height of the probe. The thread has a very small lead to minimalize potential unwanted slip 
due to possible vibrations from the environment. 

The whole assembly was mounted to the aluminium beam to a desired spot next to the 
magnet (Fig. 6-2). 
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8. Automatic coupling system 
The development of this algorithm demands splitting the task into several sub-steps. This 

chapter chronologically describes the individual tasks. Beginning with software communication 
with hardware for driving servos and processing signal intensity. Then the conceptual solution will 
be proposed, which will be realized in relevant software, followed by the algorithm 
implementation into the operation, final fine modifications, and real measurements. 

8.1 Communication Lab VIEW - Bosch Rexroth servos 
Initially, there was a discussion about which software to use. The final decision crystalized 

as Lab VIEW because there is huge support for the interface Lab VIEW - Rexroth. Bosch Rexroth 
develops and updates a library (their addon) named eal4LabVIEW. 

The E A L (Easy Automation Library) is a programming interface for high-level 
programming languages (C/C++/C#/Java/LabVIEW/...). It can be used to write applications to 
configure and run Bosch Rexroth Drives [44]. 

Addon eal4LabVIEW includes sub-libraries for connection, parametrization, motion 
control, ... (Fig. 7-1) which then contain direct built-in functions for program construction. 

Pi 
-J*] Addor 

-£] eaWLabVIEW 

ApiLib ParameterLib MotionLib LogicLib OstilIciE-copeLib PowerSupply System Lib 

Fig. 7-1 eal4LabVIEW addon 

8.2 Communication Lab VIEW - Lock-in amplifier 
A very similar style of communication works for reading and handling the data from the 

Lock-in amplifier via LabOne library by Zurich Instruments (Fig. 7-2). 
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Fig. 7-2 Library for manipulation with data from Lock-in amplifier by Zurich Instruments 
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Another used interface is LabOne also by Zurich instruments. It is a web interface used for 
controlling and setting up a Lock-in amplifier's properties. It also enables to plot of the current 
measured values in real-time as shown in Fig. 7-3. 

Fig. 7-3 Illustrative figure of LabOne user interface control panel and plot area of signal in 
real-time 

8.3 Coupling algorithm breakdown 
The movable table above the magnet is equipped with 5 servo motors. One for the x 

movement, one for y movement and three for z movement and tilts. The general task is to find the 
maximum of the intensity function of 5 variables / = f(x,y,z1,z2,z3). Analytically it could be 
done by partial derivations put equal to zero and after solving resultant system of equations 
inspecting each point, however, there are a couple of limitations to the analytical approach. 

The first limitation of the analytical approach is the human imagination. The function of 5 
independent variables has the n + 1 dimensional graph (in this particular problem 6D), which is 
quite frankly impossible to imagine or to plot. 

The second and the main problem is that the function is always unknown, so it is impossible 
to analytically derive an unknown function besides the fact that it would not be a trivial task. 

A solution is a numerical approach. In this case, the initial point is that the maximum must 
be within a given interval (physically circulator above the probe). There are certain intervals for 
all axes. Fig. 7-4 shows the interval for x, however, the same principle is used for each of them. 
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Fig. 7-4 Interval x0 which contains intensity maximum for x axis 

The initial step for the program is to move inside the intervals for obtaining at least some 
signal. Once all servo motors are set to their let us call it a default position the procedure may 
begin. Another step is sampling the interval in x and y direction. The action starts with x axis 
when the table is positioned on the edge of the interval where the signal is of poor quality. The 
table samples area by 0.5 mm saving the signal intensity into a matrix where to each point a 
measured intensity is assigned (the quality of the signal is determined by the integral of the plotted 
area in Fig. 7-3. The plot is made up of a vector sum of the two signals, which means that it is 
always a positive number. The better the signal the higher is the value of the integral, which makes 
it very suitable for comparison and evaluation process). In the process, the program assigns the 
signal intensity to each position and compares its mutual relationship. If the signal improves the 
sampling continues to another position at x + 0,5 mm, if the signal decreases in quality twice in a 
row (twice in a row to filter out any local maxima and other randomities), it is decided that the 
maximum for the given interval was found and the table moves back to the position with the best 
signal. The identical sampling takes place for y direction. This way the x, y axes are roughly 
coupled for the first time. 

