
T
BRNG UNIVERSITY GF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF MECHANICAL ENGINEERING
FAKULTA STROJNÍHO INŽENÝRSTVÍ

INSTITUTE OF MATHEMATICS
ÚSTAV MATEMATIKY

COLOUR EXTENSION OF IMAGE FAST POINT FEATURE
HISTOGRAM
ROZŠÍŘENÍ OBRAZOVÉHO DESKRIPTORU FAST POINT FEATURE HISTOGRAM O BAREVNOU INFORMACI

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. Aleksander Markovsky
AUTOR PRÁCE

SUPERVISOR Mgr. Jana Procházková, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2024

Assignment Master's Thesis

Degree programm
Branch:
Supervisor:
Academic year:

Institut:
Student:

Institute of Mathematics
Be. Aleksander Markovsky
Mathematical Engineering
no specialisation
Mgr. Jana Procházková, Ph.D.
2023/24

As provided for by the Act No. 111/98 Coll. on higher education institutions and the BUT Study and
Examination Regulations, the director of the Institute hereby assigns the following topic of Master's
Thesis:

Colour extension of image Fast Point Feature Histogram

Brief Description:

Point cloud registration methods can be divided into two main categories. You can handle all the
data directly with methods such as ICP and NDT. Alternatively, you can use a subset of significant
point clouds - feature detection. We will concentrate on the latter approach in this thesis. It
involves identifying points with large variability, achieved by analyzing the changes in normals in
the surrounding area. Next, it is necessary to define this point by analyzing its neighborhood,
which is a memory-intensive process.This work will use a technique called Fast Point Feature
Histogram (FPFH) to describe the local area with three specific measurements. Additionally, the
study will explore the possibility of enhancing this description with colour information to better
characterise the surroundings. With this descriptor, the final scene composition is composed.

Master's Thesis goals:

1. The student will study the theoretical basis of the FPFH detector and its implementation. Then
he/she will learn about the colour spaces that can be used to represent colour.
2. Implement the extended FPFH descriptor in the chosen programming language and test it on
real data.
3. Evaluate the results and assess whether adding colour information helps to achieve better
results in point cloud registration.

Recommended bibliography:

RUSU, R. B.; N. BLODOW a M. BEETZ. Fast Point Feature Histograms (FPFH) for 3D
registration. In: 2009 IEEE International Conference on Robotics and Automation [online]. IEEE,
2009, s. 3212-3217 [cit. 2023-09-06]. ISBN 978-1-4244-2788-8. Dostupne z:
doi: 10.1109/ROBOT.2009.5152473.

Faculty of Mechanical Engineering, Brno University of Technology / Technická 2896/2 / 616 69 / Brno

RUSU, R. B., N. BLODOW, Z.C. MARTON a M. BEETZ. Aligning point cloud views using
persistent feature histograms. In: 2008 IEEE/RSJ International Conference on Intelligent Robots
and Systems [online]. IEEE, 2008, s. 3384-3391 [cit. 2023-09-06]. ISBN 978-1-4244-2057-5.
Dostupne z: doi:10.1109/IROS.2008.4650967.

LEMMENS, M. Introduction to Pointcloudmetry: Point Clouds from Laser Scanning and
Photogrammetry. UK: Whittles Publishing, 2023. ISBN 1849954798.

Deadline for submission Master's Thesis is given by the Schedule of the Academic year 2023/24

In Brno,

L. S.

doc. Mgr. Petr Vašík, Ph.D.
Director of the Institute

doc. Ing. Jiří Hlinka, Ph.D.
FME dean

Faculty of Mechanical Engineering, Brno University of Technology / Technická 2896/2 / 616 69 / Brno

Abstrakt
Diplomová práce se zabývá rozšířením Fast Point Feature His togramů o barevnou infor­
maci za účelem vylepšení registrace mračen b o d ů . Popisuje proces registrace mračen b o d ů
pomocí Iterative Closest Point, jakou roli v ní plní F P F H a diskutuje, jaké barevné pros­
tory jsou vhodné pro registraci mračen bodů . Pro vyhodnocen í př ínosu zah rnu t í ba revné
informace práce prezentuje implementaci I C P a F P F H algor i tmů v Pythonu a navrhuje
metodologii evaluace registrace mračen . Závěr práce je věnován diskuzi výsledků experi­
men tů , k teré demonstruj í , že použi t í ba revné informace v registraci mračen snižuje poče t
i terací po t řebných ke konvergenci ICP .

Summary
This thesis deals wi th the extension of Fast Point Feature Histogram with color aiming
to improve point cloud registration. The thesis describes point cloud registration using
Iterative Closest Point, what is the role of F P F H , and explores available color spaces that
are suitable to be used for point cloud registration. In order to evaluate whether adding
color information helps to achieve better results in point cloud registration a Py thon
implementation of I C P and F P F H is provided together wi th a methodology to evaluate
registration. The thesis concludes wi th a discussion of experiments demonstrating that
the use of color decreases the number of iterations required for the convergence of ICP .

K l í č o v á slova
mračno bodů , Point Feature Histogram, Fast Point Feature Histogram, P F H , F P F H ,
3D deskriptor, Iterative Closest Point, ICP , registrace mračen bodů , Python, hledání
nejbližších sousedů, kd-strom, ba revný prostor, 3D sken

Keywords
point cloud, Point Feature Histogram, Fast Point Feature Histogram, P F H , F P F H , 3D
descriptor, Iterative Closest Point, ICP , point cloud registration, Python, nearest neighbor
search, kd-tree, color space, 3D scan

M A R K O V S K Y , A .Rozš í řen í obrazového deskriptoru Fast Point Feature Histogram o barevnou
informaci. Brno: Vysoké učení technické v Brně , Fakulta s t rojního inženýrství , 2024. 65
s. Vedoucí Mgr . Jana Procházková, P h . D .

R o z š í ř e n ý abstrakt
3D modelování pomocí mračen b o d ů je technologie využívaná např íč technickými obory.
Nachází aplikace v robot íce , a rch i tek tuře , vý robn ím inženýrství , medicíně, i v zábavním
průmyslu . Umožňují mapován í městských č tvr t í , archi tektonických p a m á t e k , ale i posky­
tují precizní míry drobných součástek.

Výsledný model objektu se skládá z mnoha mračen b o d ů nasn ímaných z různých
pohledů. Tato m r a č n a b o d ů je nás ledně p o t ř e b a navzá jem sesadit do jednoho výsledného
m r a č n a na základě prolínajících se část í dílčích mračen . Tato problematika se nazýva regi­
strace mračen bodů . Algoritmus s t a n d a r d n ě využívaný k tomuto účelu, Iterative Closest
Point (ICP) , je ovšem citlivý na počá tečn í p o d m í n k y a na š u m p ř í t omný ve zdrojových
mračnech. I C P v každé iteraci vytvoř í množinu dvojic nejbližších b o d ů ze zdrojového
a cílového m r a č n a a nás ledně na zdrojové m r a č n o aplikuje transformaci minimalizující
vzdálenost mezi jednot l ivými dvojicemi bodů . Rychlost a kvalita sesazení se tedy odvíjí od
kvality vyhledávání podobných b o d ů mezi mračny. S t a n d a r d n í verze I C P využívá pro vyh­
ledání podobnosti souřadnice b o d ů a eukleidovskou vzdálenost mezi nimi . Současný
výzkum se zabývá popisem b o d ů v mračnech nejen na základě souřadnic , ale i lokál­
ních charakteristik okolí, nazývaných point feature representations nebo také deskriptory
okolí. Nechť pq je zkoumaný bod a Vg = {p\, p\ ... pfy je množ ina b o d ů v okolí pq. Body
náležící okolí jsou určeny nerovnost í

\\p--pq\\<d, (1)

kde d je d a n á max imáln í vzdálenost a ||-|| je zvolená norma. Okolí může být též určeno
max imá ln ím p o č t e m b o d ů k. Deskriptor okolí je pak definován jako vektorová funkce F
popisující lokální geometrii Vg okolí pq

F(pq,V^) = {x1,x2,x3...xm}, (2)

kde Xi,i G { 1 . . . m} značí hodnotu i-té dimenze vektoru deskriptoru.
R. B . Rusu ve své disertaci [] popsal deskriptor j m é n e m Point Feature Histogram

(P F H) a jeho optimalizovanou variantu Fast Point Feature Histogram (F P F H) , tyto
deskriptory předs tavuj í významný př ínos a inspirovaly nespočet vědeckých prací rozví­
jejících tuto myšlenku. Tyto deskriptory uvažují okolí bodu a v n ě m pro každou dvojici
b o d ů určí úhly mezi body a jejich př ís lušnými no rmá lami

a = arccos (v • nt),

Pt ~Ps
arccos n

9 = ar etan

d = \\pt ~ P

\\Pt ~ Ps
w • nt

ns • nt

s\\2;

pro ~Íps,Pt £ 'Pq, kde ns,nt jsou př ís lušné normály, v = (pt

v. Vztah mezi dvojicí b o d ů v okolí je charakter izován čtveřicí (a,<f>,9,d). Z těchto
čtveřic nás ledně vzniká histogram charakterizující geometrii okolí bodu. Index histogramu
pro danou čtveřici je určen následující rovnicí

idx = ^2 stePÁfi) • -j— W divj, (3)
i=l j=l

kde divi poče t podin te rva lů pro prvek /j z čtveřice (a, <f>, 9, d) a s íepj je schodová funkce
se zvolenými hranicemi podin te rva lů s j G [/ m m, f max], j G { 1 , 2 , . . . , dii>j — 1}.

/ i < s i ,

Sl < fi> s2
1

stepi(f) = < . (4)

ý i v i - l fi>sdiVi_i.

Neboť je F P F H invar iantní vůči translaci a rotaci b o d ů , hodí se pro h ledání shodných
b o d ů mezi j ednot l ivými mračny.

Cílem t é t o práce je rozšířit Fast Point Feature Histogramy o barevnou informaci
za účelem vylepšení registrace mračen b o d ů . Po úvodu do registrace mračen , deskrip­
to rů a F P F H se tato práce zabývá barvou, její reprezentací a ba revnými prostory R G B ,

Pro evaluaci př ínosu barevné informace pro registraci mračen vznikla Python imple­
mentace I C P a variant Point Feature His togramů. V implementaci byl kladen důraz
na flexibilitu a rozšiři telnost kódu, aby testovací skripty mohly být j ednoduše doplněny
o implementace j iných deskr ip torů nebo registračních a lgor i tmů.

Pro evaluaci použi t í barvy jako deskriptoru byly vyb rány 4 datasety sestávající se
z mračen snímaných z různých úhlů . Pro každý dataset bylo provedeno 5 exper imentů .
V každém experimentu byly sesazovány m r a č n a pomocí I C P s různými kombinacemi
deskriptoru F P F H a barev v reprezentacích R G B , H S V a L A B . Čtyř i experimenty simulo­
valy sesazení mračen tak, že sesazované mračno b o d ů vzniklo úpravou cílového mračna .
P r v n í experiment pouze pootoči l cílové mračno , další t ř i navíc př ida ly různé úrovně
Gaussova šumu pro analýzu citlivosti deskriptoru na p ř í tomnos t šumu v datech. P á t y ex­
periment sledoval realistické sesazení dvou mračen naskenovaných z různých úh lů pohledu.
U každého experimentu se vyhodnocoval poče t i terací I C P n u t n ý ke konvergenci a kvalita
sesazení u rčená p r ů m ě r e m a rozptylem vzdálenost í mezi dvojicemi b o d ů ze zdrojového
a cílového mračna . U simulované registrace, kde byla dopředu z n á m á translace a rotace,
byla navíc vyhodnocována norma posunu t í a rotace.

Simulovaná registrace bez šumu ukázala , že použi t í barvy p o d s t a t n ě snižuje poče t
i terací I C P po t řebných ke konvergenci. V simulované registraci s p ř i daným šumem barva
opět snížila poče t i terací po t ř ebných ke konvergenci. Z exper imen tů s š u m e m není zřejmé,
že by nějaký barevný prostor přispíval k rychlejší konvergenci nebo kvali tnějšímu sesazení
více, než os ta tn í . V realistické registraci se opět potvrdi l trend, kdy zah rnu t í barvy
snížilo poče t i terací I C P po t řebných ke konvergenci. U realistické registrace byl větší
p růměr i rozptyl vzdálenost í při použi t í barvy, než v klasickém I C P nebo I C P s F P F H .

Tato práce se zaměřovala na vyhodnocen í použi t í barvy pro rozšíření deskriptoru
F P F H pro registraci mračen pomocí I C P algoritmu. Z exper imen tů vyplynulo, že ba revná
informace je uži tečný nás t ro j pro sesazování, zejména pro snížení celkového p o č t u ite­
rací pro dosažení výsledku. Al te rna t ivn í p ř í s tup k registraci mračen navíc p řed I C P
provádí h rubé sesazení na základě klíčových b o d ů mračna . Navazující výzkum by tedy
mohl rozšířit implementaci o h ledání klíčových b o d ů na základě barvy a geometr ických
deskr ip torů pro lepší počá tečn í odhad sesazení pro ICP .

X Y Z , H S V a L A B .

I hereby declare that I have written my Master's Thesis on the topic of
Colour extension of image Fast Point Feature Histogram under the supervision of
Mgr. Jana Procházková, P h . D . using literature listed in the bibliography section.

Be. Aleksander Markovsky

I wish to express my earnest gratitude to my supervisor, Mgr . Jana Procházková, Ph .D . ,
for excellent guidance, support and provided insight. Furthermore, I would like to thank
my family and friends for being there whenever I needed them.

Be. Aleksander Markovsky

CONTENTS

Contents
Introduction 2

1 Point clouds and their registration 3
1.1 Point cloud 3
1.2 Data capture 4
1.3 The nearest neighbor problem 8

1.3.1 Space partitioning using quadtree and octree 9
1.3.2 Space partitioning using kd-tree 10

1.4 Point set registration 12
1.4.1 Preprocessing 13
1.4.2 Fine registration - I C P 15

2 Point feature representations 21
2.1 Formalization and properties of feature representations 21
2.2 Surface normal estimation 23
2.3 Point Feature Histogram 24
2.4 Fast Point Feature Histogram 27

3 Color 29
3.1 What is color? 29
3.2 Human perception of color 29
3.3 Measuring color 30
3.4 Representing color - color spaces 31

3.4.1 R G B 31
3.4.2 X Y Z 32
3.4.3 H S V 33
3.4.4 L A B 35

3.5 Using color as a point feature representation 36

4 Implementation 38
4.1 Prerequisites 38

4.1.1 Point cloud formats 39
4.2 Implementing Point Feature Histograms 42
4.3 Implementing I C P 44
4.4 Comparing registration using feature histograms and color 47

4.4.1 Methodology 47
4.4.2 Data 48

4.4.3 Evaluation of experiments 48

Conclusion 51

Bibliography 52

Appendix 58

1

CONTENTS

Introduction
3D modeling using point clouds is a problem set, that spans through a range of seem­

ingly disparate science fields and industries. It provides vision for robotic systems, and
when paired with artificial intelligence, serves as a foundation for autonomous vehicle tech­
nology. Point clouds are particularly useful for terrain mapping, as they can be employed
to model urban landscapes, create maps, analyze the earth's surface, assist wi th forestry
management, and facilitate the digital preservation of cultural heritage. In architecture
and construction, point clouds help to accelerate the work of engineers and architects.
Manufacturing engineers can leverage the technology for precise measurements, thereby
ensuring parts meet specifications and tolerances, while in the medical field point clouds
can be used to create 3D models of tissues, assisting in research, diagnosis and surgical
planning. Al though less noble than the aforementioned, point clouds are also utilized
in entertainment and media to construct immersive vir tual worlds, turning what was a
mere fantasy a couple of decades ago into video games and movies wi th scenery nearly
indistinguishable from reality.

When creating a point cloud model, the resulting model is composed of multiple
views. These views must be aligned based on their overlapping regions into a common
coordinate system. This problem is called point set registration. However the captured
scans are polluted wi th noise and the staple algorithm for point set registration, the
Iterative Closest Point, is sensitive to ini t ial parameters, prompting researchers to attempt
to enhance the speed and quality of registration by using point feature representations.
In his dissertation thesis [37] R. B . Rusu described Fast Point Feature Histogram, a point
feature representation, that made a significant contribution to the state-of-the-art and
inspired countless research papers.

The thesis topic concerns the extension of the Fast Point Feature Histogram wi th color
and the evaluation of its contribution to point cloud registration. The init ial chapter in­
troduces the concept of point clouds, how the data is sourced, and explains the point set
registration process. Point feature representations are explained in the subsequent chap­
ter, accompanied by the necessary context to calculate Fast Point Feature Histograms.
The thi rd chapter is devoted to an examination of color itself, presenting a theoretical
framework for the consideration of color as a point feature representation. The final chap­
ter discusses the Python implementation of point set registration using Fast Point Feature
Histograms with a particular focus on the beneficial impact of using color.

2

1. POINT CLOUDS AND THEIR REGISTRATION

1. Point clouds and their registration
The aim of this chapter is to introduce the fundamental concepts of 3 D scene represen­

tation wi th point clouds and to discuss the data representation, capture, and processing.
Specifically, it covers point clouds, methods of data acquisition such as laser scans or
photogrammetry, space partitioning using a kd-tree data structure, and concludes wi th
point set registration using the I C P variants.

1.1. Point cloud
One of the simplest ways of representing a 3 D scene is v ia a point cloud. Point cloud is
defined as a finite discrete set V = {pi \ % — 1 , . . . , n} of data points in space. The most
basic representation is using a set of three Cartesian coordinates (x, y, z) G M 3 to represent
a point. This representation can be further extended for a specific use case to include
color information, a direction of a normal, volumetric data, etc. When processed, it is
possible to create features and other statistics that describe a given point. For example,
these features can describe local geometry such as surface curvature.

(a) Point cloud (b) Triangular mesh

Figure 1.1: Comparison of visualization between a point cloud and a triangular mesh of
the same model.

Certain use cases demand a more complex structure. Visualizat ion of point clouds is
very well possible, but surface representation might be a better fit, as demonstrated in
Figure 1.1. Surfaces can be represented with polygonal meshes or even simpler triangle
meshes, which are the de facto standard due to their efficient representation. To repre­
sent a smooth surface a spline-based model such as N U R B S (Non-uniform rational basis

3

1.2. DATA CAPTURE

spline) can be used. A combination of these structures can be used to create a 3D C A D
(Computed Aided Design) model, which can, for example, contain information about a
physical system such as in architectural software to calculate critical loads. There are
techniques, such as the Delaunay triangulation, that allow to create a 3D surface from a
point cloud. Al though the subject matter of this thesis centers around point clouds, these
representations and techniques are certainly interesting enough to study on their own.

1.2. Data capture
Before discussing the processing of point clouds, it is important to understand how the
source data is obtained. A plethora of methods for data capture are available, each best
suited for the specific use and required precision. These methods can be categorized based
on the principle of data acquisition into contact methods and non-contact methods.

Contact methods utilize a physical probe that detects contact. This approach pro­
vides highly accurate results, but imposes a set of strict limitations to the scannable
subject matter. Therefore, its use is often limited to assembly lines to ensure that the
produced part has the correct size and is free of defects. Considering these limitations,
this technological approach it is not be described further.

Non-contact methods are further categorized into active and passive. Active scanners
use light or radiation to hit the measured object instead of a probe and then estimate
the scene based on the information from the reflection of the emitted probe. Such scan­
ners are based on Light Detection A n d Ranging (L I D A R) , Laser Detection A n d Ranging
(L A D A R) , ultrasound or an x-ray. Passive scanning uses available light instead of emit­
t ing it. Photogrammetry combines digital image capturing wi th projective geometry to
capture 3D scenery. The simplest approach is stereophotogrammetry (not dissimilar to
stereoscopy) using two cameras to estimate depth, while sophisticated implementations
integrate multiple stationary cameras (as shown in Figure 1.2) or moving cameras.

3D OBJECT
»

Figure 1.2: Illustration of photogrammetry principle on the left [30], photo of a stereopho­
togrammetry camera setup [23] on the right.

Another idea is to use the physical properties of camera lenses, namely their limited
focus depth. B y changing the focus distance and performing image analysis one can detect

4

1. POINT CLOUDS AND THEIR REGISTRATION

how far are given parts of the image from the camera and reconstruct the scene this way.
Figure 1.3 shows how the focus plane is affected by the distance of the subject.

Figure 1.3: Sharpness changes wi th distance.

Naturally, there exists a variety of hybrid approaches uti l izing multiple technologies
to achieve greater precision or to add different types of data (such as color) to the spatial
information. Surveillance systems use R G B D (R G B Depth) cameras that are composed
of a time-of-flight sensor and a regular surveillance camera to enhance the device's object
recognition abilities. Since those systems' primary goal is not scene reconstruction, they
are not described in further detail.

Time-of-flight
Time-of-flight (ToF) 3D scanning is a method that relies on the fundamental principle of
measuring the travel time of light or laser pulses as they reflect off an object and return
to the scanner. The distance to each point on the object is determined by calculating the
time it takes for the light to travel to the object and back to the sensor since the speed of
light is known, as indicated in Figure 1.4. The precise measurement of the time interval
between the emission and detection of the light pulse is crit ical for accurately determining
the distance to each point on the object's surface. This measurement is facilitated by high­
speed electronics and t iming systems. The time-of-flight data collected from numerous
points across the object's surface is then used to construct a detailed 3D model.

The accuracy of T o F 3D scanning depends on several factors, including the precision
of t iming mechanisms in the scanning device, and the reflectivity and geometry of the
object being scanned. Environmental factors such as lighting conditions and atmospheric
disturbances can also impact the accuracy of the measurements.

They are widely used in industrial design, quality control, heritage conservation, vir­
tual reality, and geographical mapping. These scanners offer several advantages over other
3D scanning technologies, including the ability to capture large volumes quickly and the
potential for real-time data processing. However, they can be limited by their sensitivity
to ambient light. Time-of-flight range finders are capable of operating over long distances

5

1.2. DATA CAPTURE

and thus are well suited for scanning architectural or geographic structures. The closer
the measured object is the shorter the round-trip interval is which makes it harder to
distinguish the points. This means the accuracy of measurements is comparatively low,
in the order of millimeters.

T = 0

T = t

Time-of-f light Phase-shift

Figure 1.4: Time-of-flight schematic [47].

Triangulation
Triangulation is a technique that relies on the principles on geometry and trigonometry to
determine the coordinates of scanned points in a similar fashion to stereophotogrammetry,
but it replaces one camera wi th a laser projector. The laser projector emits a beam of
light which is reflected back at the sensor. Depending on the distance of the measured
surface from the projector the reflection lands at a different position on the center. The
method is called triangulation because the projector, the camera, and the measured point
form a triangle. Since the position of the camera and the projector is fixed, the distance
between them is known and the angles at the camera and the projector vertices are
known. These three pieces of information fully determine the triangle, thus using basic
trigonometry we can calculate the distance from the camera. Figure 1.5 illustrates the
geometric relationship between distance and image sensor.

fixed distance
I 1

Figure 1.5: Triangulation scheme.

In practice, a laser stripe, its principle demonstrated in Figure 1.6, can be used to
speed up the process of data capture. This technique is best suited for fine measurements

6

1. POINT CLOUDS AND THEIR REGISTRATION

as the precision of triangulation scanners is in the order of tens of micrometers. This
comes at a cost of a l imited range of measurement.

Figure 1.6: Using a line scan for triangulation [].

Structured light
This approach can be considered a special use of triangulation. Structured light 3D
scanners use light patterns projected onto a subject to measure its shape. These patterns,
often created by an L C D projector or a similar light source, are distorted by the subject's
surface. A camera, positioned near the projector, as indicated in Figure 1.7, captures the
distorted patterns and they are used to calculate the distance of various points within its
view. Reconstruction of the distances is often based on frequency analysis techniques like
the Fourier transform or wavelet transforms, but more recently deep neural networks are
trained for the determination of distances.

One of the main benefits of using structured light is speed and accuracy. They are
capable of capturing multiple points or an entire scene simultaneously, rather than one
point at a time. This capability significantly reduces motion distortion, as scanning a
whole scene can be done in a fraction of a second. Some current models can even scan
moving objects in real time. A downside is the fact that the projected light can interfere
wi th other sources of i l lumination, this is the reason why infrared light sources are used
often in modern implementations.

7

1.3. THE NEAREST NEIGHBOR PROBLEM

Camera A

o Light

Projector

Light Pattern

Camera B

Figure 1.7: Using structured light for triangulation [36].

This technology is an evolving field, wi th significant academic interest and frequent
research publications [11]. For instance, a real-time scanner employing digital fringe pro­
jection and phase-shifting techniques (variants of structured light methods) was created
to capture and render detailed deformations of dynamic objects, like facial expressions, at
40 frames per second. Using defocusing techniques it is possible to push this frame limit
even further.

A notable use of this approach is the early version of Microsoft Kinect , a gaming con­
sole extension that allows users to play games without the use of a controller, purely wi th
the movement of their body. Another example is Face ID, the technology used in Apple
devices for biometric authentication and also facial expression tracking. Coincidentally,
both technologies were developed by the same company.

1.3. The nearest neighbor problem
The collected data comes as an unorganized set of triplets (x, y, z) in Euclidean space,
frequently given by a matrix where the rows represent a data entry for a single point and
the columns contain Euclidean coordinates and additional features. Such an approach
for point cloud representation is intuitive and highly convenient as it allows algebraic
operations and thus statistical analysis. A common problem when processing point clouds,
such as when performing point set registration or creating a polygon mesh, requires the
knowledge of which points are in the neighborhood of the analyzed point. The naive brute
force approach iterates through a set of all points and compares their distances keeping
track of the shortest distance. The Iterative Closest Point (ICP) algorithm's complexity
is dominated by the complexity of nearest neighbor search and hence calls for a more
efficient approach. That is where space partitioning methods become helpful. Commonly
used space partitioning algorithms for point clouds are quadtree and octree (for 2D and
3D data respectively), kd-tree, and R-tree. Whi le R-tree is high performance for 3D

8

1. POINT CLOUDS AND THEIR REGISTRATION

data, its lookup performance rapidly deteriorates when going to higher dimensions [].
Therefore kd-tree has been selected for further use in nearest neighbor search and is the
focus of this section. To build the intuition on kd-tree the following paragraphs outline
the key ideas of space partitioning wi th a regular grid using quadtree and octree.

1.3.1. Space partitioning using quadtree and octree
Quadtrees, shown in Figure 1.8, are an extension of the idea of binary search to two
dimensional data. It is a special case of a tree graph where each internal node (one that
does not contain leaves) has exactly four children. To create a quadtree select a starting
point in the middle of the region. Divide the region into four quadrants, for each quadrant
determine if there are at least two points present. In the positive case continue recursively
dividing the subregion into four quadrants. In the negative case turn the quadrant node
into a leaf containing one or zero points.

127

127

A •

«
C

A • •
D

•
B
•
B *

E

•
B

(40,45)

(55,80)(80, 90)

Figure 1.8: Parti t ioned region afig:quadtreend its tree representation. [33]

This way the quadtree encodes a sense of direction when performing a search for the
nearest neighbor and significantly improves the average lookup time. The number of
points in a leaf is sometimes referred to as bucket capacity and is an example of how a
quadtree can be parametrized, similarly, the quadtree might have a set l imit on depth.
These parameters can be tuned to further improve lookup performance. Octree is a
generalization of quadtree to three dimensions, recursively partitioning the point region
into octants, as demonstrated in Figure 1.9.

9

1.3. THE NEAREST NEIGHBOR PROBLEM

1.3.2. Space partitioning using kd-tree
The creation of quadtree and octree structures is fast due to the regularity of the grid it
creates, however, the same regularity ultimately limits the lookup speed. Furthermore, if
it were necessary to generalize this idea into further dimensions the number of children
nodes would grow exponentially wi th the number of dimensions, making it rapidly more
inefficient. Kd-tree elegantly circumvents both issues.

Kd-tree, sometimes spelled as kd-tree standing for k-dimensional tree, is a type of
binary search tree. Each non-leaf node generates a splitting hyperplane, that splits the
space into two subspaces. Nodes in the tree store information about the split. Nodes
contain information about the split, the axis and the value, and pointers to the left and
right child nodes. In case of the median splitting strategy the node also holds the splitting
point. A leaf has child pointers empty and in the case the bucket capacity is larger than
one it also contains a set of points belonging to the subregion.

Construction

A key feature of a kd-tree is the fact that the splitting hyperplanes are perpendicular to
the space axis. In practice, this means when traversing through the tree it is sufficient
to compare the point along a single dimension, for each level of the tree. The strategy
of selecting the splitting hyperplane is not strictly defined and can serve as a parameter
for performance tuning. The common approach is to cycle through all dimensions in an
arbitrary order and choose the splitting hyperplane at the median point of the subspace.
This leads to a balanced kd-tree, however, balanced trees do not always guarantee optimal
performance.

To summarize, a step-by-step construction process:

1. Select an axis. Systematically cycle through all the algorithm recurses.

2. F ind the median. Sort the points along the chosen axis and select the median
point. This point becomes a node in the tree.

3. Split the points. Points less or equal to the median are put in the left child node,
points larger than the median are put in the right child node.

4. Recurse. Recursively apply previous steps on the point subset of each child node.
Stop the recursion when there are no more points to split, a depth l imit is reached,
or a point threshold is reached.

The time complexity of building a kd-tree using the median split is 0(N log2 N). High-
performance kd-tree variants are able to lower the construction time complexity to 0(N log N)
[46]. A n example of how a space wi th a few points is partitioned and represented wi th a
tree structure is shown in Figure 1.10.

10

1. POINT CLOUDS AND THEIR REGISTRATION

C

' A > D

B

' A > D

B

E

> D

B

E
F E (66, 85) F (85, 90)

Figure 1.10: KDtree used to parti t ion 2D space [32]

Point insertion and deletion

The addition of points is identical to any other search tree. It involves traversing the tree,
finding the appropriate leaf and then adding it to the bucket of points or splitting the
leaf further. Repeated addition can lead to an unbalanced tree, possibly hurting lookup
performance.

Deleting a point is more computationally costly. It requires finding the appropriate
node and reconstructing that part of the tree. That demands forming a set of points from
all child nodes and recursively splitting it unt i l a termination condition is satisfied.

Nearest neighbor search

The idea of the kd-tree nearest neighbor search is to first traverse down the tree unti l a
leaf is reached, and a minimal distance in the leaf is noted. Then the tree is traversed back
to the root node while updating the minimal distance by checking for minimal distances
in the intersection of the splitting hyperplane with a hypersphere wi th the radius of the
current minimal distance around the queried point. The process is formally described
by a recursive Algor i thm 1. The recursive search begins at the root of the tree wi th the
init ial closest distance set to the maximal value.

When kd-tree is used for nearest neighbor search it achieves the average time com­
plexity of 0(logN) wi th the worst case complexity O(N) [16]. This is a significant
improvement compared to the O(N) complexity of a naive approach. Furthermore, the
there are computational savings. W i t h naive search algorithm a full Euclidean distance
must be computed between each point of the point cloud and the queried point, whereas
wi th kd-tree lookup most comparisons are along a single dimension for the tree traver­
sal. These savings become more noticeable as features are added to the point clouds
and the dimensionality increases. Note that both approaches often keep track of squared
distances, since Euclidean distance asks for a square root, which is a costly operation for
a processor, unlike simple multiplication and addition.

This algorithm can be simply modified to perform k nearest neighbors search, simply
by keeping a list of closest points instead of a single point. Another popular modification
is the approximate nearest neighbors search [35] which provide a "good enough" result in
a significantly shorter time. This approach is crucial in time-sensitive applications such
as robotic navigation or real time graphics and is an active area of research [19].

11

1.4. POINT SET REGISTRATION

Algorithm 1 Kd-tree nearest neighbor search

1: NNS(Q, root, root.point, oo)
2: procedure N N S (Q , N, P, dist)

> Q - query point
> N - current node in the tree
> P - currently closest point
> dist - current closest distance

if A is a leaf then
localdist -<= \\Q — N.point\\
if localdist < dist then

dist -<= localdist
P -<= A.point

8: end if
9: else

10: if Q(N.axis) < N.value then > first search left child node
11: NNS(Q,N.left,P,dist)
12: if Q(N.axis) + dist > N.value then
13: NNS(Q,N.right,P,dist)
14: end if
15: else > first search right child node
16: N~NS(Q,N.right,P,dist)
17: if Q(N.axis) — dist < N.value then
18: NNS(Q,N.left,P,dist)
19: end if
20: end if
21: end if
22: end procedure
Note that each tree node X is a structure consist ing of a pointer to the left node X.left, pointer to the
right node X.right, coordinates of the sp l i t t ing point X.point, index of the sp l i t t ing axis X.axis and a
value X.value by which the axis is split .

1.4. Point set registration
To create a comprehensive map of a scenery or even a single object it is often necessary to
capture point cloud data from multiple viewpoints. This involves aligning multiple point
clouds into a single dataset within a common reference frame, a process known as point
set registration. Figure 1.11 shows an example of a processed scene.

Note that depending on the scanning circumstances, the transformation between view­
points can be either rigid or non-rigid. The thesis assumes proper calibration of scanning
devices, making the point set registration problem into a matter of finding a rigid trans­
formation, a rotation and translation required to find the alignment of point clouds.

One approach to the registration problem is to perform it in two stages: coarse registra­
tion and fine registration. The Iterative Closest Point (ICP) algorithm and its variations
are commonly used for fine registration. However, as I C P aims to optimize a highly non-
convex function [47] and is thus not guaranteed to converge, it works best when point
clouds are already somewhat aligned. This is the reason why coarse registration is first

12

1. POINT CLOUDS AND THEIR REGISTRATION

(a) Scene from 6 different viewpoints [37].