The tricky part starts with the movements in the z direction. It is not possible to apply the 
same mechanism because with every z movement comes inherently tilt of the table which instantly 
decouples xy plane due to the new beam angle. Because of this issue, it is not possible to instantly 
compare the obtained values. Very important is that even after a slight z movement the whole x, y 
coupling procedure must take place again (however this time with a much more fine sampling rate 
of 0.1 mm. Also, now the system does not intentionally decouple that would be counterproductive. 
This time the table investigates both directions from the current position). Eventually, when x, y 
are coupled again the signal intensities for z before and after may be compared and evaluated. The 
following Fig. 7-5 visualizes this crucial problem because of its high importance and the necessity 
to understand the reasoning behind this procedure. 
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Before After 

Z 

Fig. 7-5 Problem in z direction. Every z movement causes a tilt of the table (From the black 
before to the blue after) which needs to be corrected (brown after) 

This method of coupling is applied to every servo motor with motion in z direction. 
Nevertheless, the steps are very small (0.1 mm for both z movement and x, y recoupling). In the 
case of z the increments are small according to the simulation in Fig. 4-8 which suggest that for 
the angular misalignments the signal intensity is very sensitive especially at higher frequencies 
which are predominantly used. The x, y steps are inherently small because decoupling was not that 
significant due to the small z increment as well as it is beneficial to sample the surrounding area 
delicately to detect any potential signal enhancements. With this procedure completed, the 
coupling is considered to be done. 

The code is built programmed in LabVIEW, it is a system-design platform and 
development environment for a visual programming language from National Instruments. The 
programming is based on data availability. If there is enough data available to a subVI or function, 
that subVI or function will execute [45]. 

Because the code consists of hundreds of blocks, functions, and loops it is impossible to 
insert a whole code into the thesis or even try to explain it in full detail. Only the most important 
and/or the most frequent and crucial solutions for some of the problems will be selected and 
discussed. The full code may be shared after a personal request. 

The first part that plays an important role is the piece of code that serves for reading the 
signal from the Lock-in amplifier and integrating the signal. Fig. 7-6 shows the exact process. 
There will be selected a couple of blocks (parts) and explained their function so the reader may 
catch a drift and follow the reasoning behind it. 

8.4 The code architecture 
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Fig. 7-6 The part of the code for measuring a signal intensity 

The number 1 (n. 1) is the connection to the hardware under the given name which is 
followed by n. 2 which subscribes to the data which are in the buffer. N . 3 is the complex of blocks 
which at first pulls all the data and filters out only the signal vector. N . 4 integrates it and saves 
into the matrix at the n-th position which is n. 5 that comes from the outer while loop as a number 
of the iteration. N . 6 is a final integrated number which contains the information about the signal 
strength. The operation ends with the n. 7 unsubscription and disconnecting from the device. This 
part of the code is the most used throughout the whole algorithm because every decision which is 
made inside is based on the knowledge and comparison of the measured signal strength. 

On one hand, the knowledge of the signal strength is crucial, however, it must be assigned 
to the exact position and that is the purpose of the code in Fig. 7-7. 
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Fig. 7-7 Loop for the assignment of a signal to positions of servo motors 
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Fig. 7-7 is a very frequently used part of the code. N . 1 is the obtained signal intensity from 
the previous piece of code (Fig. 7-6). N . 2 is a connection to the desired servo motor at a specific 
IP address. N . 3 is reading the position from the encoder and sending it to the matrix. N . 4 is the 
loop for reliable disconnection. Disconnecting loop may seem redundantly extensive, however, if 
disconnecting process does not run successfully, it generates errors which endanger following 
attempts for connection. N . 5 and n. 6 are duplicates of the piece above which read the positions 
from the other two servo motors. N . 7 is the final matrix with the signal assigned to appropriate 
positions. 