(b) Result of registration [].

Figure 1.11: Process of point cloud registration.

employed to roughly align the point clouds providing a starting point for the ICP-based
fine registration to refine the alignment. Coarse alignment can be as simple as performing
the Principle Component Analysis (P C A) and aligning the principle components, or it
can be more sophisticated such as using Random Sample Consensus (R A N S A C) to find
a rough alignment without a significant influence of outliers.

Another approach, one that this thesis is focusing on, is to omit coarse registration
and perform fine registration directly. For example, a moving robot scanning the scene
multiple times per second is creating point clouds wi th such a small shift that does not
impair the convergence of ICP . However the presence of noise or movement in the scene,
such as moving leaves on a tree, might impair the process. In order to improve the
robustness of the registration algorithm the point clouds can be matched not only on
point coordinates but also on additional descriptors, such as Point Feature Histograms
and color information.

1.4.1. Preprocessing

Several optional steps are available to further ensure the success of point set registration.
In this section, the most commonly used ones are introduced.

Normalization

The registered point clouds may originate from different devices, or even the same devices
wi th different calibration settings, therefore normalization of data might be necessary.

13

1.4. POINT SET REGISTRATION

Filtering

Acquired point clouds might contain noise, and erroneous points that are not present in
the scene as well. If possible, outliers should be detected and removed from the scene.
Depending on the application it might be required to remove undesirable elements such as
ground points, which are a set of planar points under the scanned subject. A simple pass-
through filter might suffice or a more sophisticated segmentation-based method might be
needed to separate the ground points from the main subject.

Downsampling

When data storage space is l imited or there are processing time constraints, downsampling
is useful. Downsampling is a process of reducing the amount of points present in the point
cloud while preserving the detail. A variety of methods are described in detail in [26], while
Figure 1.12 provides a visual summary of common approaches. The common approaches
are:

• Random sampling removes a given percentage of points at random.

• Farthest Point Sampling (FPS) : Selects points based on their maximum distance
from previously selected points, ensuring a uniform distribution through the point
cloud.

• Octree Decomposition: Uses space partitioning algorithm to find a representative
point for each segment.

• Voxel G r i d Fil tering: Divides the point cloud into cells and selects a representative
point within each cell.

• Feature Based Sampling: Attempts to preserve defining features, such as corners
and edges.

14

1. POINT CLOUDS AND THEIR REGISTRATION

iv:....v.'.

(a) Source data (b) FPS (c)3DEPS

»1 $
^itt •-WS»"'

(d) RS (e) UVS (f) VFPS

Figure 1.12: Differences between downsampling strategies. Source data contain 18521
points and each method downsampled to 2000 points. Compared methods are Farthest
Point Sampling (FPS) , 3D Edge-Preserving Sampling (3DEPS) , Random sampling (RS),
Uniformly Voxelized Sampling (U V S) , Voxelized Farthest Point Sampling (V F P S) [26]

1.4.2. Fine registration - I C P
The Iterative Closest Point (ICP) algorithm constitutes a fundamental component of
computational geometry and computer vision by solving the problem of finding an optimal
rigid transformation to achieve alignment of two point clouds. It facilitates advancements
in robotics, where reconstructing a scene enables path planning, and medical imaging,
where bone surface models allow for computer-assisted surgical interventions [3].

The quick and precise registration of large-scale point clouds is a current focal area of
research, wi th the introduction of I C P by Chen and Medioni [], and Besl and M c K a y [5],
presenting a significant advancement. This method computes the translation and rota­
tion between matching points to achieve a specified level of accuracy, culminating in the
determination of the transformation to facilitate the registration process. Nevertheless,
the traditional I C P algorithm encounters challenges, notably in the selection of an init ial
value for the iterative process. The choice of this ini t ial value critically influences the out­
come of the registration. A n inappropriate selection can result in convergence to a local
optimum, preventing the algorithm from reaching the correct registration result. Only
the most common variants are discussed further, namely point-to-point I C P and point-

15

1.4. POINT SET REGISTRATION

to-plane ICP , however, Pomerleau et al. present a cohesive overview of other variants

The algorithm considers a reference point cloud and a matched point cloud, producing
a translation and rotation necessary to achieve alignment. The following steps describe
the I C P process:

1. Pair matching. For each point in the matched point cloud find the closest point
in the reference point cloud.

2. Estimate transformation. F i n d the rotation and translation that minimizes an
error function between the pair-matched subsets. When computing the transforma­
tion estimate, outliers may be filtered away or penalized using a weight function.

3. Perform transformation. Based on the previous step, apply the transformation
to the entire matched point cloud.

4. Compute the error metric.

5. Iterate. Repeat from step 1 unti l the error metric is sufficiently small.

Pair matching

The pair matching procedure within the I C P algorithm is predicated on establishing
correspondences between points across the source and target point clouds. The core
idea behind pair matching is the assumption, that there is a subset of the reference and
matched point clouds, that has been sampled from the same surface and thus there exist
pairs sampling the same point in space in both point clouds. Naturally, it is impossible
to sample the identical point twice, however the algorithm is robust enough that as long
as both samples are close enough, they are going to be matched eventually.

For each point pi in the source set P, the algorithm seeks to identify the closest point
qi in the target set Q, typically employing the Euclidean metric to measure distance,
creating a set of point pairs K{pi,qi).

Mathematically speaking,

where d(-, •) is a distance metric of choice. Kd-trees, as described in section 1.3.2, are
particularly efficient for nearest neighbor search when the Euclidean metric is used. When
creating the point pair set K(pi, the matched pairs are usually not exclusive, however
certain I C P variants eliminate the point from search once it is selected.

To reflect the idea, that only parts of the point clouds are overlapping, the set K can
be further restricted by applying a threshold to the distances:

The value of 5 can be arbitrary or selected based on a percentile of all pair distances in
K, this approach being useful when an estimate of the overlap exists.

in [].

qi = a,Tgmmd(pi,q)
q£Q

16

1. POINT CLOUDS AND THEIR REGISTRATION

Estimating the transformation

When the pair correspondence set K(pi,qi) is established, the next step is to determine
the rigid transformation that best aligns set {pi} to set {qt}. The transformation between
the given sets is described as

qi = Rpi + t + ei (1.3)

where R is a rotation matrix, t is a translation vector and is the additive noise vector.
It encapsulates the measurement errors, sensor noise and numerical errors. The following
analysis assumes the noise vector to have zero-mean isotropic Gaussian distribution.
The best alignment is a choice of rotation matrix R and translation vector t to minimize
the error £ 2 . The error function choice determines the algorithm used to estimate the
alignment of point pairs. The most common variants are the point-to-point and point-to-
plane error functions, defined in E q . (1.4) and E q . (1.15) respectively, and illustrated in
Figure 1.13. Note that the presence of noise is the l imit ing factor of precision of alignment.
This means that even in the case £ 2 = 0, the alignment might not be perfect.

P

(a) Point-to-point (b) Point-to-plane

Figure 1.13: Two distinct distance metric approaches.

Point-to-point I C P

The init ial I C P proposal by Besl and M c K a y [] used the point-to-point approach to
calculating the quality of fit. It stems from the idea that both point clouds sample
identical points that get matched together and their distance determines the error of fit.
Point-to-point approach then uses Singular Value Decomposition (SVD) to determine the
rotation and translation to create the best fit. The error function is defined as

i.

The init ial step is to shift point sets into the origin. Let

17

1.4. POINT SET REGISTRATION

1 k

(1.5)

1 k

(1.6)

>i =pi-p, (1.7)

i = Qi~Q, (1.8)

, p*,q* are centered points and p,q are respective
centers of original point sets. Then the error function has a form

£ 2 = J > * - i ? p * | | 2 . (1.9)
i.

The problem of finding optimal alignment is then solved in two steps:

1. F i n d R to minimize S 2 .

2. Translation is determined by

i = q-Rp. (1.10)

The following steps describe how to find the rotation matrix .R using an (SVD) algorithm.

1. calculate the covariance matrix

= J > * ? * T - (1-H)
i.

2. F i n d the S V D of H
H = UYVT. (1.12)

3. Calculate
v = v/y T . (i.i3)

4. Calculate the determinant of X . If de t (X) = 1, then the rotation is found, R = X.
In a special case it might happen that de t (X) = — 1. Then there are two possibilities:

• Some of the singular values \ are zero. In that case step 3 is modified

X = V'UT (1.14)

where V is obtained from V by changing the sign of the i - th columns.

• None of the singular values Aj are zero. In that case the algorithm fails and a

R A N S A C - l i k e method should be utilized instead.

A detailed analysis of this approach to finding the alignment transform including the
derivation of the algorithms wi th proofs is available in [2].

18

1. POINT CLOUDS AND THEIR REGISTRATION

Point-to-plane I C P

When Chen and Medioni [] introduced their version of ICP , they opted for a different ap­
proach. Unlike the standard point-to-point I C P , which minimizes the Euclidean distance
between corresponding points, the point-to-plane I C P minimizes the orthogonal distances
from points in one set to the tangent planes at the corresponding points in another set.
This approach is more aligned wi th the intuitive notion of surface fitting, making it es­
pecially suitable for applications in 3D scanning and modeling, where surfaces are often
the primary objects of interest. However, this approach requires the knowledge of surface
normals at each point. This is either provided by the scanner or can be estimated from
the point's neighborhood. The following page is a summary of the main ideas of the
algorithm derivation available in [34].

The error is formulated as

S 2 = J2\\(RPi + t - q i) T -nqi\\2 (1.15)
i.

where nqi is the surface normal of the point cloud Q at
The following formulas describe a solution for a 3D point cloud. The rotation matrix

R has a form

R(a,ß,>y)
cos 7 cos ß — sin 7 cos a + cos 7 sin ß sin a sin 7 sin a + cos 7 sin ß cos a
sin 7 cos ß cos 7 cos a + sin 7 sin ß sin a — cos 7 sin a + sin 7 sin ß cos a

— sin ß cos ß sin a cos ß cos a

The solution of alignment relies on the linearization of the rotation matrix that can
be achieved using the small-angle approximation. When an angle 9 ~ 0, then sin 9 ~ 9
and cos 9 ~ 0,

R(a,ß,>y)
1 —aß — 7 cry + ß
7 aßj + 1 ßj — a

-ß a 1

1 - 7 ß'
7 1 —a

-ß a 1

'1.16)

;i.i7)

The full transformation is then represented as

a
ß

r _ 7

t tx

in

Thanks to the linearization the point-to-plane error function can be rewritten as

'1.19)

19

1.4. POINT SET REGISTRATION

Minimizat ion of the error function wi th respect to r and T is achieved by setting the
respective partial derivatives to zero, which can be then assembled as a linear form At = b
as

Pi x nqi

n„ [(Pi x nqi) n
Pi x nqi

n.
{{qi-Pi) -nqi). (1.20)

Final ly by rewriting the linear form as

G G t t = Gh, (1.21)

where

G
••• PiXnqi

{Qi ~ Pi) • nqi

(1.22)

(1.23)

This equation can be solved using the Cholesky decomposition.

20

2. POINT FEATURE REPRESENTATIONS

2. Point feature representations
A point is a fundamental unit of spatial information representation, natively denned

by its three Cartesian coordinates in 3D space. However, on its own, the three coordinates
provide very little context about local properties of the surface. This limits applications
concerned wi th point comparison. For example, two points might have the same coor­
dinates, but they come from different surfaces, or on the contrary, the two points might
come from the same surface, but due to noise their coordinates differ. Without further
analysis, it is difficult to reason about the relationship of points. These applications bene­
fit from the concept of point descriptors. Academic resources offer a wealth of terminology
for this concept, including terms such as shape descriptor, local descriptor, or geometric
feature, however, to stay consistent wi th the primary source [37] for this chapter, the
preferred terminology is point feature representation.

This chapter discusses the tools that help improve point set registration. It begins wi th
a formalization of point feature representations, explains how to estimate the normals of
a point cloud and then moves on to the topic of Point Feature Histograms and Fast Point
Feature Histograms.

2.1. Formalization and properties of feature represen­
tations

The formal definition of a point feature representation as given in [] is the following.
Let pq be the query point and Vg = {Pi,p2 • • -Pn} be a set of points in the neighborhood
of pq. The points belonging neighborhood must satisfy

\\p--pq\\<d (2.1)

where d is a specified maximum distance to the query point and ||-|| is a norm of choice.
Furthermore, the restriction of the neighborhood can be given by the number of points k.
A point feature representation is then defined as a vector function F that describes the
local geometry captured by the neighborhood around the query point pq

F(pq,Vk

q) = {x1,x2,x3...xm} (2.2)

where Xi,i G {l...m} stands for the value of the zth dimension of the point feature
representation vector. Comparison of different points p\ and P2 then translates to the
comparison of their point feature vectors Fi and F2. Let T be a similarity measure, then
the similarity of points p\ and p2 is described as

F(p1,p2) = d(F1,F2) (2.3)

where d is a distance metric.
In simple terms, a point feature representation, or a local shape descriptor, is a vector

signature at a point describing the local environment. Tr iv ia l example of a point feature
representation is a surface normal at a point, or a point average in a ball-shaped neigh­
borhood with a fixed radius. A more sophisticated point feature representation includes
information about surface curvature or detects the presence of an edge. W i t h a wide

21

2.1. FORMALIZATION AND PROPERTIES OF FEATURE REPRESENTATIONS

variety of approaches, there is a necessity to establish what constitutes a "good" or "bad"
point feature representation. According to [21, 37] it is useful to evaluate the following
characteristics.

1. Discrimination accuracy: The primary goal of point feature representations is
to improve the capability to distinguish different points and match the same points
in the point cloud

2. Transformation invariance: Cartesian coordinates change completely with rota­
tion and translation, therefore having a point signature not be affected by transfor­
mation allows to use it as an identifier for matching.

3. Varying sampling density: A local surface patch should have the same signature
regardless of the amount of points sampled in the area

4. Robustness against model degeneracies

5. Uniqueness

6. Performance and memory efficiency

7. Abil i ty to do partial matching

8. Noise insensitivity: Small changes in the local topology lead to small changes in
the point feature representation

The literature is abundant wi th approaches to point feature representations. A com­
parison and a taxonomy of state-of-the-art descriptors is provided in [17]. The following
paragraphs present a selection point feature representation solutions.

• View-based descriptors bui ld upon decades of research in the field of image process­
ing. The general idea is to have several fixed viewpoints and project an image of
the point cloud's surface onto a 2D plane. This way a scanned object is represented
by a series of images and is mostly used for object recognition and matching. A n
overview is presented in [27].

• Transform-based descriptors embed the information about local topology using
Fourier transform or wavelet transforms. A n example of such a descriptor is R I D F ,
described in detail in [20].

• Geometry-based descriptors use a more direct approach. Radius-based Surface De­
scriptor (RSD) [] models radius as a relationship of the distance between two
points wi thin the neighborhood and the angle of their normals. Pr incipal Curva­
tures algorithm describes local geometry as a function of curvatures along principal
directions.

• Histogram-based descriptors are a broad category of descriptors. The core idea
is to take a large set of values describing the local geometry and sort them into
bins, effectively compressing the information into a histogram. S H O T (Signature
of Histograms of OrienTations) [41] is a popular example, along wi th Point Feature
Histograms (P F H) described in detail in a later section 2.3.

22

2. POINT FEATURE REPRESENTATIONS

2.2. Surface normal estimation
A s a preliminary to P F H , surface normal estimation must be discussed first. Normals are
the core of not only P F H but also many other point feature representations. Furthermore,
having normals at a point is crucial in general for computer graphics applications, such
as to being able to generate shadings by bouncing the light off and other visual effects.

The problem of determining the normal to a point on the surface is approximated by
the problem of estimating the normal of a plane tangent to the surface, which in turn
becomes a least-square plane fitting estimation problem in Vq []. This can be performed
using P C A .

The fitted plane is represented by a point x and a normal vector nq. The plane is
fitted in the least-square sense so that distances di from points pi G Vq defined as

di = (Pi -x)-nq (2.4)

are minimal . This is achieved by setting x

1 k

x=P = -^^2(Pi) (2.5)
i=l

to the centroid of Vq. Then nq is then found by taking the covariance matrix C G M 3 x 3

of Vk

q

k

C = - Y J ^ - P) - ^ - P Y i (2-6)
i=l

finding its eigenvectors and eigenvalues

C-vj = Xj-vj, J G {0,1 ,2}. (2.7)

If 0 < Ao < Ai < A2 then the smallest principal component vo corresponding to the
smallest eigenvalue Ao is an approximation of nq.