The last shown piece of code from those of high importance is the one that builds on the 
previous two. Fig. 7-8 is the piece of code for moving the servo motor by 0.1 mm in z direction 
and using subVIs to recouple in x and y direction as well as subVI for measurement and assigning 
the new data at a new position. 

Fig. 7-8 The piece of code responsible for setting up and inspecting the table at the new 
position 

The n. 1 is the piece of code from Fig. 7-7 packed into the subVI from which the signal 
intensity and position are saved before any movement for further comparison. N . 2 is a connection 
to the desired servo motor with other necessary procedures such as setting the condition and 
turning on the power supply. N . 3 is reading the current position and adding a small increment to 
it which makes up the new position to which the table will be moved. N . 4 is the building of the 
cluster with all essential conditions for the motor before any movement. It consists of 5 numbers 
listed from up to down it is a new position, velocity, acceleration, deceleration and jerk. This 
cluster is passed to the function driving the servo. The loop is completed only when the servo 
occurs within a given interval built under the n. 6. The new interval is the new position z + 
0.01 mm. After reaching such a position the end condition for the loop is met and the part under 
n. 7 is run, which is already explained disconnecting process. The n. 8 are three sub Vis, as their 
names are self-explanatory, one for the x recoupling, the second for the y recoupling and the third 
for the loading and saving the signal at the new place which is sent for comparison with the position 
before. 
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The three very important pieces of the code were presented. These are frequently used 
throughout the whole code. They are sometimes slightly modified but the structure is very similar. 
The final code is built from many sub Vis and while viewed as complex it does not make much 
sense at a glance because all the action is divided into smaller sub-blocks. That is the reason why 
there are presented several sub Vis and not the whole code at once. But what may be attractive for 
the user is the user interface (UI) which is designed to show what is currently going on in the 
process. 

8.5 User interface 
The UI is the interface designed for the user to communicate with the program. Designed 

UI gives the user an overview of the current situation and action control for emergency situations 
(Fig. 7-9). 

t I I I I U Mr H t H • • • • • 
I Waiting 

I In process 

i Coupled 

Fig. 7-9 Designed UI for the coupling algorithm. 

The UI is designed in a simple manner. It gives a basic overview of the process with a pair 
of buttons for action. On the top, there are five indicators of servo motor activity (light green means 
the servo is in the movement). Underneath them, there are numerical indicators of the current 
position. The only action for the user is two buttons, the starting button and a stop for an instant 
abortion of the process in case of an unexpected emergency. Next to the buttons, there are three 
status indicators, so the user is instantly aware of the current situation. The bottom part is reserved 
for the chart where the evolution of the signal quality is plotted in real-time. 
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9. Measurements, results and calculations 
The last chapter will present achieved results. The first part will be dedicated to the 

enhancement in the signal intensity in measurements of 4-hydroxy-2,2,6,6-tetramethylpiperidin-
1-oxyl (liquid TEMPOL) and rapid scan signal of Lithium phthalocyanine (LiPc) thanks to the 
implementation of the automated coupling system. The second part will include a calculation of 
the relaxation spin states. 

9.1 Improved signal intensity 
An idea of the implementation of the automated coupling system was very promising. 

Based on simulations and empirical observations there have been recognized a huge potential for 
a high gain in signal intensity and resulting signal to noise ratio, which would be beneficial for 
everybody who runs experiments in Magneto-Optical lab. Before the implementation, the coupling 
has been done manually. The values in y, zt, z2, z3 were coupled once and then they have not been 
touched due to extreme time consumption of this procedure. The only value which was used is 
movement in x direction. After the loading phase, it was roughly coupled manually to some degree 
of precision. If somebody would like to couple all 5 servo motors at once it would be a task for 
hours or even days to examine them one by one, hence the fixed positions in 4 directions and a 
rough coupling in the x. 

Presented coupling algorithm couples all 5 servo motors. The time for coupling from the 
tests was on average twenty minutes. However, the faster coupling process and omitting the 
necessity of the personal presence is not the greatest benefit, which is the signal to noise ratio gain. 
The following figure demonstrates the increase in the signal sensitivity. Before signal quality was 
recorded after the manual coupling in x axis with the values of y, z 1 ( z 2 , z 3 used for the majority 
of the time in the past. After values are recorded after the usage of the automated coupling. 
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Fig. 8.1 Recorded spectra of the liquid TEMPOL before and after applying the automated 
coupling with values of signal to noise (S/N) ratios 

The coupling algorithm was applied also to the rapid scan measurement of the LiPC. In 
this measurement, the gain in the intensity was also very large. 

Rapid scan LiPc 

151.1 151.12 151.14 
Frequency [GHz] 

151.16 151.18 

Fig. 8.2 Recorded spectra of the LiPc by rapid scan method before and after applying the 
automated coupling with values of signal to noise (S/N) ratios 

The value of noise was determined by averaging multiple locations and taking its peak to 
peak value. The signal quality was also determined by the peak to peak method. These values were 
divided and this calculation gives the S/N ratio in figures. 
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9.2 Calculation of the relaxation time 
The calculation is based on the fitting software developed by Dr Oleksii Laguta, which is 

based on the solving modified Bloch equations. The process of the computation is loading the 
measured data and then matching simulated curve on top of the measured data. Fig. 8-3A 
demonstrates incorrectly fitted data (relaxation time is too low, in this case T2 = 200 ns) , 
Fig. 8-3B represents the correct value of the relaxation time T2 = 300 ns with the correct fits of 
other values of the experiment (Phase = —18°, Sweep shift = 6.3 MHz, Sweep amplitude = 
55 kHz, Sweep frequency = 25 kHz). 

Measured data 

Simulated curve T2 = 200 ns 

Measured data 

Simulated curve T2 = 300 ns 

r 

A) B) 

Fig. 8-3 A) Wrong fitting, too low relaxation time. B) Precisefit of parameters of the 
measurement with resulting relaxation time T2 = 300 ns 

The final value of the relaxation time from the measured sample of LiPc is T2 = 300 ns. 
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10. Discussion 
I would like to discuss several topics from the thesis. The problems I faced, the important 

notes which surprised me but most importantly the possible enhancement and improvements which 
may take place after the end of the thesis. 

At first, I would like to talk about the testing holder. It was not the direct goal of the thesis 
but since I study mechatronics it gave certain mechanical aspect to my work. Although the testing 
holder was a very tight fit whilst installation, in the end, everything functions and fits perfectly. In 
the designing process, the virtual model of the spectroscope was used extensively and helped a lot 
in detailed measurements and final corrections of dimensions of the parts so space would be used 
to its full potential. 

The majority of the thesis and the majority of the work and time tha was put in was spent 
on the automatic coupling system. Although, it may seem like a job done, during the process I 
discovered a lot of flaws, details and huge possible improvements that I would like to continue 
working on even after the finishing of the thesis. I would like to present a whole new idea of what 
may be done in the future. There is a working program in the Magneto-optic lab, but I realise that 
it is not optimal. The design is very simple and it may be considered as a 'student' solution to the 
problem. The idea, which was consulted with other members of the team, is that the program could 
be based on a genetic algorithm. I know the limits in which the maximum must occur thus I could 
get several random starting points at the beginning. I could breed the best of them among each 
other to get the best place for the signal. I could even introduce random mutations into the process. 
But this is the melody of the future. I have to admit that I am quite biased to the genetic algorithm 
and a discussion with the other colleagues will be held before starting this project. I am very 
curious about their opinions. If the whole idea would be successful, it may potentially be written 
down and published. 

The implementation of the coupling algorithm had a direct impact on the quality of the 
rapid scan measurements. This was beneficial for the last task, the calculation of the relaxation 
times which was set to be T2 = 300 ns for LiPc. After recording the spectra, the fitting software 
was used to fit measured data with the simulated curve. 
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11. Conclusion 
In conclusion, I would like to recapitulate the bullet points of this thesis. The thesis 

presented the designing process of the automated coupling algorithm and its benefits on the 
measurements of radicals in HF-EPR spectroscopy. 

This work contains the historical introduction to EPR spectroscopy. The theoretical part 
covers all the essential bits necessary to understand in the field of HF-EPR spectroscopy, coupling 
of the Gaussian beams and hardware in Magneto-Optical lab at CEITEC BUT. 