While this approach allows for normal estimation, it is not able to determine the
appropriate orientation of the normal. The normal points either "into" the surface or
"outside" the surface, the concrete choice is arbitrary, however, the choice should be con­
sistent across the surface. One way of achieving that is using the viewpoint information.
It stems from the assumption, that before registration, the point cloud is acquired from
a single viewpoint, normals must be oriented consistently towards the viewpoint. More
specifically,

if i H - Z M j f e < 0, then np. := -np. (2.8)
I k - P i l l

where v is the viewpoint. However, in the absence of information about the viewpoint
the problem of orienting becomes more difficult. The PointCloudLibrary [40] chooses an
arbitrary point (0,0,0) as the viewpoint. A different, more computationally expensive,
approach is proposed by [18]. The core idea is that two data points pi, pj that are
geometrically close and therefore belong to the same part of the surface have the same
orientation, meaning

23

2.3. POINT FEATURE HISTOGRAM

n P i - n P j ^ l . (2.9)

Given a starting point wi th a correctly oriented normal, the algorithm then reorients
all normals to satisfy the local similarity of orientations. The algorithm uses an Euclidean
M i n i m u m Spanning Tree (E M S T) to connect the neighboring points and weights based on
Euclidean distances to determine orientation similarity. This approach is also useful when
estimating normals for an already registered point cloud (one combined from multiple
viewpoints). Figure 2.1 demonstrates the difference of normal orientation for such a point
cloud.

(a) I ncons i s t en t n o r m a l o r i e n t a t i o n (b) C o n s i s t e n t n o r m a l o r i e n t a t i o n

Figure 2.1: Subfigure (a) is an example of a model with the normal orientation cho­
sen based on the viewpoint resulting into inconsistent orientation across the model. O n
subfigure (b) all normals were reoriented to point outside the surface.

2.3. Point Feature Histogram
P F H represents a sophisticated and versatile method for capturing the spatial relation­
ships between points in a point cloud, a crucial task for computer vision and robotics. A t
its core, P F H involves the computation of a high-dimensional feature space that encodes
the local geometric properties of the point cloud and afterward a dimensional reduction
using the histogram technique, to preserve the resolution capability of the point feature
representation while minimizing the computational overhead caused by dimensionality.
The main source for this section is the P F H author's thesis [37].

Normals and curvature are point feature representations that are easy to compute,
but because they capture the neighborhood geometry Vg wi th only a few values, many
points have similar values. In other words, the discrimination capability is comparatively

24

2. POINT FEATURE REPRESENTATIONS

low. The main goal of P F H is to significantly improve the quality of the point feature
representation. P F H achieves this by not only comparing the query point to its neigh­
borhood, but by considering the relationship of all point pairs wi thin the neighborhood
•pfe
' 1 '

When computing the Point Feature Histogram of a query point pq, consider the set of
its k nearest neighbors as defined in 2. Each point's surface normal must be known. The
steps to compute the P F H are:

1. Establish a local coordinate system for each unique unordered pair of points Pi and
Pj from Vg.

2. Caclulate angular features describing the realtionship between the pair's normals.

3. Create a histogram based on all point pairs' angular features to reduce dimension­
ality.

Establishing local coordinate system

To calculate angular features for each point pair, a local coordinate system must be
established, as depicted in Figure 2.2. To uniquely identify the origin for each point pair
Vpi,Pj G Vg,i ^ j, define the point orientation vectors as

Pa = Pi-Pi, (2 1 0)

Pij =Pi-Pj-

Then label points Pi,Pj as the source point ps and the target point pt such that the source
point is one wi th a smaller angle between its normal and a line connecting the source
point wi th the target point.

if: arccos(nj • pji) < arccos(nj • p^)

then ,
(2.11)

Ps = Pi; n s = rii,

Pt = Pj; nt
= n r ,

Ps = Pi; n s = Uj,

Pt = Pi; nt
= rii.

else

Now the Darboux frame 1 uvw wi th origin at ps is defined as:

u — ra.
v = u x ¥ ^ h (2 ' 1 2)

W = U X V.

Calculating the angular features

W i t h the Darboux frame established, the relationship between the two normals ns and rit
is captured by

t e r m i n o l o g y used i n consistency w i t h [37].

25

2.3. POINT FEATURE HISTOGRAM

a = arccos (v • nt),

Pt -Ps
arccos u

\\Pt - P s 2

9 = arctan
(2.13)

w • nt "
u-rtt

d = \\pt -Psh-

v = (Pt-Ps) x u u = n s

ir U X V

u

Figure 2.2: Darboux frame wi th highlighted angular features for a point pair.

Each point pair wi thin the neighborhood Vg is represented with a quadruplet (a, <f>, 9, d).
The computational complexity for a single point is 0(k2) and for the entire point cloud
wi th n points it is 0{nk2).

Histogram binning

The final step is to create a histogram representation from all the angular feature quadru­
plets. Normalizing the distances and the angles to the interval [—1,1] produces a trans­
formed feature quadruplet (/ i , fi-, fz-, fi)- Spli t t ing each feature at the middle of the
interval generates a 16-bin histogram, where each bin represents the proportion of points
wi th their features belonging to the appropriate interval. Point 's histogram index idx is
calculated as

idx = ^stepjsj, fj) • T 1 (2 . 1 4)

i=l
where the step(s, f) function is defined as

step(s, f)
0 f<s,

1 f>s.
(2.15)

26

2. POINT FEATURE REPRESENTATIONS

Figure 2.3 illustrates how the Point Feature Histogram differs for points depending on
which surface they are coming from.

I II

I. ll. .1 ..ill.. ..Ill
—><

Figure 2.3: Examples of histograms sampled at different points on a model.

Histogram can be extended to any number of features with an arbitrary amount of
interval splits. Furthermore, the splits are not required to be distributed equally along
the interval. The generalized index function has a form

n 1 *
idx = stepi(fi) • —— Y\ div tax = 2 ,stepj{ji) • —- __aivj (2.16)

where divi is a number of subintervals for a given feature /$ and stepi is a generalized step
function wi th arbitrary interval splits Sj G [fmin, fmax],j £ {1, 2 , . . . , divi — 1}.

stepi(f)

0,

1,

fi < si,

Sl < fi > S2;
(2.17)

divi - 1, fi> s d i w . _ i ,

2.4. Fast Point Feature Histogram
In real time applications, the total processing time is the l imit ing factor for the feasibility
of the algorithm, so it is especially important to consider algorithm optimizations. If the
neighborhood contains point pi there is a high likelihood that a lot of point pairs are
shared wi th V\. Rusu proposes storing calculated angular features computed in E q . (2.13)

27

file:///_/_aivj

2.4. FAST POINT FEATURE HISTOGRAM

in a temporary cache. Caching is especially efficient when the dataset is ordered based
on point proximity, allowing it to reduce the runtime to about 75 % [37].

Nonetheless, the theoretical computational complexity remains to be 0(nk2). Rusu et
al. present a modification of P F H called Fast Point Feature Histogram (F P F H) [38] that
achieves most of the discrimination accuracy while reducing the theoretical computational
complexity to 0(nk).

First , the notion of a Simplified Point Feature Histogram (SPFH) is introduced. Unlike
PFH{pq) that computes angular features (a, (f>, 9, d) for each point pair in the neighbor­
hood (pi,Pj),Vpi,Pj G Vq,pi 7̂ Pj, the SPFH(pq) saves the required computations by
only calculating angular features for pairs wi th the query point (pq,Pi),Vpi G Vq,pi ^ pq.
However, S P F H only captures the relationship of the query point wi th its neighborhood.
To capture the local geometry, F P F H for the query point is created as a weighted average
of S P F H s of points in the neighborhood

1 m 1
FPFHipa) = SPFHipa) + — V — • SPFHipi) (2.18)

i=i

where m < k is the number of points in the neighborhood Vq and Ui is a monotonically
increasing function of distance of the point pair (pq,Pi). Note that feature histograms are
nothing but a 6-dimensional point, where b is the number of histogram bins.

28

3. COLOR

3. Color
Color is a complex phenomenon that not only adds beauty to the world around us

but also constitutes a fundamental aspect of perception, communication an expression.
The proper understanding of this phenomenon lies at the intersection of physics, biology
and mathematical modeling. Due to the nature of point cloud data scanning, color values
are often collected along Euclidean coordinates of points. Since color provides additional
information to discriminate differing points, it presents an opportunity to further enhance
point cloud registration.

This chapter aims to provide the necessary theoretical background about what color
is from the physics point of view, how human eyes perceive it, and give examples of color
spaces and different approaches to color representation, all to provide context, how color
might be used as a point cloud descriptor.

3.1. What is color?
Fundamentally, color is not a physical property, but rather a subjective response to differ­
ent wavelengths of light reflecting off surfaces and reaching our eyes. Color is a perception
of light, part of the electromagnetic spectrum visible to the human eye, being reflected,
transmitted, and emitted by objects. The visible electromagnetic spectrum 1 spans from
wavelengths of 400 nanometers to 700 nanometers [13]. The shortest wavelengths of the
visible portion of the spectrum are perceived as violet and the longest as red, wi th various
colors residing in between, as shown in Figure 3.1.

400 500 600 700
Figure 3.1: Wavelengths of the visible spectrum in nanometers.

When light encounters an object, it 's the object's inherent properties that determine
which wavelengths are absorbed and which are reflected. The reflected wavelengths are
then perceived by the eye. This phenomenon explains why a leaf appears green, it ab­
sorbs all colors of the spectrum except green, which is reflected. Similarly, an object
appears white when it reflects all wavelengths and black when it absorbs them all without
reflection.

3.2. Human perception of color
Vis ion is the most important human sense, responsible for 80 % of all perception [28]. The
human visual system consists of the eye capturing the light, the optical nerve transferring
the sensation to the brain, and the visual cortex, part of the cerebral cortex responsible
for processing the visual information.

l r The exact in terval of visible l ight varies w i t h sources. Formulas [4] used to calculate the t r i s t imulus
values used to represent color use the 380nm to 740nm range.

29

3.3. MEASURING COLOR

As light enters the eye through the pupil , it is projected by the lens onto the retina.
Retina is covered wi th sensing cells, that are divided into two groups: rods and cones [13].
Rods are responsible for detecting light in low-light situations. However, these cells do
not enable color sensing, this is the reason why vision in the dark is in grayscale. The
other type of cells, cones, are responsible for vision when there is enough light. There
are three types of cones, S, M , and L for short, medium, and long wavelengths. Human
vision is therefore called trichromatic. The peaks in the response curves of the cones, as
shown in F ig . 3.2, correspond to blue, green, and red respectively [11].

3.3. Measuring color
The task of measuring color is effectively a task of measuring light and its spectral char­
acteristic. That can be measured using a spectrophotometer, a device, that measures the
reflected light through a series of color filters, that separate the spectrum into narrow
color bands, whose intensities are measured. Another approach, based on how the human
eye perceives color, is to use a colorimeter, where the light is measured through a set of
three filters: red, green, and blue. This is how most digital cameras operate as well, its
sensor is covered in a color filter array, a pattern of red, green, and blue filters, producing
a colorful image after a demosaicing process.

3D scanners use digital cameras and projection techniques to add color information to
the point cloud data. The resulting point cloud is then described by Euclidean coordinates
and R G B values.

Note, that this chapter omits the topic of camera calibration, color accuracy and
processing of raw image data. There are multiple factors, that complicate the process of
color reproduction. The data collected by the image sensor about the color varies by the

30

3. COLOR

type of illuminant. The spectral power distribution of fluorescent light differs significantly
from the sunlight at dawn. The human brain is able to compensate for the i l lumination
change and perceive the color of a sheet of paper as white, however, to the camera, it
appears as blue or orange. To compensate for the change of illuminant, the color balance
needs to be adjusted. Another example of hidden complexity is the consistency of color
across devices, i.e. ensuring the color is consistent across cameras, scanners, printers,
and various display devices. The thesis focuses on point cloud processing rather than
acquisition, therefore the following text assumes the color information in point clouds
to be accurate. A detailed explanation of issues related to color accuracy can be found

A s described at the beginning of the chapter, color is a perception of light. The light is
described by its spectral power distribution (SPD) , however, human eyes are not cannot
perceive the S P D . This section outlines alternative approaches to representing color, that
attempt to model the human eye and its trichromatic perception. These approaches are
based on the observation, that any color can be recreated using an additive mix of three
primary colors, thus representing color wi th a triplet of values of intensities of the primary
colors. The system of primaries used to represent a color is called the color model or the
color space. The following subsections describe some of the most commonly used color
spaces, using [] as the primary source.

The most widely adopted representation of color is using the red, green, and blue (R G B)
primaries. Colors are represented by a triplet of intensities of the primary colors, creating
the desired color through an additive mixture. A common misconception is that R G B
is a color space, while in fact, it is a family of color spaces, where a concrete choice of
the R G B primaries determines the specific color space. This is the reason why the R G B
approach is called device dependent - each camera sensor and display have their own set
of primaries.

The Commission Internationale de l'eclairage (CIE) in 1931 devised the C I E R G B
color space. Monochromatic reference stimuli R, G, and B were selected as primaries,
wi th respective wavelengths [31]

Wright and Gu i ld in a study asked observers to color match a set of lights wi th specified
wavelength by varying the intensities of the primaries R, G ,and B. B y averaging the
responses the color matching functions f(X),g(X), and 6(A) were devised for the standard
observer [12]. See Figure 3.3 for a plot of the color matching functions.

in [15,21,31].

3.4. Representing color - color spaces

3.4.1. R G B

XR = 700.0 nm,

\G = 546.1 nm,

XB = 435.8 nm.

31

3.4. REPRESENTING COLOR - COLOR SPACES

0.40

0.30 7

0.20 -

0.10 r

0.00

-0.10

400 500 X 6 0 0 7 0 0

Figure 3.3: C I E 1931 R G B Color matching functions [9].

A monochromatic light E\. wi th the wavelength \ is perceptually identical to the
additive mixture using the color matching functions

E\t pa f(Aj)R + g{\i)G + 5(Aj)B. (3 .2)

This provides an additive representation for any light stimulus Q. A light stimulus Q
is a sum of monochromatic lights E\. weighted by a factor Q(\i). Then

Q{Xi)EXi Pa r(Ai)g(Ai)R + g{\i)Q{\i)G + fe(Aí)Q(Aí)B. (3.3)

Using Grassman's linearity laws [1], the light stimulus Q has the same color as the
additive mixture

Q pa RR + GG + BB, (3.4)

where

R

G

B

710

ř(A)Q(A)dA,
380

740
y(A)Q(A)dA, (3.5)

380
740

5(A)Q(A)dA.
380

The tristimulus (R, G, B) uniquely identifies any spectral power distribution, thus
defining the C I E R G B color space.

3.4.2. X Y Z
Although the R G B representation is ubiquitous, the C I E R G B color space has a flaw, that
at the time of introduction severely limited its usability it permitted negative values. The
International Commission on Illumination foresaw the issue and in 1931 also introduced
a second color space, the C I E X Y Z color space.

32

3. COLOR

C I E X Y Z was derived from C I E R G B with three set requirements. The first is for
the color matching functions x(X),y(X), z(X), see F ig . 3.4, to be a linear combination of
f(X),g(X),b(X), such that x(X),y(X), z(X) are non-negative.

m
m
m

o.o
400 500 600 700

1/nm
Figure 3.4: C I E 1931 X Y Z color matching functions [8].

When C I E X Y Z was developed the computational ability was a l imit ing factor and
dealing wi th non-negative numbers allowed to simplify the calculation []. The second
requirement was that the y(X) be identical to the standard luminosity function so that
the Y primary would correspond to the luminance of the color. The final requirement
was to normalize the color matching functions so that the tristimulus values X = Y = Z
are equal for white light. The tristimulus (X, Y, Z) for light stimulus Q is obtained as

X

Y

710
x{X)Q(X)dX,

:«o
740

y(A)Q(A)dA, (3.6)
:«o

740
z{X)Q{X)dX.

380

The primaries of C I E X Y Z are sometimes called vir tual primaries, as they do not
correspond to a real color. The conversion between C I E R G B and C I E X Y Z is possible
via a simple linear transform

'X'
Y =
Z

0.49000 0.31000 0.20000
0.17697 0.81240 0.01063
0.00000 0.01000 0.99000

~R~
G
B

(3.7)

3.4.3. H S V
The R G B representation and C I E X Y Z are excellent for storing and transferring the color
information, as displaying the color is just a matter of converting it to the device's color
space by mult iplying the color vector by the device's transformation matrix. However,
without visualization, judging the properties of the color purely from the tristimulus
values is difficult. The R G B and C I E X Y Z representations do not align with how humans
think about color. When working wi th color editing software, it is common to adjust

33

3.4. REPRESENTING COLOR - COLOR SPACES

the brightness of a color, make it more intense or more pale, or perhaps shift the tone of
color. To work wi th color in a more intuitive manner, R G B can be transformed into an
H S V color space. H S V stands for hue, saturation, and value. Like R G B , H S V is device
dependent, as it transforms device specific R G B tristimulus into an H S V representation.

When defining the H S V components, first a set of helper variables are defined, the
maximum M, minimum m and the chroma C

M = max(R,G,B),

m = min(i?, G, B),

C = M-m.

(3.1

Hue component refers to the color's position on the color wheel, shown in F ig . 3.5, and is
represented in degrees

H'

'undefined if C --= 0,

mod 6 if M = R,
B-R i 9

c ~ r Z

if M = G,
R-G , 4

K C ^
if M = B,

(3.9)

H = 60° * H'.