The practical part covers the mechanical part as a design of the testing holder outside of 
the magnetic field. The programming part of the automated coupling software demonstrates its 
impact on the signal to noise ratio in real measurements. The last part is the fusion of the theoretical 
and practical aspects of the experimental measurement and calculation of the relaxation time with 
the demonstration of the influence of the implemented software. 

The result of this work is currently in use at CEITEC BUT. In the discussion, the idea for 
future improvements was proposed. If its implementation turns out as a success, the whole idea 
will be published and shared with other scientific groups around the World. 
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13. List of abbreviations, symbols and physical values 
Abbreviations 

NMR Nuclear magnetic resonance 

EPR Electron paramagnetic resonance 

RADAR Radio detection and ranging 

RS Rapid scan 

CW Continuous wave 

M W Microwave 

M D M Magnetic dipole moment 

VTI Variable temperature insert 

TEMPO Tetramethylpiperidinoxyl 

S/N Signal to noise 

MRI Magnetic resonance imaging 

DNP Dynamic nuclear polarization 

HF-EPR High field electron paramagnetic resonance 

Used physical symbols and constants 

n principal quantum number 

I azimuthal quantum number 

m magnetic quantum number 

s spin quantum number 

S intrinsic angular momentum spin 

h reduced Planck's constant 

h Planck's constant 

n Ludolph number 

E the energy of spin state 



AE the energy difference between states 

V frequency 

P-e magnetic moment of the electron 

Pn magnetic moment of the nucleus 

P-B Bohr magneton 

ms projection of electron spin 

9 Lande factor 

B0 
outer magnetic field 

H the spin Hamiltonian 

HEz Electron-Zeeman Interaction energy 

HZF Zero-Field interaction energy 

HNZ Nuclear Zeeman interaction energy 

HNQ Nuclear Quadrupole interaction energy 

HEE Electron-Electron interaction energy 

HHF Hyperfine interaction energy 

M0 
overall magnetic moment of the system 

^Long Longitudinal coupling coefficient 

^Lat Lateral coupling coefficient 

^Ang Angular coupling coefficient 

Ar Lateral displacement 

Az Longitudinal displacement 

A9 Angular displacement 

M Magnetic moment 

Beam waist 

Y Electron gyromagnetic ratio 

B1 Microwave magnetic field 

P Power 

I Intensity 

No Number of molecules occupying the antiparallel state 



Na Number of molecules occupying the parallel state 

T Thermodynamic temperature 

k Boltzman constant 

c Speed of light 

S Poynting vector 
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14. List of figures 
Fig. 2-1 A) Transition associated with the absorption of electromagnetic energy [6],B) 

States with minimal and maximal energy level based on the mutual alignment of 
vectors \ie and B0 [3] 

Fig. 2-2 Linear splitting of spectral lines and the increasing energy difference between 
statesin the increasing outer magnetic field B0 [8] 

Fig. 2-3 A) System shortly before irradiation, the maximal amplitude of M0 in z-axis (1), 
Immediately after irradiation, maximal projection of M0 in x-y plane (2). 
B) Z-vector of M0 regaining its strength. C) Vanishing x-y projection of M0. 
D) Tt relaxation E) T2 decay 

Fig. 2-4 Significantly enhanced signal after application of DNP method and 0.263 THz 
radiation on the samples of amyloid fibrils by [38]. The figure is taken from [38] 
and adjusted. 

Fig. 2-5 Energy level transitions (Single transition - blue; DNP polarization - red) 
Energy transitions associated with electrons are higher than nuclear transitions 
according to equation 2.2 in chapter 2.2. Energy captured by an electron from the 
radiation in the GHz range is greater than the energy received by proton from the 
MHz region. 

Fig. 3-2 A) Visualization of the frequency domain, steady magnetic field producing two 
possible states a and B. Increasing microwave frequency delivers larger and larger 
quanta of energy until the resonance point is reached. B) Field domain approach. 
The energy delivered by microwave radiation is of the same magnitude, whereas 
the growing strength of the magnetic field increases the difference between states 
a and B until it matches desired AE. 