270°

180°

Hue

180°

Figure 3.5: The color wheel. Obtained as a slice of the H S V space where V — 1

Value describes the intensity of color on a scale of 0 to 1. Value of 0 means the color is
pure black, while value 1 can be either pure white or colorful, depending on the saturation
value.

V = M = max(i?, G, B) (3.10)

Fina l ly saturation describes how pale or intense the color is on the scale from 0 to 1.
Color wi th a saturation of 0 means is on the grayscale. Value of S is defined as

S
0 if V = 0

y otherwise.
(3.11)

34

3. COLOR

There are similar color representations to H S V , such as Hue, Saturation, Lightness
(HSL) and Hue, Saturation, Intensity (HSI). These representations take a slightly different
approach to defining the value and the saturation components, but the principle is the
same, to separate color into more intuitive components.

3.4.4. L A B
A key functionality of point feature representations is the differentiation of points. To
use color as a point feature representation, it is necessary to be able to reason about
differences between colors. For that purpose, the H S V representation is much more useful
than R G B since it allows to quickly compare whether the color is light or dark, pale or
intense, or if it is more yellow or blue. However, the discriminative ability of H S V is
l imited because it is not a perceptually uniform color space.

A color space is called perceptually uniform when the distance between points in the
given space is proportionate to the perceived difference between the colors corresponding
to the points []. In 1976 C I E L A B (sometimes stylized as L*a*b*) was developed wi th
perceptual uniformity goal.

The C I E L A B space is three dimensional color space. The L* component represents
lightness, matching the human perception of lightness, and ranges from 0 to 100. The
a* and b* are chromaticity components, both ranging from -1 to 1 and when both are
0, the color is on the grayscale. The a* component ranges from green to red and the b*
component ranges from blue to yellow. Figure 3.6 illustrates the axis of C I E L A B space.

^.n L* = 100

W L* = 0

Figure 3.6: A x i s of the C I E L A B color space.

C I E L A B values can be obtained by converting the C I E X Y Z tristimulus

L* = UQf(Y/Yn) - 16,

a* = 5 0 0 / (X / X „) - f(Y/Yn), (3.12)

b* = 200f(Y/Yn)-f(Z/Zn),

35

3.5. USING COLOR AS A POINT FEATURE REPRESENTATION

where the function f(t) is defined as

/(*)
if t > 5\,

)tS2 + ^ otherwise,

29

(3.13)

The XN,YN,ZN are the tristimulus values of the reference white, the illuminant to which
the color is adapted. A n example is the standard D 6 5 2 i lluminant wi th tristimulus values
of

XN = 95.0489,

YN = 100, (3.14)

ZN = 108.8840.

The inverse formula to obtain C I E X Y Z tristimulus from C I E L A B is

X = X , , / - ' f £ ± « +
J V 116 500

(3.15)

L* + 16 b* \
116 200) '

wi th f~xit) being the inverse of / (£) in Eq.(3.13) using the same value for S

t3 if t > 5,

352(t—^) otherwise.
f-\t) (3.16)

3.5. Using color as a point feature representation
A key benefit of using a color space designed wi th perceptual uniformity in mind, such
as C I E L A B , is that the perceptual difference between colors can be measured v ia the
Euclidean metric. In in order to attempt to improve the discrimination between points
in a point cloud, not only their distance is considered, but also their color similarity.
When performing point set registration, the points from the source and the target point
clouds might be close, but if they are both a different color, or one is significantly darker
than the other, it indicates that they were sampled from a different area of the surface.
Including color information in the C I E L A B color space is simple, it is sufficient to treat
the tristimulus values as additional dimensions to the Cartesian coordinates and without
changing the metric a distance can be measured.

For example, measuring the distance between points p and q can be done as
2

d(p,q,a)

Px qx

Py qy

Pz qz

apL* aqL*
apa* aqa*
apb* aqb*

(3.17)

2 D 6 5 is an ar t i f ic ia l i l luminant designed to represent average na tu ra l daylight . Its correlated color tem­
perature is roughly 6500K [31].

36

3. COLOR

where a is a scalar used to weigh the color information against the coordinates. This
way it is possible to use color wi th already exiting point registration methods without the
need to modify the implementation.

Note, that although C I E L A B was designed to be perceptually uniform, it didn't
achieve the set out goal perfectly. Since its introduction in 1976 more advanced color
spaces were introduced [], offering better perceptional uniformity, however, for purposes
of point set registration C I E L A B is sufficient.

37

4. Implementation
The final chapter of the thesis is dedicated to the implementation of the previously

discussed concepts, aiming to extend F P F H wi th color for I C P registration. The chapter
features excerpts of code to illustrate how the core concepts were implemented. Note that
for the sake of conciseness, the featured code is modified and stripped of some comments.
A l l code used is attached, wi th a file tree in Appendix 4.4.3.

4.1. Prerequisites
Python is the language of choice for the implementation part of the thesis. It is a high level,
dynamically typed, interpreted, garbage collected language. These properties together
wi th Python's design philosophy promote readability, so the source code is comprehensible
for readers wi th little software engineering background. Another benefit is it is completely
free to use 1 and comes with a mature ecosystem, that is available for the vast majority of
systems. A wealth of developed libraries is accessible through p ip 2 , the package installer
included wi th most Python distributions. These properties make Python a great choice
for proof-of-concept projects and demo code bases.

Whi le there are many benefits to using Python, it does not come without trade-offs.
The main drawbacks are related to performance. Due to Python's approach to objects
and memory handling it is slower than compiled languages. The performance difference is
noticeable especially when dealing with loops and large amounts of computation. Further­
more, due to the Global Interpreter Lock (GIL) , Py thon bytecode can be executed only
by one thread, meaning multi-core systems cannot be efficiently utilized. Such trade-offs
are acceptable considering the goal is to create a demonstration of point cloud registration
and point feature representation principles rather than a production, real-time system.
Nonetheless, there are ways of l imit ing the performance penalties of using Python, such
as making use of libraries for matrix computations, that utilize optimized precompiled
routines for demanding computations.

The implementation makes use of several libraries, the most noteworthy are:

1. N u m P y 3 , short for Numerical Python, is a fundamental library for projects perform­
ing extensive numerical data processing. The core feature of N u m P y is ndarray,
a performant class for representing multidimensional arrays, that comes wi th a
plethora of operators.

2. Tr imesh 4 is a library designed for working with triangular meshes. It offers a simple
interface for working with point clouds, supports loading most common point cloud
file types and provides interactive visualization.

1 M o s t L i n u x dis t r ibut ions come w i t h P y t h o n preinstal led, on W i n d o w s and M a c s i t is available through
their respective package systems. Al te rna t ive ly , P y t h o n is available at h t t p s : / / w w w . p y t h o n . o r g /
d o w n l o a d s / .

2 h t t p s : / / p y p i . o r g / .
3 h t t p s : / / n u m p y . o r g /
4 h t t p s : / / t r i m e s h . o r g / i n d e x . h t m l

38

https://www.python.org/
https://pypi.org/
https://numpy.org/
https://trimesh.org/index.html

4. IMPLEMENTATION

3. Sklearn 5 , otherwise known as scikit-learn, is a powerful machine learning suite, that
comes with data processing routines. The implementation uses Sklearn for efficient
nearest neighbor search.

4.1.1. Point cloud formats
File formats that store point cloud data are divided into two types, binary and A S C I I .
ASCII-based formats store point cloud data in a text form, the primary benefit being
human legibility and simpler parsing. Binary formats require dedicated encoding and
decoding software, but produce compact files, thus being useful for storage and transfer
of larger models.

Considering that point clouds are a fundamental part of 3D modeling, a number of
formats used for storing point clouds were primarily intended as 3D model formats.

X Y Z and C S V

The simplest approach to storing point cloud data is to represent them in a tabular form,
where each row represents a point and the columns are its coordinates and additional fea­
tures. C S V (Comma Separated Values) format, being a staple format in data science, is
suitable for this purpose. The X Y Z is a nonstandardized file format, that stores each point
on a separate line, with the x, y, z coordinates separated by whitespace. Some implemen­
tations choose to follow the x, y, z coordinates by the r, g, b values. Other implementations
contain a few header lines describing the number of points and other metadata, often to
allow storing multiple point clouds in a single file. However, the lack of standardization
complicates parsing, so this format is not preferred.

P L Y

P L Y [45] (Polygon File Format), also known as the Stanford Triangle Format, is a versa­
tile file format primarily designed to store polygon and point cloud data, that supports
both the binary and A S C I I representations. A P L Y file begins with a header describing
the present elements and their properties, along wi th counts. The header is then followed
by lists of elements. P L Y is popular and well-supported due to the standardized rep­
resentation of vertices, faces, triangles and normals as well as the option to extend the
elements wi th custom properties. See below for an example of a tetrahedron with colored
faces in P L Y .

1 piy
2 format a s c i i 1.0
3 comment tetrahedron
4 element vertex 4
5 property f l o a t x
6 property f l o a t y
T property f l o a t z
8 element face 4
9 property l i s t uchar i n t vertex_indices

10 property uchar red { start of vertex color }
n property uchar green

5 h t t p s : / / s c i k i t - l e a r n . o r g / s t a b l e /

39

https://scikit-learn.org/stable/

4.1. PREREQUISITES

12 property uchar blue
13 end_header
14 0 0 0
15 1 1 0
16 1 0 1
17 O i l
is 3 1 2 3 127 127 127
19 3 1 0 2 255 0 0
20 3 3 2 0 0 255 0
21 3 0 1 3 0 0 255

O B J

Developed in the 1980s by Wavefront Technologies, the O B J file format was intended for
3D modeling. Pr imar i ly an A S C I I format, however, binary implementations exist as well.
In addition to storing geometric vertices and their parameters, as well as facets, it has
support for higher order surfaces and offers options for texture mapping. The O B J format
is widely adopted by the 3D printing community.

P C D

P C D [39], short for Point Cloud Data, is a file format developed under the Point Cloud
L ib ra ry 6 project. Unlike the previously mentioned formats, it was developed specifically
for point clouds. For this reason, it does not support meshes and facets, instead, it focuses
solely on point cloud data and optimizing the I / O . It stores the viewpoint, and has support
for multidimensional feature histograms and more. Another differentiator is the support
of organized point cloud data. Data coming stereo and Time-of-Flight cameras have an
image-like structure. A n organized dataset preserves the spatial relationship between
points in the dataset, resulting in speedups in the nearest neighbor operations [39].

Loading and showing a point cloud

Before processing point clouds, it is necessary to be able to load them. Fortunately,
trimesh makes it easy. The following snippet shows how to load a mesh, access the
underlying point cloud wi th color, and finally how to visualize the mesh. A n example
script to load a model wi th trimesh, shown in Lis t ing 1. The results of the script are
shown in F ig . 4.1.

6https://pointclouds.org/

40

https://pointclouds.org/

4. IMPLEMENTATION

Listing 1 Code to read and display a .ply model.
i import numpy as np
2 import trimesh

4 pathToMesh = 'model.ply'

(i # load and v i s u a l i z e a t r i a n g l e mesh
r mesh = trimesh.load(pathToMesh)
8 mesh. showQ
9 # extract XYZ and RGB data as matrices

10 dataXYZ = np.asarray(mesh.vertices)
11 dataRGBA = np.asarray(mesh.visual.vertex_colors)
12 # create and v i s u a l i z e a pointcloud
13 pointcloud = trimesh.PointCloud(dataXYZ)
14 pointcloud.colors = dataRGBA
15 pointcloud. showO

(a) mesh visualization (b) point cloud visualization

Figure 4.1: Result of program in Lis t ing 1. The viewport is interactive; the model can be
rotated and scaled.

41

4.2. IMPLEMENTING POINT FEATURE HISTOGRAMS

The triangle mesh provides a clearer visualization of the point cloud's underlying
surface. For the remainder of the chapter, whenever a point cloud is visualized and a
triangle mesh is available, it wi l l be preferred over showing the points directly.

4.2. Implementing Point Feature Histograms
The class FeatureHistogram, in PFH .py, encapsulates the functions necessary to compute
P F H and F P F H .

The constructor, shown in Lis t ing 2, provides an overview of the member variables
of the class. It requires three arguments: the point cloud, thresholds, size of the k-
neighborhood, and as an additional optional argument, normals at the points, in case
they are provided wi th the model. The point cloud is expected to be a 2D N u m P y array,
where rows correspond to single points and columns contain Euclidean coordinates. The
same convention is held for normals and storing feature representations as well as colors.
Histogram binning is written in a general manner to not only support angular feature
binning, like in P F H and F P F H , but also to allow it to be extended wi th an arbitrary
point feature representation. The shape, i.e. the number of bins and value distribution,
of the resulting histogram is determined by the shape of thresholds. Thresholds are a list
of lists. The length of the outer list corresponds to a number of point features used for
binning, in this case three (this implementation considers only angles, not the distances,
in alignment wi th [], to reduce the dimensionality of the histogram), while the inner
lists contain the splitting thresholds. The inner lists must be in ascending order and can
be of arbitrary length. Therefore the more splits each inner list of thresholds has, the
more bins wi l l the final point feature histogram have.

Listing 2 Constructor of the FeatureHistogram class.
i class FeatureHistogram:
2 def i n i t (s e l f , pointCloud, thresholds, kNeighborhood, normals=None):
3 assert kNeighborhood > 0 ,
4 'neighborhood size must be a posi t i v e number'
5 i f normals i s not None:
6 assert pointCloud.shape == normals.shape,
7 'point cloud and normals must have the same shape'
8

9 s e l f . p t s = pointCloud
10 self.thresholds = thresholds
n self.kNeighborhood = kNeighborhood
12 self.featureRepresentation = None
13 self.neighborlndices = None
14 self.normals = normals
15 self.numBins = 1
16 for i i n range(len(thresholds)):
17 self.numBins *= 1+len(thresholds[i])

To initiate the calculation of point feature histog rams, the getFeatureRepresentationO,
shown in Lis t ing 3, the function must be called wi th an optional argument specifying
the type of algorithm used to calculate the histograms. Va l id options are 'naivePFH',
1 hashmapPFH', and 'FPFH ' , which is also the default setting. If available, the function returns

42

4. IMPLEMENTATION

previously computed feature representation, otherwise, it computes feature representation
according to the selected algorithm.

Before calculating the histograms, the function getFeatureRepresentationO first checks,
if the indices of the /c-neighborhood and normals at each point are available. If not,
/c-neighborhood is calculated using KDTree from the Sklearn library and normals are esti­
mated effectively by fitting a plane through the /c-neighborhood and taking the normal
of the plane as an estimate of the normal at the given point.

Listing 3 M a i n entry point for computation of variants of feature histograms.
i def getFeatureRepresentation(self, histogramAlgorithm = 'FPFH'):
2 i f (self.featureRepresentation i s None
3 or self.histogramAlgorithm != histogramAlgorithm):
4 i f self.neighborlndices i s None:
5 self.calculateNeighbors()
(i

7 i f self.normals i s None:
8 self.calcNormals()
9

10 self.histogramAlgorithm = histogramAlgorithm
n match(histogramAlgorithm):
12 case 'naivePFH':
13 self.featureRepresentation = self.calcPFH_naive(
14 self.normals, self.neighborlndices)
15 case 'hashmapPFH':
16 self.featureRepresentation = self.calcPFH_hashmap(
17 self.normals, self.neighborlndices)
is case ' FPFH' :
19 self.featureRepresentation = self.calcFPFH(
20 self.normals, self.neighborlndices)
21 case _: # use FPFH as default
22 warnings.warn(
23 'Invalid histogram algorithm s t r i n g . FPFH used instead.')
24 self.featureRepresentation = self.calcFPFH(
25 self.normals, self.neighborlndices)
26

27 return self.featureRepresentation

When the /c-neighborhood is established and normals are available, feature histograms
can be calculated. The option 'naivePFH' and 'hashmapPFH' are equivalent implementations
of P F H in Sec. 2.3. The 'hashmapPFH' variant stores computed angular features for point
pairs in a cache, achieving a significant speedup. The 'FPFH ' variant implements F P F H
in Sec. 2.4. These variants use the same functions to calculate the angular features
and the bin index of the angular features. The calculation of angular features follows
E q . (2.13) directly. Similarly, the function for calculating the index of a histogram bin
follows E q . (2.16)-(2.17).

The caicFPFHO function, shown in Lis t ing 4, consists of two main loops. The first loop
iterates through all points, and computes angular features for its /c-neighborhood and the
S P F H , as in Sec. 2.4, based on the angular features. The second loop then creates the
final F P F H for each point when the S P F H for all points is known. To further speed up
the calculation, the function uses hashmap similarly to caicPFH_hashmap() to cache angular
features for point pairs that appeared previously.

43

4.3. IMPLEMENTING ICP

Listing 4 Function for computing Fast Point Feature Histograms.
i def calcFPFH(self, normals, indNeigh):
2 SPFH_Array = np.zeros((len(self.pts), self.numBins))
3 # combination number "N choose 2"
4 N_features = comb(self.kNeighborhood+1, 2)
5 # diet (hashmap) representing the Darboux frame for each pointpair
6 # key: tuple of pointpair indices
7 # value: np.array containing a histogram index and point distance
8 DarbouxDict = {}
9 minimumDistance = np.inf

10 for i i n range(len(self.pts)):
n #indices of a l l unique point pairs in neighborhood
12 numNeighbors = len(indNeigh[i])
13 indices = np.zeros(numNeighbors, dtype=int)
14 f o r j i n range(numNeighbors):
15 tup = t u p l e ([i , indNeigh[i][j]])
16 i f tup not i n DarbouxDict:
17 feature = self.angularFeatures(
is s e l f , pts [i] , normals [i] ,
19 s e l f . p t s [indNeigh[i][j]], normals[indNeigh[i][j]])
20 index = self.calcBinIndex(feature)
21 distance = np.linalg.norm(self.pts[i] - s e l f . p t s [i n d N e i g h [i] [j]])
22 minimumDistance = min(minimumDistance, distance)
23 DarbouxDict[tup] = np.array([index, distance])
24 i n d i c e s [j] = index
25 else:
26 i n d i c e s [j] = DarbouxDict[tup] [0]
27

28 # clean SPFH for each point
29 SPFH = np.zeros(SPFH_Array.shape[1])
30 unique, counts = np.unique(indices, return_counts=True)
31 SPFH[unique] = counts
32 SPFH_Array[i,:] = SPFH / N_features
33

34 # c a l c u l a t e the FPFH i t s e l f
35 FPFH_Array = SPFH_Array.copy()
36 for i i n range(len(self.pts)):
37 SPFH_sum = np.zeros(FPFH_Array.shape[1])
38 for ind i n indNeigh [i] :
39 pointDistance = DarbouxDict[tuple([i, i n d])] [l]
40 # closest point has a weight 1
41 distanceWeight = pointDistance / minimumDistance
42 SPFH_sum += SPFH_Array[ind] / distanceWeight
43

44 FPFH_Array[i] += SPFH_sum / len(indNeigh[i])
45

46 return FPFH_Array

4.3. Implementing ICP
Functionality related to point cloud registration is encapsulated in the file ICP.py . The
main entry point is the function lCP_features(), shown in Lis t ing 5, which produces a
transform matrix to fit srcPointCloud onto dstPointCloud. The function iterates unti l a

44

4. IMPLEMENTATION

maximum number of iterations is reached, or when the change of error between iterations
is smaller than stopDeita. For ease of testing, it allows to set an init ial alignment and
offers the option of running I C P on a subsample of the input data. iCP_f eaturesO is
general enough to support point clouds of arbitrary dimension, so it works for 2D and 3D
point clouds alike, as long as the source and the target point cloud's dimension match.

Listing 5 I C P using Euclidean coordinates and point feature representations.
i def ICP_features(srcPointCloud, srcFeatures, dstPointCloud, dstFeatures,
2 initialAlignment=None, maxlterations=20, stopDelta=0 .001, samplerate=l.0) :
3 assert srcPointCloud.shape [1] == dstPointCloud.shape [1] ,
4 'Point cloud dimensions dont match'
5 i f (samplerate > 1) or (samplerate <= 0) :
6 samplerate = 1
7 warnings.warn('Sample rate should be between 0 and 1 ')
8 # subsampling
9 i f samplerate == 1:

10 srcP = np.copy(srcPointCloud)
n srcF = np.copy(srcFeatures)
12 dstP = np.copy(dstPointCloud)
13 dstF = np.copy(dstFeatures)
14 else:
15 ids = np.random.uniform(0, 1, size=srcPointCloud.shape [0])
16 srcP = srcPointCloud[ids <= samplerate, :]
17 srcF = srcFeatures[ids <= samplerate, :]
is ids = np.random.uniform(0, 1, size=dstPointCloud.shape [0])
19 dstP = dstPointCloud[ids <= samplerate, :]
20 dstF = dstFeatures[ids <= samplerate, :]
21 srcCopy = np.copy(srcP)
22

23 # i n i t i a l estimated alignment
24 i f initialAlignment i s not None:
25 srcP = applyAffineTransform(srcP, initialAlignment)
26

27 l a s t E r r o r = 0
28 # main ICP loop
29 for currentlter i n range(maxlterations):
30 distances, indices = pairMatching(np.concatenate((srcP, srcF), axis=l),
31 np.concatenate((dstP, dstF), axis=l))
32 transform,_,_ = estimateTransformation(srcP, dstP[indices])
33 # apply the estimated transform
34 srcP = applyAffineTransform(srcP, transform)
35 # stop condition
36 error = np.mean(distances)
37 i f np.abs(lastError - error) < stopDeita:
38 break
39

40 l a s t E r r o r = error
41 # get r e s u l t i n g transformation
42 transform,_,_ = estimateTransformation(srcCopy, srcP)
43 srcP = applyAffineTransform(srcCopy, transform)
44 distances,_ = pairMatching(srcP, dstP)
45

46 return transform, distances, currentlter

45

4.3. IMPLEMENTING ICP

A small note on the resulting transform. In E q . (1.3) the transformation of an n
dimensional point cloud is described b y n x n rotation matrix R and an n dimensional
vector t. The above function opts for an alternative approach, performing the transfor­
mation in n + 1 dimensional projective space using (n + 1) x (n + 1) affine transformation
matrix T [10]. The points are projected by taking the proper points and adding ones as
the last coordinate. The transform of a 3D point q onto p in projective space would be
described by the following equation

V

(Px\ (ru

T

»"12 »"13

9

Py »"22 »"23 ty %
Pz r32 »"33 tz

\ 1 / \ o 0 0 1 / W

(4.1)

where Tij,U are elements of R and t respectively.
The estimateTransformationO, shown in Lis t ing 6, uses the point-to-point algorithm

described in Sec. 1.4.2 approach to estimating the best fit.

Listing 6 Point-to-point I C P approach to transform estimation.
i def estimateTransformation(src, dst):
2 assert src.shape == dst.shape, 'Point cloud dimensions dont match'
3

4 # center point clouds
5 srcCentroid = np.mean(src, axis=0)
6 dstCentroid = np.mean(dst, axis=0)
7 srcCentered = src - srcCentroid
8 dstCentered = dst - dstCentroid
9 # least squares f i t using Singular Value Decomposition

10 cov = np.dot(srcCentered.T, dstCentered)
n U, S, Vt = np.linalg.svd(cov)
12 rotation = np.dot(Vt.T, U.T)
13 # get number of dimensions
14 m = src. shape [1]
15

16 # special r e f l e c t i o n case
17 i f np.linalg.det(rotation) < 0:
is Vt[m -1 , :] *= -1
19 rotation = np.dot(Vt.T, U.T)
20

21 t r a n s l a t i o n = dstCentroid.T - np.dot(rotation, srcCentroid.T)
22 transform = np.identity(m+l)
23 transform[:m, :m] = rot a t i o n
24 transform[:m, m] = t r a n s l a t i o n
25

26 return transform, rotation, t r a n s l a t i o n

Note that the "special reflection case" comment refers to Eq.(1.14).

46

4. IMPLEMENTATION

4.4. Comparing registration using feature histograms
and color

The final section of the implementation chapter evaluates the uti l i ty of color as a point
feature representation in comparison to F P F H .

4.4.1. Methodology
The evaluation of color consists of a series of experiments on varying data. Each exper­
iment entails performing point cloud registration using I C P wi th varying combinations
of point feature representations. To ensure consistency in nearest neighbor search, the
point clouds are normalized to the range [0,1], likewise, the point feature representations
are also scaled to the interval [0,1]. Experiments are performed on multiple point clouds
varying in size as well as shape, and can be divided into three types:

• Synthetic control. Target point cloud is obtained by rotating and translating the
source and then registering it onto itself. Serves as a baseline for compared algo­
rithms.

• Synthetic target. Target point cloud is obtained by adding Gaussian noise to the
source and then rotating and translating it. Evaluates the sensitivity to noise.

• Realistic target. Source and target point clouds are overlapping scans from different
viewpoints. The ground truth transform is not known in advance but provides
insight into performance in a realistic scenario.

The parameters of F P F H and I C P stay the same between all experiments. F P F H uses
a single threshold of 0 for each of the three angular features to create the histograms.
Feature histograms are created from the 30 closest points. I C P is l imited to 1000 iterations
(never reached the limit) and uses 1 0 - 1 1 as the error delta for the stop criterion.

The point set registration function returns the estimation of optimal fit, list of dis­
tances for each matched point pair and number of I C P iterations the algorithm needed
to reach the stop criterion. Mean and variance of the distances provide an insight into
the closeness of fit. Mean alone describes the closeness of fit, however, I C P can get stuck
at a local minimum which is visually obvious, but not easily detected from mean alone.
Increased variance is a good indicator of a fit in a local minimum, alerting to adjust the
I C P parameters. I C P iterations indicate the effect of the given choice of point feature
representation on the convergence of I C P and serve as a proxy for computational intensity.
A s mentioned at the beginning of the chapter, due to Python's approach to memory man­
agement, higher dimensional point feature representations, which take up more memory,
cause more cache misses and are disproportionately disadvantaged in computation time.
For this reason time measurements are not considered as a part of the experiment. When
two approaches produce comparable quality of fit, the one that took fewer iterations is
preferred.

The advantage of experiments wi th synthetic targets is that the ground truth trans­
form is known in advance. The difference in translation is evaluated as the Euclidean
distance between translation vectors, while the difference between Rmitiai and Restimated
is evaluated using a norm <ft defined as

0 : SO (3) x SO (3) R+, <P{Rinitial, R estimated) ||I ^initialR estimated IIF- (4-2)

47

4.4. COMPARING REGISTRATION USING FEATURE HISTOGRAMS AND COLOR

The intuition behind this norm uses the fact that an orthogonal rotational matrix R £
SO (3) multiplied by its transpose yields an identity matrix and <j) measures the Frobenius
distance from the identity matrix. Further analysis of the <fi metric including proof of
satisfaction of metric definition in [22,25].

4.4.2. Data
To test registration, the implementation uses data captured by the Microsoft Kinect
sensor, used in a study developing Signature of Histograms of Orientations (SHOT) [41,
43]. Data, available in [11], consists of 4 datasets, Duck, PeterRabbit, Squirrel, and
SuperMario, each dataset consists of objects scanned from different views.

4.4.3. Evaluation of experiments
The synthetic control experiment provides a baseline for measured values. In an ideal
scenario, the mean and the variance of the pairwise distances would be zero, however, as
is the case for iterative numerical methods, results are very small floating numbers, which
are effectively considered to be zero. Visualizat ion shows a perfect fit regardless of the
point feature representation used. P la in I C P took 40 iterations to converge, I C P wi th
F P F H took 16, and variants using any representation of color took around 8 iterations.

Synthetic control experiment
Target 'SuperMario . /SuperMarioPly002.ply ' - 41417 points
Source target point cloud rotated 30 degrees

algorithm Iters dist. mean dist. var. rot. norm <f) transl. norm
I C P 40 2.4160e-15 2.7334e-33 1.4142 2.5900e-15
I C P & F P F H 16 2.4832e-15 4.4776e-33 1.4142 2.8489e-15
I C P & R G B 10 2.4637e-15 2.2721e-33 1.4142 2.8119e-15
I C P & H S V 8 2.3831e-15 3.5447e-33 1.4142 2.4230e-15
I C P & L A B 9 2.4456e-15 1.5085e-33 1.4142 2.6197e-15
I C P & F P F H & R G B 8 2.7547e-15 4.4718e-33 1.4142 2.6558e-15
I C P & F P F H & H S V 7 2.4145e-15 3.6235e-33 1.4142 2.3415e-15
I C P & F P F H & L A B 8 2.4445e-15 2.2009e-33 1.4142 2.5474e-15

Table 4.1: Synthetic control source is created by rotating the target point cloud 30 degrees.

The synthetic target experiments are performed wi th three levels of additive noise. The
added noise is Gaussian wi th zero mean and variances of 0.005, 0.01 and 0.05. Across
noise levels, the mean and the variance of pairwise distances are consistent across variants.
A comparison of the estimated transform to the ground truth transform indicates using
color without F P F H yields a smaller translation norm. W i t h increased noise levels the
advantage of color disappears. In the highest noise scenario use of F P F H seems to improve
the estimation of the rotation, however upon visual inspection of the resulting registration
it is clear, that none of the variants is able to overcome the high level of noise and produce
an acceptable transformation.

The number of iterations before convergence was consistently lower for the variants
using color.

48

4. IMPLEMENTATION

Synthetic source experiment
Target 'SuperMario/SuperMarioPly002.ply ' - 41417 points
Source target is rotated 30 degrees - added noise with var. 0.005

algorithm Iters dist. mean dist. var. rot. norm <f> transl. norm
I C P 88 0.0041791 8.5658e-06 1.4176 0.0028922
I C P & F P F H 54 0.0043715 9.2524e-06 1.4204 0.0086201
I C P & R G B 16 0.0041815 8.5899e-06 1.4146 0.0005566
I C P & H S V 14 0.0041815 8.5903e-06 1.4147 0.0006278
I C P & L A B 17 0.0041815 8.5898e-06 1.4146 0.0005310
I C P & F P F H & R G B 18 0.0041994 8.6331e-06 1.4197 0.0035228
I C P & F P F H & H S V 16 0.0041942 8.6189e-06 1.4189 0.0029271
I C P & F P F H & L A B 17 0.0041965 8.6244e-06 1.4179 0.0022897

Target
Source

'SuperMario/SuperMarioPly002.ply '
target is rotated 30 degrees - added :

-41417 points
noise with var. 0.01

algorithm Iters dist. mean dist. var. rot. norm (f) transl. norm
I C P 68 0.0082116 3.1876e-05 1.4257 0.010572
I C P & F P F H 80 0.0083029 3.2302e-05 1.4061 0.005293
I C P & R G B 19 0.0082221 3.2118e-05 1.4208 0.005577
I C P & H S V 15 0.0082239 3.2144e-05 1.4196 0.004449
I C P & L A B 17 0.0082228 3.2129e-05 1.4200 0.004860
I C P & F P F H & R G B 18 0.0082202 3.2077e-05 1.4213 0.004962
I C P & F P F H & H S V 16 0.0082222 3.2116e-05 1.4178 0.003084
I C P & F P F H & L A B 19 0.0082210 3.2092e-05 1.4180 0.002846

Target
Source

'SuperMario/SuperMarioPly002.ply '
target is rotated 30 degrees - added :

-41417 points
noise with var. 0.05

algorithm Iters dist. mean dist. var. rot. norm (f) transl. norm
I C P 56 0.040828 0.00084968 1.4183 0.019018
I C P & F P F H 49 0.040833 0.00084966 1.3932 0.020614
I C P & R G B 32 0.041037 0.00085697 1.4305 0.022025
I C P & H S V 22 0.041075 0.00085762 1.4295 0.015447
I C P & L A B 30 0.041082 0.00085854 1.4373 0.024815
I C P & F P F H & R G B 23 0.041035 0.00085637 1.4165 0.018070
I C P & F P F H & H S V 23 0.041072 0.00085702 1.4119 0.006534
I C P & F P F H k L A B 28 0.041062 0.00085741 1.4144 0.015668

Table 4.2: Synthetic source is created by rotating the target point cloud 30 degrees and
adding varying degrees of noise.

Registration wi th realistic targets is performed wi th models "as is", using models
from the dataset scanned from different viewpoints without any additional preprocessing,
although pairs of point clouds for registration were selected from close viewpoints, ensuring
there was enough overlap to make registration even possible. Across datasets, the use of
point feature representations resulted in fewer iterations, especially when using color. The
addition of color provided a slightly worse quality of fit than using only F P F H or plain
ICP .

49

4.4. COMPARING REGISTRATION USING FEATURE HISTOGRAMS AND COLOR

Realistic target experiment
Target 'SuperMario/SuperMarioPly002.ply ' - 41417 points
Source 'SuperMario/SuperMarioPlyOOl.ply ' - 44219 points

algorithm Iters dist. mean dist. var.
I C P 94 0.0015479 4.7882e-06
I C P & F P F H 34 0.0016503 4.8626e-06
I C P & R G B 16 0.0022364 5.8409e-06
I C P & H S V 14 0.0024121 6.1474e-06
I C P & L A B 16 0.0022229 5.8396e-06
I C P & F P F H & R G B 14 0.0023133 5.9090e-06
I C P & F P F H & H S V 11 0.0024358 6.0984e-06
I C P & F P F H & L A B 13 0.0023636 5.9409e-06

Table 4.3: Point cloud registration on two views from the SuperMario dataset.

Tables with experiment results of other datasets are available in Appendix 4.4.3, as
well as figures of the tested point clouds 4.4.3.