Fig. 3-1 Two species of different g-values are very difficult to distinguish at the X-band 
frequency. The situation is better for Q-band, but the lines are fully separated only 
forW-band [2]. 

Fig. 3-2 Figure taken from [6] and adjusted. The spectral split by hyperfine interaction 

Fig. 3-2 Rapid scan spectrum before and after mathematical deconvolution 

Fig. 3-3 A) Condition for the rapid scan was not met and the recorded spectrum is classical 
frequency domain sweep. B) The speed of a frequency sweep rises but still is not 
enough. C) Condition for the rapid scan method is met and the frequency sweep is 
considerably larger than the relaxation time hence the rapid scan spectrum may be 
recorded and observed 

Fig. 3-3 Frequency Rapid Scan Electron Spin Resonance spectroscope (FRASCAN) 
Actual spectroscope set up as of March 26 2021 

Fig. 3-4 Scheme of the spectroscope hardware with the mw radiation path 
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Fig. 4-2 Broadening waist w(z) with increasing distance from the source of the radiation 
due to diffraction 

Fig. 4-3 Beam focused by the converging lens into the focal point / where the beam waist 
w0 reaches its lowest value 

Fig 4-4 Intensity distribution of the Gaussian beam in the mode 0;0. The image was taken 
and adjusted from [17]. 

Fig. 4-5 A) Lateral misalignment of beams 1 & 2 by Ax. B) Lateral misalignment in 
xy plane perpendicular to the direction of propagation with the deviation Ar 

Fig. 4-6 Illustrative demonstration of longitudinally misaligned beams with deviation Az, 
the narrowest parts of the beams are at a different z coordinate 

Fig. 4-7 Mutual tilt of two beams with angular deviation A6 

Fig. 4-8 Matlab simulation of different displacements and their dependency on frequency. 

Fig. 4-9 Example of simple Matlab code for simulation of equations 4.1/2/3 with variable 
inputs of beam waist and displacements for better inspection. 

Fig. 6-1 Manufactured and assembled testing holder 

Fig. 6-2 Section view of the testing holder and inserted probe (virtual twin). Modeled in 
Autodesk Inventor 2019 

Fig. 6-3 Attached testing holder to the framework (red rectangle) with inserted probe 
(blue arrow) 

Fig. 7-1 eal4LabVIEW addon 

Fig. 7-2 Library for manipulation with data from Lock-in amplifier by Zurich Instruments 

Fig. 7-3 Illustrative figure of LabOne user interface control panel and plot area of signal in 
real-time 

Fig. 7-4 Interval x0 which contains intensity maximum for x axis 

Fig. 7-5 Problem in z direction. Every z movement causes a tilt of the table (From the black 
before to the blue after) which needs to be corrected (brown after) 

Fig. 7-6 The part of the code for measuring a signal intensity 

Fig. 7-7 Loop for the assignment of a signal to positions of servo motors 

Fig. 7-8 The piece of code responsible for setting up and inspecting the table at the new 
position 

Fig. 7-9 Designed UI for the coupling algorithm. 

Fig. 8.1 Recorded spectra of the liquid TEMPOL before and after applying the automated 
coupling with values of signal to noise (S/N) ratios 
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Fig. 8.2 Recorded spectra of the LiPc by rapid scan method before and after applying the 
automated coupling with values of signal to noise (S/N) ratios 

Fig. 8-3 A) Wrong fitting, too low relaxation time. B) Precisefit of parameters of the 
measurement with resulting relaxation time T2 = 300 ns 
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15. List of tables 
Tab. 3-1; Occupancy rate of energy levels a and P at different frequency bands and temperatures 
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16. Attachments 
External attached files: 

Al_Assembly 

A2_Plate 

A3_BottomHolder 

A4_UpperHolder 

A5_BottomSlidingBearing 

A6_UpperSlidingBearing 

A7_Thread 

A8_Nut 

A9_AutomaticCoupling 

A10_SubViInitialPosition 

All_SubViXCouple 

A12_SubViYCouple 

A13_SubViSigZXYValues 

A14_UI 