50

4. IMPLEMENTATION

Conclusion
The objectives of this thesis were to provide an overview of Fast Point Feature His­

tograms, color spaces for point clouds, and to propose a new extension of F P F H using
color spaces for point cloud registration. Then to provide an implementation of the
aforementioned concepts together wi th an evaluation of color's usefulness in point cloud
registration. Chapter 1 introduced point clouds, the methods of scanning, the problem of
nearest neighbor search, and the concept of point set registration using ICP . Chapter 2 dis­
cussed point feature representations in general and focused on Point Feature Histograms
and Fast Point Feature Histograms. The following Chapter 3 provided an overview of
color and its representation in order to present color space candidates to be considered
as a point feature representation in order to improve point cloud registration. Finally,
Chapter 4 presented the implementation of I C P and Feature Histograms in Python, and
proposed experiments to evaluate registration using various combinations of point feature
representations wi th a primary focus on color.

The experiments proved color to be a valuable asset in the toolbox for point cloud reg­
istration, bringing down significantly the total number of I C P iterations required for con­
vergence across combinations of point feature representations uti l izing color while main­
taining the accuracy of the registration.

The focus of the experiments was on using point feature representations for fine regis­
tration using ICP . A n alternative approach is to use point feature representations to select
key points of the point cloud and perform coarse registration based on the key points. The
implementation provided with the thesis was developed wi th flexibility and extensibility
in mind, making it easy to swap feature representations or registration algorithms using
the same experiment measuring framework, providing a base for further research.

51

BIBLIOGRAPHY

Bibliography
[1] A P P L E . Spatial and logical arrangement of an example octree [graph], [cit. 2024-02-11].

Available at: ht tps: / /developer .apple.com/documentat ion/gameplaykit /gkoctree.

[2] A R U N , K . S., H U A N G , T . S. and B L O S T E I N , S. D . Least-Squares F i t t ing of Two 3-D
Point Sets. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1987,
P A M I - 9 , no. 5, p. 698-700. D O I : 10.1109/TPAMI.1987.4767965. ISSN 0162-8828.
Available at: https:/ / ieeexplore.ieee.org/document/4767965.

[3] B E E K , M . , S M A L L , C. F . , E L L I S , R. E . , S E L L E N S , R. W . and P I C H O R A , D . R. Bone

Alignment Using the Iterative Closest Point Algor i thm. Journal of Applied Biome­
chanics. 2010, vol. 26, no. 4, p. 526-530. DOI : 10.1123/jab.26.4.526. ISSN 1065-
8483. Available at: h t tps : / / journals .humankinet ics .com/view/journals/jab/26/
4/art icle-p526 .xml.

[4] B E R T A L M I O , M . Vision Models for High Dynamic Range and Wide Colour Gamut
Imaging. Academic Press, 2020. 131-155 p. Computer Vis ion and Pattern Recog­
nition. I S B N 978-0-12-813894-6. Available at: h t tps : / /www.sciencedi rec t .com/
science/article/pii/B9780128138946000119.

[5] B E S L , P. and M C K A Y , N . D . A method for registration of 3-D shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence. 1992, vol. 14, no. 2,
p. 239-256. D O I : 10.1109/34.121791. ISSN 0162-8828. Available at: h t tp :
/ / ieeexplore.ieee.org/document/121791/.

[6] C H E N , Y . and M E D I O N I , G . Object modelling by registration of multiple range
images. Image and Vision Computing. 1992, vol. 10, no. 3, p. 145-155. DOI :
10.1016/0262-8856(92)90066-C. ISSN 02628856. Available at: ht tps : / / l i n k i n g h u b .
elsevier.com/retrieve/pii/026288569290066C.

[7] C O L I B A N , R . - M . , M A R I N C A § , M . , H A T F A L U D I , C . and I V A N O V I C I , M . Linear and
Non-Linear Models for Remotely-Sensed Hyperspectral Image Visualization. Remote
Sensing, august 2020, vol. 12, p. 2479. D O I : 10.3390/rsl2152479.

[8] C O M M O N S , W . The CIE 1931 XYZ color matching functions. 2009. Available
at: https://upload.wikimedia.org/wikipedia/commons/thumb/8/8f/CIE_1931_XYZ_
Color_Matching_Functions.svg/2560px-CIE_1931_XYZ_Color_Matching_Functions.
svg.png.

[9] C O M M O N S , W . CIE 1931 RGB color matching functions with primary wavelengths
shown. 2023. Available at: ht tps: / /commons.wikimedia.org/wiki/File:CIE1931_
RGBCMF2.png.

[10] C R A I G , J . Introduction to Robotics: Mechanics and Control. Pearson/Prentice
Hal l , 2005. Addison-Wesley series in electrical and computer engineering: control
engineering. I S B N 9780201543612.

[11] D E E R I N G , M . F . A photon accurate model of the human eye. In: A CM SIGGRAPH
2005 Papers. New York, N Y , U S A : Association for Computing Machinery, 2005,
p. 649-658. S I G G R A P H '05. D O I : 10.1145/1186822.1073243. I S B N 9781450378253.

52

https://developer.apple.com/documentation/gameplaykit/gkoctree
https://ieeexplore.ieee.org/document/4767965
https://journals.humankinetics.com/view/journals/jab/26/
https://www.sciencedirect.com/
https://upload.wikimedia.org/wikipedia/commons/thumb/8/8f/CIE_1931_XYZ_
https://commons.wikimedia.org/wiki/File:CIE1931_

BIBLIOGRAPHY

[12] F A I R M A N , H . S., B R I L L , M . H . and H E M M E N D I N G E R , H . H O W the cie 1931

color-matching functions were derived from wright-guild data. Color Research
& Application. 1997, vol. 22, no. 1, p. 11-23. D O I : 10.1002/(SICI)1520-
6378(199702)22 : l<l l : :AID-COL4>3.0.CO;2-7.

[13] F O L E Y , J . D . , D A M , A . van, F E I N E R , S. and H U G H E S , J . Computer Graphics:
Principles and Practice. 2.th ed. Reading, M A : Addison-Wesley, 1990. I S B N 978-
0-201-12110-0. Available at: https://students.aiu.edu/submissions/profiles/
resources/onlineBook/a6A8H5_computer0/020graphics .pdf.

[14] F O R B E S , A . , O L I V E I R A , M . de and D E N N I S , M . R. Structured light. Springer Science
and Business Media L L C , march 2021. D O I : 10.1038/s41566-021-00780-4.

[15] F R A S E R , B . , M U R P H Y , C. and B U N T I N G , F . Real World Color Management:
Industrial-strength Production Techniques. Peachpit Press, 2003. Real Wor ld Se­
ries. I S B N 9780201773408.

[16] F R I E D M A N , J . H . , B E N T L E Y , J . L . and F I N K E L , R. A . A n Algor i thm for Finding
Best Matches in Logarithmic Expected Time. ACM Transactions on Mathematical
Software. 1977, vol. 3, no. 3, p. 214-216. DOI : 10.1145/355744.355745. ISSN 0098-
3500. Available at: https://dl.acm.org/doi/10.1145/355744.355745.

[17] H A N , X . , J I N , J . S., X I E , J . , W A N G , M . and J I A N G , W . A comprehensive review
of 3D point cloud descriptors. CoRR. 2018, abs/1802.02297. Available at: http:
//arxiv.org/abs/1802.02297.

[18] H O P P E , H . , D E R O S E , T. , D U C H A M P , T. , M C D O N A L D , J . and S T U E T Z L E , W . Sur­
face reconstruction from unorganized points. In: Proceedings of the 19th Annual
Conference on Computer Graphics and Interactive Techniques. New York, N Y ,
U S A : Association for Computing Machinery, 1992, p. 71-78. S I G G R A P H '92. DOI :
10.1145/133994.134011. I S B N 0897914791.

[19] H u , L . and N O O S H A B A D I , S. Massive parallelization of approximate nearest neigh­
bor search on KD-tree for high-dimensional image descriptor matching. Journal of
Visual Communication and Image Representation. 2017, vol. 44, p. 106-115. DOI :
10.1016/j.jvcir.2017.01.013. ISSN 10473203. Available at: https://linkingb.ub.
elsevier.com/retrieve/pii/S1047320317300135.

[20] H U A N G , R. , Y A O , W . , Y E , Z. , X U , Y . and S T I L L A , U . R I D F : A R O B U S T

R O T A T I O N - I N V A R I A N T D E S C R I P T O R F O R 3D P O I N T C L O U D R E G I S T R A ­
T I O N I N T H E F R E Q U E N C Y D O M A I N . ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences. 2020, V-2-2020, p. 235-242.
D O I : 10.5194/isprs-annals-V-2-2020-235-2020. Available at: https://isprs-annals.
copernicus.org/articles/V-2-2020/235/2020/.

[21] H U N T , R. The Reproduction of Colour. 2.th ed. Wiley, 2004-09-24. I S B N
9780470024256.

[22] H U Y N H , D . Metrics for 3D Rotations: Comparison and Analysis. Journal of Mathe­
matical Imaging and Vision. October 2009, vol. 35, p. 155-164. D O I : 10.1007/sl0851-
009-0161-2. Available at: https://doi.org/10.1007/sl0851-009-0161-2.

53

https://students.aiu.edu/submissions/profiles/
https://dl.acm.org/doi/10.1145/355744.355745
https://linkingb.ub
https://isprs-annals
https://doi.org/10.1007/sl0851-009-0161-2

BIBLIOGRAPHY

[23] K A R A T A S , O. H . and T O Y , E . Cone beam computerized tomography for cranio­
facial imaging [photo]. European journal of dentistry: Three-dimensional imaging
techniques: A literature review. 2014, vol. 2014, no. 01, p. 132-140.

[24] K A Z M I , I., Y o u , L . and Z H A N G , J . A Survey of 2D and 3D Shape Descriptors.
In: International Conference Computer Graphics, Imaging, and Visualization. August
2013, no. 10, p. 1-10. DOI : 10.1109/CGIV.2013.11.

[25] L A R O C H E L L E , P. M . , M U R R A Y , A . P. and A N G E L E S , J . A Distance Metr ic for
Finite Sets of Rig id-Body Displacements via the Polar Decomposition. Journal of
Mechanical Design. July 2006, vol. 129, no. 8, p. 883-886. D O I : 10.1115/1.2735640.
ISSN 1050-0472. Available at: https://doi.org/10.1115/1.2735640.

[26] L i , D . , W E I , Y . and Z H U , R. A comparative study on point cloud down-sampling
strategies for deep learning-based crop organ segmentation. Plant Methods. 2023,
vol. 19, no. 1. DOI : 10.1186/sl3007-023-01099-7. ISSN 1746-4811. Available at:
https://plantmethods.biomedcentral.com/articles/10.1186/sl3007-023-01099-7.

[27] L i u , Q. A Survey of Recent View-based 3D Model Retrieval Methods. CoRR. 2012,
abs/1208.3670. Available at: http://arxiv.org/abs/1208.3670.

[28] M A N , D . and O L C H A W A , R. In: W O J C I E C H P . H U N E K , S. P., ed. Brain Biophysics:

Perception, Consciousness, Creativity. Brain Computer Interface (BCI). l . t h ed.
February 2018, p. 38-44. I S B N 978-3-319-75024-8.

[29] M A R T O N , Z . , P A N G E R C I C , D . , B L O D O W , N . and B E E T Z , M . Combined 2 D - 3 D
categorization and classification for mult imodal perception systems. International
Journal of Robotic Research - IJRR. October 2011, vol. 30, p. 1378-1402. DOI :
10.1177/0278364911415897.

[30] M A S O N , A . Making 3D Models with Photogrammetry [graph], [cit. 2024-02-10].
Available at: https://thehaskinssociety.wildapricot.org/resources/Pictures/
Tutorials/Photogrammetry/photogrammetry.jpg.

[31] O H T A , N . and R O B E R T S O N , A . R. Colorimetry. Wiley, 2005-11-11. I S B N

9780470094723.

[32] O P E N D S A . Example of a kd tree [graph]. 2011 [cit. 2024-02-11]. Available at: https:
//opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/KDtree.html.

[33] O P E N D S A . Example of a PR quadtree [graph]. 2011 [cit. 2024-02-11]. Available at:
https://opendsa-server.cs.vt.edu/0DSA/Books/CS3/html/PRquadtree.html.

[34] P O M E R L E A U , F . , C O L A S , F . and S I E G W A R T , R. A Review of Point Cloud Regis­

tration Algori thms for Mobile Robotics. Foundations and Trends in Robotics. 2013,
vol. 4, no. 1, p. 1-104. D O I : 10.1561/2300000035. ISSN 1935-8253. Available at:
http://www.nowpublishers.com/article/Details/ROB-035.

[35] R A M , P. and S I N H A , K . Revisit ing kd-tree for Nearest Neighbor Search. In: Pro­
ceedings of the 25th ACM SIGKDD International Conference on Knowledge Dis­
covery & Data Mining. New York, N Y , U S A : A C M , 2019-07-25, p. 1378-1388.

54

https://doi.org/10.1115/1.2735640
https://plantmethods.biomedcentral.com/articles/10.1186/sl3007-023-01099-7
http://arxiv.org/abs/1208.3670
https://thehaskinssociety.wildapricot.org/resources/Pictures/
https://opendsa-server.cs.vt.edu/0DSA/Books/CS3/html/PRquadtree.html
http://www.nowpublishers.com/article/Details/ROB-035

BIBLIOGRAPHY

D O I : 10.1145/3292500.3330875. I S B N 9781450362016. Available at: h t tps :
//dl.acm.org/doi/10.1145/3292500.3330875.

[36] R A Y C H E V , J . , H R I S T O V , G . , K Y U C H U K O V A , D . and Z A H A R I E V , P. Workflow for
development of a vir tual museum that wi l l provide better way for learning the
cultural heritage. In: 2017 16th International Conference on Information Tech­
nology Based Higher Education and Training (ITHET). I E E E , 2017, p. 1-5.
D O I : 10.1109/ITHET.2017.8067815. I S B N 978-1-5386-3968-9. Available at: http:
//ieeexplore.ieee.org/document/8067815/.

[37] R u s u , R. B . Semantic 3D object maps for everyday manipulation in human living
environments. Munich , 2009. P h D thesis. Technical University of Munich . Available
at: https://mediatum.ub.tum.de/doc/800632/941254.pdf.

[38] R u s u , R. B . , B L O D O W , N . and B E E T Z , M . Fast Point Feature Histograms (F P F H)
for 3D registration. In: 2009 IEEE International Conference on Robotics and Au­
tomation. 2009, p. 3212-3217. D O I : 10.1109/ROBOT.2009.5152473.

[39] R u s u , R. B . and C O U S I N S , S. The PCD (Point Cloud Data) file format. 2010. Avai l ­
able at: https://pel.readthedocs.io/projects/tutorials/en/latest/pcd_file_
format.html.

[40] R u s u , R. B . and C O U S I N S , S. 3D is here: Point Cloud Library (P C L) . In: IEEE
International Conference on Robotics and Automation (ICRA). Shanghai, China:
I E E E , M a y 9-13 2011.

[41] S A L T I , S., T O M B A R I , F . and D i S T E F A N O , L . S H O T : Unique signatures of histograms
for surface and texture description. Computer Vision and Image Understanding. 2014,
vol. 125, p. 251-264. D O I : 10.1016/j.cviu.2014.04.011. ISSN 1077-3142. Available
at: https : / /www.sciencedirect.com/science/article/pii/S1077314214000988.

[42] T E L E D Y N E . Laser Triangulation [graph]. [cit. 2024-02-10]. Avai l ­
able at: https://imaging.teledyne-e2v.com/products/applications/3d-imaging/
laser-triangulation/.

[43] T O M B A R I , F . , S A L T I , S. and D i S T E F A N O , L . A combined texture-shape descriptor
for enhanced 3D feature matching. In: 2011 18th IEEE International Conference on
Image Processing. 2011, p. 809-812. DOI : 10.1109/ICIP.2011.6116679. Available at:
http : / / w w w .vision.deis.unibo.it/fede/papers/icipll.pdf.

[44] T O M B A R I , F . , S A L T I , S. and S T E F A N O , L . D . SHOT: Unique Signatures of His­
tograms for Local Surface Description. 2013. Available at: http: / /www.vision,
deis.unibo.it/research/80-shot.

[45] T U R K , G . The PLY Polygon File Format. 1994. Available at: https://gamma.es.
unc.edu/POWERPLANT/papers/ply.pdf.

[46] W A L D , I. and H A V R A N , V . O n building fast kd-Trees for Ray Tracing, and on doing
that in 0 (N log N) . In: 2006 IEEE Symposium on Interactive Ray Tracing. I E E E ,
2006, p. 61-69. DOI : 10.1109/RT.2006.280216. I S B N 1-4244-0693-5. Available at:
http://ieeexplore.ieee.org/document/4061547/.

55

https://mediatum.ub.tum.de/doc/800632/941254.pdf
https://pel.readthedocs.io/projects/tutorials/en/latest/pcd_file_
https://www.sciencedirect.com/science/article/pii/S1077314214000988
https://imaging.teledyne-e2v.com/products/applications/3d-imaging/
http://www.vision.deis.unibo.it/fede/papers/icipll.pdf
http://www.vision
https://gamma.es
http://ieeexplore.ieee.org/document/4061547/

BIBLIOGRAPHY

[47] W A N G , Q . , T A N , Y . and M E I , Z . Computational Methods of Acquisi t ion and Process­
ing of 3D Point Cloud Data for Construction Applications. Archives of Computational
Methods in Engineering. 2020, vol. 27, no. 2, p. 479-499. D O I : 10.1007/sll831-
019-09320-4. ISSN 1134-3060. Available at: h t tp : / / l ink.spr inger .com/10.1007/
S11831-019-09320-4.

[48] W A N G , W . , Z H A N G , Y . , G E , G . , J I A N G , Q . , W A N G , Y . et al. Mult i-Dimensional
Indexing Structure for PointCloud Data. In: 2021 13th International Conference
on Intelligent Human-Machine Systems and Cybernetics (IHMSC). I E E E , 2021,
p. 172-176. D O I : 10.1109/IHMSC52134.2021.00047. I S B N 978-1-6654-2836-1. Avai l ­
able at: https://ieeexplore.ieee.org/document/9556109/.

[49] X U E , Y . Uniform color spaces based on CIECAM02 and IPT color difference equa­
tions. Rochester, N Y , 2008. Dissertation. Rochester Institute of Technology.

56

http://link.springer.com/10.1007/
https://ieeexplore.ieee.org/document/9556109/

BIBLIOGRAPHY

List of symbols
M. Real numbers

ö() Theoretical computational complexity

IIaII vector norm

IIaII2 Euclidean vector norm

A T transpose operator

a • b dot product of a and b

a x b cross product of a and b

Vq neighborhood of a point pq l imited to k closest points

\\R\\F Frobenius matrix norm defined as \\R\\F = (Tr{RTR))*

I Identity matrix

50 (3) Special orthogonal group, also known as the 3D rotation group

57

BIBLIOGRAPHY

Appendix
File tree of the attached sources

/
data subdirectories contain .ply point cloud models
_ D u c k

PeterRabbit
S q u i r r e l
SuperMario

1 sourceOfModels.txt
_PFH.py
_ I C P . p y

descriptorEvaluator.py
evaluateColor.py
requirements.txt

Additional experiment results

Synthetic control experiment
Target 'Duck /Duck JDlO .p ly ' - 26453 points
Source target point cloud rotated 30 degrees

algorithm Iters dist. mean dist. var. rot. norm <f) transl. norm
I C P 95 4.5250e-15 3.2210e-33 1.4142 4.4668e-15
I C P k F P F H 29 5.7312e-08 7.0384e-16 1.4142 3.9493e-07
I C P k R G B 17 4.3135e-15 3.6305e-33 1.4142 3.9475e-15
I C P k H S V 15 4.2013e-15 2.4941e-33 1.4142 4.1130e-15
I C P k L A B 17 4.0836e-15 5.0805e-33 1.4142 3.5149e-15
I C P k F P F H k R G B 15 4.0934e-15 2.0028e-33 1.4142 3.8882e-15
I C P k F P F H k H S V 13 4.2644e-15 2.8455e-33 1.4142 4.2334e-15
I C P k F P F H k L A B 14 4.2055e-15 2.1931e-33 1.4142 4.1182e-15

Table 4.4: Synthetic control source is created by rotating the target point cloud 30 degrees.

Synthetic control experiment
Target 'Squirrel/Scrat6.ply' - 56337 points
Source target point cloud rotated 30 degrees

algorithm Iters dist. mean dist. var. rot. norm (j) transl. norm
I C P 65 0.00048427 5.2633e-08 1.4165 0.0039593
I C P k F P F H 20 8.3303e-15 4.0889e-33 1.4142 7.9600e-15
I C P k R G B 18 8.5255e-15 6.9030e-33 1.4142 8.6578e-15
I C P k H S V 15 8.4033e-15 5.4290e-33 1.4142 8.1863e-15
I C P k L A B 17 8.3797e-15 4.5236e-33 1.4142 7.7926e-15
I C P k F P F H k R G B 13 8.3345e-15 4.3178e-33 1.4142 7.8648e-15
I C P k F P F H k H S V 12 8.2912e-15 5.1033e-33 1.4142 7.8206e-15
I C P k F P F H k L A B 13 8.5787c-15 8.8105e-33 1.4142 8.2078e-15

Table 4.5: Synthetic control source is created by rotating the target point cloud 30 degrees.

58

BIBLIOGRAPHY

Synthetic control experiment
Target 'PeterRabbit /PeterRabbitOOl .ply' - 13944 points
Source target point cloud rotated 30 degrees

algorithm Iters dist. mean dist. var. rot. norm 0 transl. norm
I C P 73 3.8460e-15 3.0363e-33 1.4142 4.0045e-15
I C P & F P F H 19 3.6239e-15 3.5330e-33 1.4142 3.7374e-15
I C P & R G B 9 3.9168e-15 8.5104e-34 1.4142 3.9987e-15
I C P & H S V 8 3.9654e-15 3.1444e-33 1.4142 4.1629e-15
I C P & L A B 8 3.7971e-15 1.6535e-33 1.4142 3.6972e-15
I C P & F P F H & R G B 7 3.9085e-15 1.6048e-33 1.4142 3.9995e-15
I C P & F P F H & H S V 7 3.8741e-15 2.9334e-33 1.4142 4.1180e-15
I C P & F P F H & L A B 7 3.6431e-15 3.2636e-33 1.4142 3.9546e-15

Table 4.6: Synthetic control source is created by rotating the target point cloud 30 degrees.

59

BIBLIOGRAPHY

Synthetic source experiment
Target 'Duck/Duck_010 .p ly ' - 26453 points
Source target is rotated 30 degrees - added noise with var. 0.005

algorithm Iters dist. mean dist. var. rot. norm 0 transl. norm
I C P 159 0.0040527 8.5361e-06 1.4138 0.0011291
I C P & F P F H 85 0.0045703 1.0808e-05 1.4128 0.0125461
I C P & R G B 21 0.0040568 8.5516e-06 1.4143 0.0002382
I C P & H S V 18 0.0040568 8.5515e-06 1.4144 0.0002276
I C P & L A B 19 0.0040567 8.5512e-06 1.4144 0.0002298
I C P & F P F H & R G B 28 0.0040697 8.5959e-06 1.4130 0.0035629
I C P & F P F H & H S V 20 0.0040649 8.5782e-06 1.4125 0.0037377
I C P & F P F H & L A B 23 0.0040696 8.5935e-06 1.4127 0.0034252

Target 'Duck /Duck _010.ply' - ! 26453 points
Source target is rotated 30 degrees - added noise with var. 0.01

algorithm Iters dist. mean dist. var. rot. norm <f) transl. norm
I C P 169 0.0079951 3.3859e-05 1.4101 0.0040455
I C P & F P F H 95 0.0082179 3.5903e-05 1.4151 0.0152312
I C P & R G B 25 0.0080157 3.4130e-05 1.4149 0.0009005
I C P & H S V 21 0.0080176 3.4148e-05 1.4149 0.0005565
I C P & L A B 23 0.0080169 3.4143e-05 1.4149 0.0006974
I C P & F P F H & R G B 26 0.0079977 3.3924e-05 1.4133 0.0032430
I C P & F P F H & H S V 23 0.0079956 3.3898e-05 1.4127 0.0044227
I C P & F P F H & L A B 24 0.0079965 3.3904e-05 1.4127 0.0035430

Target 'Duck /Duck JDlO .p ly ' - ! 26453 points
Source target is rotated 30 degrees - added noise with var. 0.05

algorithm Iters dist. mean dist. var. rot. norm <f) transl. norm
I C P 90 0.042924 0.00086462 1.4226 0.025865
I C P & F P F H 73 0.042923 0.00086805 1.4243 0.026432
I C P & R G B 46 0.043146 0.00088418 1.4252 0.010483
I C P & H S V 38 0.043237 0.00088883 1.4234 0.012042
I C P & L A B 48 0.043169 0.00088544 1.4226 0.010401
I C P & F P F H & R G B 51 0.043172 0.00088510 1.4195 0.004885
I C P & F P F H & H S V 36 0.043251 0.00088912 1.4181 0.003293
I C P & F P F H k L A B 63 0.043185 0.00088595 1.4189 0.005299

Table 4.7: Synthetic source is created by rotating the target point cloud 30 degrees and
adding varying degrees of noise.

60

BIBLIOGRAPHY

Synthetic source experiment
Target 'Squirrel/Scrat6.ply' - 56337 points
Source target is rotated 30 degrees - added noise with var. 0.005

algorithm Iters dist. mean dist. var. rot. norm <f> transl. norm
I C P 86 0.0040852 8.7495e-06 1.4147 0.001292
I C P & F P F H 79 0.0043955 1.0111e-05 1.4306 0.019791
I C P & R G B 43 0.0040853 8.7513e-06 1.4147 0.000928
I C P & H S V 27 0.0040854 8.7530e-06 1.4144 0.000501
I C P & L A B 28 0.0040854 8.7521e-06 1.4146 0.000705
I C P & F P F H & R G B 33 0.0042259 9.3933e-06 1.4115 0.011968
I C P & F P F H & H S V 29 0.0042090 9.2941e-06 1.4119 0.005836
I C P & F P F H & L A B 31 0.0042155 9.3374e-06 1.4129 0.009235

Target 'Squi r re l /Scra tö .p ly ' - 56337 points
Source target is rotated 30 degrees - added noise with var. 0.01

algorithm Iters dist. mean dist. var. rot. norm <f) transl. norm
I C P 135 0.0080583 3.4576e-05 1.4156 0.0038705
I C P & F P F H 102 0.0082199 3.5820e-05 1.4229 0.0082931
I C P & R G B 50 0.0080593 3.4606e-05 1.4159 0.0018720
I C P & H S V 42 0.0080600 3.4616e-05 1.4160 0.0017137
I C P & L A B 47 0.0080595 3.4609e-05 1.4160 0.0016956
I C P & F P F H & R G B 41 0.0081380 3.5243e-05 1.4121 0.0119470
I C P & F P F H & H S V 28 0.0081227 3.5091e-05 1.4130 0.0059822
I C P & F P F H & L A B 31 0.0081311 3.5168e-05 1.4128 0.0092223

Target 'Squi r re l /Scra tö .p ly ' - 56337 points
Source target is rotated 30 degrees - added noise with var. 0.05

algorithm Iters dist. mean dist. var. rot. norm <f) transl. norm
I C P 77 0.041034 0.00084829 1.3569 0.062082
I C P & F P F H 59 0.041048 0.00084791 1.3491 0.062372
I C P & R G B 67 0.041038 0.00085011 1.3648 0.064482
I C P & H S V 63 0.041061 0.00085171 1.3800 0.056576
I C P & L A B 72 0.041047 0.00085081 1.3703 0.062021
I C P & F P F H & R G B 62 0.041031 0.00084918 1.3528 0.068512
I C P & F P F H & H S V 53 0.041043 0.00084992 1.3694 0.054993
I C P & F P F H k L A B 67 0.041033 0.00084943 1.3589 0.063152

Table 4.8: Synthetic source is created by rotating the target point cloud 30 degrees and
adding varying degrees of noise.

61

BIBLIOGRAPHY

Synthetic source experiment
Target 'PeterRabbit /PeterRabbitOOl.ply ' - 13944 points
Source target is rotated 30 degrees - added noise with var. 0.005

algorithm Iters dist. mean dist. var. rot. norm <f> transl. norm
I C P 97 0.0040033 8.0718e-06 1.4067 0.0063612
I C P & F P F H 79 0.0049428 1.2271e-05 1.2520 0.1404545
I C P & R G B 13 0.0040082 8.0951e-06 1.4139 0.0004668
I C P & H S V 12 0.0040083 8.0953e-06 1.4138 0.0004657
I C P & L A B 11 0.0040083 8.0955e-06 1.4141 0.0002673
I C P & F P F H & R G B 14 0.0040132 8.0923e-06 1.4038 0.0109234
I C P & F P F H & H S V 15 0.0040110 8.0910e-06 1.4078 0.0073182
I C P & F P F H & L A B 16 0.0040124 8.0959e-06 1.4057 0.0094434

Target 'PeterRabbit /PeterRabbitOOl.ply ' - 13944 points
Source target is rotated 30 degrees - added noise with var. 0.01

algorithm Iters dist. mean dist. var. rot. norm (f) transl. norm
I C P 119 0.0076510 3.1097e-05 1.3907 0.019426
I C P & F P F H 98 0.0082140 3.5451e-05 1.2277 0.158932
I C P & R G B 15 0.0076738 3.1489e-05 1.4127 0.001596
I C P & H S V 13 0.0076755 3.1510e-05 1.4135 0.000775
I C P & L A B 15 0.0076747 3.1501e-05 1.4141 0.000534
I C P & F P F H & R G B 16 0.0076679 3.1354e-05 1.4001 0.013749
I C P & F P F H & H S V 13 0.0076714 3.1400e-05 1.4045 0.010113
I C P & F P F H & L A B 14 0.0076704 3.1385e-05 1.4045 0.010124

Target 'PeterRabbit /PeterRabbitOOl.ply ' - 13944 points
Source target is rotated 30 degrees - added noise with var. 0.05

algorithm Iters dist. mean dist. var. rot. norm (f) transl. norm
I C P 51 0.042594 0.00087529 1.3088 0.090438
I C P & F P F H 43 0.042605 0.00087676 1.2562 0.132361
I C P & R G B 19 0.042756 0.00089273 1.3774 0.039531
I C P & H S V 25 0.042798 0.00089512 1.3741 0.040052
I C P & L A B 26 0.042782 0.00089432 1.3772 0.038495
I C P & F P F H & R G B 23 0.042777 0.00089379 1.3697 0.041496
I C P & F P F H & H S V 24 0.042817 0.00089612 1.3803 0.031474
I C P & F P F H k L A B 31 0.042804 0.00089530 1.3665 0.043309

Table 4.9: Synthetic source is created by rotating the target point cloud 30 degrees and
adding varying degrees of noise.

62

BIBLIOGRAPHY

Realistic target experiment
Target 'Duck/Duck_010 .p ly ' - 26453 points
Source T)uck/Duck_011.ply ' - 27114 points

algorithm Iters dist. mean dist. var.
I C P 82 0.0019030 6.1206e-06
I C P & F P F H 37 0.0019465 6.0267e-06
I C P & R G B 19 0.0021143 6.4834e-06
I C P & H S V 24 0.0021704 6.4599e-06
I C P & L A B 26 0.0021266 6.4200e-06
I C P & F P F H & R G B 22 0.0020944 6.2300e-06
I C P & F P F H & H S V 13 0.0021594 6.2472e-06
I C P & F P F H & L A B 18 0.0020853 6.3023e-06

Table 4.10: Point cloud registration on two views from the Duck dataset.

Realistic target experiment
Target 'Squirrel/Scrat6.ply' - 56337 points
Source 'Squirrel/Scrat5.ply' - 57395 points

algorithm Iters dist. mean dist. var.
I C P 89 0.0022085 8.7790e-06
I C P & F P F H 52 0.0025715 8.0141e-06
I C P & R G B 32 0.0029784 7.0152e-06
I C P & H S V 28 0.0029863 7.1137e-06
I C P & L A B 38 0.0028891 7.0627e-06
I C P & F P F H & R G B 23 0.0029531 7.4570e-06
I C P & F P F H & H S V 22 0.0030395 7.3121e-06
I C P & F P F H & L A B 25 0.0029097 7.3368e-06

Table 4.11: Point cloud registration on two views from the Squirrel dataset.

Realistic target experiment
Target 'PeterRabbit /PeterRabbitOOl.ply ' - 13944 points
Source 'PeterRabbit/PeterRabbitOOO.ply' - 13357 points

algorithm Iters dist. mean dist. var.
I C P 98 0.0026003 7.5680e-06
I C P & F P F H 77 0.0028571 7.5086e-06
I C P & R G B 21 0.0026633 8.0981e-06
I C P & H S V 17 0.0027389 8.0929e-06
I C P & L A B 16 0.0026746 8.1034e-06
I C P & F P F H & R G B 14 0.0029608 8.2826e-06
I C P & F P F H & H S V 14 0.0030176 8.4232e-06
I C P & F P F H & L A B 12 0.0029675 8.2860e-06

Table 4.12: Point cloud registration on two views from the PeterRabbit dataset.

63

BIBLIOGRAPHY

Point clouds used in the experiments

(a) SuperMarioPlyOOl.ply (b) SuperMarioPly002.ply

Figure 4.2: Used point clouds from the SuperMario dataset.

(a) Duck_011.ply (b) Duck_010.ply

Figure 4.3: Used point clouds from the Duck dataset.

64

BIBLIOGRAPHY

(a) Scrat6.ply (b) Scrat5.ply

Figure 4.4: Used point clouds from the Squirrel dataset.

(a) PeterRabbitOOO.ply (b) PeterRabbitOOl.ply

Figure 4.5: Used point clouds from the PeterRabbit dataset.

65

